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ABSTRACT

The rise of the social media and video streaming industry provided us a plethora of videos and their

corresponding descriptive information in the form of concepts (words) and textual video captions.

Due to the mass amount of available videos and the textual data, today is the best time ever to

study the Computer Vision and Machine Learning problems related to videos and text. In this

dissertation, we tackle multiple problems associated with the joint understanding of videos and

text. We first address the task of multi-concept video retrieval, where the input is a set of words

as concepts, and the output is a ranked list of full-length videos. This approach deals with multi-

concept input and prolonged length of videos by incorporating multi-latent variables to tie the

information within each shot (short clip of a full-video) and across shots. Secondly, we address

the problem of video question answering, in which, the task is to answer a question, in the form

of Fill-In-the-Blank (FIB), given a video. Answering a question is a task of retrieving a word

from a dictionary (all possible words suitable for an answer) based on the input question and

video. Following the FIB problem, we introduce a new problem, called Visual Text Correction

(VTC), i.e., detecting and replacing an inaccurate word in the textual description of a video. We

propose a deep network that can simultaneously detect an inaccuracy in a sentence while benefiting

1D-CNNs/LSTMs to encode short/long term dependencies, and fix it by replacing the inaccurate

word(s). Finally, as the last part of the dissertation, we propose to tackle the problem of video

generation using user input natural language sentences. Our proposed video generation method

constructs two distributions out of the input text, corresponding to the first and last frames latent

representations. We generate high-fidelity videos by interpolating latent representations and a

sequence of CNN based up-pooling blocks.
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EXTENDED ABSTRACT

The joint understanding of videos and text is the backbone of many real-world use-cases that is

needed to exploit the knowledge captured in today’s massive video data. However, understanding

of text and videos could be very challenging since they have fundamentally different characteristics

while understanding each of them poses challenges. Video is a rich media that can contain loads of

useful or irrelevant information. For example, a single video might include humans, objects, and

backgrounds that can appear or disappear at any time of the video. However, given a particular task

like retrieval by multiple concept queries or answering a question, we need to capture useful part of

information and discard the rest. Similarly, a video caption can contain general knowledge about

a video, like describing the scene or specific details about a particular action happening in one

segment of the video. Furthermore, some information might exist in the text but has no sensible

form in the visual form. For example, in the video caption “He is skeptical about the conversation”,

the word “skeptical” correspond to a specific visual appearance. In this dissertation, we propose

solutions that are essential to design of many practical solutions for real-world problems. In each

chapter, we introduce and discuss a problem related to joint understanding of video and text, and

propose a method to overcome the challenges of the proposed problem.

In Chapter 3, we address the problem of video retrieval. Effective and efficient video retrieval has

become a pressing need in the “big video” era. Standard video retrieval methods typically employ

single concept as queries. The objective of this work is to provide a principled model for com-

puting the ranking scores of a video in response to one or multiple concepts, where the concepts

could be directly supplied by users or inferred by the system from the user queries. Indeed, how

to deal with multi-concept queries has become a central component in modern video retrieval sys-

tems that accept text queries. However, it has been long overlooked and simply implemented by

weighted averaging the corresponding concept detectors’ scores. Our approach, employing a latent
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ranking SVM, integrates the advantages of various recent works in text and image retrieval, such

as choosing ranking over structured prediction and modeling inter-dependencies between querying

concepts and so on. Videos consist of shots and we use latent variables to account for the mutually

complementary cues within and across shots. In fact, our model captures the positive and negative

correlation among the shots and the whole system trains with a ranking-svm objective. We also

introduce a simple and effective technique to make our model robust to outliers since the concept

labels of shots in the training are scarce and noisy.

While the video retrieval is about finding videos related to a query (set of conceptual words), it does

not fully exploit knowledge contained in both video and text. In Chapter 4, we get more focused

in extracting detailed knowledge from video and text by studying a novel form of Visual Question

Answering (VQA). Given a video and a description sentence with one missing word, “source

sentence", Video-Fill-In-the-Blank (VFIB) problem is to find the missing word automatically. The

contextual information of the sentence, as well as visual cues from the video, are important to

infer the missing word accurately. Since the source sentence is broken into two fragments: the

sentence’s left fragment (before the blank) and the sentence’s right fragment (after the blank),

traditional Recurrent Neural Networks cannot encode this structure accurately because of many

possible variations of the missing word in terms of the location and type of the word in the source

sentence. For example, a missing word can be the first word or be in the middle of the sentence

and it can be a verb or an adjective. In this chapter, we propose a framework to tackle the textual

encoding: Two separate LSTMs (the LR and RL LSTMs) are employed to encode the left and

right sentence fragments and a novel structure is introduced to combine each fragment with an

external memory corresponding to the opposite fragments. For the visual encoding, end-to-end

spatial and temporal attention models are employed to select discriminative visual representations

to find the missing word. In the experiments, we demonstrate the superior performance of the

proposed method on challenging VFIB problem. Furthermore, we introduce an extended and more
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generalized version of VFIB, which is not limited to a single blank. Our method won the second

place in Large Scale Movie Description Challenge- Fill In the Blank (LSMDC-FIB).

