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Abstract — Model Order Reduction (MOR) challenges a 

high dimensional problem and plays a key role in areas 

where dynamic simulation studies are necessary for modern 

simulation strategy. Many conventional reduction methods 

namely, reduced order models based on Least Square 

Method (LSM), Balanced Truncation, Hankel Norm 

reduction, Dominant Pole Algorithm (DPA) and CDPA 

method have been developed in the field of control theory. 

Among these, recently proposed Clustering Dominant Pole 

Algorithm (CDPA) is able to compute the full set of 

dominant poles and their cluster center efficiently. In this 

paper, a hybrid algorithm for model order reduction known 

as Clustering Dominant Pole-Zero Algorithm (CDPZA) is 

proposed to identify and preserve the dominant zeros of the 

processes exhibiting non-minimum phase behaviour. The 

CDPZA method combines the features of clustering method 

and DPA. Further, the cluster centers of the dominant zeros 

in the numerator polynomial are determined using factor 

division algorithm. The Benchmark HiMAT system of 6th 

order is considered for testing and validation of the 

proposed algorithm. The simulation studies are carried out 

to show the efficacy of the proposed algorithm over 

conventional MOR algorithms. 

Keywords — dominant pole, dominant zero, non-minimum 

phase, model order reduction, balanced truncation, Hankel 

norm, clustering. 

I. INTRODUCTION 

MOR application areas include numerical analysis in 
linear and nonlinear system algebra, structural mechanics, 
parametric and uncertain systems and applied to 
aerospace, petroleum industries where rigorous design is 
important to deal with as a small dimension problem [1]. 
Dynamic behaviour of process models is utilized to decide 
the order of any simulated model. 

The main advantage of reduction methods is that, it is 
applied to online applications with reduction in 
complexity and time elapsed for simulation and retains 
accuracy. The model reduction technique chosen is 
appropriate if the reduced order model response is 
analogous to the higher order model response. 

The Truncated Balanced Realization (TBR) is a model 
order reduction technique that has been originated from 

the control theory based on the concept of controllability 
and observability [2]. In this technique, balanced 
realization of a dynamical system is performed to obtain 
the state variables that have equal controllability and 
observability [3]. As some of the states are hard to control 
and observe, this step is essential in a dynamical system. 
Thus, the truncation of these kinds of states leads to a 
reduced order model. The major drawback in the TBR 
method is that it does not preserve or guarantee stability; it 
also falls in the linear projection framework and does not 
provide an optimal approximation [4]. 

The Hankel norm approximation method is used 
especially in the area of control and system theory where 
the balanced state space model for the system is computed 
initially. But, the balancing transformations for system 
models having uncontrollable and unobservable states are 
generally singular. This results in practical difficulty and 
poses a serious drawback to use the standard Hankel norm 
approximation theory. 

The behaviour of a large scale dynamical system can 
often be described by a relatively small number of its 
dominant modes. By the the state space projection on the 
subspace spanned by the dominant modes, the model 
equivalent can be obtained. Model approximation has 
been successfully applied to transfer functions of large 
scale power systems and electrical circuits for application 
to stability analysis. 

Generally, most of the higher order systems are 
approximated to FOPDT or SOPDT systems. Based on 
the system nonlinearity, interactions the dynamics of the 
system variations and desired performances are not met. A 
good approximated model based on corresponding 
dominant poles of the system transfer function 
representing eigenvectors and eigenvalues is formulated. 
An eigenvalue method is required that computes the most 
dominant poles and corresponding modes. The Dominant 
Pole Algorithm (DPA) works only for stable systems with 
the above concept, where roots of the denominator 
polynomial represent nearby poles towards the origin [5]. 
A hybrid algorithm that combines the clustering method 
and DPA method captures the essential dynamics of the 
system. The CDPA method efficiently computes the poles 
that are more dominant in the system and retain the full 
order characteristic behaviour. The denominator 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/328114398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.14311/TEE.2018.2.026
http://dx.doi.org/10.14311/TEE.2018.2.026
http://dx.doi.org/10.14311/TEE.2018.2.026
mailto:npappa@rediffmail.com


