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Abstract — This article is aimed at obtaining a description 
of the behaviour of an ideal differentially steered drive 
system (mobile robot) and planar motion. The mathematical 
dynamic model describing the motion (speed and direction) 
of one robot’s point is created based on the first principles 
approach. The trajectory of this point is converted to 
trajectories of wheel contact points with the plane of motion. 
The dynamic behaviour of motors and chassis, form of 
coupling between motors and wheels and basic geometric 
dimensions are taken into account. The resulting trajectory 
depends on the supply voltage of both drive motors. The 
dynamic model will be used for design and verification of a 
robot’s motion control in MATLAB / SIMULINK simu-
lation environment. 

Keywords — Dynamic system modelling, intelligent control, 
mobile robot. 

I. INTRODUCTION 

The paper deals with a dynamic model of an ideal 
mobile robot with differentially steered drive system and 
planar motion. A single-axle chassis or caterpillar chassis 
is mostly used in case of small mobile robots [1]. A caster 
wheel is added to a single-axle to ensure stability. This 
solution together with the independent wheel actuation 
allows excellent mobility on the contrary to a classic 
chassis – see a commercially available robot in Fig. 1. The 
derived mathematical model comes from lay-out, nominal 
geometric dimensions and other features of that robot with 
view of ideal behaviour of individual components and 
some simplifying assumptions. The aim is to create a 
model based on forces caused by motor torques of 
independent wheel drives. The model will consist of 
dynamic behaviour description of the chassis and DC 
series motors. The presented motion model based on 
centre of mass (primary element) dynamics is different 
from models reflecting kinematics only and commonly 
used in literature – published e.g. in [2] or [3]. Standard 
models describe robot’s trajectory time evaluation 
depending  on known wheel speed (information from 
wheel speed sensors) and chassis geometry – odometry – 
published e.g. in [4] Our model extends standard model 
with dynamic part describing wheel speed dependency on 
the motor supply voltage by respecting dynamics, 
construction, geometry and other parameters of the chassis 
and motors. 

The motor supply voltage actuating the wheel causes 
driving torque and thereby wheel rotation. Inertial and 
resistance forces act against the driving torque. Both 
driving torques influence each other because of these 
forces. The planar curvilinear motion of the robot is result 
of various time variant wheel rotation speeds. 

The planar curvilinear motion can be decomposed to a 
sum of linear (translational) and rotational motions. Force 
balance is the starting point for the derivation of motion 
equations. If F is actual force acting to a mass point with 
mass m and  distance r from the axis of rotation then it 
holds for a general curvilinear motion that vector sum of 
all forces acting to a selected point is zero – see literature 
[5]. 
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Application of this general equation requires 
specification of individual forces according to actual 
conditions and/or eventually implementing other acting 
forces. We will consider forces originated by the motion 
of real body – induced with resistances (losses) in addition 
to curvilinear motion forces. 

 
We will approximate these forces in the simplest 

manner to be proportional to a speed. Equations 
describing dependences of linear and angular velocities of 
the reference chassis point to actual wheel motor voltages 
will be result of the dynamic part. 

Selection of the point where actual translation and 
rotation speeds will be evaluated influences significantly 
initial equations and hence complexity of the resulting 

Fig. 1.  Differentially steered mobile robot. 
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model. If the reference chassis point is at the centre of 
gravity then initial equations of the dynamic part are the 
simplest but equations describing dependencies between 
wheel speeds and linear and angular velocities are more 
complicated. The centre of the axis joining the wheels is 
the most common reference chassis point in literature. 
Such a choice leads to the simplest recalculation of actual 
wheel speeds to motion equations of that point. Trade-off 
between these two approaches is chosen in our paper – 
point at the centre of gravity projection to the axis joining 
the wheels is selected. A tTrajectory (time course) 
computation of another chassis points (points where 
wheels meet the ground) supplements the dynamic part of 
the model. 

