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Abstract: The variance of Shannon information related to the random variableX, which is called varentropy,
is a measurement that indicates, how the information content of X is scattered around its entropy and explains
its various applications in information theory, computer sciences, and statistics. In this paper, we introduce a
new generalized varentropy based on the Tsallis entropy and also obtain some results and bounds for it. We
compare the varentropy with the Tsallis varentropy. Moreover, we explain the Tsallis varentropy of the order
statistics and analyse this concept in residual (past) lifetime distributions and then introduce two new classes
of distributions by them.
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1. Introduction

Nowadays, the use of information measures has an essential role in analyzing statistical issues
and is greatly considered by the statisticians. Shannon [21] introduced a measure of uncertainty for
the discrete random variable X with probability mass function P (x) to form into E(− log P (X)),
which is a basis for the information theory. The generalization of Shannon’s measure for continuous
random variable X with density function f(x) and support S, which is named a differential entropy,
reads as follows:

h(X) = −
∫

S
f(x) log f(x)dx. (1.1)

This measure is the expectation of random variable (− log f(X)) and has recently attracted the
attention of researchers.

In computer sciences, the variance of (− log p(X)) of the discrete random variable X is called
the varentropy. This measure is an essential factor of the optimal code length calculation in the
data compression process, dispersion of sources, and so on. To conduct further studies, we refer
the reader to [3, 7, 15]. Since the varentropy was defined for discrete random variables, in this
paper, we focus on the varentropy for continuous random variables, and we discuss it under the
same name.

Let X be a continuous random variable with density function f . Then the varentropy of X is
defined as

V E(X) = Var (− log f(X)) = E[− log f(X) − h(X)]2, (1.2)

where V E(X) is called the varentropy of X. Unfortunately, there are not many studies on the
varentropy in the field of statistics. Song [22] introduced V E (of course not with that name), as
an intrinsic measure of distributions shape, which can be an excellent alternative for the kurtosis
measure. When the traditional kurtosis measure is not measurable, as Student’s t distributions
with degrees of freedom less than four, Cauchy and Pareto distributions, V E is a measure that can
be used to compare the heavy-tailed distributions instead of kurtosis measure.
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Liu [16] studied V E under the concept of information volatility and introduced some mathe-
matical properties of it. He calculated V E for some distributions and showed that V E of gamma,
beta (with parameters (α,α) when α < 2 −

√
2 ) and normal distributions are more than less

than, and equal to 1/2 respectively, and that V E of the uniform distributions is zero. Therefore
V E can separate the gamma, normal, beta and uniform distributions. He showed that V E of the
generalized Gaussian distribution is exactly the reciprocal of its shape parameter, which gives us
a new method to estimate this parameter. Zografos [29] found an empirical estimator for Song’s
measure in the elliptic multivariate distributions. Enomoto et al. [13] considered the multivariate
normality test based on the sample measure of multivariate kurtosis defined by Song [22]. Afhami
et al. [2] introduced the goodness of fit test based on entropy and varentropy of k-record values for
the generalized Pareto distribution and more recently, in addition to the above, the application of
the varentropy in reliability theory has been conducted in [10].

A generalization of the Shannon entropy is the Tsallis entropy (see [23]). Let X be a continuous
random variable with density function f . Then the Tsallis entropy of order α for X is defined as

IT (X,α) =
1

(1 − α)
(

∫

s
fα(x)dx− 1), α > 0, α 6= 1, (1.3)

and if α→ 1, then the Tsallis entropy is reduced to (1.1). The Tsallis entropy has many applications
in physics, statistical mechanics and image processing. The properties of the Tsallis entropy have
been investigated by several authors, see papers [17, 24, 25, 28].

On the other hand, the concentration of measure principle is one of the cornerstones in geometric
functional analysis and probability theory, and it is widely used in many other areas. Hence
the concentration property of information content (− log f(X)) is one of the central interests in
information theory, and it has great relevance with various other areas such as probability theory,
and the varentropy is the measure of this concentration. Suppose that X and Y are two random
variables with the same Shannon entropy; for example, the Shannon entropy is zero in both standard
uniform and the exponential (with the parameter e) distributions. Can we say that the uncertainty
criterion is the same in both random variables? In our opinion, our confidence in the measured
value depends on the degree of information dispersion around the entropy. Therefore, for random
variables with the less varentropy the uncertainty criteria are more appropriate. This concept is
valid for the measure of the Tsallis uncertainty information, and if two random variables have the
same Tsallis entropy, the Tsallis varentropy indicates which of these random variables has the more
appropriate criterion for Tsallis uncertainty.

The purpose of this paper is to generalize Shannon’s varentropy based on the Tsallis entropy,
and compare its properties with Shannon’s varentropy and extend it in the field of order statistics
and reliability theory.

This paper contains the following sections. The generalized varentropy which we call TV E is
introduced in Section 2. We also obtain some of its properties and compare TV E with V E in this
section. In Section 3 we discuss the Tsallis varentropy of the order statistics. In Section 4, we study
TV E in lifetime researches and achieve some bounds for it by hazard rate and reversed hazard rate
functions. Moreover, we examine the effects of system’s age on TV E. Finally, in Section 5, we
introduce two new classes of distributions by residual and past Tsallis varentropy.