Transactions on Electrical Engineering, Vol. 7 (2018), No. 2   27 

TELEN2018004   
DOI 10.14311/TEE.2018.2.026 

 

polynomial of the reduced order model with respect to full 
order model is determined by forming the clusters of the 
dominant poles and the coefficients of numerator 
polynomial with respect to full order model are obtained 
by using the factor division algorithm. Similarly, in the 
proposed CDPZA algorithm, inverse transfer function is 
formulated and the dominant zeros and dominant poles are 
determined based on DPA and CDPA algorithm 
respectively. The dominant zeros in numerator polynomial 
are retained and the remaining coefficients are obtained by 
factor division algorithm [6]. The simulation results show 
the effectiveness of CDPA and CDPZA algorithms with 
the conventional existing MOR techniques available in the 
literature. 

II. CONVENTIONAL MOR TECHNIQUES 

A. Least Square Method (LSM) 

The LSM incorporates parameterized model based 
identification methods which relates an observable 

variable y(t) to a regressor vector (t) . If a model has an 

unknown parameter vector  , then its value can be 
estimated by the LSM [7]. The model structure with a 
linear relationship is given by 

 y(t)   .  , 

where (t)  is also known as observation matrix. 

Estimated or model output is given by 

ŷ(t) t


    . . Hence, the prediction error residue 

ˆt y(t)


     . , where 

 .  is invertible. 

Formulation of the objective function for error 
minimization is expressed, as in (1) 

 
1 1

2
J(θ)

min

= t y(t) θ )
N N

t t 

 
       .  . (1) 

Hence, the estimated parameter vector is defined as in (2), 

 θ̂ = ( y(t)
  
  .  . (2) 

As such, the LSM cannot be implemented for higher 
order systems as it is computationally intensive. 

B. Balanced Truncation 

The Balanced Truncation (BT) method guarantees an 
error bound on the infinity norm of the additive error 

redG-G


 for well-conditioned model reduced problems 

[8]. 

Given a state space (A, B, C, D) of a system and k, the 
desired reduced order, the following steps will produce a 
similarity transformation to truncate the original state 
space system to the kth order reduced model [9]. 

 

BT Method 

 
Step 1: Find the Singular Value Decomposition (SVD) of 

the controllability and observability grammians. 

Step 2: Calculate the square root of the grammians 

(left/right eigenvectors). 

Step 3: Find the SVD to Step 2. 

Step 4: Finally, the left and right transformation for the 

final kth order reduced model is computed. 

C. Hankel Norm Approximation 

The Hankel norm of a system G = (A,B,C,D) H  is 

defined, as in (3), 

 

2

2 0

H
2

0

y (t) 

G sup

u (t) 

dt

dt











 (3) 

where 
0

A(t-s)
 y(t) C e  B u(s)



   . 

The Hankel norm gives how much energy [10] can be 
transferred from past inputs into future outputs through 

the system G(s) . In control theory, eigenvalues define 

system stability and Hankel Singular Values (HSV) 
defines the "energy" of each state in the system. Its 
characteristics in terms of stability, frequency, and time 
responses are preserved by keeping larger energy states of 
a system based on the HSV. This can achieve a reduced-
order model that preserves the majority of the system 
characteristics. Mathematically, given a stable state-space 
system (A, B, C, D) its HSV are defined, as in (4) 

 

2

maxH
G (PQ) i  

 
(4)

 

where i  is the Hankel singular values. 

The controllability and observability grammians P and 
Q respectively satisfy, 

 
T T

 + = - AP PA BB  (5) 

 
T T

+ = - A Q QA C C  (6) 

One defines the Hankel operator ΓG of the system G(s)  

by 

 

G 2

0

: ( , 0] : ( u)(t)

(t-s)
  u(s) , t 0

GL

e ds


   


A

C B
 (7) 

This method also guarantees an error bound on the 

infinity norm of the additive error redG-G


 for well-

conditioned model reduction problems as in the balanced 
truncation method [8] and [19]. 

 red
1

G-G  2 
n

i
k






   (8) 

where i  are singular values of a given system G(s) . 
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D. Dominant Pole Algorithm (DPA) 

