
University of Central Florida University of Central Florida

STARS STARS

Honors Undergraduate Theses UCF Theses and Dissertations

2020

Thermal-hydraulic Optimization of the Heat Exchange Between a Thermal-hydraulic Optimization of the Heat Exchange Between a

Molten Salt Small Modular Reactor and a Super-critical Carbon Molten Salt Small Modular Reactor and a Super-critical Carbon

Dioxide Power Cycle Dioxide Power Cycle

James Sherwood
University of Central Florida

 Part of the Aerospace Engineering Commons

Find similar works at: https://stars.library.ucf.edu/honorstheses

University of Central Florida Libraries http://library.ucf.edu

This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has

been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Sherwood, James, "Thermal-hydraulic Optimization of the Heat Exchange Between a Molten Salt Small
Modular Reactor and a Super-critical Carbon Dioxide Power Cycle" (2020). Honors Undergraduate Theses.
759.
https://stars.library.ucf.edu/honorstheses/759

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/328102346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/honorstheses
https://stars.library.ucf.edu/thesesdissertations
http://network.bepress.com/hgg/discipline/218?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/honorstheses
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/honorstheses/759?utm_source=stars.library.ucf.edu%2Fhonorstheses%2F759&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

THERMAL-HYDRAULIC OPTIMIZATION OF THE HEAT EXCHANGE

BETWEEEN A MOLTEN SALT SMALL MODULAR REACTOR AND A

SUPERCRITICAL CARBON DIOXIDE POWER CYCLE

By

JAMES SHERWOOD

A thesis submitted in partial fulfillment of the requirements

for the degree of Bachelor of Science

in the Department of Mechanical and Aerospace Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring term

2020

1

ABSTRACT

The next generation of nuclear power sources, Gen. IV, will include an emphasis on small, modular

reactor (SMR) designs, which will allow for standardized, factory based manufacturing and

flexibility in the design of power plants by utilizing one or several modular reactor units in parallel.

One of the reactor concepts being investigated is the Molten Salt Reactor concept (MSR), which

utilizes a molten salt flow loop to cool the reactor and transfer heat to the power conversion cycle

(PCS). Here, the use of a supercritical carbon dioxide (S-CO2) Brayton cycle is assumed for that

PCS. The purpose of this thesis is to investigate the heat exchange between these two systems and

to determine the suitability of a common heat exchanger concept, the shell-and-tube heat

exchanger (STHE). A design algorithm was developed to determine the number of shells in series

that are required to accommodate the heat duty and inlet/outlet fluid temperatures specified and to

produce and thermal-hydraulically rate an efficient STHE design for the heat exchange system. A

detailed discussion of heat exchanger analysis is presented, and the process of the algorithm is

reported.

2

Dedicated to my late father

Jack Sherwood

3

TABLE OF CONTENTS

LIST OF FIGURES .. 4

LIST OF TABLES .. 5

NOMENCLATURE ... 6

List of Abbreviations ... 6

INTRODUCTION .. 7

Generation IV Nuclear Reactors ... 7

Supercritical Carbon Dioxide .. 8

THEORY .. 13

Heat Exchangers .. 13

Baffles .. 13

Tubes ... 16

Heat Transfer ... 17

Bell-Delaware Method .. 20

Compact Delaware Formulation ... 22

Modularity ... 24

METHODOLOGY ... 28

Input parameters .. 28

Design Algorithm .. 32

RESULTS ... 36

CONCLUSION ... 40

APPENDIX – DESIGN ALGORITHM CODE FOR STEPS 4 - 8.. 42

LIST OF REFERENCES .. 51

4

LIST OF FIGURES

Figure 1. Turbines for S-CO2 Cycles

Figure 2: S-CO2 RC Cycle

Figure 3: S-CO2 RC T-s Diagram

Figure 4: Baffled HEX Crossflow (Top) and Window flow (Bottom)

Figure 5: Baffle Flow Regions

Figure 6: Inside Shell Diameter Geometrical Definitions

Figure 7: Triangular Tube Layout in Crossflow

Figure 8: FT Correction Factor for E Shell Based on R and G

Figure 9: Graphical Method of Sectioning Temperature Profiles for Shells in Series

Figure 10: Upper/Mid/Lowermost Temperature Brackets for Shells in Series

5

LIST OF TABLES

Table 1: Re-compression SCO2 cycle – Parameters

Table 2: Correlational coefficients for ideal tube bank factors

Table 3: Sample FLiBe Properties at 700oC

Table 4: Hastelloy-N Thermal Conductivity Data

Table 5: Inconel 625 Thermal Conductivity Data

Table 6: STHE System Design Algorithm Required Input Parameters

Table 7: Validation Input Values for Serna Algorithm

Table 8: Results for Validation of Serna Algorithm

Table 9: STHE System Design Algorithm Required Input Parameters

6

NOMENCLATURE

List of Abbreviations

ASME American Society of Mechanical Engineers

CSP Concentrated Solar Power

EPRI Electric Power Research Institute

FLiBe LiF – BeF2

HEX Heat Exchanger

HTR High Temperature Recuperator

LMTD Log-Mean Temperature Difference

LTR Low Temperature Recuperator

LWR Light Water Reactor

MSR Molten Salt Reactor

SMR Small Modular Reactor

PCHE Printed Circuit Heat Exchanger

PCS Power Conversion System

RC Recompression Cycle

S-CO2 Supercritical Carbon Dioxide

STHE Shell-and-Tube Heat Exchanger

TEMA Tubular Exchanger Manufacturer’s Association

T-s Temperature – entropy

7

INTRODUCTION

Generation IV Nuclear Reactors

The next generation of nuclear power sources, Gen. IV, will include an emphasis on small, modular

designs, which will allow for standardized, factory-based manufacturing and flexibility in the

design of power plants by utilizing one or several modular reactor units in parallel. Small Modular

Reactors (SMR’s) are defined by their factory production capability. Rather than custom designing

and/or in situ fabricating significant plant components, these reactor systems are intended to be

highly standardized [1]. This is advantageous in assembly and maintenance and especially

advantageous for certification, which can be a difficult obstacle to plant commissioning in some

countries, such as the United States. Plants utilizing these reactors are envisioned with standalone

units or in larger plants of multiple modular units. They may additionally be fit into such

brownfield communities as in place of decommissioned coal-fired plants [1]. There are SMR’s

under development for all principal reactor types, however this proposal will concern itself with

three of them [2].

The Molten Salt Reactor (MSR) is one of the Generation IV reactor concepts and is receiving

interest principally for use with thorium or spent Light Water Reactor (LWR) fuel [3]. There are

two categories in the MSR concept: the first is characterized by using a molten salt as the primary

coolant; the second involves dissolving the nuclear fuel into the molten salt itself. The second

necessitates an extra loop, denoted the intermediate loop, to separate radioactive material from

non-radioactive [3]. This second design concept is particularly engaging, because it circumvents

the need to manufacture solid fuel. In general, MSR’s receive interest for their higher operating

temperatures, yielding higher power cycle efficiency, and lower operating pressures, decreasing

8

risk of rupture failure. Figure 1 below shows an MSR design concept, from a U.S. Department of

Energy report on Gen. IV reactor technology [4].

Figure 1: MSR Power Plant Design Concept [4]

Supercritical Carbon Dioxide

The supercritical carbon dioxide Brayton power cycle has received growing interest in the

preceding decades for use in nuclear, concentrated solar power (CSP), geothermal, and other

applications [5][6][7]. The attractive features of this cycle include its high efficiency and low

turbomachinery capital. Supercriticality is defined for a fluid as being above the critical

9

temperature and pressure. Below the critical point these fluids transition from liquid to gas linearly;

above, fluids exhibit some qualities of both liquids and gases. Significantly, carbon dioxide above

the critical point has a near-liquid density. The cycle is considered supercritical because some/all

processes (depending on the particular variation of the cycle) take place above the critical

temperature and pressure, 31.1oC and 7.39 MPa, respectively. When the compression process

occurs near and above the critical point, much smaller machinery to achieve the same work [8].

Figure 2 illustrates the scale of the reduction.

Figure 2. Turbines for S-CO2 Cycles [8]

10

Table 1: Re-compression S-CO2 cycle – Parameters

Recompression cycle 600 MW case 30 MW case Units

Pressure ratio 2.55

Turbine inlet pressure 20 MPa

Turbine inlet temperature 550 oC

Compressor inlet temperature 32 oC

Mass flow rate 3176.3 127.052 kg/s

Cycle efficiency 37.62 %

Net power 232.3 9.3 MW

The cycle requires high turbine inlet temperatures to achieve the desired efficiency. For this reason,

an important component of the S-CO2 cycle is heat recuperation. The Recompression Cycle (RC)

is a common variation of the S-CO2 Power Conversion System (PCS), for which the cycle layout

and T-s diagram are given in Figures 3 to 4 [9].

Figure 3: S-CO2 RC Cycle [9]

11

Figure 4: S-CO2 RC T-s Diagram

This cycle includes a High Temperature Recuperator (HTR) and a Low Temperature Recuperator

(LTR), which is due to the fact that the specific heat of the cold side is approximately two times

greater than that of the hot side. The basic parameters from optimization of the Re-compression S-

CO2 cycle are shown in Table 1. The results are for the reference case and SMR – 30 MWt reactor.

