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Abstract — Pseudoinverse method for control end-effector 

movement of a robotic arm is presented in this paper. For 

that task we used the robotic arm DOBOT. We made 

simulation model in Matlab environment and SimMechanics 

toolbox. We described the pseudoinverse method and 

problem-solving of pseudoinverse for non-square matrices. 

In the near future we will make implementation of this 

method to the control end-effector movement of a robotic 

arm and therefore we created a simulation to how many 

digits we will need for correct calculating of goniometric 

functions in DSP. 
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I. INTRODUCTION 

Complex control systems nowadays are designed for 
wide range of industrial applications. They are focused on 
effective management of composite processes, energy 
savings and optimization of production and technological 
processes. For these reasons industry is using robotic 
manipulators for which we need to know the end-effector 
kinematics [1]. 

The robot kinematics can be divided into forward 
kinematics and inverse kinematics. Forward kinematics 
problem is straightforward and there is no complexity 
deriving the equations [2]. Hence, there is always a forward 
kinematics solution of a manipulator. Inverse kinematics is 
a much more difficult problem than forward kinematics. 
The solution of the inverse kinematics problem is 
computationally expansive and generally takes a very long 
time in the real time control of manipulators. Singularities 
and nonlinearities that make the problem more difficult to 
solve. Hence, only for a very small class of cinematically 
simple manipulators (manipulators with Euler wrist) have 
complete analytical solutions [3–5]. 

Two main solution techniques for the inverse kinematics 
problem are analytical and numerical methods. In the first 
type, the joint variables are solved analytically according to 
the given configuration data. In the second type of solution, 
the joint variables are obtained based on the numerical 
techniques. In this chapter, the analytical solution of the 
manipulators is examined rather than numerical solution [6, 
7]. 

The whole paper will be dedicated to the robot arm 
DOBOT Magician (hereafter DOBOT) shown in Fig. 1. 

 

 

 

Fig. 1.  DOBOT Magician [8]. 

II. THEORY OF PSEUDOINVERSE METHOD 

The pseudoinverse method sets the value ∆θ equal to 

 ∆𝜃 = 𝐽†𝑒 (1) 

Where: 

 J is Jacobian matrix, 

  is vector of the individual actuator positions, 

 e is vector of the end-effector positions. 

The n × m matrix 𝐽† is the pseudoinverse of 𝐽, also called 
the Moore-Penrose inverse of 𝐽. It is defined for all matrices 
J, even ones which are not square or not of full row rank. 
The pseudoinverse gives the best possible solution to the 
equation 𝐽∆𝜃 = 𝑒 in the sense of least squares. In 
particular, the pseudoinverse has the following nice 
properties. Let ∆𝜃 be defined by equation (1) [9]. First, 
suppose 𝑒 is in the range (i.e., the column span) of 𝐽. In this 
case, 𝐽∆𝜃 = 𝑒; furthermore, ∆θ is the unique vector of 
smallest magnitude satisfying 𝐽∆𝜃 = 𝑒. Second, suppose 
that 𝑒 is not in the range of 𝐽. In this case, 𝐽∆𝜃 = 𝑒 is 
impossible. However, ∆𝜃 has the property that it minimizes 
the magnitude of the difference 𝐽∆𝜃 − 𝑒. Furthermore, ∆𝜃 
is the unique vector of smallest magnitude which 
minimizes ‖𝐽∆𝜃 − 𝑒‖, or equivalently, which minimizes 
‖𝐽∆𝜃 − 𝑒‖2 [9, 10]. 

The pseudoinverse tends to have stability problems in the 
neighbourhoods of singularities. At a singularity, the 
Jacobian matrix no longer has full row rank, corresponding 
to the fact that there is a direction of movement of the end 
effectors which is not achievable [11, 12]. If the 
configuration is exactly at a singularity, then the 
pseudoinverse method will not attempt to move in an 
impossible direction, and the pseudoinverse will be well-
behaved. However, if the configuration is close to a 
singularity, then the pseudoinverse method will lead to very 
large changes in joint angles, even for small movements in 
the target position. In practice, roundoff errors mean that 
true singularities are rarely reached and instead singularity 
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have to be detected by checking values for being near-zero 
[13, 14]. 

The pseudoinverse has the further property that the 
matrix (𝐼 − 𝐽†𝐽) performs a projection onto the nullspace 
of 𝐽. Therefore, for all vectors 𝜑, 𝐽(𝐼 − 𝐽†𝐽)𝜑 = 0. This 
means that we can set ∆𝜃 by 

 ∆𝜃 = 𝐽†𝑒 + (𝐼 − 𝐽†𝐽)𝜑 (2) 

for any vector and still obtain a value for which minimizes 
the value 𝐽∆𝜃 − 𝑒. By suitably choosing 𝜑, one can try to 
achieve secondary goals in addition to having the end 
effectors track the target positions. For instance, 𝜑 might 
be chosen to try to return the joint angles back to rest 
positions. This can help avoid singular configurations [9, 
10]. 

