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ABSTRACT

Hashing for similarity search is one of the most widely used methods to solve the approximate
nearest neighbor search problem. In this method, one first maps data items from a real valued
high-dimensional space to a suitable low dimensional binary code space and then performs the
approximate nearest neighbor search in this code space instead. This is beneficial because the
search in the code space can be solved more efficiently in terms of runtime complexity and storage
consumption. Obviously, for this method to succeed, it is necessary that similar data items be

mapped to binary code words that have small Hamming distance.

For real-world data such as images, one usually proceeds as follows. For each data item, a pre-
processing algorithm removes noise and insignificant information and extracts important discrimi-
nating information to generate a feature vector that captures the important semantic content. Next,
a vector hash function maps this real valued feature vector to a binary code word. It is also possible
to use the raw feature vectors afterwards to further process the search result candidates produced

by binary hash codes.

In this dissertation we focus on the following. First, developing a learning based counterpart for the
MinHash hashing algorithm. Second, presenting a new unsupervised hashing method UmapHash
to map the neighborhood relations of data items from the feature vector space to the binary hash
code space. Finally, an application of the aforementioned hashing methods for rapid face image

recognition.
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CHAPTER 1: INTRODUCTION

1.1 Nearest Neighbor Search Problem

The nearest neighbor search problem (NNS) is the problem of finding an item that is the nearest
(closest, or most similar) to a given item called the query item from a reference dataset. In the
context of information retrieval, this dataset is called the reference database or the gallery. This
problem appears in the literature under different names such as similarity search, search for similar
data samples, proximity search, and close item search. In addition to be of interest by itself, this
problem is a primitive for other problems in machine learning. For example, non-parametric k-
NN classification algorithm is an application of this problem when the question is to find k nearest
neighbors of query item. There are few different version of this problem which are defined formally

in the following, see figure 1.1.

Definition 1.1 (Nearest neighbor (NN)). In this problem, given a query data point q € R? and a
dataset of N data points X = {x;,Xs,...,Xy} C RY, the question is to find the closest point

x* = argmin distance(x, q) to the query point q according to some distance measure.
X

Definition 1.2 (Fixed-radius near (R-near) neighbor). In this problem, given a query data point
q € R? and a dataset of N data points X = {x;,Xs,...,Xy} C R the question is to find all

points that are within the distance C of the query point q, i.e, {x | distance(x, q) < C}.

In low dimensional spaces, the nearest neighbor search problem has some computationally tractable
algorithms. For instance, tree based indexing methods such as KD-tree [4] and ball tree [47] which
are based on recursively structured partitioning of the data space. Nevertheless, because of the time
complexity and storage requirements of these algorithms, the curse of dimensionality renders these

algorithms impractical for high dimensional data space. For this reason, there is a great interest in



the relaxation of this problem called approximate nearest neighbor search (ANN).

Definition 1.3 ((1 + €) approximate nearest neighbor). In the (1 + €) approximate nearest neighbor
search, given a query data point q € R? and a dataset of N data points X = {xX;,Xs,...,Xn} C
R, it suffices to find a data point X € X such that distance(%, q) < (1 +¢) distance(x*, q), where

x* is the true nearest neighbor with respect to the given distance function distance(-), and € > 0.

Definition 1.4 (c-approximate R-near (cR-near) neighbor). The cR-near neighbor search problem

aims to find some item z, called cR-near neighbor, so that distance(x, q) < cR.

Definition 1.5 (Randomized approximate nearest neighbor). The randomized search problem aims
to report the (approximate) nearest (or near) neighbors with probability instead of deterministically.
Given a query q, the goal is to report some near (nearest) neighbor of the query with probability

1—9¢6,and0 < d < 1.

Figure 1.1: Left: x* is the nearest neighbor to the query point ¢, and x is (1 + €) approximate
nearest neighbor. Right: All point inside the circle are R-near neighbors of the query point ¢

The problem of approximate nearest neighbor search plays an important role in information re-
trieval systems [40, 54]. For such a practical application, it often suffices to retrieve approximate

nearest neighbors of a query, that is, data items in the database that are sufficiently similar.



1.2 Hashing for Similarity Search

Definition 1.6 (Hash function). A hash function is a function that maps an arbitrary size of data to

an integer value in the interval of [0, m].

Hashing is a widely used approach for efficiently solving the approximate nearest neighbor search
problem. In addition to the similarity search applications, hashing is used to serve in solving
other problems. In digital security applications the goal for a hashing function is to generate a
digital signature for an arbitrary size of data such that changing to this data gives a different digital
signature. Another widely used application of hashing functions is indexing that data items. In this
application, the hashing function gives a value in a range of integer numbers [0, m]. This value is
then used as an index to specify the bucket used to store the data item in a data structure called
lookup table. The goal here is to reduce the collisions and have a uniform distribution for data

items in buckets.
The focus of this thesis is on the application of hashing function for similarity search.

Definition 1.7 (Hashing for similarity search). A hashing function such that the Hamming distance
between the binary representation of hash values approximate the similarity between data items (a

distance function of data items).

In this method, initially, we generate a short binary hash code for each item in the database such that
the Hamming distance between a pair of hash codes indicates the distance of their corresponding
items in the input vector space. The hash codes are generated by applying a suitable vector hash
function h(-) = {hy(-), ha(-), -+ ,hr(-)}. The functions h;(-) are usually binary-valued but in
general the range of this functions may be a subset of integer numbers. None that in the literature,
the term hash function is used for both the compound vector hash function h(-) and also to refer

to its scalar elements h;(-) as well. We generate the hash code for the query item using the same



hash function and employ the hash codes to compute the Hamming distance as an approximation
of the true distance between the query to the database items, i.e. as a measure of similarity between
items. Note that the hash value can be used a key in a look-up table, as shown in figure 1.2, which

results in a constant query time O(1).

s N

Buckets Iltems
——{7s] |
— |72 | |
-- nearest neighbor
key v ¢ 1 ) - candidates
—_———= -»

7

\ -
\ ___<//
-~
Y ( y

~ -
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el [ ]

Figure 1.2: Hashing functions is used to generate a set of candidates for nearest neighbor search.
For example, the union of point in the buckets which their key Hamming distance to the query
point key is less or equal to one are considered as potential nearest neighbor candidates.

On the other hand, since the binary hash codes are short strings compared to the high-dimensional
real-valued data items, using the Hamming distance between low dimensional hash codes as a
proxy for the similarity between high dimensional items reduces the cost of distance computation
and improves information retrieval algorithm both in time and space. The size of the data structures
that is needed to be processed during search is reduced, and the number of operations needed to
calculate the similarity between items is decreased. Figure 1.3 shows how to find a set of nearest
neighbor candidates by using the Hamming distance instead of the input space distance. Note that
the Hamming distance can be computed efficiently with logical xor operation between binary hash

code codes, i.e. for two hash codes h; and h, the Hamming distance is dy (hy, hy) = hy @ h,.
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Figure 1.3: When doing an exhaustive search, employing hashing functions reduces the space
and time complexity of the algorithm. Instead of computing the distance in the input space, the
Hamming distance between the hash codes can be used as a proxy to this distance.

1.3 Feature Generation

Another aspect of similarity search problem is that for complex data domains such as images, any
distance that is directly defined on the raw data items does not provide a good measure of their
semantic similarity. Therefore, the procedure of hashing images is usually divided into two stages.
In the first stage, images are encoded into a useful feature representation so that the semantic
information of input is preserved and its irrelevant information is neglected. The second stage
is the hash function and maps the feature vectors to compact hash codes. This mapping aims to

preserve the similarity between the input feature vectors in the generated hash codes.

For image data, the feature representations are usually either hand-crafted visual descriptors such
as GIST [46], and HOG [12], (SIFT) [39], or generated by a deep convolutional neural network.
It is well known that deep feed-forward networks learn abstract representations of data items. For

instance, deep convolutional networks learn a hierarchy of semantic representations for images.



While the lower layers specialize to detect features such as edges or simple shapes, deeper layers
learn semantically higher level features that are responsible for detecting objects in images [68].
Therefore, the distance between the higher-level feature vectors can serve a measure of similarity
of the images. Most recent hashing algorithms for image similarity use some combination of
dimensionality reduction and quantization to generate the hash codes from the higher-level feature
vectors. Note that when both the feature extraction algorithm and hash function are learning based
models, they can be trained as a whole model end-to-end which usually improves the overall

performance.

Feature

Feature Vector Vectors “ Vector Hash
Generation ’ ‘ Function

Data ltem ——» Hash Code

Figure 1.4: For complex data domains, the raw distance between input data points is not a good
measure of similarity, and usually a feature generation system is used prior to application of dis-
tance function and/or hashing function.

1.4 Overview

In this thesis, we first present a novel learning based hash function, MaxHash [2], that is based
on the MinHash [6] algorithm. We show that when integrated with a deep convolutionl neural
network for feature extraction, the resultant model achieves state-of-the-art performance for image

similarity search. The entire model is trained end-to-end, supervised by pairwise label similarity.

The second contribution is a new loss function that can be employed for unsupervised training of
hash functions. Minimizing this loss function drives the model to preserve the topological structure
of data items. This method is inspired by UMAP visualization algorithm. Since this visualization

algorithm considers only a small neighborhood for each data point it has low memory and compute

6



footprints and can be used for large datasets. Moreover, it gives well separated clusters in the target
binary space. Observe that our method trains the neural network that realizes the hash function.
This is different from the visualization objective, which only seeks to obtain the points in the

low-dimensional target space, and not to construct the mapping itself.

We applied this loss function to train the MaxHash model in unsupervised setting. The perfor-
mance of this method surpasses or competes with the state-of-the-art unsupervised hashing meth-

ods.

The rest of this thesis is organized as follow. Chapter 2 presents an overview of the most popular
data independent, and learning based hashing algorithms. The focus of this chapter is on algorithms
that are closely related to our work. In chapter 3 we will present the MaxHash hashing algorithm.

Chapter 4 presents the unsupervised UMAPHash hashing method.



CHAPTER 2: LITERATURE REVIEW

In this chapter we will see an overview of some common hashing algorithms for similarity search,
with the emphasis on the most important algorithms that are closely related to our work. Hash-
ing algorithms can be divided into two categories: data independent and data dependent. Data
independent hashing algorithms in general utilize a randomized mapping. Each component of this
mapping should map two data points which are close to each other to the same value with higher
probability. Noticeable examples of this category are Locality-Sensitive Hashing (LSH) [14] and
MinHash algorithm [5, 6]. Because of the importance of LSH and its central role in hashing for
similarity search, we will describe this algorithm and some of its variants in more details. Also,

we will see an overview on MinHash algorithm which is the base for our first contribution.

The second category of hashing algorithms employ data sets to design hash functions. The al-
gorithms in this category are called with different names such as data dependent, learning based,
and learn to hash algorithms. Learning based hashing algorithms can be divided into two sub-
categories; unsupervised methods and supervised methods. In unsupervised methods, such as Ker-
nelized Locality-Sensitive Hashing [30], Iterative Quantization [15], and Semantic Hashing [49],
the algorithm uses an unlabeled dataset to learn the hash function. An advantage of these methods
is that, it is often easier to obtain unlabeled data, however they can only explore the distribution of

data points without incorporating the information that the labels of data points may provide.

Finally, supervised hashing methods try to benefit from supervised information such as class labels
or the similarity labels of the data points in the dataset. Using the supervised information these
algorithms learn a better hash function for that specific data domain, and this results in a better
performance compared to other categories for the same hash code length. For example, Super-

vised Hashing with Kernels [37] is a kernel-based supervised hashing that minimizes/maximizes



the Hamming distances between hash codes for similar/dissimilar data points. Binary Reconstruc-
tion Embedding [29] learns hash functions by minimizing the reconstruction error between the
distances of points in the dataset and the Hamming distances of the corresponding binary hash

codes.

2.1 Locality Sensitive Hashing

Locality sensitive hashing is a randomized hashing method for probabilistic approximate nearest
neighbor search problem in high dimensional data space. In this method, a family of hash functions
‘H is defined that map similar data items to the same hash code with a higher probability than
dissimilar data items. The family of of hash functions # is called (R, cR, P;, P,)-sensitive, where
¢ > land P, > P, if for two data points x; and x», the probability that the hashing function A(-)

give the same hash value for these two data points satisfy

e if distance(xy, Xs) < R then Problh(xy) = h(x3)] > P,

e if distance(xy, Xs) > cR then Prob[h(x;) = h(x2)] < P>

Note that here we aim to maximize the probability of collision for two data points if they are close
to each other, and minimize the probability of collision for two data points if they are far from
each other, so that when using hash tables for storing data items every bucket will contain similar
items. Thus, given a query q, we will expect the data points lying in the bucket h(q) be similar

data points.