Splitting the flow between the two Recuperators reduces waste heat and thereby improves the

thermal efficiency [10]. The box labeled CH in Figure 2 stands for Cooler/Chiller. There is much

research activity in CO2 heat exchange, as well as industry innovation. An example is Printed

Circuit Heat Exchangers (PCHE’s), in which channels of varying geometry are chemically etched

into metals plates, which are subsequently diffusion bonded. Although these heat exchangers can

have extraordinary surface area density, Heatric advertises on the order of 1300 m2/m3 [11], some

12

disadvantages include potential blockage effects and the requirement for extreme fluid cleanliness.

Printed circular Heat exchanger (PCHE’s) are also highly capital intensive compared to more

traditional design concepts, like shell-and-tube (STHE).

13

THEORY

Heat Exchangers

Baffles

A very detailed handbook of calculations and design notes for baffled STHE’s is given by Taborek

[12]. Baffling a HEX results in several sections of near perfect crossflow between the baffles,

assuming they are spaced appropriately, and parallel or counterflow in the baffle windows. This

flow pattern is depicted below in Figure 5, courtesy of Taborek [12].

Figure 5: Baffled HEX Crossflow (Top) and Window flow (Bottom) [12]

Multiple flow regions exist around the baffles, and they each contribute to the rating calculations

differently. Figure 6 below illustrates those flow regions, courtesy of Serna [13].

14

(a)

(b)

Figure 6: Baffle Flow Regions [13]

A = tube baffle leakage

B = crossflow

C = crossflow bypass

E = shell-baffle leakage

F = tube pass partition bypass

Inlet/outlet spacings are greater than or equal to the central baffle spacing to accommodate the

flow developing through the inlet/outlet [14]. TEMA advises that baffle spacing be kept less than

or equal to 10% of the shell diameter [15]. Baffle cut has been shown to be ideal between 20-45%,

where baffle cut Bc is defined according to Equation 1. Lb is the length of the baffle.

15

Bc = (Lb/Ds)*100 (%) (1)

Taborek graphically defines several geometric variables according to Figure 7 below. These are

useful in certain calculations related to STHE rating, which will be detailed in the next section of

this chapter.

Figure 7: Inside Shell Diameter Geometrical Definitions [12]

Ds = inner shell diameter

Dotl = tube bundle-circumscribed circle

Dctl = outermost tube center circle

Lbb = shell-to-tube bundle bypass clearance

ϴctl = tube bundle-circumscribed circle centri-angle

16

Tubes

There are two general options for tube layout, either square or triangular; this layout can

additionally be rotated 45o from the horizontal. The triangular layout yields the greatest tube

density, and it therefore assumed here. Kakac advises that the triangular layout is default [14]. For

simplicity, a 0o from the horizontal orientation is assumed. This layout is depicted in Figure 8, for

the region between baffles when crossflow is achieved. Here ϴtp = 30o.

Figure 8: Triangular Tube Layout in Crossflow [12]

Tube thickness is guided by the 2010 ASME Boiler and Pressure Vessel Code [16]. Here the tube

is treated as a cylindrical pressure vessel and should be designed to uphold integrity even without

the outside pressure of the shell side fluid. Equation 2 defines the requisite thickness tt for the tubes

[16]:

tt = (Pt*Dt) / ((2*τallow) + Pt) + 0.005*Dt (mm) (2)

where Pt is tube side operating pressure, Dt is the tube diameter, and τallow is the tube material

allowable stress.

17

The effective tube length Lta is given in Equation 3 in terms of the number of baffles Nb, the central

baffle spacing Lb, and the inlet/outlet baffle spacings, Lbi and Lbo, respectively [12]. For simplicity,

the inlet and outlet baffle spacings are taken as equal: that is, Lbi = Lbo.

Lta = (Nb – 1)Lbc + (Lbi + Lbo) (mm) (3)

The number of tubes is given by Equation 4, in which ψn is a corrective factor that accounts for

the number of tube passes [12], Cl is a constant that accounts for the tube layout [12], and Ltp is

the tube pitch [12]. ψn is a function of Ds and tube pass number Ntp [12]. For a triangular

arrangement Cl = 0.866 [12].

Nt = (π/4Cl)(Dctl/Ltp)2(1 - ψn) (4)

Heat Transfer

 Heat Transfer Surface Area

The heat transfer surface area Ao is defined by the heat exchanger design equation [14]. Here Q is

the heat duty of the HEX, LMTD is the log-mean temperature difference [14], and Rdw is the

combined resistance of the tube wall and fouling factors [12].

Ao = (Q/FT LMTD)(Rdw + (1/hs) + (Dt/Dti ht)) (mm2) (5)

18

Temperature Correction Factor

FT is a corrective factor that accounts for the flow not being in pure counterflow, as it is in a simple

double-pipe HEX [14]. For STHE’s FT can decrease drastically with an improper design. FT is

commonly defined by the dimensionless parameters P [14] and R [14] with definitions given by

Equations 6 and 7. Wales proposed the further parameter G, Equation 8 [17].

P = (Tc, out – Tc, in)/(Th, in – Tc, in) (6)

R = (Th, out – Th, in)/(Tc, out – Tc, in) (7)

G = (Th, out – Tc, out)/(Th, in – Tc, in) = 1 – P(1 + R) (8)

Vengateson used G to perform modularity analysis on generic E and F shell STHE’s, shown for

the E shell type in Figure 8 [17]. He also provides equations for FT for both shell types, below as

Equations 9 and 10 [17].

FT, E =
sqrt(1 + R2)ln((1 – P)/(1 – P R)) / (R – 1)ln{[2 – P(R + 1 –

sqrt(1 + R2))]/[2 – P(R + 1 + sqrt(1 + R2)]}
(E shell) (9)

FT, F =

[(sqrt(1 + R2)/2(R - 1)ln((1 - P)/(1 – P R))] / ln{[2/P – 1 – R +

(2/P)sqrt((1 - P)(1 – P R)) + sqrt(1 + R2)]/[2/P – 1 – R + (2/P)

sqrt((1 – P)(1 – P R)) – sqrt(1 + R2)]}

(F shell) (10)

19

Figure 9: FT Correction Factor for E Shell Based on R and G [17]

 Shell Side Flow

The average shell side flow velocity vs depends on the geometry of the shell side and the volumetric

flow rate Лs [13]. Since the mass flow rate is fixed in order to achieve the desired heat duty,

volumetric flow rate can be determined by Equation 11. Then Equation 12 yields the average flow

velocity [13] This velocity will be used to calculate the heat transfer coefficient of the shell side.

Лs = ṁ/ρ m3/s (11)

vs = Лs/[10-6Lb(Lbb + Dctl/Ltp(Ltp – Dt))] (m/s) (12)

The shell side Reynolds number Res can be calculated using a formulation specific to baffled

STHE’s, expressed below in Equation 13; it is necessary to calculate a parameter Sm.

20

Sm = Lb(Lbb + ((Dctl/Ltp)(Ltp – Dt)) m2 (13)

Res = (Dt/µs)(ṁ/Sm) (14)

Bell-Delaware Method

The Bell-Delaware method is the most established and reliable method for determining film heat

transfer coefficients hs and pressure drops ΔPs on the shell side of an STHE [12] [13] [14]. Input

parameters are averaged across the shell, and the outputted heat transfer coefficient is also a shell-

side average [12]. The actual coefficient hs is given by Equation 15 in terms of the ideal crossflow

coefficient hsi [12]. Ssb is the shell-to-baffle leakage area [12], Stb is the tube-baffle hold leakage

area [12], Sm is the crossflow area at the bundle centerline [12], and rlm [12] and rs [12] are

correlational parameters. Cbh is a corrective factor [12]; Fsbp is the ratio of bypass to cross-flow

area [12].

hs = hsi(Jc Jl Jb Jr Js) = hsi(Jtot) W/m2 K (15)

Jc = 0.55 + 0.72[1 – 2((ϴctl/360) – sin(ϴctl)/2π)] (16)

Jl = 0.44(1 – rs) + [1 - 0.44(1 -rs)] exp (-2.2rlm), (17)

Where rs = Ssb / (Ssb + Stb), (18)

And rlm = (Ssb + Stb) / Sm (19)

Jb = exp[-Cbh Fsbp(1 – (2rss)1/3], (20)

Where Cbh = 1.25 Re > 100 (21)

And Fsbp = Sb / Sm (22)

Jr = 1 Re > 100 (23)

Js = [(Nb – 1) +(Lbi / Lbc)1 - n + (Lbo / Lbc)1 - n] / [(Nb – 1) + (Lbi / (24)

21

Lbc) + (Lbo / Lbc)],

Where n = 0.6 Re > 100 (25)

All of the J constants are non-dimensional corrective factors [12]. Jc corrects pure crossflow ideal

heat transfer for the effects of baffle window flow [12]. Jl corrects for baffle leakage effects [12].

Jb corrects for tube bundle bypass effects [12]. Jr corrects for the effect of an adverse temperature

gradient developing through the boundary layer during deep laminar flow (i.e. Re < 100), hence

the value of 1 for non-deep laminar Reynolds numbers [12]. Js corrects for the flow effects of

unequal inlet/outlet baffle spacing [12]. The ideal crossflow heat transfer coefficient hsi is given

by equation 26 [13]. ϕs is a corrective factor for the variation of viscosity at the wall temperature

µsw from the value at the bulk temperature µs [12].

hsi = (ϕs ks jsi Res Prs
1/3) / Dt, W/m2 K (26)

Where ϕs = (µs / µsw)0.14 (27)

The pressure drop on the shell side is given by Equation 28 [12]. ΔPbi is the pressure drop in the

baffle sections [12]; ΔPbi is the pressure drop in the baffle window sections [12]. All of the R

constants are again corrective factors [12]; the subscripts align with those of the J constants

enumerated above. Ntcc is the number of effective tube rows crossed in one crossflow section [12];

Ntcw is the number of effective tube rows crossed within each window [12]. Lpp is the effective

tube row distance in the flow direction [12].