II. MATHEMATICAL MODEL 
The described mobile robot is driven by two DC 

motors with common voltage source and independent 
control of each motor. The motors are connected with the 
driving wheels through a gear-box with constant gear 
ratio. An ideal gear-box means that it reduces linearly 
angular velocity and boosts the torque (nonlinearities are 
not considered). Losses in the motor and also in the gear-
box are proportional to the rotational speed. The chassis 
is equipped with the caster wheel with no influence on 
the chassis motion (its influence is included in resistance 
coefficients acting against motion). 

The model of the robot consists of three relatively 
independent parts. Description of the ideal DC series 
motors is given in section A. Two equations describe 
dependency of the motor rotation speed and current on 
the power supply voltage and loading torque are related 
to chassis dynamics. Motion equations are presented in 
section B – dependency between linear and angular 
velocities of the reference chassis point on torques acting 
on driving wheels. Section C is dedicated to equations 
describing how the motor speed influences translation 
and rotation speeds of the selected point and to complete 
model formulation. In the last Section D, the model is 
transformed to a simpler form which is more suitable for 
next using and for trajectory of an arbitrary point 
calculation. Equations describing trajectory cor-
responding to the contact points of the driving and caster 
wheels with the ground are formulated. 

A. DC Series Motor Dynamics 

An equivalent circuit of an ideal DC series motor [6] is 
in Fig. 2. It consists of resistance R, inductance L and 
magnetic field of the motor M. The commutator is not 
considered. The rotor produces electric voltage with 
reverse polarity than the source voltage – electromotive 
force, which is proportional to the rotor angular velocityω. 
The torque of the rotor MM is proportional to the current i.  

 
Ideal behaviour means that whole electric energy used 

for magnetic field creating is transformed without any 
losses to mechanical energy – torque of the motor. We do 

not consider losses in the magnetic field but only electric 
losses in winding and mechanical losses proportional to 
the rotor speed. 

First equation describes motor behaviour through 
balancing of voltages (Kirchhoff’s laws) 

 ωKU
dt

di
LRi −=+ 0  (2) 

where 
R  [Ω] is motor winding resistance, 
L  [H] is motor inductance, 
K [kg.m2.s-2.A-1] is back EMF constant, 
U0 [V] is source voltage, 
ω  [rad.s-1] is rotor angular velocity and 
i [A] is current flowing through winding. 

Second equation is balance of  torques (electric energy) 
– moment of inertia Ms, rotation resistance proportional to 
the rotation speed (mechanical losses) Mo, load  torque of 
the motor Mx and  torque MM caused by the magnetic field 
which is proportional to current 
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where 
J  [kg.m2] is moment of inertia, 
kr  [kg.m2.s-1] is coefficient of rotation resistance, 
Mx  [kg.m2.s-2] is load torque. 

B. Chassis Dynamics 

Chassis dynamics is defined by the vector of linear 
velocity vB acting on the reference chassis point and with 
rotation of this vector with angular velocity ωB (constant 
for all chassis points). It is possible to calculate the 
trajectory of arbitrary chassis point from these variables. 
The point B for which the equations are derived is the 
centre of gravity normal projection to the axis joining the 
wheels – see Fig. 3. This leads, according to the authors, 
to the simplest set of equation for the whole model. We 
consider the general centre of gravity T position – usually 
it is placed to the centre of the join between wheels. 

 
We consider forces balances as starting equations. It is 

possible to replace two forces FL and FP acting to chassis 
in left (L) and right (P) wheel ground contact points with 
one force FB and torsion torque MB acting in point B. The 

Fig. 3.  Chassis  diagram and forces. 

Fig. 2.  Equivalent circuit of motor. 
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chassis is characterized with radius of the driving wheels 
r, total mass m, moment of inertia JT with respect to the 
centre of gravity located parameters lT, lL, lP. 

Let us specify equation (1) for our case. The position of 
the centre of gravity is constant with respect to the axis of 
rotation so we do not need to consider Coriolis force. 
Similarly we do not consider the centrifugal force – 
chassis is supposed to be solid body represented as a point 
mass (centre of gravity). Because the force vector causing 
the movement acts in the point B and goes through the 
centre of gravity it is enough if we consider the inertial 
force by linear motion.  At a rotational motion it is 
necessary to consider torque caused by Euler’s force 
because the axis of rotation does not go through the centre 
of gravity. 

