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ABSTRACT

In order to overcome the drawbacks associated with conventional bulk lithium niobate photonic,

thin-film lithium-niobate-on-silicon has been pursued recently. This work presents contributions

made to electro-, and nonlinear-optic applications of this technology. For electrooptic applications,

detailed modeling and design guidelines of optical and radio-frequency parameters of ultracom-

pact modulators are developed and their accuracy in predicting the high-speed performance of

such devices have been verified by comparison with experimental results. Novel design techniques

and pathways for ultrahigh-speed (sub-terahertz) operation of such modulators, achieving up to

400 GHz modulation bandwidth, are also presented. For optical interconnect applications, novel

structures for ultralow-power consumption modulators are designed and fabricated. Coherent mod-

ulation schemes, such as quadrature phase shift keying, is also pursued on the same thin-film plat-

form for advanced optical communication systems. For nonlinear-optic applications, fabrication

integrability of thin-film lithium niobate and chalcogenide glass waveguides on a single silicon

chip for future directions, such as on-chip self-referenced optical frequency comb generation, is

experimentally demonstrated. That is a pathway for both second- and third-order optical nonlin-

earity occurring on lithium niobate and chalcogenide, respectively, is designed and presented. An

innovative and robust foundry-compatible back-end-of-line integration method is also proposed,

in order to integrate thin-film lithium niobate devices with silicon or silicon-nitride photonic cir-

cuitry. Overall, this work extends the capabilities of the thin-film lithium niobate technology for

novel electro- and nonlinear-optic applications. Finally, extensions of the aforementioned results

suitable for future work are discussed.
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CHAPTER 1: INTRODUCTION

1.1 Background

Lithium niobate (LiNbO3, LN) is one of the most widely used materials in integrated photonics for

electrooptic (EO) and nonlinear optical applications. Transparency in a broad range of the elec-

tromagnetic spectrum (0.4-5 µm), strong second-order optical nonlinearity, as well as a large EO

coefficient make LN an ideal material for integration with silicon (Si) photonics for applications

such as secon-harmonic generation (SHG), and optical modulation. A summary of unique material

properties of LN and their corresponding applications are presented in Fig. 1.1. A short description

on EO and optical nonlinearity theories are given in Sections 1.4 and 1.9, respectively.

Traditionally, LN waveguides are fabricated using dopant diffusion or proton-exchange

processes. The resultant low index-contrast waveguides (< 0.1) yield weak optical confinement.

Therefore, conventional LN devices are bulky in general and exhibit low efficiency in terms of

power consumption and device footprint, hence hampering the desired large-scale integration ca-

pability. As an example, high bending loss, long MZ electrode lengths, and low power efficiency

due to large half-wave voltage-length product (Vπ.L), render the conventional LN electrooptic

modulators (EOMs) unattractive for large-scale integration demands of advanced optical networks

[2]–[5].

1.2 Heterogeneous Thin-Film Lithium Niobate

Thin-film approaches have been alternatively pursued to overcome these drawbacks of conven-

tional LN waveguides and achieve ultracompact (submicron-scale) devices. Particularly, exploiting

heterogeneous integration techniques, based on bonding of thin films of LN (TFLN) on oxidized

Si substrates (as shown in Fig. 1.2), led to the emergence of ultracompact EOMs on Si substrates

[6]. This technology is potentially compatible with Si photonics due to the choice of Si substrate.
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Figure 1.1: Summary of unique material propeties of LN and their corresponding applications [1].
This dissertaion focuses on the main photonic applications of LN through exploiting its strong EO
effect and large second-order optical nonlinearity.

Various methods such as rib-loading the TFLN with a refractive-index-matched material

(e. g. silicon nitride, SiN), direct dry etching, and wafer-, or individual die-bonding methods have

been utilized in order to achieve ultracompact LN waveguides [1]. The optical mode size in the

resultant waveguides is typically reduced by about two orders of magnitude compared to their bulk

counterparts (see Fig. 1.3). A comprehensive review of various methods and recent strides made
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towards this realization are given in Chapter 2.

(a) (b)

(c) (d)

LiNbO3 SiSiO2Defected region
Figure 1.2: Fabrication steps of TFLN on Si wafers [1, 6]. (a) Initial bulk LN wafer; (b) Ion
implantation (the red-dashedline shows the defected region at the desired depth of final thin-film
thickness); (c) Bonding onto a Si handling wafer (or other wafers such as LN or quartz) with a
low-index insulating layer (typically SiO2); (d) Thermal cycling process to exfoliate the thin film
from the LN crystal at the defected layer and the final TFLN on Si product. The remaining bulk
LN crystal can be recycled. For simplicity, other steps such as thermal annealing for preserving
the material properties of LN, and mechanical polishing for smoothening of the surface roughness
are not depicted here.
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Traditional Waveguides Thin-Film Waveguides

Thin-Film Lithium Niobate on Silicon

LiNbO3

SiO2 Insulating Layer

Si Substrate

Bulk Lithium Niobate

Figure 1.3: Comparison between (a) Conventional; (b) Compact, LN waveguide [1]. The waveg-
uides cross-sections are drawn to scale to emphasize the significant reduction in optical mode size.
This about two orders of magnitude reduction facilitates large-scale integration of photonic inte-
grated circuits, as well as boosted performance for LN devices, as discussed in Chapter 2.

1.3 Electrooptic Modulators

High-performance optical modulation is an essential part of modern communication systems. His-

torically, commercial optical modulators have been made on materials with strong EO effect (e.g.,

LN) or electroabsorption (EA) effect (particularly, III-V compound semiconductors). More re-

cently, Si optical modulators based on free-carrier plasma dispersion effect (FCA) are being widely

pursued, as they benefit from compatibility with standard Si foundry processing. Another recent

trend is heterogeneous integration of compound semiconductors as well as silicon germanium

(SiGe), on silicon substrates that utilize EA effects such as Franz-Keldysh in bulk semiconductors

or quantum-confined Stark effect in quantum-well structures. Several modulators operating based

on FCA or EA have been demonstrated with high data transmission rates up to 50 Gb/s. However,

they typically suffer from low extinction ratios [7].

On the contrary, modulators relying on linear EO or Pockel’s effect have demonstrated

modulation depth of 20 dB or more as well as up to 100 GHz modulation bandwidth (BW) [1].

With such performance, LN has been well established as the standard material of choice for EO
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modulators in applications where high BW and extinction ratio are required, e.g., in long-haul

communications. Transparency in a broad range of the electromagnetic spectrum (0.4-5 µm), and

a large EO coefficient (31 pm/V) are among other reasons which make LN a suitable option for

EO modulators [7]. A short description on EO effect is given in Section 1.4.

1.4 Pockel’s Effect

The change in the refractive index (n) of a material by applying an electric field (E) is called the

electrooptic (EO) effect. This change is the result of the displacement in the lattice structure. The

dependence of n on E can be expressed as follows [8, 9]:

1/n2 = 1/n0
2 + rE + hE2 + ..., (1.1)

where n0 is the refractive index of the material before applyingE, and r and h are the linear and the

quadratic EO coefficients, respectively. In materials with centrosymmetric lattice structure, such

as silicon, r is not available and the lowest-order change in n depends quadratically on E. This

effect is known as Kerr electrooptic effect. On the other hand, materials which lack centrosymetry,

such as LN, posses the linear EO effect, called Pockel’s effect, i.e., the refractive index change

(∆n) is linearly proportional to E. ∆n can be written as [8, 9]:

∆(1/n2) = ΣrE =



r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63




Ex

Ey

Ez

 . (1.2)

For LN, the largest coefficient is r33 ' 31 pm/V [8]. Hence, as explained later in Chapters
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2 – 4, and 6, the electric field is applied along the z direction (Ez) in order to utilize the largest EO

coefficient of LN.

1.5 Modeling of Ultracompact Electrooptic Modulators

By utilizing thin-film LN platform (see Fig. 1.2), we have reported high-speed TFLN LN EOMs

on Si with 3-dB BWs of 33 GHz and an extinction ratio of 18 dB [10]. Recently, TFLN MZ EOMs

with 3-dB BWs up to ∼100 GHz have been demonstrated [11]–[13]. With this stage of matu-

rity, accurate design of the ultracompact EOMs and reliable prediction of their high-speed perfor-

mance limits demanded an elaborate model. We have developed such a general transmission-line

model and verified its accuracy by comparing the simulated results with prior experimental data, as

shown in Fig. 1.4 [7]. Despite some early work in recognizing the effect of frequency-dependent

impedance mismatch in travelling-wave EO modulator, the commonly employed models in the

literature for conventional LN modulators do not consider this effect. In these models, impedance

matching is typically assumed between the MZ EO modulator’s transmission line characteristics

and the terminating resistive load at all frequencies [7].

Unlike conventional models, the developed model presented in this work, is capable of ac-

curately predicting the 3-dB BW of ultracompact LN EO modulators. By utilizing this model, and

with proper design of such compact EO modulators, the overall EO performance can be improved

in order to meet the requirements of advanced optical communication systems [7]. This has been

reported in details in Chapter 3.
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Figure 1.4: Modeling of RF and optical properties of ultracompact EOMs, as discussed in Chap-
ter 3 [7].

1.6 Ultrahigh-Bandwidth Electrooptic Modulators

Ultrahigh-speed modulators are of great interest for ever-increasing aggregate BW requirements of

optical communication systems. Due to increased complexity of the electronic and photonic sys-

tems, reduction in power consumption, manufacturing cost, device footprint, and overall packaged

size are also demanded for analog and digital applications. Hence, in Chapter 4, novel designs are

presented in order to attain ultrahigh-BW (up to 400 GHz) MZ EOMs, as depicted in Fig. 1.5 [14].

Radio-frequency (RF) and optical parameters of the devices have been studied, and design guide-

lines and optimization procedures are presented for such unprecedented 3-dB modulation BWs for

both rib-loaded and direct-etched thin-film LN EOMs. This work paves the path towards exploit-

ing the ultracompact devices in advanced integrated photonic circuits targeting futuristic optical
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communication applications, analog or digital, where subterahertz (sub-THz) BWs are desired.

Figure 1.5: Design and optimization of ultracompact EOMs for ultrahigh-BW (sub-THz applica-
tions) [14].
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1.7 Ultralow-Power Electrooptic Modulators

For applications such as optical interconnects, one of the the most critical requirements of densely-

integrated photonic circuits is to increase the power efficiency of EOMs. Hence, as discussed in

Chapter 6, a novel structure for TFLN MZ EOMs is designed and presented (see Fig. 1.6). As a

result, the switching voltage of TFLN EOMs is reduced by a factor of about five. Moreover, in this

design, the high-frequency operation of EOMs is not sacrificed and the devices can achieve up to

50 GHz while maintaining sub-volt switching voltages, rendering them compatible with on-chip

electronic drivers using CMOS technology. This can significantly pave the path towards utilization

of TFLN EOMs in applications where ultralow power consumption is required.

gap gap/3

LiNbO3 SiO2Au Electrodes Si Substrate

(a) (b) (c)

(d) (e)

2 cm

1 cm

100 µm 100 µm

Figure 1.6: (a) Typical structre for the TFLN MZ EOM; (b) Proposed design for the ultralow-
power EOMs. Lower gap between the electrodes can directly reduce the switching voltage of MZ
EOMs, as discussed in Chapter 6; (c) Image of the fabricated chip; Microimages for two types of
devices, designed for high-, and low-frequency operation, are given in (d), and (e), respectively.
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1.8 Coherent Modulation on Thin-Film Lithium Niobate Platform

The technology for TFLN EOMs has made significant advances recently. With achieving high

levels of maturity for this platform, the next step is to demonstrate higher modulation schemes,

such as Quadrature Phase-Shift Keying (QPSK), which is required for coherent communication in

advanced optical networks. In a QPSK modulator, transmission of phase information is utilized

instead of amplitude modulation. In advanced optical communication systems, this results in lower

transmitted optical power, and signal-to-noise ratio requirements [15].

While this has been previously reported for bulk LN [15] and all-Si modulators [16], to the

best of our knowledge, the work presented in Chapter 6 of this dissertation, is the first demonstra-

tion of such devices on TFLN platform.

200 µm

(a) (b)

1 cm

1.5 cm

Figure 1.7: (a) Image of the fabricated chip; (b) Microimage of the TFLN QPSK EOMs.
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1.9 Nonlinear Optical Properties

In light-matter interaction, the polarization response for an applied electric field is expressed by

the following [8]:

P (E) = ε0 χ E, (1.3)

where ε0 is the vacuum permittivity, and χ denotes optical susceptibility. However, for large

enough applied electric field or in nonlinear materials, polarization response is no longer linear

and can be written as [8]:

P (E) = ε0 [χ(1)E + χ(2)E2 + χ(3)E3 + ...], (1.4)

where χis are higher order optical susceptibilities. Materials with inversion symmetry in their

lattice structure, such as silicon, lack χ2. These higher-order susceptibilities can be exploited in

order to generate several nonlinear optical functionalities.

For example, second-harmonic generation (SHG), is a χ(2) process which is employed in

order to double the frequency of light, as depicted in Fig. 1.8(a). Another nonlinear functionality,

supercontinuum generation (SCG), utilizes χ(3) to generate a broad spectrum of light from a high

power narrow-band laser pulse, as depicted in Fig. 1.8(b).

1.10 Cascaded Integration of Different Optical Nonlinearities on a Single Chip

Several shortcomings are well-known for Si, when it comes to nonlinear optical applications. For

example, Si inherently lacks second-order optical susceptibility (χ(2)) due to its centrosymmetric

lattice structure. This restricts convenient utilization of standard Si photonics for applications such

as second-harmonic generation (SHG). Also, the presences of two-photon and free-carrier absorp-

tions (TPA and FCA), at the required high optical intensities, limit the exploitation of silicon’s
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large third-order optical susceptibility (χ(3)), at least at telecom wavelengths [17].

Figure 1.8: Examples of nonlinear optical processes: (a) Second-Harmonic generation (SHG); (b)
Supercontinuum generation (SCG).

There has been several works on integration of other nonlinear materials on Si. However,

the efforts have been primarily limited to integrating a ”single” material. The new frontline of

research should target monolithic integration of ”multiple” materials/devices for more advanced

functionalities on the same chip. For example, it is crucial to ”co-integrate” cascaded waveguides

with χ(2) and χ(3) properties in the context of frequency-stabilized optical comb generation. The

χ(3) waveguide provides octave-spanning SCG, while SHG in the χ(2) device is used for stabiliza-

tion by f -to-2f carrier-envelope offset (CEO) locking.

In Chapter 5, we present cascaded integration of ChG glass and thin-film LN waveguides

on the same Si chip. Carefully designed mode-converting tapers are employed for adiabatic optical

mode transition from ChG to hybrid LN waveguides and vice versa. The presented work is the first

effort in paving the path towards integration of two example materials, namely ChG (χ(3)) and LN

(χ(2)) waveguides, towards this goal [17].
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Figure 1.9: Demonstration of monolithic integration of waveguides with χ(2) and χ(3) optical non-
linearity on a single Si chip [17]. The inset is an SEM image of the fabricated waveguide’s cross-
section denoted by ‘b’ on the schematic.

The extension of this work including a designed and fabricated novel structure is presented

in Chapter 6.
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1.11 Foundry-Compatible Integration of Thin-Film Lithium Niobate with Silicon Photonic

In order to exploit benefits of the mature Si photonic industry, namely its standard low-cost foundry-

compatible processing and tightly-confined waveguides, a novel integration scheme is presented

in detail in Chapter 6 [18]. A short description can also be found in Chapter 2, Section 2.2.2 (see

Fig. 2.5). In this proposed scheme the thin films of LN are integrated at back end of the line. As

depicted in Fig. 1.10, the intermediate SiN layer serves as an adiabatic mode converter as well as a

rib, in order to efficiently transfer the optical mode from standard Si-on-insulator (SOI) waveguides

into LN region. The fabrication steps for this scheme are summarized in Fig. 1.11.

Silicon waveguides in 
a photonic integrated chip

Intermediate layer, e.g., Silicon nitride, as 
the intermediate layer as well as the rib-
loading material for lateral optical mode 

confinement in lithium niobate

Lithium niobate thin-film

Electrodes for realizing 
high-performance optical modulation

Figure 1.10: The schematic depicts the proposed scheme for back-end-of-line integration of TFLN
devices with Si photonics. Details are discussed in Chapter 6.
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Foundry processing Back end of line processing

Figure 1.11: Summary of the fabrication steps for the proposed scheme. Details are discussed in
Chapter 6.

1.12 Conclusion and Future Work

Finally, Chapter 6 concludes this dissertation by presenting the extensions of the demonstrated

results for future work, and some preliminary results.
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CHAPTER 2: THIN-FILM LITHIUM NIOBATE PHOTONICS

The contents of this chapter were submitted to Laser & Photonics Reviews on March 9, 2020 as a

review article under the 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim license under the

title: “Rejuvenating a Versatile Photonic Material: Thin-Film Lithium Niobate,” A. Honardoost,

K. Abdelsalam, and S. Fathpour.

Abstract– The excellent optical and unique material properties of lithium niobate have long

established it as a prevailing photonic material, especially for the long-haul telecom modulator and

wavelength-converter applications. However, conventional lithium niobate optical waveguides are

bulky, hence large-scale photonic circuit implementations are impeded and high power require-

ments are imposed. To address these shortcomings, thin-film lithium niobate technology has been

a topic of intense research in the last few years and a plethora of ultracompact devices with signif-

icantly superior performances than the conventional counterparts have been demonstrated. These

efforts have rejuvenated lithium niobate for novel electro-, nonlinear-, and quantum-optic applica-

tions. This Review summarizes the most recent advancements of this booming field and concludes

with a perspective for future directions.

2.1 Introduction

Lithium niobate (LiNbO3, LN) has been recognized as a versatile material for over half a cen-

tury, thanks to its strong ferroelectric, piezoelectric, electrooptic, thermooptic, acoustooptic, py-

roelectric and other properties [1]. Improvements in bulk crystal growth by the Czochralski tech-

nique has rendered LN a dominant choice for applications based on these properties, as summa-

rized in Figure 2.1(a). Particularly for optical applications, strong electrooptic (EO) coefficient

(r33 ≈ 31 pm/V), large nonlinearity (d33 = 30 pm/V), remarkable thermooptic birefringence and

a broad transparency range in the electromagnetic spectrum (0.4 – 5 µm) ought to be highlighted
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[2]–[5].

Indeed, LN has been the standard material of choice for the EO modulators used in long-

haul communication [6] and nonlinear wavelength-converters [7]. Several commercial off-the-

shelf modulator products are available with high performance, i.e., up to 50 GHz bandwidth (BW)

and large extinction ratios (ER) [8]–[10]. Also, ∼250 %W−1cm−2 normalized conversion effi-

ciency for second-harmonic generation (SHG) has been commercialized [11]–[13].

With the ever-increasing complexity of modern optical systems, there has been a growing

demand for reduction in power consumption, device footprint, and manufacturing cost of photonic

integrated circuits (PICs) in the past decades. While the mature silicon (Si) photonic technol-

ogy can meet these requirements [14]–[17], owing to its standard low-cost foundry-compatible

processing and tightly-confined waveguides, the performance of LN-based modulators and wave-

length converters are unrivaled by their all-Si-based counterparts. Lack of linear EO via Pockel’s

effect, lack of second-order nonlinearity (χ(2)) due to silicon’s centrosymmetric lattice structure,

and nonlinear two-photon and free-carrier absorption effects are among the hurdles of silicon pho-

tonics [4].

