
Transactions on Electrical Engineering, Vol. 2 (2013), No. 2 54

Induction Motor Optimal Design by Use of
Cartesian Product

prof. N. Zablodskiy 1), prof. J. Lettl 2), doc. V. Pliugin 3), ing. K. Buhr 4), stud. S. Khomitskiy 5)
1) Donbas State Technical University/Automation of electro-technical systems, Alchevsk, Ukraine, info@dmmi.edu.ua

2) Czech Technical University in Prague/Faculty of Electrical Engineering, Prague, Czech republic, lettl@fel.cvut.cz
3) Donbas State Technical University/Automation of electro-technical systems, Alchevsk, Ukraine,

vlad.plyugin@gmail.com
4) Czech Technical University in Prague/Faculty of Electrical Engineering, Prague, Czech republic, buhr@fel.cvut.cz

5) Donbas State Technical University/Automation of electro-technical systems, Alchevsk, Ukraine,
stas.blitzkrieg@mail.ru

Abstract — The problem of the automated calculation
and optimal design of an induction motor is presented.
Given and decided tasks of optimization by use of Cartesian
product are introduced. The analysis of the obtained results
is made.

Keywords — Induction motor, optimization, cortege, varied
variables, Cartesian product, criteria, effective variant

I. INTRODUCTION

The feature of the modern state of theory development
and design practice of electric machines is passing to the
automated design. Methods and facilities of automated
design substantially change the character of engineering
work, do them creative and effective due to considerable
expansion of engineer’ possibilities during realization of
project researches and searching of optimum decisions. At
the same time, methodology of automated design
supposes high professional preparation of the modern
engineer, his ability to use correctly mathematical
methods and computer for making decision on the
different stages of design.

Seen CAD in the context of electric machines, it is
possible to distinguish following system components, used
in modern electric machine design [1]:

1) automated design of electric machine;
2) searching of the optimal variant of the designed

machine;
3) design of programmatic realization and searching

of optimum;
4) choosing of optimum variant from a great number

of effective, limitation l checking passing.

Optimal known variant of the searching methods, such

as a descent method, Nadler-Mead method, method of the
deformed polyhedron and others, do not allow executing
of the calculations for the simultaneous change of all
varied variables. As a rule, many methods assume on the
contrary varying variables with subsequent adjustment of
area of convergence calculations [2].

Even the simultaneous varying of all variables does not
give acceptable results: a machine, which got optimum

status at the found optimum value, for example, of stator
package length, does not guarantee that this length will
give the best result at varying of other variable, for
example, diameter of stator package. There is a
probability, that a machine, optimal at this diameter will
be yet the best at length, different from fixed on the
previous stage.

Obviously, the method of optimization, which would
allow executing of the machine calculations at all
possible combinations of the varied variables in the set
limits and with the set step, is most acceptable.

In this paper it will be considered the method allowing
to a man searching the best variant of the induction
motor automated design with the set criterion of
optimality, and from the great number of the expected
variants to execute the selection of the best. Receipt of the
possible area of project decisions, the simultaneous
change of all varied variables is supposed.

II. THEORY AND PROGRAM REALIZATION

In this method the Cartesian product (CP) is a set
А × В of all order pair of elements (a, b), where a belongs
to the A set, b to the B set. An order of the following
pairs can be different, but the location of elements in
every pair (vector) is determined by the order of the
following the multiplied elements [3]. Therefore

A × B ≠ B × A, if B ≠ A (1)

A generalised form of the CP in above Eq. 1 for any

number of sets A1, A2, ..., An, is written as

∏
=

××××=
n

1i
n321i A...AAAA (2)

The CP of a limited set А1×А2×…×Аn is determined as

a set of all possible sets (corteges) of the length n (made
from the elements of this set), in which every element ai
belongs to the corresponding number of the set Ai. In
particular, for the zero set a result is a set containing only
one element - empty cortege.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/328114328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transactions on Electrical Engineering, Vol. 2 (2013), No. 2 55

Determination of CP binary operation (direct product of
two sets) follows also as a special case .