An algorithm for the pseudoinverse method can be 
derived as follows: 

From equation (2), we get the normal equation 

 𝐽𝑇𝐽∆𝜃 = 𝐽𝑇𝑒 (3) 

Then we let 𝑧  =  𝐽 𝑇 𝑒 and solve the equation 

 (𝐽𝑇𝐽)∆𝜃 = 𝑧 (4) 

Now it can be shown that 𝑧 is always in the range of 𝐽𝑇 𝐽, 
hence equation (4) always has a solution. In principle, row 
operations can be used to find the solution to (4) with 
minimum magnitude; however, in the neighborhood of 
singularities, the algorithm is inherently numerically 
unstable [9, 15]. 

When 𝐽 has full row rank, then 𝐽𝐽𝑇is guaranteed to be 
invertible. In this case, the minimum magnitude solution 
∆𝜃 to equation (4) can be expressed as 

 ∆𝜃 = 𝐽𝑇(𝐽𝐽𝑇)−1𝑒 (5) 

To prove this, note that if ∆𝜃 satisfies (5), then ∆𝜃 is in 
the row span of 𝐽 and ∆𝜃 = 𝑒. Equation (5) cannot be used 
if 𝐽 does not have full row rank. A general formula for the 
pseudoinverse for 𝐽 not of full row rank can be found in [9, 
12]. 

The pseudoinverse method is widely discussed in the 
literature but it often performs poorly because of instability 
near singularities [16]. 

III. PROBLEM SOLVING OF PSEUDOINVERSE METHOD 

In case, the number of independent coordinates (rotation 
of individual joints) is greater than the number of 
coordinates of the manipulator endpoint (in space 6, for 
translational motion 3 and 3 for rotation), the redundancy 
problem will arise. In this case, there can generally be 
infinitely many combinations of independent co-ordinates 
for one endpoint positioning. The Jacobi matrix has the 
dimensions of m lines and n columns (m ≠ n), i.e. 𝐽 is the 
non-square matrix. Generally, it is not possible to calculate 
the inverse matrix from the non-square matrix. 

In order to address the inverse role of kinematics in such 
cases, pseudo-inversion of the Jacobi matrix (designation 
J+). This method uses SVD (Singular value decomposition) 
of the Jacobi matrix for determination J+. 

We can decompose every matrix J, which is Jacobi 
matrix, by SVD decompose for 3 matrices: 

 𝐽 = 𝑈. Σ. 𝑉𝑇 (6) 

Where: 

 J is Jacobi matrix with dimension m × n 

 U is ortogonal matrix with dimension m × m, 
i.e. U-1 = UT 

 V is ortogonal matrix with dimension n × n, i.e. 
V-1 = UT 

 ∑ is diagonal matrix with dimension m × n, 
which on main diagonal contained singular 
numbers of matrix J. 

 

[
𝑗11 ⋯ 𝑗1𝑛

⋮ ⋱ ⋮
𝑗𝑚1 ⋯ 𝑗𝑚𝑛

] = 

= [

𝑢11 ⋯ 𝑢1𝑚

⋮ ⋱ ⋮
𝑢𝑚1 ⋯ 𝑢𝑚𝑚

] [
𝜎1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑑

] [

𝑣11 ⋯ 𝑣𝑛1

⋮ ⋱ ⋮
𝑣1𝑛 ⋯ 𝑣𝑛𝑛

]   (7) 

 

Where: 

𝑑 = 𝑚 for 𝑚 < 𝑛 and 𝑑 = 𝑛 for  𝑚 > 𝑛. 

 𝐽. 𝐽𝑇 = (𝑈. Σ. 𝑉𝑇). (𝑈. Σ. 𝑉𝑇)𝑇  

 𝐽. 𝐽𝑇 = 𝑈. Σ. 𝑉𝑇 . 𝑉. Σ𝑇 . 𝑈𝑇   

 𝐽. 𝐽𝑇 = 𝑈. Σ. 𝐼. Σ𝑇 . 𝑈𝑇  

 𝐽. 𝐽𝑇 = 𝑈. Σ. Σ𝑇 . 𝑈𝑇  (8) 

We multiply the equation (8) by U matrix for right: 

 𝐽𝐽𝑇 . 𝑈 = 𝑈. ΣΣ𝑇 . 𝑈𝑇 . 𝑈  

 𝐽𝐽𝑇 . 𝑈 = 𝑈. ΣΣ𝑇 . 𝐼  

 𝐽𝐽𝑇 . 𝑈 = 𝑈. ΣΣ𝑇  (9) 

We get problem of eigenvalues for the matrix JJT, where 
U is square matrix of eigenvectors for the matrix JJT and 
∑∑T is diagonal square matrix of eigenvalues λ1, ... , λm. 