On the other hand, conventional LN devices are bulky and power hungry in general. Tra-

ditionally, LN waveguides are commonly formed by in-diffusion of dopants, such as titanium (Ti)

[18], or proton-exchange (PE) [19] processes. While low propagation loss is attainable, these meth-

ods only slightly alter the refractive index of the material (∆n≈ 0.1), which yields in weak optical

confinement. Hence, conventional LN devices suffer from a number of shortcomings, including

large bending radii in general, increased half-wave voltage-length product (Vπ.L), and long Mach-

Zehnder (MZ) arm lengths for EO modulators [20, 21], as well as limited nonlinear conversion

efficiency due to the inefficient overlap of the resultant large optical modes in guided devices for

wavelength conversion, e.g., periodically-poled LN (PPLN) waveguides for SHG [7, 22]. Essen-

tially, these shortcomings impede the exploitation of conventional bulk LN devices for large-scale

PICs.
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Figure 2.1: (a) Summary of unique material properties of LN [1]–[7], [23]–[26]. This review
focuses on the main photonic applications of LN through exploiting its strong EO effect and large
second-order optical nonlinearity; (b) Crystalline structure of LN in ferroelectric phase. The red
dashed-box represents its unit cell. The horizontal blue lines depict the oxygen (O) layers and the
position of lithium (Li) and niobium (Nb) atoms are shown with respect to it (after [2, 27]). The
position of the atoms are shown before and after the poling process, as discussed in Section 2.4.1;
(c) Comparison between the traditional bulk versus thin-film LN waveguides. The figures for the
waveguides cross-sections are drawn to scale to emphasize the significant reduction in optical mode
size. This about two orders of magnitude reduction facilitates large-scale integration of photonic
integrated circuits, as well as boosted performance for LN devices, e.g., reduced Vπ.L for TFLN
EOMs and increased mode overlap and efficiency for PPLN waveguides. The steps for fabrication
of TFLN wafers on Si are presented in Figure 2.2.
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As a solution, thin-film LN (TFLN) approaches have been pursued since 2004 [29] by

using crystal ion slicing [30] and room-temperature wafer bonding [31, 32] methods. TFLN on

Si substrate was first demonstrated at CREOL in 2013 [28]. Among other advantages (e.g., cost,

scalability, ease of handling thermal cycles), the choice of Si substrate has paved the path towards

heterogeneous integration of TFLN devices with Si photonics. Since then, commercialization of

TFLN wafers by a CREOL spinoff company [33], as well as other vendors [34, 35], have facilitated

the availability of this platform for extensive research. In addition, other methods such as direct

bonding [36] and benzocyclobutene (BCB) bonding [37] of individual TFLN dies on Si, as well as

mechanical thinning of bulk LN [38], have been pursued. In order to achieve low-loss submicron

waveguides, several methods have been demonstrated on the TFLN technology. They include rib-

loading with a refractive-index-matched material [28, 39], [40]–[43], dry etching [44]–[48], PE

[49, 50], Ti in-diffusion [51], direct- or BCB-bonding on silicon-on-insulator (SOI) [52, 53, 37],

plasma-enhanced chemical deposition (PECVD) of other materials, such as amorphous Si [54],

and mechanical thinning [38]. The optical mode size in these waveguides is typically reduced by

about two orders of magnitude compared to their bulk counterparts (see Figure 2.1c).

In recent years, based on this rapidly-growing technology, a plethora of ultracompact in-

tegrated photonic devices and circuits, such as microdisk [55]–[57] and microring [44], [58]–[61]

resonators, EO modulators [62]–[79], acousto-optic modulators [80]–[82], grating couplers [83]–

[87], fiber-to-chip edge couplers [88, 89], wavelength converters [90]–[101], entangled-photon

sources [102]–[106] with significantly superior performances than their conventional LN coun-

terparts have been demonstrated. The overall efforts have rejuvenated LN for novel electro-,

nonlinear-, and quantum-optic applications and the material is considered among the top candidates

for heterogeneous integrated photonics, where multiple materials are monolithically integrated on

a single chip, while each material is chosen for the functionalities that suits it best.

Here, we summarize the most recent advancements of this flourishing field for its main

photonic applications. The review is structured as follows. Section 2.2 gives a brief overview of the
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strides made towards the realization of ultracompact TFLN waveguides with the mentioned various

approaches and the associated challenges in order to achieve low-propagation loss. In Sections 2.3,

2.4, and 2.5 the path from first realization to the state-of-the-art performance is chronologically

reviewed for electro-, nonlinear-, and quantum-optic applications, respectively. Section 2.6 lays

out a roadmap for future directions, and concluding remarks are given in Section 2.7.

For completeness, it should be mentioned that the detailed design guidelines of these de-

vices are obviously beyond the scope of this work. Moreover, it is noted that while this paper

focuses on various advancements of TFLN field, realization of ultracompact integrated photonic

devices, such as EO modulators and wavelength converters are not limited to this platform. For

other material platforms, readers are referred to relevant references [107]–[111].

2.2 TFLN Platforms and Waveguides

2.2.1 Thin-Film Platforms

As mentioned in the Introduction, TFLN approaches have been pursued in order to overcome the

drawbacks associated with bulk LN devices and have led to the LN-on-insulator (LNOI) platform.

The insulator layer is comprised of a lower refractive index material, such as silicon dioxide (SiO2),

in order to avoid optical mode leakage from the thin film into the substrate. Among different

choice of substrates, e.g., LN and Quartz, Si has been the mot attractive one due to its potential

for compatibility with Si photonics [28]. As mentioned before, other attributions such as cost,

scalability and thermal handling are important too.

In this approach, single-crystalline LN is implanted with helium (He) or other low-mass

ions. Next, the ion-implanted wafer is bonded to an oxidized Si wafer. Then, through thermal

cycling processes, the TFLN is exfoliated from the bulk crystal and remains bonded onto the

oxidized Si substrate. It has been shown that the EO and nonlinear properties of LN is preserved

at the end of the process [112]. Figure 2.2 summarizes the fabrication steps for this method.
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Figure 2.2: Summary of the steps for fabrication of TFLN on Si wafers [28]. (a) Initial bulk LN
wafer; (b) Ion implantation (the red-dashed line shows the defected region at the desired depth of
final thin-film thickness); (c) Bonding onto a Si handling wafer (or other wafers such as LN or
quartz) with a low-index insulating layer (typically SiO2); (d) Thermal cycling process to exfoliate
the thin film from the LN crystal at the defected layer and the final TFLN on Si product. The
remaining bulk LN crystal can be recycled. For simplicity, other steps such as thermal annealing
for preserving the material properties of LN, and mechanical polishing for smoothening of the
surface roughness are not depicted here.

Currently, TFLN wafers on Si and other substrates with different crystal cuts are commercially

available from suppliers in the US [33], in China [34], and in Japan [35].

Another approach is using polymers, such as BCB, for bonding individual dies or full

wafers of TFLN to Si [36, 37, 58, 62]. However, thermal stability and temporal reliability of

polymers remain a major concern.

2.2.2 Ultracompact Waveguides

As summarized in Figure 2.3, various approaches have been pursued in order to form optical

waveguides on TFLN. In the following, we discuss these approaches and explore their merits.

Historically, LN has been difficult to etch and the roughness of the etched sidewalls, as well

as re-deposition of the chemical-etching byproducts, have contributed to large amounts of scatter-

ing and propagation losses [21, 110]. As a solution, one method has been to rib-load the TFLN

with a material whose its refractive index (∼2 - 2.2) is close to that of LN (∼2.2) (see Figure 2.3a).
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Figure 2.3: Common waveguide structures for TFLN-on-Si devices: (a) Rib-loaded, (b) dry-
etched, (c) proton-exchanged or Ti-diffused, and (d) SOI-bonded structures; These methods can
also be applied to TFLN on LN or quartz substrates. The majority of recent work demonstrat-
ing high-performance TFLN EOMs are utilizing rib-loaded (Figure 2.3a) [66], dry-etched (Fig-
ure 2.3b) [70, 73], and SOI-bonded (Figure 2.3d) [71, 72, 74, 78] methods, while for nonlinear
devices, rib-loaded [90, 91] and dry-etched [92, 95] have been the most commonly employed plat-
forms. In comparison to platforms (a)-(c), platform (d) requires additional bonding and TFLN
substrate removal steps. The microimages for (e) rib-loaded, (f) dry-etched, (g) proton-exchanged,
and (d) SOI-bonded waveguides, are reproduced with permission from [91], [45], [50], and [74],
respectively.

One of the main advantages of this method is the ease of processing. Several materials have been

pursued in this regard, such as tantalum pentoxide (Ta2O5) [28], chalcogenide glass (ChG) [65],

silicon nitride (SiN, Si3N4) [40, 66, 67, 75, 79, 90, 91, 113], and titanium dioxide (TiO2) [39], with

reported propagation loss values as low as ∼1 dB/cm for plasma-enhanced chemical-vapor depo-

sition (PECVD) of SiN rib [66, 90]. Although other forms of deposition, such as low-pressure

chemical-vapor deposition (LPCVD), can offer rib materials with much lower propagation loss,

the standard TFLN wafers cannot withstand the high temperature used in these type of processes.

Alternatively, LPCVD-SiN can be bonded to TFLN [40, 42], offering loss values as low as ∼0.3

dB/cm [40].

The rib material’s effective index and dimensions can be engineered to provide high optical

mode overlap (more than 70%) in TFLN, in order to efficiently utilize its EO and nonlinear prop-
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erties [110]. Another advantage of rib-loaded method is that it can be applied to all crystal cuts

of TFLN, whereas some other methods which are discussed in the following, can only be applied

to certain cuts. This method has also been utilized for bulk LN crystals in order to form compact

waveguides using monocrystalline [114, 115] or amorphous [54] Si.

More recently, promising works [44]–[47] have been reported on low-loss dry-etching of

LN with reported loss values as low as 0.027 dB/cm [44] for X-cut, and< 2-nm sidewall roughness

[45] for Z-cut TFLN. Following the dry-etching of LN, the waveguides have to undergo a thorough

RCA cleaning step in order to remove the organic residue and chemical byproducts of the etching

process [47]. In a recent work [46], a combination of PE and dry etching is presented for efficient

direct-etching of TFLN, i.e., faster etch rates while avoiding re-deposition of byproducts. By

using this method, low-loss channel waveguides with large etch depths (∼900 nm) and improved

verticality of sidewalls are reported in X-cut TFLN. It is important to note that the dry-etching

method can result differently for various crystal cuts of LN, e.g., re-deposition of byproducts from

dry etching are different for Z-cut compared to the X- or Y-cut LN [110].

As depicted in Figure 2.3b, dry-etched waveguides have been also utilized for TFLN EO

modulators (EOMs) [68, 69, 70, 73] and nonlinear devices [90]–[92], [95]. For EOMs, in com-

parison with rib-loading, this approach provides higher optical confinement in LN, which can

consequently result in smaller electrode gaps in MZ-based devices, hence reducing the EOM’s

Vπ. However, in the presence of certain requirements due to ultrahigh-speed design, the rib-loaded

method is more advantageous due to the lower dielectric constant of the rib compared to that of

LN [116].

Figure 2.3c shows another type of waveguide in the TFLN platform. PE or annealed-PE

(PE followed by a high-temperature annealing step in order to recover the LN EO properties)

processes are low-cost technologies, which are well-established for conventional bulk LN devices

[6, 118]. In this process, the lithium ions in the crystal are exchanged with protons from an acid

bath. This results in a small increase in the extraordinary refractive index, which can confine
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the optical mode in the exchanged region. This method has been applied to TFLN [49, 50] and

waveguide loss values as low as 0.2 dB/cm have been achieved in X-cut TFLN [50]. Although the

optical mode sized can be reduced to ∼ 0.6 µm2, the main downsides of this platform are weak

optical confinement, and very large bending radii, which are two to three orders of magnitude

higher than values in other TFLN platforms. Moreover, since the acid chemically etches the Y-cut

LN, this process can only be applied to X- or Z-cut TFLN [6]. More recently, in-diffusion of Ti,

another well-established process for conventional EOMs, is also utilized in an LNOI structure, and

a TFLN MZ EOM is reported [51].

In order to exploit benefits of the mature Si photonic industry, an interesting type of plat-

form is recently pursued, in which the TFLN is bonded at the end stages of fabrication onto a

patterned SOI wafer [37, 117]. Figure 2.3d depicts such a structure. Common types of bonding

are direct-bonding using SiO2 [71, 72, 74], or by using an adhesive polymer like BCB [36, 37],

[62]–[64]. However, direct-bonding is usually preferred due to stability and reliability issues with

BCB, as previously pointed out in Section 2.2.1.

Figure 2.4: Fabrication steps for bonded-SOI TFLN platform [71, 72, 74, 117]: (a) Patterned SOI
structure; (b) TFLN (see Figure 2.2d) bonding onto the SOI wafer using SiO2 or BCB; (c) TFLN
substrate removal; (d) Prepared structure and associated optical mode simulation. At this step,
metallic electrodes can be deposited on top in order to form LN photonic devices such as EOM
and PPLN waveguides.

The fabrication steps for this platform are summarized in Figure 2.4 [117]. Figure 2.4a
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shows the prepared SOI waveguides. To form hybrid waveguides, the width of the Si waveguide is

decreased, in order to confine most of the optical mode in the TFLN region. As a result of this Si

waveguide narrowing, a disadvantage is the more interaction of optical mode with Si waveguide

sidewalls which could yield in additional loss. Figures 2.4b and 2.4c depict the TFLN bonding and

substrate removal steps, respectively. Another challenge for this approach is achieving the desired

amount of thin bonding-material layer between the SOI and TFLN regions. The schematic of the

prepared hybrid waveguide and its associate optical mode simulation are shown in Figure 2.4d.

In this step, metallic electrodes can be deposited and patterned on top for realizing EOM or other

devices.

A more robust approach is using an intermediate layer, such as LPCVD-formed SiN serving

as an adiabatic mode converter as well as a rib, in order to efficiently transfer the optical mode

from standard SOI waveguides into LN region [117] (see Figure 2.5). Another variation is to

embed the metallic electrodes into the bottom optical waveguide structure, as recently reported

for TFLN EOMs[79]. This eliminates the need for TFLN substrate removal and results in a more

straightforward fabrication process.

In summary, by employing TFLN technology (see Figure 2.2d), various methods discussed

in this section have resulted in ultracompact TFLN waveguides. The optical mode size and the

waveguide propagation loss have been reduced by one to two orders (depending on the waveguide

platform choice), and one order of magnitude, respectively, compared to the Ti-diffused or PE bulk

LN counterparts [22, 44]. The propagation loss values of each TFLN platform are summarized in

Table 2.1.

It is noted that among the above mentioned structures, most of the recently-demonstrated

high-performance TFLN EOMs have utilized rib-loaded [66], dry-etched [70, 73], and SOI-bonded

[71, 74] methods integrated on Si substrate. For nonlinear LN devices, rib-loaded [90, 91] and dry-

etched [92, 95] methods have been employed so far.
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Figure 2.5: A novel approach for heterogeneous integration of TFLN with SOI waveguides is
shown. The SiN intermediate layer serves as the adiabatic mode converter from SOI to the LN
region (from AA’ to BB’), as well as the rib for the hybrid SiN-LN waveguide. The optical mode
simulation at different cross-sections of the structure are shown on the right. The SiN width can
be optimized for achieving the desired optical mode confinement in TFLN [117].

Table 2.1: State of the art in propagation loss for various TFLN platforms of Figure 2.3.

TFLN Platform Waveguide Loss [dB/cm] Reference
Rib-loaded 0.3 [91]
Dry-etched 0.027 [44]

Proton-Exchanged 0.2 [50]
SOI-bonded 0.3 [48]

2.3 Electrooptic Modulators on TFLN

There is a host of different applications for high-performance TFLN EOMs. These include op-

tical electric-field sensors [119], analog and digital optical links for telecommunication systems

[120], and optical interconnects [121] in high-capacity data centers, EO-based frequency comb

generation [99, 122] for LiDAR, integrated spectroscopy [123], millimeter-wave imaging [124],

and high-performance computing for optical neural networks [125], as well as quantum technolo-

gies [126]. Some applications in visible-wavelength photonics include molecular spectroscopy and
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biophotonics [127, 128].

2013

• Thin-Film LN Photonics on Si,
]28[L .πVcm V.-4ER, dB -20, Q4 10×7.2

• 1.2 dB/cm loss, 1.2×105 Q,
15-dB ER, 3.8-V.cm Vπ.L [65]

• 33-GHz BW, 18-dB ER, 3.1-V.cm Vπ.L [66]
• 1 dB/cm loss, Measurement up to 110 GHz [38]

• 100-GHz BW, 30-dB ER,
2.8-V.cm Vπ.L, 210 Gbps [70]

• 106-GHz BW, 20-dB ER, 6.7-V.cm Vπ.L [71]

• 70-GHz BW, 2.2-V.cm Vπ.L, 
40-dB ER, 112 Gbps [74]

• 15-GHz BW, 1.8-V.cm Vπ.L, 10-dB ER, 
40 Gbps , 3 dB/cm loss, 5×105 Q [69]

• Optical-sideband measurement up to 500 GHz [73]

2015 2016 2018 2019

Figure 2.6: The timeline presents recent progress in TFLN EOMs in terms of key performance
parameters, namely, LN waveguide propagation loss, 3-dB modulation BW, ER, and Vπ.L at low
frequencies. Q denotes the quality factor of TFLN microrings. The figure represents significant
achievements in TFLN EOM technology and is not all-inclusive.

Figure 2.7: Comparison between conventional bulk LN versus ultracompact TFLN MZ EOMs.
The 3-D schematics are drawn to scale, in order to emphasize the significant reduction in the device
footprint. The 2-D device cross-sections are not in scale. By utilizing the highly-compact optical
mode in the TFLN case, the gap between the metallic electrodes can be decreased without inducing
additional optical loss which results in lower Vπ.L values compared to its bulk counterpart.

In this section, we provide a brief chronological review of the recent advancements for

TFLN EOMs. Figure 2.6 summarizes the main achievements in terms of key performance param-
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eters, i.e., propagation loss, BW and ER. The comparison between the conventional and ultracom-

pact LN EOMs are depicted in Figure 2.7.

As mentioned in Section 2.2, TFLN on LN substrates was demonstrated in 2004 [29].

Later on [112], it was shown that the material properties of bulk LN are preserved in TFLN plat-

form, and an EOM with Vπ.L of 15 V.cm and 15-20 dB/cm propagation loss was demonstrated

for direct-etched Z-cut TFLN waveguides at 1550 nm wavelength. In BCB-bonded Z-cut TFLN,

direct-etched microrings with quality factors, Q, of 103 - 104 were demonstrated in [58] and [20],

respectively, and propagation loss as low as 7 dB/cm were reported [20].

In 2013, our group at CREOL demonstrated the first wafer-scale TFLN on Si substrates

[28]. The fabrication process for such wafers are summarized in Figure 2.2. By rib-loading the

obtained TFLN with tantalum pentoxide (Ta2O5), MZ EOMs with remarkable Vπ.L of 4 V.cm and

20 dB ER were attained. Decent propagation loss of 5 dB/cm, and a Q of ∼7.2 × 104 were also

demonstrated for microrings. Moreover, by using the Y-cut TFLN, the largest EO coefficient of LN

(r33) was utilized by applying a lateral electric field along the Z-axis. In an improved report [65],

by rib-loading the same platform with ChG, MZ EOMs with Vπ.L of 3.8 V.cm and gigahertz-range

operation were demonstrated. Also, the propagation loss was reduced to 1.2 dB/cm and microrings

with Q of ∼1.2 × 105 were reported.

Ultracompact TFLN waveguides with propagation loss as low as 0.2 dB/cm are achieved by

Cai et al. [50], by utilizing the mature PE process from bulk LN technology and applying it to the

LNOI platform. This value was on par with the best propagation loss reported for conventional LN

waveguides. However, as mentioned in Section 2.2.2, weak optical confinement and large bending

radii of this platform impede ultracompact EOMs.

Our group reported on high-speed TFLN EOMs in 2016 [66]. Characterized up to 50

GHz, the devices demonstrated 33-GHz 3-dB BW, Vπ.L of 3.1 V.cm, and 18-dB ER in 8-mm-

long devices (see Figure 2.8a). PECVD-Si3N4 was used for rib-loading the Y-cut TFLN, and

waveguides with propagation loss of 1 dB/cm were reported.
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(a)

(b)

(c)

(d)

Vπ .L = 3.1 V

Vπ = 5.1 V

Vπ .L = 6.7 V
L = 5 mm

Figure 2.8: Examples of recent high-performance TFLN MZ EOMs on Si [66, 70, 71, 74]: (a)
18-dB ER, and 33-GHz BW. Reproduced with permission from [66]; (b) 30-dB ER , and 100-GHz
BW. Reproduced with permission from [70]; (c) 20-dB ER, and 106-GHz BW. Reproduced with
permission from [71]; (d) 40-dB ER, and 70-GHz BW. Reproduced with permission from [74]. L
is the modulation length. Values for Vπ, and ER are reported at low frequencies.
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In the same year, Mercante et al. [38] demonstrated a 10-mm-long TFLN phase modulator

on Si substrate with ∼ 40-GHz BW and ∼ 1-dB/cm waveguide propagation loss. The fabrication

of the device included less-favored approach of mechanical thinning an X-cut LN film and bonding

it to Si substrate using an adhesive polymer. Nonetheless, careful RF design of the EOM (reducing

the impedance and RF and optical index mismatch by partially etching the LN layer at the waveg-

uides region and decreasing the thickness of the LN which possesses a large dielectric constant)

ensured high-speed operation up to 110 GHz.