To make the gap between the high probability P; and the low probability P» larger, the LSH
algorithm uses multiple hashing functions A(-) which are chosen at random uniformly and inde-

pendently from the function family H. The resulting hash value for a data item x then will be
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the output of the compound vector hash function h(-) which is the concatenation of all L hash

functions, i.e. (hi(x), ha(X), -+, hr (X)), where h;(x) € H.

s ()

Figure 2.1: Left: If two data points are on the same side with respect to a hyperplane they are
likely to be close to each other. If they are on the same side for more hyperplanes this probability
increases. Right: Using another locality sensitive set of hash functions to retrieve another set of
items. The union of items in the left cell (bucket) and the right cell are returned as similar items.

Figure 2.1 (Left) depicts this hashing method for the case when the hashing function family is the
set of all hyper-planes in d dimensional space, where d is the dimension of input data items. Every
hyper-plane partitions the data space into two parts. The hash value for every hash function A;(-)
is either O or 1 depending on the side of the data point with respect to the corresponding hyper-
plane. Therefore, if the distance between two data points is small, it is more probable that they will
reside on the same side for more hash functions, and therefore have the same hash value elements.
Therefore two close data points share more equal bits which means the Hamming distance between

their hash codes is small.

However, increasing the number of hash functions will reduce the probability that two data points
have the same hash value, i.e reside in the same bucket in the lookup table. This means that

increasing the hash code length decreases recall. For example if the number of examples in the
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database is 1 million items and we use a hash code of length 32 then on average each bucket have
1000000/(23?) ~ 0.0002. Thus, the probability of finding a similar item that has the same hash
code is very low. This effect can be seen in figure 2.1, when the number of cutting edges increased,
the continues cells become smaller and smaller, and the probability that these cells contain any data
point will decrease. So, given a query item, the probability of retrieving any items will decrease,
and this means that the recall value for the the similar item search using the LSH hashing function

is decreased.

One solution to increase the recall is to use K compound hashing functions h(-) and K corre-
sponding look up tables. For item retrieval, the hash value of query item is used as index for all A
look up tables, and the union of the K buckets that have that index value is returned. This solution
can be seen in figure 2.1 (Right). Here instead of one set of partitioning hyper-planes, we use
K = 2 different sets. The similar items for the query item x is the union of sets of the data points
shown by %. Clearly, using more sets of hashing function will increase the probability that for a
query item the more close neighbors are retrieved. However, this increases the time complexity

and storage requirement of the algorithm.

Another way to improve the recall is to visit more buckets in the hash table. So instead of checking
the bucket that has the exact same hash code of the query item, all the bucket whose corresponding
hash codes are close (with respect to the distances in the hash code space) to query item hash code
h(q) are investigated. Usually, only hash codes that have distance one from h(q) are used. Thus
for a hash code of length 32, instead of retrieving only the elements is the bucket whose hash code
is h(q), all the items in the buckets whose hash code are generated by flipping one bit in h(q) are

also retrieved.

There are different kinds of LSH families for different distances or similarities. In genera in all

locality sensitive hashing methods the probability of collision between hash codes for two data
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items can be written as:

Prob[h(x1) # h(x3)] = norm_dist(x1, X2) (2.1)

where norm_dist(-, -) € [0, 1] is a normalized distance function defined over pairs of items defined
using a similarity function such as Jaccard coefficient or a distance function such as angular (co-
sine) distance, [, distance, Hamming distance and so on. The locality sensitive hash function then
turns the data points to hash codes such that the Hamming distance in the code space are related to

the distances in the input space. We have:

Bldn(h(x), h(x.)] = B [% > - h||] 22
1L

= 7 2Bl Al @3)
1L

= ; Prob[h(x;) # h(x3)] (2.4)

= Prob[h(x1) # h(x2)] (2.5)

= norm _dist (X, Xz) (2.6)

Therefore, given a hashing function that for a pair of data points gives different hash codes with
probability equal to the normalized distance between data points the expected value of normalized
Hamming distance equal between the corresponding hash codes equal to the normalized distance
in the input space. Some examples of locality sensitive hashing families and the distance metric

that they approximate are gives in the next sections.
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2.1.1 Locality-Sensitive Hashing for Angular Similarity

When the metric for the similarity (distance) in the input space is the angle between data points,

i.e. for two data points x; and Xs:

X{Xg
distance(x1, Xg) = 0(x1,X2) = arccos <—) (2.7)
%1 ]2 [|2]2

the hash function family # for estimating this distance by Hamming distance has the form h(x) =

sign((w)?x), where w is sampled from Gaussian distribution N (0, ) [8].

In a d-dimensional data space, let w be a random vector sampled from the normal distribution
N(0,1), and x; and x5 two data points, when the hash function is defined as above it can be
proven that [8]:

0 (Xl, X2>

Prob (h(x1) = h(x2)) =1 — (2.8)

T
This property reveals the relation between Hamming distance and angular similarity, and shows
that Hamming distance of LSH algorithm with this hashing family is an unbiased estimate of
angular similarity for data items. However this LSH hashing family suffers from the large variance
of its estimation, which leads to large estimation error. The variance of estimating the angular

distance using the Hamming distance for a hash code of length L, is [25]:

Lx s

Var [dHamming(h(X1)7 h(Xg))/L] = QXLXQ (1 — QXI’XQ) (29)

An improvement to this algorithm is Super Bit LSH [25]. In this algorithm L random vectors
{vy,v9,--- vy} are independently sampled from the normal distribution A/ (0, ), and then these

vectors are divided into / batches. Then using Gram—Schmidt process every vectors of every batch
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are orthogonalized. After orthogonalization, these L random vectors can no longer be viewed
as independently sampled, thus they are grouped into batches that are called Super-Bits. The
Hamming distance over the super bits is an unbiased estimation for the angular distance and it has

the advantage that its variance is smaller than the random projection algorithm [25].

2.1.2  Locality-Sensitive Hashing for Hamming Distance

To estimate the Hamming distance between binary data points, Indyk et al [23] proposed the family
of hashing functions . = { h; : h;((b1,ba, -+ ,ba)) = b;, i ~ U{1,d}}, where i is a randomly-

sampled integer index in the range [1, d]. They show that for a random index i:

i = willn

Prob (h(z) = h(y)) =1 y

(2.10)

This probability equation shows the relationship between Hamming distance in the input space and
the Hamming distance the hash codes. Furthermore, [23] prove that this hash function family is

<R, (1+eR,1—-21- %) sensitive.

2.1.3  Locality-Sensitive Hashing for Similarity Measure between Two Sets

The Jaccard similarity coefficient, also known as Intersection over Union is a measure of similarity
between finite sample sets. It is the size of the intersection of two sample sets divided by the size

of the union of them:
_[[AnB]|

J&B) = 1xus]

(2.11)

The Jaccard coefficient is O when two sets are disjoint, 1 for equal sets, and a value between 0 and
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1 otherwise. If two sets have more members in common, which means that they are more similar,
their Jaccard coefficient is closer to 1. Min-hash [5, 6], or min-wise independent permutations
locality sensitive hashing scheme, is an LSH function for estimating the Jaccard similarity J(A, B)

without computing the intersection and union.

Let g(-) be a function that maps every possible member of any set to a distinct integer number.
This function can be seen as the index of element in a dictionary of every possible element. Let
7(+) be arandom permutation that maps every integer value to an integer value with a fixed random
ordering. MinHash function A, (A) is defined as:

h(A) = min7 (g(a)) (2.12)

a€A

It first uses the function g(-) to map all elements of the set A to integer values, then uses 7(-) to
generate a new set of integers according to that specific permutation, and finally reports the mini-
mum value of this last set. It is shown that the Hamming distance between MinHash components

1s an estimation of Jaccard coefficient for the sets [5]:

Prob (hs(A) = h.(B)) = J(A, B) (2.13)

When using L hash functions, the Jaccard similarity is estimated with the L hash values of two
sets as 7 SO 1 [hn (A) = hy (B)], where each 7 corresponds to a random permutation that is

independently generated.
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2.1.4 Locality-Sensitive Hashing for Rank Correlation Measure

The Winner Take All [65] hash family is an extension of MinHash algorithm [6] for estimating the
rank correlation measure. The rank correlation measure makes this algorithm robust with respect

to noise and small variations which are important characteristics of image data.

The rank correlation measure defines similarity between two points by the degree to which their
feature dimension rankings agree regardless of the absolute values of the feature dimensions. For

example, a simple pairwise order similarity measures is defined as:

R(x,y) = > T ((x; —2;)(yi — yy)) (2.14)
i g<i
The equation 2.14 measures the number of pairs of feature dimensions in x and y that have the

same ordering, and 7'(x) is used to detect the order of a pair of values and defined as:

1 0
T(x)={ o (2.15)

0, <0

In its original form, the WTA algorithm uses L different random permutations. Each permutation
reorders the entries of input array and then the index of maximum entry in the first K entries of
the permuted array is given as the /th entry of hash code. By repeating this process with different
L permutations, a hash code of length L in the base K is generated which can be represented as a

binary code of length |log,(K* —1)| + 1.

The WTA hash algorithm is a data-independent method, since the permutations are random and

there is no feasible method to find the set of permutations that give the best performance. Our first
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contribution is a novel formulation for this algorithm as a differentiable function. This makes it

possible to optimize the optimal hashing for a specific data set.

2.2 Binary Reconstruction Embedding

Binary Reconstruction Embedding [29] is an extension of standard random hyperplane locality-

sensitive hashing [8]. In the random hyperplane locality-sensitive hashing, we have a set of hash

functions h;(x) = sign(w!x) where the hyperplane normal vector w; is a random vector from
a multivariate Gaussian with zero-mean and identity covariance. In BRE, the hash functions are

dependent on one another, and defined as parametric functions:

hi(x) = sign (Z Wik (Xij, X)) (2.16)

J=1

In this function x;. are a set of data points, and W;. are the parameters that are used to define the
function h;(-). Note that each hash function h;(-) may use a different sets of s points. The function
K (+,-) is kernel function over the data which can be the standard inner product. This kernelized

form, makes the algorithm amenable to work over a variety of input data.

This algorithm does not assume anything about the distribution of the data, and instead of being
random, the matrix W is learned from the data by minimizing the difference between the normal-
ized Euclidean distance in the item space and the normalized Euclidean distance in the hash code

space, 1.e.

R ) A2\ 2
oy (nxz 1) Lh(xmb) 017
1,

In this equation, we assuming that the vectors x; are normalized to have L, norm of one, and

L is the number of dimensions of the binary space. Binary Reconstruction Embedding utilizes
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coordinate descent algorithm to optimize the objective function £. They fix all but one weight

W;j, and optimize the objective £ with respect to this weight.

2.3 Spectral Hashing

Spectral hashing [62] is another learning based hashing algorithm. Let {x;},_, be the data points in
the input space and {y;},_, be the codewords in {—1,1}*. Assuming that the Euclidean distance
in the input space correlates with the similarity between data points, the matrix W, ., is defined:

.12
Wi = exp (——HX’ QX’HQ) (2.18)

€

Here, the parameter ¢ defines the distance which corresponds to similar items. Note that for
data points with small distance in input space W; ; will be a close to one and for far apart data
point this value goes toward zero. The average Hamming distance between similar neighbors is
Zz’g‘ Wiillyi = y;

straint that the codewords have the following desirable properties:

2, and the goal is to minimized the average Hamming distance under the con-

minimize: Z Wi llyi — ZJJHZ

ij

subject to: ; € {—1,1}F (2.19)
St
1
—Zyi,%T =1
e

such that the code words are uncorrelated and balanced, i.e. In this optimization problem the

constraint ) . y; = 0 is in order to make the number of zeroes and ones in the code words balanced,
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and the constraint % > yiyl = I demands the bits of code words to be uncorrelated.

The above optimization problem is NP hard, and to solve it [62] define the matrix Y{,, ) whose jth
row is ] and a diagonal matrix D(y,) where D(i,7) = ) ;W (i,7) and removing the constraint

that Y (4, j) € {—1, 1} to rewrite the problem as the following relaxation:

minimize: trace (Y7 (D — W)Y)
subject to: Y71 =0 (2.20)

YTy =1

Which is a simple problem whose solutions are k eigenvectors of D — I/ with minimal eigenvalue.