Our proposed approach above for the Video Fill In the Blanks (VFIB) has a lot of potentials to

solve related problems and designing applications related to both videos and captions. In Chap-

ter 5, we introduce a new problem called Visual Text Correction (VTC), i.e., finding and replacing

an inaccurate word in the textual description of a video. We propose a deep network that can simul-

taneously detect an inaccuracy in a sentence, and fix it by replacing the inaccurate word(s). Our

method leverages the semantic interdependence of videos and words, as well as the short-term and

long-term relations of the words in a sentence. Our proposed formulation can solve the VTC prob-

lem employing an End-to-End network in two steps: (1)Inaccuracy detection, and (2)correct word

prediction. In detection step, each word of a sentence is reconstructed such that the reconstruction

for the inaccurate word is maximized. We exploit both Short Term and Long Term Dependencies

employing respectively Convolutional N-Grams and LSTMs to reconstruct the word vectors. For

the correction step, the basic idea is to simply substitute the word with the maximum reconstruction

error for a better one. The second step is essentially a classification problem, where the classes are

the words in the dictionary as replacement options. Furthermore, to train and evaluate our model,

we propose an approach to automatically construct a large dataset for the VTC problem. Our ex-

periments and performance analysis demonstrates that the proposed method provides very good

results and also highlights the general challenges in solving the VTC problem. To the best of our

knowledge, this work is the first of its kind for the Visual Text Correction task.

In all the Chapters 3 to 5, we process videos and sentences (or set of concept words), to solve a

variety of tasks. In Chapter 6, we propose to create the content of a video directly using a sen-

tence. In fact, we tackle the text to video generation problem, which is a conditional form of

generative models for videos. Video generation is one of the most challenging tasks in Machine

Learning and Computer Vision fields of study. Humans can listen/read natural language sentences,
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and can imagine or visualize what is being described; therefore, we believe that video generation

from natural language sentences has a secure impact on Artificial Intelligence. Text-conditioned

video generation is relatively a new field of study in Computer Vision, which is far from being

solved. The majority of recent works deal with synthetic datasets or real datasets with very limited

types of objects and scenes. To the best of our knowledge, this is the very first work on the text

(free-form sentences) to video generation on more realistic video datasets like Actor and Action

Dataset (A2D) or UCF101. We tackle the complicated problem of video generation by regress-

ing the first and last frames’ latent representations and employing a context-aware interpolation

method to build up the latent representations of in-between frames. In Chapter 6, We propose a

stacking “upPooling” block to sequentially generate RGB frames out of each latent representations

and progressively increase the resolution. Moreover, our proposed Discriminator encodes videos

based on single and multiple frames. We provide quantitative and qualitative results to support

our arguments and show the superiority of our method over well-known baselines like Recurrent

Neural Network (RNN) and Deconvolution (as known as Convolutional Transpose) based video

generation methods.
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CHAPTER 1: INTRODUCTION

Video data is explosively growing due to the ubiquitous video acquisition devices. Recent years

witness a surge of huge video volumes from surveillance, health care, and personal mobile phones

to name a few. From the perspective of the IP traffic, Cisco’s white paper on Visual Networking

Index reveals several astonishing numbers about the Internet videos [2, 3, 4]:

• The sum of all forms of videos will be 82 percent of global traffic by 2021.

• It would take an individual more than 5 million years to watch the amount of video that will

cross global IP networks each month in 2020.

• Mobile video traffic exceeded 50 percent of total mobile data traffic in 2012. Note that the

global mobile data traffic reached 2.5 exabytes (2.5 × 1018 bytes) per month at the end of

2014.

Meanwhile, thanks to social-media and video streaming industry like Disney or Netflix, videos

and corresponding meta-data (such as captions or conceptual tags) are being produced and stored

every moment, continuously. This amount of video + text “big data” makes today the best time

ever for Computer Vision and Machine Learning (ML) to introduce and solve tasks related to a

common understanding of videos and text. In fact, in practice, Natural Language has been the

primary tool for people to communicate with any video-based service. YouTube search query,

textual descriptions as meta-data, textual comments for expressing feelings, and IMDB blogs for

summarization convinces us that natural language is the best way for us to deal with video content.