In 2017, Zhang et al. [44] demonstrated microrings with Q values up to ∼ 107, and propa-

gation loss of 0.027 dB/cm on an X-cut TFLN on Si platform. This work among a few others later

on [45, 47], were significant achievements in low-loss direct-etching of LN.

In 2018, we reported on detailed general transmission-line modelling, and design guide-

lines for ultracompact TFLN EOMs predicting 100-GHz BW [129]. The main shortcoming with

the commonly employed models in the literature which had been originally developed for bulk

device was the impedance matching, typically assumed, between the EOM’s transmission line

properties and the terminating resistive load at all modulation frequencies. This was proved to not

be applicable to compact EOMs. By comparison with our previous experimental data [66], we

showed that our EO modelling [129] is capable of accurate prediction of the device’s EO response.

Additionally, by optimization of device parameters, the model predicted that 100-GHz 3-dB BW

is attainable in such ultracompact devices.

Later that year, Wang et al. [70] reported MZ EOMs with 100-GHz BW, 30-dB ER, Vπ.L

of 2.2 V.cm, and insertion loss of <1 dB in 5-mm-long devices on direct-etched X-cut TFLN on

Si platform (see Figure 2.8b). Direct CMOS-driven modulation at 70 Gbit/s was demonstrated on

20-mm-long devices with ∼ 45-GHz BW. Higher modulation speeds up to 210 Gbit/s were also

presented with bit-error-ratio (BER) of 1.5 × 10−2.

Also, Weigel et al. [71] reported on> 106-GHz BW, 20-dB ER, Vπ.L of 6.7 V.cm, and 7.6-

dB insertion loss in 5-mm-long EOMs on a direct-bonded X-cut TFLN on to SOI waveguides (see
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Figure 2.8c). The 3-dB BW reported in this work is the highest experimentally demonstrated value

up to date. The same group has recently showed 20 Gbit/s data modulation with eye-diagrams and

signal-to-noise ratio measurements up to 102 GHz [72].

In another TFLN EOM demonstration in 2018, Mercante et al. [73] demonstrated a direct-

etched TFLN phase modulator on quartz substrate. The devices exhibited ∼ 7-dB/cm propagation

loss, and were characterized up to 500 GHz by optically-assisted methods. The 3-dB RF BW of

this work, however, is limited to below 10 GHz.

While ∼ 100 GHz remains the highest experimentally-demonstrated BW to date [70, 71],

we have recently reported on detailed optical and RF design techniques, which proves that up to

400-GHz 3-dB BW is attainable in ultracompact TFLN EOMs [116]. Such unprecedented BWs

could find tremendous interest in a variety of system applications mentioned at the beginning of

this section.

More recently, He et al. [74] have demonstrated TFLN MZ EOMs with 70-GHz BW, and

Vπ.L of 2.55 V.cm in 5-mm-long devices (see Figure 2.8d). Vπ.L of 2.2 V.cm and ER of 40 dB

and more are reported for 3-mm-long EOMs. Also, eye diagram measurements and BER values

have been reported for high-speed modulations up to 112 Gbit/s. So far, the ER and Vπ.L of this

work are the best values reported for TFLN EOMs to date. However, it is worth mentioning that,

recently, by cascading two TFLN MZ EOMs higher ER (up to 53 dB) has been demonstrated [130].

The devices in [74] are fabricated by using a BCB-bonding method of TFLN to SOI waveguides,

as depicted in Figure 2.4. In addition, direct-etching of LN is also employed (see Figure 2.3h)

in order to fully transfer the optical mode from SOI to LN waveguides in the modulator region

compared to the partially-transferred optical mode in [71]. Clearly, more optical confinement in

LN leads to an improved EO performance in the TFLN EOMs. This optical mode transitions are

carried through vertical adiabatic couplers. The measured optical loss for each coupler is ∼ 0.19

dB, and the overall insertion loss of the EOM is 2.5 dB. More recently, the same group has reported

on a Michelson interferometer modulator on the same platform with 17.5-GHz BW, 30-dB ER, and
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a low Vπ.L of 1.2 V.cm in 1-mm-long devices [78] .

It is also worthwhile mentioning that there are only few work among TFLN EOMs, which

report on linearity for analog applications [64, 66, 74, 79]. Spurious-free dynamic range (SFDR) is

a figure of merit for measuring the linearity of EOMs in microwave photonics [110]. Values from

∼ 90 to ∼ 100 dB.Hz2/3 have been reported in these four TFLN work [64, 66, 74, 79], which are

still inferior to the best values reported for bulk LN EOMs (∼ 120 dB.Hz2/3) [131]. Hence, it is

expected that more works could emerge to improve SFDR of TFLN EOMs.

In summary, a comparison between the main performance parameters of the MZ EOMs

discussed in this work is presented in Table 2.2.

For completeness, we mention that compact TFLN EOMs are not limited to MZ or phase

modulators. Another type is resonance-based devices such as microring modulators (MMs). In

principal, they can be formed on any of the platforms depicted in Figure 2.3. While they offer

smaller device footprint, they are usually more prone to fabrication errors compared to other type

of EOMs and provide less BW. The main figures of merit for MMs areQ, tunabilty, i.e., the amount

of spectral shift in microring’s optical resonance per applied electrical field, ER, and 3-dB BW. A

summary of reported TFLN resonance-based devices are presented in Figure 2.9 and Table 2.3.

Table 2.2: Summary of performance parameters for TFLN MZ EOMs. BW denotes the 3-dB
electrical modulation BW. Vπ.L, and ER are at reported values at low frequencies. The values
inside the parenthesis represent the reported measurements for another device in the same work.

TFLN Platform (Year) Vπ.L [V.cm] Vπ [V] L [mm] BW [GHz] ER [dB] Reference
Dry-etched (2005) 15 42.8 3.5 N/A N/A [112]
Rib-loaded (2013) 4 6.8 6 N/A 20 [28]
Rib-loaded (2015) 3.8 6.3 6 1 15 [65]
Rib-loaded (2016) 3 2.5 12 8 13.8 [67]
Rib-loaded (2016) 3.1 3.87 8 33 18 [66]
Dry-etched (2018) 1.8 9 2 15 10 [69]
Dry-etched (2018) 2.2 (2.8) 4.4 (1.4) 5 (20) 100 (45) N/A (30) [70]
SOI-bonded (2018) 6.7 13.4 5 >106 20 [71]
Ti-diffused (2019) 7.2 1.2 60 20 40 [51]
SOI-bonded (2019) 2.55 (2.2) 5.1 (7.4) 5 (3) 70 (>70) N/A (40) [74]
SOI-bonded (2019) 2.5 2.5 10 50 16 [77]
Rib-loaded (2020) 6.7 13.4 5 30.6 20 [79]
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(b)

Tunability: 3.2 pm/V 
Q = 1.2 × 105

(a)

Tunability: 12.5 pm/V 15 µm radius
Q = 11.5 × 103

(d)

Tunability: 1.78 pm/V 
Q = 1.83 × 105

300 µm radius

(c)

Q = 5 × 104

Tunability: 7 pm/V 

30-GHz BW

Q = 8 × 103

Figure 2.9: Examples of recently-demonstrated TFLN resonance-based EOMs [62, 65, 69, 76]:
(a) BCB-bonded LN-SOI microring. Reproduced with permission from [62]; (b) Rib-loaded LN-
on-Si microring. Reproduced with permission from [65]; (c) Dry-etched LN-on-LN microring.
The racetrack resonator exhibits 3-dB BW of 30 GHz. Reproduced with permission from [69]; (d)
Rib-loaded LN-on-quartz microring. Reproduced with permission from [76].
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Table 2.3: Summary of performance parameters for TFLN resonance-based EOMs. R and BW
denote the radius, and 3-dB electrical modulation BW, respectively. The values for ER are at low
frequencies.

TFLN Platform (Year) Q Tunability [pm/V] R [µm] ER [dB] BW [GHz] Reference
SOI-bonded (2007) 4 × 103 1.05 100 7 N/A [58]
SOI-bonded (2011) 1.68 × 104 1.7 6 5 N/A [36]
SOI-bonded (2013) 1.15 × 104 12.5 15 8 N/A [62]
SOI-bonded (2014) 1.2 × 104 3.3 15 10 5 [63]
Rib-loaded (2015) 1.2 × 105 3.2 200 13 N/A [65]
Dry-etched (2018) 8 × 103 7 N/A N/A 30 [69]
Rib-loaded (2019) 1.85 × 105 1.78 300 27 N/A [75]

2.4 Nonlinear Optics on TFLN

Another widespread application domain for LN is nonlinear integrated photonic due to its high

second-order nonlinear coefficient (d33 = 30 pm/V). Titanium in-diffusion [18] and proton ex-

change [19] have been the most commonly employed techniques in order to form LN waveguides,

as previously discussed in Section 2.2.2. However, various limitations arise in these waveguides.

which limit their performance and applicability to nonlinear integrated photonics. Low index con-

trast of the waveguide is a fundamental drawback that yields in a large cross-section and small

overlap between the interacting modes. This limits the device performance due to high pump

power required for the onset of second-order nonlinearity. On the other hand, large-scale integra-

tion can not be achieved with such devices due to their large device footprint.

TFLN platform is an excellent alternative that avoids the limitations of the predecessor ap-

proaches and demonstrates more compact and more efficient nonlinear integrated devices. On this

platform, by employing rib-loading (see Figure 2.3a) [90, 91], or direct-etching (see Figure 2.3b)

[92, 95] methods, high index contrast and hence tight optical mode confinement, efficient modal

overlap integral, and ultrahigh nonlinear conversion efficiency can be achieved. A variety of ef-

ficient nonlinear integrated devices have been recently demonstrated on this platform by various

research groups, as elaborated in this section.
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2.4.1 Periodically-Poled TFLN Waveguides

Following the development of the TFLN technology, first periodically poled lithium niobate (PPLN)

waveguides were demonstrated in 2016 using TFLN on Si and TFLN on LN platforms [90, 91].

PPLN waveguides are conceptually wavelength converters that can be utilized for a variety of

nonlinear processes such as, second-harmonic generation (SHG), difference-frequency generation

(DFG) or sum-frequency generation (SFG). In principal, quasi-phase matching (QPM) is achieved

in PPLN waveguides through inverting the crystalline domain polarity periodically to compensate

for the wave-vector mismatch ∆ k between the pump and SHG optical modes. This has been his-

torically realized in bulk PPLN by applying an electric field higher than the coercive (threshold)

field value of∼21 kV/mm [132]. The same concept is used in TF-PPLN, but with higher threshold

field value of ∼30 - ∼50 kV/mm. This higher required electric field can be attributed to the bond-

ing interface between the TFLN and the SiO2 insulating layer or the out-diffusion of Li+ during

annealing step of the TFLN wafer fabrication process [91, 133].

A 3-D schematic diagram of the PPLN device on Si is shown in Figure 2.10a with a SiN rib-

loaded waveguide on Si substrate [90] along with optical mode simulation of the pump and SHG.

This waveguide demonstrated 8% nonlinear conversion efficiency with pulsed laser pump around

1550-nm wavelength. A cross-section of TF-PPLN waveguide on LN substrate [91] is shown

in Figure 2.10b with reported normalized nonlinear conversion efficiency of 160 %W−1cm−2 in

4.8-mm-long device using continuous-wave pump around 1530-nm wavelength. This efficiency is

more than 4 times larger than the typical values in conventional PPLNs, yet one order of magnitude

less than the theoretical value, which can be attributed to the imperfections of the periodic domain

duty cycle and non-uniformities of the fabricated waveguide. This stresses the importance of the

poling process for optimizing the conversion efficiency.

As previously discussed in Section 2.2.2, dry etching X- and Y-cut LN waveguides have

been historically challenging, however, various research groups have recently reported successful
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etching processes with low propagation loss [44]–[47], [92, 95].

(a)

(b)

(c)

(d)

L = 4 mm

L = 4.8 mm
η = 160 %W-1 cm-2

L = 4 mm
η = 2600 %W-1 cm-2

L = 0.6 mm
η = 4600 %W-1 cm-2

Figure 2.10: Examples of recently-demonstrated TF-PPLN waveguides [90, 91, 92, 95]: (a) Rib-
loaded TF-PPLN with nonlinear conversion efficiency of 8% for pulsed input. Reproduced with
permission from [90]; (b) Rib-loaded TF-PPLN. Reproduced with permission from [91]; (c) Dry-
etched TF-PPLN. Reproduced with permission from [92]; (d) Dry-etched TF-PPLN. Reproduced
with permission from [95]. η is the reported normalized conversion efficiency. L denotes the length
of the poled region.

These demonstrations have opened the door wide for realization of ultrahigh efficient TF-
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PPLN waveguides. Such a process has been first used to fabricate a 4-mm long PPLN waveg-

uide, shown in Figure2.10c, with normalized conversion efficiency of 2600 %W−1cm−2 [92].

By utilizing an active iterative poling technique, our group at CREOL has recently demonstrated

record-high 4600 %W−1cm−2 normalized efficiency in 0.6-mm-long devices [95], as shown in

Figure2.10d. This efficiency is the highest reported normalized conversion efficiency to date and

very close to the theoretical limit calculated for this type of waveguides. The TF-PPLN waveguides

discussed above are summarized in Table 2.4.

(a)

(b)

Figure 2.11: Demonstration of efficient SHG in PPLN microring resonators: (a) SHG signal (red),
when TE-polarized pump laser is swept across the telecom band (blue); (b) False color SEM
images of the etched device in hydrofluoric acid. Reproduced with permission from [97].

In addition to standard PPLN devices, SHG has also been recently reported in X-cut and

Z-cut PPLN microring resonators, with normalized conversion efficiency of 230,000 %/W [96]

and 250,000 %/W [97], respectively. This method has been achieved through careful design of a
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doubly-resonant device at the pump and the SHG wavelength using a single pulley waveguide. An

example of such devices in Z-cut TFLN with the measured SHG spectrum is shown in Figure 2.11,

while the pump laser is swept across the telecom band. Further optimization to decrease the prop-

agation loss and increase the efficiency of these devices may enable nonlinearity at single-photon

level, which will pave the path for interesting quantum-photonic applications such as deterministic

entanglement generation and control-NOT gate for single photons [96].

(a) (b) (d)

(c) (e)

Figure 2.12: Periodic poling of TFLN waveguides: (a) Example of poling pulse for TF-PPLN along
with (b) piezoresponse force microscope image of the resulting periodic domain. Reproduced with
permission from [133]; (c) Schematic illustration of the evolution of inverted domain using a long
poling pulse and multi-pulse waveforms with short pulse durations. Images of the device are
obtained after ion milling to visualize the periodically poled region. Reproduced with permission
from [91]; Actively-monitored poling technique demonstrates increase of SHG efficiency with (d)
the number of poling pulses and (e) the number of poling cycles, used for ferroelectric domain
inversion (see Figure 2.1b). Reproduced with permission from [95].

Periodic poling by means of electric field is a powerful technique for domain inversion of

ferroelectric materials, in order to achieve quasi-phase matching (QPM) for second-order (χ(2))
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nonlinear processes. It does not suffer from drawbacks such as shallow inverted layers as in the

chemical diffusion technique or axial variation in domain periodicity in the crystal growth tech-

nique [132]. LN domain polarity is determined by the relative position of the metal ions (Li and

Nb) to the oxygen layers and can be reversed by reorienting the crystal from one stable configura-

tion to the other as depicted in Figure 2.1b. This can be achieved by applying an electric field higher

than the coercive electric field of LN, which is ∼ 20.5 kV/mm at room temperature. Electric-field-

driven poling process can be divided into four successive steps: (1) nucleation centers formation at

the positive electrode, (2) tip propagation or domain growth along the z-axis of the crystal, (3) do-

main walls propagation in lateral directions, i.e., x- and y- directions of the crystal, and (4) domains

merging [134].

Table 2.4: Examples of recently-demonstrated TF-PPLN devices. η and L represent the normal-
ized conversion efficiency, and the length of the poled region, respectively. CAR denotes the
coincidence-to-accidental ratio measurements for on-chip photon-pair generation.

TFLN Platform (Year) η [%W−1cm−2] L [mm] CAR Reference
Rib-loaded (2016) 160 4.8 N/A [91]
Rib-loaded (2016) N/A 4 ∼ 300 [90, 102, 106]
Dry-etched (2018) 2600 4 N/A [92]
Dry-etched (2019) 4600 0.6 ∼ 7000 [95, 103]
Dry-etched (2019) 2000 5 ∼ 67000 [105]
Dry-etched (2019) 2200 4 ∼ 600 [104]

Achieving 50% duty cycle and uniform periodicity are critical factors in determining the

overall efficiency of the nonlinear device as previously discussed. Domain inversion in TFLN is

usually realized through applying a square pulse or more efficiently a series of short pulses (∼ 10-

20 ms) as in Figure 2.12c, depicting the evolution of the inverted domain in both cases. Employing

a series of short pulses for poling guarantees formation of enough nucleation centers, complete

inversion of the domain, periodic domain uniformity, and high poling yield. This also avoids

temperature rising and domain merging due to sidewall propagation. An example of a poling pulse

is shown in Figure 2.12a along with the piezoresponse force microscope image of the resulting
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periodic domain Figure 2.12b with ∼50% duty cycle and high yield [133].

Our group has recently demonstrated an actively-monitored iterative poling technique that

enables higher efficiencies than usually achieved using conventional passive techniques [95]. It

utilizes an optically-monitored iterative poling, depoling, and repoling sequence with a series of

at least nine pulses in each poling cycle. The resulting efficiency measured during this process

is shown in Figures 2.12d and 2.12e, which confirm increase of the efficiency with the number

of poling pulses and poling cycles. More details of the periodic poling of TFLN waveguides and

various methods in order to study and improve the domain inversion can be found in [95], and

[133]–[136].

2.4.2 Other Approaches to Phase Matching in TFLN Waveguides

Other alternative approaches for phase matching have been successfully demonstrated for χ(2) pro-

cesses in TFLN, although with less conversion efficiency compared to PPLN method. Nonetheless,

the advantage of these methods is that they are poling-free, hence fabrication and device prepara-

tion are simplified. Another advantage is that the techniques discussed in this section are not lim-

ited to ferroelectrics, and in principal, can be applied to other nonlinear materials [137]. Detailed

mathematical derivations for different phase matching methods can be found in [111].

Grating assisted quasi-phase matching (GA-QPM) (or mode-shape modulation [138]) is

an example of such alternatives, in which periodic spatial modulation of waveguide parameters is

utilized in order to induce a periodic variation in the nonlinear overlap integral [138]–[140].

In Ref. [138] (see Figure 2.13a), our group applied GA-QPM to the TFLN platform by

employing a sinusoidal width perturbation of the rib-loaded waveguides with SiN. SHG with ∼1

%W−1cm−2 normalized conversion efficiency was demonstrated in 4.9-mm-long waveguides at

784 nm wavelength. An optimized width modulation pattern and a higher-refractive-index rib

material can increase the conversion efficiency of such devices.

We have also reported on random QPM based on the GA-QPM technique and demonstrated
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SHG at 775-nm wavelength [140]. As shown in Figure 2.13b, the periodicity of the sinusoidal mod-

ulation of waveguide’s width (created by dry etching TFLN) is chosen randomly. Random QPM

has the benefit of overcoming the intrinsic bandwidth limitations imposed by uniform periodic

perturbation.

In modal phase matching (MPM), a multi-mode waveguide is designed so that the wavevec-

tor of the mode at pump wavelength is matched with the wavevector of one of the higher order

modes at SHG wavelength [139, 141]. Wang et al. [139] reported on MPM and GA-QPM on

TFLN platform and demonstrated SHG with 41 and 6.8 %W−1cm−2 normalized conversion effi-

ciency, in 1-mm-, and 0.5-mm-long waveguides, respectively. For the MPM case, first- and third-

order transverse-electric (TE) modes of a waveguide with fixed width (see Figure 2.13c) were

phase matched, while a periodically-grooved structure is used for GA-QPM, as depicted in Fig-

ure 2.13d. While MPM waveguides offer higher conversion efficiency and a simpler fabrication

process than the GA-QPM counterpart in this work, the GA-QPM method benefits from funda-

mental mode operation at both pump and signal wavelengths, similar to the PPLN devices in the

previous section.