Clearly, the projection directions are the principal directions of the data.

To extend this algorithm for out of sample data points, they assume that the data points a a proba-

bility distribution p(z). This makes the above optimizing problem to be written as follows:

minimize: / ly (1) — y (22) || W (21, 22) p (21) p (2) dz129
subject to : /y(m)p(x)dx =0 (2.21)

/ y(@)y(@) p(a)de = I

The solution to this problem are functions that satisfy L,f = Af with minimal eigenvalue. As
discussed in [16, 15, 13], with proper normalization, the eigenvectors of the discrete Laplacian

defined by n points sampled from p(x) converges to eigenfunctions of Lp as n — oo.
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2.4 Deep Networks for Hashing

Recently, deep learning methods have shown significant advances in many machine learning tasks
such as feature representation learning, classification, clustering, and sample data point generation.
A deep neural network model defines a parametric function f(x, §) and learns the parameters 6 that
approximate a specific function optimally. Deep neural networks have the flexibility to encode any
nonlinear function, and this resulted in state-of-the-art results for many machine learning tasks on
many benchmarks. One of the successful applications of this method is to learn nonlinear hash
functions [63,72]. In a feedforward neural network model the data flows through the layers of the
model starting from the input layer = sequentially to the output layer y. This is equivalent to a

composition of multiple different functions.

The basic method to train a neural network model is optimizing the model by the gradient decent.
In order to use the gradient decent method to find the optimal parameters 6, every single function
in the network should be differentiable. In this method, a cost function is defined that shows the

ability of our model to

2.4.1 Convolutional Neural Network Hashing (CNNH)

In this method, the goal is to learn L hash functions using a dataset of images Z = {1, I5,..., I}

and the pairwise similarity labels which is defined as [63]:

P +1, 1;, I; are semantically similar
ij =
—1, I;,1; are semantically dissimilar.

The goal is to generate hash codes that preserve semantic similarities over pairs of images.
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This method, similar to [69] and [33], adopts a two stage method to learn the hash functions.
First, approximate hash codes for images are learned, and the next stage is to learn image feature
representation and hash functions simultaneously using the approximate hash codes found in the

first stage.

2.4.1.1 Stage 1: Learn Approximate Hash Codes

In this step, we define an n by L binary matrix /7 such that the row ¢ represent the hash code for
image i. The goal of this step is to find A such that the Hamming distance between two rows
H; and H; be correlated with 5;; the semantic similarity of images ¢ and j. It is known that
when the bit values are —1 and 1, i.e. H; € {—1,1}" the inner product H - H” has one-to-one
correspondence to the Hamming distance between hash codes [37]. Note that H; - HJ-T is in the
range [—L, L]. Finding the approximate hash codes for the image dataset in then is reduced to

minimizing the reconstruction errors:

1 2

S — ZH -HT (2.22)

n n 2
ml}nz Z (Sij — %Hi . HJT) = mhirn

F

Where || - || is Frobenius norm, and the Hamming distance has been normalized to be comparable

to the pairwise semantic similarities.

Because of integer constraints H; € {—1,1}%, optimizing 2.22 is difficult. [63] solves this opti-
mization problem by relaxing the constraints to H; € [—1, 1], i.e letting the binary bit to be in
the real value range [—1, 1], and by employment of coordinate descent algorithm using Newton
directions. The optimization process is to repeatedly choose a random entry in // and optimize it

while keeping all other entries fixed.
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Figure 2.2: The convolutional neural network model to learn the feature representation and hash
functions simultaneously. The network consists of convolutional, pooling and fully connected
layers. The model hash two output layers, one to generate the hash codes and one to predict the
class label for input images.

2.4.1.2 Stage 2: Learn Feature Representation And Hash Codes

In the second stage, a neural network model with two heads is used. As depicted in figure 2.2,
one output is a fully connected layer for hash codes and the other output is a fully connected layer
for class labels. This neural network model is then trained with the approximate hash codes found
in the first step and class labels for images. Note that if class labels are not available, it is still
possible to train the neural network model using similarity information between items. This leads

to learning both image feature representation and hash functions at the same time.

The class label output layer enforces the network to learn an image representation that is beneficial
for both the approximate hash codes and the image class labels. This architecture can be considered
as a transfer learning case in which class labels help to learn image representations that are used to

generate the hash codes.
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2.4.2 Deep Neural Network Hashing (DNNH)

This is hashing method based on a deep neural network model to learn the image feature represen-
tation and the hash codes in a single stage [31]. Given a dataset of images Z = {[1, I5,..., I},
the goal is to find a mapping F that directly maps images to binary hash codes preserving simi-
larity between images. This method follows some recent work, such as [32,45], that uses relative
similarity of a triple of images. The relative similarity is of the form “image I is similar to image
I more than image I~”. The mapping F should generate hash codes such that the more similar
the images the smaller their Hamming distance. This can be achieved by using the following loss

function [31]:

bpes (F(1), F (I7)  F (7)) = max (0,1 = ([|7(1) = F (1) |y = IF(D) = F (1) ][ 1))

To use this loss function for optimization the Hamming distance || - || is replaced by L, norm, and
the mapping F generates a value in the range of [—1, 1] instead of binary codes. Later the output

of the mapping is converted to integer binary values using a threshold.

As shown in figure 2.3, the mapping F is a deep neural network model. The model consist of a
shared sub-network with a stack of convolution layers, followed by a fully connected layer or a

divide and encode module.

The shared sub-network part uses Network in Network architecture [34]. Instead of a fully con-
nected layer usually used in traditional architectures, in this architecture an average pooling layer
is used as output layer. The parameters of the sub-network are shared for each one of the three

input images. This shared sub-network maps images to intermediate image feature vectors.
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Figure 2.3: The framework for DNNH hashing method. It consists of a deep network based on
network-in-network architecture, a divide-and-encode module which is a set of fully-connected
layers followed by a sigmoid function and a piece-wise threshold function.

Divide-and-Encode module maps the image features to approximate hash codes. For a target hash
code of length L, the output of the shared sub-network is designed to be o f length 50L. Then
the divide-and-encode module, divides this feature vector to L slices. Then, every slice is mapped
to a single number in the range [0, 1] using a fully connected layer of length one followed by a
sigmoid activation function and a piece-wise threshold function to push the outputs to be binary
hash bits. Then, these L hash bits are concatenated to form an approximate L-bit hash code. The
idea behind using the divide-and-encode module is to reduce the redundancy between the hash

bits. Since each hash bit is generated using a separate slice, they have less dependency on each
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other. The piece-wise threshold function is defined as:

0, s<05—¢
g(s) =< s, 05—e<s<05+¢ (2.23)
1, §s>05+¢€

where € is a parameter and s is the output of the sigmoid function. This function is used in the

training phase, and in the test phase it is replaced by a simple quantization function (a threshold at

0.5).

This method also uses a simple fully-connected layer of length L as an alternative to the divide-
and-encode module, then a sigmoid functions transforms the output vector of the fully connected
layer to a vectors in the range [0, 1]. The hash codes generated using divide-and-encode module

outperform the ones generated with a simple fully-connected layer.

2.4.3 Deep Semantic Ranking Based Hashing (DSRH)

This hashing method is based on deep learning and semantic ranking and learns hash functions
that preserve similarity between multi-label images [71]. Similar to other deep learning methods,
this method does not use a separate feature extraction module and incorporates all components in

a unified deep convolutional neural network model.

As depicted in Figure 2.5, the hash function is a deep neural network model that has the first
five convolutional layers of AlexNet [28]. The input image is of sized 224 x 224. After the
convolutional layers. there is two fully connected layers, and then a special fully connected layer
that is connected to the concatenated vectors of the previous fully connected layes with the Sign(-)

activation function. The concatenation of two fully connected layers is to provide the hash layer
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with more information about the detailed content and appearance of the input image, because the
feature vector of the second fully connected layer have high level semantic information useful for

classifying the input image as a whole. The hash layer at the end is defined as:

h(x; w) = sign (W' [fa(x); fo(x)]) (2.24)

This hashing method works for multilabel datasets. For the simple case of single label items, two
items are either similar if they have the same labels or dissimilar if their labels are different, and the
goal is to learn hash functions that make the Hamming distances between binary codes small/large
for similar/dissimilar pairs of items. However, in the case of multilabel data items the similarity
of two items depends on how many labels they have in common, and the objective is to preserve
this multilevel similarity. To do that the ranking order of neighbors computed using the hash codes
should be in accordance with the ranking orders computed using the the class label similarity.

fo(x)
Jfa(x) ) h(x)

@0

X
Input image

224 x 224
—— | 5 Convolution Layers

Hash Code

<O

(@ -0@]

(@ -0@]

Dense Layer
Sign() Activation

Figure 2.4: The deep semantic ranking based hashing model. Images go through first five con-
volution layers of AlexNet framework. Then two fully connected layers generates a deep feature
representation for the input image. At the end, a hash layer is used to output the hash code. The
hash layer is a fully connected layer that is connected to both previous layers, and hash a threshold
as the activation function
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For a query data item ¢ and given data item x € D the semantic similarity-level is defined as the
number of common labels between q and x. So, the ground-truth ranking list for ¢ can be calculated
by sorting the dataset D in decreasing order of their similarity. Based on ground truth ranking an
evaluation criteria, such as Normalized Discounted Cumulative Gain (NDCG) score [24], is used

to measure the consistency of the rankings when calculated using hash code.

(2.25)

In equation 2.25, p is the truncated position in a ranking list, Z is a normalizeration constant, and

and r; is the similarity-level of the i-th database point in the ranking list.

Optimizing this ranking criteria needs minimizing a nonsmooth and multivariate loss function.
Thus, a surrogate loss function is used in learning procedure. For a query data item q and a

ranking list {xz}f‘il the ranking loss is defined on a set of triplets as follows:

L( (q), {h (x;)} " 1) Z 3" max (0, dy (h(q), h(x;)) — di (h(a), h(x;)) +p) (226)

=1 jir;<r;

where p is a margin parameter to control the minimum distances between two pairs and dg (-, -)

is the Hamming distance. Further more, the Hamming distance in replaced by the form of inner

n—xTy
2

product dy(x,y) = , where n is the length of vectors x and y.

This loss function is a convex and it can be shown that it is the upper bound of the number of incor-
rectly ranked triplets. Finally, the model is trained using stochastic gradient descent to minimize

the objective function.
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2.4.4 Deep Hashing (DH) and Supervised Deep Hashing (SDH)

Deep Hashing (DH) [35] is another hashing method that uses a deep convolutional network to learn
hash functions. The main contribution of this method is the loss function that is used to train the
model. The model is deep network of M layers that has a threshold function at the top layer to

obtain the binary hash codes:

h; = sign (yfw) 2.27)

In equation 2.27, h; is the hash code for image x;, and y} is output of the last layer (M -th layer)

of the deep convolutional neural network.

M
y y Yy h
@) @
| ti .
np}u{ l_r&_, o L _____ » O Slgn(') .- . Hash Code
@) @

Figure 2.5: The deep hashing model. Images are fed to a stack of convolutional and fully connected
layer and at the end a sign(-) function quantize the output of the last layer. In the supervised setting,
the loss function aims to minimize the difference between the output of all layers close for two
similar items and maximize the difference for two dissimilar items.

Given a dataset of images D = {X;,Xa, . ..,X,}, define the matrix H = [hy,... hy] € {-1,1}2*"
where L is the length of the hash code, and n the size of the dataset. The column ¢ in this matrix
is the hash code for the item i. Also, define the matrix Y™ = [y1", ..., y%] for the layer m of the

network. Every column of this matrix is the output of layer m for the input image. To learn the
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hash function this method propose to minimize the following loss function:

J=Ji— Mo+ A3+ A3y

1
=5 [H =YY

- ;_;L b <(YMYM) T) (2.28)

M
IR
s "
2

2
+
F

+5 (IW™%)

In this equation W represent the parameters of the deep network model, and tr(-) is the trace of
the matrix. The term J; is to minimize the quantization error between the real valued outputs of
the last layer and the binary hash codes. The second term .J; is to maximize the variance of the
binary bits of the hash codes, in order to have balanced bit which are used uniformly. The term J3
aims to maximize the independence of each layer transformation by putting a relaxed orthogonality
constraint on the projections. Finally, the last term J; is to regularize the model parameters. To

optimize the model with this loss function the stochastic gradient decent method is used.

