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Abstract — The problem  of the automated calculation 
and optimal design of an induction  motor is presented. 
Given and decided tasks of optimization by  use of Cartesian 
product are introduced. The analysis of the obtained  results 
is made. 
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I. INTRODUCTION 

The feature of the modern state of theory development 
and design practice of electric machines is passing to the 
automated design. Methods and facilities of automated 
design substantially change the character of engineering 
work, do them creative and effective due to considerable 
expansion of engineer’ possibilities during realization of 
project researches and searching of optimum decisions. At 
the same time, methodology of automated design 
supposes high professional preparation of the modern 
engineer, his ability to use correctly mathematical 
methods and computer for making decision on the 
different stages of design. 

Seen CAD in the context of electric machines, it is 
possible to distinguish following system components, used 
in modern electric machine design  [1]: 

1) automated design of electric machine; 
2) searching of the optimal variant of the designed 

machine; 
3) design of programmatic realization and searching 

of optimum; 
4) choosing of optimum variant from a  great number 

of effective, limitation l checking passing. 
 
Optimal known  variant of the searching methods, such 

as a descent method, Nadler-Mead method, method of the 
deformed polyhedron and others, do not allow executing 
of the calculations for  the simultaneous change of all 
varied variables. As a rule, many methods assume on the 
contrary  varying  variables with subsequent adjustment of 
area of convergence calculations [2]. 

Even the simultaneous varying of all variables does not 
give acceptable results: a machine, which got optimum 

status at the found optimum value, for example, of stator 
package length, does not guarantee that this length will 
give the best result at varying of other variable, for 
example, diameter of stator package. There is a 
probability, that a machine, optimal at this diameter will 
be yet the best at length, different from fixed on the 
previous stage. 

Obviously, the method of optimization, which would 
allow  executing of the machine calculations  at all 
possible combinations of the varied variables in the set 
limits and with the set step, is most acceptable. 

In this paper  it will be considered the method allowing 
to a man  searching  the best variant of the induction 
motor automated design   with the set criterion of 
optimality, and from the great number of the expected 
variants to execute the selection of the best. Receipt of the 
possible area of project decisions, the simultaneous 
change of all varied variables is supposed. 

 

II.  THEORY AND PROGRAM REALIZATION 

In this method the Cartesian product (CP)   is a set 
А × В of all order pair of elements (a, b), where a belongs 
to the A set, b  to the B set. An order of the following 
pairs can be different, but the location of elements in 
every pair (vector) is determined by the order of the 
following  the multiplied elements [3]. Therefore 

A × B ≠ B × A, if B ≠ A                     (1) 

 
A generalised form of the CP  in above Eq. 1 for  any 

number  of sets A1, A2, ..., An,  is written  as 

∏
=

××××=
n

1i
n321i A...AAAA              (2) 

 
The CP of a limited set А1×А2×…×Аn is determined as 

a set of all possible sets (corteges) of the length n (made 
from the elements of this set), in which every element ai 
belongs to the corresponding number of the set Ai. In 
particular, for the zero set a result is a set containing  only 
one element - empty cortege.  
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Determination of CP binary operation (direct product of 
two sets) follows also as a special case . 

For a set family {Xi}i∈I with the possibly endless 

indexed set I, the CP ∏
∈

=
Ii

iXX  is possible to define as a 

function, comparing the element of the set Xi with  every 
element of i ∈ I. 

Let us give a simple example. Let varied in an electric 
motor  the length of the active part L, internal D and 
external Da stator core diameters. A task consists of 
determination of such combination of the varied 
parameters, at which the maximum efficiency is obtained 
at condition of observance for  the limitations laid on a 
project decision .  

 In Tab. I, the different magnitudes of the varied 
variables are  specially given. 

 
TABLE I 

DATA SET OF THE VARIED PROJECT VARIABLES 

D, mm 100 105 110 115 

Da, mm 150 200 - - 

L, mm 95 99 103 - 

 
 For example, unlike to the descent method, where at 

first we got the decisions set at varying one variable 
(others are fixed), we shall set the problem of having all 
possible recurring combinations of the varied variables.  

As a calculation result, with all data set, the real 
possibility to estimate adequacy of choice of optimal 
variant appears without some simplifying assumptions, 
based on all possible combinations of variables. 

So the task of combination finding in some sets tends  
to the CP task. We will go now back to a Tab. I, where the 
varied variables of an electric machine are given. We will 
present the corteges (sets) of data for the D, Da and L sets, 
using examples given above. 

 
D = {100, 105, 110, 115}, 
Da = {150, 200}, 
L = {95, 99, 103}. 
 