2. Introduction of Tsallis Varentropy

Let X be a continuous random variable with density function f . Then Tsallis entropy of order α
for X is the expectation of a random variable (fα(X) − 1)/(1 − α) and TV E is the variance of it.
Following what was said above, we define TV E and introduce some properties of this measure.
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Definition 1. For the continuous random variable X with density function f , the Tsallis var-
entropy of order α for X is defined as follows:

TV E(X,α) =
1

(1 − α)2
Var (fα−1(X)) α > 0 α 6= 1

=
1

(1 − α)2

(
∫

f2α−1(x)dx−
(

∫

fα(x)dx
)2

)

, (2.1)

where TV E(X,α) is the Tsallis varentropy of order α for X. It is clear that when α → 1, (2.1)
implies (1.2).

For example, if X ∼ Exp (θ) with density function f(x) = θe−θx (x > 0, θ > 0), then

TEV (X,α) =
1

(1 − α)2

(

θ2α−2

2α− 1
−

(θα−1

α

)2
)

=
θ2α−2

α2(2α − 1)
, α >

1

2
. (2.2)

We see that lim
α→1

TV E(X,α) = 1 and that TV E(X, 1) = 1 is the Shannon varentropy of the

exponential distribution.

Remark 1. If X ∼ Exp (θ) and 0 < α ≤ 1/2, then TV E(X,α) diverges to infinity.

Theorem 1. X has a uniform distribution if and only if TV E(X,α) = 0 for all α > 0.

P r o o f. If X ∼ U(a, b) with density function f(x) = 1/(b− a) a < x < b, then

TEV (X,α) =
1

(1 − α)2
[

(b− a)2−2α −
(

(b− a)1−α)2] = 0.

On the other hand, if TV E(X,α) = 0, then Var (fα−1(X)) = 0, so f(X) is almost surely constant.
Suppose that f(X) = c (if a < X < b) is the support of X, then

∫ b

a
f(x)dx =

∫ b

a
cdx and c =

1

b− a
.

�

Liu [16] showed that if X is a continuous random variable with symmetric density function f
with respect to x = a, then V E(|X|) = V E(X).

Proposition 1. Suppose that X is a continuous random variable with a symmetric density
function f with respect to x = a. Then

TV E(|X|, α) = 22α−2TV E(X,α).

P r o o f. Without loss of generality suppose a = 0. In this case the density function g(x) of
the random variable |X| is g(x) = f(−x) + f(x) = 2f(x), and hence

TV E(|X|, α) =
1

(1 − α)2

(
∫ ∞

0
(2f(x))2α−1dx−

[

∫ ∞

0
(2f(x))αdx

]2
)

=
22α−2

(1 − α)2

(
∫ ∞

−∞
f2α−1(x)dx−

[

∫ ∞

−∞
fα(x)dx

]2
)

= 22α−2TV E(X,α).

�
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For example, if X has the Laplace distribution with density function f(x) =
1

2β
e−1/β·|x|, then

we can show that

TV E(X,α) =
(2β)2−2α

α2(2α − 1)
, α >

1

2
.

On the other hand if X ∼ Laplace (0, β), then |X| ∼ Exp (1/β). Therefore by using (2.2), we have

TV E(|X|, α) =
(1/β)2α−2

α2(2α− 1)
, α >

1

2
.

It implies that TV E(|X|, α) = 22α−2TV E(X,α). It is obvious that if α → 1, then V E(|X|) =
V E(X).

One of the most important properties of V E is the following:
The varentropy is a scale and location invariant measure so V E(aX + b) = V E(X) for all

a, b ∈ R. This property implies that in the location and scale family of distributions, V E is
independent of the distribution parameters. Therefore the empirical estimation of V E can separate
the distribution of this family. Now the question arises, is TV E an affine invariant measure? To
answer this question, let us look at the following theorem and at the next example.

Theorem 2. Suppose that X is a continuous random variable and that f(x) is its density
function. Then

TV E(aX + b, α) = a2−2αTV E(X,α).

P r o o f. If Y = g(X) and g(X) is a strictly monotone function of X, then

fY (y) =
f(g−1(y))

g′(g−1(y))
.

It is easy to see that

TV E(g(X), α) =
1

(1 − α)2
Var

(( f(X)

g′(X)

)α−1)

.

Therefore if g(X) = aX + b, then TV E(aX + b, α) = a2−2αTV E(X,α). �

Theorem 2 implies that in the location and scale family of distributions, the Tsallis varentropy
is independent of the location parameter but it depends on the scale parameter.

For example, if X ∼ N(µ, σ2), then TV E of X is

TEV (X,α) = (2πσ2)
1−α × 1/

√
2α− 1 − 1/α

(1 − α)2
, α >

1

2
.

We can see that if α → 1, TV E(X, 1) = V E(X) = 1/2, and TV E is reduced to V E of normal
distribution, then we can see that TV E is dependent on the scale parameter σ2.