For a set family {Xi}i∈I with the possibly endless

indexed set I, the CP ∏
∈

=
Ii

iXX is possible to define as a

function, comparing the element of the set Xi with every
element of i ∈ I.

Let us give a simple example. Let varied in an electric
motor the length of the active part L, internal D and
external Da stator core diameters. A task consists of
determination of such combination of the varied
parameters, at which the maximum efficiency is obtained
at condition of observance for the limitations laid on a
project decision .

 In Tab. I, the different magnitudes of the varied
variables are specially given.

TABLE I

DATA SET OF THE VARIED PROJECT VARIABLES

D, mm 100 105 110 115

Da, mm 150 200 - -

L, mm 95 99 103 -

 For example, unlike to the descent method, where at

first we got the decisions set at varying one variable
(others are fixed), we shall set the problem of having all
possible recurring combinations of the varied variables.

As a calculation result, with all data set, the real
possibility to estimate adequacy of choice of optimal
variant appears without some simplifying assumptions,
based on all possible combinations of variables.

So the task of combination finding in some sets tends
to the CP task. We will go now back to a Tab. I, where the
varied variables of an electric machine are given. We will
present the corteges (sets) of data for the D, Da and L sets,
using examples given above.

D = {100, 105, 110, 115},
Da = {150, 200},
L = {95, 99, 103}.

We shall get 24 corteges in CP D×Da×L =
{(100, 150, 95), (100, 150, 99), (100, 150, 103), (100, 200, 95),
 (100, 200, 99), (100, 200, 103),
 (105, 150, 95), (105, 150, 99), (105, 150, 103), (105, 200, 95),
 (105, 200, 99), (105, 200, 103),
 (110, 150, 95), (110, 150, 99), (110, 150, 103), (110, 200, 95),
 (110, 200, 99), (110, 200, 103),
 (115, 150, 95), (115, 150, 99), (115, 150, 103), (115, 200, 95),
 (115, 200, 99), (115, 200, 103)}.

Thus, the set of all order integer pairs considered by

Descartes is the example of the set product on itself.
Practical application of the CP is the Optimetrics

ANSOFT Maxwell unit used in optimization [4 - 6].

We shall consider program realization of the CP on the
basis of corteges, presented in Tab. I. The algorithm of the
CP on the recursive function call of surplus of data in
corteges is realized. Below the listing of CP class on Java
is given [7].

class Cartesian_product{
Cartesian (){};
public Vector dest;//vector with possible combinations
public int number_elem;//number of the combined parameters
public Vector get_comb(){return dest;}
public int get_number_elem(){return number_elem;}
//Search of unrepetitive combinations
//Algorithm carthesian works of great numbers
public void combinations(Vector srs, int[] size, Vector curr, int index){
 if (index == srs.size()){
 int s = curr.size();
 Integer [] d = new Integer [s];
 curr.toArray(d);
 dest.add(d);
 }
 else{
 for (int i = 0; i < size[index]; i++){
 int n = size[index];
 int [] dim = new int[n];
 dim = (int[]) srs.get(index);
 curr.add(dim[i]);
 index++;
 combinations(srs, size, curr, index);
 index--;
 curr.remove(curr.lastElement());
 }//end of for
 } //end of else

}//end of function combinations()

//Basic data and call of function to search combinations
public void init (){
 int[] dim1 = new int[]{100, 105, 110, 115};
 int[] dim2 = new int[]{150, 200};
 int[] dim3 = new int[]{95, 99, 103};
 Vector srs = new Vector();
 srs.add(dim1);
 srs.add(dim2);
 srs.add(dim3);
 number_elem = srs.size();
 int [] size = new int[number_elem];
 size[0] = dim1.length;
 size[1] = dim2.length;
 size[2] = dim3.length;
 dest = new Vector();
 Vector curr = new Vector();
 combinations(srs, size, curr, 0);
}//end of function of init()
}//end of class