In general, the utilization of higher order modes have the drawbacks of less confinement

and less overlap integral between the interacting optical modes. This results in higher propagation

loss due to waveguide sidewall roughness and lower nonlinear efficiency. It is worth mentioning

that for the case of microresonators, in addition the MPM method [142], other techniques for phase

matching have been also demonstrated, e.g., cyclic phase matching [143].
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(a)

(b)

(c)

(d)

Figure 2.13: Demonstration of poling-free methods [138, 140, 139] for SHG in TFLN platform:
(a) 3-D schematic of a rib-loaded GA-QPM waveguide with a sinusoidal modulation of the width
along with the optical mode profiles of the fundamental and second-harmonic TE modes at a
grating width of 1095 nm. Reproduced with permission from [138]; (b) 3-D schematic of a random
QPM waveguide on a dry-etched TFLN platform along with a micrograph of the fabricated device.
Reproduced with permission from [140].; (c) Optical mode profiles of the first- and third-order TE
modes at the pump and second-harmonic wavelengths for MPM; (d) SEM image of the fabricated
GA-QPM structure. (c) and (d) are reproduced with permission from [139].
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In another interesting poling-free MPM approach for SHG in TFLN platform, Luo et al.

[144] have employed a heterogeneous TiO2-LN waveguide structure, and demonstrated 36 %W−1

conversion efficiency corresponding to 650 %W−1cm−2 normalized efficiency in 2.3-mm-long

waveguides at 775-nm wavelength.

By combining the thermooptic birefringence property of LN with MPM, the same group

have demonstrated tunable SHG in TFLN platform with 0.84 nm/K tunability for a telecom-band

pump with 4.7 %W−1 conversion efficiency in 8-mm-long waveguides [145].

2.4.3 Other Nonlinear Applications of TFLN Waveguides

Applications of TFLN nonlinear devices include frequency meteorology, coherent optical commu-

nication links between the telecom and visible bands, optical frequency synthesizers, compression

of ultrashort pulses required for studying solid-state material properties, frequency comb genera-

tion in LiDAR, and mid-infrared spectroscopy [7, 22, 95, 146]. The high amount of optical power

used in certain nonlinear applications can induce optical damage to the TFLN crystal. This can be

mitigated by employing adequate Magnesium Oxide (MgO) doping in TFLN similar to bulk LN

crystals [147]. In this section, we present the different classical nonlinear applications whereas the

quantum applications will be summarized later in Section 2.5.

SHG is the most straight forward nonlinear application of TFLN waveguides. As discussed

earlier, TFLN platform has achieved ultrahigh efficient SHG devices. Difference-Frequency Gen-

eration (DFG) and Sum-Frequency Generation (SFG) are similar nonlinear applications that have

been successfully demonstrated as well in TFLN waveguides. DFG has been recently reported

in X-cut TF-PPLN waveguides with bandwidth more than 4.3 THz [104] and TFLN microdisks

[148]. SFG has also been demonstrated by different groups either in TFLN waveguides [95, 149]

or TFLN microdisks [56, 150].

LN is a non-centrosymmetric material with small χ(3) coefficient compared to its χ(2).

However, effective four-wave mixing, i.e., Kerr nonlinearity, has been recently reported through
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cascaded SHG-DFG process in TFLN microdisk [151]. Third- [95], [152]–[155] and fourth- [95,

152, 153] harmonic generation have also been observed through similar cascaded nonlinear pro-

cesses. Cascaded nonlinearity has enabled multi-octave supercontinuum generation in dispersion-

engineered LN [93] and PPLN waveguides [101]. By employing high-Q microrings, Kerr fre-

quency comb generation has also been demonstrated on the TFLN platform [100, 156, 157].

Second- and third-harmonic generation have been also recently reported in high-Q 2-D photonic

crystals in X-cut TFLN [158].

In addition to standalone nonlinear devices on TFLN platform, cascaded heterogeneous

integration of other materials with higher χ(3) nonlinearity, such as SiN and ChG, have been also

pursued [40, 113, 159]. In [113], we have addressed the fabrication challenges of cascaded inte-

gration of such materials by employing low-loss mode-converting tapers. This work paves the path

towards providing efficient platform in order to realize multiple nonlinearity, i.e., large χ(2) of LN

and high χ(3) of ChG, on a single Si chip with applications like stabilized comb generation through

f -to-2f carrier envelope offset (CEO) locking.

In another application of TF-PPLN waveguides, we have recently employed our highly-

efficient devices accompanied with spectral filtering, to build wide-band non-magnetic linear opti-

cal isolators with potential for monolithic integration of the whole system on a single chip [160].

This work could add an important piece to the component library of PICs, which enables building

complete systems out of this platform only.

2.5 Quantum Optics on TFLN

Integrated quantum photonic is an emerging field with promising applications in quantum comput-

ing and quantum optical communication [161, 162]. The TFLN platform is a suitable candidate

with a high potential for realization of complex quantum PICs due to its superior nonlinear and EO

properties. This enables the generation and manipulation of non-classical light on chip [163].
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(a)

(b) (c)

Figure 2.14: Examples of photon-pair generation demonstrated in TFLN platform: (a) Wide-band
(up to 400 nm) SPDC spectrum. Reproduced with permission from [143]; (b) CAR values of up to
7000 with more than 120-nm signal-idler channel separation. Reproduced with permission from
[103]; (c) CAR values > 67000 at 82 kHz pair generation rate. Reproduced with permission from
[105].

The first entangled photon pair sources in TF-PPLN on Si, based on the spontaneous para-

metric down conversion (SPDC) process, was demonstrated in 2018 [102, 106]. Pumped with a

Ti-sapphire laser at 792 nm, with < 0.5 ps pulse-width, and a repetition rate of 81.8 MHz, on-chip

photon pair generation with rate of ∼1 MHz/mW and a coincidence-to-accidental ratio (CAR)

of 15 were demonstrated [102]. By utilizing a time-of-flight fiber spectrometer, we were able to

spectrally resolve the second-order coherence of photon pairs on the same chip with CAR values

of > 300 [106]. More recently, by using the aforementioned highly-efficient TF-PPLN devices
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[95], broadband correlated photon-pair was generated in 300 µm-long-PPLN waveguides with a

signal-idler channel separations of∼140 nm and CAR around 7000 [103] (see Figure 2.14b). This

work paves the path towards wide and continuous on-chip pair-matching for high channel capac-

ities. Reducing the input/output coupling loss and improved filtering can result in much higher

heralding efficiencies than the 3% reported in this work.

By incorporating longer TF-PPLN waveguides (5-mm-long poled region), Zhao et al. [105]

have recently reported on CAR values > 67000 with 82 kHz generation rate, as depicted in Fig-

ure 2.14c. CAR values of the discussed work in this section are summarized in Table 2.4.

Figure 2.14c presents demonstrations of photon-pair generation in TFLN microdisks [143].

This device demonstrated a potential SPDC bandwidth over 400 nm inferred from the spectral mea-

surements and a coincidence-to-accidental ratio (CAR) of 43. It is noted that due to the resonance-

based operation of microdisks, the generated signal-idler pair spectrum is discrete whereas TF-

PPLN devices are able to provide a continuous broadband spectrum which can be divided into

various channels [103].

We need to stress that integrated quantum photonics on TFLN platform is a still a young

field with great potential but few reports to date. For discussion of previous work for conventional

bulk LN waveguides, we refer the readers to the review in [164]. It is expected that fully-integrated

quantum chips, such as those reported for conventional LN waveguides [163, 165], will be real-

ized in the near future in TFLN platform with higher performance than their conventional LN

counterparts due to improved modes confinement and smaller waveguide cross-sectional area.

2.6 Roadmap Ahead

In general, further improvement in terms of fiber-to-chip interface coupling [83]–[89], careful

consideration of electrical, RF, and optical packaging, and thermal/temporal reliability and stability

studies are expected to be achieved soon for commercialization of fully-packaged TFLN devices.
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Heterogeneous integration of active elements such as lasers, amplifiers, and photodetecotrs along

with various TFLN components on single photonic chip is another front which is expected to

attract extensive research for a host of applications such as optical communication transceivers,

high-performance computation, analog, digital, and quantum communication links, and LiDAR

systems. In this regard, back end of line heterogeneous integration with SOI and SiN photonic

circuitry seems to be the most anticipated scheme to be pursued for low-cost, large-scale, and

foundry-compatible deployment of TFLN devices.

With such high levels of maturity for TFLN platform, the following advancements are

expected to be achieved for each application reviewed in this work.

For the case of EOMs, achieving modulation BWs beyond 100 GHz is one of the next

steps required for advanced communication systems. Studies have shown promising pathways

for subterahertz application of EOMs [73, 116]. However, it should be noted that full realization

of integrated EOMs with such unprecedented BWs will require development of ultrahigh-speed

electronic and photonic drivers and detection components as well. Another crucial milestone would

be realization of higher modulation formats for coherent optical communication, which is yet to

be demonstrated in TFLN platform.

Demonstration of nonlinear devices on TFLN with better performance is to be pursued in

the near futures, through decreasing insertion and propagation losses, achieving the optimum pol-

ing conditions for PPLN waveguides or increasing the efficiency of other phase-matched waveg-

uides. Incorporating standalone nonlinear devices into more system-like applications, such as

our optical isolators, is also a promising direction to be followed. Heterogeneous integration of

χ(3) materials onto TFLN and cascaded nonlinearity using this heterogeneous platform is also a

promising direction that paves the path for a variety of interesting applications such as highly ef-

ficient high-harmonic generation, frequency-stabilized optical frequency combs and generation of

mid-infrared wavelengths.

More complex quantum PICs for generation and manipulation of single- and entangled-
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photon states are expected to be realized on LN. This is due to the fact that LN is combining

linear (e.g., power splitters and combiners, wavelength division multiplixers), nonlinear (SHG and

SPDC) functions and fast EO modulation. Entangled photon states, such as tripartite Greenberger-

Horne-Zeilinger (GHZ), may also be attained in TFLN platform through cascading nonlinear de-

vices on the same platform, with optimized ultrahigh nonlinear efficiency to realize high generation

rate of these non-classical states. other non-classical applications such as entanglement swapping

and heralded single photon sources with better efficiency are yet to be realized in TFLN. All of

these demonstration will eventually enable the realization of quantum key distribution links, a

crucial step for quantum secure communication.

2.7 Concluding Remarks

Diverse material features and excellent optical properties of LN have been extensively studied over

the past decades. This versatile material has been one of the most attractive photonic platforms

especially for electrooptic modulator and wavelength converter markets.

Recently, with the emergence of thin-film LN technology, the challenges and drawbacks of

bulk LN have been overcome and standalone TFLN devices are outperforming their conventional

bulk counterparts in terms of key performance parameters, such as waveguide propagation loss,

modulation BW for EOMs, and conversion efficiency in the case of wavelength converters. In

addition to performance boost, the TFLN technology is providing dramatic reduction in power

consumption and overall device footprint in order to address the ever-increasing demands of large-

scale integration in modern electronic-photonic systems.

In this paper, we have reviewed the most recent advancements of this flourishing technol-

ogy. Key performance parameters of the main discussed applications, namely electro-, nonlinear-,

and quantum-optics, are summarized in Table 2.2, Table 2.3, and Table 2.4. Thanks to successful

commercialization of TFLN technology, a plethora of ultracompact photonic components and de-
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vices have been demonstrated on this platform. The overall efforts have rejuvenated LN for the

major photonic applications focused in this work, as well as other optical and RF/MEMS applica-

tions (see Figure 2.1a) not discussed here.
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CHAPTER 3: HIGH-SPEED MODELING OF ULTRACOMPACT

ELECTROOPTIC MODULATORS

The contents of this chapter have been published in: A. Honardoost, R. Safian, A. Rao, and S. Fath-

pour, “High-speed modeling of ultracompact electrooptic modulators,” IEEE J. Light. Technol.

36(24), 5893–5902 (2018).

Abstract– The technology for compact thin-film lithium niobate electrooptic modulators

has made significant advances recently. With achieving high levels of maturity for such platforms,

a model is now required in order to accurately design the devices and reliably predict their per-

formance limits. In this paper, a general transmission-line model is developed for predicting the

frequency-dependent response of the compact modulators. The main radio frequency (RF) param-

eters of the modulators, such as characteristic impedance, effective index, and attenuation constant

are calculated as a function of the coplanar waveguide dimensions, and validated by using nu-

merical simulations. The accuracy of the model in predicting the 3-dB modulation bandwidth of

the devices is verified by comparison with experimental results. Finally, guidelines for device de-

sign with significant improvement in the attainable modulation bandwidth are also presented by

optimization of RF and optical parameters, predicting > 100 GHz modulation bandwidth. The

presented model is not limited to emerging thin-film lithium niobate devices, and is applicable to

any type of ultracompact electrooptic modulator.

3.1 Introduction

Optical communication systems have been the focus of substantial amount of research over the past

few decades [1], [2]. Optical modulators are among the key components of these systems for both

digital and analog applications, such as optical interconnects, datacom and telecom, and integrated

RF photonics [3]–[6]. Several platforms have been developed in order to pursue high-performance
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optical modulators.

Historically, commercial optical modulators have been made on materials with strong elec-

trooptic (EO) effect (e.g., lithium niobate, LN or LiNbO3) or electroabsorption (EA) effect (par-

ticularly, III-V compound semiconductors). More recently, silicon (Si) optical modulators based

on free-carrier plasma dispersion effect (FCA) are being widely pursued, as they benefit from

compatibility with standard Si foundry processing [6]–[8]. Another recent trend is heterogeneous

integration of compound semiconductors as well as silicon germanium (SiGe), on silicon substrates

that utilize EA effects such as Franz-Keldysh in bulk semiconductors or quantum-confined Stark

effect in quantum-well structures [9]–[12]. Several modulators operating based on FCA or EA

have been demonstrated with high data transmission rates up to 50 Gb/s. However, they typically

suffer from low extinction ratios [9], [11]–[14].

On the contrary, modulators relying on linear EO or Pockel’s effect have demonstrated

modulation depth of 20 dB or more [21] as well as up to 100 GHz modulation bandwidth (BW)

[16]. With such performance, LN has been well established as the standard material of choice for

EO modulators in applications where high BW and extinction ratio are required, e.g., in long-haul

communications [17]. Transparency in a broad range of the electromagnetic spectrum (0.4-5 µm),

and a large EO coefficient (31 pm/V) are among other reasons which make LN a suitable option

for EO modulators [21].

However, the conventional LN EO modulators suffer from a number of drawbacks, as pro-

ceeding to high integration levels is demanded. Two methods are traditionally used in order to form

optical waveguides in conventional LN modulators, i.e., diffusion of dopants, such as titanium (Ti)

[21], or the proton exchange process [18]. The resultant waveguides are generally several microns

wide [19], [20], as shown in Figure 3.1(a), and the refractive index contrast is relatively small (∆n

< 0.1) [21] which leads to low optical confinement. Hence, the long Mach-Zehnder (MZ) arm

lengths, large half-wave voltage-length product (Vπ.l), as well as high bending loss, restrict the

exploitation of bulky LN EO modulators for desired large-scale photonic integration.
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Figure 3.1: (a) Conventional LN waveguide; (b) Compact thin-film LN waveguide.

The heterogeneous integration of thin films of LN on oxidized Si substrates, has been

recently demonstrated and pursued towards satisfying the requirement of large-scale integration,

e.g., compact waveguide cross-sections, and low bending loss [22]. Our method has been to load

the LN thin films with a rib waveguide made out of a refractive-index-matched material (such as

tantalum pentoxide (Ta2O5) [22], chalcogenide glass (ChG) [23], or silicon nitride (Si3N4) [17]–

[27]) in order to circumvent the LN etching issues and the associated high loss. It should be

noted that low-loss LN etching has been recently demonstrated on LN thin films [10], [29]. Our

team has also recently exploited direct etching of thin-film LN for highly efficient nonlinear-optic

applications [12]. In any case, high optical confinement and low bending loss have been achieved

by rib loading or direct etching, and as shown in Figure 3.1(b), typical waveguide core dimensions

have been significantly reduced by almost 30 times, i.e., from ∼ 2 × 6 µm2 for half-intensity

widths in conventional LN waveguides [20] to 0.4 × 1 µm2.

As a result of these submicron waveguides, the gap between the electrodes of the MZ mod-

ulator can be decreased significantly compared to the conventional LN devices without introducing

additional loss due to absorption of the optical mode by metallic electrodes. By utilizing this plat-

form, we have previously demonstrated compact thin-film LN MZ EO modulators on Si substrates

with a 3-dB modulation BW of 33 GHz and operating up to 50 GHz [17].
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Compact LN modulators are not limited to the rib-loading and thin-film method described

above. A variety of other approaches have been pursued [31]–[39]. A detailed review of different

approaches and advances in thin-film LN modulator technology is beyond the scope of this work

and has been recently published [40].

With achieving this level of maturity for these emerging platforms, an accurate model is

now required in order to design high-performance devices and predict their performance limits.

Despite some early work in recognizing the effect of frequency-dependent impedance mismatch in

travelling-wave EO modulator [41], the commonly employed models in the literature for conven-

tional LN modulators do not consider this effect. In these models, impedance matching is typically

assumed between the MZ EO modulator’s transmission line characteristics and the terminating

resistive load at all frequencies [42], [43].

In this paper, we report on a much improved model in order to design, analyze and op-

timize the optical and RF device parameters of these compact (submicron) LN EO modulators.

Electrical-optical modeling of the modulator based on coupled-mode theory is presented in Sec-

tion II. In Section III, RF transmission-line modeling and calculation of its parameters by utilizing

COMSOLTM simulations as well as conformal mapping technique is discussed. Moreover, cal-

culations based on the transfer function which is developed by taking the impedance mismatch

between the transmission line and the terminating load into account, are presented. Simulation re-

sults are presented in Section IV, and design guidelines are discussed. By comparing the developed

model with experimental results, the accuracy of the model in predicting the frequency-dependent

response of the EO modulators is verified. In addition, design optimizations for both RF and opti-

cal parameters of the EO modulator are investigated. The results predict significant improvement

in the 3-dB BW of such devices. Finally, concluding remarks are given in Section V.
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Figure 3.2: Two dimensional schematic of a typical thin-film LN MZ EO modulator.

3.2 Electrical - Optical Modeling

Figure 3.2 depicts the schematic cross-section of a generic thin-film LN MZ modulator in the push-

pull configuration. The slab region of the optical waveguide is a X- or Y-cut thin-film of LN bonded

to a layer of SiO2 on silicon or LN substrate. As mentioned before, the thin-film LN is rib-loaded

with an index-matched material, or directly etched, to provide lateral confinement for the optical

mode. The applied RF electric field is aligned along the z-axis of LN. Hence, the strongest EO

coefficient of LN crystal, i.e., r33 ' 31 pm/V [44], will be efficiently utilized.

Although this paper chooses the structure shown in Fig. 3.2 as a working example, the

model developed here is more general and, in principle, can be applied to the other aforementioned

compact LN platforms [31]–[39].

Based on Fig. 3.2, the effective refractive index along the z-direction is

nz = ne + ∆n, (3.1)

∆n = −n3
er33E

RF
z /2, (3.2)
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where ne is the extraordinary refractive index of LN, and ERF
z is the total electric field applied

along the z direction. Based on the coupled-mode theory, the change in the amplitude of the

optical field inside the waveguide can be calculated as

Eop
z (x) = Eop

z (0)e−jC̃11x, (3.3)

where superscript op indicates the optical field, C̃11 is the complex self-coupling coefficient defined

as [44]

C̃11 = ∆β̃op = ωop

∫∫
S

∆ε̃(y, z)(Eop
t .E

op
t
∗)ds∫∫

S
ûx.(Eop

t
∗ ×Hop

t + Eop
t ×Hop

t
∗)ds

, (3.4)

and Eop
t and Hop

t are the transverse electric and magnetic field components of the optical wave

propagating across the transverse surface S of the optical waveguide. ûx is the unit vector along

the direction of wave propagation. ε̃ is the complex permitivity of the optical waveguide, and β̃op

is the complex phase constant of the optical wave. Since

ε̃ = ε0ñ
2, (3.5)

and with ñ = n+ jn′, the change in the permitivity is

∆ε̃ ≈ 2nε0∆n, (3.6)

if the perturbation of the imaginary part of the refractive index is ignored. Then, equation (3.4) can

be written as

∆β̃op = ωop

∫∫
S

2nε0∆n(Eop
t .E

op
t
∗)ds∫∫

S
ûx.(Eop

t
∗ ×Hop

t + Eop
t ×Hop

t
∗)ds

. (3.7)

For TE polarization

∫∫
S

ûx.(Eop
t
∗ ×Hop

t + Eop
t ×Hop

t
∗)ds =

2βop
ωopµ0

∫∫
S

Eop
t .E

op
t
∗, (3.8)
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and

∆β̃op =
−k2

0r33n
4
e

2βop

∫∫
S
ERF
z (Eop

t .E
op
t
∗)ds∫∫

S
Eop
t .E

op
t
∗ds

. (3.9)

Since we have neglected the change in the imaginary part of the refractive index, ∆β̃op is approxi-

mately a real value, expressed as

∆βop = ∆neffop k0, (3.10)

where k0 is the vacuum wavenumber. By using equation (3.2) and (3.7), the perturbation to the

optical effective index is

∆neffop =
−k0n

4
er33

2βop

∫∫
S
ERF
z (Eop

t .E
op
t
∗)ds∫∫

S
Eop
t .E

op
t
∗ds

. (3.11)

In general, the RF field can be written as

ERF
z (y, z) =

V

d
f(y, z). (3.12)

The voltage V is a DC voltage for the lumped modulators, and it is a time-varying signal for

traveling-wave EO modulators. d is the distance between the two metallic electrodes. f(y, z) is

the normalized spatial distribution of the electric field applied at the optical waveguide transverse

plane. By defining the overlap of the electrical and optical fields as

Λ =

∫∫
S
f(y, z)(Eop

t .E
op
t
∗)ds∫∫

S
Eop
t .E

op
t
∗ds

, (3.13)

equation (3.11) can be written as

∆neffop = ∆n0V, ∆n0 =
−k0r33n

4
eΛ

2βopd
. (3.14)

79



Zs

Vs ZLZ0 , γ

Zin
x

x=0x=-l

ΓL

Figure 3.3: Schematic of a general transmission line model. Vs is the source voltage with the
impedance ZS . The transmission line is terminated with a load with impedance ZL. Z0 and γ are
characteristic impedance and complex propagation constant of the transmission line, respectively.
The transmission line is along the x-axis.