Definition 2. The Tsallis varentropy of order α for a random vector X = (X1,X2, ....,Xn)
with joint density function f(x), is defined as follows:

TV E(X, α) =
1

(1 − α)2

(
∫

Rn

f2α−1(x)dx−
(

∫

Rn

fα(x)dx
)2

)

, α > 0, α 6= 1.

Theorem 3. If X is an n-dimensional random variable, then for any invertible n × n matrix
A and any n × 1 vector B we have TV E(AX + B,α) = |A|2−2αTV E(X, α), where |A| is the
determinant of the matrix A.
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Table 1. Comparison V E(X) and TV E(X,α) (here ψ̇(·), Γ(·) and B(a, b) are trigamma, gamma and beta
functions respectively).

Distribution Density function V E(X) TV E(X,α)

uniform (a, b) f(x) =
1

b− a
0 0

exponential
f(x) = θe−θx,

θ > 0, x > 0
1

θ2α−2

α2(2α− 1)
, α >

1

2

Laplace
f(x) = e−|x−µ|/σ/2σ,

σ > 0
1

(2σ)2−2α

α2(2α− 1)
, α >

1

2

Pareto
f(x) = θβθ/xθ+1,

β > 0, θ > 0, x > β
(θ + 1)2 × 1

θ2
β2−2αθ2α

(1−α)2
{

1

θ(θ+1)(2α−1)−θ−
1

[α(θ+1)−1]2

}

normal f(x) =
e−(x−µ)2/(2σ2)

√
2πσ2

1

2
(1−α)−2(2πσ2)1−α

(

1√
2α−1

− 1

α

)

, α >
1

2

gamma
f(x) =

λθ

Γ(θ)
xθ−1e−λx,

θ > 0, λ > 0, x > 0
(θ−1)2ψ̇(θ)−θ+2

(1−α)−2

(

λθ

Γ(θ)

)2α−1{
Γ((2α−1)(θ−1)+1)

[(2α−1)λ](2α−1)(θ−1)+1

−λ
θ[Γ(α(θ−1)+1)]2

Γ(θ)(αλ)2α(θ−1)+2

}

, α>
1

2

Weibull
f(x) = θλθxθ−1e−(λx)θ ,

θ > 0, λ > 0, x > 0
ψ̇(1)(1−θ−1)2 + 2θ−1−1

(θλ)2α−2

(1−α)2
{

Γ(θ−1(2α−1)(θ−1)+θ−1)

(2α−1)[(2α−1)(θ−1)θ−1+θ−1]

−Γ2(θ−1α(θ−1)+θ−1)

α[2θ−1α(θ−1)+2θ−1]

}

beta
f(x) =

xm−1(1− x)n−1

B(m,n)
,

0 < x < 1, m > 0, n > 0
(m−1)2ψ̇(m) + (n−1)2ψ̇(n)

B(m,n)1−2α

(1−α)2
{

B
(

(2α−1)(m−1)+1, (2α−1)(n−1)+1
)

−B−1(m,n)B2
(

α(m− 1)+1, α(n−1)+1
)

}

Rayleigh
f(x) =

x

σ2
e−x2/(2σ2),

x > 0, σ > 0

1

4
ψ̇(1)

2α−1σ2−2α

(1− α)2

{

Γ(α)

(2α− 1)α
− Γ2((α + 1)/2)

αα+1

}

P r o o f. The proof is similar to Theorem 2 in the n-dimensional spaces. �

Remark 2. Theorems 2 and 3 indicate that TV E is a location-invariant measure but is not the
scale-invariant, unless α→ 1.

Remark 3. If X and Y are two random variables, X ∼ Exp (θ), Y ∼ N(µ, σ2) and Var (X) =
Var (Y ) then

TV E(X,α) = k(α) TV E(Y, α), α >
1

2
,

where

k(α) = (2π)α−1α+
√

2α − 1

α
√

2α− 1
,

and if α→ 1, then V E(X) = 2V E(Y ).

In Table 1, we compare the V E and TV E for some continuous distributions.

Theorem 4. Let X1,X2, . . . Xn be independent random variables with joint density func-
tion f(x). Then
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TV E(X1,X2, . . . ,Xn, α) =
1

(1 − α)2

n
∏

i=1

{

(1 − α)2TV E(Xi, α) + [(1 − α)IT (Xi, α) + 1]2
}

− 1

(1 − α)2

n
∏

i=1

{

[(1 − α)IT (Xi, α) + 1]2
}

,

(2.3)

and when α→ 1, (2.3) reduces to

TV E(X1,X2, . . . ,Xn, 1) = V E(X1,X2, . . . ,Xn) =

n
∑

i=1

V E(Xi).