In this dissertation, we address and discuss multiple problems related to utilizing video datasets,

and textual captions of videos. We discuss motivations, challenges, and our proposed solution to

tackle each problem.
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1.1 Learning a Multi-Concept Video Retrieval Model with Multiple Latent Variables

Indeed, there have been way more videos being generated than what people can watch. Some

people have started making fun of this fact; the PetitTube (www.petittube.com) randomly plays

YouTube (www.youtube.com) videos with zero views to its visitors, such that a visitor would be-

come the first one to watch the randomly displayed video. However, it is not funny at all to see the

huge volumes of unwatched videos, but rather alarming, for example in the public security domain,

and rather challenging for video providers to deliver the right videos upon consumers’ requests.

By all means, effective and efficient video retrieval has become a pressing need in the era of “big

video”, whereas it has been an active research area for decades. Following the earlier research

on content based video retrieval [5, 6], the most recent efforts have been mainly spent on (multi-)

concept based video retrieval [7], an arguably more promising paradigm to bridge the semantic

gap between the visual appearance in videos and the high-level interpretations humans perceive

from the videos. Multi-Concept based video retrieval employs a learning algorithm which learns

to rank videos in response to the queries consisting of more than one concept. It means that, in

both training and testing stages, it handles multiple concepts per query. However, the correspond-

ing learning process may become much harder than content-based or single concept-based video

retrieval since the number of positive examples for the queries degenerates, the number of pa-

rameters of the model grows, and uncertainties increase since different concepts can take place in

various parts of a video. These challenges lead us to propose a solution to train a structured model

that can be trained and tested with multiple concepts and can deal with the latent inter/intra-shot

correlations of the concepts of videos.

A concept corresponds to one or more words or a short description that is understandable by hu-

mans. To be useful in automatic video retrieval systems, the concepts (e.g., furniture, beach, etc.)

have also to be automatically detectable, usually by some statistical machine learning algorithms,
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employing the low-level visual cues (color, texture, etc.) in the videos. Some studies have shown

that a rich family of concepts coupled with even poor detection results (10% mean average preci-

sion) is able to provide high accuracy results on news video retrieval—comparable to text retrieval

on the Web [8]. Both the richness of the concept set and the performance of the concept detectors

are essential. Correspondingly, a plethora of works has been devoted to learning concept detec-

tors [9, 10, 11, 12, 13, 14].

Common users have been used to text-based queries for retrieving the target instances in their

minds. Equipped with a set of concept detectors, a concept-based video retrieval system is able to

accept text descriptions as the queries even when the videos have no textual metadata associated,

thus offering users the same interface for the video retrieval as for document or website retrieval

(e.g., [15]). As shown in Figure 1.1, users can directly select concepts from a checklist to compose

the queries. Alternatively, the system can also let the user’s query be a open-vocabulary text and

then translate the queries to a subset of concepts. The latter itself is a very interesting problem

to which a full treatment is beyond the scope of this chapter. Readers who are interested in this

problem are referred to [16, 17, 18, 15, 19, 20, 21]. In either case, the central operation afterward

is to use the resultant subset of concepts to retrieve related videos. In this chapter, we focus

on retrieving whole videos as opposed to segments or shots of videos; however, the developed

approach can be conveniently applied to video segments retrieval as well.

Despite being the key component in (multi-)concept based video retrieval, how to effectively re-

trieve videos that are related to a subset of concepts is left far from being solved. There is a lack

of a principled framework or unified statistical machine learning model for this purpose. Instead,

most existing works take the easy alternative by ranking videos according to the weighted average

of the concept detection confidences [22, 23], where the weights are either uniform or in some

systems derived from the similarities between an open-vocabulary user query and the selected

concepts. This necessarily fails to take account of the reliabilities of the concept detectors, the
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relationships between the selected concepts, and the potential contributions from the unselected

concepts. Our empirical study actually shows that the unselected concepts can significantly boost

the video retrieval performance when they are modeled appropriately.

The objective of this work is to provide a principled model for multi-concept based video retrieval,

where the concepts could be directly provided by the users or automatically selected by the system

based on user queries. Figure 1.1 highlights the main focus of this chapter in the central panel.