3.3 RF Transmission Line Modeling

As shown schematically in Fig. 3.2, the RF transmission line employed in the EO modulators is

a symmetric coplanar waveguide (CPW) structure [21]. The signal is applied to the middle con-

ductor and the other two conductors are ground planes (Ground-Signal-Ground (GSG) configura-

tion). The main transmission line parameters of a CPW structure are the characteristic impedance

(Z0), attenuation constant (αRF ) and effective phase constant (βRF ). The standard lumped-element

model of a transmission line [45] can be used to model the RF performance of the travelling-wave

EO modulator, as depicted in Fig. 3.3. γ is the complex propagation constant, Z0 is the character-

istic impedance of the transmission line, and Zin is the input impedance seen at the input of the

transmission line with length l. ΓL is the reflection coefficient due to the mismatch between Z0

and the terminating resistive load (ZL), and is defined as [45]

ΓL =
ZL − Z0

ZL + Z0

. (3.15)
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Based on general transmission line theory, the voltage at each point of the transmission line is

V (x) = V +
0 e

γx + V −0 e
−γx = V +

0 (e−γx + ΓLe
+γx). (3.16)

The voltage at the beginning of the line is calculated as

V (−L) = V +
0 (eγL + ΓLe

−γL) = VS
Zin

Zin + ZS
. (3.17)

Then, we can find V +
0 in terms of the source voltage as

V +
0 = VS

Zin
Zin + ZS

1

eγl + ΓLe−γl
. (3.18)

In the ideal case, in which both source and load impedances are matched to the line impedance

(ZL = Z0 , Zin = Z0),

ΓL = 0, V +
0 = VS

Z0

Z0 + ZS
. (3.19)

However, this ideal case is almost impossible to achieve in practice across a broad RF band, as dis-

cussed later in Section III. Hence, it is necessary to introduce the effect of the impedance mismatch

into the modeling.

As derived in the Appendix, the frequency-dependent transfer function of any EO modula-

tor is

H(ωRF ) =
Zin

Zin + ZS

1

eγl + ΓLe−γl[sinh(Al/2)e−Al/2

A/2
+ ΓL

sinh(Bl/2)e−Bl/2

B/2

]
, (3.20a)

A = −αRF − jωRF (nRF − nop)/c, (3.20b)

B = +αRF + jωRF (nRF + nop)/c. (3.20c)
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where nRF and nop are the RF and optical wave refractive indices, respectively.

Equation (3.20) accounts for the RF attenuation coefficient, the phase velocity mismatch of

the RF and optical traveling waves and the impedance mismatch between ZS and Z0. Moreover,

unlike the conventional models [43], the impedance mismatch between the transmission line and

the terminating load for the operating range has been taken into account.

In comparison, the commonly employed model for predicting the RF frequency response

of the EO modulators is [43]

H(ωRF ) =
Zin

Zin + ZS
e−αRF l/2

[sinh2(αRF l/2) + sin2(ωRF (nRF − nop)l/2c)
(αRF l/2)2 + (ωRF (nRF − nop)l/2c)2

]1/2

.

(3.21)

In this conventional model, impedance matching between Z0 and ZL is assumed at all frequencies.

As shown later in this work, this assumption is not valid for compact EO modulators, and leads to

overestimation of the 3-dB BW. The comparison between these two approaches are presented in

Section IV.

Next, the main parameters of the RF transmission line, i.e. Z0, nRF , and αRF are calculated

as follows.

3.3.1 Characteristic Impedance

The characteristic impedance of the modulator is calculated by using COMSOLTM simulations.

Based on the quasi-Transverse Electromagnetic analysis of the CPW structure, RF electric and

magnetic fields (denoted by ERF and HRF respectively) are used to calculate the resistance (R),

inductance (L), conductance (G), and capacitance (C) circuit parameters per unit length for the
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CPW structure. The standard elements are calculated as [45]

R =
RS

I2

∫
l

HRF .H∗RFdl, L =
µ0

I2

∫
S

HRF .H∗RFds,

G =
ωRF ε

′′

V 2

∫
S

ERF .E∗RFds, C =
ε̃

V 2

∫
S

ERF .E∗RFds
(3.22)

where RS is the surface resistance of the metal electrodes, ε′′ is the imaginary part ε̃, V is the

potential difference between the CPW electrodes, and I is the current flowing in the electrode.

Then, the frequency-dependent Z0 is calculated as

Z0 =

√
R + jωRFL

G+ jωRFC
. (3.23)

The characteristic impedance of a CPW with a GSG configuration and multilayered sub-

strate can be also obtained by using the conformal mapping technique as [46]

Z0 =
K ′(k)

4ε0cK(k)
√
εeffRF

, (3.24)

where c is the velocity of electromagnetic waves in free space, εeffRF is the effective dielectric

constant of the transmission line and k = xa/xb, where xa = Wc/2, xb = Wc/2 + Wg, xc =

Wc/2 + Wg + Wl. K(·) and K ′(·) are the complete elliptic integrals of the first kind and its

complement, respectively. The effective dielectric constant is

εeffRF = 1 +
3∑
1

qi, (3.25)

where qi is the filling factor, and 1, 2, and 3 correspond to LN, SiO2 bottom cladding and substrate
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layers, respectively, as shown in Fig. 3.2. For i = 1 and 2, qi is defined as [46], [47]

qi =
1

2
(εr,i − εr,i+1)

K(k)K(k′i)

K(k′)K(ki)
, (3.26)

where

ki =
sinh(πxc/2hi)

sinh(πxb/2hi)

√
sinh2(πxb/2hi)− sinh2(πxa/2hi)

sinh2(πxc/2hi)− sinh2(πxa/2hi)
,

k′i =
√

1− k2
i ,

(3.27)

and for the substrate layer

q3 =
1

2
(εr,3 − 1)

K(k)K(k′3)

K(k′)K(k3)
, (3.28)

where

k =
xc
xb

√
x2
b − x2

a

x2
c − x2

a

, k′ =
√

1− k2. (3.29)

The frequency variation of the εeffRF is calculated as

εeffRF (f) =
[√

εeffRF (0) +

√
εr −

√
εeffRF (0)

1 +G(f/fTE)−1.8

]2

, (3.30)

where
G = exp(u ln(Wc/Wg) + v),

u = 0.54− 0.64p+ 0.015p2,

v = 0.43− 0.86p+ 0.54p2,

p = ln(Wc/h),

fTE = c/4h
√
εr − 1,

(3.31)

and h = h1 + h2 + h3 in the current structure and εr =
∑3

i=1 εr,i/3.

It is worth mentioning that the values of the characteristic impedance and the effective per-

mitivity obtained here are valid for infinitesimally thin CPW metallic strip conductors. As shown
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in Fig. 3.2, in practice, the metallization has a finite thickness t that affects the characteristics.

It has been observed that as the metal thickness is increased, characteristic impedance and effec-

tive permitivity are both decreased consequently, but in the case t/wc << 1, the effect of metal

thickness can be neglected [46].
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Figure 3.4: Comparison between the calculated real part, and imaginary part of the characteristic
impedance (Z0) of the example electrooptic modulator (EOM) using conformal mapping (CM) and
COMSOLTM simulations vs. the conventional bulk modulator for the operating frequency range.

The structure shown in Fig. 3.2 is used as an example with l = 8 mm. The characteristic

impedance of the modulator with dimensions Wg = 5.5 µm, Wc = 12 µm, Wl = 8.5 µm, Wt =

1.2 µm, t = 2 µm, h1 = 400 nm, h2 = 2 µm, and h3 = 500 µm for Si substrate is calculated us-

ing COMSOLTM simulations and the conformal mapping method described above with calculated

filling factors of 0.35, 0.01, and 0.001 for q1, q2, and q3, respectively, for Si substrate. For the

case of LN substrate, εr,3 in Eq. (3.28) is about three times higher than that of Si, but q3 is still a

small factor. The results agree with negligible difference, i.e., ∼5% of each other (For example
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Z0 = 48.38 Ω using COMSOLTM simulations (Eq. (3.23)), and Z0 = 50.7 Ω calulated using the

conformal mapping method (Eq. (3.24)), both calculated at 1 GHz frequency). The trends versus

RF frequency (0 to 50 GHz) are presented in Fig. 3.4, and Fig. 3.5 for Z0 and nRF , respectively.

It is evident that the Z0 of the compact modulator in the example varies from ∼ 50 Ω to ∼

35 Ω as the frequency is increased from DC to 50 GHz, whereas the characteristic impedance of

the conventional bulk LN modulators remains almost invariant for the most part of the operating

frequency range [48]. This is confirmed through our COMSOLTM simulations by using structure

in Fig. 3.2 with Wg = Wl = Wc = 20 µm, and t = 5 µm on bulk LN substrate which resembles a

typical conventional LN modulator. Shown also in Fig. 3.4, this clearly shows the importance of

impedance matching between the modulator and the terminating load, in the case of the compact

modulators.

3.3.2 RF Attenuation Constant

The RF attenuation constant is another important design parameter which should be carefully stud-

ied. As discussed later in Section IV, it plays an important role in predicting the frequency response

of the EO modulator and its BW. The attenuation constant of the CPW structure is generally de-

fined as

αRF = αc + αd + αr, (3.32)

where αc is the ohmic or metalic conductor attenuation constant, αd is the dielectric attenuation

constant and αr is the radiation attenuation constant. The dimensions of αc, αd and αr are dB per

unit length. Here, with smooth metal deposition for electrodes, αr is neglected. The expressions for

the attenuation constant due to dielectric loss in CPW structure is the same as that for a microstrip,

which is [46]

αd =
2.73

c

εr√
εeffRF

εeffRF − 1

εr − 1
(tan δ)f, (3.33)
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where tan δ is called the dielectric loss tangent, and it is taken from [49], [50], and [51] for SiN,

LN, and SiO2, respectively.

The ohmic loss is calculated by evaluating the power dissipated in the line through con-

formal mapping of the current density in the finite metal thickness structure [52] as αc = αc0
√
f ,

where αc0 is defined as

αc0 =
Rs0

√
εeffRF

480πK(k)K ′(k)(1− k2)

[ 1

xb

(
π + ln

(8πxa(1− k)

t(1 + k)

))
+

1

xb

(
π + ln

(8πxb(1− k)

t(1 + k)

))]
,

(3.34)

where Rs0 is the surface resistance of the strip conductor at low frequencies. The transformation

rule used for calculating elliptic integrals is

K(k) = (1 + ks)K(ks), K(k′) =
1 + ks

2
K(k′s), (3.35)

where

ks = xa/xb, k
′
s =

√
1− k2

s , k =
2
√
ks

1 + ks
, k′ =

1− ks
1 + ks

. (3.36)

The RF attenuation and both parts of it, i.e., αc and αd, are depicted in Fig. 3.5 for the example

modulator discussed in the previous section l = 8 mm. Clearly, αd cannot be neglected at high

frequencies.

3.4 Simulation Results and Discussions

RF and optical mode profiles of the EO modulator structure of Fig. 3.2 are simulated using COMSOLTM

and presented in Fig. 3.6. In this structure, more than 70% of the optical mode is confined within

the LN thin film for Si3N4 rib with an index of 1.93 at 1550 nm. The evident high lateral optical

confinement compared to conventional LN devices allows for reduced electrode gaps of 5.5 µm,
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and reduction in device’s overall footprint, without introducing additional absorption of the optical

mode by metallic electrodes. Meanwhile, the high lateral confinement of the electric field in LN

provides negligible optical loss at the sharp Y -junctions of the MZ modulator, and more impor-

tantly, a desired overlap of the RF and optical field, which leads to lower drive voltages compared

to traditional bulky LN modulators, and consequently a lower Vπ.l, which is an important figure

of merit for EO modulators. By further increasing the optical mode overlap in LN, the drive volt-

age can be reduced. However, this simultaneously results in lower lateral confinement and can

potentially increase the electrode-induced optical loss, and consequently degrades the overall per-

formance of the device [40]. Therefore, this trade-off should be considered carefully in the design

procedure.
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Figure 3.5: Calculated RF refractive index (nRF ) of the example modulator using conformal map-
ping and COMSOLTM simulations, and αc, αd, and αRF by using conformal mapping method.

It is observed that the effective refractive index of the optical waveguide plays an impor-

tant role in the final RF performance of the modulator, i.e., in the frequency-dependent velocity
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mismatch between the RF and optical modes (see Eq. (3.20)). Since the effective refractive index

of the RF guided mode (nRF ) decreases with RF frequency, as depicted in Fig. 3.5, while the op-

tical refractive index (neffop ) remains constant, the mismatch between these two indices should be

minimized as much as possible, by using the nrib value to tune neffop (see Figs. 3.7 and 3.8(a)).

(a)

Au
Electrode

(b)

LN

Rib

SiO2

BCB

Si
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0.5 µm

0.4 µm

2 µm

2 µm

5.5 µm

Figure 3.6: (a) Simulated RF mode profile of MZ modulator with 5.5 µm gap between the elec-
trodes at 10 GHz.; (b) Simulated optical mode profile of the hybrid ridge waveguide with Si3N4

rib.

In order to study the range of achievable values for neffop , the optical waveguide region of

the compact EO modulator in Fig. 3.6 is simulated using COMSOLTM and the results are presented

in Fig. 3.7. The height and width of the rib is varied for three different rib-loading materials with

optical refractive indices of nrib = 1.9, 2.0, and 2.2, as an example (the case nrib = 2.2 corresponds

to LN). The height of the thin-film LN is fixed at 400 nm in the simulations. The acquired values

for neffop are utilized in Eq. (3.20) for l = 8 mm, and the EO frequency response of the modulator
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is depicted in Fig. 3.8(a). With the same waveguide cross-section, increasing nrib results in higher

BW and lower Wg, as observed in Fig. 3.8(a), and Fig. 3.8(b). For example, an all-LN platform,

achieved by direct etching of LN (nrib = 2.2) has higher BW compared to rib-loaded LN with rib

indices lower than 2.2, while rib-loading with a material with a higher index of 2.3 would offer the

highest BW.
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Figure 3.7: Calculated effective refractive indices of optical waveguide of the modulator for 3
different rib-loading materials as examples. The height and width of the rib is varied. The thin-
film LN thickness is 400 nm. The inset table shows the assumed refractive indices of rib-loading
materials.

It is evident that by employing the appropriate rib-loading material and optical waveguide

dimensions, the 3-dB BW of the modulator can be improved significantly. It is observed that

these degrees of freedom in using waveguide index, and dimensions are not easily attainable in

traditional diffused LN modulators. As discussed later, the device length is also an important

parameter, and 100 GHz BW is predicted with l = 3 mm (see Fig. 3.9(b)).

It should be noted that these simulation results are for the particular CPW electrode struc-
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ture of Fig. 3.2. Other configurations for electrodes will vary the nRF of the device and hence,

require appropriate re-designing of the optical parameters. It is also important to mention that by

changing the rib-loading material or the optical waveguide dimensions, the lateral confinement of

the optical mode will vary. Therefore, the gap between the electrodes has to be designed accord-

ingly in order to avoid the metal-induced additional loss.

Figure 3.8(b) presents optical loss vs. Wg for different rib-loading materials to show the

trade-off between loss and confinement. It is stressed that optical loss values only account for the

metallic electrodes and ignore the material loss of LN and the rib-loading materials, as well as

any fabrication-dependent sidewall scattering loss. Figure 3.8(b) suggests that employing a rib-

loading material with higher refractive index yields shorter gaps and consequently more compact

and lower-voltage devices. With large enough Wg, metal-induced absorption loss is negligible,

and the overall transmission of the EO modulator is maximized. Meanwhile, the optical propaga-

tion loss does not affect the frequency response of the modulator, and its 3-dB BW. On the other

hand, the RF loss plays a key role in determining the performance limits of the modulator, and as

mentioned before, it should be carefully studied.

Here, a comparison between the driving voltage of rib-loading versus direct etching of LN

is presented. Directly-etched LN waveguides clearly have higher optical mode overlap with the

active region and the mode is more confined. Also, with an index of 2.2 for LN, directly-etched

devices can afford smaller Wg compared to nrib < 2.2 for the same metallic loss. For example, the

data in Fig. 3.8(b) suggests that for a loss of 1 dB/cm, Wg = 3.7 µm for nrib = 2.2 (LN) and Wg =

5.1 µm for nrib = 2.0. However, as also pointed out elsewhere [40], the RF electric field drops

in both the rib and the LN active region, as the dielectric constant of the rib material increases.

Consequently, the overlap of the electric and optical fields, Λ in Eq. 3.13, drops and to some extent

counteracts the shorterWg in Vπ.l calculations. For instance, in the same example described above,

Λ is 64% for nrib = 2.2 (LN) and 67% for nrib = 2.0. Accordingly, the final Vπ.l values are 2.93

and 3.82 V.cm, respectively.
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Figure 3.8: (a) Variation of the normalized frequency dependent response of the EO modulator
for different values of effective optical refractive index, neffop .; (b) Simulated optical loss vs. the
gap between the electrodes (Wg) for 3 different rib-loading materials as an example.; (c) Charac-
teristic impedance (Z0) vs. the gap between the electrodes (Wg) for different values of the center
electrode’s width (Wc).
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As discussed earlier, one important issue neglected in traditional models is the impedance

mismatch between the characteristic impedance of the modulator (Z0) and the terminating 50-Ω

resistive load. This mismatch has been taken into account in our developed model as denoted

by ΓL in Eq. (3.20). While Z0 varies with RF frequency, the CPW elecrodes structure of the

modulator is designed in such a way to maintain characteristic impedance as close as possible to

50 Ω. Figure 3.8(c) shows the variation of Z0 versusWg for different widths of the center electrode,

denoted by Wc in Fig. 3.2.

Finally, for the purpose of verification, the developed model is utilized to compare with

the frequency-dependent response of a fabricated device in our previous work [17], i.e., the device

with the cross-section shown in Fig. 3.6 and with l = 8 mm. As shown in Fig. 3.9(a), the proposed

model follows the experimental data and is capable of accurately predicting the 3-dB BW of the

modulator. However, it can be observed that the characterization data and the frequency response

resulted from the developed model do not match at low frequencies. One possible reason is that the

wavelength of the RF signal is much greater than the transverse dimensions of the EO modulator in

this frequency range. Hence, the peripheral apparatus such as the metallic holders or the optical test

bench below can potentially affect the measured RF response of the device. Since these parasitic

elements are not considered in this model, the accuracy of the model at lower frequencies could

have been compromised. Further investigation of this attribution requires more detailed modeling,

which is beyond the scope of this work.

The discrepency between the conventional [43] and the proposed model (see Eq. (3.20)) is

clearly apparent in Fig. 3.9(a). The result from conventional modeling considerably overestimates

the 3-dB BW of the modulator. It is also observed that if αd is neglected in the models, the

performance predictions are no longer valid.