 Σ. Σ𝑇 = [
𝜎1

2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑑

2
] (10) 

  

𝐽𝑇 . 𝐽 = (𝑈. Σ. 𝑉𝑇)𝑇 . (𝑈. Σ. 𝑉𝑇) 

 𝐽𝑇 . 𝐽 = 𝑉. Σ𝑇 . 𝑈𝑇 . 𝑈. Σ. 𝑉𝑇 

 𝐽𝑇 . 𝐽 = 𝑉. Σ𝑇 . 𝐼. Σ. 𝑉𝑇 

 𝐽𝑇 . 𝐽 = 𝑉. Σ𝑇 . Σ. 𝑉𝑇 (11) 

We multiply the equation (11) by V matrix for right: 

 𝐽𝑇𝐽. 𝑉 = 𝑉. Σ𝑇Σ. 𝑉𝑇 . 𝑉 

 𝐽𝑇𝐽. 𝑉 = 𝑉. Σ𝑇Σ. 𝐼 

 𝐽𝑇𝐽. 𝑉 = 𝑉. Σ𝑇Σ (12) 

We get the problem of eigenvalues for the matrix JTJ, 
where V is square matrix of eigenvectors for the matrix JTJ 
and ∑T∑ is diagonal square matrix of eigenvalues λ1, ... , λn. 

Matrices JJT and JTJ are symmetric matrices and they 
have same non-zero eigenvalues. Eigenvalues of 
symmetric matrices are always the real values. Therefore 
we won't calculate eigenvalues of JJT again. It is necessary 
to calculate only eigenvectors of JJT. 
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IV. SIMULATION RESUTLS 

We made simulation for the robotic arm in Matlab 
Simulink and also in m-file. Main idea was to prepare for 
later implementation of the pseudoinverse method to DSP. 
For that we made simulation for number of digits after 
comma and number of steps we necessarily need. 
Simulation results of the pseudoinverse method can be 
found in Figs. 2 to 4 and simulation results of necessarily 
number of digits and number of steps shown in Figs. 5 and 
6. 

Figure 2 shows the end-effector movement of the robotic 
arm. We design simulation for 3 reference coordinates as 
we can see in Fig. 2. For (50,90,80) it is blue line, 
(100,150,160) is red line and third coordinates were 
(150,180,140) which is green line. 

 

Fig. 2.  Simulation result of the pseudoinverse method for DOBOT 
manipulator. 

Figures 3 and 4 show axes X, Y and Z of the robotic arm 
end-effector and total error of coordinates. Figures also 
show number of necessarily steps for each simulation. In 
first result we require maximal error of coordinates equal to 
1e-3 mm and number of digits equal to 6. In the second 
figure we require maximal error equal to 1e-2 mm and 
number of digits equal to 5. 

 

Fig. 3.  Simulation result of DOBOT axes and total error of coordinates. 

 

Fig. 4.  Simulation result of DOBOT axes and total error of coordinates. 

Since these simulations are a preparation for 
implementing a method into the DSP, it is necessary to 
know how many digits after point we needed. Number of 
digits and middle value of error is in TABLE I. Figure 5 
shows this table for each axis. 

TABLE I.  
NUMBER OF DIGITS AND MEAN VALUE OF ERROR 

Digits Mean value of error [mm] 

1 22,31 

2 7,627 

3 0,786 

4 0,104 

5 11,3e-4 

6 8,3e-4 

 

Fig. 5. Simulation result of total error of coordinates from 1 to 6 digit. 

In the TABLE II are numbers of simulation steps for 
reference error and for each reference coordinate from Fig. 
2. Figure 6 graphically shows the previous table. 
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TABLE II.  
NUMBER OF SIMULATION STEPS FOR DIFFERENT REFERENCE ERRORS 

Number of simulation steps 

Reference error [mm] 1. chart 2. chart 3. chart 

1 16 9 9 

0.1 22 13 20 

0.01 23 17 18 

0.001 28 20 22 

1e-4 31 23 25 

1e-5 35 26 27 

 

Fig. 6.  Simulation result of total error of coordinates from 1 to 6 digit. 

V. CONCLUSION 

In this paper we theoretically described pseudoinverse 
method for the control end-effector movement of DOBOT 
manipulator. We needn’t to research rotation of end- 
effector because DOBOT mechanically secures the 
retention of the end-effector in the plane and pad. 

For reducing calculation time in DSP it is important to 
rightly implement the pseudoinverse method. The 
simulations have shown that the numbers with four decimal 
places at least have to be used for the achievement of the 
required precision of 0.1 mm. 

The structural precision of the DOBOT manipulator is 
0.4 mm. For the achievement of this precision, 20 iteration 
steps of the pseudoinverse method are needed. 
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