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Abstract — The problem  of the automated calculation 
and optimal design of an induction motor is presented . The 
problem of optimization by  use of genetic algorithms is set 
and solved. The analysis of the obtained  results is executed. 
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I. INTRODUCTION 

Neuron networks, being one of perspective trends  of 
researches in the  artificial intelligence area, as a result of 
watching processes going on in the nervous system of man 
were created. Approximately by the same way genetic 
algorithms were also «invented», but watched over  the 
man nervous system, by  the process of living organisms 
evolution. 

Genetic algorithms - one of research trends  in the  
artificial intelligence area, engaging in  creation of the 
simplified evolution models of living organisms for the  of 
optimization task decision [1]. 

A classic genetic algorithm (GA) consists of following 
steps: 

1) initializing, or choice of initial chromosomes 
population; 

2) an estimation of chromosomes adjustment in a 
population - calculation of adjusted function for 
every chromosome; 

3) verification of algorithm stop condition; 
4) chromosomes selection - choosing of 

chromosomes, participated in descendants for a 
next population creation; 

5) application of genetic operators are  mutations 
and crossing; 

6) forming of new population; 
7) choosing of the «best» chromosome. 
 
The block-diagram of GA  is represented in Fig. 1. 
A simple GA generates an initial population by a 

random way. Working of the GA is an iteration process 
which proceeds until the generations set number or some 
another stop criterion  will not be executed. On every 

generation, a proportional selection on adjusted, crossing 
and mutation is realized. 

The simplest proportional selection is roulette. The 
wheel of roulette contains one sector for every member of 
population. The size of every sector is proportional to the 
corresponding size of adjusted function. At such selection, 
members of population with higher adjustment will be 
chosen with greater probability than individuals with 
subzero adjustment. The next step is using of crossing and 
mutation. 

A previous population, obtained  after a mutation, is 
overwritten  and the cycle of one generation is completed. 
Subsequent generations i.e. selection, crossing and 
mutation obtained  as a GA working result are processed 
in the same way . 

 

II.  THEORY AND PROGRAM REALIZATION 

In the examined task a GA provides one criterion of 
optimality only, by virtue of the program realization of a 
calculation function minimum search [2 - 4].  

The order of optimization will be different from 
considered  Carthesian product (CP) in the previous article 
[5]: 

 
1) setting the range of the varied variables; 
2) setting limitations; 
3) choosing the criterion of optimality; 
4) calling the CA function for optimization and 

getting the optimal varied variables set; 
5) calling the function of the induction motor (IM) 

automatic calculation for the found set. 
 
We will consider an example of the IM optimization 

programmatic realization using GA on Java in NetBeans 
IDE [2]. For a decision the problem we will use free Java-
library EvoJ (Evolution Java) [3]. A project EvoJ is 
designed as upgradable framework of Java classes for the 
decision of various optimization tasks by use of 
evolutional (genetic) algorithms. For the use of EvoJ a 
programmer must  implement one simple interface, 
consisting of one method only. All other steps undertake 
EvoJ algorithm. 
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In the  example two varied variables will be considered: 
the  internal diameter of the stator core and the length of  
the stator core. 

We shall create Java-interface with the name “Solution” 
in which we set the range (minimum and maximum 
values) of the varied variables. The code of the Solution 
interface is down in the text. 

EvoJ is able to change the variables without a setting of   
a range. However if it is needed to implement an own 
mutation strategy, one have to declare setters. In other 
case we shall not have a possibility to change the variable 
range. 

Pay attention to annotation @of Range - it sets the 
range of values which a variable can accept. Variables of  
random values from the set range are initiated. 

 

package MotorClasses; 
import net.sourceforge.evoj.core.annotation.MutationRange; 
import net.sourceforge.evoj.core.annotation.Range; 
public interface Solution { 
    //Diameter of stator core 
    String smin1 = "165"; 
    String smax1 = "205"; 
    //Length of stator core 
    String smin2 = "115"; 
    String smax2 = "145"; 
 
    @Range(min = smin1, max = smax1) 
    double getX(); //return the optimal diameter 
      @Range(min = smin2, max = smax2) 
    double getY(); //return the optimal length 
}  

START 

Initialization – choosing of initial 
chromosome population 

Estimation of chromosomes and 
population adjustment 

Algorithm stop condition 
achieved? 

The best 
chromosome 

choosing 

END 

Chromosome 
selection 

Applying of  
genetic 

operators 

Creating of new 
population 

YES NO 

Fig. 1. Magnetization as a function of applied field. 
 



