v

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 65

Induction Motor Design by Use of Genetic
Optimization Algorithms

prof. N. Zablodskiy’, prof. J. Lett?, doc. V. Pliugir®, ing. K. Buhr?, stud. S. Khomitskiy’

Y'Donbas State Technical University/Automation otele-technical systems, Alchevsk, Ukraingp@dmmi.edu.ua
2 Czech Technical University in Prague/Faculty ofdfiieal Engineering, Prague, Czech repubtt] @fel.cvut.cz
® Donbas State Technical University/Automation ot&ie-technical systems, Alchevsk, Ukraine,
vlad.plyugin@gmail.com
) Czech Technical University in Prague/Faculty ofdfiieal Engineering, Prague, Czech repuliighr @fel.cvut.cz
% Donbas State Technical University/Automation ofeie-technical systems, Alchevsk, Ukraine,
stas.blitzkrieg@mail.ru

Abstract — The problem of the automated calculation
and optimal design of an induction motor is presented . The
problem of optimization by use of genetic algorithmsis set
and solved. The analysis of the obtained resultsisexecuted.

generation, a proportional selection on adjustedssing
and mutation is realized.

The simplest proportional selection is roulette.eTh
wheel of roulette contains one sector for every benof
population. The size of every sector is proportidoghe
corresponding size of adjusted function. At sudbdi®n,
members of population with higher adjustment wid b
chosen with greater probability than individualsthwi
subzero adjustment. The next step is using of tr@snd
mutation.

|. INTRODUCTION A previous population, obtained after a mutatitn,

Neuron networks, being one of perspective trends cverwritten and the cycle of one generation is pleted.
researches in the artificial intelligence areaaassult of Subsequent generations i.e. selection, crossing and
watching processes going on in the nervous sysfenan mutation obtained as a GA working result are pseed
were created. Approximately by the same way geneti the same way .
algorithms were also «invented», but watched ovee
man nervous system, by the process of living dsgas
evolution.

Genetic algorithms - one of research trends in the
artificial intelligence area, engaging in creatiohthe
simplified evolution models of living organisms filrie of
optimization task decision [1].

A classic genetic algorithm (GA) consists of foliogy

Keywords — induction motor, optimization, varied variables,
genetic algorithm, criteria, limitations, effective variant, EvoJ
library

[I. THEORY AND PROGRAMREALIZATION

In the examined task a GA provides one criterion of
optimality only, by virtue of the program realizati of a
calculation function minimum search [2 - 4].

The order of optimization will be different from

steps: considered Carthesian product (CP) in the prewoticle
1) initializing, or choice of initial chromosomes [5:
population;
2) an estimation of chromosomes adjustment in a 1) setting the range of the varied variables;
population - calculation of adjusted function for 2) setting limitations;
every chromosome_; N 3) choosing the criterion of optimality;
3) verification of algorithm stop condition; 4) calling the CA function for optimization and
4) chromosomes selection - choosing of getting the optimal varied variables set;

chromosomes, participated in descendants for a 5)
next population creation;

calling the function of the induction motor (IM)
automatic calculation for the found set.

5) application of genetic operators are mutations
and crossing;

6) forming of new population;
7) choosing of the «best» chromosome.

We will consider an example of the IM optimization
programmatic realization using GA on Java in NetBea
IDE [2]. For a decision the problem we will usedfrgava-
library EvoJ (Evolution Java) [3]. A project Evog i
The block-diagram of GA is represented in Fig. 1. 9€signed as upgradable framework of Java classabeo

decision of various optimization tasks by use of

A simple GA generates an initial population Dy aeyolytional (genetic) algorithms. For the use obEa
random way. Working of the GA is an iteration prexe programmer must implement one simple interface,

which proceeds until the generations set numbaoare onsisting of one method only. All other steps utade
another stop criterion will not be executed. Orergv g3 algorithm.

https://core.ac.uk/display/328114395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 66

START

Initialization — choosing of initial
chromosome population

v

Estimation of chromosomes and
population adjustment

A 4

NO YES
Algorithm stop condition

achieved?

A 4

The best
chromosome
v choosing
Chromosome
selection
i END
Applying of
genetic
operators

A 4

Creating of new
population

Fig. 1. Magnetization as a function of applieddiel

In the example two varied variables will be comsédl: package MotorClasses;
the internal diameter of the stator core and émgth of import net.sourceforge.evoj.core.annotation.Mutdiange;
the stator core. import net.sourceforge.evoj.core.annotation.Range;
We shall create Java-interface with the name “8milit public interface Solution {
in which we set the range (minimum and maximum jpiameter of stator core
values) of the varied variables. The code of thit®m String sminl = "165":
interface is down in the text. : R,
String smax1 = "205";

EvoJ is able to change the variables without ansettf /lLength of stator core
a range. However if it is needed to implement am ow String smin2 = "115"
mutation strategy, one have to declare settersottier 9 - '

case we shall not have a possibility to changevéniable String smax2 = "145";
range. _ _

Pay attention to annotation @of Range - it sets the @Range(m'”_: sminl, max = smax1)
range of values which a variable can accept. Vhriabf double getX(); /ireturn the optimal diameter
random values from the set range are initiated. @Range(min = smin2, max = smax2)

double getY(); /ireturn the optimal length
}

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3

67

However as a result of mutation they potentially ga
out from the indicated range. It can be preventdguthe
parameter of strict=«true», that will not allowariable to
take on an impermissible value, even if we makeféort
to propose them using setter-method.