We shall get 24 corteges in CP D×Da×L =  
{(100, 150, 95), (100, 150, 99), (100, 150, 103), (100, 200, 95), 
  (100, 200, 99), (100, 200, 103), 
  (105, 150, 95), (105, 150, 99), (105, 150, 103), (105, 200, 95), 
  (105, 200, 99), (105, 200, 103), 
  (110, 150, 95), (110, 150, 99), (110, 150, 103), (110, 200, 95), 
  (110, 200, 99), (110, 200, 103), 
  (115, 150, 95), (115, 150, 99), (115, 150, 103), (115, 200, 95), 
  (115, 200, 99), (115, 200, 103)}. 

 
Thus, the set of all order integer pairs considered by 

Descartes is the example of the set product on itself.  
Practical application of the CP is the Optimetrics 

ANSOFT Maxwell unit used in optimization [4 - 6]. 

We shall consider program realization of the CP on the 
basis of corteges, presented in Tab. I. The algorithm of the 
CP on the recursive function call of surplus of data in 
corteges is realized. Below the listing of CP class on Java 
is given [7]. 

 
class Cartesian_product{ 
Cartesian (){}; 
public Vector dest;//vector with possible combinations 
public int number_elem;//number of the combined parameters 
public Vector get_comb(){return dest;} 
public int get_number_elem(){return number_elem;} 
//Search of unrepetitive combinations 
//Algorithm carthesian works of great numbers 
public void combinations(Vector srs, int[] size, Vector curr, int index){ 
     if (index == srs.size()){ 
         int s = curr.size(); 
         Integer [] d = new Integer [s]; 
         curr.toArray(d); 
         dest.add(d); 
     } 
     else{ 
     for (int i = 0; i < size[index]; i++){ 
         int n = size[index]; 
         int [] dim = new int[n]; 
         dim = (int[]) srs.get(index); 
         curr.add(dim[i]); 
         index++; 
         combinations(srs, size, curr, index); 
         index--; 
         curr.remove(curr.lastElement()); 
     }//end of for 
     } //end of else 
 
}//end of function combinations() 
 
//Basic data and call of function to search combinations 
public void init (){ 
        int[] dim1 = new int[]{100, 105, 110, 115}; 
        int[] dim2 = new int[]{150, 200}; 
        int[] dim3 = new int[]{95, 99, 103}; 
        Vector srs = new Vector(); 
        srs.add(dim1); 
        srs.add(dim2); 
        srs.add(dim3); 
        number_elem = srs.size(); 
        int [] size = new int[number_elem]; 
        size[0] = dim1.length; 
        size[1] = dim2.length; 
        size[2] = dim3.length; 
        dest = new Vector(); 
        Vector curr = new Vector(); 
        combinations(srs, size, curr, 0); 
}//end of function of init() 
}//end of class 
 
//Call of function CP calculation from the main class form 
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt){                                          
        Cartesian_product prod = new Cartesian_product (); 
        prod.init(); 
        Vector dest = new Vector(); 
        dest = (Vector) prod.get_comb().clone(); 
        int num = prod.get_number_elem(); 
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        Integer [] temp = new Integer [num]; 
        String text = ""; 
        DefaultListModel list = new DefaultListModel(); 
        int index = 0; 
        for (int i = 0; i < dest.size(); i++){ 
            temp = (Integer[]) dest.get(i); 
            for (int j = 0; j < num; j++){ 
                 text = text + Integer.toString(temp[j]) + "  ";} 
            list.addElement(text); 
            text = ""; 
            index++; 
        } 
        jList1.setModel(list); 
        jLabel122.setText("Amount of combinations : 
        " + Integer.toString(index)); 
}          

 
To reduce the calculation time, optimization for  

varying of only two variables, for example: internal stator 
core diameter and stator core length will be assumed . The 
maximum efficiency and minimum of starting current 
were chosen as criteria of optimality in this example. 

The order of optimization will be following: 
 
1) setting the range of the varied variables; 
2) setting limitations; 
3) choosing the criteria of optimality and set of weight 

coefficients for each of criteria; 
4) calling the function of the CP for the searching of 

the varied variable possible combinations in the set 
range; 

5) starting  with the iterations number  equal to a 
number of the CP combinations found on previous 
step 4); 

6) calling the function of automatic  electric motor 
calculation in the loop (number of loop steps equal 
to a number of the CP combinations) and function 
of the limitation control on each step; variant, 
successfully passed verification on limitations, we 
save in a vector; at a failure, a current selection 
from the found combinations is sifted from as 
ineffective.  