Accurate calculation of RF loss and refractive index, as well as taking the mismatch be-

tween Z0 and ZL into account are both required in order to properly predict the frequency response

of the compact EO modulators.
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Finally, in order to further improve the 3-dB BW of the modulator, the optimized device

length is studied. As shown in Fig. 3.9(b), shorter electrode lengths provide larger BW for the same

designed structure of Fig. 3.6 [17], but with different l values. The results predict the potential for

achieving 3-dB BW of 100 GHz for l = 3 mm. However, it should be noted that larger BW is

attainable at the cost of increased half-wave voltage (Vπ). The variation of Vπ vs. RF frequency

(DC to 3-dB BW) is depicted in Fig. 3.9(b) for different values of l.

3.5 Conclusions

In summary, we have developed a general transmission-line model that accurately predicts the

frequency-dependent response of ultracompact (submicron) and high-speed electrooptic modula-

tors. The major RF parameters of such devices are calculated as a function of coplanar waveguide

dimensions. The design procedure of these compact modulators in terms of RF, as well as optical

parameters are presented, and the model is utilized to analyze and optimize the high-speed per-

formance of such devices. Finally, the accuracy of the model is verified by comparing the results

with the characterization data obtained from fabricated devices. Unlike conventional models, the

developed model presented in this work, is capable of accurately predicting the 3-dB bandwidth

of ultracompact LN EO modulators. By utilizing this model, and with proper design of such com-

pact EO modulators, the 3-dB modulation bandwidth can be improved to > 100 GHz, which is an

important attribution for advanced optical communication systems.

3.6 Appendix

Formulations for calculating the proposed frequency-dependent transfer function of the EO mod-

ulator, Eq. (3.20), are developed in the following.
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The complex propagation constant of the RF transmission line is defined as

γ = αRF + jβRF . (A.1)

where the real part of the propagation constant, αRF , is the attenuation constant and the imaginary

part, βRF , is the phase constant of the transmission line.

In general, the total phase shift of the optical field along the the electrode length l which

the RF transmission line is presented is

∆Φop = ∆Φ(ωRF , t) =

∫ 0

−l
∆βopdx, (A.2)

where ∆βop is defined as

∆βop = k0∆neffop . (A.3)

Then, using Eq. (3.14)

∆βop = k0∆n0V (x, t+
x

vpop
), (A.4)

where vpop is the phase velocity of the optical wave and is defined as

vpop = ωop/βop = c/neffop . (A.5)

The voltage of the transmission line in Fig. 3.3 which is time- and frequency-dependent can be

written as
(A.6)V (x, t+

x

vpop
) = V +

0 [e−γx + ΓLe
+γx]ejωRF (t+x/vpop).

If we define the transfer function, H(ωRF ), via

∆Φop = k0∆n0H(ωRF )ejωRF tVS, (A.7)
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then, H(ωRF ) is

H(ωRF ) =

∫ 0

−l
V +

0 /VS

[
e−αRF xe−jωRF (nRF−nop)x/c+

ΓL

(
e−αRF xe+jωRF (nRF +nop)x/c

)]
dx.

(A.8)

After integration, Eq. (3.20) is derived.

3.7 References

[1] D. Botez and G. J. Herskowitz, “Components for optical communications systems: A review,”

Proc. IEEE, vol. 68, no. 6, pp. 689–731, 1980.

[2] R. -J. Essiambre and R. W. Tkach, “Capacity trends and limits of optical communication

networks,” Proc. IEEE, vol. 100, no. 5, pp. 1035–1055, 2012.

[3] D. A. B. Miller, “Optical interconnects to electronic chips,” Appl. Opt., vol. 49, no. 25, pp.

F59–F70, 2010.

[4] L. A. Eldada, “Advances in telecom and datacom optical components,” Opt. Eng., vol. 40,

no. 7, pp. 1165–1178, 2001.

[5] R. Williamson and R. Esman, “RF Photonics,” J. Lightwave Technol, vol. 26, no. 9, pp. 1145–

1153, 2008.

[6] B. Jalali and S. Fathpour, “Silicon photonics,” IEEE J. Light. Technol., vol. 24, no. 12, pp.

4600–4615, 2006.

[7] G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li,

P. R. Wilson, S. –W. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based

silicon optical modulators,” Nanaophotonics, vol. 3, no. 4–5, pp. 229–245, 2014.

[8] R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron.,

vol. 23, no. 1, pp. 123–129, 1987.

97



[9] Y. Tang, H. -W. Chen, S. Jain, J. D. Peters, U. Westergren, and J. E. Bowers, “50 Gb/s hybrid

silicon traveling-wave electroabsorption modulator,” Opt. Exp., vol. 19, no. 7, pp. 5811-–5816,

2011.

[10] O. Qasaimeh, P. Bhattacharya, and E. T. Croke, “SiGe-Si quantum-well electroabsorption

modulators,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 807–809, 1998.

[11] J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel,

“Waveguide-integrated ultralow-energy GeSi electro-absorption modulators,” Nat. Photon.,

vol. 2, pp. 433–437, 2008.

[12] S. Fathpour, “Emerging heterogeneous integrated photonic platforms on silicon,” Nanaopho-

tonics, vol. 4, no. 1, pp. 143-–164, 2015.

[13] X. Tu, T. Liow, J. Song, X. Luo, Q. Fang, M. Yu, and G. Lo, “50-Gb/s silicon optical modu-

lator with traveling-wave electrodes,” Opt. Express, vol. 21, no. 10, pp. 12776-–12782, 2013.

[14] Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G. Lo, “High-efficiency Si optical modulator

using Cu travelling-wave electrode,” Opt. Express, vol. 22, no. 24, pp. 29978-–29985, 2014.

[15] E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack,

D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate

modulators for fiber-optic communications systems,” IEEE J. Quant. Elec., vol. 6, no. 1, pp.

69–82, 2000.

[16] K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,”

IEEE J. Light. Technol., vol. 16, no. 4, pp. 615-–619, 1998.

[17] M. Doi, M. Sugiyama, K. Tanaka, and M. Kawai, “Advanced LiNbO3 optical modulators for

broadband optical communications,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 4, pp.

745–750, 2006.

98



[18] J. L. Jackel, C. E. Rice, and J. J. Veselka, “Proton exchange for high-index waveguides in

LiNbO3,” Appl. Phys. Lett., vol. 41, no. 7, pp. 607–608, 1982.

[19] P. G. Suchoski, T. K. Findakly, and J. Leonberger, “Stable low-loss proton-exchanged

LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett., vol. 13, no. 11,

pp. 1050—1052, 1988.

[20] M. Fukuma, and J. Noda, “Optical properties of titanium-diffused LiNbO3 strip waveguides

and their coupling-to-a-fiber characteristics,” Appl. Op., vol. 19, no. 4, pp. 591—597, 1980.

[21] A. Yi-Yan, “Index instabilities in proton-exchanged LiNbO3 waveguides,” Appl. Phys. Lett.,

vol. 42, no. 8, pp. 633–635, 1983.

[22] P. Rabiei, J. Ma, S. Khan, J. Chiles, and S. Fathpour, “Heterogeneous lithium niobate pho-

tonics on silicon substrates,” Opt. Express, vol. 21, no. 21, pp. 25573–25581, 2013.

[23] A. Rao, A. Patil, J. Chiles, M. Malinowski, S. Novak, K. Richardson, P. Rabiei, and S. Fath-

pour, “Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and

chalcogenide glasses on silicon,” Opt. Express, vol. 23, no. 17, pp. 22746–22752, 2015.

[24] A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, “High-

performance and linear thin-film lithium niobate Mach-Zehnder modulators on silicon up to

50 GHz,” Opt. Lett., vol. 41, no. 24, pp. 5700–5703, 2016.

[25] A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour,

“Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on

silicon,” Opt. Express, vol. 24, no. 26, pp. 29941–29947, 2016.

[26] A. Rao, J. Chiles, S. Khan, S. Toroghi, M. Malinowski, G. F. Camacho Gonzalez, and S. Fath-

pour, “Second-harmonic generation in single-mode integrated waveguides based on mode-

shape modulation,” Appl. Phys. Lett., vol. 110, Art. no. 111109, 2017.

99



[27] A. Honardoost, G. F. Camacho Gonzalez, S. Khan, M. Malinowski, A. Rao, J. -E. Trem-

blay, A. Yadav, K. A. Richardson, M. C. Wu, and S. Fathpour, “Cascaded integration of opti-

cal waveguides with third-order nonlinearity with lithium niobate waveguides on silicon sub-

strates,” IEEE Photon. J., vol. 10, no. 3, Art. no. 4500909, 2018.

[28] I. Krasnokutska, J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in

lithium niobate on insulator,” Opt. Express, vol. 26, no. 2, pp. 897–904, 2018.

[29] M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, “Monolithic ultra-high-Q

lithium niobate microring resonator,” Optica, vol. 4, no. 12, pp. 1536–1537, 2018.

[30] A. Rao, K. Abdelsalam, T. Sjaardema, G. F. Camacho Gonzalez, A. Honardoost, and S. Fath-

pour, “Highlly efficient nonlinear integrated photonics in ultracompact periodically-poled

lithium niobate on silicon,” OSA Frontiers in Optics (FiO) Annual Meeting 2018, Washing-

ton, DC, 2018.

[31] L. Cao, A. Aboketaf, Z. Wang, and S. Preble, “Hybrid amorphous silicon (a-Si:H)-LiNbO3

electro-optic modulator,” Opt. Commun., vol. 330, pp. 40—44, 2014.

[32] L. Chen, J. Chen, J. Nagy, and R. M. Reano, “Highly linear ring modulator from hybrid

silicon and lithium niobate,” Opt. Express, vol. 23, no. 10, pp. 13255—13264, 2015.

[33] A. J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, and D. W. Prather, “110 GHz

CMOS compatible thin film LiNbO3 modulator on silicon,” Opt. Express, vol. 24, no. 14, pp.

15590—15595, 2016.

[34] S. Jin, L. Xu, H. Zhang, and Y. Li, “LiNbO3 thin-film modulators using silicon nitride surface

ridge waveguides,” IEEE Photon. Technol. Lett., vol. 28, no. 7, pp. 736-–739, 2016.

100



[35] L. Cai, Y. Kang, and H. Hu, “Electric-optical property of the proton exchanged phase modu-

lator in single-crystal lithium niobate thin film,” Opt. Express, vol. 24, no. 5, pp. 4640-–4647,

2016.

[36] C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, “Nanophotonic lithium niobate

electro-optic modulators,” Opt. Express, vol. 26, no. 2, pp. 1547–1555, 2018.

[37] P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo,

A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea

“Hybrid silicon photonic-lithium niobate electro-optic Mach-Zehnder modulator beyond 100

GHz,” arXiv:1803.10365, 2018.

[38] A.J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium

niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express, vol. 26,

no. 11, pp. 14810–14816, 2018.

[39] C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer,

and M. Loncar, “100-GHz low voltage integrated lithium niobate modulators,” Conference on

Lasers and Electro-Optics, (OSA CLEO), paper SM3B.4., 2018.

[40] A. Rao, and S. Fathpour, “Compact lithium niobate electrooptic modulators,” IEEE J. Sel.

Top. Quantum Electron., vol. 24, no. 4, pp. 1–14, 2018.

[41] K. Kubota, J. Noda, and O. Mikami, “Travelling wave optical modulator using a directional

coupler LiNbO3 waveguide,” IEEE J. Quantum Electron., vol. 16, no. 7, pp. 754–760, 1980.

[42] G. K. Gopalakrishnan and W. K. Burns, “Performance and modeling of resonantly enhanced

LiNbO3 modulators for low-loss analog fiber-optic links,” IEEE Trans. Microwave Theory and

Tech., vol. 42, no. 12, pp. 2650–2656, 1994.

101



[43] H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave

LiNbO3 interferometric modulators,” IEEE J. Quantum Electron., vol. 27, no. 23, pp. 608–617,

1991.

[44] J. M. Liu, Photonic Devices, Cambridge University Press, 2005.

[45] D. M. Pozar, Microwave Engineering, Fourth Edition, Wiley, 2012.

[46] R. Garg, I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Third Edition, Artech House,

2013.

[47] E. Chen, and S. Y. Chou, “Characteristics of coplanar transmission lines on multilayer sub-

strates: modeling and experiments,” IEEE Trans. Microwave Theory and Tech., vol. 45, no. 6,

pp. 939–945, 1997.

[48] G. Chione, M. Goano, G. Madonna, G. Omegna, M. Pirola, S. Bosso, D. Frassati, and

A. Perasso, “Microwave modeling and characterization of thick coplanar waveguides on oxide-

coated lithium niobate substrates for electrooptical applications,” IEEE Trans. Microwave The-

ory and Tech., vol. 47, no. 12, pp. 2287–2293, 1999.

[49] J. Baker-Jarvis, M. D. Janezic, B. Riddle, C. L. Holloway, and N. Paulter, “Dielectric and

conductor-loss characterization and measurements on electronic packaging materials,” NIST,

Nist Tech. Note 1520, 2001.

[50] C. Cochard, T. Spielmann, N. Bahlawane, A. Halpin, and T. Granzow, “Broadband charac-

terization of congruent lithium niobate from mHz to optical frequencies,” J. Phys. D: Appl.

Phys., vol. 50, no. 36, LT01, 2017.

[51] W. B. Westphal, and A. Sils, “Dielectric constant and loss data,” Tech. Rep., AFML-TR-72-

39, 1972.

102



[52] G. Chione,“A CAD-oriented analytical model for the losses of general asymmetric coplanar

lines in hybrid and monolithic MICs,” IEEE Trans. Microwave Theory and Tech., vol. 41,

no. 9, pp. 1499–1510, 1993.

103



CHAPTER 4: TOWARDS SUBTERAHERTZ BANDWIDTH

ULTRACOMPACT LITHIUM NIOBATE ELECTROOPTIC

MODULATOR

The contents of this chapter have been published in: A. Honardoost, F. A. Juneghani, R. Safian,

and S. Fathpour, “Towards subterahertz bandwidth ultacompact lithium niobate electrooptic mod-

ulator,” Opt. Express 27(5), 6495–6501 (2019).

Abstract– Achieving ultrahigh-speed electrooptic modulators (subterahertz modulation band-

widths) is shown feasible in the thin-film lithium niobate integrated photonic platform. Design

guidelines for optimization of the main radio-frequency and optical parameters are presented and

3-dB modulation bandwidth up to 400 GHz is proved attainable in 3-mm-long devices. Such

unprecedented bandwidths pave the path towards utilizing the devices in advanced optical commu-

nication systems.

4.1 Introduction

High-performance optical modulation is an essential part of modern communication systems.

Ultrahigh-speed modulators are of great interest for ever-increasing aggregate bandwidth require-

ments of optical communication systems. Due to increased complexity of the electronic and pho-

tonic systems, reduction in power consumption, manufacturing cost, device footprint, and overall

packaged size are also demanded for analog and digital applications [1]–[3]. Among platform

candidates, Mach-Zehnder (MZ) modulators, operating based on the linear electrooptic (EO) or

Pockel’s effect, have been demonstrated to be superior, boasting up to ∼100 GHz modulation

bandwidth (BW), as well as> 20 dB extinction ratios [4, 5]. Indeed, lithium niobate (LiNbO3, LN)

has been the standard material for the EO modulators (EOM) used in long-haul optical networks,

due to its large EO coefficient (r33 = 31 pm/V) and fabrication maturity [4]. However, conventional
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LN waveguides (formed by in-diffusion of dopants or proton exchange processes) are bulky, i.e.,

their low index-contrast (< 0.1) yields weak optical confinement. As a result, high bending loss,

long MZ electrode lengths, and low power efficiency due to large half-wave voltage-length prod-

uct (Vπ.L), render the EOMs unattractive for large-scale integration demands of advanced optical

networks [4, 5].

Thin-film approaches have been alternatively pursued to overcome these drawbacks of

conventional LN devices and achieve ultracompact (submicron-scale) devices [6]. Particularly,

exploiting heterogeneous integration techniques led to the emergence of ultracompact EOMs on

silicon (Si) substrates [18]. This technology is potentially compatible with silicon photonics due

to the choice of Si substrate. In order to attain lateral optical confinement and form submicron 2-D

waveguides, one method is to rib-load the LN thin films with a refractive-index-matched material

[18]–[17]. By utilizing the rib-loading method, difficulties of directly etching LN are avoided.

However, it should be noted that, more recently, promising works have been reported on direct-

etched LN thin films [10]–[12]. At any rate, high-speed thin-film LN EOMs with 3-dB BWs of

33 GHz and an extinction ratio of 18 dB have been reported on Si substrates [17]. Also recently,

thin-film LN MZ EOMs with 3-dB BWs up to ∼100 GHz have been demonstrated [13, 14].

With this stage of maturity, accurate design of the ultracompact EOMs and reliable pre-

diction of their high-speed performance limits demanded an elaborate model. We have recently

reported on such a general transmission-line model [15] and verified its accuracy by comparing

the simulated results with prior experimental data [17].

In this work, novel designs are investigated in order to attain ultrahigh-BW (up to 400 GHz)

MZ EOMs. Radio-frequency (RF) and optical parameters of the devices have been studied, and

design guidelines and optimization procedures are presented for such unprecedented 3-dB modu-

lation BWs for both rib-loaded and direct-etched thin-film LN EOMs. The present work paves the

path towards exploiting the ultracompact devices in advanced integrated photonic circuits target-

ing futuristic optical communication applications, analog or digital, where subterahertz (sub-THz)
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BWs are desired. It is finally noted that optically-assisted characterization of EOMs in the sub-THz

range is feasible [16]. However, full realization of functioning analog or digital communication

systems will require development of ultrahigh-speed electronic and photodetection components,

which are obviously beyond the scope of this work.

4.2 Design optimization

(a) (b)

Figure 4.1: (a) 3-D schematic of the thin-film LN MZ EOMs; (b) Cross-section of the EOMs in
the lateral y-z plane. The zoomed section shows the misalignment (∆D = D2 − D1) of the rib’s
center (D1) from the middle of the gap between the electrodes (D2).

The 3-D schematic of the thin-film LN MZ EOM in the push-pull configuration is depicted

in Fig. 4.1(a). The slab region of the optical waveguide is an X- or Y-cut LN thin film bonded to a

thick SiO2 buffer layer on a Si substrate. The thin film can be prepared through ion-implantation,

wafer bonding, and thermal slicing processes [6, 18]. The applied radio-frequency (RF) field, via

the gold (Au) electrodes, is aligned along the Z-axis of the LN, in order to efficiently utilize the

strongest EO coefficient of LN crystal (r33). The thin-film LN is rib-loaded with a refractive-index-

matched material, silicon nitride (SiN) for example [17], in order to provide lateral confinement

for the optical mode. As mentioned, this method circumvents the need for direct etching of LN.

However, it is important to note that the present work is not limited to rib-loaded waveguides.
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Designs for both optical waveguide platforms, i.e., rib-loaded LN and direct-etched LN (all-LN),

are investigated and the results, along with the discussion on pros and cons of each method, are

presented at the end of Section 2.

By using ANSYS HFSS and COMSOLTM commercial simulators, the main parameters

of the EOM are investigated in order to optimize the structure for ultrahigh BWs. The three main

parameters are the RF loss, the effective index mismatch between the RF and optical guided modes

(∆n = |nRF − nop|), and the characteristic impedance of the electrodes (Z0). Simulation results

suggest that the key parameters that play an important role in defining the RF properties of the

device are the thickness of the electrodes (t2), the gap between the electrodes (wg), and the middle

electrode’s width (wc). As evident in Figs. 4.2(a) and 4.2(b), by increasing t2, wg, and wc, RF loss

decreases, and hence the final BW of the device is enhanced.

Another important parameter for BW enhancement is ∆n. As nop is constant within the

concerned RF frequency (see Section 3 for example values), only the variations of nRF versus t2,

wg, and wc are presented in Figs. 4.2(c) and 4.2(d). Depending on the optical waveguide structure

and its calculated invariant nop, nRF can be appropriately tuned in order to minimize ∆n.

It is well-known that Z0 should be kept as close as possible to the 50-Ω terminating resistive

load in order to reduce the impedance mismatch. The results for variation of Z0, depicted in

Figs. 4.2(e) and 4.2(f), suggest that this goal is achievable by varying the device dimensions for a

specific RF frequency (e.g., 100 GHz in this case). However, as discussed later in Section 3, the

frequency-dependence of Z0 must be also considered in the overall design.