The above mentioned method (DH) is an unsupervised method and does not use the similarity
information of the items. The performance of this method can be improved by using label in-
formation in the training phase. The improved version of this method is called Supervised Deep
Hashing (SDH) [35]. In SDH for each pair of data items (x;,x;) we have the similarity label s;;
which is one when the two items are similar and zero when they are dissimilar. To incorporate this
similarity information in the loss function we replace .J; with the following loss:

Ji = tr (%YM (YM)T) +atr (g — Sw) (2.29)
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where:

1 T
Sw = Z_jl (M =y (M =y (2.30)
1
Sp= 0 =y 6 =) (2.31)
83;=0

In equations 2.30 and 2.31, Z; is a normalizing constant which is the number of pairs of items
that are similar, and Z; is the number of pairs of items that are dissimilar. Clearly, minimizing
Y pushes the output of every layer in the deep network to be close for two similar items and
maximizing Xz leads to increase the output of every layer in the deep network to be different for
two similar items. Similar to DH the total loss function is minimized using stochastic gradient

descent method.

2.5 Evaluation Measures

In information retrieval, there are some metrics that are commonly used to evaluate the perfor-
mance of the different systems and algorithms. Given a query item the system is supposed to rank
the items in the database according to their relevance to the query items. The items are called
“positive” (P) when they are relevant to the query items, and the one that are irrelevant are called
“negative” (N). Thus, when the system return a relevant item it is called a “true positive” (TP),
and when the retrieved item is irrelevant it is a “false positive” (FP) item. Note that the term “true
positive” and “false positive” are also used to indicate the “number” of these items. Similarly,
the item considered by the system as irrelevant are called “true negative” (TN) if they are indeed
irrelevant and “false negative” (FN) if they relevant items. Given these naming conventions, the

following metrics are defined.
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2.5.1 Precision

Precision is the fraction of relevant items (true positive items) among the retrieved items (all re-
turned items i.e both true positive and false negative items), or the probability that a retrieved item
is relevant. Precision is also called positive predicted value. When does not specified, precision

takes all retrieved items into account. i.e.

|{ relevant retrieved items }| TP

= 2.32
|{ retrieved items }| TP + FP (2.32)

precision =

However, this metric can be evaluated considering only the n top ranked items returned by the

system. In this case, it is called precision at n (precision@n).

2.5.2 Recall

Recall is the fraction of the number of relevant items retrieved among all relevant items in the
dataset, or in other words the probability that the relevant item/items are retrieved. This metric is

also known as sensitivity, and true positive rate.

|{ relevant retrieved items }| TP

I = =
reea |{ relevant items }| TP + FN

(2.33)

When this metric is evaluated with threshold n for the top ranked items returned by the system, it

is called recall at n (recaall@n).
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2.5.3 Precision Recall Curve

The precision-recall curve shows the relation between precision and recall for different thresholds.
The x-axis is for recall values and the y-axis for precision values both from 0 to 1. The curve start

from left top corner and ends in a point with recall 1 and precision of a random classifier.

While recall expresses the ability of the system to find all relevant items in a dataset, precision
expresses the proportion of the data points the system indicates as relevant where they are actually
relevant. The high the area under the curve the closer the system is to the perfect information

retrieval system.

2.5.4 Average Precisiona and Mean Average Precision

Mean average precision (mAP) is a single number which quantifies the quality of data retrieval
system. Given a query item, a retrieval system return a ranked set of items from the reference
dataset or gallery. Figure 2.6 illustrate this metric by an example. First, at every threshold if the
item is true positive the precision is calculated. The average precision is the average of precision
values given that the precision at thresholds with false positive is replaced by zero. Intuitively
when the more relevant items at the top of the ranking of retrieved items this metric has higher

values.

Mean average precision (mAP) is the the mean value of average precisions for a set of query items.
When these metrics are evaluated for only top n retrieved items, it is called average precision at n

(AP@n), and mean average precision at n (mAP@n) respectively.

This metric summarizes the quality of a specific item retrieval algorithm. However, note that

when an algorithm employs hash codes for document retrieval the relevance (similarity) of items
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is quantified with discrete values. This puts many retrieved items at the same rank with respect
to a specific query item. When the items with the same rank are both relevant and irrelevant, the
order of the items will affect the mean average precision value significantly. Despite this problem,

researchers report the mean average precision without further indication on the order of items with

the same rank.

ltem Rank 1 2 3 4 5 6 7 8
Retrieved Items \/ \/ % \/ X \/ \/ '.I X
Procisi 1 2 ‘.@ 3 @ 4 5 E @
recision = - - = b
® 1 2 U1 6 7!
\ 1,2 ';
Z 0 I
Average Precision APQ3 = % ~ 0.67 v
1.2,043404+448
Apar=112T0TATOTE T 5

7

Figure 2.6: The process of calculating average precision for a query item. The relevant and irrele-
vant retrieved items are show respectively with tics and crosses.

2.5.5 Accuracy

For a classifier, accuracy is the fraction of the number of true positive and false negative items

among all items in dataset.
TP + FN
P+ EN (2.34)

accurcy = — N

When the dataset is not balanced, i.e, the number of positive items is noticeably different than
the number of negative items, this metric does not give a good indication of system performance.

A solution for this problem is balanced accuracy in which the number of positive and negative
samples are first normalized before applying the above equation.
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2.6  Summery

In this chapter, we reviewed some important approaches to solve the hashing for similarity search
problem. We started with the local sensitivity hashing and some of its variants for different dis-
tance metrics. Then, studied few other fundamental data independent and data dependent hashing

algorithms. At the end, we reviewed some of the main evaluation metric of hashing systems.
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CHAPTER 3: SUPERVISED MAXHASHING

3.1 Introduction

The Winner Take All (WTA) [65] hash family which is an extension of Min-Hash algorithm [6].
WTA algorithm uses the rank correlation as a measure of similarity instead of quantizing a real
valued vector using a threshold function. The rank correlation measure makes this algorithm robust
with respect to noise and small variations which are important characteristics of image data. In
its original form, the WTA algorithm uses L different random permutations. Each permutation
reorders the entries of input array and then the index of maximum entry in the first K entries of
the permuted array is given as the [-th entry of hash code. By repeating this process with different
L permutations, a hash code of length L in the base K is generated which can be represented as a

binary code of length |log, (K* —1)| +1[2].!

Clearly, WTA algorithm is a data-independent hashing method, since the permutations are random

and there is no feasible method to find the set of permutations that give the best performance.

In this chapter, we present a learning based extension of WTA hash algorithm that resolves the
problems of linear subspace ranking hash and can be connected seamlessly to other neural network
layers. The result is a consistent model in which both feature learning and hash coding parts are

trained together optimally.

1© 2018 IEEE. This chapter is reprinted, with permission, from [2].
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3.2 Method

Let’s suppose we have a training set X = {xW},c; n of N examples along with their semantic
labels or relevance information. Using the semantic labels we generate a semantic similarity set
S = {sij}ijer..n such that s;; = 1if two examples x(V) and x\) are semantically similar and
si; = 0 if they are not. In the training phase, pairs of training examples along with their similarity
labels are fed to the model. The goal of supervised learning based hash algorithms is to train the
model so that it produces two hash codes h(® and h¥) that have small Hamming distance when the
examples x( and x\9) are semantically similar, and vice versa. Once the model is trained, it acts

as a nonlinear mapping function that generates a hash code h corresponding to the item x(*).
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feature generation layers

©)

similarity label

hashing layer

Figure 3.1: The proposed supervised max hashing network which is comprised of: (1) a standard
deep convolutional neural network for learning image representation (in our case AlexNet [28]),
(2) a hashing layer for transforming the image representation into /-ary L-dimensional hash code,
and (3) a pairwise cross-entropy loss function for learning a similarity-preserving mapping.

In this work, we present a supervised learning to hash method with a ranking based hash function
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that 1s differentiable and therefore can be connected to other layers of neural networks. Figure 3.1

shows the pipeline of our framework. It consists of the following three components:

e A deep convolutional network to produce a rich image representation as a features vector. To be

comparable with other works, we used the first seven layers of AlexNet [28].

e A ranking hash layer. It is comprised of L parallel linear mappings of the feature vector followed
by a differentiable approximation of argmax function. We call this differentiable approxi-

mation of argmax function soft-argmax.

e A novel pairwise loss function which: (1) minimizes the quantization error for each hash code,

(2) and maximizes hash code similarity for similar items and vice versa.

I 01
2| softmax  [92

dot product
Tp On

° m

input vector

approximate
2 argmax

Figure 3.2: Differentiable approximation of argmax function to find the index of maximum entry
in an array. This function is the composition of a softmax function followed by the dot product by
a vector whose entries are equal to their indices.
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3.2.1 Convolutional Neural Network

The first step of every hash code generation system is the conversion of input images into compact
feature vectors. These feature vectors should preserve semantic similarity between input images
and avoid those differences that do not reflect real semantic disparity. While most of image hashing
methods use hand-crafted visual descriptors or pre-trained deep convolutional neural networks,
training a deep convolutional neural network in conjunction with hash coding system results in a
better performance. This is because the feature vector generator is optimally trained for the specific

hash function.

Since the performance of hashing algorithms depends on the quality of feature vectors, in order
to present a fair comparison of other approaches with our novel contributions (hashing layer and
differentiable approximation of argmax function), we have used the AlexNet [28] deep neural
network for generating feature vectors. The other approaches such as DHN [72] and DNNH [31]

have also used the same network for feature generation.

3.2.2 Permutation

It is well known that a permutation can be represented by a square binary matrix M of size n X n

obtained by permuting the columns of the identity matrix 7,4, [7]. For example the permutation 7 :

1 2 3 4
{1,2,3,4} — {4,3,1,2}orm = or simply 7 = (4, 3, 1, 2) can be represented by
4 3 1 2
0001
0010
the matrix: M = . In this example, given a vector v = (a,b, ¢,d)” the permuted
1000
0100
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vector is Mv = (d,c,a,b)’. Therefore, a permutation is indeed a special case of a projection,
and we can replace it with a matrix multiplication. This gives us a differentiable equivalent of

permutation operation.

3.2.3 Hashing Layer and Soft-ArgMax

Our hashing layer produces an L dimensional hash code h = {hy, ho, hs,...hy}. Each entry in
the L dimensional hash code is computed as follows: first, we project the feature vector to a K
dimensional subspace, then we find the index of the feature that has the maximum value. This
index is one of L entries of the hash code. In order to get an L dimensional hash code, this process
is repeated with L different projections. Therefore, for the [-th entry of the hash code, we can

write:
h; = arg max (z' W), (3.1
1<k<K

here z is the feature vector, W, is projection matrix for the [-th entry of the hash code, and argmax

returns the index of the maximum element in the vector z' W,.

The argmax function in equation 3.1 is not differentiable, thus we cannot use it in this form for
training using gradient descent method. In order to train a model comprising argmax function, we

have proposed the following approximation for it, which is differentiable:

argmaxxy ~ [1,2,3,..., K| - o0(x) (3.2)
1<k<K

here o(x) is the softmax function. It converts a vector x of arbitrary real values into a normalized
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vector of real values in the range [0, 1]. The j-th entry of o(x) is given by the following equation:

eXi

= ———,forg=1,... K. .
S ford =1 (3.3)

o(x);

The softmax function in equation 3.2, converts the vector x into another vector of the same dimen-
sion. In this new vector, the element with the maximum value in x is replaced by a value close to
1, while other elements are close to zero. Dot product of this vector with the vector [1,2,3, ... K]
returns approximate position of the maximum element in the vector x. Figure 3.2 depicts this

approximate argmax function which we will call soft-argmax from now on.

After using equation 3.2, the complete ranking hash function for a single entry of the hash code is:
by~ 1,2,3, ..., K] - o(z" W;)

K
=> k-o(z" W) (3.4)
k=1

This function is continuous and differentiable. Let’s suppose x; = W, z is the input of the soft-

argmax, then the derivative of the hash element /; with respect to the input x; is given by:

dh
l = Z k- O'(ZT Wl)k ((Szk — U(ZT Wl)k) (35)

here ;1 is the Kronecker delta. Please note that the soft-argmax operation will be used in training
phase only, and in the test phase, when there is no need for error back-propagation, this operation

can be replaced by the faster argmax operation.
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Figure 3.3: Total distance between two bits for = 0.5. Minimizing this distance simultanuosly
pushs two bit toward integer values and minimize their Hamming distance. Tuning the parameter
a moves the “saddle point” vertically and changes the slopes of of planes.