ΔPs = [(Nb – 1)Rb Rl + (1 + Ntcw / Ntcc)Rb Rs] ΔPbi + Nb ΔPwi Rl, Pa (28)

Where Ntcw = (0.8 / Lpp)[Ds (Bc / 100) – (Ds – Dctl) / 2] (29)

And Ntcc = (Ds / Lpp)[1 – 2(Bc/100)] (30)

22

Rl = exp[-1.33(1 + rs)(rlm)p], (31)

Where p = [-0.15(1 + rs) + 0.81] (32)

Rb = exp[-Cbp Fsbp(1 – (2rss)1/3], (33)

Where Cbp = 3.7 Re > 100 (34)

Rs = (Lbc / Lbo)2 - n + (Lbc / Lbi)2 – n, (35)

Where n = 0.2 Re > 100 (36)

Compact Delaware Formulation

Serna et. al. derived a compacted formulation of the Bell Delaware method to find shell and tube

side heat transfer coefficients and pressure drops as functions of flow velocity [13]. This

formulation allows for the creation of a swift STHE design and/or rating algorithm. For the shell

side, h and ΔP are given by Equations 37 and 38 [13]. Equations 39-52 [13] complete the compact

formulation.

ΔPs = Ks Ao (hs)m Pa (37)

hs = Ks1(vs)1 – r_h
 W/m2K (38)

Ks = Ks4 Ks5 / (Ks1)m
 (39)

Ks5 =
{4Cl / Dt Лs(1 – ψn)}{Ltp / πDctl}{Ds(Nb + 1)Lbc / [(Nb – 1)Lbc +

Lbi + Lbo]}{Lbb + Dctl[(Ltp - Dt) / Ltp, eff]}

 (40)

Ks4 = Ks2(vs)r_p’ + Ks3(vs)r_p’ – r_p
 (41)

Ks3 =
{Rl[(Nb – 1) / (Nb + 1)] + Rs[(Ntcc + Ntcw) / Ntcc(Nb + 1)]}

{[1 – 2(Bc / 100][2cp Rb ρs / ϕs Lpp][µs / Dt ρs]r_p}

 (42)

23

Ks2 = (Sm / Sw)[(1 + 0.3Ntcw)Rl Nb ρs / (Nb + 1)Ds] (43)

Ks1 = (ϕs ch ks Prs
1/3 / Dt)(Dt ρs / µs)1 – r_h Jtot (44)

m = (3 – rp’) / (1 – rh) (45)

rp’ = rp / (Ks2 / Ks3(vs)-r_p + 1) (46)

rh = -a2 Table 2 (47)

rp = -b2 Table 2 (48)

ch = a1(1.33Dt / Ltp)a
 (49)

cp = b1(1.33Dt / Ltp)b
 (50)

a = a3 / (1 + 0.14(Res)a_4) (51)

b = b3 / (1 + 0.14(Res)b_4) (52)

The a and b constants are correlational coefficients for the ideal tube bank factors, respectively;

the definitions for these factors are built into the compressed formulation above and so are not

included here. Values for a1, a2, a3, a4, b1, b2, b3, and b4 are given for varying shell side Re and for

different tube layout angles below in Table 2 [12].

24

Table 2: Correlational coefficients for ideal tube bank factors [12]

Layout

angle

Res

a1

a2

a3

a4

b1

b2

b3

b4

30o

105-104 0.321 -0.388 1.45 0.519 0.372 -0.123 7.00 0.500

104-103 0.321 -0.388 0.486 -0.152

103-102 0.593 -0.477 4.57 -0.476

102-10 1.360 -0.667 45.1 -0.973

90o 105-104 0.370 -0.395 1.187 0.370 0.391 -0.148 6.30 0.378

 104-103 0.107 -0.266 0.0815 0.022

 103-102 0.408 -0.460 6.090 -0.602

 102-10 0.900 -0.631 32.10 -0.963

Modularity

It may become necessary to connect multiple HEX shells in series in order to accomplish the design

goal; managing temperature cross is the relevant example. In this case, the overall temperature

profiles for the heat exchange system may be sectioned into individual shells, with each shell

seeing incremental input/output temperatures for both fluids. A simple method of sectioning the

25

total heat exchange is to choose each shell to achieve temperature approach. This method may be

visualized readily by Figure 10 below:

Figure 10: Graphical Method of Sectioning Temperature Profiles for Shells in Series [17]

However, while this method is suitable for preliminary estimations, a more robust analytical

method was adopted here, based on equations 6-10. A desirable value of FT is chosen, from which

values for R and P are back-calculated. Figure 8 shows a steep region of FT. For E shells and F

shells, a value of FT of 0.75 and 0.9, respectively, are desired to avoid this region [17]. FT falling

sharply may be thought of roughly as a stand-in for temperature efficiency, since the heat transfer

area required tends to ∞ as FT tends to -∞ [17]. In order to determine the requisite number of shells

Ns, the maximum possible value of P for the given R, Pmax, the minimum possible value of G for

the same, Gmin, and a further dimensionless parameter XP must be calculated. Vengateson provides

expressions for these parameters, in Equations 53 - 59 for E and F shells below [17].

26

Pmax = 2 / (R + 1 + sqrt(1 + R2)) (E shell) (53)

Pmax =
{[2(1 + R)(1 + R2)] – 2*sqrt[(1 + R2)(R4 – 2R3 + 3R2 – 2R +

1)]} / (4R3 – R2 + 4R)
(F shell) (54)

Gmin = 1 – (Pmax(1 + R))

 (55)

 Y = G - Gmin (56)

 XP = 1 – {[Y((1 + R) + sqrt(1 + R2))] / (2(1 + R)} (57)

Ns = P(1 – XP*Pmax) / (XP*Pmax(1 – P)) R = 1 (58)

Ns = Ln[(1 – R P) / (1 - P)] / ln[(1 – R XP Pmax) / (1 – XP Pmax)] R ≠ 1 (59)

Once the number of shells has been calculated, the inlet/outlet temperatures seen by each shell

may be determined by marching across the nodes of the temperature profiles. These temperatures

are given recursively below, where N indexes the shell number, in Equations 60 – 65 [17]. It should

be noted that, since the hot and cold streams enter from opposite ends of the HEX, Th, i occurs at

the same node as Tc, o.

Th, i[N] = Th, i + P(N – 1)(Tc, i) / (1 – P)

R = 1
(60)

Th, o[N] = Th, i + P(N)(Tc, i) / (1 – P) (61)

Th, i[N] =
[Th, i – [(R Tc, i) - Th, i) / (R - 1)][(1 - (P R)) / (1 - P)](N - 1) + [((R Tc, i)

– Th, i) / (R - 1)]
R ≠ 1

(62)

Th, o[N] = [Th, i – [(R Tc, i) - Th, i) / (R - 1)][(1 - (P R)) / (1 - P)](N) + [((R Tc, i) –

Th, i) / (R - 1)]

(63)

Tc, i[N] = ((P R - 1) Th, o[Ns-N] + Th, o[Ns+1-N]) / (P R) (64)

Tc, o[N] = ((P R - 1) Th, i[Ns-N] + Th, i[Ns+1-N]) / (P R) (65)

27

Finally, a decision had to be made as to how to design the shells that these inlet/outlet temperatures

were to be passed into. It was desirable in approaching the design of a heat exchange system

involving a series of shells to standardize the geometry of each shell, so as to avoid the

cumbersome task of optimizing several distinct geometries and requiring a manufacturer to

produce several distinct units. Four choices presented themselves: (1) to use a local method,

involving precisely the outcome mentioned above, where each temperature bracket is passed into

a design algorithm; (2) to use an upper-bound method, where the geometry optimized for the

uppermost temperature bracket is replicated for each other shell and where the performance of

each shell would be slightly different; (3) to use the midmost temperature bracket; and (4) to use

the lowermost temperature bracket. These different temperature brackets are depicted visually

below in Figure 10.

Figure 11: Upper/Mid/Lowermost Temperature Brackets for Shells in Series [17]

28

METHODOLOGY

Input parameters

An Electric Power Research Institute (EPRI) Technology Assessment of a Molten Salt Reactor

Design [18] written in conjunction with FliBe Co. was used as a source for the operating

parameters of the HEX and for the selection of a molten salt for the coolant. In this report, the heat

exchanger for heat transfer to the power conversion system (PCS) is shown in Figure 12 as the

Gas Heater, with LiF-BeF2 flowing in the hot side from 6 to 7 and CO2 flowing in the cold side

from 19 to 8. The molar concentration ratio for this salt is 67-33% LiF-BeF2, respectively [18].

The acronym FLiBe is used generally in research to represent this molten salt [19] [20] [21];

hereafter, FLiBe will refer to the molten salt, not the company. The technology assessment

provides a good reference case for the design of an MSR power plant.

29

Figure 12: Schematic of FLiBe Co. MSR Power Plant [18]

CoolProp software was used to calculate the thermophysical and transport properties of CO2. It

was compared to NIST REFPROP, and the results showed very good agreement [22] [23]. At each

iteration, CoolProp was called in the code to calculate density, thermal conductivity, dynamic

viscosity, and the Prandtl number for CO2. For calculating heat transfer, it should be noted that,

since the specific heat of CO2 can vary dramatically over small temperature changes, heat transfer

was found by taking the difference in enthalpy, with enthalpies calculated by CoolProp. This

avoids the drop in accuracy that using specific heats might entail.