Transactions on Electrical Engineering, Vol. 2 (2013), No. 3   67 

 

However as a result of mutation they potentially can go 
out from the indicated range. It can be prevented using the 
parameter of strict=«true», that will not allow a variable to 
take on an impermissible value, even if we  make an effort 
to propose them using setter-method. 

Another case on which it is needed to pay attention 
here, is that all parameters of all limitations in EvoJ are 
strings. It allows both to specify the value of parameter 
directly and to specify the name of property instead of 
concrete value, to specify the value of limitation 
parameters at the compile-time. 

Now we have an interface with variables and we shall 
write a fitness-function. Fitness-function in EvoJ is 
implemented as the following interface: 

 
public interface SolutionRating <T> { 
     Comparable calcRating(T solution); 
} 

 
Here parameter <T> is our interface with variables. The 

greater value return (according the contract Comparable) 
the more suitable solution is considered. Null can be 
returned and it is the smallest value of a fitness-function.  

It is recommended to implement this interface as 
mediated using helper-classes. They undertake some 
service functions: elimination of the old decisions (if the 
maximal life term of decision is set), cashing of function 
value for decisions which were not sifted from in  the 
previous GA iteration.  

A Fitness-function for our case will look like the 
following (we create a new class with the name Rating): 

 
package MotorClasses; 
import 
net.sourceforge.evoj.strategies.sorting.AbstractSimpleRating; 
public class Rating extends AbstractSimpleRating <Solution> { 
    static AMotor mot;//motor object  
    static int krit;//index of optimality criterion  
    static int iter_numb;//number of iterations 
    //Constructor 
    public void set_motor(AMotor mot, int krit){ 
        this.mot = mot; 
        this.krit = krit; 
        this.iter_numb = 0; 
    } 
    
 //reception of iterations number  
    public int get_iter(){return this.iter_numb;}; 
     
    public static double calcFunction(Solution solution){ 
        iter_numb++;//increase of iterations count 
        double x = solution.getX();//reception of new diameter 
        double y = solution.getY();//reception of new length 
        mot.stator.set_D(x/1000);//setting of new diameter 
        mot.stator.set_ld(y/1000);//setting of new length 
        double fn = mot.auto(krit);//automatic motor calculation 
         
        return fn;//return a criterion of optimality 
    } 
  

    @Override 
    public Comparable doCalcRating(Solution solution){ 
        double fn = calcFunction(solution);//call motor function 
        boolean flag = mot.control();//control of limitations 
         
        if (Double.isNaN(fn) | flag == false){ 
            return null;//sift-out false variant 
        } else { 
            return - fn;//return an effective variant 
        } 
    } 
}//end of class 

 
All code lines above are  obviously enough. We  simply 

take and count our function, using variables from the 
Solution interface: 

 
double fn = calcFunction(solution);//call motor function 

 
Because we search minimum and the contract of class 

supposes that the best decisions must have a  greater 
rating, we return the value of function, multiplied by 1: 

 
return - fn;//return an effective variant 

 
The population with the highest value of variable fn will 

be considered as the most close to optimum result. 
In addition, we sift-out false decisions (if NaN turned 

out or motor limitations were not passed), returning null. 
Override of function Comparable realize the 

mechanism of genetic populations, using as the achieved 
result the value returned by the function calcFuction(). 

In the IM class Motor we create the function of 
automatic calculation, which accepts as an argument the 
index of optimality criterion and returns the got criterion 
after the motor calculation: 

 
double auto(int krit){ 
int res = 0; 
//Code body of motor calculation 
//… 
switch (krit){ 
            case 1://1 is efficiency 
                res = 1/kpdnr; 
                break; 
            case 2://2 – power factor 
                res = 1/cosFinr; 
                break; 
            case 3://3 – starting current 
                res = I1pn; 
                break; 
            case 4://4 – starting torque 
                res = 1/Mpo; 
                break; 
} 
      return res;//return a criterion depending on its index 
} 
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Further in the motor class Motor we create the function 
of GA realization (a code structure  is explained in 
comments): 

 
void optimization(int krit){ 
DefaultPoolFactory pf = new DefaultPoolFactory(); 
//creation of populations with the amount “populations” 
GenePool<Solution> pool = pf.createPool(populations, 
Solution.class, null); 
Rating rtg = new Rating();//Constructor of Rating class  
rtg.set_motor(this, krit);//getting of Motor object and criterion 
//factory of initial decisions set generation  
DefaultHandler handler = new DefaultHandler(rtg, null, null, 
null); 
//implementation of iterations number “iterations” 
//over the population “populations” 
handler.iterate(pool, iterations); 
//reception of the best found decision 
Solution solution = pool.getBestSolution(); 
D_opt = solution.getX()/1000; //optimal diameter 
L_opt = solution.getY()/1000; //optimal length 
int iter = rtg.get_iter(); //reception of iterations count number  
}  