The DPA computes dominant poles of G(s) based on 

the Newton process [11]. A pole 
i  that corresponds to a 

residue 
iR  with large magnitude 

jR  is called a dominant 

pole. A dominant pole is well observable and controllable 
in the transfer function. This can also be observed from 

the corresponding Bode Magnitude plot of G(s) , where 

peaks occur at frequencies close to the imaginary parts of 

the dominant poles of G(s)  

 

 
1

1

G(s) s
s

n
i

i
i

R







   


C I A B

 

(9)

 

where, residue    x y   and x , y ,i i i i i iR  C B  are 

eigen triplets (i=1,2,...n). 

Consider a pole λ = α + jβ, with residue R then it is 
shown that, 

 
 

1

1

C
lim G( ) lim

( )

n

j
j

R
jw

jw j jw      



  

  
      

 
n-1lim G( ) G ( β)

R
jw j

  
 

 

(10)

 

Hence, pole 
j  

is dominant if 
Re( )

j

j

R


 is large and 

causes peak in the Bode plot. 

III. PROPOSED CDPZA ALGORITHM 

The recently reported hybrid algorithm [12] namely, the 
Clustering Dominant Pole Algorithm (CDPA) and 
proposed hybrid algorithm known as Clustering Dominant 
Pole-Zero Algorithm (CDPZA), combines the features of 
the clustering method and dominant pole algorithm and 
effectively matches the full order system characteristics. 

In both CDPA and CDPZA methods, the denominator 
polynomial of the reduced order model with respect to full 
order model is determined by forming the clusters of the 
dominant poles and the coefficients of the numerator 
polynomial are obtained by using the factor division 
algorithm [12].  

The poles of the transfer function are the C   for 

which lim H(s)
s 

  . 

Consider now the function as expressed below, 

 
1

G(s)
H(s)

  , 

 
2

H'(s)
G'(s)= 

H (s)
  . 

(11)

 

Solve kx  from k k(s   )x = bE A  and ky  from 

k k(s   )y = cE A . Then compute the new pole estimate 

as in (10), 

 k k k
k+1 k

k k k k

c x y   x
s =s =

y   x y   x


A

E E
 . (12) 

In both CDPA and CDPZA methods, the dominant 
poles are grouped into several clusters and then replaced 
by the corresponding cluster-centers. By the Factor 
division algorithm, the coefficients of the numerator 
polynomial are determined [13]. Now, consider nth order 
linear dynamic system described by the transfer function 
as in (11), 

 

2 n-1

0 1 2 n-1

n

0 1 2 n

 
e e s e s e sN(s)

G(s) = = 
2D(s) f f s f s f s

   

   

K

K
 (13) 

where 
i i: :e 0 i n 1 and  f 0 i n      are scalar 

constants. 

The corresponding kth (k<n) order reduced model is 
synthesized as follows, 

 

2 k-1

0 1 2 k-1k
k 2 k

k 0 1 2 k

(s)
(s)  

(s)

a a s a s a sN
G = = 

D b b s b s b s

   

   

K

K
 (14) 

where 
i ia : 0 i k 1 and b : 0 i k      are scalar 

constants. 

Let r real poles in one cluster be (p1, p2, p3…, pr); then 
the Inverse Distance Measure (IDM) criterion identifies 
the cluster center, as in (15) 

 

-1
r

c
i=1

i

1
p r

p
 
 
 
 

 (15) 

where cp  is the cluster center from r real poles of the full 

order system. 

The power series of the original nth order system can be 
expanded about s = 0 as shown below, 

 
2

0 1 2G(s) = C +C s+C s +L  . (16) 

The power series expansion coefficients are determined 
as follows: 

 0 0 0 C =  e f  , (17) 

 
i

i i j i-j
j=1

0

1
C = e f C , i>0

f
 

 
  

 , (18) 

 
ie = 0,  i > n 1  . (19) 

The reduced kth order model is written as: 

 

k-1
i

i
i=0k

k k
i

k
i

i=0

(s)
(s) 

(s)

a s
N

G = 
D b s







 . (20) 

In the proposed CDPZA algorithm, the dominant poles 

of 
-1

G (s)  are the dominant zeros of G(s) . The inverse 

transfer function is formulated and the dominant zeros and 
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dominant poles are determined based on DPA and CDPA 
algorithm respectively. The dominant zeros in the 
numerator polynomial are retained and the remaining 
coefficients are obtained by factor division algorithm.  

