
University of Central Florida University of Central Florida 

STARS STARS 

Honors Undergraduate Theses UCF Theses and Dissertations 

2020 

Development of a Computer Algorithm for Generation of Primers Development of a Computer Algorithm for Generation of Primers 

for Nucleic Acid Sequence Based Amplification (NASBA) for Nucleic Acid Sequence Based Amplification (NASBA) 

Rohit Karnati 
University of Central Florida 

 Part of the Biochemistry Commons, and the Chemistry Commons 

Find similar works at: https://stars.library.ucf.edu/honorstheses 

University of Central Florida Libraries http://library.ucf.edu 

This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has 

been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

Recommended Citation Recommended Citation 
Karnati, Rohit, "Development of a Computer Algorithm for Generation of Primers for Nucleic Acid 
Sequence Based Amplification (NASBA)" (2020). Honors Undergraduate Theses. 723. 
https://stars.library.ucf.edu/honorstheses/723 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/328102353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses
https://stars.library.ucf.edu/thesesdissertations
http://network.bepress.com/hgg/discipline/2?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses/723?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F723&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


DEVELOPMENT OF A COMPUTER ALGORITIHM FOR GENERATION OF 

PRIMERS FOR NUCLEIC ACID SEQUENCE BASED 

AMPLIFICATION(NASBA) 

 

 

BY 

ROHIT KARNATI 

 

A thesis submitted in partial fulfillment of the requirements 

for the Honors in the Major Program in Biochemistry 

in the College of Sciences 

and in the Burnett Honors College 

at the University of Central Florida 

Orlando, Florida 

 

 

Spring Term, 2020 

Thesis Chair: Yulia Gerasimova, Ph.D. 

 



ii 

 

Abstract 

Nucleic acid sequence based amplification (NASBA) is a primer based isothermal method 

of RNA/DNA amplification. Currently, primer design for NASBA has been restricted to 

hand creating sequences of oligonucleotides that must follow a set of rules to be 

compatible for the amplification process. This process of hand-creating primers is prone 

to error and time intensive. The detection of mutants, post amplification, also offers a 

benefit in point of care scenarios and the design of hybridization probes for sequences in 

the region of amplification is also an erroneous and time intensive process. By creating a 

program to design primers and hybridization probes based on the set of rules provided 

for a sequence of user input DNA or RNA, one can avoid costly errors in primers design 

and save time. Utilizing Python (a high-level object-oriented programming language), 

along with a series of bioinformatic libraries such as Biopython and UNAfold one can 

definitively choose the best primer sequences for a given sample of DNA.  
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Introduction 

1.1 Nucleic Acid Amplification Methods  

 Nucleic acid amplification has been an area of interest for biochemical and 

molecular biology research. Nucleic acid amplification relies on the activity of DNA and/or 

RNA polymerases – the enzymes that are responsible for DNA and RNA synthesis in 

living cells. Prokaryotic DNA replication is driven by DNA polymerase I (pol I). The Klenow 

fragment is a large portion pol l which lacks 5’ to 3’ exonuclease activity which catalyzes 

the stepwise addition of deoxyribonucleoside-5’-triphosphates (dNTPs) to the 3’-OH 

terminus of a nucleic acid primer based on the nucleotide sequence of a DNA template 

(Figure1). 

 

 

 

 

Figure 1:  Panel A depicts the enzyme catalyzed reaction of nucleic acid polymerization in human DNA polymerase. 
The enzyme incorporates a divalent cation, such as Mg2+, to form a coordinate ionic bridge between acidic amino acid 
residues (in this case aspartic acid), the 3’-OH of the growing strand, and the phosphates of the dNTP[1]. Panel B 
depicts a similar mechanism for T7 RNA polymerase[2]. 
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Figure 2:  Schematics of Polymerase Chain Reaction (PCR) cycling shown through 2 cycles. It should be noted that 
classic PCR deals with amplification of double stranded DNA but other variations exist such as reverse transcriptase 
PCR (RT-PCR) that can amplify RNA. The amount of amplicon can be estimated by using the formula 2n where n is the 
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It has been extensively used in molecular biology to synthesize a DNA strand 

complementary to the DNA template. Polymerase Chain Reaction (PCR) is a novel 

approach at utilizing DNA polymerase to create a double stranded DNA (dsDNA) 

amplicon form a single dsDNA analyte [1]. An intrinsic 3'→5' exonuclease activity of the 

Klenow fragment ensured high accuracy of the DNA fragment copying, but the thermal 

instability of the enzyme required the addition of a fresh portion of the enzyme for every 

new cycle. Discovery of thermostable DNA polymerases such as Taq polymerase isolated 

from the thermophilic bacterium Thermus aquaticus [1] allowed a means for PCR to be 

created.  