By the balance of forces causing linear motion we will 
consider forces FL, FP caused by the drives, inertial force 
FS and resistance force FO which is proportional to speed 
vB. The balance of forces influencing linear motion is 
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where 
m [kg] is robot mass, 
kv  [kg.s-1] is resistance coefficient against linear 

motion, 
MGL  [kg.m2.s-2] is torque of the left drive, 
MGP  [kg.m2.s-2] is torque of the right drive, 
vB  [m.s-1] is linear velocity and 
r  [m] is radius of the wheels. 

The balance of torques is slightly more complicated 
because the rotation axis does not lie in the centre of 
gravity. That’s why it is necessary to take into 
consideration not only chassis momentum MT, but also 
torque ME = lT FE caused by Euler’s force FE. Similarly as 
at a linear motion we will consider torque MO caused with 
the resistance against rotation to be proportional to the 
angular velocity ωB. 
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where 
lP  [m] is distance of the right wheel from point B, 
lL  [m] is distance of the left wheel from point B, 
lT  [m] is distance of the centre of gravity from point 

B, 
kω  [kg.m2.s-1] is resistance coefficient against 

rotational motion, 
JT  [kg.m2] is moment of inertia with respect to 

rotation  axis in the centre of gravity and 
ωB  [s-1] is angular velocity in point B. 

The resulting moment of inertia JB with respect to the 
rotational axis in the point B is given by Eq. (6) which is 
the parallel axis theorem or Huygens-Steiner theorem – 
see e.g. [5]. 

 
2
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where 
JT [kg.m2] is moment of inertia with respect to the 

centre of gravity and 
lT  [m] is distance between the centre of gravity and 

point B. 

C.  Relationship between Rotation Speed of the Motor 
and the Centre of Gravity Chassis Movement (kinematics) 

The equation describing the behaviour of the two 
motors (currents and angular velocity) and the behaviour 
of the chassis (the speed of the linear movement and speed 
of the rotation) are connected only through torques of 
motors. Equations of the law of conservation of energy 
which is conversion of electric energy to mechanical 
including one type of losses but represent only one 
relationship between the speed of the two motors 
(peripheral speed of the drive wheels) and rates of 
movement and rotation of the chassis. An additional 
relation is given by design of the drive and chassis. We 
expect that both drive wheels are firmly linked to rotors of 
relevant motors over an ideal gearbox with the gear ratio 
pG – without nonlinearities and any flexible parts. 

The gearbox decreases the output angular velocity ωGx 
with relation to the input angular speed ωx according to 
the transmission ratio pG and simultaneously in the same 
proportion increases output torque MGx with relation to the 
input torque Mx. 
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 PGGPLGGL MpMMpM ==  (7b) 
Further we assume that both drive wheels have the 

same radius r and their peripheral speeds vL, vP depend on 
the angular velocity of the gearbox output ωGL, ωGP 
according to relations 
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To determine the value of the linear speed in the point 

B and the angular velocity of rotation let us start from Fig. 
4. We expect that both drive wheels have the same axis of 
rotation and therefore their peripheral speeds are always 
parallel. The illustration shows the positioning where the 
peripheral speeds vL and vP actually operate (driving 
wheels L and P) and the point B. We want to specify such 
a linear vB and angular ωB speeds that have the same effect 
as the action of the peripheral speed of the driving wheels. 
By using the similarity of triangles depicted in Fig, 4 we 
can recalculate the peripheral speeds of the wheels vL, vP 
to the speed vB in the point B according to relation (8a) 
and the angular velocity of rotation ωB according to the 
relation (8b). 
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We can determine from the linear speed of vB and 

angular speed ωB (motion equations) current rotation 
angle α of the chassis and the current position (the 
coordinates xB, yB) of the point B [7] according to relations  

 
Bdt

d ωα =
 

(9a)
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To determine the current position of the contacts of all 
three chassis wheels (points L, P and K) with ground we 
need to know the location of these points in relation to the 
point B. This location is shown in Fig. 5. From geometric 
dimensions we determine equation describing the relative 
position of these points in relation to the point B 
depending on the angle of rotation. 