There does not exist any thermophysical property library for FLiBe in a software platform like

CoolProp or NIST REFPROP [22] [23], so a molten salt property function was written in Python

programming language [24] with correlations for the necessary properties chosen from the

literature for FLiBe [25]. A 2013 Molten Salt Thermophysical Property Database by Idaho

30

National Laboratory gives correlations for density, thermal conductivity, and dynamic viscosity of

FLiBe, as determined experimentally by Ignat’ev et al. [20], Williams et al. [20], and Allen [20].

These are enumerated in Table 3 below. Specific heats for molten salts are difficult to measure

experimentally; a 2006 assessment of molten salts for Gen. IV reactors by Oak Ridge National

Laboratory states that, “The variation of [specific] heat capacity with temperature is small and is

typically neglected during preliminary calculations. The temperature variation was not resolved

within the accuracy of most previous measurements [19].” Nevertheless, a correlation for specific

heat was found by Williams et. al. [19] and was used here. All of the properties found using these

correlations (Equations 66 – 70) showed good agreement with those used by FliBe Co. in the

Technology Assessment [18]. Sample calculations for those correlations at 700oC are provided in

Table 3. MM is the molar mass of FLiBe.

ρ FLiBe = 2518 – 0.406 T , if T ≤ 923 K
(kg/m3)

(66)

ρ FLiBe = 2763.7 – 0.0687 T , if T > 923 K (67)

µ FLiBe = 0.000116 exp(3755 / T) (Pa.s) (68)

k FLiBe = .0005 T + (32 / MM) - 0.34 (W/m.K) (69)

CP, FLiBe = 976.78044 + (1.06344 T) (J/K) (70)

Table 3: Sample FLiBe Properties at 700oC [18]

ρ (kg/m3) 2696.8

µ (Pa.s) 0.0054983

k (W/m.K) 1.11627

CP (J/K) 2011.7

31

Molten salts have corrosive qualities, for which multiple alloy solutions have been investigated.

Nickel alloys, such as Hastelloy-N [26] [28] and Inconel 625 [21], have shown good corrosion

resistance, including up to temperatures of 700oC [21], and have for this reason received research

interest for MSR applications. The thermal conductivities for these alloys were included in the

property function described above. The value of thermal conductivity for a given tube material

was passed into the main, and the results were compared for each. Haynes International [26]

provides thermal conductivity data for Hastelloy-N, which are shown in Table 4, as well as for

Inconel 625, in Table 5. A correlation for the thermal conductivity of stainless steel is given by

Wiley [27], below as Equation 71.

Table 4: Hastelloy-N Thermal Conductivity Data [26]

T ≤ 473 K k = 14.4 W/m.K

473 < T ≤ 573 16.5

573 < T ≤ 673 18.0

673 < T ≤ 773 20.3

T > 773 23.6

32

Table 5: Inconel 625 Thermal Conductivity Data [26]

T ≤ 373 K k = 9.8 W/m.K

373 < T ≤ 473 10.9

473 < T ≤ 573 12.5

573 < T ≤ 673 13.9

673 < T ≤ 773 15.3

773 < T ≤ 873 16.9

873 < T ≤ 973 18.3

973 < T ≤ 1073 19.8

1073 < T ≤ 1173 21.5

1173 < T ≤ 1273 23.4

T > 1273 25.6

k = 14.6 + 1.27*10-2*T (W/m.K) (71)

Design Algorithm

A design algorithm was created to take the input parameters described above and output a complete

STHE system design, including the number of shells in series, the geometry of each shell, its heat

transfer rating, and the pressure drops across both sides. This algorithm was developed based on

the example provided by Serna, based on the compact formulation of the Delaware method [13].

 Step 1: Define Input Parameters

The required input parameters included the inlet/outlet fluid temperatures, fluid property banks or

correlations, mass flowrates, operating pressures, allowable pressure drops. It was also necessary

to specify a few geometrical input parameters. All of the requisite input parameters are listed below

in Table 6.

33

Table 6: STHE System Design Algorithm Required Input Parameters

Parameter Variable Units

Shell side inlet temperature Tsi K

Shell side outlet temperature Tso K

Tube side inlet temperature Tti K

Tube side outlet temperature Tto K

Shell side mass flow rate ṁs kg/s

Tube side mass flow rate ṁt kg/s

Shell side operating pressure Ps kPa

Tube side operating pressure Pt kPa

Shell side allowable pressure drop ΔPs kPa

Tube side allowable pressure drop ΔPt kPa

Shell side fouling factor Rds K/m2W

Tube side fouling factor Rdt K/m2W

Tube outer diameter Dt mm

Tube pitch layout code (square,

ϴtp = 90o, or triangular, ϴtp = 30o)

Ctp

Tube pitch length Ltp mm

Tube material code Cmat

Shell design concept (E or F) code Cshell

Temperature bracket (local, upper,

mid, or lowermost) code

Cbrack

 Step 2: Determine number of shells required

The overall R for this system was calculated using Equation 7. The number of shells Ns was then

determined from Equation 58 or 59.

34

 Step 3: Determine inlet/outlet temperatures for each shell

Equations 60 – 65 were used to section the temperature profiles and find the temperatures that

each shell would see. Based on the temperature bracket code chosen, the corresponding

sectioned inlet/outlet temperatures for both fluid streams were then passed into the design loop,

Steps 4 – 8.

Step 4: Guess initial values for Ks, Kt, n, and m

The Kern method provided the initial guess for Ks [13], which is given by Equation 72. Here g is

the gravitational constant and has a value assumed as 9.807 m/s2 [13].

Ks = [67.062Cl / 10003.406 g] [(Ltp - Dt) / Dt] [Ltp De
1.109 µs

1.297 /

Лs ρs
2 ks

3.406 CP, s
1.703],

(W/m.K) (72)

Where De = 4[(Ltp
2) - ((π(Dt

2)) / 4)] / π Dt Ctp = square (73)

And De = 4[Ltp
2sqrt(3) - (π Dt

2 / 8)] / π Dt
Ctp =

triangular
(74)

Step 5: Numerically solve for ht

Serna provides the following nonlinear equation in terms of ht [13]:

ht – {[ΔPt FT LMTD / KT Q] / [(Ks ΔPt / Kt ΔPs ht
n)1 / m + Rdw +

Dt / ht(Dt - tt)]}1 / n,
= 0 (75)

Where Rdw = Rds + (103 Dt / 2k) ln(Dt / (Dt - tt) + Rdt (Dt / (Dt - tt) (76)

35

 Step 6: Solve for hs and Ao

Serna also provides the following expression for hs [13], and Ao is determined from Equation 77

[13]:

hs = [Kt ΔPs ht
n / Ks ΔPt]1 / m (77)

Step 7: Determine characteristic fluid flow velocities

The initial guess for vs is provided by Equation 78. Each other time vs and vt are calculated,

Equations 79 and 80 are used.

vs = (µs
1.3/6 De

0.45 hs / 36ks
2/3 CP, s

1/3 ρs
0.55)1 / 0.55 (78)

vs = (hs / Ks1)1 / (1 – r_h) (79)

vt = (µt
7/15 Dti

1/5 ht / 2.3kt
2/3 CP, t

1/3 ρt
4/5)1 / 0.55 (80)

 Step 8: Extract geometrical design parameters

Once all of the above are calculated, the geometrical parameters that fully define the STHE design

and performance can be calculated using the definitions provided in the Theory chapter. Equations

39 and 48 are then used to calculate values for Ks, Kt, m, and n for the next iteration, Steps 4 – 8.

The design algorithm was coded in Python programming language [24]. The entire design loop is

presented in the Appendix.

36

RESULTS

In the version of the loop included in the Appendix, an additional input code Cval is defined to

check for comparison to the values reported by Serna during the validation of the compact

formulation and the algorithm presented in that paper. The input values for the validation exercise

performed by Serna against data reported by Thomas et. al. are shown below in Table 7 [13]. The

results for these values are included below in Table 8 [13]; two designs were reported.

Table 7: Validation Input Values for Serna Algorithm [13]

Parameter Shell side Tube side Units

Flowrate 43.6 45.377 kg/s

Density 820 993 kg/m3

Specific heat capacity 2170 4170 J/kg.K

Viscosity 2.45 0.682 Pa.s (10-3)

Thermal conductivity 0.128 0.63 W/m.K

Inlet temperature 114 26 oC

Outlet temperature 66 50 oC

Allowable pressure drop 11.346 10.13 kPa

Fouling factor 0.0007 0.00015 K/m2W

Tube wall thermal conductivity 0

Heat duty 4541.4 kW

Geometry

Outer tube diameter 19.1 mm

Inner tube diameter 16.6 mm

Tube layout 90 deg

Tube pitch 25.4 mm

Number of tube passes 4

Shell to baffle clearance 5.72 mm

Tube to baffle clearance 0.794 mm

Shell to tube bundle clearance 12.7 mm

37

Table 8: Results for Validation of Serna Algorithm [13]

 Design 1 Design 2 Thomas et. al. Units

Geometry

Shell diameter 1015.71 1014.75 1070 mm

Total tube flow length 3872.97 3852.14 4480 mm

Baffle cut 22.73 20.8 20 %

Central baffle spacing 342.9 342.94 375 mm

Inlet baffle spacing 342.9 342.94 375 mm

Outlet baffle spacing 342.9 342.94 375 mm

Number of baffles 10.2945 10 12

Number of tubes 1091 1089 1195

Number of tube passes 4 4 4

Installed area 253.544 251.717 349.922 m2

Performance

Required area 253.352 251.496 262.825 m2

Shell side Re 36608 33768 33544

Shell side pressure drop 11.346 11.346 11.346 kPa

Tube side pressure drop 7.151 7.136 7.65 kPa

Shell side heat transfer

coefficient
692.091 701.05 657.84 W/m2K

Tube side heat transfer

coefficient
3775.964 3782.149 3510.477 W/m2K

Overall heat transfer

coefficient
381.29 384.13 367.58 W/m2K

Ratio of baffle crossflow

area to baffle window

area

1.0004 1.1528 1.2282

It was attempted to adopt the input values reported in Table 7 for the algorithm designed in this

thesis and validate its performance against the results reported in Table 8. However, despite

extensive debugging efforts, the best results achieved were not deemed acceptable for validation

38

of the design loop for Steps 4 – 8 of the STHE system design algorithm developed here. The

validation results are reported below in Table 9, where the percentage deviations from the

validation values are the values of interest.