Another case on which it is needed to pay attention

here, is that all parameters of all limitationsEmoJ are
strings. It allows both to specify the value of graeter
directly and to specify the name of property indted
concrete value, to specify the value of limitation
parameters at the compile-time.

Now we have an interface with variables and welshal

write a fitness-function. Fitness-function in Evad

implemented as the following interface:
public interface SolutionRating <T> {
Comparable calcRating(T solution);

}

Here parameter <T> is our interface with variabldse

@Override

public Comparable doCalcRating(Solution solution)
double fn = calcFunction(solution);//calbtor function
boolean flag = mot.control();//control @hitations

if (Double.isNaN(fn) | flag == false){
return null;//sift-out false variant
}else{
return - fn;//return an effective vaitia
}
}

Ylend of class

All code lines above are obviously enough. We pm
take and count our function, using variables frdm t
Solution interface:

double fn = calcFunction(solution);//call motor &ion

greater value return (according the conti@ainparable) Because we search minimum and the contract of class
the more suitable solution is considered. Null d® supposes that the best decisions must have a egreat
returned and it is the smallest value of a fitrfesstion. rating, we return the value of function, multiplieg 1:

It is recommended to implement this interface as

mediated using helper-classes. They undertake SOMeretyn - fn://return an effective variant

service functions: elimination of the old decisiqifsthe
maximal life term of decision is set), cashing ofidtion
value for decisions which were not sifted from ithe
previous GA iteration.

A Fitness-function for our case will look like the
following (we create a new class with the name riRati

package MotorClasses;
import
net.sourceforge.evoj.strategies.sorting. Abstragi&Rating;
public class Rating extends AbstractSimpleRating st®wi> {
static AMotor mot;//motor object
static int krit;//index of optimality criterion
static int iter_numb;//number of iterations
/IConstructor
public void set_motor(AMotor mot, int krit){
this.mot = mot;
this.krit = krit;
this.iter_numb = 0;

}

IIreception of iterations number
public int get_iter(){return this.iter_numb;};

public static double calcFunction(Solution sioio){
iter_numb++;//increase of iterations count
double x = solution.getX();//reception @mdiameter
double y = solution.getY();//reception @mlength
mot.stator.set_D(x/1000);//setting of neanteter
mot.stator.set_Id(y/1000);//setting of nength
double fn = mot.auto(krit);//automatic motalculation

return fn;//return a criterion of optimalit

The population with the highest value of variatolevill
be considered as the most close to optimum result.

In addition, we sift-out false decisions (if NaNrad
out or motor limitations were not passed), retugniall.

Override of function Comparable realize the
mechanism of genetic populations, using as theeaedi
result the value returned by the functiahcFuction().

In the IM class Motor we create the function of
automatic calculation, which accepts as an argurtient
index of optimality criterion and returns the goitarion
after the motor calculation:

double auto(int krit){
intres =0;
//ICode body of motor calculation
/...
switch (krit){
case 1://1 is efficiency
res = 1/kpdnr;
break;
case 2://2 — power factor
res = 1/cosFinr;
break;
case 3://3 — starting current
res = I1pn;
break;
case 4://4 — starting torque
res = 1/Mpo;
break;

return res;//return a criterion dependingtsrindex

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 68

Further in the motor class Motor we create the tionc It is obvious from Tab. I, an optimal motor eféiocy
of GA realization (a code structure is explained i is higher than a base value and other parameters ar
comments): satisfying limitation range.
void optimization(int krit){ TABLE |
DefaultPoolFactory pf = new DefaultPoolFactory(); GENETIC ALGORITHM: TABLE OF PARAMETERS BEFORE AND

. ; . . AFTER OPTIMIZATION
/[creation of populations with the amount “popudag i
. . Name Base valug Optimal value

GenePool<Solution> pool = pf.createPool(populations nduction i the a T 5748 0807

Solution.class, null); nduction in the air-gap, : .

Rating rtg = new Rating();//Constructor of Ratingssla Internal diameter of stator core D, mm 130185 115194

rtg.set_motor(this, krit);//getting of Motor objeshd criterion LeTgth of stat)(\)r cor(;‘l, Tm . TEE 5o

L L - Relative sizeh = L&/T (1 = 1D/2p, . .