Relative positions ∆xL, ∆yL of the point L and ∆xP, ∆yP 
of the point P depending on the angle of rotation α are 
given by 

 )cos()sin( αα LLLL lylx −=∆−=∆  (10a) 

 )cos()sin( αα PPPP lylx +=∆+=∆  (10b) 
To determine the relative position ∆xK, ∆yK of the point 

K we use an auxiliary right triangle specified by 
hypotenuse c and catheti a and lK (see Figure 5). Then the 
equations for relative coordinates of the point K 
calculating are 
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The dynamic part of the model consists of four 

differential equations describing the behaviour of both 
motors, two differential equations describing the dynamics 
of the chassis and two algebraic equations with 
dependency of the linear and angular chassis speeds on the 
peripheral speeds of the driving wheels. We can find in 
these equations eight state variables describing the current 
state of the left motor (current iL, angular velocity of the 
rotor ωL, loading  torque ML) and the right motor (current 
iP, angular velocity of the rotor ωP, loading  torque MP) 
and the movement of the chassis (linear speed vB and 
angular velocity of rotation ωB). All the state variables are 
dependent on the time courses of the power of the left UL 
and right UP motor. 

 
Each motor has its own power supply voltage (UL, UP) 

taken from the common source of the voltage U0.  The 
supply voltage control of both motors using amplifier with 
the control signal ux is shown in Fig. 6. Because both 
motors are powered from the common source it will be 
taken into account also effect of the internal resistance Rz. 
Both motors are considered with the same parameters. We 
can write with using the Eqs. (2) and (3) and Fig. 6 four 
differential equations describing the behaviour of both 
motors as 
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Differential equations (4) and (5) describing the 

behaviour of the chassis complete the dynamic model. We 
can rewrite these equations with respect to the equations 
(7) and introduction of the "reduced" radius of the wheel 
rG and total moment of inertia JB (13a) as 
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Fig. 6.  Motors wiring. 
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Fig. 5.  Arbitrary chassis point recalculation. 
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It is possible to rewrite the last two algebraic equations, 
(8a) a (8b) describing the dependence between rotation 
speed of both motors and chassis movement using the 
substitution (13a) as 
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These six differential equations (11a,b), (12a,b), (13b,c) 
and two algebraic equations (14a,b) containing eight state 
variables representing a mathematical description of the 
dynamic behaviour of an ideal differentially steered 
mobile robot with losses linearly dependent on the 
revolutions or speed. The control signals uL and uP that 
control the supply voltages of the motors are input 
variables and the speed of the movement vB and speed of 
rotation ωB are output variables. From them with using 
equations (9a) – (9c) we can determine the current 
coordinates of  the point B and  angle of the chassis 
rotation . 

In the following calculation of steady-state values for 
constant motor power voltages is given. The calculation of 
the steady-state is useful both for the checking of derived 
equations and secondly for the experimental determination 
of the values of the unknown parameters. Because 
equations. (11)–(14) are linear with respect to the state 
variables the calculation of the steady-state leads to a 
system of eight linear equations which we can write in the 
matrix form as 
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D. Computational Form of the Model  

A mathematical model will be used in particular for the 
design, simulation and validation of the control movement 
of the robot. The model can be divided into three series-
involved parts as shown in Fig. 7. From the control point 
of view the action variables are signals uL and uP that 
control the supply voltage of the motors. The 
instantaneous speed vB and speed of rotation ωB are output 
variables of the linear part of the model. These variables 
are the inputs to the consequential non-linear part of the 
model (9a,b,c), whose outputs are controlled variables - 
the coordinates of the selected point position xB, yB and 
rotation angle of the chassis α. The last part is the 

calculation of coordinates of the position of arbitrary 
points of the chassis. 

 
We can modify the linear part of the model into a 

simpler form for control design purposes – to reduce 
number of differential equations from six to four. If we 
substitute equations (14a,b) into (13b,c) and eliminate  
torques ML and MP by substitution of (12a,b) to (13b,c) we 
are able to reduce four differential equations (12a,b) a 
(13b,c) into two (17c,d). 