P r o o f. If X1,X2, . . . ,Xn are independent random variables, we know that

Var
(

n
∏

i=1

Xi

)

=
n
∏

i=1

[

Var (Xi) + E2(Xi)
]

−
n
∏

i=1

E2(Xi). (2.4)

Since f(x1), ..., f(xn) are marginal density functions of f(x) and fα−1(X1), ..., fα−1(Xn) are inde-
pendent random variables, (2.4) implies that

TV E(X1,X2, ..Xn, α) =
1

(1 − α)2
Var

(

n
∏

i=1

fα−1(Xi)
)

=
1

(1 − α)2

n
∏

i=1

Var
(

fα−1(Xi) + E2(fα−1(Xi))
)

− 1

(1 − α)2

n
∏

i=1

E2(fα−1(Xi)).

Equation (1.3) indicates that E(fα−1(X)) = (1 − α)IT (X,α) + 1, and (2.1) implies

Var (fα−1(X)) = (1 − α)2TV E(X,α).

Therefore

TV E(X1,X2, . . . ,Xn, α) =
1

(1 − α)2

n
∏

i=1

{

(1 − α)2TV E(Xi, α) +
[

(1 − α)IT (Xi, α) + 1
]2}

− 1

(1 − α)2

n
∏

i=1

{

[(1 − α)IT (Xi, α) + 1]2
}

.

�

It is obvious that when α→ 1, by using L’hopital’s rule, we have

TV E(X1,X2, ...,Xn, 1) = V E(X1,X2, ...,Xn) =

n
∑

i=1

V E(Xi).

Corollary 1. If X and Y are two independent random variables with joint density func-
tion f(x, y) and marginal density functions fX(x) and fY (y), respectively, then

TV E((X,Y ), α) = (1 − α)2TV E(X,α)TV E(Y, α) + TV E(X,α)[(1 − α)IT (Y, α) + 1]2

+TV E(Y, α)[(1 − α)IT (X,α) + 1]2,
(2.5)

where IT (X,α) and IT (Y, α) are Tsallis entropies of X and Y respectively, and (2.5) implies that
TV E((X,Y ), 1) = V E(X,Y ) = V E(X) + V E(Y ).
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Corollary 2. By using (2.5), the following inequalities are valid:

(a) TV E((X,Y ), α) > (1 − α)2TV E(X,α)TV E(Y, α).

(b) TV E((X,Y ), α) > TV E(X,α)[(1 − α)IT (Y, α) + 1]2 + TV E(Y, α)[(1 − α)IT (X,α) + 1]2.

Corollary 3. If X1,X2, ...,Xn are iid random variables, then using Theorem 4 we have

TV E(X1,X2, . . . ,Xn, α) =
1

(1 − α)2
{

(1 − α)2TV E(X1, α) + [(1 − α)IT (X1, α) + 1]2
}n

− 1

(1 − α)2
{

[(1 − α)IT (X1, α) + 1]2
}n
.

Theorem 5. Let X and Y be two random variables with joint density function f(x, y) and
conditional density function f(x|y). If

E(f2α−2(X|Y )) ·E(f2α−2(Y )) ≥ [E(fα−1(X,Y ))]2, (2.6)

then

TV E((X,Y ), α) ≥ (1 − α)−2Cov (f2α−2(X|Y ), f2α−2(Y )), (2.7)

and the equality established when X and Y are independent.

P r o o f. The joint density of X and Y is f(x, y) = f(x|y) · f(y) therefore,

TV E((X,Y ), α) =
1

(1 − α)2
Var (fα−1(X|Y ) · fα−1(Y ))

=
1

(1 − α)2
{

E(f2α−2(X|Y ) · f2α−2(Y )) − [E(fα−1(X|Y ) · fα−1(Y ))]2
}

.

Using covariance definition we have

Cov (f2α−2(X|Y ), f2α−2(Y )) = E(f2α−2(X|Y ), f2α−2(Y )) − E(f2α−2(X|Y )) ·E(f2α−2(Y )),

therefore,

TV E((X,Y ), α) =
1

(1 − α)2
{Cov (f2α−2(X|Y ), f2α−2(Y )) + E(f2α−2(X|Y )) ·E(f2α−2(Y ))

−[E(fα−1(X,Y ))]2}.

If (2.6) holds, then (2.7) will be easily obtained. �

3. Tsallis varentropy of order α for order statistics

Suppose that X1,X2, ...,Xn are independent and identically distributed observations from den-
sity and cumulative function f and F , respectively. If we arrange of X1,X2, ...,Xn from the smallest
to the largest denoted as X1:n ≤ X2:n ≤ · · · ≤ Xn:n and fi:n denotes the density function of the ith
order statistic, then

fi:n(x) =
1

B(i, n− i+ 1)
[F (x)]i−1[1 − F (x)]n−if(x),
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where

B(a, b) =

∫ 1

0
xa−1(1 − x)b−1dx, a > 0, b > 0.