//Call of function CP calculation from the main class form
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt){
 Cartesian_product prod = new Cartesian_product ();
 prod.init();
 Vector dest = new Vector();
 dest = (Vector) prod.get_comb().clone();
 int num = prod.get_number_elem();

Transactions on Electrical Engineering, Vol. 2 (2013), No. 2 56

 Integer [] temp = new Integer [num];
 String text = "";
 DefaultListModel list = new DefaultListModel();
 int index = 0;
 for (int i = 0; i < dest.size(); i++){
 temp = (Integer[]) dest.get(i);
 for (int j = 0; j < num; j++){
 text = text + Integer.toString(temp[j]) + " ";}
 list.addElement(text);
 text = "";
 index++;
 }
 jList1.setModel(list);
 jLabel122.setText("Amount of combinations :
 " + Integer.toString(index));
}

To reduce the calculation time, optimization for

varying of only two variables, for example: internal stator
core diameter and stator core length will be assumed . The
maximum efficiency and minimum of starting current
were chosen as criteria of optimality in this example.

The order of optimization will be following:

1) setting the range of the varied variables;
2) setting limitations;
3) choosing the criteria of optimality and set of weight

coefficients for each of criteria;
4) calling the function of the CP for the searching of

the varied variable possible combinations in the set
range;

5) starting with the iterations number equal to a
number of the CP combinations found on previous
step 4);

6) calling the function of automatic electric motor
calculation in the loop (number of loop steps equal
to a number of the CP combinations) and function
of the limitation control on each step; variant,
successfully passed verification on limitations, we
save in a vector; at a failure, a current selection
from the found combinations is sifted from as
ineffective.

7) after completion of the calculation loop we call the
function of the machine best variant search among
those which passed limitations and were added to
the vector; we take into account the chosen criteria
of optimality and their weight in the optimality
calculation by Pareto method [2, 7];

8) to get the best variant data (with the optimum
combination of the varied variables) we call at the
end the function of electric motor automatic
calculation .

Optimization results, based on the CP algorithm, are

presented in Fig. 1 as a diagram of the average optimality
criterion by Pareto.

In shown results the calculation of the CP in the
example 15 sets of lengths and diameters were found, and
only 10 of them passed limitations. A base variant in the
diagram (Fig. 1) is presented in the first column (num. 1
on the axis of variant numbers). From the diagram it is

obvious that the third set of combinations is the best,
worst is the last, eleven set.

In spite of the fact that in the optimum variant (third) it
has a little bit low efficiency factor in comparison with the
base variant (first), it is better due to the index of starting
current. By the calculation of the average criterion by
Pareto this third variant will be leading.

Fig. 1 - Results of multi-criterion optimization by use

of the CP algorithm

The algorithm of an effective variants selection is based

on the rule of Pareto preferences [2]. According to this
rule, from the set of acceptable variants a variant Ko is
selected. In further from Ko = 1 and for all j-criteria check
up conditions:

Fkj < Fkoj, (3)

where k – an index of a calculated variant; j – an index of
the checked optimum criteria (at least 1 criteria must be
exist).

Under the words “calculated variant” Fkj we are mean
an array of variables selected for check up according to
optimum criteria. For example, if we want to obtain the
best variant with minimum starting current I and
maximum efficiency η as optimum criteria, an array of 4
found variants will be looking as is shown in Tab. 2.

TABLE II

AN EXAMPLE OF VARIANTS ARRAY FOR SELECTION

Criteria
(j-index)

Obtained criteria value in calculated variant
(k-index)

1 2 3 4
I, A 10 12 11 9
η 0.88 0.91 0.89 0.82

Variants that not satisfied to this condition, are cast

aside as wittingly «bad», because inferior to other on all
criteria. From other variants a new variant is selected and
got an index Ko. Then the condition (3) is checked again.
A process recurs until there will be not any variant which
have not got the index Ко. Remaining variants will make
the set of effective variants.