The mechanism of PCR (Figure 2) consists of the following stages: denaturing the 

double-stranded template sequence, annealing the primers to the complementary 

fragments of the template by lowering the temperature, and extending with a thermal 

resistant enzyme [3]. All stages are performed in a thermal cycler, which ensures fast 

temperature changes and precise temperature control. PCR-based methods have found 

wide applications in sequencing, genotyping, gene cloning, and characterization of gene-

related illness. However, for diagnostic applications, especially at the point-of-care (POC), 

reliance on the thermal cycler limits the affordability of PCR-based methods. The range 

of thermal stages, which causes the need for a thermal cycler in PCR, can be replaced 

with a relatively small number of thermal stages by using other amplification methods that 

can allow denaturation of double stranded nucleic acids in the same temperature range 

that is required fort the synthesis of a newly synthesized amplicon.  This possibility for 
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single-temperature, or isothermal, nucleic acid amplification caused several new 

amplification methods to be developed.  

 

 

 

 

 

 

 

 

 

 

Figure 2:  Schematics of Polymerase Chain Reaction (PCR) cycling shown through 2 cycles. It should be noted that 
classic PCR deals with amplification of double stranded DNA but other variations exist such as reverse transcriptase 
PCR (RT-PCR) that can amplify RNA. The amount of amplicon can be estimated by using the formula 2n where n is the 
number of cycles [1].  
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Figure 3:  Schematics for Loop mediated isothermal AMPlification (LAMP).  LAMP is distinct from other forms of 
amplification in that it uses 4 different primers to create an amplicon with multiple stem loops [3].Figure 2:  
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There are a number of DNA and RNA amplification strategies that can be 

performed at a constant temperature. Different techniques offer their own strengths and 

setbacks, but the overall goal for all the techniques is to increase the amount of a nucleic 

acid fragment of interest efficiently without the need of precise temperature control and 

cycling. The most widely used methods for isothermal amplification include Loop 

mediated isothermal AMPlification (LAMP) and Strand Displacement Amplification (SDA). 

LAMP is conducted at 65 °C and utilizes four (or six) different primers to create side by 

side inverted repeats of the target sequence (Figure 3) [2]. The product would require 

Figure 3:  Schematics for Loop mediated isothermal AMPlification (LAMP).  LAMP is distinct from other forms of 
amplification in that it uses 4 different primers to create an amplicon with multiple stem loops [3].   
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Figure 4:  Schematic of strand displacement amplification (SDA). SDA can be identified by the extension of 
forwards and reverse primers to make two doubles stranded products that will then be nicked and displaced to 
form amplicon[4].Figure 3:  Schematics for Loop mediated isothermal AMPlification (LAMP).  LAMP is distinct 
from other forms of amplification in that it uses 4 different primers to create an amplicon with multiple stem 
loops [3].   
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another round of denaturation for a fluorescently labeled probe to bind and allow for 

quantification of the amplification product.  

  

 

SDA is conducted at 37 °C and utilizes a nicking restriction endonuclease to nick 

a double-stranded DNA (dsDNA) amplicon and a DNA polymerase with strand-displacing 

activity, such as exo-Klenow or Bst DNA polymerase, to elongate the  3’-OH containing 

nicked fragment of one template strand and displace the other nicked fragment. (Figure 

4). Repetition of polymerization-nicking-extension cycles allows for exponential 

amplification of the template fragment. Interrogation of SDA amplicons is limited due to 

generation of a double-stranded amplicon. Recent developments have been made in the 

Figure 4:  Schematic of strand displacement amplification (SDA). SDA can be identified by the extension of forwards 
and reverse primers to make two doubles stranded products that will then be nicked and displaced to form 
amplicon[4]. 
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Figure 5:  Schematics of the NASBA reaction. The initiation phase can be described as an attempt at creating a double 
stranded DNA from RNA using RT and RNase. The cyclic phase that follows can be described as making negative 
sense RNA from a template of double stranded DNA, which serves as a precursor for more double stranded DNA 
[6]Figure 4:  Schematic of strand displacement amplification (SDA). SDA can be identified by the extension of forwards 
and reverse primers to make two doubles stranded products that will then be nicked and displaced to form 
amplicon[4]. 

 
Figure 4:  Schematic of strand displacement amplification (SDA). SDA can be identified by the extension of forwards 
and reverse primers to make two doubles stranded products that will then be nicked and displaced to form 
amplicon[4]. 



6 

 

detection of SDA amplicon such as DNA probes that successfully bind double stranded 

DNA [3], or the use of intercalating dyes that can be detected through gel electrophoresis. 

Another similar method of amplification is Nicking Enzyme Amplification Reaction 

(NEAR) offers a simple and fast approach at isothermal amplification. NEAR can be 

characterized by its ability to provide nucleic acid amplification without the need of 

complicated primer design. It utilizes nicking enzyme and a phosphorylated template 

strand to create single stranded DNA amplicon in an isothermal fashion [2].  