The order statistics have many applications in probability and statistics, as the characterization
of distributions, goodness-of-fit test, reliability engineering, and many other problems. For more
information, we refer the reader to [4, 8]. The order statistics also have been studied widely
in information theory in [5, 12, 18, 26, 27]. Furthermore, the stochastic order is also has many
applications in finance, risk theory, management science and biomathematics. For example, we
refer the reader to scholarly researches such as [1, 6, 9, 11, 14, 19, 20]. In this section, we introduce
the Tsallis varentropy of order α for the ith order statistic. This measure can be one of the
useful information measures for system designers. We know that one of the systems in reliability
engineering is an (n − i + 1)-out-of-n system, and the system is active, when at least (n − i + 1)
components are operating. Assume that X1,X2, ...,Xn denote the identical lifetime of the system
components. Then the ith order statistic indicates the lifetime of the systems. In special cases,
X1:n and Xn:n are the lifetime of the series and parallel systems, respectively. Therefore the Tsallis
entropy of the ith order statistic is a measure of the uncertainty of the lifetime system and the
Tsallis varentropy is the volatility of this information.

Definition 3. Let X1,X2, ...,Xn be a random sample from a continuous distribution with den-
sity function f . Let Xi:n denotes the ith order statistic. The Tsallis varentropy of ith order statistics
is defined as:

TV E(Xi:n, α) =
1

(1 − α)2
Var (fα−1(Xi:n)) = (1 − α)−2

{
∫

S
f2α−1
i:n (x)dx−

(

∫

S
fαi:n(x)dx

)2
}

,

where S is the support of Xi:n.

In the following theorem we introduce a method for calculating the Tsallis varentropy for ith order
statistic.

Theorem 6. Suppose that X is a continuous random variable with density function f and
cumulative distribution function F , and let Xi:n denote the ith order statistic. Then the Tsallis
varentropy of Xi:n can be expressed as:

TV E(Xi:n, α) = (1 − α)−2
[

Ai:n(α) − (Bi:n(α))2
]

, (3.1)

where

Ai:n(α) =
B((2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1)

B2α−1(i, n − i+ 1)
E
(

f2α−2(F−1(Ti))
)

, (3.2)

and

Bi:n(α) =
B(α(i − 1) + 1, α(n − i) + 1)

Bα(i, n − i+ 1)
E
(

fα−1(F−1(Zi))
)

, (3.3)

where Zi has the beta distribution with parameters α(i− 1) + 1 and α(n− i) + 1 and Ti has the beta
distribution with parameters (2α− 1)(i − 1) + 1 and (2α − 1)(n − i) + 1.

P r o o f is parallel to [1, Lemma 2.1], we can prove that
∫

s f
2α−1
i:n (x)dx and

∫

s f
α
i:n(x)dx are

equivalent (3.2) and (3.3) respectively. �

Corollary 4. The first and last Tsallis varentropy of order α are:

TV E(X1:n, α) = (1 − α)−2

{

n2α−1

(2α− 1)(n − 1) + 1
E
(

f2α−2(F−1(T1))
)

−
[ nα

α(n − 1) + 1
E
(

fα−1(F−1(Z1))
)

]2
}
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and

TV E(Xn:n, α) = (1 − α)−2

{

n2α−1

(2α− 1)(n − 1) + 1
E
(

f2α−2(F−1(Tn))
)

−
[ nα

α(n− 1) + 1
E
(

fα−1(F−1(Zn))
)

]2
}

.

In the following theorem we show that if X has a symmetric density function with respect to
x = a, then the Tsallis varentropy is symmetric with respect to i.

Theorem 7. Suppose that X is a continuous random variable with the symmetric density func-
tion with respect to x = a, then

TV E(Xi:n, α) = TV E(Xn−i+1:n, α).

P r o o f. If X has a symmetric density function with respect to x = a, then X + a
has a symmetric density with respect to x = 0. Using the properties of order statistics

Xi:n + a
d
= −(Xn−i+1:n + a), we have TV E(Xi:n + a, α) = TV E(−Xn−i+1:n − a, α). Using Theo-

rem 2, we have TV E(Xi:n, α) = TV E(Xn−i+1:n, α). �

Example 1. If X ∼ U(a, b) then

E
(

f2α−2(F−1(Ti))
)

=
1

(b− a)2α−2
and E

(

fα−1(F−1(Zi))
)

=
1

(b− a)α−1
.

Using (3.2) and (3.3) we have:

Ai:n(α) =
(b− a)2−2α

[

B((2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1)
]

B2α−1(i, n− i+ 1)

and

Bi:n(α) =
(b− a)1−α

[

B(α(i− 1) + 1, α(n − i) + 1)
]

Bα(i, n − i+ 1)
.

Finally using (3.1) we get

TV E(Xi:n, α) =
(b− a)2−2a

(1 − α)2

{

B
(

(2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1
)

B2α−1(i, n − i+ 1)

−
[

B
(

α(i− 1) + 1, α(n − i) + 1
)

Bα(i, n − i+ 1)

]2}

,

and also

TV E(X1:n, α) = TV E(Xn:n, α) =
(b− a)2−2α

(1 − α)2

{

n2α−1

(2α − 1)(n − 1) + 1
− n2α

(α(n − 1) + 1)2

}

.

Remark 4. If TV E(Xi:n, α) = TV E(Xn−i+1:n, α) and TV E(Xi:n, α) is decreasing with respect
to i for i ≤ (n+ 1)/2(n/2) when n is odd(even), then TV E(Xi:n, α) will be increasing with respect
to i for i ≥ (n+ 1)/2(n/2 + 1). Therefore the median (both random variables in the middle) of
order statistics has a minimum Tsallis varentropy.
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Figure 1. TV E(Xi:n, 2) versus i for the standard uniform distribution.