The receiving of effective variants set allows
considerably narrowing a searching area, but the problem
of an optimal variant choice remains. If the amount of
effective variants is big, the criteria wrapping is made. We
will consider one of wrap methods [2].

Transactions on Electrical Engineering, Vol. 2 (2013), No. 2 57

Let F*
j for the best value of j-criteria among effective

variants and Fkj – the value of j-criteria in a k-variant.

Then a value of Wkj

j

jkj
kj *F

*FF
W

−
= (4)

determines how a current variant Fkj worse than the best

F*
j by a j-index.
Lets define as W* j the worst value of a variant Wkj and

execute a normalization:

.*W/WW jkjkj

^
= (5)

If to input the weight factors ξj for each criterion, then it

is possible to form the generalized optimum criteria

∑
=

ξ →⋅ξ=
3

1j

kj

^

j .minW
3
1

F (6)

A variant having a minimal Fξ value (6) is near to be the

best and, consequently, is an optimal with current optimal
criteria weight factors ξj. Changing the elements of vector
ξ in accordance with one or another preferences, it is
possible to get the different best variants.

The Java code of function that realized represented

Pareto optimum selection method is shown below.

 public static int Pareto(Vector eff, int[] krit){
 int Nopt = 0;//optimal variant index
 opt_pareto = new Vector();//vector of optimal solution
 int Ni = eff.size();//amount of effective variants
 int Nj = krit.length;//amount of weight factors

 double[][] W = new double[Ni][Nj];//comparison values
 double[][] W1 = new double[Ni][Nj];//normalization W
 double[] Wmax = new double[Nj];//worse values W
 double[] Fmax = new double[Nj];//best values
 double[] Fw = new double[Ni];//generalized criteria
 double[] Fwp = new double[Ni];//generalized criteria in %

 for (int i = 0; i < Nj;i++){
 Fmax[i] = Double.POSITIVE_INFINITY;
 }
 //Finding of the best value for each criteria
 for (int i = 0; i < Ni; ++i){
 double[] temp = new double[Nj];
 temp = (double[])eff.get(i);
 for (int j = 0; j < Nj; ++j){
 if (temp[j] < Fmax[j]){
 Fmax[j] = temp[j];
 }
 }
 }

 //Obtaining comparison results
 for (int i = 0; i < Ni; ++i){
 double[] temp = new double[Nj];

 temp = (double[])eff.get(i);
 for (int j = 0; j < Nj; ++j){
 W[i][j] = (temp[j] - Fmax[j])/Fmax[j];
 }
 }

 //Finding of the worse value in array W
 //Worse value has a maximal divergence with the best
 for (int i = 0; i < Nj; i++){
 Wmax[i] = W[0][i];
 }
 for (int i = 1; i < Ni; ++i){
 for (int j = 0; j < Nj; ++j){
 if (W[i][j] > W[i-1][j]){Wmax[j] = W[i][j];}
 }
 }
 //Normalization
 //The worse variant has a maximal value of W1 and equal to 1.0
 for (int i = 0; i < Ni; ++i){
 for (int j = 0; j < Nj; ++j){
 W1[i][j] = W[i][j]/Wmax[j];
 }
 }
 //Calculation of the generalized optimal criteria
 //The best variant will have minimal Fw value
 //Current value is improved (decreased) by the weight factor
 //Weight factor range: from 1 (without correction) to 100 (maximal)
 for (int i = 0; i < Ni; ++i){
 for (int j = 0; j < Nj; j++){
 Fw[i] += W1[i][j]/((double)krit[j]);
 }
 Fw[i]/=Nj;
 }
 //Choosing the best variant
 double Fpmin = Double.POSITIVE_INFINITY;
 double Fpmax = Double.NEGATIVE_INFINITY;
 for (int i = 1; i < Ni; ++i){
 if (Fw[i] < Fpmin){
 Fpmin = Fw[i];
 Nopt = i;
 }
 if (Fw[i] > Fpmax){Fpmax = Fw[i];}
 }
 //Conversion of Fw value to %
 for (int i = 0; i < Ni; ++i){
 Fwp[i] = Fpmin*100/Fw[i];
 }
 //Export data for diagram drawing
 opt_pareto.add(Fwp);//Optimal variant value in %
 opt_pareto.add(Nopt);//Position of optimal variant in array

