
Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 65

Induction Motor Design by Use of Genetic
Optimization Algorithms

prof. N. Zablodskiy 1), prof. J. Lettl 2), doc. V. Pliugin 3), ing. K. Buhr 4), stud. S. Khomitskiy 5)
1) Donbas State Technical University/Automation of electro-technical systems, Alchevsk, Ukraine, info@dmmi.edu.ua

2) Czech Technical University in Prague/Faculty of Electrical Engineering, Prague, Czech republic, lettl@fel.cvut.cz

3) Donbas State Technical University/Automation of electro-technical systems, Alchevsk, Ukraine,
vlad.plyugin@gmail.com

4) Czech Technical University in Prague/Faculty of Electrical Engineering, Prague, Czech republic, buhr@fel.cvut.cz
5) Donbas State Technical University/Automation of electro-technical systems, Alchevsk, Ukraine,

stas.blitzkrieg@mail.ru

Abstract — The problem of the automated calculation
and optimal design of an induction motor is presented . The
problem of optimization by use of genetic algorithms is set
and solved. The analysis of the obtained results is executed.

Keywords — induction motor, optimization, varied variables,
genetic algorithm, criteria, limitations, effective variant, EvoJ
library

I. INTRODUCTION

Neuron networks, being one of perspective trends of
researches in the artificial intelligence area, as a result of
watching processes going on in the nervous system of man
were created. Approximately by the same way genetic
algorithms were also «invented», but watched over the
man nervous system, by the process of living organisms
evolution.

Genetic algorithms - one of research trends in the
artificial intelligence area, engaging in creation of the
simplified evolution models of living organisms for the of
optimization task decision [1].

A classic genetic algorithm (GA) consists of following
steps:

1) initializing, or choice of initial chromosomes
population;

2) an estimation of chromosomes adjustment in a
population - calculation of adjusted function for
every chromosome;

3) verification of algorithm stop condition;
4) chromosomes selection - choosing of

chromosomes, participated in descendants for a
next population creation;

5) application of genetic operators are mutations
and crossing;

6) forming of new population;
7) choosing of the «best» chromosome.

The block-diagram of GA is represented in Fig. 1.
A simple GA generates an initial population by a

random way. Working of the GA is an iteration process
which proceeds until the generations set number or some
another stop criterion will not be executed. On every

generation, a proportional selection on adjusted, crossing
and mutation is realized.

The simplest proportional selection is roulette. The
wheel of roulette contains one sector for every member of
population. The size of every sector is proportional to the
corresponding size of adjusted function. At such selection,
members of population with higher adjustment will be
chosen with greater probability than individuals with
subzero adjustment. The next step is using of crossing and
mutation.

A previous population, obtained after a mutation, is
overwritten and the cycle of one generation is completed.
Subsequent generations i.e. selection, crossing and
mutation obtained as a GA working result are processed
in the same way .

II. THEORY AND PROGRAM REALIZATION

In the examined task a GA provides one criterion of
optimality only, by virtue of the program realization of a
calculation function minimum search [2 - 4].

The order of optimization will be different from
considered Carthesian product (CP) in the previous article
[5]:

1) setting the range of the varied variables;
2) setting limitations;
3) choosing the criterion of optimality;
4) calling the CA function for optimization and

getting the optimal varied variables set;
5) calling the function of the induction motor (IM)

automatic calculation for the found set.

We will consider an example of the IM optimization

programmatic realization using GA on Java in NetBeans
IDE [2]. For a decision the problem we will use free Java-
library EvoJ (Evolution Java) [3]. A project EvoJ is
designed as upgradable framework of Java classes for the
decision of various optimization tasks by use of
evolutional (genetic) algorithms. For the use of EvoJ a
programmer must implement one simple interface,
consisting of one method only. All other steps undertake
EvoJ algorithm.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/328114395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 66

In the example two varied variables will be considered:
the internal diameter of the stator core and the length of
the stator core.

We shall create Java-interface with the name “Solution”
in which we set the range (minimum and maximum
values) of the varied variables. The code of the Solution
interface is down in the text.

EvoJ is able to change the variables without a setting of
a range. However if it is needed to implement an own
mutation strategy, one have to declare setters. In other
case we shall not have a possibility to change the variable
range.

Pay attention to annotation @of Range - it sets the
range of values which a variable can accept. Variables of
random values from the set range are initiated.

package MotorClasses;
import net.sourceforge.evoj.core.annotation.MutationRange;
import net.sourceforge.evoj.core.annotation.Range;
public interface Solution {
 //Diameter of stator core
 String smin1 = "165";
 String smax1 = "205";
 //Length of stator core
 String smin2 = "115";
 String smax2 = "145";

 @Range(min = smin1, max = smax1)
 double getX(); //return the optimal diameter
 @Range(min = smin2, max = smax2)
 double getY(); //return the optimal length
}

START

Initialization – choosing of initial
chromosome population

Estimation of chromosomes and
population adjustment

Algorithm stop condition
achieved?