Figure 1 shows the Tsallis varentropy of ith order statistics for the uniform distribution and it
is symmetric with respect to i.

Example 2. If X ∼ Exp (θ) according to Theorem 6 we have

E(f2α−2(F−1(Ti))) =
θ2α−2B

(

(2α− 1)(i − 1) + 1, (2α − 1)(n − i+ 1)
)

B
(

(2α− 1)(i − 1) + 1, (2α − 1)(n − i) + 1
) ,

E(fα−1(F−1(Zi))) =
θα−1B

(

α(i− 1) + 1, α(n − i+ 1)
)

B
(

α(i − 1) + 1, α(n − i) + 1
) ,

and

Ai:n(α) =
θ2α−2B

(

(2α − 1)(i − 1) + 1, (2α − 1)(n − i+ 1)
)

B2α−1(i, n − i+ 1)
,

Bi:n(α) =
θα−1B

(

α(i− 1) + 1, α(n − i+ 1)
)

Bα(i, n − i+ 1)
,

finally

TV E(Xi:n, α) =
θ2α−2

(1 − α)2

{

B
(

(2α − 1)(i− 1) + 1, (2α − 1)(n − i+ 1)
)

B2α−1(i, n − i+ 1)

−
[

B
(

α(i− 1) + 1, α(n − i+ 1)
)

Bα(i, n − i+ 1)

]2}

.

Figures 2a–2c show the Tsallis varentropy of ith order statistics for the exponential distribution
for θ = 2 and some selected values for α. When α→ 1, the symmetric property is observed.

4. The Tsallis varentropy in lifetime study

In reliability science, the hazard rate and reversed hazard rate functions are essential functions
that can help engineers to analyze the system’s disability. If f and F̄ are density and survival
function, respectively, the hazard rate and reversed hazard functions of X are r(x) = f(x)/F̄ (x)
and µ(x) = f(x)/F (x), respectively. We know that if a lifetime distribution has an increasing
(decreasing) hazard rate, then it is called the IFR(DFR) distribution, and if it has an increasing
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(a) TV E(Xi:n, 2) versus i. (b) TV E(Xi:n, 1.005) versus i. (c) TV E(Xi:n, 1.0005) versus i.

Figure 2. TV E(Xi:n, α) versus i for the exponential distribution and θ = 2 and n = 100.

(decreasing) reversed hazard rate, then it is called the IRFR(DRFR). In this part, we introduce
some bounds by hazard and reversed hazard rate functions for TV E and study them in residual
(past) and double truncated lifetime distributions and also we examine the effect of system’s age
on them.

Theorem 8. Let X be a nonnegative continuous random variable and let r(x) be the hazard
rate function of it. Then

(a) TV E(X,α)=
1

(1 − α)2

{

Cov (r2α−2(X), F̄ 2α−2(X)) +
E(r2α−2(X))

2α− 1
− E2(rα−1(X))

α2

}

, (4.1)

(b) TV E(X,α)<(>)
1

(1 − α)2

{

Cov
(

r2α−2(X), F̄ 2α−2(X)
)

}

, if 0 < α <
1

2

(

α >
1

2

)

, (4.2)

(c) TV E(X,α)<(>)
1

(1 − α)2

{

E(r2α−2(X))

2α − 1
− E2(rα−1(X))

α2

}

, if F is IFR(DFR). (4.3)

P r o o f. It is obvious that

TV E(X,α) =
1

(1 − α)2
Var (rα−1(X)F̄α−1(X)).

On the other hand,

Var (XY ) = Cov (X2, Y 2) +E(X2)E(Y 2) − (E(X)E(Y ))2. (4.4)

Using (4.4), we have

TV E(X,α) =
1

(1 − α)2

{

Cov
(

r2α−2(X), F̄ 2α−2(X)
)

+ E(r2α−2(X)) ·E(F̄ 2α−2(X))

−
[

E(rα−1(X)) · E(F̄α−1(X))
]2
}

.

Since E(F̄ 2α−2(X)) = 1/(2α − 1) and E(F̄α−1(X)) = 1/α, (4.1) is easily obtained.

For 0 < α < 1/2, the inequality

E(r2α−2(X))

2α− 1
<
E2(rα−1(X))

α2

is established and the first inequality of (4.2) is proved.
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We know that E(r2α−2(X)) ≥ E2(rα−1(X)) and 1/(2α − 1) > 1/α2 for all α > 1/2. Hence

E(r2α−2(X))

2α− 1
>
E2(rα−1(X))

α2

and the second inequality of (4.2) is obtained. It is easy to see that if F has an IFR distribution,
then r(x) is an increasing function of x, and because F̄ is decreasing, the covariance is negative
and the first inequality of (4.3) holds. The second inequality is similarly obtained. �

Corollary 5. Let X be a nonnegative continuous random variable and let µ(x) be the reversed
hazard rate function of it, then

(a) TV E(X,α) =
1

(1 − α)2

{

Cov
(

µ2α−2(X), F 2α−2(X)
)

+
E(µ2α−2(X))

2α− 1
− E2(µα−1(X))

α2

}

,

(b) TV E(X,α) < (>)
1

(1 − α)2

{

Cov
(

µ2α−2(X), F 2α−2(X)
)

}

, if 0 < α <
1

2

(

α >
1

2

)

,

(c) TV E(X,α) > (<)
1

(1 − α)2

{

E(µ2α−2(X))

2α− 1
− E2(µα−1(X))

α2

}

, if F is IRFR(DRFR).