 return Nopt; //optimal variant position in input array
}

After selection of the best variant is finished, we are
making last motor calculation with got optimal parameters
D, Da and L that are associated with the optimal variant
position in input data set.

Transactions on Electrical Engineering, Vol. 2 (2013), No. 2 58

III. CONCLUSIONS

Let us analyze the obtained results and make the
conclusions.

1) In the CP algorithm with the varied variables

range ± 1 % from a base size (15 combinations),
the calculation time was 14 sec. At the range ± 10
% (1200 combinations) the calculation time grew
to 12 min, that is fully acceptable. At the range of
varying ± 20 % (3976 combinations) the
calculation time already approached to 48 min.
For the number of the varied variables changed
up to 4 and to accept the range of their varying
± 20 % relatively from a base value, then we get
about 1,5 million combinations and 8 hours of
calculation. Thus it is needed up to 1,5 GB of
computer RAM.

2) A further increase of varied variables number
does not make sense, as a memory consumption
sharply increases and resources of the personal
computer are not enough for treatment of
enormous number of variables. The preliminary
estimation of the calculation time is a few days of
optimization on a modern computer.

3) Thus, the CP algorithm is expedient at a small
number of the varied parameters (2 - 3) and with
the range of their rejection relatively to base value
± (10-20) %.

4) On the other hand, the CP algorithm in
comparison, for example, to a genetic algorithm
[8], allows executing of multi-criterion
optimization, that is his undoubted advantage . In
addition, the CP always gives the unique, i.e. only
the best variant among existing ones.

The designer decides what algorithm to choose. If
importance of an optimal result reception outweighs
expenses on its obtaining , then one often ignores the
calculation time, and it is possible to apply a difficult
optimization algorithm.

When it is needed to produce approximate calculations
in the maximum compressed terms, and quality of the
obtained results it is in a permissible error range, then it
is possible to use fast-acting, but less precision algorithms.

REFERENCES
[1] I.P. Norenkov. Automated design. М.: Informatics in an educational

university, 2000. - 188 p.
[2] G.V. Reklaitis, A. Ravindran, K.M. Ragsdell. Engineering

optimization. Methods and applications, part 1. Aerospace and
mechanical university of Arizona.- JW&So, 1983. – 351p.

[3] N.K. Vereshchagin, A. Shen. Lectures on mathematical logic and
theory of algorithms. Beginning of sets theory. MCNMO, 2008. –
198p.

[4] Three-phase induction machine. Ansoft Maxwell Field Simulator
V12 – Training Manual, 2009. – 59 p.

[5] Ansoft Maxwell 2D - Electromagnetic and Electromechanical
Analysis: user’s guide. Ansoft corporation, 2009. – 334 p.

[6] Ansoft Maxwell 3D - Electromagnetic and Electromechanical
Analysis: user’s guide. Ansoft corporation, 2009. – 871 p.

[7] N. Zablodskiy, V. Pliugin, K. Buhr. CAD of electromechanic
devices: educational tutorial, part 2, 2013. - 330 p. (will be printed).

[8] N. Zablodskiy, V. Pliugin, K. Buhr, J. Bauer. Induction motor
design with the using of genetic optimization algorithms (will be
printed).

REFERENCES ON RUSSIAN:
[1] И.П. Норенков. Автоматизированное проектирование. М.:

Информатика в учебном университете, 2000. – 188 с.

[3] Верещагин Н.К., Шень А. Лекции по математической логике и
теории алгоритмов. Начала теории множеств. МЦНМО, 2008. –
198с.