As the results in Fig. 4.2 imply, a larger wg overall provides a more optimized design in

terms of the RF loss. However, this increases Vπ.L, and consequently lowers the power efficiency

of the EOM. Meanwhile, as is evident in Figs. 4.3(a) and 4.3(b), the magnitude of the applied

RF field is much larger at the edges of the middle electrode. In order to compensate for the

increase in Vπ.L, a solution is to place the optical waveguides closer to the middle electrode,

instead of positioning them at the center of the gap between the electrodes, as is common practice.
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Figure 4.2: RF design considerations (all performed at 100 GHz for wl = 12.0 µm (wc = 8.0 µm for
(a), (c), and (e))): Variation of (a) RF loss vs. wg for different values of t2; (b) RF loss vs. wc for
different values of wg and t2; (c) nRF vs. wg for different values of t2; (d) nRF vs. wc for different
values of wg and t2; (e) Z0 vs. t2 for different values of wg and wc; and (f) Z0 vs. wc for different
values of wg.
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This has been studied in bulk LN devices in the past [17, 18] and is applied to thin-film devices

here. As depicted in Fig. 4.4 for both rib-loaded and all-LN structures, employing this asymmetric

placement (see the inset of Fig. 4.1(b)) increases the overlap of the RF and optical field (Γ), while

Vπ.L decreases accordingly, for any chosen value of wg. As an example, for fixed wc and wg (both

equal to 8.0 µm) and D1 = 6.0 µm in Fig. 4.1, corresponding to ∆D = D2 − D1 = +2 µm

(instead of placing the waveguide in the center of the gap between the electrodes, giving ∆D = 0),

Γ increases by ∼17% and ∼19%, for rib-loaded and all-LN devices, respectively.
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Figure 4.3: Simulated RF mode profile for (a) rib-loaded and (b) all-LN EOMs with identical
dimensions. Arrows are proportional to the magnitude of the field. Identical plot settings have
been employed for COMSOLTM plots in both cases. Simulated TE optical mode profile for (c) rib-
loaded and (d) all-LN waveguides with the same wrib = 1.3 µm, trib = 0.5 µm, and a 1-µm-thick
top cladding SiO2 layer.

However, by moving the optical waveguides closer to the middle electrode, the metal-

induced optical loss can increase significantly. This issue can be addressed by adding a thin SiO2

buffer layer between the electrodes and the LN thin film, as schematically shown in Figs. 4.1 and

4.3. This decreases the additional loss dramatically, making it negligible, as depicted in Fig. 4.5.
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Specifically, for wg = 7.0 µm (D2 = 7.5µm), adding a 200-nm-thick buffer layer reduces the

optical loss from ∼100 to 0.1, and from ∼1 to 0.001, all in dB/cm, for ∆D values of +2.0 µm and

+0.5 µm, respectively.

(a)

(b)

(c)

(d)

Figure 4.4: Γ for (a) rib-loaded; (b) all-LN EOMs; Vπ.L for (c) rib-loaded; (d) all-LN EOMs, vs.
∆D (see Fig. 4.1(b)).

Here, the pros and cons of rib-loaded versus all-LN designs are discussed. As first reported

in [15, 6], and reconfirmed here in Figs. 4.3(a) and 4.3(b), the magnitude of the RF field in the

LN region is relatively larger in the rib-loaded case compared to the all-LN case, due to the lower

dielectric constant of SiN (∼ 4) compared to LN (∼ 40). This can be simply explained through the

electromagnetic boundary conditions, i.e., the continuity of the normal component of the electric

displacement field leads to a higher electric field in the medium with the lower dielectric constant.

To attain high Γ, this advantage of the rib-loaded case is partially counteracted by its lower optical

confinement. The transverse-electric (TE) optical mode profiles for both waveguides are presented
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in Figs. 4.3(c) and 4.3(d). Although ∼65% of the optical mode is confined in the thin-film LN

for the rib-loaded structure, the optical mode overlap with the LN region is higher (∼95%) in the

all-LN waveguide. This might allow for smaller gaps (wg) between the electrodes in the all-LN

EOM case compared to the rib-loaded counterpart, the issue of higher RF loss notwithstanding

(see Fig. 4.2(a)). However, while the all-LN design can provide this stronger optical confinement

and potential for smaller wg, the aforementioned drop of the RF field in this case leads to a smaller

Γ and a higher Vπ.L compared to the rib-loaded device, for the same wg and hence low RF loss.

As an example, for wg = 7.0 µm (D2 = 7.5 µm) and ∆D = +2.0 µm, the rib-loaded design provides

Γ = 0.825, which is 25% larger than that of all-LN design (Γ = 0.65), with corresponding Vπ.L

values of 3.7 and 4.9 V.cm, respectively.

Figure 4.5: Metal-induced optical propagation loss vs. ∆D (see Fig. 4.1(b)) for D2 = 7.5 µm.

4.3 Final results and discussions

Based on the design considerations in Section 2, the final optimized design for the dimensions

shown in Fig. 4.1 are summarized in Table 1. The optical waveguide dimensions wrib and trib

(defined in Fig. 4.3) are 1.3 and 0.5 µm for the rib-loaded, and 1.0 and 0.4 µm for the all-LN

EOM, respectively. Different dimensions are chosen for the optical waveguide of each structure in
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order to minimize ∆n and maximize Γ for both cases. The former helps to achieve the maximum

possible final BW, while the latter improves the power efficiency of the device by reducing Vπ.L.

Variations of different device metrics versus RF frequency are presented in Fig. 4.6. It is

evident that nRF drops sharply in the sub-GHz region, but remains fairly close to nop, i.e., 1.91

and 1.96 for the rib-loaded and all-LN EOM, respectively, up to sub-THz frequencies, thus ∆n

remains small. As shown in Fig. 4.6(b), the RF loss of the optimized design is kept < 18 dB/cm

up to 400 GHz, while Z0 is kept close to 50 Ω for most of the frequency range.

Table 4.1: Values of the geometrical dimensions in Fig. 1(b) for the optimized EOMs.

Parameter wl wg ∆D wc t1 t2 h1 h2

Value (µm) 12.0 7.0 2.0 8.0 0.2 4.0 0.4 2.0

Finally, by exploiting Eqn. (20) in [15], for the optimized design parameters presented in

Table 1, the EO frequency responses of the rib-loaded as well as all-LN EOMs are summarized in

Fig. 4.6(c) for three different electrode lengths, L. It is clear that shorter electrode lengths provide

a larger 3-dB BW at the expense of increased Vπ. The results predict that if sub-THz applications

are desired and high voltages can be afforded (see Figs. 4.4(c) and (d)), an impressively high 3-dB

BW of 395 and 368 GHz with corresponding Vπ values of 12.3 V and 16.3 V can be attained for

the rib-loaded and all-LN EOM cases, respectively, both with L = 3 mm. For L = 5 mm, a BW

of ∼250 GHz is exhibited which is 2.5 times larger than what is reported in [13, 14] for the same

length and with comparable Vπ.L. A comparison between rib-loaded and all-LN design for a fixed

drive voltage is given in Table 2.

The higher BW in the rib-loaded design is worthy of discussion. The comparison between

∆n of the rib-loaded versus all-LN EOM is depicted in the inset of Fig. 4.6(a). As the frequency is

increased, the RF field concentration shifts more towards lower index materials (SiO2 and air), and

therefore the effective permittivity of the field decreases. As the figure implies, nRF is virtually

identical in both cases, while they possess different nop values. Up to ∼250 GHz, marked with an

”A,” nRF remains close to the value of nop in the all-LN design, and thus provides a slightly larger
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3-dB BW compared to the rib-loaded counterpart. However, nRF drops from ∼1.95 at 250 GHz to

∼1.83 at 400 GHz. Hence, in this region, ∆n is smaller for the rib-loaded EOM which results in a

larger BW.

(a)

(b)

(c)

Figure 4.6: (a) nRF ; (b) Z0 and RF loss; (c) EO response (S21) of the EOMs for different lengths.
The horizontal dashed line shows the 3-dB electrical BW, and the inset depicts ∆n.

In principle, choosing another rib-loading material with a different optical index and opti-

mizing the RF and optical properties of the corresponding structure could lead to even higher BWs

for the same L. In other words, the ∼400 GHz given here for L = 3 mm is not necessarily the

ultimate BW attainable in thin-film LN EOMs.
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Table 4.2: Comparison between rib-loaded and all-LN design for a fixed drive voltage.

Drive Voltage (V) L (cm) BW (GHz)
Rib-loaded All-LN Rib-loaded All-LN

1 3.7 4.9 5 3
5 0.74 0.98 110 66

10 0.37 0.49 362 256
15 0.24 0.32 420 340

4.4 Conclusion

We report on a novel design for ultracompact thin-film LN EOMs on Si substrates capable of

operating up to ∼400 GHz 3-dB modulation bandwidths for 3-mm-long MZ arms. Detailed de-

sign guidelines and optimization procedures for such an impressive performance are presented for

future subterahertz optical communication system applications.
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CHAPTER 5: CASCADED INTEGRATION OF OPTICAL WAVEGUIDES

WITH THIRD-ORDER NONLINEARITY WITH LITHIUM NIOBATE

WAVEGUIDES ON SILICON SUBSTRATES

The contents of this chapter have been published in: A. Honardoost, G. F. Camacho Gonza-

lez, S. Khan, M. Malinowski, A. Rao, J. -E. Tremblay, A. Yadav, K. A. Richardson, M. C. Wu,

and S. Fathpour, “Cascaded integration of optical waveguides with third-order nonlinearity with

lithium niobate waveguides on silicon substrates,” IEEE Photon. J., vol. 10, no. 3, Art. no. 4500909,

2018.

Abstract– The cascaded integration of optical waveguides with third-order optical nonlin-

earity (χ(3) susceptibilitiy) with lithium niobate (LiNbO3) waveguides is demonstrated on the same

chip. Thin-film (LiNbO3) and chalcogenide (ChG) glass (Ge23Sb7S70) waveguides are integrated

on silicon (Si) substrates. An optical mode transition between the two waveguides is achieved

through low-loss mode-converting tapers, with a measured loss of ∼1.5 dB for transverse-electric

(TE) and ∼1.75 dB for transverse-magnetic (TM) input polarizations. For nonlinear character-

ization, wavelength conversion via four-wave mixing (FWM) is demonstrated on the ChG-LN

waveguides. This platform provides an efficient method for the utilization of second- and third-

order optical nonlinearities on the same chip, rendering it ideal for nonlinear applications such as

stabilized octave-spanning optical frequency comb generation.

5.1 Introduction

There has been a dramatic increase of interest in Silicon (Si) photonics since the late 1980s [1]–[3].

Silicon photonics has been widely pursued as a promising technology for a variety of applications

such as in datacom transceivers [2]. However, several shortcomings are well-known for Si, when it

comes to nonlinear optical applications. For example, Si inherently lacks second-order optical sus-
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ceptibility (χ(2)) due to its centrosymmetric lattice structure. This restricts convenient utilization of

standard silicon photonics for applications such as second-harmonic generation (SHG). Also, the

presences of two-photon and free-carrier absorptions (TPA and FCA), at the required high optical

intensities, limit the exploitation of silicon’s large third-order optical susceptibility (χ(3)), at least

at telecom wavelengths [2], [4].

Several approaches have been pursued in order to circumvent silicon photonics lack of

χ(2)-based optical nonlinearity. Heterogeneous integration of other materials on Si with second-

order nonlinearity, e.g., lithium niobate (LN) [5], [6], and aluminum nitride (AlN) [7], [8] is one

approach. Electric field-induced χ(2) nonlinearity [9], as well as waveguides stressed under silicon

nitride (Si3N4 or SiN) [10] are other approaches. A detailed review of all these approaches has

been recently published [11]. Similarly, heterogeneous integration of materials with high χ(3)

and insignificant TPA have been pursued to avoid silicon’s shortcoming for third-order nonlinear

integrated optics. Si3N4, chalcogenide (ChG) glass, hydrogenated amorphous Si (a-Si:H), and

HydexTM are some of the major non-organic example materials [4]. Organic materials and hybrid

silicon-organic structures have been long pursued as well [12]–[14].

Evidently, there has been several works on integration of other nonlinear materials on sili-

con. However, the efforts have been primarily limited to integrating a ”single” material. Naturally,

the new frontline of research should target monolithic integration of ”multiple” materials/devices

for more advanced functionalities on the same chip. For example, it is very important to ”co-

integrate” cascaded waveguides with χ(2) and χ(3) properties in the context of frequency-stabilized

optical comb generation. The χ(3) waveguide provides octave-spanning supercontinuum genera-

tion (SCG), while second-harmonic generation in the χ(2) device is used for stabilization by f -to-

2f carrier-envelope offset (CEO) locking [15], [16]. The present work is the first effort in paving

the path towards integration of two example materials, namely ChG (χ(3)) and lithium niobate

(LiNbO3, LN) (χ(2)) waveguides, towards this goal.

LN is one of the most widely used materials for nonlinear optical applications. Trans-
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parency in a broad range of the electromagnetic spectrum (0.4-5 µm), strong second-order nonlin-

earity, as well as a large electrooptic coefficient [4] make LN an ideal material for integration with

Si photonics for applications such as SHG [5], [6], and optical modulation [17], [18] . Potential

future demonstrations on silicon may include generation of entangled photon pairs for quantum-

optic applications [19], [20]. However, conventional LN devices (fabricated using dopant diffusion

[21], or proton-exchange processes [22]) are bulky in general and exhibit low efficiency in terms of

power consumption and device footprint, hence hampering the desired large-scale integration ca-

pability. Compact LN waveguides, based on bonding of thin films of LN on oxidized Si substrates,

have been demonstrated and pursued towards satisfying the requirement of large-scale integration

[18]. Moreover, by loading the LN thin films with a rib waveguide made out of a refractive-index-

matched material (such as tantalum pentoxide (Ta2O5) [18], ChG [23], or Si3N4 [17]), high optical

confinement and low loss has been achieved. Consequently, these submicron rib-loaded (hybrid)

waveguides have rendered themselves useful for compact χ(2)-based nonlinear-optic applications

[5], [6], as well as high-performance electrooptic modulation [17], [18], [23]. Coincidentally and

as mentioned above, Si3N4 and ChG are also among commonly employed materials fabricated on

oxidized Si for their strong χ(3)-based nonlinearities [4]. Recently, the heterogeneous integration

of Si3N4 waveguides with thin-film LN on Si has been demonstrated, but no nonlinear measure-

ment was reported [24]. Moreover, nonlinear refractive index of ChG (3.71 × 10−18 m2/W) [25]

is almost 15 times larger than that of Si3N4 (0.24× 10−18 m2/W) [26]. These properties combined

with the possibility of obtaining high optical confinement and low-loss waveguides make ChG an

attractive candidate for various nonlinear applications [25], [27]–[30].

This work reports on cascaded integration of ChG glass and thin-film LN waveguides on

the same Si chip. Carefully designed mode-converting tapers are employed for adiabatic optical

mode transition from ChG to hybrid LN waveguides and vice versa. In comparison to the previous

report on integration of Si3N4 waveguides with thin-film LN [24], our proposed platform has the

advantages of eliminating the need for LN bonding at the final stages of the processing, and offers
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a simpler fabrication process. Also, as proof of concept, we provide four-wave mixing (FWM)

results on the ChG portion of the ChG-LN integrated devices.
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Figure 5.1: (a) Schematic of the integrated ChG-LN as well as the reference waveguides. Simu-
lated optical mode profiles of the structure are also shown for fundamental TE input at 1550 nm
for different cross-sections. Adiabatic mode transition is shown in the inset. (b) A cross-section
SEM image of the fabricated devices at position b of the taper.

5.2 Design and Simulation

The schematic of the integrated platform is shown in Fig. 5.1(a). The optical mode profiles of

the structure are simulated by using LumericalTM Mode Solutions. The fundamental transverse-

electric (TE) mode at 1550 nm is shown at different cross-sections of the structure. The input

mode is mainly distributed in the ChG rib, due to its higher refractive index compared to Si3N4’s.

By introducing the tapered region, the optical mode gradually transfers into the Si3N4-LN lower

waveguide, where∼ 50 % of the mode distribution is confined within the LN thin film. The top-left

inset depicts the adiabatic TE-mode transition from the upper waveguide region (ChG) to the lower
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one (Si3N4-LN) by the 500-µm length of the taper and vice versa. Adiabatic mode transition for

negligible TE-mode coupling loss is found to be occurring at taper lengths of> 100 µm, according

to the LumericalTM simulations depicted in Fig. 5.2(a). Meanwhile, similar simulations show

that the coupling efficiency for the transverse-magnetic (TM) input mode is ∼ 90%. This lower

coupling efficiency is due to the fact that the TM mode is less confined than the TE mode. This

behavioral difference between TE and TM modes in tapers has been observed in other waveguide

platforms [31].

It should be stressed that the Si3N4 waveguide, between the ChG waveguide and the LN

slab, plays an important role. By inserting the lower-index Si3N4 layer, χ(3) and χ(2) (i.e., ChG

and LN) are uncoupled in the untapered regions. In other words, the Si3N4 buffer ensures that the

LN slab does not interfere with the mode in the ChG waveguide, which is engineered to achieve

the desired dispersion.

It is also noted that the present cascaded integration of ChG and/or Si3N4 and LN waveg-

uides should not be confused with the aforementioned rib-loading of LN with similar materials for

hybrid waveguide formation [5], [6], [17], [18], [23]. In those works, ChG, Si3N4 or any other

index-matched material is solely used as a rib-loading layer on top of LN thin films for lateral

optical confinement in order to avoid the difficulties of etching LN. That is, exploiting the χ(3)

nonlinearity of the rib-loading material is not intended in those works.

Figure 5.2(b) shows the simulated coupling efficiency of the tapers versus wavelength, sug-

gesting a large bandwidth for the proposed structure. In addition to the large optical bandwidth,

high error tolerance is also predicted by the simulation results. Figure 5.2(c) depicts the cou-

pling efficiency of the taper versus the width of its tip. Coupling efficiency is also shown versus

the misalignment between the centers of the ChG waveguide/taper and the underneath Si3N4-LN

waveguide in Fig. 5.2(d).
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Figure 5.2: Simulated coupling efficiency of the mode-converting tapers vs. (a) Length of the
taper; (b) Wavelength; (c) Width of the taper’s tip; and (d) Misalignment between the centers of
the ChG waveguide/taper and Si3N4-LN waveguide.

5.3 Fabrication

The fabrication process begins with a 300-nm-thick X-cut LN thin film wafers from NanoLN. A

500-nm-thick layer of Si3N4 was deposited on the LN thin films, using plasma-enhanced chemical

vapor deposition (PECVD). The deposition was performed at 750 mTorr pressure and 300oC tem-

perature, with a gas mixture of 2% silane and nitrogen, flowing at 2000 and 10 sccm, respectively.

The 3-µm-wide ribs were patterned using electron-beam lithography (EBL), followed by dry etch-

ing using inductively-coupled plasma reactive-ion etching (ICP-RIE). The process parameters of
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20 and 5 sccm for flows of CHF3 and Ar, respectively, biasing power of 70 W, ICP power of 300

W and pressure of 7 mTorr were used. Then, a 750-nm-thick layer of ChG glass, Ge23Sb7S70, was

deposited using a thermal evaporator. The ChG glass was patterned and etched to form the waveg-

uides along with the mode-converting tapers, on top of the Si3N4 rib waveguides. Same gases and

flow rates were used as in the Si3N4 etch, but at a lower pressure of 5 mTorr. The biasing and ICP

powers were 300 and 100 W, respectively.

The particular glass composition of Ge23Sb7S70 has been used in our previous works and

optimized for low-loss waveguides and the required refractive index [28], [29]. The film refractive

indices at 1550 nm wavelength were measured to be 2.21, 1.93, and 2.24 for LN, Si3N4 and ChG

respectively, using the prism-coupling method. The lengths of the two ChG straight sections,

shown in Fig. 5.1(a), are 4.0 mm, each, and the corresponding lengths of the tapered regions are

0.5 mm, each, with a 1-mm Si3N4 gap in between. 10-mm-long reference waveguides without

tapers were also fabricated on the same chip (as shown in Fig. 5.1(a)) which are used to isolate

the mode transition losses, induced by the tapers. Finally, a 2-µm-thick layer of benzocyclobutene

(BCB) was spun and cured on top to serve as a passivation layer, as well as the top cladding for the

devices. Figure 5.1(b) shows a scanning-electron microscopy (SEM) image of the cross-section

of a fabricated waveguide with labeled material regions. The lateral asymmetry of the ChG and

Si3N4 waveguides is due to lithography misalignment. The measured LN, Si3N4 and ChG layer

thicknesses are in agreement with the targeted values reported in the fabrication steps.