All of the above-mentioned techniques except NEAR (which produces a short 

single stranded DNA amplicon) produce double-stranded DNA (dsDNA) amplicons, which 

complicates the downstream analysis of the sequence of the amplicon using hybridization 

probes. To overcome this limitation, additional enzymes that specifically cleave unwanted 

strands from the dsDNA product, or asymmetric amplification conditions have been 

suggested. This solution adds complexity to the amplification reaction and/or 

compromises the efficiency of the reaction [2]. On the contrary, transcription-based 

methods generate a single-stranded RNA (ssRNA) amplicon, which can be conveniently 

interrogated with a complementary probe in the follow-up analysis. Examples of such 

isothermal techniques are Transcription-Mediated Amplification (TMA) and Nucleic Acid 

Sequence Based Amplification (NASBA) [5]. TMA is able to synthesize ssRNA amplicon 

by utlizing a dsDNA that is transcribes from an initial ssRNA template. This process is 

isothermal and shows amplification faster than that of PCR, since more than 100 copies 

of RNA amplicon can be made per cycle in TMA as opposed to 2 in PCR. The mechanism 

of the NASBA reaction is described in Figure 4. It requires the coordinated action of the 
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three enzymes – Reverse Transcriptase (RT) from the Avian Myeloblastosis virus (AMV), 

ribonuclease H (RNase H), and T7 RNA polymerase. AMV RT catalyzes the synthesis of 

a complementary DNA (cDNA) sequence based on an RNA template and is naturally 

employed by retroviruses [3]. RNase H is an enzyme that catalyzes the cleavage of RNA 

in the RNA/DNA hybrid using a hydrolytic mechanism [3]. T7 RNA polymerase (T7 DdRp) 

recognizes the double stranded T7 promoter of the product and catalyzes the 

downstream synthesis of RNA from a template of dsDNA [6]. An initial template of single-

stranded RNA, the positive sense strand, is annealed with the first primer (P1) that 

includes a T7 promoter region. The primer is then elongated by AMV RT at 41 °C using 

deoxynucleoside-5’-triphosphates (dNTPs).  This extension product is isolated from the 

DNA/RNA hybrid by RNase H, which degrades the RNA portion of the hybrid. A second 

primer (P2) attaches to the cDNA formed, at which point the DNA polymerase activity of 

AMV RT allows the formation of a dsDNA. T7 RNA DdRp recognizes the double stranded 

promoter region and then forms a complementary antisense RNA strand from a template 

of dsDNA being read form 5’ to 3’. The antisense RNA is bound by P2, causing AMV RT 

to create a cDNA copy of the RNA. The RNA/cDNA hybrid is cleaved by RNase H, 

producing a cDNA strand that is then bound by P1. AMV RT creates another dsDNA 

product which is used to create more antisense RNA from the T7 promoter region by T7 

RNA polymerase. These steps can be cycled multiple times to produce more antisense 

RNA [3].  
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The NASBA reaction was originally proposed to amplify genome fragments of RNA 

viruses [6]. For sequence-specific analysis of NASBA products, a molecular beacon 

probe has been used, which also allows for real time quantification of the RNA amplicon 

in a sample [4].  NASBA is primarily used for RNA amplification but can be used for DNA 

amplification, though it is not as efficient in the latter due to the addition of two more 

denaturing steps [3]. The two denaturing steps account for denaturing dsDNA of the 

template and creating a positive sense RNA amplicon.  Following the first denaturing step 

at 95°C, P1 will anneal to the DNA.AMV RT will form a double-stranded DNA as an 

extension product of P1 with a T7 promoter region. After another denaturing step, P2 (the 

reverse primer) will start the formation of another extension product that is complementary 

to the first extension product. The extension products form a double-stranded DNA 

product with a double-stranded T7 promoter region on the 5’ end. At this point, AMV RT 

has denatured due to the second heating and must be resupplied to the system along 

with T7 DdRp and RNase H. T7 DdRp recognizes the double-stranded promoter region 

Figure 5:  Schematics of the NASBA reaction. The initiation phase can be described as an attempt at creating a double 
stranded DNA from RNA using RT and RNase. The cyclic phase that follows can be described as making negative sense 
RNA from a template of double stranded DNA, which serves as a precursor for more double stranded DNA [6]  
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of the double stranded DNA product and the cyclic phase of NASBA can commence as 

normal.  

NASBA has shown great potential for POC scenarios due to it having a greater 

sensitivity than commonly used amplification methods in the detection of certain viruses 

and bacteria such as hepatitis C virus, West Nile virus and M. pneumoniae. It was 

reported that NASBA had limit of detection 1000 times than that of RT-PCR for the 

detection of West Nile Virus while being a less expensive option [2]. NASBA was also 

used to detect hepatitus C virus, for which NASBA exhibited a sensitivity 1000 times 

greater to the commonly used Quantiplex HCV-RNA assay [2]. NASBA has also been 

used in the detection of variations in the 16S rRNA fragment of M. pneumoniae types 1 

and 2 which originally took 6 days with the commonly used charcoal differential assay 

(CCDA) and can now be done in 26 hours [5]. 