7) after completion of the calculation loop we call the 
function  of the machine best variant search  among 
those which passed limitations and were added to 
the vector; we take into account the chosen criteria 
of optimality and their weight in the optimality 
calculation  by Pareto method [2, 7]; 

8) to get the best variant data (with the optimum 
combination of the varied variables)  we call at the 
end the function of electric motor automatic 
calculation . 

 
Optimization results, based on the CP algorithm, are 

presented in  Fig. 1 as a diagram of the average optimality 
criterion by Pareto.  

In shown results the calculation of the CP in the 
example 15 sets of lengths and diameters were found, and 
only 10 of them passed limitations. A base variant in the 
diagram (Fig. 1) is presented in the first column (num. 1 
on the axis of variant numbers). From the diagram it is 

obvious that the third set of combinations is the best, 
worst is the last, eleven set. 

In spite of the fact that in the optimum variant (third) it 
has a little bit low efficiency factor in comparison with the 
base variant (first), it is better due to the index of starting 
current. By the calculation of the average criterion by 
Pareto this third variant will be leading. 

 

 
Fig. 1 - Results of multi-criterion optimization by use  

of the CP algorithm 

 
The algorithm of an effective variants selection is based 

on the rule of Pareto preferences [2]. According to this 
rule, from the set of acceptable variants a variant Ko is 
selected. In further from Ko = 1 and for all j-criteria check 
up conditions: 

Fkj  <  Fkoj,                                    (3) 
 
where k – an index of a calculated variant; j – an index of 
the checked optimum criteria (at least 1 criteria must be 
exist). 

Under the words “calculated variant” Fkj we are mean 
an array of variables selected for check up according to 
optimum criteria. For example, if we want to obtain the 
best variant with minimum starting current I and 
maximum efficiency η as optimum criteria, an array of 4 
found variants will be looking as is shown in Tab. 2. 

 
TABLE II 

AN EXAMPLE OF VARIANTS ARRAY FOR SELECTION 

Criteria 
(j-index) 

Obtained criteria value in calculated variant 
(k-index) 

1 2 3 4 
I, A 10 12 11 9 
η 0.88 0.91 0.89 0.82 

 
Variants that not satisfied to this condition, are cast 

aside as wittingly «bad», because inferior to other on all 
criteria. From other variants a new variant is selected and 
got an index Ko.  Then the condition (3) is checked again. 
A process recurs until there will be not any variant which 
have not got the index Ко. Remaining variants will make 
the set of effective variants.  

The receiving of effective variants set allows 
considerably narrowing a searching area, but the problem 
of an optimal variant choice remains. If the amount of 
effective variants is big, the criteria wrapping is made. We 
will consider one of wrap methods [2]. 
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Let F*
j for the best value of j-criteria among effective 

variants and Fkj – the value of j-criteria in a k-variant. 
 
Then a value of Wkj 

j

jkj
kj *F

*FF
W

−
=                             (4) 

 
determines how a current variant Fkj worse than the best 

F*
j by a j-index. 
Lets define as W* j the worst value of a variant Wkj and 

execute a normalization: 

.*W/WW jkjkj

^
=                         (5) 

 
If to input the weight factors ξj for each criterion, then it 

is possible to form the generalized optimum criteria 
 

∑
=

ξ →⋅ξ=
3

1j

kj

^

j .minW
3
1

F                     (6) 

 
A variant having a minimal Fξ value (6) is near to be the 

best and, consequently, is an optimal with current optimal 
criteria weight factors ξj. Changing the elements of vector 
ξ in accordance with one or another preferences, it is 
possible to get the different best variants. 

 
The Java code of function that realized represented 

Pareto optimum selection method is shown below. 
 

  public static int Pareto(Vector eff, int[] krit){ 
      int Nopt = 0;//optimal variant index 
      opt_pareto = new Vector();//vector of optimal solution 
      int Ni = eff.size();//amount of effective variants 
      int Nj = krit.length;//amount of weight factors 
       
      double[][] W = new double[Ni][Nj];//comparison values 
      double[][] W1 = new double[Ni][Nj];//normalization W 
      double[] Wmax = new double[Nj];//worse values W       
      double[] Fmax = new double[Nj];//best values 
      double[] Fw = new double[Ni];//generalized criteria 
      double[] Fwp = new double[Ni];//generalized criteria in % 
        
      for (int i = 0; i < Nj;i++){ 
          Fmax[i] = Double.POSITIVE_INFINITY; 
      } 
      //Finding of the best value for each criteria 
      for (int i = 0; i < Ni; ++i){ 
          double[] temp = new double[Nj]; 
          temp = (double[])eff.get(i); 
          for (int j = 0; j < Nj; ++j){ 
              if (temp[j] < Fmax[j]){ 
                  Fmax[j] = temp[j]; 
              } 
          } 
      } 
        