39

Table 9: STHE System Design Algorithm Required Input Parameters

 Serna Calculated Percent Error

Shell diameter 1015.71 mm 2092.5 mm 106%

Total tube length 3872.97 mm 1671.8 mm 56.8%

Baffle spacing 342.9 mm 18.3 mm 94.6%

Number of baffles 10 90 88.9%

Number of tubes 1091 5927 443%

Installed area 253.5 m2 0.594 m2 99.7%

Shell side Re 36608 35.1 99.9%

40

CONCLUSION

An overview of S-CO2 cycles and MSR’s for power production was presented. The primary

contributions of these two systems to the content of this thesis was to provide an operational

context for which the HEX design investigated would be applied. MSR’s and S-CO2 cycles operate

under particular conditions; these involve high temperatures, very high operating pressures, and

corrosive fluids. Understanding the impact of the context on the design of a HEX system was

intended to supply the intellectual merit of this thesis.

However, the design algorithm never reached the implementation stage, due to the inability to

achieve satisfactory performance using known input parameters and known results. Proper

validation of the main loop of the algorithm was necessary before any of the intended results could

be reported. Were validation to be achieved, the intended primary results were to include:

▪ Plots of Ao and U as functions of a) molten salt temperatures, b) CO2 temperatures, c)

operating pressures, and d) heat duties

▪ Plots of the number of shells for E and F design as functions of a) molten salt temperatures,

b) CO2 temperatures, c) operating pressures, and d) heat duties

▪ A table of ideal operating conditions for an E and F shell HEX series

▪ Concluding trends and recommendations based on these results as to the suitability of

STHE’s for MSR/CO2 applications

▪ High Ao will be used as a corollary for high capital expense

▪ Low U will be used as a corollary for lower efficiency

41

Future research begins with the proper validation of the main loop of the design algorithm. Unit

inconsistency is a possible source of error. The compact formulations provided by Serna did not

include dimensions, which made it difficult to verify that results were reasonable. Deriving a

similar formulation from scratch would allow for performing dimensional analysis at each step;

this formulation should take only standard SI units, which was not the case with the formulation

used here or by the Taborek correlations.

An additional possible error may be due to the flow of the equations solved in the main loop of the

algorithm. A redesigned algorithm should solve each equation sequentially, such that there is no

possibility for multiple branches or equation solving paths.

Beyond the desired results listed above, there are additional realms of investigation that future

researchers may pursue. The ultimate goal is to create a representative model for the shell side that

takes into account two aspects of S-CO2 flow: 1) the effects of buoyancy and 2) the effects of the

rapid change of fluid properties near the critical point. CFD simulations of the CO2 flow on the

shell side were intended for this thesis; however, without meaningful numerical data to compare

them against, none were included.

42

APPENDIX – DESIGN ALGORITHM CODE FOR STEPS 4 - 8

import numpy as np

from scipy.optimize import newton as newt

from scipy.optimize import brentq as br

from mpmath import *

import Properties_MS as ms

import a_values as av

import k_values as kv

from CoolProp import PropsSI

mp.dps = 30

mp.pretty = True

def STHE_Opt(Mdot_s, Mdot_t, medium_t, mat, T_si, T_so, T_ti, T_to, P_si, P_ti, R_ds, R_dt, deltaP_sallow,

 deltaP_tallow, L_tp, shell, D_t, B_c, C_tpl, C_val, lcount):

 print('Reached step 0')

 # preliminary definitions

 T_sa = (T_si + T_so) / 2

 T_ta = (T_ti + T_to) / 2

 T_sw = (T_sa + T_ta) / 2

 T_tw = (T_sa + T_ta) / 2

 g_c = 9.807 # m/s^2

 # Pr_t is multiplied by a factor of 10**-3 to account for the ctp unit of viscosity

 Pr_t = ((mu_t*Cp_t)/k_t)*(10**(-3))

 print('Pr_t =', Pr_t)

 # choose shell configuration, E or F shell

 # report if assignment is misspelled

 if shell == "E":

 N_tp = 2

 elif shell == "F":

 N_tp = 4

 else:

 print('improper shell assignment')

 N_tp = nan

 # choose which side is hot and cold for LMTD calculation

 # report if temperatures are equal

 if T_si > T_ti:

 C_LMTD = "Shell hot"

 T_hi = T_si

 T_ho = T_so

 T_ci = T_ti

 T_co = T_to

 elif T_si < T_ti:

 C_LMTD = "Tube hot"

 T_hi = T_ti

 T_ho = T_to

 T_ci = T_si

 T_co = T_so

43

 else:

 print('improper input temperatures')

 C_LMTD, T_hi, T_ho, T_ci, T_co = nan, nan, nan, nan, nan

 print(C_LMTD)

 # choose tube pitch layout

 # check if improper code assignment

 if C_tpl == 'square':

 C_l = 1

 D_e = (4*((L_tp**2) - ((np.math.pi*(D_t**2)) / 4))) / (np.math.pi*D_t)

 elif C_tpl == 'triangular':

 C_l = 0.866

 D_e = (4*(((L_tp**2)*np.math.sqrt(3)) - ((np.math.pi*(D_t**2)) / 8))) / ((np.math.pi*D_t) / 2)

 else:

 print('improper tube layout assignment')

 C_l = nan

 D_e = nan

 print('C_l =', C_l, '\nD_e =', D_e)

 H_si = ms.H_s(T_si)

 H_so = ms.H_s(T_so)

 Qdot = Mdot_s*(H_si - H_so)

 tau_tallow = kv.tau_tallow(mat)

 mu_s = ms.mu_s(T_sa)

 rho_s = ms.rho_s(T_sa)

 k_s = ms.k_s(T_sa)

 Cp_s = ms.Cp_s(T_sa)

 k = kv.k(mat, T_sw, T_tw)

 print('k = ', k)

 k_t = PropsSI('Conductivity', 'T', T_ta, 'P', P_ti, medium_t)

 rho_t = PropsSI('rho', 'T', T_ta, 'P', P_ti, medium_t)

 Pr_t = PropsSI('Prandtl', 'T', T_ta, 'P', P_ti, medium_t)

 mu_t = PropsSI('V', 'T', T_ta, 'P', P_ti, medium_t)

 mu_tw = PropsSI('V', 'T', T_tw, 'P', P_ti, medium_t)

 Cp_t = PropsSI('C', 'T', T_ta, 'P', P_ti, medium_t)

 t_t = ((P_ti * D_t) / ((2 * tau_tallow) + P_ti)) + (0.005 * D_t)

 D_ti = D_t - (2*t_t)

 phi_t = (mu_t / mu_tw)**0.14

 Q_s = Mdot_s / rho_s

 Q_t = Mdot_t / rho_t

 print('Q_s =', Q_s, '\nQ_t', Q_t)

 R_dw = R_ds + (((0.001*D_t) / (2*k))*np.math.log(D_t / D_ti)) + ((D_t / D_ti)*R_dt)

 print('R_dw =', R_dw)

 F_TP = (T_to - T_ti) / (T_si - T_ti)

 F_TR = (T_si - T_so) / (T_to - T_ti)

 F_TS = (((F_TR**2) + 1)**0.5) / (F_TR - 1)

 F_TW = (1 - (F_TP*F_TR)) / (1 - F_TP)

 F_T = (F_TS*np.math.log(F_TW)) / np.math.log((1 + F_TW - F_TS + (F_TS*F_TW)) / (1 + F_TW + F_TS -

(F_TS*F_TW)))

 K_s = np.zeros(lcount+1)

 K_t = np.zeros(lcount+1)

 n = np.zeros(lcount+1)

 m = np.zeros(lcount+1)

44

 h_t = np.zeros(lcount)

 h_s = np.zeros(lcount)

 v_s = np.zeros(lcount)

 v_t = np.zeros(lcount)

 L_ta = np.zeros(lcount)

 N_t = np.zeros(lcount)

 D_ctl = np.zeros(lcount)

 D_s = np.zeros(lcount)

 L_bc = np.zeros(lcount)

 L_ts = np.zeros(lcount)

 L_ti = np.zeros(lcount)

 N_b = np.zeros(lcount)

 L_bi = np.zeros(lcount)

 L_bo = np.zeros(lcount)

 A_a = np.zeros(lcount)

 A_o = np.zeros(lcount)

 L_sb = np.zeros(lcount)