5.4 Characterization

5.4.1 Linear Characterization

The devices are characterized by using a tunable single-mode continuous-wave (CW) laser source.

The TE output from a polarization controller is end-butt coupled into the waveguides through a

lensed fiber. Another lensed fiber couples the light out of the waveguides into a photodetector in
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order to measure the output optical power and hence the insertion loss. Both the ChG-Si3N4-LN

integrated devices as well as the reference waveguides (with no tapers) are characterized. The

measurements are also done for the TM input polarization. The results are presented in Fig. 5.3(a)

over the wavelength range of 1550-1560 nm for 10 dBm input power. The evident ∼ 22 dB

insertion is mostly attributed to not incorporating optical mode-converters at the chips’ input and

output facets.
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Figure 5.3: (a) Optical spectra of output power (10 dBm input power) for the integrated as well as
the reference waveguides for both TE and TM input polarizations in the 1550-1560 nm wavelength
range; (b) Output power difference between the integrated and reference waveguides for TE and
TM input polarizations for the same wavelength range.

Figure 5.3(b) shows the output power difference between the integrated and reference

waveguides for TE and TM polarizations in the same wavelength range. The results confirm that

for TE polarization, there is only ∼ 3 dB power difference between the integrated and reference

waveguides, i.e.,∼ 1.5 dB loss per mode-converting tapers. Similar coupling loss values have been

reported in the past [32]. The measurements for the TM input polarization (when numerically av-

eraged over the 10-nm wavelength range) result in an average of ∼ 0.5 dB higher loss compared

to the TE measurement. This result is qualitatively consistent with the simulated lower coupling

efficiency of ∼ 90% for the TM mode.
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Figure 5.4: Schematic of the experimental setup for wavelength conversion via FWM. PC: Polar-
ization Controller, EDFA: Erbium-doped fiber amplifier, OSA: Optical spectrum analyzer.

5.4.2 Nonlinear Characterization

For nonlinear characterization, wavelength conversion via FWM is measured for the integrated

waveguides of the chip. The setup for this experiment is depicted in Fig. 5.4. Two tunable single-

mode CW laser sources (Pumps 1 and 2 with spectral ranges of 1490-1630 nm and 1515-1565

nm, respectively) are used for the input. Two polarization controllers are connected at the output

of the laser sources in order to make the polarizations collinear. Both laser signals are amplified

using erbium-doped fiber amplifiers (EDFAs) and then combined in a 3-dB coupler. End-butt

coupling with lensed fibers is used to couple the combined signals into and out of the waveguides.

The output signal is then followed by a 99:1 splitter, where one percent goes to the power meter

for monitoring the alignment and ninety-nine percent is received by an optical spectrum analyzer

(OSA).

Both input lasers are used as pumps and idlers simultaneously, generating two FWM con-

verted signals with higher intensity. This nonlinear experiment was performed in the integrated

ChG-LN waveguides to confirm both the light coupling into ChG and the capability of the chip

to generate third-order nonlinearities. The result of the experiment is shown in Fig. 5.5. The two

higher peaks correspond to the amplified tunable lasers at 1562.29± 0.01 and 1562.56± 0.01 nm.

The observed signals at the sides correspond to FWM generation at 1562.01 ± 0.01 and 1562.84

± 0.01 nm. Although the nonlinearity in the Si3N4 gap may have contributed to the FWM signal,
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but since the length of the gap is only 1 mm, compared to 9 mm of ChG, it is expected that Si3N4’s

contribution is small, as verified by the following simulation.
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Figure 5.5: Measured output spectrum from the integrated ChG-LN waveguides from the OSA at
a resolution of 0.02 nm.

Numerical study of the FWM results was performed by solving the nonlinear coupled equa-

tions [33]:

dA1

dz
= −α

2
A1 + iγ(|A1|2+2

4∑
i 6=1

|Ai|2)A1 + i2γA2A3A
∗
4e
i∆k1z + iγ(A2)2A∗3e

i∆k2z, (A.1)

dA2

dz
= −α

2
A2+iγ(|A2|2+2

4∑
i 6=2

|Ai|2)A2 + i2γ[A1A4A
∗
3e
−i∆k1z + A1A3A

∗
2e
−i∆k2z]

+ iγ(A3)2A∗4e
i∆k3z,

(A.2)

126



dA3

dz
= −α

2
A3+iγ(|A3|2+2

4∑
i 6=3

|Ai|2)A3 + i2γ[A1A4A
∗
2e
−i∆k1z + A2A4A

∗
3e
−i∆k3z]

+ iγ(A2)2A∗1e
i∆k2z,

(A.3)

dA4

dz
= −α

2
A4 + iγ(|A4|2+2

4∑
i 6=4

|Ai|2)A4 + i2γA2A3A
∗
1e
i∆k1z + iγ(A3)2A∗2e

i∆k3z, (A.4)

where A1, A2, A3, and A4 are the field amplitudes corresponding to FWM#1, Pump#1, Pump#2

and FWM#2 in Fig. 5, respectively. α is the linear propagation loss and γ = n2ω/cAeff is the

nonlinear parameter. These equations are obtained by solving P (3) = 1
2
χ(3)ε0EE

∗E + c. c. for

E =
∑4

n=1Ane
i(ωt−knz), and considering three phase matching conditions:

∆k1 = k2 + k3 − k1 − k4, (A.5)

∆k2 = 2k2 − k1 − k3, (A.6)

∆k3 = 2k3 − k2 − k4, (A.7)

corresponding to the exchange of energy among the involved waves, in order to create a photon of

either k1 or k4 wavevector.

The equations (A.1)-(A.4) are numerically solved by using Runge-Kutta-Fehlberg method

for solving ordinary differential equations. The wavevectors kn are obtained from COMSOLTM

simulations, where the effective refractive indices of the employed waveguides were calculated.

Propagation loss of 0.8 dB/cm is assumed based on our previous work on ChG waveguides with
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similar processing conditions [28]. An estimated γ of 15.4 m−1W−1 is assumed, according to a re-

ported n2 value of 3.71× 10−18 m2/W [25]. The coupling losses were inferred from measurements

similar to those presented in Fig. 5.3. Figure 5.6 shows the measured peak power of FWM#1 sig-

nal versus Pump#1 for different input powers with a linear fit, compared to the numerical values

obtained from simulations.
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Figure 5.6: Measured peak power of FWM#1 signal vs. Pump#1 power. The result is also
compared with the data obtained from simulation.

It should be finally noted that the relatively low conversion efficiency of the FWM ex-

periment is due to the discussed high coupling losses and the normal dispersion of the waveg-

uides. Simulations on the employed waveguides suggest dispersion parameters of∼ -105 and -220

ps/(nm.km) for TE and TM modes, respectively. It is expected that if waveguides with anomalous

dispersion [29] are employed higher FWM efficiency, as well as SCG can be achieved. SHG can

also be potentially demonstrated by periodically polling [5] or mode-shape modulation [6] of the

thin-film LN waveguides. Efforts to make these demonstrations are underway.
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5.5 Conclusion

In summary, a heterogeneous platform is demonstrated by integrating Ge23Sb7S70 ChG glass and

Si3N4-LN waveguides on Si substrates. Adiabatic optical mode transition from ChG to Si3N4-LN

is achieved through carefully designed mode-converting tapers with measured ∼ 1.5 dB loss for

TE and ∼ 1.75 dB loss for TM input polarization in the 1550-nm wavelength range. Wavelength

conversion via FWM is measured and compared with theory for the integrated waveguides. The

straightforward and high error-tolerant fabrication process combined with the corresponding large

nonlinear coefficients of LN and ChG, make this a promising platform for a variety of nonlinear

optical applications. Particularly and in conjunction with reports on octave-spanning SCG [30] and

SHG in thin-film LN [5], [6], the present work paves the path to demonstration of fully-integrated

optical frequency combs stabilized by f -to-2f CEO locking.
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CHAPTER 6: FUTURE WORK AND PRELIMINARY RESULTS

Here, the extension of the results presented in the previous chapters are discussed. Some prelimi-

nary results are also presented.

6.1 Ultralow-Power Thin-Film Lithium Niobate Electrooptic Modulators

As discussed previously, the technology for standard TFLN EOMs has been matured recently.

However, in order to efficiently exploit on-chip electronic drivers for such devices, the switching

voltage of the TFLN EOMs are required to be around 1 V or less. This will circumvent the need

for additional amplifier circuits and reduce complexity, power consumption, manufacturing cost,

and overall footprint of integrated chips.

The half-wave voltage-length product of MZ EOMs, Vπ.L, can be expressed as

Vπ.L =
λ d neff
r33 n4 Γ

(6.1)

where λ denotes the operating wavelength, d represents the gap between the electrodes, neff and n

stand for the waveguide’s effective optical refractive index, and refractive index of the EO material

(extraordinary refractive index in case of LN EOMs), respectively, r33 is the largest EO coefficient

of LN, and Γ is the electrical-optical overlap value in the active region of the EOM.

It can be observed in Eq. 6.1, that the Vπ.L has a direct relationship with the gap between

the electrodes (d). However, reduction in d is limited by the additional metallic-induced absorption

of the optical mode by the EOM’s electrodes which contribute to the overall insertion loss of the

device and should be minimized as much as possible.

In order to efficiently address this trad-off and reduce the Vπ.L, our proposed novel design

includes a thin layer of SiO2, as depicted in Fig. 6.1.

As evident from Fig. 6.2(a), in the standard structure (Fig. 6.1(a)), as the gap is reduced
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from the typical 6 µm to 2 µm, the tails of the optical TE mode get closer to the metallic electrodes

and the absorption starts to increase dramatically. Whereas, in the proposed structure depicted in

Fig. 6.1(b) the thin insulating layer allows for the gap to be reduced to values as low as 2 µm

(see Fig. 6.2(b)). However another trade-off that arises here is the EO overlap, Γ, value which

decreases by adding the thin oxide layer. The simulation results for the aforementioned trade-offs

are summarized in Table 6.1.

gap

LiNbO3 SiO2Au Electrodes Si Substrate

(a) (b) gap

Figure 6.1: (a) Standard TFLN MZ EOM structure; (b) Proposed novel structure for ultralow-
power TFLN MZ EOMs.

Table 6.1: Simulated results of Γ and Vπ.L for the structure of Figs. 6.1 and 6.2.

Gap [µm] Γ (Fig. 6.2(b)) Vπ.L (Fig. 6.2(b)) [V.cm] Γ (Fig. 6.2(a)) Vπ.L (Fig. 6.2(a)) [V.cm]
1.5 0.47 1.24 0.83 0.72
2 0.51 1.53 0.81 0.97
3 0.57 2.08 0.80 1.47
4 0.59 2.67 0.78 2.01
5 0.6 3.29 0.76 2.57
6 0.6 3.93 0.74 3.19

As mentioned, metallic induced optical absorption is another important criteria for EOMs.

Table 6.2 summarizes the difference between structures of Figs. 6.1 and 6.2 in this regard.
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Figure 6.2: (a) Standard TFLN MZ EOM structure; (b) Proposed novel structure for ultralow-
power TFLN MZ EOMs. The optical mode is TE polarized.

Considering the above mentioned trade-offs, a chip with multiple variations for gap, for

both structures of Figs. 6.1, is designed and fabricated, as presented in Fig. 6.3(a). Two types of
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devices for low-, and high-frequency operation are fabricated as shown in Figs. 6.3(b) and 6.3(c),

respectively.

Table 6.2: Simulated results of metallic-induce optical absorption for the structure of Figs. 6.1 and
6.2.

Gap [µm] Loss (Fig. 6.2(b)) [dB/cm] Loss (Fig. 6.2(b) [dB/cm]
1.5 6.5 2300
2 1.2 490
3 0.07 31
4 0 2.1
5 0 0.1

(a) (c)(b)
2 cm

1 cm
100 µm100 µm

Figure 6.3: (a) Image of the fabricated chip; Microimages of the devices for (b) low-, and (c)
high-frequency operation. The high-frequency design posses narrower middle electrode.

The chip is currently laser diced for input/output coupling and measurements are underway,

as shown in Fig. 6.4.
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Figure 6.4: (a) Experimental setup for low-, and high-frequency measurements.

6.2 Coherent Modulation in Thin-Film Lithium Niobate Electrooptic Modulators

With achieving high levels of maturity for TFLN EOMs discussed in the previous section, the

next step is to demonstrate higher modulation schemes, such as Quadrature Phase-Shift Keying

(QPSK), which is required for coherent communication in advanced optical networks.

In a QPSK modulator, transmission of phase information is utilized instead of amplitude

modulation. In advanced optical communication systems, this results in lower transmitted optical

power, and signal-to-noise ratio requirements. QPSK modulation principle and the schematic of a

single QPSK modulator are depicted in Fig. 6.5 [1]. 2 nested Mach-Zehnder modulators (MZM)

followed by a phase modulator (PM) are required in order to produce the π/2 phase shift.
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While this has been previously reported for bulk LN [1] and all-Si modulators [2], to the

best of our knowledge, the work presented here is the first demonstration of such devices on TFLN

platform.

Figure 6.5: Operation principle of a QPSK modulator and its schematic diagram.

A chip for the experimental demonstration is designed and fabricated, as presented in

Fig. 6.6. The chip is laser diced for input/output coupling and the measurement are underway.

Our preliminary results show high values of 22 dB for low-frequency ER in 7-mm-long devices,

and a low Vπ.L value of about 2.6 V.cm for 5-mm-long EOMs. The preliminary results are sum-
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marized in Fig. 6.6.

Low-frequency voltage source

Input/output signal monitoring

~ 22 dB ER

DC Probes

Input Fiber Output Fiber

Laser-diced Facets

Figure 6.6: Experimental setup and preliminary measurement results.

6.3 Cascaded Second-, and Third-Order Optical Nonlinearities on a Single Chip

As an extension of the work discussed in Chapter 5, we have recently reported on design of such

high-performance cascaded nonlinearities in order to demonstrate both SCG and SHG on a single

Si chip. The simulation results suggest over over 1.25 octave spanning SCG and an adiabatic

optical mode transition between the two sections on the chip, as depicted in Fig. 6.7 [3].

For experimental demonstration, a fully-integrated chip is designed and fabricated, as

shown in Fig. 6.8. The chip is laser diced for input/output coupling and the measurement are

currently underway.

Next step for applications such as on-chip self-referenced optical frequency comb gen-
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eration, as discussed in Chapter 5, passive waveguide filters or other means of filtering can be

employed in order to achieve f -to-2f referencing, as depicted in Fig. 6.9. Moreover, EOMs can

also be utilized in future work in order to attain tunability of phase delays on the same chip [4].

Figure 6.7: (a) Quasi-TE optical mode transition from ChG waveguides (left) to TFLN waveg-
uides (right) through carefully designed mode-converting tapers; (b) Fundamental optical mode
distribution in ChG waveguide for SCG; (c) 3-D schematic of the fully-integrated chip; (d) Simu-
lation results for adiabatic mode transition for tapers with length above 100 µ m; (e) Fundamental
optical mode distribution in TFLN waveguide (rib-loaded with SiN) for SHG. Reproduced with
permission from [3].
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1 cm

1.5 cm

SCG SHG

Figure 6.8: Image of the fabricated chip.

LiNbO3 SiO2 AuChGSi3N4

Top View
1.5 µm Output

1 µm Output

1 µm Output

SCG Spectral Filters SHG

Figure 6.9: Conceptual 3-D schematic of a fully-integrated chip for frequency-stabilized optical
comb generation application. [4]
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6.4 Foundry-Compatible Integration of Thin-Film Lithium Niobate with Silicon Photonics

As discussed in the previous sections, the technology for TFLN devices has been matured recently.

However the LN itself is not Si-foundry compatible yet. Hence, in order to exploit benefits of

the mature Si photonic industry, namely its standard low-cost foundry-compatible processing and

tightly-confined waveguides, a novel integration scheme is proposed in which the thin films of LN,

wafer-scale or individual dies, are integrated at back end of the line [5]. A short description can

also be found in Chapter 2, Section 2.2.2 (see Fig. 2.5).

It should be noted that the proposed scheme can be applied to a host of materials as sum-

marized in Fig. 6.10(a). Figure 6.10(b) depicts an example of such integration by providing design

dimensions.

Side View

Light 
Propagation

Taper Taper

Material A 
Dielectrics (e.g. Si3N4, ChG, Ta2O5, …)
Material B
Thin films (e.g. LN)
Material C
Cladding (e.g SiO2, BCB, …)
Material D
Photonic Circuitry(e.g. Si)

(a)

(b) Top View

450 nm2 µm 0.9 µm50 nm

300 µm 50 µm

Side View

220 nm

300 nm
500 nm

Si SiO2 LiNbO3Si3N4

Figure 6.10: (a) Schematic of the proposed structure for thin-film integration. As presented in (a),
a host of different materials can be used in this approach; (b) An example of designed dimension
for TFLN integration with standard Si photonic waveguides. [5]

As an extension of high-performance TFLN EOMs discussed in this dissertation, a fully-

integrated chip including laser source and detection components are presented in Figs. 6.11. The

intermediate SiN layer serves as an adiabatic mode converter as well as a rib, in order to efficiently

transfer the optical mode from standard Si-on-insulator (SOI) waveguides into LN region. While
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the schematic here represents a MZ EOM, this approach can be applied to other TFLN devices

such as PPLN for nonlinear optical applications, and other device for quantum optics, as discussed

in Chapter 2.

Si

Au

SiO2

LiNbO3 Si3N4

Z

X

Y

Laser

Detector

Top View

coupler

LiNbO3

SiO2
Si Si3N4

Z

X

Z

Y

LiNbO3

SiO2

LiNbO3

SiO2
Si3N4

Si
LiNbO3

Side view

Top view

Si3N4

Figure 6.11: 3-D schematic of a conceptual fully-integrated TFLN EOM with Si photonic circuitry
including on-chip laser source and detection components. The simulated optical mode is provided
at different positions of the circuit. An adiabatic mode transition from Si waveguide (left) to TFLN
region (right) is shown as well. [5]

The fabrication steps for this scheme are summarized in Figs. 6.12–6.14. While direct

bonding with SiO2 is preferred over bonding via adhesive polymers, such as BCB, as discussed in

Chapter 2, nevertheless, either materials can be employed in the proposed scheme.
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Foundry processing Back end of line processing

Figure 6.12: Summary of the fabrication steps using TFLN-on-Si wafers [5]
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Foundry processing Back end of line processing

Figure 6.13: Summary of the fabrication steps using TFLN-on-LN (LNOI) wafers [5]
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Foundry processing Back end of line processing

Figure 6.14: Summary of the fabrication steps using TFLN-on-Si wafers and BCB bonding [5]
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6.5 Summary

Various contribution to the thin-film LN technology have been covered in this dissertation for

electro-, and nonlinear-optic applications, as outlined in Chapter 1. In the second Chapter, a com-

prehensive review is provided on TFLN technology history, its state of the art, and the strides made

toward ulracompact LN devices for electro-, nonlinear-, and quantum-optic applications.

A general transmission-line model is developed in Chapter 3 in order to efficiently design

ultracompact EOMs and accurately predict their high-speed performance. The accuracy of the

model has been verified by comparison with experimental results. Chapter 4 presents detailed

design techniques for radio-frequency and optical parameters of TFLN EOMs, and novel optimized

structures are reported in order to achieve subterahertz BW in such devices. This paves the path

towards utilization of ultracompact EOMs in advanced communication systems.

In order to co-integrate multiple optical nonlinearities on a single Si chip, an efficient plat-

form is presented in Chapter 5. In this work, by employing carefully-designed adiabatic optical

mode converters, ChG and TFLN waveguides, possessing large third-, and second-order optical

nonlinarity, respectively, are monolithically integrated on a Si chip for the first time. As a proof of

concept, nonlinear four-wave-mixing experiment is successfully demonstrated on the same chip.

In Chapter 6, extension of the works discussed in Chapters 2–5 with some preliminary re-

sult are presented for future work. A novel design is proposed and fabricated for ultracompact

TFLN EOMs suitable for applications such as optical interconnects. Coherent modulation is also

pursued on the TFLN platform and QPSK EOMs are fabricated. For applications such as on-chip

self-stabilized frequency comb generation, cascaded integration of ChG and TFLN waveguides

are pursued in order to achieve above an octave SCG and efficient SHG on a single Si chip. Also,

an innovative platform is proposed in order to efficiently integrate TFLN with Si photonic cir-

cuitry suitable for large-scale, low-cost, and foundry-compatible production of integrated photonic

circuits.
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