The best
chromosome

choosing

END

Chromosome
selection

Applying of
genetic

operators

Creating of new
population

YES NO

Fig. 1. Magnetization as a function of applied field.

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 67

However as a result of mutation they potentially can go
out from the indicated range. It can be prevented using the
parameter of strict=«true», that will not allow a variable to
take on an impermissible value, even if we make an effort
to propose them using setter-method.

Another case on which it is needed to pay attention
here, is that all parameters of all limitations in EvoJ are
strings. It allows both to specify the value of parameter
directly and to specify the name of property instead of
concrete value, to specify the value of limitation
parameters at the compile-time.

Now we have an interface with variables and we shall
write a fitness-function. Fitness-function in EvoJ is
implemented as the following interface:

public interface SolutionRating <T> {
 Comparable calcRating(T solution);
}

Here parameter <T> is our interface with variables. The

greater value return (according the contract Comparable)
the more suitable solution is considered. Null can be
returned and it is the smallest value of a fitness-function.

It is recommended to implement this interface as
mediated using helper-classes. They undertake some
service functions: elimination of the old decisions (if the
maximal life term of decision is set), cashing of function
value for decisions which were not sifted from in the
previous GA iteration.

A Fitness-function for our case will look like the
following (we create a new class with the name Rating):

package MotorClasses;
import
net.sourceforge.evoj.strategies.sorting.AbstractSimpleRating;
public class Rating extends AbstractSimpleRating <Solution> {
 static AMotor mot;//motor object
 static int krit;//index of optimality criterion
 static int iter_numb;//number of iterations
 //Constructor
 public void set_motor(AMotor mot, int krit){
 this.mot = mot;
 this.krit = krit;
 this.iter_numb = 0;
 }

 //reception of iterations number
 public int get_iter(){return this.iter_numb;};

 public static double calcFunction(Solution solution){
 iter_numb++;//increase of iterations count
 double x = solution.getX();//reception of new diameter
 double y = solution.getY();//reception of new length
 mot.stator.set_D(x/1000);//setting of new diameter
 mot.stator.set_ld(y/1000);//setting of new length
 double fn = mot.auto(krit);//automatic motor calculation

 return fn;//return a criterion of optimality
 }

 @Override
 public Comparable doCalcRating(Solution solution){
 double fn = calcFunction(solution);//call motor function
 boolean flag = mot.control();//control of limitations

 if (Double.isNaN(fn) | flag == false){
 return null;//sift-out false variant
 } else {
 return - fn;//return an effective variant
 }
 }
}//end of class

All code lines above are obviously enough. We simply

take and count our function, using variables from the
Solution interface:

double fn = calcFunction(solution);//call motor function

Because we search minimum and the contract of class

supposes that the best decisions must have a greater
rating, we return the value of function, multiplied by 1:

return - fn;//return an effective variant

The population with the highest value of variable fn will

be considered as the most close to optimum result.
In addition, we sift-out false decisions (if NaN turned

out or motor limitations were not passed), returning null.
Override of function Comparable realize the

mechanism of genetic populations, using as the achieved
result the value returned by the function calcFuction().

In the IM class Motor we create the function of
automatic calculation, which accepts as an argument the
index of optimality criterion and returns the got criterion
after the motor calculation:

double auto(int krit){
int res = 0;
//Code body of motor calculation
//…
switch (krit){
 case 1://1 is efficiency
 res = 1/kpdnr;
 break;
 case 2://2 – power factor
 res = 1/cosFinr;
 break;
 case 3://3 – starting current
 res = I1pn;
 break;
 case 4://4 – starting torque
 res = 1/Mpo;
 break;
}
 return res;//return a criterion depending on its index
}

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 68

Further in the motor class Motor we create the function
of GA realization (a code structure is explained in
comments):

void optimization(int krit){
DefaultPoolFactory pf = new DefaultPoolFactory();
//creation of populations with the amount “populations”
GenePool<Solution> pool = pf.createPool(populations,
Solution.class, null);
Rating rtg = new Rating();//Constructor of Rating class
rtg.set_motor(this, krit);//getting of Motor object and criterion
//factory of initial decisions set generation
DefaultHandler handler = new DefaultHandler(rtg, null, null,
null);
//implementation of iterations number “iterations”
//over the population “populations”
handler.iterate(pool, iterations);
//reception of the best found decision
Solution solution = pool.getBestSolution();
D_opt = solution.getX()/1000; //optimal diameter
L_opt = solution.getY()/1000; //optimal length
int iter = rtg.get_iter(); //reception of iterations count number
}

From a NetBeans form, the code of the GA

optimization implementation consists of two lines:

motor.limits();//setting of limitations
motor.optimization(krit);//optimization with the criterion “krit”

Functions limits() consist restrictions on motor

geometric sizes, temperature limits, starting currents and
etc. In the fitness-function limitations are checked by the
control function

boolean flag = mot.control(); //control of limitations

This function return false if even one restriction will be

broken. In control() function there are 16 motor variables
limits have been set. In particular we can avoid high
temperatures of the stator that is probably resulted because
of increasing of the stator winding cross-section.