3.2.4  Loss function

For two hash codes h and h¥), we define the total error e(h(”, h")) as the weighted sum of the
disparity error e4(h? h(¥)) of two hash codes and quantization error e,(h”) and e,(h"%)) of each

hash code:

e(h® h)) = ¢,(h® hY)) + o (eq(h(i)) + eq(h(j))) (3.6)

In this equation, the disparity error eq(h” h()) is defined as the normalized Manhattan distance
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between two hash codes h” and h¥):

L
RN i j

ca(h, W) = — ; Ih{” — Y| (3.7)
The quantization error is the normalized distances of entries of a soft hash code from its rounded

integer vector, and defined as:

L

eg(h?) = 2> b — ]| (3.8)

=1

where | x| is the nearest integer to x.

Figure 3.4: For hash codes with digits in base 3, the total error e(cy, ¢2) has its minimums at
locations where two digits are equal integers.

Note that, when two entries of two hash codes are different but close to integer values, decreasing
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the quantization error will increase the disparity error with the same rate. These relations are
visually depicted in figure 3.3. Figure 3.4 show the effect of increasing the base of hash code digits
on the total error between soft hash codes. So, to give the priority to disparity error the parameter

« should be less than one. In this case, the total error is a real number in the range [0, K — 1].

Now, using the total error function we define the likelihood of getting hash codes h(” and h¥) for

two images with similarity label s;; as:

g —e(h® ho) =1
p(sy]hD, 0 = (v (5 =l )) %0 (3.9)

1—5(v(8—emh® h@))) s;=0

where S(z) = 1/(1 + e ") is the sigmoid function and ~ and / are two hyper-parameters that
control the slope and the inflection point of the sigmoid function. This Bernoulli probability dis-

tribution setting leads to likelihood function:

LW) = (pij)™ (1 — pij>(1isij) (3.10)

and finally to minimize the error we use gradient descent and minimize:

[ = —log(£L) = —log ((py)*7 (1 — piy) ') (3.11)

Finally, it is worth to mention that proposed hashing layer can be put in the middle of a deep neural
network and in this case it can use the back-propagated error to train. However, when the purpose
is to use this layer as hash code function, the best results will be generated when it is put as the

last layer of the neural network model and is fed by highest level image representation which is
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the feature vectors of previous fully connected layer. In this case, we have to use the pairwise loss

function to train the entire network.

3.2.5 Hyper-Parameters o, 3 and vy

The proposed loss function has three hyper-parameters o, S and . The first hyper-parameter, «
is the weight of quantization error. Since the quantization error acts at opposite of disparity error
when two digits of two hash code are different but close to integer numbers, o should be less than
1. Based on experiments, a good initial suggestion for this hyper parameter is 0.5. The hyper-
parameter 3 controls the center point of sigmoid function, and a value of 0.5 makes the argument
of sigmoind function symmetric around zero in the range —0.5 to 0.5. Finally, the hyper-parameter
~ controls the slope of sigmoid function, and a higher value for this hyper-parameter gives a steeper
sigmoid function. A small value for this parameter make the sigmoid function simply close to a

line for its argument range, and a value around 10 is a good initial guess for 7.

3.3 Experimental Results

3.3.1 Setup

To evaluate the efficiency of the proposed method against several state of the art and classical
methods, we performed extensive experiments with the same three standard datasets NUS-WIDE?

[10], CIFAR-10° [27], and MIRFlickr* [22] that are used by DHN [72] and CNNH [63]:

Zhttp://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3https://www.cs.toronto.edu/ kriz/cifar.html

“http://press.liacs.nl/mirflickr
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e The NUS-WIDE multi-label dataset which contains of 269,648 image links downloadable from
Flickr.com. Since this is public Web image dataset, it loses some of its images every day
and currently the actual usable dataset size is only about 223,000 images. The images are
annotated with one or more semantic tags associated to 81 different concepts. Following [72]

we use only 21 concepts that have more than 5,000 sample images. This results in a subset

of 158,529 images.

e The standard CIFAR-10 dataset containing 60,000 color images of size 32 x 32 pixels in 10
classes.The classes contain equal number of samples. We resize all images to 227 x 227 and

the images are fed to the network without any further preprocessing.

e The MIRFLICKR-25000 dataset consists of 25,000 images collected from the social photog-
raphy site MIRFlickr. Each image manually annotated with one or more of 38 semantic

concepts.
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Table 3.1: Mean average precision of Hamming ranking for NUS-WIDE, CIFAR-10, and MIRFlickr image datasets. The highest
MAPs for each category are shown in boldface.

Method _NoSwWOE__ [ CERD [ MRk ____
12 bits | 24 bits | 32 bits | 48 bits || 12 bits | 24 bits | 32 bits | 48 bits || 12 bits | 24 bits | 32 bits | 48 bits
LSH 0.403 | 0.421 | 0.426 | 0.441 0.121 | 0.126 | 0.120 | 0.120 || 0.499 | 0.513 | 0.521 | 0.548
ITQ 0.452 | 0.468 | 0472 | 0477 0.162 | 0.169 | 0.172 | 0.175 0.544 | 0.555 | 0.560 | 0.570
SH 0.433 | 0.426 | 0.426 | 0.423 0.131 | 0.135 | 0.133 | 0.130 || 0.531 | 0.533 | 0.531 | 0.529
BRE 0.485 | 0.525 | 0.530 | 0.544 || 0.159 | 0.181 | 0.193 | 0.196 || 0.571 | 0.592 | 0.599 | 0.604
MLH 0.500 | 0.514 | 0.520 | 0.522 | 0.182 | 0.195 | 0.207 | 0.211 0.610 | 0.618 | 0.629 | 0.634
ITQ-CCA 0.435 | 0.435 | 0.435 | 0.435 0.264 | 0.282 | 0.288 | 0.295 0.513 | 0.531 | 0.540 | 0.555
KSH 0.556 | 0.572 | 0.581 | 0.588 0.303 | 0.337 | 0.346 | 0.356 || 0.690 | 0.702 | 0.702 | 0.706
CNNH 0.611 | 0.618 | 0.625 | 0.608 0.429 | 0.511 | 0.509 | 0.522 || 0.732 | 0.734 | 0.741 | 0.740
CNNH * 0.617 | 0.663 | 0.657 | 0.688 0.484 | 0.476 | 0472 | 0489 | 0.749 | 0.761 | 0.768 | 0.776
DNNH 0.674 | 0.697 | 0.713 | 0.715 0.552 | 0.566 | 0.558 | 0.581 0.783 | 0.789 | 0.791 | 0.802
DHN 0.708 | 0.735 | 0.748 | 0.758 0.555 | 0.594 | 0.603 | 0.621 0.810 | 0.828 | 0.829 | 0.841
MaxHash (Ours) | 0.759 | 0.784 | 0.793 | 0.797 || 0.753 | 0.767 | 0.763 | 0.765 | 0.837 | 0.854 | 0.862 | 0.868
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We use the same protocol as in [72] and [63] to have a fair comparison with other algorithms.
Hence, for CIFAR-10 dataset we used a set of 1,000 images as test query set and a set of 5,000
images as training set and the remaining images are used as the database. Both training and query
sets have equal numbers of images from each class. For NUS-WIDE dataset the test query set has
2,100 images and the training set has 10,500 images with equal number of images from each class,
the rest of the dataset is used as database. Finally, for MIRFlickr dataset the test query set consist of
1,000 and the training set has 4,000 randomly selected images as in [72] and the remaining 20,000
images make the database. All images are resized to 227 x 227 pixels, then the mean value of three
channels is subtracted and the resulting images are used for training and evaluation without any

further preprocessing.

To evaluate the quality of proposed hashing algorithm, we adopt four evaluation metrics that are
widely used in previous work like [72] and [63]: the mean average precision at 5,000 top returned
samples, the precision recall curves, precision curves within Hamming distance 2, and precision
curves with respect to different number of top returned samples. We compare these retrieval perfor-
mance metrics of proposed method to eleven state-of-the-art and classical hashing methods. Three
of these methods, LSH [14], SH [62], and ITQ [15] are unsupervised and eight other method
DHN [72], DNNH [31], CNNH [63], CNNH* [31], KSH [37], MLH [44], BRE [29], and ITQ-
CCA [15] are supervised.

The similarity labels for training the model and for all different evaluation methods mentioned
above are constructed from image labels. Two images z(*) and zU) are considered similar and

si; = 1 if they share at least one label, otherwise the images are considered dissimilar and s;; = 0.

We implement our method based on the Theano [59] Python library® and used AlexNet [28] ar-

chitecture to have the quality of feature vectors and network strength equal to [72] for a fair com-

Shttp://deeplearning.net/software/theano/
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parison. We trained the proposed hashing method and fine tuned the model simultaneously using
stochastic gradient descent (SGD) with 0.9 momentum, 0.001 weight decay, and step decay learn-

ing rate annealing.

3.3.2 Results
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Figure 3.5: Comparisons with state-of-the-art approaches on NUS-WIDE dataset. (a) Precision
within Hamming radius 2. (b) Precision-Recall curves with 48-bits. (c) Precision curves with
48-bits with respect to different number of top returned samples.
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Figure 3.6: Comparisons with state-of-the-art approaches on CIFAR-10 dataset. (a) Precision
within Hamming radius 2. (b) Precision-Recall curves with 48-bits. (c) Precision curves with

48-bits with respect to different number of top returned samples.

Table 3.1 shows the mean average precision for the three above mentioned datasets for all methods.
Our proposed method substantially outperforms all the comparison methods in all cases. For NUS-
WIDE dataset, we achieve mean average precision improvements of 5.1% for hash code length 12
bits, 4.9% for hash code length 24 bits, 4.5% for hash code length 32 bits and 3.9% for hash code
length 48 bits compared to the best baseline. For CIFAR10 the improvements are 19.8%, 17.3%,
16% and 14.4% respectively, and for MIRFlickr the boosts in MAP are 2.7%, 2.6%, 3.3% and
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2.7% for different hash code lengths. The results for LSH [14], SH, ITQ, DHN, DNNH, CNNH,
CNNH*, KSH [37], MLH, BRE, and ITQ-CCA are directly reported from [72]. In all cases «, 3

and y are set to 0.5, 0.4, and 40 respectively.
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Figure 3.7: The effect of hash code base K on the mean average precision for the three datasets:
(a) NUS-WIDE, (b) CIFAR-10, and (¢c) MIRFlickr. In all cases when we increase the base and
decrease the hash code length the precision of hash code decreases.

As shown in Figures 3(a) and 4(a), the proposed method achieves the highest precision within
Hamming radius 2 on NUS-WIDE dataset for hash code lengths 12, 24, and 32 bits, and on CIFAR-

10 dataset for all hash code lengths. The importance of this performance metric comes from the
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efficient retrieval with binary hash codes since the time complexity of this Hamming ranking for

each query is O(1).

The performance in terms of precision-recall curves are shown in Figures 3(b) and 4(b). These
curves show that our method resists increase in recall and tends to keeps high precision for larger
values of recall. For NUS-WIDE data set the precision of our method for recall equals one is lower
than other methods, and the reason is that many image links in the NUS-WIDE dataset are broken,
and the usable dataset size has been reduced to about 158,000 images currently compared to the

work done by [72].

Figures 3(c) and 4(c) depict precision curves with respect to different numbers of top retrieved
samples which shows that our method have higher precision both for small and large number of
retrieved samples. This means that our method behaves more like a perfect document retrieval

system.

Finally, we evaluated the effect of the parameter /X' on the mean average precision. For a binary
code of length L. we evaluated the method with K'-ary code of length [logQ(K L 1)J + 1. So,
as equivalent to binary hash code of length 48, we evaluated the mean average precision for the
cases with hash code length and hash code base as follows: L = 31, K = 3 and L = 24, K = 4,
and L = 21, K = 5. The other equivalent cases are L = 32,21,16,14 and L = 24,16,12,11 and
L =12,8,6,6 for K = 2,3,4, 5 respectively. Figure 3.6a, 3.6b, and 3.6¢ depicts the result of this
experiment on the three datasets NUS-WIDE, CIFAR10 and MIRFlickr. The graphs show that in
general increasing K reduces the mean average precision, and the bast results are when the hash

code base K = 2.
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3.4 Conclusion

In this chapter, we proposed a novel deep learning based hashing method that integrates image
representation and feature learning step with the ranking based hash function into a unified deep
convolutional network. This method consists of two parts: a neural network layer that performs
ranking based hashing, and a pairwise loss function designed for training the model. Extensive
experiments show that this model outperform state of the art and classical hashing methods both

learning based and data-independent.