In the survival analysis and reliability engineering, we usually know the system’s age. Hence (2.1)
is not suitable in such a situation. The random variables {X − t|X ≥ t}, {t − X|X ≤ t} and
{X|t1 ≤ X ≤ t2} are indicative residual, past and double truncated (interval) lifetime of the
system. If f and F̄ are density function and survival function of X, respectively, then the residual,
past and interval lifetime density functions at the time t are as follows:

gR(x, t) =
f(x)

F̄ (t)
, x ≥ t,

gP (x, t) =
f(x)

F (t)
, x ≤ t,

gI(x, t1, t2) =
f(x)

F (t2) − F (t1)
, t1 ≤ x ≤ t2.

Also dynamic Tsallis entropy of X for the residual, past and double truncated lifetime random
variables are defined as

ITR
(X,α, t) =

1

1 − α

[

∫∞
t fα(x)dx

F̄α(t)
− 1

]

, α > 0, α 6= 1,

ITP
(X,α, t) =

1

1 − α

[

∫ t
0 f

α(x)dx

Fα(t)
− 1

]

, α > 0, α 6= 1,

ITI
(X,α, t1, t2) =

1

1 − α

[

∫ t2
t1
fα(x)dx

(F (t2) − F (t1))α
− 1

]

, α > 0, α 6= 1.

Definition 4. The residual, past and interval Tsallis Varentropy of nonnegative random vari-
ables {X − t|X ≥ t}, {t−X|X ≤ t} and {X| t1 ≤ X ≤ t2} are defined as

TV ER(X,α, t) =
1

(1 − α)2
Var

((f(X)

F̄ (t)

)α−1
|X ≥ t

)

=
F̄ 2−2α(t)

(1 − α)2
Var (fα−1(X)|X ≥ t), (4.5)

TV EP (X,α, t) =
1

(1 − α)2
Var

((f(X)

F (t)

)α−1
|X ≤ t

)

=
F 2−2α(t)

(1 − α)2
Var (fα−1(X)|X ≤ t), (4.6)

TV EI(X,α, t1, t2) =
1

(1 − α)2
Var

(( f(X)

F (t2) − F (t1)

)α−1
|t1 ≤ X ≤ t2

)

=
(F (t2) − F (t1))

2−2α

(1 − α)2
Var (fα−1(X)|t1 ≤ X ≤ t2).

(4.7)
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It is clear that when t→ 0 (t→ ∞), TV ER(X,α, t) (TV EP (X,α, t)) = TV E(X,α) and if t1 → 0,
t2 → ∞, then TV EI(X, t1, t2) = TV E(X,α). For example, if X has a Pareto distribution with
density function

f(x) =
θβθ

xθ+1
, x > β, β > 0, θ > 0, F̄ (t) =

βθ

tθ
,

then

TV ER(X,α, t) =
tθ(2α−2)θ2α−2

(1 − α)2
Var (X(θ+1)(1−α) |X ≥ t),

TV ER(X,α, t) =
t2−2αθ2α

(1 − α)2

{ −1

θ(θ + 1)(1 − 2α) + θ
+

1

[−α(θ + 1) + 1]2

}

.

If α → 1, then the Tsallis residual varentropy reduces to the residual varentropy of Pareto
distribution. It is (θ + 1)2/θ2 for all t > 0, and that is independent of the age of systems, but the
Tsallis residual varentropy is not.

Theorem 9. X has a uniform distribution if and only if TV ER(X,α, t) = 0, TV EP (X,α, t) =
0, or TV EI(X, t1, t2) = 0.

P r o o f. If X ∼ U(a, b), then

TV ER(X,α, t) =
F̄ 2−2α(t)

(1 − α)2
Var ((b− a)1−α|X ≥ t) = 0.

On the other hand if TV ER(X,α, t) = 0, then

F̄ 2−2α(t)

(1 − α)2
Var (f(X)α−1|X ≥ t) = 0

and f(X) is almost surely constant. Similar to Theorem 1, X has the uniform distribution. For
the other two cases, the proof is the same. �

Proposition 2. If X has an exponential distribution, then the Tsallis residual varentropy is
independent of lifetime of systems.

P r o o f. In the exponential case, we know

gR(x, t) =
f(x+ t)

F̄ (t)
= θe−θx, x > 0.

Therefore the residual lifetime distribution is independent of t and gR(x, t) = f(x) and
TV ER(X,α, t) = TV E(X,α). �

We can introduce two new classes of distributions using the following definition.