If a decision will not arranged (do not satisfy to motor
restrictions according to limitation function) it is possible
to continue the GA iterations (increasing the populations
number “populations” and iterations “iterations”), while
the desired quality of decision will not be attained.

So to solve a GA task using EvoJ it is necessary:

1) to create an interface with variables;
2) to implement the interface of the fitness-function;
3) to create the population of decisions and carry out

the necessary amount of the GA iterations above
them, using a code, given above.

The results of the GA solution at a choice of maximum

efficiency as a criterion of optimality are shown in Tab. 1.

It is obvious from Tab. I, an optimal motor efficiency
is higher than a base value and other parameters are
satisfying limitation range.

TABLE I

GENETIC ALGORITHM: TABLE OF PARAMETERS BEFORE AND
AFTER OPTIMIZATION

Name Base value Optimal value

Induction in the air-gap, T 0.748 0.807

Internal diameter of stator core D, mm 185 194

Length of stator core Lδ, mm 130 115

Relative size λ = Lδ/τ (τ = πD/2p,
where p - number of pole pairs)

0.895 0.755

Height of stator slot, mm 21.9 14.6

Height of rotor slot, mm 32.2 33.2

Width of the upper line of stator slot,
mm

7.7 7.8

Width of the down line of stator slot,
mm

10.2 9.3

Upper diameter of rotor slot, mm 7.9 7.8

Down diameter of rotor slot, mm 3.7 3.4

Efficiency 0.885 0.891

Power factor 0.893 0.9

Starting current relative value 5.84 6.52

Starting torque relative value 1.4 1.62

Overload torque capability 2.65 2.88

Overall stator winding temperature, C 93.25 95.69

III. CONCLUSIONS

Algorithm of the previous considered CP [5] in
comparison with the GA, allows to execute multi-criterion
optimization, that is its undoubted advantage. In addition,
the CP always gives only the synonymous best variant
among the existing ones. However, in the range of
varying of two variables ± 20 % from a base value (3976
combinations) the calculation time is approached up to 48
min.

Implementation of CA gives stunning results. At the
same varied variables and range of their change ± 100 %
(!) from a base value, the calculation time is only 40 sec!

However, GA, at least, in the present article task, does
not allow to execute optimization for a few criteria.

In the GA number of the varied variables and a range
of their change is not important from the point of view of
the productivity, because a set of the varied variables is
created dynamically, but not beforehand, as in the CP
method. In addition, all combinations of the variables and
values of objective function are realized in a binary form.
However, time of the GA work is very critical to the
number of the created populations and number of
iterations in the populations.

The choice of population’s number and iterations
realized by an experienced way increases until an
acceptable result will not be obtained. A result of the
optimization with the use of the GA will always be the
best for the chosen criterion, but there is not a guarantee,
that a better variant can exist. Actually, herein there is a
genetic selection logic - we get a result, approaching the
best among the random created populations. A most
reliable result depends on population’s number. Thus, the
degree of authenticity can be estimated by the variation of

Transactions on Electrical Engineering, Vol. 2 (2013), No. 3 69

the obtained results in repeated calculations at the same
population’s number.

Therefore, the GA productivity at effective variant
populations number is determined but not by the number
and range of the varied variables.

The result of the optimization is ambiguous and close to
the best. When production of approximate calculations in
maximum compressed terms is needed and quality of the
obtained results is written with a permissible error, then
using of the GA optimization will be the irreplaceable
instrument for designers.

REFERENCES
[1] Yemelyanov V.V., Kureychik V.V., Kureychik V.M. Theory and
practice of evolution modeling. М.: PHYSMATLIT, 2003. – 432 p.
[2] N. Zablodskiy, V. Pliugin, K. Buhr. CAD of electromechanic devices:
educational tutorial, part 2, 2013. - 330 p. (will be printed).
[3] http://evoj-frmw.appspot.com [ONLINE].
[4] N.K. Vereshchagin, A. Shen. Lectures on mathematical logic and
theory of algorithms. Beginning of sets theory. MCNMO, 2008. – 198p.
[5] N. Zablodskiy, V. Pliugin, K. Buhr, S. Khomitskiy. Asynchronous
motor optimal design with using of Cartesian product (will be printed).

REFERENCES ON RUSSIAN:
[1] Емельянов В.В., Курейчик В.В., Курейчик В.М. Теория и
практика эволюционного моделирования. М.: ФИЗМАТЛИТ, 2003.
– 432 с.
[4] Верещагин Н.К., Шень А. Лекции по математической логике и
теории алгоритмов. Начала теории множеств. МЦНМО, 2008. –
198с.