 D_otl = np.zeros(lcount)

 theta_ctl = np.zeros(lcount)

 F_w = np.zeros(lcount)

 S_sb = np.zeros(lcount)

 S_tb = np.zeros(lcount)

 S_m = np.zeros(lcount)

 mdot_s = np.zeros(lcount)

 Re_s = np.zeros(lcount)

 r_s = np.zeros(lcount)

 r_lm = np.zeros(lcount)

 J_l = np.zeros(lcount)

 S_b = np.zeros(lcount)

 F_sbp = np.zeros(lcount)

 N_tcc = np.zeros(lcount)

 r_ss = np.zeros(lcount)

 J_b = np.zeros(lcount)

 F_c = np.zeros(lcount)

 J_c = np.zeros(lcount)

 J_s = np.zeros(lcount)

 J_tot = np.zeros(lcount)

 p = np.zeros(lcount)

 R_l = np.zeros(lcount)

 R_s = np.zeros(lcount)

 C_bp = np.zeros(lcount)

 R_b = np.zeros(lcount)

 a1 = np.zeros(lcount)

 a2 = np.zeros(lcount)

 a3 = np.zeros(lcount)

 a4 = np.zeros(lcount)

 r_h = np.zeros(lcount)

 a = np.zeros(lcount)

 c_h = np.zeros(lcount)

 b1 = np.zeros(lcount)

 b2 = np.zeros(lcount)

 b3 = np.zeros(lcount)

 b4 = np.zeros(lcount)

 r_p = np.zeros(lcount)

45

 b = np.zeros(lcount)

 c_p = np.zeros(lcount)

 j_si = np.zeros(lcount)

 f_si = np.zeros(lcount)

 S_wg = np.zeros(lcount)

 S_wt = np.zeros(lcount)

 S_w = np.zeros(lcount)

 S_mw = np.zeros(lcount)

 N_tcw = np.zeros(lcount)

 K_s1 = np.zeros(lcount)

 K_s2 = np.zeros(lcount)

 K_s3 = np.zeros(lcount)

 r_pprime = np.zeros(lcount)

 K_s4 = np.zeros(lcount)

 K_s5 = np.zeros(lcount)

 K_t2 = np.zeros(lcount)

 K_t3 = np.zeros(lcount)

 r_prime = np.zeros(lcount)

 K_t4 = np.zeros(lcount)

 gg1 = np.zeros(lcount)

 gg2 = np.zeros(lcount)

 gg3 = np.zeros(lcount)

 gg4 = np.zeros(lcount)

 U = np.zeros(lcount)

 for l in range(0, lcount):

 if l == 0:

 print('\n\n\n\n*********For the', l+1, '- st iteration*********')

 elif l == 1:

 print('\n\n\n\n*********For the', l+1, '- nd iteration*********')

 elif l == 2:

 print('\n\n\n\n*********For the', l+1, '- rd iteration*********')

 else:

 print('\n\n\n\n*********For the', l+1, '- th iteration*********')

 # store values to check later for convergence

 if l == 0:

 print('reached step 1')

 # STEP 1: initial guesses for K_t, K_s, n, and m

 m[l] = 5.109

 n[l] = 3.5

 K_s[l] = ((67.062 * C_l) / (g_c * (1000 ** 3.406))) * ((L_tp - D_t) / D_t) * \

 ((L_tp * (D_e ** 1.109) * (mu_s ** 1.297)) / (Q_s * (rho_s ** 2) * (k_s ** 3.406) * (Cp_s ** 1.703)))

 K_t[l] = (((phi_t ** 4.5) * ((D_ti / 1000) ** 0.5) * ((mu_t / 1000) ** (11 / 6))) /

 ((0.023 ** 2.5) * g_c * Q_t * (rho_t ** 2) * (k_t ** (7 / 3)) * (Cp_t ** (7 / 6)))) * (D_ti / D_t)

 print('reached step 2')

 print('K_s:', K_s[l], '\nK_t:', K_t[l], '\nm:', m[l], '\nn:', n[l])

 # STEP 2: calculate h_t

 # use Newton-Raphson method

 # preliminary definitions of function-reducing variable blocks

 deltaT1 = T_hi - T_co

 deltaT2 = T_ho - T_ci

 LMTD = (deltaT1 - deltaT2) / np.math.log(deltaT1 / deltaT2)

46

 print('for calculating LMTD:\n deltaT1 =', deltaT1, 'deltaT2 =', deltaT2, '\n LMTD =', LMTD)

 def Fh_tfunc(x):

 print('for calculating h_t using newt:\nx =', x)

 print('deltaP_tallow =', deltaP_tallow, ', F_T =', F_T, ', LMTD =', LMTD, ', K_t =', K_t[l], ', Qdot =',

 Qdot, ', K_s =', K_s[l], ', deltaP_sallow =', deltaP_sallow, ', n =', n[l], ', m =', m[l])

 return x - ((((deltaP_tallow * F_T * LMTD) / (K_t[l] * Qdot)) / ((((K_s[l] * deltaP_tallow) /

 ((K_t[l] * deltaP_sallow) * (x ** n[l]))) ** (1 / m[l])) + R_dw + (D_t / (D_ti * x)))) ** (1 / n[l]))

 print('Fh_tfunc: [a, b] =', Fh_tfunc(1), ',', Fh_tfunc(1000*h_t[l-1]))

 if C_val == 'N':

 if l == 0:

 h_t[l] = newt(Fh_tfunc, x0=3000, tol=0.1, maxiter=1000)

 else:

 h_t[l] = newt(Fh_tfunc, x0=h_t[l-1], tol=0.1, maxiter=1000)

 h_tu = 1000*h_t[l-1]

 h_t[l] = br(Fh_tfunc, a=1, b=h_tu, xtol=0.1, maxiter=10000)

 elif C_val == 'Y':

 h_t[l] = 3775.9

 else:

 print('improper C_val assignment')

 h_t[l] = nan

 print('h_t =', h_t[l])

 # STEP 3: calculate h_s and A_o

 if C_val == 'N':

 h_s[l] = ((K_t[l]*deltaP_sallow*(h_t[l]**n[l])) / (K_s[l]*deltaP_tallow))**(1/m[l])

 A_o[l] = (Qdot / (F_T*LMTD))*((1 / h_s[l]) + R_dw + (D_t / (D_ti*h_t[l])))

 elif C_val == 'Y':

 h_s[l] = 692

 A_o[l] = 253.352

 else:

 h_s[l] = nan

 A_o[l] = nan

 print('h_s =', h_s[l])

 print('A_o =', A_o[l])

 # STEP 4: extract geometrical parameters

 if l == 0:

 v_s[l] = ((h_s[l]*(mu_s**(1.3/6))*(D_e**0.45)) / (36*(k_s**(2/3)*(Cp_s**(1/3))*(rho_s**0.55))))**(1 /

0.55)

 else:

 v_s[l] = (h_s[l] / K_s1[l-1])**(1/(1-r_h[l-1]))

 v_t[l] = ((h_t[l] * (D_ti ** (1 / 5)) * (mu_t ** (7 / 15))) / (

 2.3 * (k_t ** (2 / 3)) * (rho_t ** (4 / 5)) * (Cp_t ** (1 / 3)))) ** (1 / 0.8)

 print('v_t =', v_t[l])

 print('v_s =', v_s[l])

 if C_val == 'N':

 N_t[l] = ((10**6)*N_tp*Q_t) / (np.math.pi*v_t[l]*((D_ti**2) / 4))

 L_ta[l] = (A_o[l] / (np.math.pi*D_t*N_t[l]))*(10**6)

 elif C_val == 'Y':

 N_t[l] = 1091

 L_ta[l] = 3872.9

 else:

47

 N_t[l] = nan

 L_ta[l] = nan

 print('N_t =', N_t[l])

 print('L_ta =', L_ta[l])

 """D_ctl[l] = L_tp*np.math.sqrt((4*N_t[l]*C_l) / np.math.pi)

 print('D_ctl =', D_ctl[l])

 Si_n[l] = 1 - ((4*N_t[l]*C_l*(L_tp**2)) / ((D_ctl[l]**2)*np.math.pi))

 print('Si_n =', Si_n[l])"""

 if N_tp == 2:

 Si_n = 0.08

 elif N_tp == 4:

 Si_n = 0.135

 else:

 print('N_tp improperly assigned for Si_n estimation')

 Si_n = nan

 D_ctl[l] = L_tp*np.math.sqrt((4*N_t[l]*C_l) / (np.math.pi*(1 - Si_n)))

 print('D_ctl =', D_ctl[l])

 L_bb = 20

 if C_val == 'N':

 D_s[l] = D_ctl[l] + L_bb + D_t

 L_bc[l] = ((10**6)*Q_s) / (v_s[l]*(L_bb + (D_ctl[l] / (L_tp*(L_tp - D_t)))))

 # L_bc[l] = ((10**6)*Q_s) / (v_s[l]*(L_bb + ((D_ctl[l] / L_tp)*(L_tp - D_t))))

 elif C_val == 'Y':

 D_s[l] = 1015

 L_bc[l] = 342.9

 else:

 D_s[l] = nan

 L_bc[l] = nan

 print('D_s =', D_s[l])

 print('L_bc =', L_bc[l])

 L_ts[l] = 0.5*D_s[l]*np.math.sqrt(P_si / tau_tallow)

 """print('for calculating L_ti:\n L_ta =', L_ta[l], ', L_ts =', L_ts[l])