 Given NASBA’s success in POC situations, it should be noted that proper primer 

design is vital for a successful run through of NASBA. A set of empirical rules reported in 

the literature [3] is currently used for manual NASBA primer design. The cumbersome 

process of primer design requires a large number of primers to be made and tested to 

decide the best sequences. The manual method for primer design is time intensive and 

can be prone to error. There have been other methods of amplification with similar 

setbacks in primer generation that have programs made to simplify the process. For 

example, primer design software is available for the PCR (e.g. primer-BLAST) and LAMP 

reactions (e.g. PrimerExplorer), which were shown to have similar obstacles in a manual 

approach. Although the programs mentioned prior are similar in their approach at primer 



10 

 

design and selection, the specific structure of NASBA primers, such as the T7 promoter 

region, is local to this amplification method and requires a new program. Most of these 

programs are also not open source and offer no functionality for the detection of mutants. 

This can be done within the region of amplification by detecting misalignments between 

the wild type and mutant genomes and designing hybridization probes for those 

misalignments. Given that there are a consistent set of rules, primers and probes for 

mutants can be made via a program for a user-defined region of a genome. The purpose 

of this project was to create an efficient program capable of designing NASBA primers 

and probes for mutants within the region of amplification by utilizing a number of well-

established bioinformatics libraries and applications such as Biopython and UNAFold.  

1.2 Language and Setup 

Python’s extensive biotechnology-based libraries, along with its ability to 

communicate between multiple applications written in different languages, makes it the 

language of choice for implementation of a procedural algorithm such as the one used in 

NASBA primer development. Python is also a scripting language that can make code 

easily understood between multiple people, making it a viable option for a program that 

could be repurposed for similar projects. Use of python and the compilation of Python 

code requires the use of a development environment Integrated DeveLopment 

Environment (IDLE). Use of any extraneous tools or libraries in Python requires them to 

be included in the same directory as the program using them.   

1.3 Biopython 
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 Biopython is an extensive Python based bioinformatics package that works to 

incorporate many useful tools in a single repository. One such useful tool is BLAST (Basic 

local alignment search tool), an algorithm for finding the statistical significance in the 

similarity between a query and a database of choice. Figure 6 shows in greater detail how 

BLAST works to create an alignment. A score is assigned by the number of matches and 

mismatches for a set of three nucleotides or amino acids, called a query word, through a 

local alignment. The maximum score for the combinations of local alignments is used to 

identify the correct alignment between the queries and subject. BLAST will be useful in 

creating an alignment of multiple genomes to create a multiple alignment object (a data 

type found that orders a number of queries against a subject). Figure 7 shows a 

visualization of a multiple alignment object, which allows one to compare a wild type 

genome or protein against multiple mutant genomes to amino acid sequences.  Biopython 

also includes the Entrez module which is able to access the NCBI database to retrieve a 

genome or amino acid sequence of choice with a tag associated with each one, called an 

accession number.  

 

 

 

 

 

Figure 6:  The BLAST search algorithm. This process is used to score different possible alignments until the 
one with the best score is considered the optimal alignment. This method takes deletions into account as 
well [7] 
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1.4 UNAfold 

 UNAfold is a Linux-based, command line-driven package of programs that 

determine nucleic acid secondary structure and hybridization through a series of 

thermodynamic calculations.  UNAfold’s thermodynamic calculations for free energy and 

assumptions for entropy are outlined by “nearest neighbor Watson-Crick base pair” [7] 

method shown in Figure 8.  

 

 

 

 

 

Figure 7:  A multiple alignment object for a mutant of Mycobacterium abscessus. The program will have 
the same approach in ordering mutant genomes (aminoglycoside resistant Mycobacterium abscessus) 
against a wild type genome (the subject)  
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Figure 8:  Calculations for a nucleic acid sequence using the nearest neighbor Watson-Crick Base pair method. All 
nearest neighbor free energies are literature values that can be referenced from the sources provided in this paper 
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 Materials and Methods 

2.1 Methods for Program Development  

As previously mentioned, since the program is written in Python, the program will 

require a development environment for compilation such as Integrated DeveLopment 

Environment (IDLE) or through an extension in IDLE. All packages required, except for 

UNAFold, are in the folder or directory that the Python script will be executed in for ease 

of use. It is crucial that the script is run on either a Linux or Mac terminal due to the system 

commands used in the program.  

 The multi sequence alignment that was discussed before in Figure 6 can be made 

for any retrieved wild type genome and mutant genome. An alignment can be useful in 

pinpointing mutations after amplifying a region of the wild type genome or finding 

extraneous primer binding sites within the genome. Biopython also includes a query 

system to retrieve multiple genomes through its Entrez module. By utilizing the Entrez 

module and BLAST from Biopython, the program retrieves a wild type genome along with 

its corresponding mutant genomes, if not already retrieved locally, and create a multiple 

alignment object. Primers can be designed for a region of the wild type genome and 

mutations found in the same region of the multiple alignment object can have sensors 

designed for post amplification detection. 