Definition 5. We say that F̄ has an increasing (decreasing) Tsallis residual varentropy
ITRV E(DTRV E) if TV ER(X,α, t) is an increasing (decreasing) function of t, and F has an
increasing (decreasing) Tsallis past varentropy ITPV E(DTPV E) if TV EP (X,α, t) is an increas-
ing (decreasing) function of t for all t ≥ 0.

Theorem 10. F̄ (F ) has DTRV E(ITPV E) in t ≥ 0 if TV ER(X,α, t)(TV EP (X,α, t)) <∞,
ITR

(X,α, t)(ITP
(X,α, t)) <∞, and 0 < α ≤ 1/2.
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P r o o f. Using the differentiation of (4.5) and (4.6) with respect to t, we have

(1 − α)2TV E′
R(X,α, t) = r(t)

{

(2α − 1)(1 − α)2TV ER(X,α, t)

−[(1 − α)ITR
(X,α, t) + 1 − rα−1(t)]2

}

,
(4.8)

(1 − α)2TV E′
P (X,α, t) = µ(t)

{

(1 − 2α)(1 − α)2TV EP (X,α, t)

+[µα−1(t) − (1 − α)ITP
(X,α, t) − 1]2

}

,
(4.9)

where ITR
(X,α, t) and ITP

(X,α, t) are the Tsallis residual and past entropy of X respec-
tively. We see that if 0 < α ≤ 1/2 then TV E′

R(X,α, t) (TV E′
P (X,α, t)) ≤ (≥) 0 and F̄ (F ) has

DTRV E(ITPV E). �

Theorem 11. F̄ has ITRV E(DTRV E) in t ≥ 0 if TV ER(X,α, t) < ∞, ITR
(X,α, t) < ∞,

and for all α > 1/2,

(2α− 1)(1 − α)2TV ER(X,α, t) ≥ (≤)
[

(1 − α)ITR
(X,α, t) + 1 − rα−1(t)

]2
.

Also F has DTPV E(ITPV E) in t ≥ 0 if TV EP (X,α, t) < ∞, ITP
(X,α, t) < ∞, and for all

α > 1/2,

|1 − 2α|(1 − α)2TV EP (X,α, t) ≥ (≤)
[

µα−1(t) − (1 − α)ITP
(X,α, t) − 1

]2
. (4.10)

P r o o f. In Definition 5 F̄ has ITRV E(DTRV E) in t if TV E
′

R(X,α, t) ≥ (≤) 0. By us-
ing (4.8), the proof is completed. Also (4.10) can be similarly proved by using (4.9). �

Corollary 6. If F̄ has ITRV E(DTRV E) in t ≥ 0, then for all α > 1/2

TV E(X,α) ≥ (≤)
[(1 − α)IT (X,α) + 1 − fα−1(0)]2

(2α − 1)(1 − α)2
. (4.11)

And if F has DTPV E(ITPV E) in t ≥ 0, then for all α > 1/2

TV E(X,α) ≥ (≤)
[fα−1(∞) − (1 − α)IT (X,α) − 1]2

|1 − 2α|(1 − α)2
. (4.12)

Therefore (4.11) and (4.12) are lower (upper) bound for Tsallis varentropy for all α > 1/2.

Corollary 7. Let F̄ be both ITRV E(DTRV E), so TV E
′

R(X,α, t) = 0. Then

(2α − 1)(1 − α)2TV ER(X,α, t) = [(1 − α)ITR
(X,α, t) + 1 − rα−1(t)]2, α > 1/2,

and

TV E(X,α) =
[(1 − α)IT (X,α) + 1 − fα−1(0)]2

(2α− 1)(1 − α)2
, α >

1

2
, (4.13)

and if F is both ITPV E(DTPV E), then TV E
′

P (X,α, t) = 0 and we have

|1 − 2α|(1 − α)2TV EP (X,α, t) = [µα−1(t) − (1 − α)ITP
(X,α, t) − 1]2,

therefore

TV E(X,α) =
[fα−1(∞) − (1 − α)IT (X,α) − 1]2

|1 − 2α|(1 − α)2
, α >

1

2
. (4.14)

Therefore (4.13) and (4.14) introduce the Tsallis varentropy when system’s age is ineffective on it.
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5. Conclusion

In this paper, we introduced the generalized varentropy of order α for continuous random
variables based on the Tsallis entropy. We showed that unlike the varentropy, which is a location
and scale-invariant measure, the Tsallis varentropy is invariant to the location transformation but
is not invariant to scale translate, unless when α → 1. After presenting some theorems of the
properties of the Tsallis varentropy, we investigated them in the order statistics, which can be
useful for the system designers in the lifetime information for the (n− i+1)-out-of-n systems. Also
we studied them for the lifetime distributions and obtained some bounds for them by using the
hazard and reversed hazard rate functions. Then we studied the age of systems regarding residual
lifetime distributions and showed that in the uniform and exponential distributions, Tsallis residual
varentropy is independent of the age of systems. We introduced two new classes of distributions
by using the residual and past Tsallis varentropy, and we described some its properties.
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