52



CHAPTER 4: UNSUPERVISED UMAPHASH

4.1 Introduction

The purpose of hashing algorithms for information retrieval is to find a hash function that maps
similar items to binary hash codes with small Hamming distances and dissimilar items to binary
hash codes with large Hamming distances. This is similar to other techniques in machine learning,
notably dimensionality reduction and data visualization. In the dimensionality reduction tech-
niques the aim is to obtain a smaller set of principal variables among all random variables that data
is presented in, but retaining the most important variance in the input data. For example, in princi-
pal component analyses (PCA) method the original data space is reduced to the space spanned by

a few eigenvectors corresponding to the highest variation in the data distribution.

On the other hand, data visualization is the pictorial representation of the data, such that the pro-
duced images show the relationships in the represented data. Remarkable methods in this tech-
niques are Isomap [58], SNE [19], t-SNE [48], and the recent UMAP [41]. In this chapter we will
present a new method to train hash functions inspired by UMAP. In this method, minimizing the

loss function leads to mappings that retain the topological structure of the training datasets.

4.2 Method

We start by describing how our method for training hash functions is used for image similarity
search. In brief, the images are processed by a deep neural network to obtain the feature vectors,
which are then further processed using a certain number of fully connected layers and a final

MaxHash layer [2]. This two-stage architecture is depicted in Figure 4.1. We train the two stages
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of the model sequentially. First, we train a generative model in order to use its feature vector
generation component. Next, we train the hash function to map the feature vectors to hash codes
preserving item similarity in this mapping. To train the hash function, we used a method inspired

by the UMAP manifold learning and projection algorithm [41].
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Figure 4.1: The proposed unsupervised hashing network which is comprised of: (1) a deep convo-
lution network, (2) a trainable hash function, and (3) a loss function that penalize the divergence
between the probability distribution in the feature vectors space and probability distribution in the
hash codes space.

The feature generation subsystem can be a discriminator of a generative adversarial network (GAN)
[16] or an encoder of a variational autoencoder (VAE) [26]. In the discriminator case, the output of
next to last layer can be used as the feature vector, and in the decoder case the mean parameter of
the latent variable. We assume that the deep model non-linearly maps the space of images to a new
feature space F C RP, such that in this new feature space the Euclidean distance between pairs
of feature vectors reflects the semantic similarity between the images. In other words, we assume
that the model non-linearly maps the complicated manifold images onto a simpler structure in
the low-dimensional space JF, in which the semantic features of the images become disentangled.
Therefore, under this assumption if we train a deep hash function that generates a distribution in

the hash code space H C {0, 1}” that resembles the distribution of those feature vectors in F,
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then this hash function will express the similarity between images in a much simpler binary vector
space, and at the same time enjoy the advantages of deep models in producing rich disentangled

feature vectors.

We now describe the hashing subsystem. The configuration of the hashing subsystem is depicted
in the middle of Figure 4.1. It consists fully connected layers (if any) followed by the trainable
hashing layer MaxHash [2]. MaxHash is a trainable variant of MinHash algorithm [6] capable of
generating hash codes with digits in arbitrary base K. The ¢-th element in the output vector h of

MinHash layer for the input vector x € R¢ is given by:

h; =10,1,2,..., K — 1]7 0 (W;x) 4.1)

where W, is a K x d projection matrix, and o(+) is the softmax function, and h; is a real value
between zero and K — 1, with the tendency to be closer to integer numbers. We call the output of
MaxHash layer “soft hash code” to distinguish it from the final hash code after thresholding. In
this work, we used MaxHash with K = 2 in order to directly obtain a binary hash code without

any further processing.

We now describe our novel loss function for training the hashing subsystem. We are given a set of
feature vectors {vy, va, ..., vy} C F and seek to obtain a corresponding collection of hash codes
{c1,¢a,...,cn} C H such that the topological structure of the feature vectors in F and that of the
hash codes in ‘H are as similar as possible. To achieve this goal, we need construct a suitable loss

function that quantifies how dissimilar the topological structures are in the spaces F and H.

For each feature vector v;, we determine the approximate & nearest neighbors {v; 1,v;2,...,v;}

with respect to the Euclidean metric, where £ is a hyper-parameter chosen between 5 and 100.
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We compute the distance between the feature vector v; and its closest neighbor, p;:

pi = gjigk |vi — vill2 (4.2)

Using binary search, we determine a normalization factor o; such that the following equality holds:

2- ”i) = log, (k) 4.3)

g;

k
s
j=1

We define the non-symmetric distance metric d;); between any pair of different feature vectors v;

and v; as follows:

Vi — Vjll2 — Pi

This normalization gives us a local distance metric d;. for each feature vector v; that captures the

distribution of its k closest neighbors.

Now, we define a weighted directed graph with feature vectors as vertices and directed edges with

weights p;; defined by

Finally, we define a weighted undirected graph with feature vectors as vertices and edges with
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weight p;; defined by

Pij = Dilj + Pjli — Pilj Pjli (4.6)

The arguments in the UMAP paper [41] show that this weighted graph gives an approximate topo-

logical representation of the collection of the feature vectors v;.

Given a collection of hash codes cy, ..., ¢,, we construct an undirected weighted graph with hash

codes as vertices and weights g;; given by

-1
g; = (L+allei— o) (4.7)

The parameters a and b in equation 4.7 depend on the minimum distance m and spread s, which
are two hyperparameters in the UMAP method. The parameters a and b are chosen by fitting the

function (1 + a z%) ! to the function exp(—(x —m)/s) for some values x in the interval [0, 3s].

Now, the task is to make the topological representation of the hash codes resembles that of the
features vectors. This can be accomplished by minimizing the fuzzy set cross entropy of the edges

weights p;; and g;;

ij 1 —pi
Lonap = Zpij log (&> + (1 = pi;) log ( p]> (4.8)

itj iJ 11— qij

The other requirement for the quality of soft hash codes is to minimize the quantization error for
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each bit of the soft hash code ¢; which is given by:

n

L
quant Z |Cz ch -I | (49)

=1 (=1

In equation 4.9, |.] denotes the nearest integer function, and ¢;(¢) is the ¢-th bit of the hash code

of item 7.

Finally, combining objectives (4.8) and (4.9), we define the total loss function L as:

L= Emap + £quant (410)

By minimizing the loss function (4.10) the soft hash code embedding is pushed to resemble the

topological structure of manifold of feature vectors while having small quantization error.

4.3 Experimental Results

4.3.1 Setup

To verify the efficiency of our algorithm, we carry out different experiments. For all experiments,
we first trained a slightly modified Improved-GAN [50] network in unsupervised setting. Then,
we pass the training images through the discriminator of this network and extract the output of
the next to the last layer as their corresponding feature vectors (deep CNN part in Figure 4.1).
Finally, we train the hash function which is a composition of two fully connected layers followed
by a MaxHash layer using these feature vectors (hash function part in Figure 4.1). We used the

following datasets for our experiments:
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e MNIST dataset' includes 70,000 gray scale images of size 28 x 28 of hand written digits across
10 classes. For this dataset, we replace the pooling layer of Improved-GAN with a fully
connected layer with 150 units, employ weight normalization [51], and utilize sigmoid func-
tion as the activation function for the last layer of generator. The images are normalized to
the range of [0, 1] and resized to 32 x 32. We follow the standard protocol for evaluating
algorithms with this dataset and randomly sample 1000 images with equal items from each

class as the query set and the remaining data samples as the database.

e CIFAR-10 dataset® dataset contains 60,000 colored images of size 32 x 32 pixels in 10 classes.
The classes contain equal number of samples. As for MNIST data set, we use the discrimi-
nator of a modified version of Improved-GAN as feature extraction model. We remove the
pooling layer, utilize tanh function as the activation function for the last layer of genera-
tor, and to stabilize the training use weight normalization. The images of this dataset are

normalized to the range of [—1, 1].

e STL-10? that has 13,000 labeled colored images of size 96 x 96 pixels in 10 classes with equal
items per class and 100,000 unlabeled images of the same size. We resize images to 32 x 32
and normalize them to the range of [—1, 1]. We use the same Improved-GAN structure as

with CIFAR-10 dataset.

e USPS Handwritten Digits* is a dataset that includes 11,000 grayscale images of size 16 x 16
pixels. The images are of handwritten digits with 1,100 examples of each class. Images are
resized to 32 x 32 and normalized, and we use the same Improved-GAN structure as with

MNIST dataset.

'http://yann.lecun.com/exdb/mnist/
Zhttps://www.cs.toronto.edu/ kriz/cifar.html
3https://cs.stanford.edu/ acoates/stl10/

“https://cs.nyu.edu/ roweis/data.html

59



Table 4.1: Image retrieval results (mAP and mAP@1000) on CIFAR-10 and MNIST datasets, for hash code lengths 16, 32 and
64. The results of alternative models are reported from [13].

Z Dataset CIFAR-10 MNIST

= Metric mAP (%) mAP@1000 (%) mAP (%) mAP@1000 (%)

2 | Code Length 16 32 64 16 32 64 16 32 64 16 32 64
KMH 13.59 | 13.93 | 14.46 | 24.08 | 23.56 | 25.19 | 32.12 | 33.29 | 35.78 | 59.12 | 70.32 | 67.62
SphH 13.98 | 14.58 | 15.38 | 24.52 | 24.16 | 26.09 | 25.81 | 30.77 | 34.75 | 52.97 | 65.45 | 65.45
SpeH 12.55 | 12.42 | 12.56 | 22.10 | 21.79 | 21.97 | 26.64 | 25.72 | 24.10 | 59.72 | 64.37 | 67.60
PCAH 1291 | 12.60 | 12.10 | 21.52 | 21.62 | 20.54 | 27.33 | 24.85 | 21.47 | 60.98 | 64.47 | 63.31
LSH 12.55 | 13.76 | 15.07 | 12.63 | 16.31 | 18.00 | 20.88 | 25.83 | 31.71 | 42.10 | 50.45 | 66.23
ITO 15.67 | 16.20 | 16.64 | 26.71 | 27.41 | 28.93 | 41.18 | 43.82 | 45.37 | 70.06 | 76.86 | 80.23
DH 16.17 | 16.62 | 16.96 - - - 43.14 | 44.97 | 46.74 - - -
DAR 16.82 | 17.01 | 17.21 - - - - - - - - -
HashGAN 29.94 | 31.47 | 32.53 | 44.65 | 46.34 | 48.12 | 91.13 | 92.70 | 93.93 | 94.31 | 95.48 | 96.37
UMAPHash (Ours) | 38.53 | 40.65 | 43.55 | 52.41 | 54.38 | 55.39 | 93.66 | 93.40 | 92.66 | 96.77 | 97.15 | 97.20
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Figure 4.2: Top 10 retrieved images for query data on CIFAR-10 dataset with 64 bits hash codes.
In each row, the image on the left side is the query image, and retrieved images with red underline
have different labels than the query image.

We implement the algorithm in Tensorflow and use a Tesla V100 GPU for training and tests. The

source code to reproduce the results of experiments is available on GitHub.

4.3.2 Image Retrieval

Firstly, we present the results of application of UmapHash for image retrieval. We compare our
method with several unsupervised methods using precision at top 1000, mean average precision
(mAP), and mean average precision at top 1000, and precision-recall curves. We also show the top

ten retrieved images for some samples to demonstrate the quality of data retrieval.

Table 4.1 shows the mean average precision and mean average precision at 1000 for hash code of
length 16, 32, and 64 bits. The unsupervised hash functions including K-means hashing (KMH)
[17], spherical hashing (SphH) [18], spectral hashing (SpeH) [62], PCA-based hashing (PCAH)
[61], locality sensitive hashing (LSH) [14], iterative quantization (ITQ) [15], deep hashing (DH)

[35], and discriminative attributes representations (DAR) [20].
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Figure 4.3: Top 10 retrieved images for different images for digit 8 in MNIST dataset with 64 bits
hash codes. In each row, the image on the left side is the query image, and retrieved images with
red underline have different labels than the query image.

The precision@ 1000 which is the fraction of true positive retrieved images from the top 1000
retrieved images in the database is shown in Table 4.2. As the table shows our method outperforms

all other algorithms.

Figures 4.2 and Figure 4.3 show the top 10 retrieved images for few query samples from CIFAR-10
and MNIST datasets respectively. Note how the system return digits similar to the query image
shape regardless of its label. In the last row the query is an image of 8, but since it is very similar

to a 9, the images with closest hash code are all images of digit 9.