 The program will only need to utilize the UNAfold scripts for thermodynamic 

calculations of single and double-stranded nucleic acids in order to determine the most 

energetically favorable primer and probe complexes. All the free energies of nucleic acid 
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strands are computed for 41 °C and the system they are in is assumed to be in 

equilibrium. The hybrid2 script has an output of the minimum free energy (mfe) of the 

target, primer, and target/primer complex. The hybrid2 script can also output the mol 

fraction of target, primer, and target/primer complex at different temperatures. The latter 

will be more useful for the program due to the DNA NASBA primers binding at 41 °C. The 

Perl script, hybrid2.pl, can be called with the system command:  

 

 

2.2 Materials and Instruments 

Monarch® Total RNA Miniprep Kit was purchased from New England BioLabs® Inc. 

(Ipswich, MA ). NASBA Liquid Kit Complete was purchased from Life Sciences Advanced 

Technologies (St. Petersburg, FL). Oligonucleotides (primers for NASBA) purchased from 

IDT, Inc. (Coralville, IA) and used without purification. RNase/DNase free water was 

obtained from ThermoFischer Scientific (Waltham, MA) and used in all the experiments. 

Luria-Bertani (LB) medium was from Acros Organics Inc.( Waltham, MA), lysozyme was 

from Ambion Inc.(Austin,TX). 

Concentrations of oligonucleotide stocks and total bacterial RNA were determined based 

on the absorbance measurements performed using a NanoDrop™ One/OneC 

Microvolume UV-Vis Spectrophotometer from ThermoFisher Scientific (Waltham, MA). 

NASBA reactions were done using a C100 Touch Thermocycler purchased from Bio-Rad 

hybrid2.pl --tmin  --tmax  --NA DNA --sodium\  magnesium 

--exclude B --exclude BB --\ A0 5e-8 --B0 1e-7  

target.seq. 
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(Hercules, CA). The agarose gel was imaged using a BIO-RAD Gel Documentation 

system from Bio-Rad Laboratories Inc. ( Hercules, California). 

 

2.3 Total RNA preparation 

Total RNA was isolated from E. coli to serve as a template for the NASBA reaction.  

Initially, E.coli was inoculated within 15mL of LB (Luria-Bertani) liquid medium and grown 

until the optical density of the sample (measured at a wavelength of 600 nm) is 1 

(measured by using a NanoDropTM One - UV-Vis Spectrophotometer ). The cell were 

pelleted by centrifugation at 16000×g, 4oC for 10 minutes. The cells were resuspended in 

RNase free water to a volume of 500 µL. The sample was then vortexed until 

homogenous and incubated with 1 mg/mL lysozyme for 5 min at room temperature (20 

ºC). 1 mL of RNA Lysis buffer from the Monarch Total RNA Miniprep Kit was added to the 

solution and vigorously vortexed 2-3 times, 10 seconds at a time. The solution was then 

centrifuged at 16000×g, 4oC for 2 minutes. 800 µL of the supernatant was transferred 

from the microcentrifuge tubes to a genomic DNA removal column, and the flow through 

was collected. The flow through was centrifuged at 16,000×g, 4oC for 30 seconds and 

diluted with an equivalent volume of ethanol before placing 800 µL of the solution into an 

RNA purification column. The column was spun at 16,000×g, 4oC for 30 seconds before 

the flow through was discarded from the collection column. 500 µL of RNA priming buffer 

was added to the column and spun at 16,000×g, 4oC for 30 seconds in a microcentrifuge 

before discarding the flow through from the collection column. 500 µL of RNA wash buffer 
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was added to the column and spun at 16,000×g, 4oC for 30 seconds in a microcentrifuge 

before discarding the flow through from the collection column. The previous step was then 

repeated to ensure residual ethanol was mostly washed out. The column was then placed 

in a microcentrifuge tube, and RNA was eluted by using 50 µL of RNase free water. 

 

2.4 NASBA reaction 

Samples (12 µL total after enzyme addition) were prepared with master mixes that 

included the NASBA NT mix (a 6×mixture of NTP’s and dNTP‘s), and the NASBA reaction 

buffer(a 3X mixture of Tris-HCl, pH 8.5 at 25ºC, MgCl2 KCl, DTT, Dimethyl Sulfoxide). 