      //Obtaining comparison results 
      for (int i = 0; i < Ni; ++i){ 
          double[] temp = new double[Nj]; 

          temp = (double[])eff.get(i); 
          for (int j = 0; j < Nj; ++j){ 
              W[i][j] = (temp[j] - Fmax[j])/Fmax[j]; 
          } 
      } 
       
       //Finding of the worse value in array W 
      //Worse value has a maximal divergence with the best 
      for (int i = 0; i < Nj; i++){ 
          Wmax[i] = W[0][i]; 
      } 
      for (int i = 1; i < Ni; ++i){ 
          for (int j = 0; j < Nj; ++j){ 
              if (W[i][j] > W[i-1][j]){Wmax[j] = W[ i][j];} 
          } 
      } 
      //Normalization 
      //The worse variant has a maximal value of W1 and equal to 1.0 
      for (int i = 0; i < Ni; ++i){ 
          for (int j = 0; j < Nj; ++j){ 
              W1[i][j] = W[i][j]/Wmax[j]; 
          } 
      } 
      //Calculation of the generalized optimal criteria 
      //The best variant will have minimal Fw value 
      //Current value is improved (decreased) by the weight factor 
      //Weight factor range: from 1 (without correction) to 100 (maximal) 
      for (int i = 0; i < Ni; ++i){ 
          for (int j = 0; j < Nj; j++){ 
              Fw[i] += W1[i][j]/((double)krit[j]); 
          } 
          Fw[i]/=Nj; 
      } 
      //Choosing the best variant 
      double Fpmin = Double.POSITIVE_INFINITY; 
      double Fpmax = Double.NEGATIVE_INFINITY; 
      for (int i = 1; i < Ni; ++i){ 
          if (Fw[i] < Fpmin){ 
              Fpmin = Fw[i]; 
              Nopt = i; 
          } 
          if (Fw[i] > Fpmax){Fpmax = Fw[i];} 
      } 
      //Conversion of Fw value to % 
      for (int i = 0; i < Ni; ++i){ 
          Fwp[i] = Fpmin*100/Fw[i]; 
       } 
      //Export data for diagram drawing 
      opt_pareto.add(Fwp);//Optimal variant value in % 
      opt_pareto.add(Nopt);//Position of optimal variant in array 
         
      return Nopt; //optimal variant position in input array 
} 
 
 

After selection of the best variant is finished, we are 
making last motor calculation with got optimal parameters  
D, Da and L that are associated with the optimal variant 
position in input data set. 
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III.  CONCLUSIONS 

Let us analyze the obtained results and make the 
conclusions. 

 
1) In the CP algorithm with the varied variables 

range ± 1 % from a base size (15 combinations), 
the calculation time was 14 sec. At the range ± 10 
% (1200 combinations) the calculation time grew 
to 12 min, that is fully acceptable. At the range of 
varying ± 20 % (3976 combinations)  the 
calculation time  already approached to 48 min. 
For  the number  of the varied variables changed 
up to 4 and to accept the range of their varying 
± 20 % relatively from a base value, then we get 
about 1,5 million combinations and 8 hours of 
calculation. Thus it is needed  up to 1,5 GB of 
computer RAM. 

2) A  further increase of varied variables number 
does not make sense, as a memory consumption  
sharply increases and resources of the personal 
computer are  not enough for treatment of 
enormous number  of variables. The preliminary 
estimation of the calculation time is a few days of 
optimization on a modern computer. 

3) Thus, the CP algorithm is expedient at a  small 
number  of the varied parameters (2 - 3) and with 
the range of their rejection relatively to base value 
±  (10-20) %. 

4) On the other hand, the CP algorithm in 
comparison, for example, to a genetic algorithm 
[8], allows executing of multi-criterion 
optimization, that is his undoubted advantage . In 
addition, the CP always gives  the unique, i.e. only 
the best variant among existing ones. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The designer decides what algorithm to choose. If 
importance of an optimal result reception  outweighs 
expenses on its obtaining , then one often  ignores the 
calculation time, and it is possible to apply a  difficult 
optimization algorithm.  

When it is needed to produce approximate calculations 
in the maximum compressed terms, and quality of the 
obtained  results it is  in a permissible error range, then it 
is possible to use fast-acting, but less precision algorithms. 
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