We introduce substitution of the parameters according 
to following formulas 
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The reduced linear part of the model consists of the set 

of equations 

 

( )
L

iRiRRKUu

dt

di PzLzLLL −+−−= ..0 ω

 
(17a)

 

 
( )
L

iRiRRKUu

dt

di LzPzPPP −+−−
=

..0 ω
 (17b) 

( )[ ]( −−−+
+

= PPLLPLP
LPPL

L aaiiKd
dbdbdt

d ωωω 1

( )[ ])PPLLPPLLP ccililKb ωω −++−−  (17c) 

( )[ ]( +−−+
+

= PPLLPLL
LPPL

P aaiiKd
dbdbdt

d ωωω 1

( )[ ])PPLLPPLLL ccililKb ωω −++−+  (17d) 

and the output variables are given by algebraic equations 
(14a,b). 

It is possible to write the reduced linear part of the 
model as a standard state-space model in the matrix form 
as 
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with constant matrices A, B and C 

Fig. 7. Model partitioning into linear and nonlinear part. 
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III.  EXAMPLE OF THE BEHAVIOUR 
Basic verification of the above derived model was made 

by calculation for situations where we can guess the 
behaviour of the robot. First value of the state variables in 
steady states will be given for some combinations of 
parameters and motor supply voltages. Further time 
courses of the robot trajectory will be determined for some 
combinations of the time courses of supply voltages when 
the robot is starting from zero speed. 

The values of the parameters listed in the following 
tables are used in all calculations. These values are chosen 
so that they at least roughly correspond to the values 
estimated for the robot in Fig. 1. The values of the 
geometrical and other parameters of the chassis are listed 
in Table I. 

TABLE I.  
CHASSIS PARAMETERS 

Notation Value Unit Description 

lL 0.040 m 
distance of the left wheel from 
point B 

lP 0.060 m 
distance of the right wheel from 
point B 

lT 0.020 m 
distance of the centre of gravity 
from join between wheels 

lK 0.040 m 
distance of caster wheel from 
join between wheels 

R 0.050 m semi-diameter of driving wheel 

M 1.250 kg total mass of the robot 

kv 0.100 kg.s-1 
coefficient of the resistance 
against the robot linear motion 

JT 0.550 kg.m2 
moment of inertia of the robot 
with respect to the centre of 
gravity 

kω 1.350 kg.m2.s-1 
coefficient of the resistance 
against the robot rotating 

 
Necessary parameters for the DC motors with common 

voltage source description are given in Table II. We 
consider identical motors with identical parameters. 

TABLE II.   
DC MOTORS PARAMETERS 

Notation Value Unit Description 
R 2.000 Ω motor winding resistivity 
L 0.050 H motor inductance 
K 0.100 kg.m2.s-2.A-1 electromotoric constant 
RZ 0.200 Ω source resistance 
U0 10.00 V source voltage 

J 0.025 kg.m2 
total moment of inertia of 
the rotor and gearbox 

Notation Value Unit Description 

kr 0.002 kg.m2.s-1 
coefficient of the 
resistance against rotating 
of the rotor and gearbox 

pG 25 --- gearbox transmission ratio 
 

A. Steady State for Different Positions of the Point B and 
Motors Voltages  

The steady states are calculated as a solution of the 
system of eight equations in matrix form (15). Traces of 
the wheels are shown during the first 20 seconds of 
motion from zero initial conditions – calculated from 
state-space model (18) and from the equations for the 
trajectories calculation (9, 10).  

TABLE III. 
STEADY STATE A 

 left wheel right wheel  

u 1.000 1.000 - 

l 0.050 0.050 m 

i 1.3514 1.3514 A 

ω 6.75 6.75 rad.s-1 

M 0.000001 0.000001 N.m 

vB 0.0013513 m.s-1 

ωB 0 rad.s-1 
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Trajectories are plotted for the situation that the origin 

of the coordinate system is in the centre between the 
wheels, which is on the x-axis and the default orientation 
of the robot is in the direction of the y axis. The starting 
and final positions of the robot are displayed using the 
triangle that connects all three wheels. The trajectory of 
the centre of gravity is displayed (red colour) in addition 
to the traces of the wheels. 