Once the master mix was aliquoted into each sample, the forward and reverse primers 

were added such that they both have final concentrations of 1.5 µM. The samples were 

made using RNase-free water. The samples for RNA amplification had 1 µL of total E.coli 

RNA added to them. The no-target control (NTC) samples contained 1 µL of water instead 

of RNA. At this point, all sample were loaded into the C100 Touch Thermocycler at 65 ºC 

for 2 minutes to allow for RNA denaturation to enable primer annealing while the samples 

were cooled down to 41oC for 10 min. The samples were then removed, and 3 µL NASBA 

enzyme cocktail (AMV RT, RNase H, T7 RNA polymerase, BSA, and high MW sugar 

matrix) was added to 9 µL of every sample.  At this point, all samples were placed back 

into the C100 Touch Thermocycler and incubated at 41 ºC for 120 minutes.  

2.5 Gel electrophoresis 
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The agarose gel was cast with Gel Red as the staining dye in order to be able to 

visualize each band under UV light. The samples containing 1 µL NASBA products or 

NTC, 6 µL of 2X RNA gel loading dye (ThermoFisher Scientific) and 8 µL of RNase-free 

water were loaded into the agarose gel (2%) to be run at 100 V for 40 min.  

A JPEG image of the gel from the Gel Documentation system was converted to a 

grayscale image and analyzed for pixel intensity. The pixel intensities for each band of 

the NASBA samples and their respective no target controls were taken relative to that of 

the ladder by using PhotoShop by Adobe. 

 

 

 

 

 

 

 

 

 

 

 



18 

 

  Results and Discussion 

An algorithm is a step by step solution at solving a problem and flow charts can be 

used to visually depict the algorithm. Figure 9 is the flow chart that was followed when 

designing the program.  

 

 

 

 

 

 

 

 

 As described in the flowchart, the project was focused on designing primers to 

amplify a fragment of an RNA template from a sequence that is retrieved from a database. 

A second portion of the program, also included in the flowchart, is focused on designing 

sensors to detect mutations such as single nucleotide polymorphisms (SNP’s) or 

deletions. These mutations can be verified by comparing various mutant genomes against 

the wild type genome using the BLAST comparison algorithm. BLAST works to align two 

given sequences by matching three letter similarities between the two and noting any 

Figure 9:  Flowchart for a NASBA primer design program. The organization of the program is 
straight forward and does not require any loops. 
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Figure 10:  The rules for NASBA primer design. Each rule accounts for key aspects of NASBA such 
as the T7 promoter region of the primer [5].Figure 9:  Flowchart for a NASBA primer design 
program. The organization of the program is straight forward and does not require any loops. 
 
Figure 9:  Flowchart for a NASBA primer design program. The organization of the program is 
straight forward and does not require any loops. 
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dissimilarities. After aligning the genome and noting the discrepancies, a 2D array was 

constructed to keep track of every sequence and mutation as a multiple alignment object. 

Primers can be designed after the user specifies the region of interest in the genome. The 

rules for primer design can be referenced in Figure 10. The target sequence and primers 

were tested for the secondary structure with the most positive free energy and other areas 

of binding within the genome to determine the most energetically favorable primer/analyte 

complex.  

 

 

 

 

 

 

 

 

The program initially retrieves the genomes of the wild type organism and those 

with mutated genes. These genomes can either be retrieved locally by the user or by 

using the BioPython Entrez module to access GenBank and retrieve the corresponding 

genomes. The user should specify the nucleotide numbers for the region of amplification, 

which should be known prior to using the program. If desired, the user can identify the 

Figure 10:  The rules for NASBA primer design. Each rule accounts for key aspects of NASBA such as the T7 
promoter region of the primer [5]. 
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Figure 11:  An agarose gel in which the NASBA samples as well as their NTC’s were ran in.  A low range 
riboruler was used as the ladder in order to indicate the number of bases within each band.Figure 10:  The 
rules for NASBA primer design. Each rule accounts for key aspects of NASBA such as the T7 promoter region 
of the primer [5]. 
 
Figure 10:  The rules for NASBA primer design. Each rule accounts for key aspects of NASBA such as the T7 
promoter region of the primer [5]. 
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mutation sites between the aligned target sequences of the wild type and mutant 

genomes.  With the target sequence specified, the rules (Figure 10) can be applied by 

using straightforward algorithms for each rule of primer design. The program will find the 

reverse complement of the target sequence in the 5’ to 3’ position so the reverse primer 

can be constructed. The primers are checked for proper GC content/weighting as well as 

the absence of triplets. GC content/weighting is determined by adding up all G and C’s in 

the sequence and dividing them by the number of nucleotides in the primer sequence. 

Triplets are identified by iteratively looking through each nucleotide in the primer 

sequences and findings repeats of the same nucleotide. Those that don’t meet the above 

specifications are then removed from the list of possible primers. Reverse primers have 

a 25 nucleotide T7 promoter region at the beginning of the sequence attached to them 

and a terminal adenine residue.  

 After all possible primers are designed, they are energetically analyzed via 

UNAfold. Any system commands made by the program should be compatible with either 

UNAfold or Mfold as long as they are stored in the same directory as the script being run. 