4.3.3 Raw Feature Vectors

When feature extraction/hash function is used for image retrieval, the expectation is that passing the
feature vectors through additional hashing layers will reduce the accuracy in the retrieved images.
However, experiments show the contrary. If we use the Euclidean distance of raw feature vectors

for image retrieval, as we can see in Table 4.4, for MNIST dataset mAP is 80.04% and mAP @ 1000
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1 96.71%, and for CIFAR-10 dataset mAP is 37.37% and mAP@ 1000 is 55.24%, which is lower

than when using the hash codes.

Table 4.2: Image retrieval results (precision@ 1000) of unsupervised hash functions on CIFAR-10
and MNIST datasets, when the number of hash bits are 16, 32 and 64.

CIFAR-10 MNIST

precision@1000 (%) | precision@ 1000 (%)
Method 16 32 64 16 32 64
KMH 18.83 | 19.72 | 20.16 | 51.08 | 53.82 | 54.13
SphH 18.90 | 2091 | 23.25 | 46.31 | 54.74 | 62.50
SpeH 18.83 | 19.72 | 20.16 | 51.08 | 53.75 | 54.13
PCAH 18.89 | 19.35 | 18.73 | 51.79 | 51.90 | 48.36
LSH 16.21 | 19.10 | 22.25 | 31.95 | 45.05 | 55.31
ITQ 22.46 | 25.30 | 27.09 | 61.94 | 68.80 | 71.00
DH 16.17 | 16.62 | 16.96 - - -
DAR 24.54 | 26.62 | 28.06 - - -
HashGAN 44.65 | 46.34 | 48.12 | 94.31 | 95.48 | 96.37
UMAPHash (Ours) | 50.64 | 52.13 | 53.32 | 96.47 | 96.98 | 97.01

Our explanation is that, the topological similarity of feature vectors defines the similarity of images
better than the simple Euclidean distance between their feature vectors, especially for distant data
points. As Figure 4.5 shows, the Euclidean distance between two points A and B is less than the
distance from A to C, which is misleading. Since UMAP Hash maps the topological structure of
the dataset to the binary code space, it is filtering out some of the Euclidean distance information
that does not reflect the local neighborhood structure for every item, therefore improving the re-
trieval accuracy. The substantial difference of mAP when sorting the entire database, 80.04% vs

92.66% and 37.37% vs 43.55%, confirms this explanation.
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Figure 4.4: Precision-Recall curves compared with state-of-the-art approaches on CIFAR-10 data-
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set with hash codes of length (a) 16, (b) 32, and (c) 64 bits.
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To evaluate the quality of our hash method, we also used the hash codes with K-mean algorithm
to cluster the images. We compare the performance with K-means, normalized cuts (N-Cuts) [53],
deep embedded clustering (DEC) [64], joint unsupervised learning (JULE-RC) [66], spectral em-
bedded clustering (SEC) [43], large-scale spectral clustering (SC-LS) [9], and HashGAN [13]

hashing method. Table 4.4 shows the results in normalized mutual information (NMI), and accu-
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racy.

NMI gives the normalized mutual dependence between the predicted and true labels, and accuracy
is the accuracy of predicted labels after matching the predicted labels and the true labels using the
Hungarian method for the assignment problem. Table 4.4 shows that the generated hash codes are

performing well for clustering purpose, and give superior or competitive results.

Table 4.3: Image retrieval results (mAP and mAP@1000) by the real valued feature vectors (v
columns) and binary hash code of length 64 (c columns) on CIFAR-10 and MNIST datasets.

mAP (%) mAP@1000 (%)
Dataset v c v c
MNIST 80.04 | 92.66 | 96.71 97.20
CIFAR-10 | 37.37 | 43.55 | 55.24 55.39
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Figure 4.5: The mapping retains the local neighborhood structure of input space in the target space.

4.4 Conclusion

In this chapter, we presented UMAP Hash, a novel unsupervised learning based hashing method
that maps the feature vectors of images to binary hash codes. This method employs a MaxHash

layer preceded by one or two fully connected layers to map the feature vectors to the target space.
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In the training phase, the loss function tunes the hash network such that the topological similarity
of feature vector neighborhood is retained in the target binary space. UMAP Hash superior or
competitive results compared to baseline and state of the art learning based and data-independent

hashing methods according to different standard experiments.

Table 4.4: Accuracy (Acc) and Normalized Mutual Information (NMI) of clustering using the
binary hash code and other methods on MNIST, USPS, and STL-10 datasets.

MNIST USPS STL-10
Method NMI | Acc | NMI | Acc | NMI | Acc
K-means 0.500 | 0.534 | 0.450 | 0.460 | 0.209 | 0.284
N-Cuts 0.411 | 0.327 | 0.675 | 0.314 - -
SC-LS 0.706 | 0.714 | 0.681 | 0.659 - -
AC-PIC 0.017 | 0.115 | 0.840 | 0.855 - -
SEC 0.779 | 0.804 | 0.511 | 0.544 | 0.245 | 0.307
LDMGI 0.802 | 0.842 | 0.563 | 0.580 | 0.260 | 0.331
NMEF-D 0.152 | 0.175 | 0.287 | 0.382 - -
DEC 0.816 | 0.844 | 0.586 | 0.619 | 0.284 | 0.359
JULE-RC 0913 | 0.964 | 0.913 | 0.950 - -
DEPICT 0.917 | 0.965 | 0.927 | 0.964 | 0.303 | 0.371
HashGAN 0.913 | 0.965 | 0.920 | 0.958 | 0.316 | 0.394
UMAPHash (Ours) | 0.941 | 0.976 | 0.876 | 0.934 | 0.342 | 0.374
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CHAPTER 5: HASHING FOR RAPID FACE RECOGNITION

5.1 Introduction

Face recognition is an important method for identification and authentication in many security,
financial and personal applications. The popularity of this machine vision research field started
with the introduction of Eigenface approach [60] which projects the face images onto a feature

space that spans the substantial variations of face image dataset. !

The traditional face recognition methods attempted to solve the problem by employing handcrafted
features such as Gabor [36], Scale Invariant Feature Transform (SIFT) [39], and Local Binary
Patterns [1]. These feature vector are used to classify items using classifiers such as Support Vector
Machine (SVM) [11]. A drawback of these methods is that they aimed to present solutions for a
few aspect of facial changes such as illuminations, expressions, or poses, and fail to deal with the
uncontrolled facial changes that are not in accordance with the prior assumptions. Moreover, face
images have large similarity with each other and the differences between face images are usually
subtle. This means that face images form a very dense cluster in the data space and this makes it

hard for traditional pattern recognition approaches to give accurate recognition systems [42].

The advances in deep convolutional neural networks [28] made it possible to learn a cascade of
multiple layers for feature extraction and transformation. These models learn multiple levels of
representations that express different levels of abstraction. In these deep model, the bottom layers
simply learn features such as Gabor and SIFT which are designed over years of research, and the
later layers learn higher level abstractions. High level representations are then used for detecting

and classifying the underlying patterns. However, since optimizing parameters of a large model

‘@ 2019 IEEE. Portion of this chapter is reprinted, with permission, from [3].

67



to learn a multilevel representations of a dataset from scratch requires millions of training items,
the transfer learning method is efficiently utilized to apply previously learned domain of a relevant
visual recognition problem to the new data domains. This usually done either by fine tuning a
model with the new dataset, or by using an entire or part of a trained model as a subsystem of a
new model and to train the rest of the model accordingly. In this chapter, we will use a trained

model as a feature extractor for our system.

Face recognition application can be put in two categories: face verification and face identification.
Face verification applications aim to determine if two face images belong to the same subject or
not. On the other hand, in face identification there is a set of known subjects called the gallery, and
given a new query image the goal is to identify a subject in the gallery that is similar to the query

image.

Feature
Vectors

Face
Bounding Box

Deep Face
Feature
Extraction

MaxHash Hash Code

Input image Face Detection

Figure 5.1: The proposed face identification method which is comprised of: (1) Multitask cas-
caded convolutional networks for face detection and face alignment. (2) FaceNet: a standard deep
convolutional neural network for learning face features, (3) MaxHash layers for transforming the
face representation to binary hash code.

In this chapter, we propose a framework for transforming face images to binary hash codes. Using
the Hamming distance between low dimensional hash codes as a proxy for the similarity between
high dimensional items reduces the cost of distance computation. In the next step, we use exhaus-
tive search using the L.2 distance between the deep feature vectors. This search is performed inside
this small set of candidates to find feature vectors that match the query item. Note that, binary
hash codes can be used as keys in lookup tables to retrieve a set of candidate images for any query

face image. Using the hash codes as keys in lookup tables, it is possible to identify a small set of

68



candidates for the query image with time complexity O(1).

5.2 Related Work

With the emergence of deep learning algorithms, many deep learning models have been developed
for different face recognition tasks. DeepFace [57] that has eleven layers trained on four million
face images from about 4000 subjects. This model achieved about 91.4% accuracy on Labeled

Faces in the Wild (LFW) dataset [21].

Another successful face recognition and verification model is deep hidden identity features (DeeplD)
[55] which consist of thirteen neural network layers. This network was trained on Celebrity Faces

dataset and achieved accuracy 97.45% on the LFW dataset.

FaceNet [52] is another deep convolutional model which is based on Inception-Resnet-v1 [56]
framework. This model hash been trained on different datasets using Triplet Loss and also as a

classifier. The accuracy of this model on LFW dataset is 99.63%.

In this chapter, we will use FaceNet as deep face feature extractor, and for fast face image retrieval,

we transform the deep face features to the Hamming space.

5.3 Method

Generally, a deep learning based face recognition system consists of three components: face de-
tection, deep feature extraction and face matching. The goal of face detection component is to
reduce the effect of illuminations, expressions, occlusions and more importantly poses which is a
major difficulty in face recognition problem. This step localize faces in the image and specifies a

bounding box around their extent.
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The next component, deep feature extraction, utilizes a convolutional neural network trained with
massive data to extract a feature vector that spans the data space linearly. The face feature vectors
are then used to find the similarity between two feature vectors by a simple distance metrics such
as L2 distance or cosine distance. Using the distance between this deep feature vectors, the identity
verification is done by a threshold comparison, and identification can be done by using a nearest
neighbor search. However, subject identification in a large dataset needs exhaustive search for
similar items. Therefore, since the near neighbor search in high dimensional data space using the
raw deep feature vectors is impractical, in this chapter, we employ approximate nearest neighbor

search using hashing to improve the performance of identification.

In this work, we propose a face identification system which is a composition of (1) multitask
cascaded convolutional networks (MTCNN) [70] deep learning model for face detection, (2) the
FaceNet [52] model to extract the deep face feature, and finally, (3) MaxHash algorithm [2] to

transform the feature vectors to binary hash codes. Figure 5.1 depicts components of this model. [3]

5.3.1 Face Detection

Face detection and alignment are fundamental parts of any face recognition application. Face de-
tection is the process of specifying a bounding box for each face in the image, and face alignment
is the process of detecting the location of facial points. Multitask cascaded convolutional net-
works [70] is a framework that integrates face detection and face alignment in a unified cascaded

convolutional network.

MTCCN consist of three stages. The first stage is a shallow CNN which produces candidate
windows quickly. A more complex CNN, then, refines the windows to reject most of the non-faces
windows. Lastly, a more powerful CNN refine the result and outputs facial landmarks locations.

For training this model CelebA [38] and WIDER FACE [67] datasets are used and the training
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is done in consecutive phases. We used this model to crop the face images before face feature

extraction.

5.3.2 Face Feature Extraction

FaceNet [52] is a deep convolutional network trained to learn a mapping from face images to a
compact Euclidean space. It is a unified system for face verification, recognition, and clustering.
The model is trained such that the squared L2 distances in the embedding space corresponds to
similarity between face images. In other words, the feature vector in the Euclidean space of faces

of the same person have small distance while faces of different people have large distances.

FaceNet uses Inception-Resnet-v1 deep model [56] of nineteen layers, and train the output using
triplet based loss function. Each triplet is consisting of two matching face images and a non-
matching face image. The triplet loss function goal is to separate the matching pairs from non-
matching pairs by a large margin. Thus, for an anchor image x* of a specific person another
positive image of the same person x”, and a negative image x" of a different person are selected.

The loss function aims to increase the margin « in this inequality:

If (x%) = f ()5 +a < [If (x*) = f (&) (5.1)

In equation 5.1, f(x) is the feature vector for input image x. This is equivalent to minimizing the

loss function:

L= [If(x") = f )5 = If (x*) = f (x5 + (5.2)
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Since many of triplets satisfy equation (5.1) even before training, to increase the speed of the

training only those triplets are used that do not satisfy this equation.