 
From a NetBeans form, the code of the GA 

optimization implementation consists of two lines:  
 

motor.limits();//setting of limitations 
motor.optimization(krit);//optimization with the criterion “krit” 

 
Functions limits() consist restrictions on motor 

geometric sizes, temperature limits, starting currents and 
etc. In the fitness-function limitations are checked by the 
control function 

 
boolean flag = mot.control(); //control of limitations 
 
This function return false if even one restriction will be 

broken. In control() function there are 16 motor variables 
limits have been set. In particular we can avoid high 
temperatures of the stator that is probably resulted because 
of increasing of the stator winding cross-section.  

If a decision will not arranged (do not satisfy to motor 
restrictions according to limitation function) it is possible 
to continue the GA iterations (increasing the populations 
number “populations” and iterations “iterations”), while 
the desired quality of decision will not be attained. 

So to solve a GA task using EvoJ it is necessary: 
 
1) to create an interface with variables; 
2) to implement the interface of the fitness-function; 
3) to create the population of decisions and carry out 

the necessary amount of the GA iterations above 
them, using a code, given above. 

 
The results of the GA solution at a choice of maximum 

efficiency as a criterion of optimality  are shown in Tab. 1. 

It is  obvious from  Tab. I, an optimal motor efficiency 
is higher than a base value and other parameters are 
satisfying limitation range. 

 
TABLE I 

GENETIC ALGORITHM: TABLE OF PARAMETERS BEFORE AND 
AFTER OPTIMIZATION 

Name Base value Optimal value 

Induction in the air-gap, T 0.748 0.807 

Internal diameter of stator core D, mm 185 194 

Length of stator core Lδ, mm 130 115 

Relative size λ = Lδ/τ (τ = πD/2p, 
where p - number of pole pairs) 

0.895 0.755 

Height of stator slot, mm 21.9 14.6 

Height of rotor slot, mm 32.2 33.2 

Width of the upper line of stator slot, 
mm 

7.7 7.8 

Width of the down line of stator slot, 
mm  

10.2 9.3 

Upper diameter of rotor slot, mm 7.9 7.8 

Down diameter of rotor slot, mm 3.7 3.4 

Efficiency 0.885 0.891 

Power factor 0.893 0.9 

Starting current relative value 5.84 6.52 

Starting torque relative value 1.4 1.62 

Overload torque capability 2.65 2.88 

Overall stator winding temperature, C 93.25 95.69 

  

III.  CONCLUSIONS 

Algorithm of the previous considered CP [5] in 
comparison with the GA, allows to execute multi-criterion 
optimization, that is its undoubted advantage. In addition, 
the CP always gives only the synonymous  best variant 
among the existing ones. However, in  the range of 
varying of two variables  ± 20 % from a base value (3976 
combinations) the  calculation time is approached up to 48 
min. 

Implementation of CA gives stunning results. At the 
same varied variables  and range of their change ± 100 % 
(!) from a base value, the  calculation time is only 40 sec! 

However, GA, at least, in the present  article task, does 
not allow to execute optimization for  a few criteria. 

In the GA number  of the varied variables  and a range 
of their change is not important  from the point of view of 
the productivity, because a set of the varied variables is 
created dynamically, but not beforehand, as in the CP 
method. In addition, all combinations of  the variables and 
values of objective function are realized in a binary form. 
However, time of the GA work is very critical to the 
number  of the created populations and  number of 
iterations in the populations. 

The choice of population’s number and iterations 
realized by  an experienced way  increases until an 
acceptable result will not be obtained. A result of the 
optimization with the use of the GA will always be the 
best for  the chosen criterion, but there is not a guarantee, 
that a better variant can  exist. Actually, herein there is a 
genetic selection logic - we get a result, approaching the 
best among  the random created populations. A most 
reliable result depends on population’s number. Thus, the 
degree of authenticity can be estimated by the variation of 
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the obtained  results in repeated calculations at the same 
population’s number.  

Therefore, the GA productivity at  effective variant 
populations number  is determined but not by the  number 
and range of the varied variables.  

The result of the optimization is ambiguous and close to 
the best. When production of approximate calculations in  
maximum compressed terms  is needed and quality of the 
obtained  results is written with  a permissible error, then 
using of the GA optimization will be the irreplaceable 
instrument  for designers. 
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