The program will analyze the primers for the least negative Gibbs free energy of the 

primer’s secondary structure, which will be used to find the mol fractions of the species 

(P1, P2, target, and all combinations of the three) in the system to see which primer set 

has the greatest P1/P2/target ratio when compared to the rest of the primer sets. BLAST 

is run on all of the primers against the wild type genome to determine if there are any 

other possible binding sites. The best primer was then shown along with all other possible 
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primers and their corresponding free energies/ binding sites. The following is an example 

of the output for the program that would appear in the terminal: 

TTGCTGACGAGTGGCGGACGGGTGA 
free energy:-3.805 kCal 
TTGCTGACGAGTGGCGGACGGGTGAGTA 
free energy:-3.805 kCal 
TTGCTGACGAGTGGCGGACGGGTGAGTAA 
free energy: -3.805 kCal 
AATTCTAATACGACTCACTAAGGGAGAAGGCTTGCGACGTTATGCGGTATTTA 
free energy: -3.928 kCal 
AATTCTAATACGACTCACTAAGGGAGAAGGCTTGCGACGTTATGCGGTATTTAGCTA 
free energy: -5.929 kCal 
forward primers: 
['TTGCTGACGAGTGGCGGACGGGTGA', 'TTGCTGACGAGTGGCGGACGGGTGAGTA', 
'TTGCTGACGAGTGGCGGACGGGTGAGTAA'] 
reverse primers: 
['AATTCTAATACGACTCACTAAGGGAGAAGGCTTGCGACGTTATGCGGTATTTA', 
'AATTCTAATACGACTCACTAAGGGAGAAGGCTTGCGACGTTATGCGGTATTTAGCTA'] 
 

The ordering of the array the primer lists starts with the “best” primer sequence leading 

up to the “worst” primer sequence. 

 Similarly, to how primers are designed, sensors for post-amplification detection 

can also be constructed and energetically tested to decide the best sequence. The sensor 

design that was tested for the program is a split DNA based sensor leading to the 

possibility of either a split aptamer or split deoxyribozyme based sensor. Our lab currently 

works with split G4 deoxyribozyme[11], cascade deoxyribozyme[12], split 10-23 

deoxyribozyme[13], and split dapoxyl aptamer (SDA) derived sensors[10]. In terms of 

price, limit of detection, and simplicity, SDA is the best option out of the four. When 

compared to the other probes SDA has a straightforward design and a limit of detection 
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of about 10 nanomolar for NASBA products on a synthetic analyte [7].  Since there will 

be a focus on post amplification detection of mutation sites, sensors limit of detection 

values will not need to be scrutinized in order determine which sensor to use due to a 

large amount of target/amplicon being available.  

The lengths of the sensors are taken into account, since longer target-

complementary fragments bind stronger to the target, thus ensuring better sensitivity. 

Shorter sequences allow for the sensor to be SNP-specific. There is a prompt for the user 

to specify sensor length and mutation of interest. The probes are to be energetically 

analyzed after they’re constructed by using UNAfold to determine the mol fractions of the 

primer and primer sequence complexes.  

Several primer sets for NASBA reaction of a fragment of E. coli 16S rRNA (nts 90-

190 or nts 45 to 160) were generated using the developed software. Some sequences 

are listed in Table 1. Experiments were focused on verifying the accuracy of the program’s 

primer design as well as the calculations for determining the free energies of the primer 

sets. By designing two sets of primers with varying free energies for two different regions 

of E.coli 16S rRNA, one could verify the functionality of the program depending on the 

presence/ amount of amplification. With regards to free energy, it was predicted that a 

more positive free energy should correlate to a greater amount of amplification. However, 

all primer sets developed from the program should yield some amount of amplification.  
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Table 1: Primers Generated In-Silico For Regions Of E.coli 16s rRNA 

 

Ampli

fied 

region 

Forward primer Reverse primera 

nt 90-

190 
FP1: 
TTGCTGACGAGTGGCGGAC
GGGTGA 

free energy:-3.805 kCal 
FP2: 
TTGCTGACGAGTGGCGGAC
GGGTGAGTA 

free energy:-3.805 kCal 
1. FP3: 

TTGCTGACGAGTGGCGGAC
GGGTGAGTAA 

free energy: -3.805 kCal 

RP1: 
AATTCTAATACGACTCACTAAGGGAGAAGGCTTGCGAC
GTTATGCGGTATTTA 

free energy: -3.928 kCal 
RP2: 
AATTCTAATACGACTCACTAAGGGAGAAGGCTTGCGAC
GTTATGCGGTATTTAGCTA 

free energy: -5.929 kCal 

nt 45-

160 
FP4: 
GCCTAACACATGCAAGTCGA
A 

free energy:-0.094 kCal 
1. FP5: 

GCCTAACACATGCAAGTCGA
ACGGTA 

free energy:-0.797 kCal 
2. FP6: 

GCCTAACACATGCAAGTCGA
ACGGTAA 

free energy:-1.149 kCal 
3. FP7: 