/[factory of initial decisions set generation where p - number of pole pairs)

E&]l‘e}ultHandler handler = new DefaultHandler(rtgl),mull, Height of stator siot, mm 519 146

i)’I tation of iterati ber “iterations” Height of rotor slot, mm 32.2 33.2

implementation 9 lerations .num er “iterations Width of the upper line of stator slot, 7.7 7.8

/lover the population “populations” mm

handler.iterate(pool, iterations); Width of the down line of stator slof, 10.2 9.3

/Ireception of the best found decision mm

Solution solution = pool.getBestSolution(); Upper diameter of rotor slot, mm 79 78

D_opt = solution.getX()/2000; //optimal diameter Down diameter of rotor slot, mm 3.7 3.4

L_opt = solution.getY()/1000; //optimal length Efficiency 0.885 0.891

L Power factor 0.893 0.9

int iter = rtg.get_iter(); //reception of iterat®eount number i i

} - Starting current relative value 5.84 6.52
Starting torque relative value 14 1.62
Overload torque capability 2.65 2.88

From a NetBeans form, the code of the GAGyerallstator winding temperature, d 93.25 95.69
optimization implementation consists of two lines:
motor.limits();//setting of limitations 11l. CONCLUSIONS

motor.optimization(krit);//optimization with theiterion “krit” Algorithm of the previous considered CP [5] in

comparison with the GA, allows to execute multieribn
Functions limits() consist restrictions on motor optimization, that is its undoubted advantage.dditon,
geometric sizes, temperature limits, starting auseand the CP always gives only the synonymous best maria
etc. In the fitness-function limitations are chetth®y the among the existing ones. However, in the range of
control function varying of two variablest 20 % from a base value (3976
combinations) the calculation time is approachedow48
min.
Implementation of CA gives stunning results. At the
)) 4 0
This function returrfalse if even one restriction will be So1¢ varied variables and range of their chant0 %

broken. Incontrol() function there are 16 motor variables () from a base value, the .calculatlon time 'S*flom sec!
limits have been set. In particular we can avoighhi ~ However, GA, at least, in the present article talsles
temperatures of the stator that is probably redudezause not allow to execute optimization for a few criger

of increasing of the stator winding cross-section. In the GA number of the varied variables andrayea

If a decision will not arranged (do not satisfyrimtor ~ Of their change is not important from the pointw of
restrictions according to limitation function) & possible ~the productivity, because a set of the varied e is
to continue the GA iterations (increasing the papahs created dynamically, but not beforehand, as in @fe
number “populations” and iterations “iterationstyhile ~ Method. In addition, all combinations of the valés and
the desired quality of decision will not be attaine values of objective function are realized in a byrfarm.

So 1o solve a GA task using EvoJ it is necessary: However, time of the GA work is very critical toeth
9 y: number of the created populations and number of

iterations in the populations.

1) to create an interface with variables; The choice of population’s number and iterations
2) to implement the interface of the fithess-function; realized by an experienced way increases until an

3) to create the popu|a‘[i0n of decisions and carry Ouﬁcceptable result will not be obtained. A resulttioé

the necessary amount of the GA iterations aboveptimization with the use of the GA will always kite
them, using a code, given above. best for the chosen criterion, but there is nguiarantee,

that a better variant can exist. Actually, herthiere is a
i)) genetic selection logic - we get a result, approarkthe

The results of the GA solution at a choice of maKim hest among the random created populations. A most
efficiency as a criterion of optimality are shoimnTab. 1. | gjiable result depends on population’s number.sT e

degree of authenticity can be estimated by thetian of

boolean flag = mot.control(); /control of limitatis

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3

69

the obtained results in repeated calculationh@tsame
population’s number.

Therefore, the GA productivity at
populations number is determined but not by thenter
and range of the varied variables.

The result of the optimization is ambiguous andelm
the best. When production of approximate calcutestim
maximum compressed terms is needed and qualityeof
obtained results is written with a permissibleoerthen
using of the GA optimization will be the irreplatéa
instrument for designers.

REFERENCES
[1] Yemelyanov V.V., Kureychik V.V., Kureychik V.MTheory and

effective vaiian practice of evolution modeling4.: PHYSMATLIT, 2003. — 432 p.

[2] N. Zablodskiy, V. Pliugin, K. Buhr. CAD of elaomechanic devices:
educational tutorial, part 2, 2013. - 330 p. (W@l printed).

[3] http://evoj-frmw.appspot.com [ONLINE].

[4] N.K. Vereshchagin, A. Shen. Lectures on matherahlogic and
theory of algorithms. Beginning of sets theory. M@®, 2008. — 198p.
[5] N. Zablodskiy, V. Pliugin, K. Buhr, S. Khomitgk Asynchronous
motor optimal design with using of Cartesian pradudll be printed).

REFERENCES ONRUSSIAN:

[1] EmemssoB B.B., Kypeitunk B.B., Kypeitunk B.M. Teopust u
MPaKTHKa BOJIOMOHHOrO MozenupoBanus. M.: ®U3MATIIUT, 2003.
—432c.

[4] Bepemarun H.K., lllens A. Jlekuuu 1m0 MaTEMATHYECKOM JIOTHKE H

Teopud anroputMoB. Hawama teopuu muoxects. MLIHMO, 2008. —
198&.