 L_ti[l] = L_ta[l] - (2*L_ts[l])

 print('for calculating N_b:\n L_ti =', L_ti[l], ', L_b =', L_bc[l])

 if l < lcount - 1:

 N_b[l] = (L_ti[l] / L_bc[l]) - 1

 else:

 N_b[l] = int((L_ti[l] / L_bc[l]) - 1)

 L_bi[l] = (L_ta[l] - (L_bc[l]*(N_b[l] - 1))) / 2

 L_bo[l] = L_bi[l]"""

 if C_val == 'N':

 N_b[l] = ((L_ta[l] - (2*L_bc[l])) / L_bc[l]) + 1

 elif C_val == 'Y':

 N_b[l] = 10.29

 else:

 N_b[l] = nan

 print("N_b =", N_b[l])

 L_bi[l] = L_bc[l]

 print("L_bi =", L_bi[l])

 L_bo[l] = L_bc[l]

 A_a[l] = L_ta[l]*D_t*np.math.pi*N_t[l]*(10**(-6))

 print("A_a =", A_a[l])

48

 # ideal tube-bank correlations

 L_tb = av.L_tb(D_t)

 print('L_tb =', L_tb)

 L_sb[l] = 1.6 + (0.004*D_s[l])

 print("L_sb =", L_sb[l])

 D_otl[l] = D_s[l] - L_bb

 print("D_otl =", D_otl[l])

 theta_ds = 2*np.math.acos(1 - (B_c / 50))*(180 / np.math.pi)

 print("theta_ds =", theta_ds)

 theta_ctl[l] = 2*np.math.acos((D_s[l] / D_ctl[l])*(1 - (B_c / 50)))*(180 / np.math.pi)

 print("theta_ctl =", theta_ctl[l])

 F_w[l] = theta_ctl[l] / 360

 print("F_w =", F_w[l])

 S_sb[l] = 0.00436*D_s[l]*L_sb[l]*(360 - theta_ds)

 print("S_sb =", S_sb[l])

 S_tb[l] = ((np.math.pi / 4)*(((D_t + L_tb)**2) - (D_t**2)))*N_t[l]*(1 - F_w[l])

 print("S_tb =", S_tb[l])

 S_m[l] = L_bc[l]*(L_bb + ((D_ctl[l] / L_tp)*(L_tp - D_t)))

 print("S_m =", S_m[l])

 mdot_s[l] = (Mdot_s / S_m[l])*(10**6)

 print("mdot_s =", mdot_s[l])

 if C_val == 'N':

 Re_s[l] = (D_t*mdot_s[l]) / mu_s

 elif C_val == 'Y':

 Re_s[l] = 36608

 else:

 Re_s[l] = nan

 print("Re_s =", Re_s[l])

 r_s[l] = S_sb[l] / (S_sb[l] + S_tb[l])

 print("r_s =", r_s[l])

 r_lm[l] = (S_sb[l] + S_tb[l]) / S_m[l]

 print("r_lm =", r_lm[l])

 J_l[l] = (0.44*(1 - r_s[l])) + ((1 - (0.44*(1 - r_s[l])))*exp(-2.2*r_lm[l]))

 print("J_l =", J_l[l])

 S_b[l] = L_bc[l]*((D_s[l] - D_otl[l]) - D_t)

 print("S_b =", S_b[l])

 F_sbp[l] = S_b[l] / S_m[l]

 print("F_sbp =", F_sbp[l])

 C_bh = 1.25

 L_pp = 0.866*L_tp

 print('L_pp =', L_pp)

 N_ss = av.N_ss(L_bb)

 print("N_ss =", N_ss)

 N_tcc[l] = (D_s[l] / L_pp)*(1 - (B_c / 50))

 print("N_tcc =", N_tcc[l])

 r_ss[l] = N_ss / N_tcc[l]

 print("r_ss =", r_ss[l])

 J_b[l] = np.math.exp(-C_bh*F_sbp[l]*(1 - ((2*r_ss[l])**(1/3))))

 print("J_b =", J_b[l])

 F_c[l] = 1 - (2*F_w[l])

 print("F_c =", F_c[l])

 J_c[l] = 0.55 + (0.72*F_c[l])

 print("J_c =", J_c[l])

49

 J_s[l] = ((N_b[l] - 1) + (L_bi[l]**0.4) + (L_bo[l]**0.4)) / ((N_b[l] - 1) + L_bo[l] + L_bi[l])

 print("J_s =", J_s[l])

 J_tot[l] = J_b[l]*J_c[l]*J_l[l]*J_s[l]

 print("J_tot =", J_tot[l])

 p[l] = (-0.15*(1 + r_s[l])) + 0.81

 print("p =", p[l])

 R_l[l] = np.exp(-1.33*(1 + r_s[l])*(r_lm[l]**p[l]))

 print("R_l =", R_l[l])

 R_s[l] = ((L_bc[l] / L_bo[l])**1.8) + ((L_bc[l] / L_bi[l])**1.8)

 print("R_s =", R_s[l])

 C_bp[l] = av.C_bp(Re_s[l])

 print("C_bp =", C_bp[l])

 R_b[l] = np.math.exp(-C_bp[l] * F_sbp[l] * (1 - ((2*r_ss[l])**(1/3))))

 print("R_b =", R_b[l])

 a1[l], a2[l], a3[l], a4[l] = av.avalue(Re_s[l])

 r_h[l] = -a2[l]

 print("r_h =", r_h[l])

 a[l] = a3[l] / (1 + (0.14*(Re_s[l]**a4[l])))

 print('a =', a)

 c_h[l] = a1[l]*((1.33 / (L_tp / D_t))**a[l])

 print("c_h =", c_h[l])

 b1[l], b2[l], b3[l], b4[l] = av.bvalue(Re_s[l])

 r_p[l] = -b2[l]

 print("r_p =", r_p[l])

 b[l] = b3[l] / (1 + (0.14*(Re_s[l]**b4[l])))

 print('b =', b)

 c_p[l] = b1[l]*((1.33 / (L_tp / D_t))**b[l])

 print("c_p =", c_p[l])

 j_si[l] = c_h[l]*((mu_s / (D_t*rho_s))**r_h[l])*(v_s[l]**(-r_h[l]))

 print("j_si =", j_si[l])

 f_si[l] = c_p[l]*((mu_s / (D_t*rho_s))**r_p[l])*(v_s[l]**(-r_p[l]))

 print("f_si =", f_si[l])

 if C_val == 'N':

 U[l] = Qdot / (F_T*A_o[l]*LMTD)

 elif C_val == 'Y':

 U[l] = 381.29

 else:

 U[l] = nan

 print("U =", U[l])

 # STEP 5: calculate new values for compact parameters for next iteration

 T_sw = T_sa - (Qdot / (h_s*N_t*np.math.pi*D_t*L_ta))

 T_tw = T_ta + (Qdot / (h_t*N_t*np.math.pi*D_ti*L_ta))

 mu_sw = ms.mu_s(T_sw)

 mu_tw = PropsSI('V', 'T', T_tw, 'P', P_ti, medium_t)

 phi_s = (mu_s / mu_sw)**0.14

 phi_t = (mu_t / mu_tw)**0.14

 S_wg[l] = (np.math.pi / 4)*(D_s[l]**2)*((theta_ds / 360) - ((np.math.sin(theta_ds)) / (2*np.math.pi)))

 print("S_wg =", S_wg[l])

 S_wt[l] = N_t[l]*F_w[l]*((np.math.pi / 4)*(D_t**2))

 print("S_wt =", S_wt[l])

 S_w[l] = S_wg[l] - S_wt[l]

 print("S_w =", S_w[l])

 S_mw[l] = S_m[l] / S_w[l]

50

 print('S_mw =', S_mw[l])

 N_tcw[l] = (0.8 / (0.866*L_tp))*((D_s[l]*(B_c / 100)) - ((D_s[l] - D_ctl[l]) / 2))

 print("N_tcw =", N_tcw[l])

 Pr_s = ((mu_s*Cp_s) / k_s)*(10**(-3))

 print("Pr_s =", Pr_s)

 K_s1[l] = (((phi_s*c_h[l]*k_s*(Pr_s**(1/3))) / (0.001*D_t))*(((D_t*rho_s) / mu_s)**(1 - r_h[l])))*J_tot[l]

 print("K_s1 =", K_s1[l])

 K_s2[l] = 1 * (((1 + (0.3 * N_tcw[l])) * (R_l[l] * N_b[l] * rho_s)) / ((N_b[l] + 1) * D_s[l]))

 print("K_s2 =", K_s2[l])

 K_s3[l] = ((R_l[l]*((N_b[l] - 1) / (N_b[l] + 1))) + (R_s[l]*((N_tcc[l] + N_tcw[l]) / (N_tcc[l]*(N_b[l] + 1))))) \

 (1 - (B_c / 50))((2*c_p[l]*R_b[l]*rho_s) / (phi_s*L_pp))*((mu_s / (D_t*rho_s))**r_p[l])

 print("K_s3 =", K_s3[l])

 r_pprime[l] = r_p[l] / (((K_s2[l] / K_s3[l])*(v_s[l]**(-r_p[l]))) + 1)

 print("r_pprime =", r_pprime[l])

 K_s4[l] = (K_s2[l]*(v_s[l]**r_pprime[l])) + (K_s3[l]*(v_s[l]**(r_pprime[l] - r_p[l])))

 print("K_s4 =", K_s4[l])