GCCTAACACATGCAAGTCGA
ACGGTAACA 
free energy:-1.149 kCal 

RP3: 
AATTCTAATACGACTCACTAAGGGAGAAGGTTCCAGTA
GTTATCCCTCCCA 

free energy: -6.223 kCal 
RP4: 
AATTCTAATACGACTCACTAAGGGAGAAGGTTCCAGTA
GTTATCCCTCCCATCA 

free energy: -6.223 kCal 
RP5: 
AATTCTAATACGACTCACTAAGGGAGAAGGTTCCAGTA
GTTATCCCTCCCATCAGGCA 

free energy: -6.675 kCal 

aNucleotides in the reverse primer sequences containing the T7 RNA polymerase promotor 

sequence are underlined.  
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Table 2: Combinations of Primers Used for NASBA Trials 

 

 

 

 

 

  

 

 

 

 

 

 

 Forward Primer/Reverse Primer Set Amplicon Region 

RK1 FP2 and RP1 90 to 190 

RK2 FP2 and RP2  

RK3 FP4 and RP3 45 to 160 

RK4 FP5 and RP3  

Figure 11:  An agarose gel in which the NASBA samples as well as their NTC’s were ran in.  A low range riboruler 
was used as the ladder in order to indicate the number of bases within each band.  
 
Figure 11:  An agarose gel in which the NASBA samples as well as their NTC’s were ran in.  A low range riboruler 
was used as the ladder in order to indicate the number of bases within each band.  
 
Figure 11:  An agarose gel in which the NASBA samples as well as their NTC’s were ran in.  A low range riboruler 
was used as the ladder in order to indicate the number of bases within each band.  
 
Figure 11:  An agarose gel in which the NASBA samples as well as their NTC’s were ran in.  A low range riboruler 
was used as the ladder in order to indicate the number of bases within each band.  

Figure 12: A comparison of the grey scale intensities of the bands of the agarose gel containing samples 
from table 10 obtained with NASBA. IA/IL is the pixel intensity of the amplicon divided by the pixel intensity 
of the ladder.  
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Table 1 indicates the regions of E.coli 16S rRNA amplification and every primer generated 

for those regions. Table 2 shows the different primers used for the primer sets in each 

NASBA trial.  The amplicons of RK1 and RK2, as well as the amplicons of RK3 and RK4, 

should theoretically have had the same nucleic acid sequence apart from the primer 

regions. All comparisons of NASBA trials should be between those that have similar 

amplicon. Table 1 also indicates the free energy of every primer used in the experiment. 

We hypothesized that a greater free energy (less negative) of a primer’s secondary 

structure, which corresponds to a less stable secondary structure, would allow the primers 

to bind more readily to the amplicon region to allow for greater amplification efficiency, 

which would correlate with the free energy value.  All the tested primer sets allowed for 

some degree of amplification, as expected (Figure 11). As it was predicted, RK1 produced 

a greater amount of amplicon compared to RK2, since the average calculated free energy 

of the forward and reverse primer’s secondary structures was greater (Figure 12). RK3 

and RK4 had similar amounts of amplification due to the average calculated free energy 

((EnergyFP + EnergyRP)/2) of the forward and reverse primer’s secondary structures being 

minutely different (Figure 12). The bands identified for the NTC1, NTC2, and NTC3 

samples had a visibly larger Rf value than those found in the RK1-RK4 samples and can 

be noted as primer bands. The relative amount of amplification can be identified by the 

naked eye when viewing the agarose gel (Figure 11) and by viewing a comparison of the 

pixel intensities of each sample/corresponding NTC from a grey scale distribution of the 

gel’s image (Figure 12). It can be assumed that there was amplicon of the desired sense 
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RNA in all samples and our initial hypothesis regarding primer free energy still stands true 

but further testing should be done considering the number of trials required to definitively 

state the program has no error. 
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Limitations 

The run time complexity of BLAST is approximately O(kN), where N is the size of 

the database, and k is the size of the query word. This can pose to be a limitation if the 

size of the wild type database is too large. A possible solution for this would be to use 

BLAT which is able to search the query against the database.  
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Future Work 

 A graphical user interface (GUI) would make the program much easier to use and 

probe design for NASBA is still pending. Both of these extensions for the program would 

build on the established functionality of the program. Probe development for SNP’s is still 

underway as well. There are also plans to upload the program to GitHub in order to make 

the program open source.  
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Conclusion 

We have developed a NASBA primer design program that has the capability to 

detect for possible mutation sites in the region of amplification. The program was tested 

by developing primers for two different regions of E.coli 16S rRNA and conducting NASBA 

using those primer sets. The primers successfully produced amplicon, and the amount of 

amplification correlated to the calculated free energy of the secondary of the primer sets. 

This program is able to tackle a large roadblock in using NASBA for POC scenarios and 

will hopefully make the process much more easily accessible. 
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