We used a FaceNet model pre-trained on MS-Celeb-1M dataset.> As a pre-processing, the input

images are resized to 160 x 160 and the pixel values are whitened.

5.4 Supervised MaxHash

Despite the advances in the face recognition methods, using face identification at scale is a chal-
lenging problem. Even with highly accurate models such as FaceNet, the problem of search for a
person in a large dataset requires comparing the feature vector of the query image with all images
in the dataset. To increase the speed of such a face recognition problem, we transform the real
values feature vectors to binary hash codes. Using hash codes with lookup tables provide a set of
possible items we call candidate set. This set consists of all images in the bucket that have the same
key as the query image or have as small Hamming distance with the hash code of the query image.
This process speeds up the retrieval system by reducing the need to comparing the raw feature
vectors to a small subset of the dataset. In this work, we used MaxHash algorithm [2], which is a

learning based variant of WTA [65] hashing algorithm.

MaxHash hashing function transforms the feature vector space to the binary code space such that
the distance in the Hamming binary space resemble the similarity between items. It uses the rank
correlation measure [65] as the distance between feature vectors. The rank correlation measure
for two feature vectors is smaller when the order of their elements are similar. This makes this
algorithm robust with respect to noise and small variations which are important characteristics of

image data.

2MS-Celeb-1M is a dataset of 10 million face images collected from the Internet for the purpose of developing
face recognition technologies. This dataset and its website msceleb.org has been terminated recently.
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We train the hash function, with face features as input and the similarity label is s;; = 1 if two

images belong to the same person otherwise the similarity label is s;; = 0.

5.5 Supervised MaxHash Experimental Results

We used Labeled Faces in the Wild (LFW) dataset [21] to test our model. This dataset consists of
13,233 images of 5749 people only 1680 of them has two or more pictures. We used 100 pictures

of people that have 12 to 32 pictures as query set, and the rest of the dataset for training.

An open source python/tensorflow?® implementation of Multi-task CNN used for face landmark
detection. For deep face feature extraction we used a FaceNet* model pre-trained on MS-Celeb-

1M dataset.
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Figure 5.2: The ratio of candidate sets with query person in the candidate set plotted with respect
to the length of candidate set retrieved using hash codes for supervised MaxHash model.

3https://github.com/davidsandberg/facenet/tree/master/src/align
“https://github.com/davidsandberg/facenet
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Figure 5.3: The first column on the left side shows the query pictures. The ten picture on the right
are the first ten pictures out of fifty retrieved according to the Hamming distance to the query item.
Retrieved pictures from wrong persons are underlined with a red line.

We used two fully connect layers of 256 and 512 nodes and a MaxHash [2] layer to transform deep
face feature vectors to binary hash codes. The hashing layers are trained with the training portion
of LFW dataset. We trained the hash function for binary codes of length 64, 32, and 16 bits. We

implement the algorithm in Tensorflow and use a Tesla V100 GPU for training and tests.

First, we use the hash codes to retrieve a set of candidate items from the gallery. This is done by
using the Hamming distance to find the near neighbors. Finding the Hamming distance can be
done with one XOR operation and a Hamming weight which is a single POPCNT instruction on
many processors, while finding the distance of two float vectors of length 128 (FaceNet feature
vectors) needs 128 subtraction operations and 128 multiplications and 128 additions. Therefore,

using the Hamming distance as a proxy for L2 distance give the algorithm about 192x speed up.

After finding the candidate set, we use the L2 distance to find the best matching face inside this
candidate set only. As we see in figure 5.2, for a hash code of length 64, a candidate set of

length 48 will have at least one picture for the query person with probability 1. For 32 bit and
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16 bit binary hash codes, as figure 5.2 shows, the candidate sets for the same length has lower
probability to contain an images of the corresponding person. However with larger candidate sets
this probability can be increased, and for 32 bit and 16 bit binary hash codes a candidate set of

length 621 and 1461 are also contain a picture of query person with probability 1.

Figures 5.3 and 5.4 show the quality of retrieved images. Each row in the figure 5.3 shows a query
on LFW dataset using only the hash codes. The first picture on the left is the query item, and the
rest ten pictures are the first ten pictures out of fifty which are retrieved using only the hash codes.
When we sort the candidate set of length fifty using the L2 distance of deep face feature vector, we

find the best matching candidates as we see in figure 5.4.
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Figure 5.4: The first column on the left side shows the query pictures. The ten picture on the right
are the first ten pictures out of fifty retrieved according to the Hamming distance to the query item
and then sorted with respect to L2 distance. Retrieved pictures with red underline have wrong
persons.
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5.6  Unsupervised UmapHash

The deep face features form an embedding in the real value 128 dimensional space. This embed-
ding has the desirable property that the L2 distances are related to the similarity between faces.
Therefore, the other possibility is to map this deep face feature space to binary hash code space
without using the supervision labels such that the relations between data point are preserved in the

binary code space.

In this section, we propose to use UmapHash unsupervised hashing method. The framework used
is similar to the supervised MaxHash framework. It is composed of a multitask cascaded convo-
lutional network for face detection and face alignment (MTCCN) [70]. Then, the FaceNet feature
extraction deep convolutional network [52]. At the end, two fully connected layers of size 256 and
512 and MaxHash layer map the feature vectors to binary hash codes and UmapHash loss function
which takes its input from the feature vectors and binary hash codes, see figure 5.5. In this frame-
work, the hashing component is trained by minimizing the UmapHash loss function instead of
MaxHash loss function and pairwise similarity labels. The hashing layers are trained with training

subset of LFW dataset, and the model is trained for hash code lengths 64, 32, and 16.

5.7 Unsupervised UmapHash Experimental Results

We used the same Labeled Faces in the Wild (LFW) dataset [21] to test our model. As in the
supervised setting, we used 100 pictures of people that have 12 to 32 pictures as query set, and
the rest of the dataset for training. We used open source python/tensorflow’ implementation of

Multi-task CNN for face landmark detection, and FaceNet® model pre-trained on MS-Celeb-1M

Shttps://github.com/davidsandberg/facenet/tree/master/src/align

®https://github.com/davidsandberg/facenet
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dataset for deep face feature extraction.

Compared to figure 5.2, for a hash code length of length 64 a candidate set of length 10 always
have at least one picture for the person in the query image, see figure 5.6. Accordingly, for hash
codes of length 32 the candidate set of length 44 and for hash codes of length 16 the candidate set
of length 476 has this property. Figure 5.6 also shows that the probability of candidate set to have

an image of the query person are higher compared to the MaxHash method in all similar cases.

Face Feature

Input ) Bounding Box Deep Face Vectors
. Face Detection > Feature > MaxHash » Hash Code
image )

Extraction

UmapHash
Loss

A

Figure 5.5: Face identification model with unsupervised UmapHash method.

Figures 5.7 and 5.8 show samples of this image retrieval system. As before the the first image in
each row is a query images and the next ten images are the closest images according to Hamming
distance of the hash code for figure 5.7 and according to L2 distance of the deep face feature vector

for figure 5.8.

5.8 Conclusion

In this chapter, we presented a deep learning based hashing approach for face identification. The
main purpose of the proposed system is fast face recognition in large datasets of face images.
Firstly, given an image a face detection algorithm locate a bounding box for the face images.

Then, the truncated, resized, and whitened face image is fed to deep face feature extraction model.

77



1.0 A1

o o
© ©
A .

o
N
.

Positive Candidate Set Ratio

0.6 1 —e— 64 bit
32 bit
—— 16 bit
05 L T T T T
10 20 30 40 50

# of Retrieved ltems

Figure 5.6: The ratio of candidate sets with query person in the candidate set plotted with respect
to the length of candidate set retrieved using hash codes for unsupervised UmapHash model.

The output of this model a real valued vector such that the squared L2 distances in the Euclidean
space corresponds to similarity between face images. The last component of the system transforms
the face feature vector to binary hash code that can be used as a key to retrieve approximate near

neighbor items from a lookup table.

Experimental results on LFW dataset show that with a hash code of length 64 a set of only 48
items retrieved using the hash codes always contains the corresponding person for a given query

face image.

78



Figure 5.7: The first column on the left side shows the query pictures. The ten picture on the right
are the first ten pictures out of fifty retrieved according to the Hamming distance to the query item.
Retrieved pictures from wrong persons are underlined with a red line.
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Figure 5.8: The first column on the left side shows the query pictures. The ten picture on the right
are the first ten pictures out of fifty retrieved according to the Hamming distance to the query item
and then sorted with respect to L2 distance. Retrieved pictures with red underline have wrong
persons.

79



CHAPTER 6: CONCLUSION AND PROPOSED FUTURE WORK

The focus of this dissertation is the design of hashing methods and their application in similar im-
age retrieval and face recognition. Hashing is one of the research fields that facilitates information
retrieval through approximate nearest neighbor (ANN) search. Hashing benefits approximate near-
est neighbor search in two ways; first, using hash codes as indices to store the items in hash table,
which exploits the higher probability of storing similar items in the same hash bucket compared
to probability of dissimilar items. Second, using the Hamming distance between low dimensional
hash codes as a proxy for the similarity between high dimensional items which reduces the cost of
distance computation. Furthermore, since the hash codes are short binary strings, storing the hash

codes as keys to the data items benefits from their storage efficiency.

This dissertation focuses on improving the speed and the accuracy of approximate nearest neighbor
search by utilizing the Hamming space as an approximation to the space that represent the similar-
ity between data items. In this dissertation, we propose a learning based hash algorithm that utilize
ordinal information of feature vectors. We have proposed a novel mathematically differentiable
approximation of argmax function for this hash algorithm. It has enabled seamless integration of
hash function with deep neural network architecture which can exploit the rich feature vectors gen-
erated by convolutional neural networks. We have also proposed a loss function for the case that
the hash code is not binary and its entries are digits of arbitrary k-ary base. This loss function has
its minima where its pair of arguments are equal and both integer values. Using these new compo-
nents, we proposed a novel deep learning based hashing function that unifies image representation
and feature learning step with the ranking based hash function into a unified deep convolutional
network. This method consists of two parts: a neural network layer that performs ranking based
hashing, and a pairwise loss function designed for training the model. These parts are put at the top

of deep convolutional neural network that generates a real valued feature vector. The training can
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be done for the entire model or a pretrained feature generator model can be fine tuned and used as
the input to the hashing layers. Extensive experiments show that this model outperform state of the
art and classical hashing methods both learning based and data-independent measured according

to data retrieval metrics such as the mean average precision (mAP) and precision recall curves.

The second contribution presented in this dissertation is a new loss function to train a differentaible
hash function in unsupervised setting. Minimizing this loss function pushes the hash function to
map the topological structure of the data points in the input real valued feature space to the output
binary space of hash codes. This has been accomplished by using ideas from the Uniform Manifold
Approximation and Projection (UMAP) method for dimensionality reduction and visualization.
With the help of this loss function, we propose unsupervised UMAP Hash method. It is a neural
network that consists of one or two fully connected layers to map the followed by a MaxHash layer.
In the training phase, the loss function tunes the hash network such that the topological similarity
of feature vector neighborhood is retained in the target binary space. Experimental results show
that UMAP Hash is superior or competitive compared to baseline and state of the art learning based

and data-independent hashing methods according to different standard experiments.

In the last chapter of this dissertation, we presented a face recognition method based on hash
functions. Face recognition refers to identification and authentication of person using face images
and it is used in many security, financial and personal applications. We proposed to use the hash
codes as a fast method for recognition and retrieval of face images in large face datasets. Unlike
the distance of real valued feature vectors, the distance in the Hamming space is computed with
a simple XOR operation. In this approach, we generate binary hash codes for deep face features
extracted using FaceNet model. We evaluated two hashing methods; supervised MaxHash method
and and unsupervised UmapHash method. For a given query item, we generate a candidate set of
nearest neighbors according to the Hamming distance metric of the query items to the items in the

dataset. Then we sort this candidate set according to the L2 distance to find the closest items to
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the query item in this small candidate set. Experiments on LFW dataset show that an image of
the corresponding person is always in a small set of candidates items. For supervised MaxHash
method a candidate set of 48 items always has an images of the corresponding person. In the
case of unsupervised UmapHash method the result are better and a set of only 10 items has this
property; moreover, in the case of unsupervised UmapHash method, since the Hamming distance
of query item hash code to the hash codes of items in the database are more likely equal to zero,

the hash code can be used as keys in hash tables.
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