 K_s5[l] = ((4*C_l) / (D_t*Q_s*(1 - Si_n)))*((L_tp / (np.math.pi*D_ctl[l]))**2)*(

 (D_s[l]*L_bc[l]*(N_b[l] + 1)) / (L_bi[l] + L_bo[l] + (L_bc[l]*(N_b[l] - 1))))*(L_bb + (D_ctl[l]*

 ((L_tp - D_t) / L_tp)))

 print("K_s5 =", K_s5[l])

 K_indiv = 2.5

 K_t1 = ((0.023*k_t*(Pr_t**(1/3))) / ((10**(-3))*D_ti))*(((rho_t*D_ti) / mu_t)**0.8)

 print("K_t1 =", K_t1)

 K_t2[l] = K_indiv*(D_ti / L_ta[l])

 print("K_t2 =", K_t2[l])

 K_t3[l] = 0.184*phi_t*(1 + ((2*L_ts[l]) / L_ta[l]))*((mu_t / (D_ti*rho_t))**0.2)

 print("K_t3 =", K_t3[l])

 r_prime[l] = 0.2 / (((K_t2[l] / K_t3[l])*(v_t[l]**(-0.2))) + 1)

 print("r_prime =", r_prime[l])

 K_t4[l] = (K_t2[l]*(v_t[l]**r_prime[l])) + (K_t3[l]*(v_t[l]**(r_prime[l] - 0.2)))

 print("K_t4 =", K_t4[l])

 K_t5 = (D_ti*rho_t) / (4*Q_t*D_t)

 print("K_t5 =", K_t5)

 if l == lcount-1:

 print('\nShell diameter (mm):', D_s, '\n\nTotal flow length of the tubes (mm):', L_ta, '\n\nBaffle cut (%):'

 , B_c, '\n\nCentral baffle spacing (mm):', L_bc, '\n\nInlet/Outlet baffle spacing (mm):', L_bi,

 '\n\nNumber of baffles:', N_b, '\n\nNumber of tubes:', N_t, '\n\nNumber of tube passes:', N_tp,

 '\n\nInstalled area (m^2):', A_a, '\n\nRequired area (m^2):', A_o, '\n\nShell side Re:', Re_s,

 '\n\nh_s (W/m^2.K):', h_s, '\n\nh_t (W/m^2.K):', h_t, '\n\nU (W/m^2.K)', U, '\n\nS_m/S_w:', S_mw)

 # STEP 6: Define new tear values

 if l < lcount:

 m[l+1] = (3 - r_pprime[l]) / (1 - r_h[l])

 K_s[l+1] = (K_s4[l]*K_s5[l]) / (K_s1[l]**m[l+1])

 n[l+1] = (3 - r_prime[l]) / 0.8

 K_t[l+1] = ((K_t5*K_t4[l]) / (2*g_c))*((1 / K_t1)**n[l+1])

 print('\ncheck proper array assignment:\nK_s:\n', K_s, '\nm:\n', m, '\nK_t:\n', K_t, '\nn:\n', n)

 return N_t, D_s, L_bc, N_b, L_bi, L_bo, h_s, h_t, A_o, U

51

LIST OF REFERENCES

[1] "Small Nuclear Power Reactors", World Nuclear Association [Online].

Available:https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-

powerreactors/small-nuclear-power-reactors.aspx. [Accessed: Nov- 2019].

[2] Advances in Small Modular Reactor Technology Developments, International Atomic Energy

Agency, Austria, ed. 2018.

[3] Dolan, T. (2017). Molten salt reactors and thorium energy. 1st ed. Duxford, United Kingdom:

Woodhead Publishing is an imprint of Elsevier.

[4] A Technology Roadmap for Generation IV Nuclear Energy Systems. p. 34. U.S. DOE Nuclear

Energy Research Advisory Committee and the Generation IV International Forum. 2002.

[5] Angelino G., Carbon Dioxide Condensation Cycles for Power Production., 1968: ASME Paper

No. 68-GT-23.

[6] Kacludis A., Lyons S., Nadav D., Zdankiewicz E., Waste Heat to Power (WH2P) Applications

Using a Supercritical CO2 - Based Power Cycle., 2012: Echogen Power Systems LLC:

Presented at Power-Gen International 2012.

[7] Zhiwen M, Turchi C.S., Advanced Supercritical Carbon Dioxide Power Cycle Configurations

for Use in Concentrating Solar Power Systems., 2011: NREL/CP5500-50787.

[8] Dostal V., Driscoll M.J., Hejzlar P., Supercritical Carbon Dioxide Cycle for Next Generation

Nuclear Reactors, 2004: MIT-ANP-TR-100.

[9] Vesely L., Dostal V., Kapat J., Vasu S., Martin S., Techno-Economic Evaluation of the Effect

of Impurities on the Performance of Supercritical CO2 Cycles., Proceedings of the ASME

Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 9: Oil and

Gas Applications; Supercritical CO2 Power Cycles; Wind Energy. Phoenix, Arizona, USA.

June 17–21, 2019. V009T38A014. ASME. https://doi.org/10.1115/GT2019- 90704

[10] Ahn Y., Bae S.J., Kim M., Cho S.K., Maik S., Lee J.I., Cha J.E., “Review of Supercritical

CO2 Power cycle Technology and Current Status of Research and Development,” Nuclear

Engineering and Technology, vol. 47, no. October, pp. 647-661, 2015.

[11] "Characteristics of Diffusion Bonded Heat Exchangers Heatric", Heatric [Online]. Available:

https://www.heatric.com/heatexchangers/features/characteristics/. [Accessed: Nov2019].

[12] Taborek, J., 1983, Shell-and-tube exchangers: single-phase flow, in Schlunder, E.U. (ed).

Heat Exchangers Design Handbook, Vol. 3, Section 3.3 (Hemisphere Publishing Corp.,

Washington, DC, USA).

52

[13] Serna, M., and Jimenez, A., “A Compact Formulation of the Bell-Delaware Method for Heat

Exchanger Design and Optimization,” Chemical Engineering Research and Design, 83(A5),

pp. 539-550.

[14] Kakac, S., 2002, “Heat Exchangers Selection, Rating, and Thermal Design,” CRC Press LLC,

Coral Gables, pp. 283-341.

[15] TEMA. Standards of the Tubular Heat Exchanger Manufacturers

Association, 10th ed.; Tubular Exchanger Manufacturers Association: New York, 2019.

[16] American Society of Mechanical Engineers. (1900). ASME boiler and pressure vessel code.

New York: American Society of Mechanical Engineers, Boiler and Pressure Vessel

Committee.

[17] Vengateson, U., 2010, “Design of Multiple Shell and Tube Heat Exchangers in Series: E Shell

and F Shell,” Chemical Engineering Research and Design, 88, pp. 725-736.

[18] A. Sowder, “Program on technology innovation: Technology assessment of a molten salt

reactor design. The Liquid-Fluoride Thorium Reactor (LFTR),” 2015.

[19] Williams, D., Toth, L., and Clarno, K., 2006, ASSESSMENT OF CANDIDATE MOLTEN

SALT COOLANTS FOR THE ADVANCED HIGHTEMPERATURE REACTOR (AHTR),

Oak Ridge National Laboratory, Nuclear Science and Technology Division, Oak Ridge,

Tennessee.

[20] Sohal, M., Ebner, M., Sabharwall, P., and Sharpe, P., 2013, Engineering Database of Liquid

Salt Thermophysical and Thermochemical Properties, Idaho National Laboratory, Idaho Falls,

Idaho.

[21] Kondo, M., Takuya, N., Muroga, T., Sagara, A., Noda, N., Xu, Q., Ninomiya, D., Masaru, N.,

Suzuki, A., and Terai, T., 2017, "High Performance Corrosion Resistance of Nickel-Based

Alloys in Molten Salt Flibe", Fusion Science and Technology, 56(1).

[22] Lemmon E.W., Huber M.L., McLinden M.O., NIST Standard Reference Database 23:

Reference Fluid Thermodynamic and Transport Properties-REFPROP, 2013: Version 9.1.

[23] Bell I.H., Wronski J., Quoilin S., Lemort V., Pure and Pseudo-pure Fluid Thermophysical

Property Evaluation and the Open-Source Thermophysical Property Library CoolProp.,

Industrial & Engineering Chemistry Research, vol. 53, 2014, doi 10.1021/ie4033999.

[24] Python Core Team (2015). Python: A dynamic, open source programming language. Python

Software Foundation. URL https://www.python.org/.

[25] Serrano-López, R., Fradera, J., and Cuesta-López, S., 2013, "Molten salts database for energy

applications", Chemical Engineering and Processing: Process Intensification, 73, pp. 87-102.

53

[26] "Hastelloy N Alloy", Haynesintl.com [Online]. Available: http://haynesintl.com/docs/default-

source/pdfs/new-alloy-brochures/corrosion-resistantalloys/brochures/n-

brochure.pdf?sfvrsn=18. [Accessed: Nov- 2019].

[27] Franssen, J.M., and Real, P.V., “Thermal Data for Carbon Steel and Stainless Steel Sections,”

Fire Design of Steel Structures, 2012 ECCS

[28] Koger J.W. 1973, Evaluation of Hastelloy N Alloys After Nine Years Exposure to Both a

Molten Fluoride Salt and Air at Temperatures from 700 to 560 Degrees C. Oak Ridge National

Laboratory, Nuclear Science and Technology Division, Oak Ridge, Tennessee.

	Thermal-hydraulic Optimization of the Heat Exchange Between a Molten Salt Small Modular Reactor and a Super-critical Carbon Dioxide Power Cycle
	Recommended Citation

	tmp.1588280310.pdf.NaVGG