The steady-state A (Table III.) corresponds to the 
geometric arrangement – the point B is midway between 
the wheels and both motors have the same supply voltage. 
The result is that the robot moves only linearly. 

 
The following three experiments show the influence of 

the centre of gravity position.  
The steady-state B (Table IV.) holds again for the 

symmetric geometric arrangement but only one motor is 
powered. 
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The steady state C (Table V.) shows the situation in the 
case that the point B is in the extreme position towards the 
left wheel and only the left motor is powered.  

The steady-state D (Table VI.) corresponds to the same 
position of the point B towards the left wheel but only the 
right motor is powered.  

 
In all three cases the robot rotates and at the same time 

the point B has some linear speed. Both wheels produce 
translational movement because of the interactions. 

 
TABLE IV. 

STEADY STATE B 
 left wheel right wheel  

U 0.000 1.000 - 
L 0.050 0.050 m 
I -0.2772 1.6287 A 
ω 0.2842 6.7818 rad.s-1 
M -0.001176 1.03010 N.m 
vB 0.006757 m.s-1 
ωB 0.7776 rad.s-1 
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TABLE V. 
STEADY STATE C 

 left wheel right wheel  
u 1.000 0.000 - 
l 0.000 0.100 M 
i 1.6288 -0.2773 A 
ω 6.4721 0.2842 rad.s-1 
M 0.00334400 -0.00334141 N.m 
vB 0.0129441 m.s-1 
ωB -0.7776 rad.s-1 
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TABLE VI. 
STEADY STATE D 

 left wheel right wheel  
u 0.000 1.000 - 
l 0.000 0.100 M 
i -0.2773 1.6286 A 
ω 0.2842 6.4721 rad.s-1 
M -0.00334148 0.00334159 N.m 
vB 0.0005686 m.s-1 
ωB 0.7776 rad.s-1 
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B. Dynamic Behaviour for Particular Cases 

The dynamic behaviour is demonstrated on the time 
courses of currents and angular speeds of the motors 
starting from zero initial conditions. Graphs in Fig. 8 show 
courses of the supply voltages, currents and angular 
speeds for the case that the point B is in the middle 
between both motors with the same constant voltage 10 V. 
The situation corresponds to experiment with the 
parameters in Table III. 
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Fig. 8.  Dynamic behaviour – constant supply voltage 10 V for both 
motors. 

A situation where the point B is in the middle between 
both motors with the right motor voltage 10 V only 
corresponds to the experiment with the parameters in 
Table IV. and it is demonstrated in Fig. 9. 
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Fig. 9.  Dynamic behaviour – constant supply voltage 10 V for right 
motor. 

 

An illustrative example of behaviour in the situation 
when both voltages are periodic and with different 
amplitudes is in Figs. 10 and 11. 

On the left motor a rectangular train of pulses with 
period 20 s, duty cycle 50 % and amplitude 3 V is applied. 
On the right motor a rectangular train of pulses of doubled 
period 40 s and amplitude 4 V is applied.  

The corresponding vehicle motion – wheels trajectories 
– is in Fig. 11. 
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Fig. 10.  Dynamic behaviour – periodic voltages. 
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Fig. 11.  Dynamic behaviour – periodic voltages – speeds and 
trajectories. 

 

IV. CONCLUSIONS 

The behaviour of the dynamic model in the simulated 
situations agrees with the expected behaviour of the robot. 
The position of the centre of gravity does not affect the 
behaviour in steady state. The immediate linear speed in 
the point B depends on its position but the trajectories of 
the wheels are independent on the position of the point B.  

The interaction of the two drives was confirmed. The 
wheel without supply voltage rotates, because of the 
forces of inertia and the forces of resistance. In the 
transient state, this can cause change in direction of the 
wheel rotation. This situation is seen in Fig. 9. 

Motor dynamics is negligible compared with the 
expected dynamics of the chassis for the estimated motor 
parameters. Because the parameters of the model have 
physical meaning it will be possible to measure directly 
some parameters on a real device. The identification of 
additional parameters will be possible experimentally 
from the measured time courses of power voltages and 
corresponding courses of angular speed of the wheels. 
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