CDPZA algorithm 

 

Step 1  : Consider the inverse transfer function 
-1

(s)G  

Step 2  : Repeat Steps 2 to 11 as in CDPA algorithm to 

determine the dominant poles of G(s)  

Step 3  : Repeat Steps 2 to 10 as in CDPA algorithm to 

determine the dominant poles of 
-1

(s)G  

Step 4  : Dominant poles of 
-1

(s)G  are the dominant 

zeros of G(s).  

Step 5  : Dominant zeros determined in Step 3 are 

retained and cluster centres of the remaining 

zeros is calculated and replaced using factor 

division algorithm in the numerator polynomial. 

IV. BENCHMARK HIMAT EXAMPLE 

The algorithms are tested on the HiMAT (Highly 
Maneuverable Aircraft Technology) benchmark example 
[14]. The state space realization of the HiMAT model has 
6 states, with the first four states representing angle of 
attack (α) and attitude angle (θ) and their rates of change 
(dα/dt, dθ/dt) and the last two representing elevon and 
canard control actuator dynamics. Therefore, the model 
considered has one control input as elevon deflection δe 
and one measured output as angle of attack alpha (α). The 
continuous transfer function G(s) for the model is chosen 
as 

4 3 2

6 5 4 3 2

5.124 1099 28390 568.5 24.08
G(s)=

64.55 1167 3729 5495 1102 708.1

s s s s

s s s s s s

    

     

 
 
 

(21) 

The pole-zero spectrum of the 6th order HiMAT system 
transfer function is shown in Fig.1. The plant poles are 
located at p1 = −30.4865 + 3.6785i, p2 = −30.4865 − 
3.6785i, p3 = −1.7308 + 1.4838i, p4 = −1.7308 − 1.4838i, 
p5 = −0.0596+0.3754i and p6 = −0.0596 − 0.3754i. 
Similarly, plant zeros of the HiMAT example are located 
at z1= −184.4448, z2 = −30.0160, z3 = −0.0409, z4= 
0.0208. 

From Fig. 1, it is evident that the given 6th order 
HiMAT system has all the poles lying on the left side of 
the s-plane and having conjugate poles. The poles p1 = 
−30.4865 + 3.6785i and p2 = −30.4865 − 3.6785i, are 
lying far away from the s-plane origin and takes fast 
response in decaying with less effect on the system 
characteristics. The constant coefficients of the 
denominator polynomial used in the various techniques 
have an important role to play in stability and performance 
of an LTI system, while the numerator coefficients also 
have an influence on the system response to applied inputs 
[15]. The plant zero z4 is lying on the right side of the s-
plane, which exhibits non-minimum characteristics. 
Model based control schemes are effectively used in 
industrial application namely cement industry, coal mill 
industry etc., where accurate model coefficient estimation 
plays a crucial role in improving the closed loop system 
performances [16]. 

 

Fig. 1.  Pole-Zero Spectrum of the 6th order model of HiMAT example. 

V. RESULT AND DISCUSSIONS 

The optimal Hankel norm approximation gives the 
fourth order transfer function model. The transfer function 
displays a similar frequency response to the reduced order 
models. The gain characteristics of the reduced order 
models are compared in Fig. 3 with the 6th order HiMAT 
system. The Hankel singular values of the 6th order system 
are σ1=10.46, σ2=8.22, σ3= 3.1, σ4=1.1, σ5=0, σ6=0, which 
means that fourth order model can be good approximants 
as reported in [12], [17]. The fourth order models using 
Hankel norm, DPA, CDPA and proposed CDPZA are 
determined. Whereas the third order model is obtained by 
truncating any 3 poles using the BT method. Similarly, the 
first order model and second order model are obtained by 
using the LSM method. 

The step responses of different conventional reduced 
order model techniques and recently proposed CDPA and 
novel CDPZA method are compared with the 6th order 
HiMAT system as it is shown in Fig. 2. It is observed that 
the CDPZA and CDPA method resembles the response of 

the 6th order HiMAT system G(s) . 

 

Fig. 2.  Comparison of the step response of the 6th order HiMAT system 

with various reduced order models. 
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Fig. 3.  Comparison of the gain and phase characteristics of the 6th order 
HiMAT system with various reduced order models. 

The gain G(s)  and phase characteristics of the 6th order 

HiMAT system with various reduced order models are 
compared in Fig. 3. It is observed that the essential 
dynamics of the system lie in the frequency range of 10−1 
to 101 radians/second (log scale) from the frequency 
response. The magnitude drops in both the very low and 
the high-frequency ranges. The result shows that the 
CDPA and CDPZA methods display similar 
characteristics with the 6th order HiMAT system. Also, the 
step responses of hybrid algorithms are compared with the 
6th order HiMAT system separately as shown in Fig. 4. It 
is observed that the response of the proposed CDPZA 
method is better and resembles the 6th order HiMAT 

system G(s)  when compared with the CDPA method. 

 

Fig. 4.  Step responses of the 6th order HiMAT system and reduced 

order hybrid models. 

 

Fig. 5.  Comparison of the gain G(s) and phase characteristics of the 6th 

order HiMAT system and reduced order hybrid models. 

The measure of comparison is made by computing the 
performance error index [18] known as Integral Square 
Error (ISE) between the 6th order HiMAT system and 
reduced order models. The computed ISE values for 
various conventional and hybrid algorithms are listed in 
Table.1. 

TABLE I.  
COMPARISON OF ISE VALUES FOR VARIOUS MOR TECHNIQUES 

Method Reduced models ISE 

First order 

model using 

LSM 

0.03817

s 0.5168

 
  

 
61.19 

Second order 

model using 
LSM 

2

1.668s 0.03828

s 0.1525s 0.2053

 

 

 
  

 
21.90 

Third order 

model using BT 
method 

2

3 2

s s + 

s 1.752s

8.024  4.5

0.7599s 0.346

7 0.1217

2

 

  

 
 
 

 69.11 

Hankel norm 

method 

3 2

4 3 2

0.62s 19.80s 0.56s 0.04

s 3.58s 5.75s 1.12s 0.31

  

   

 
 
 

 1.01 

DPA  

3 2

4 3 2

0.53s 28.08s 0.54s 0.02

s 3.34s 5.21s 1.42s 0.71

  

   

 
 
 

 0.117 

CDPA method 

3 2

4 3 2

0.56s 29.07s 0.64s 0.03

s 3.47s 5.60s 1.08s 0.73

  

   

 
 
 

 0.080 

Proposed 

CDPZA method 

3 2

4 3 2

0.54s 28.11s 0.5657s 0.024

s 3.47s 5.60s 1.08s 0.73

  

   

 
 
 

 0.007 
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VI. CONCLUSIONS 

In this paper, a new hybrid algorithm mainly CDPZA 
method is proposed for Linear Time Invariant (LTI) 
systems. In this CDPZA method, the non-minimum phase 
behaviour is identified by retaining the dominant zeros 
and remaining roots in the numerator polynomial are 
determined by factor division algorithm. Also, in the 
recently proposed CDPA method, the denominator of the 
reduced model is synthesized by using clustering 
technique in which the dominant poles are grouped into 
several clusters and replaced by the corresponding cluster 
centers. The efficacy of the proposed algorithm is 
simulated with the help of the HiMAT benchmark 
example and it has been observed that it gives better 
responses with conventional MOR techniques in terms of 
error minimization. The simulated results show that the 
proposed method is simple, efficient to compute and retain 
dominant poles and dominant zeros that matches the 6th 
order HiMAT benchmark system. Hence, the CDPZA 
algorithm is able to more closely follow the inverse 
characteristics exhibited by the non-minimum phase 
systems when compared with the other conventional 
reduction techniques. 
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