×

h

Concept detectors

V
ideos

V
ideos

V
ideos

Ranked Videos

×

×

Figure 1.1: How to calculate the ranking scores of videos in response to one or more concepts is the central
component in many video retrieval systems. It takes as input the multi-concept queries and then returns a
ranked list of videos. The multiple concepts in a query could be directly supplied by the users or inferred
by the systems from the users’ text queries. We apply a set of pre-trained concept detectors on all the shots
of the videos. Our model learns to select the most important shots to score a video using multiple latent
variables.

Our approach, which can be considered as a latent ranking SVM [24], integrates different advan-

tages of the recent works on text retrieval and multi-attribute based image retrieval. Particularly,

we model the video retrieval as a ranking problem following [25], as opposed to the structured pre-

diction problem used in [26, 27], in order to harvest better efficiency and larger modeling capacity

to accommodate some latent variables. The latent variables help choose the shots which are the

most responsive to the concepts in a user query, without the need of tediously labeling the shots

in the training set. We use them to define the scoring functions both within and across the video
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shots, closely tracking the unique temporal characteristic of videos. Besides, we incorporate the

empirically successful intuitions from multi-attribute based image retrieval [26, 27] that the inter-

dependencies between both selected and unselected concepts/attributes should be jointly modeled.

Finally, we introduce a novel 0-1 loss based early stopping criterion for learning/optimizing our

model parameters. This is motivated by the fact that the 0-1 loss is more robust to the outliers than

the hinge loss, which is used to formalize the optimization problem.

The proposed model, along with a family of provided scoring functions, accounts for some in-

evitable caveats of the concept detection results: reliabilities of individual concept detectors, inter-

dependencies between concepts, and the correlations between selected and unselected concepts in

response to a user query. It expressively improves upon the conventional weighted average of the

selected concept detection scores for the multi-concept based video retrieval. To this end, we stress

again that, as the central component in modern video retrieval systems, how to effectively trans-

form the selected concepts to the ranking scores of videos has been long overlooked and is under

exploited. More advances and progress on this problem are in need since they will significantly

increase the overall performance of the video retrieval systems.

1.2 Video Fill In the Blank using LR/RL LSTMs with Spatial-Temporal Attentions

This Section aims to solve the Video Fill-In-the-Blank (VFIB) problem: given a video and its

sentence description one missing word, the goal is to find the missing word. The missing word can

be at anywhere in the sentence, and it can correspond to any word class (e.g. noun, verb, adjective,

etc.) Solving VFIB problem requires a strong encoding of the textural and visual cues. Figure 1.2

shows an example for the problem. VFIB problem has a broad variety of real-world applications

such as corrupted data recovery, visual guided report generation, etc.
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Figure 1.2: An example for the Video-Fill-in-the-Blank Problem [1].

Video Fill-In-the-Blank (VFIB) is a relatively new problem, and it is related to Video Question

Answer (VQA) problem; however, it has significant differences and is a more challenging prob-

lem. First, the VQA problems usually have a bias to some specific forms of questions such as

location, color, counting, etc. Therefore, the answers for each of these questions are limited to a

small dictionary. For example in DAQUAR question answering dataset [28], in many cases, the

word "table" is the answer to "What is" question, and "White" to "What color" questions [29].

Furthermore, for VQA problems, there is always a complete sentence to be the “question”. In this

scenario, it is easier to encode the “question” in the model (for example, using standard models

such as Recurrent Neural Networks) and then use it to predict the answer. Therefore it is easy

and straightforward to use off-the-shelf techniques. However, there is no “question" for the VFIB

problem, so it is tricky to encode the target sentence with the standard encoding techniques. Last

but not least, for VQA problem, it is very expensive to collect datasets which limit its practical ap-

plications. It is time-consuming since the human annotators have to generate question and answer

one by one by watching the videos. There are some efforts to make the question-answer generation
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automatic [29], but these approaches tend to generate a lot of mistakes, and they tend to work well

only on object related questions.

Due to these challenges, the VFIB problem cannot be well-solved by traditional Recurrent Neural

Network (e.g. LSTM). Therefore, we propose a new framework which takes advantage of the

target sentence structure and integrates the spatiotemporal attention models to fully exploit the

visual information. There are three main contributions for the proposed method: First, it employs

a novel approach to encode the VFIB target sentence using two separate LSTMs (for the left

and right sentence fragments). This method naturally encodes the incomplete sentence structure

accurately, and it is different from the Bidirectional LSTM [30] since the latter shares the input

in reversed order, which can be confused by the sentence structure. Second, we propose a novel

framework for the spatiotemporal attention models, which is trained end-to-end. Third, different

visual features are employed by the spatial and temporal attention models, which exploit the visual

cues from different domains.

1.3 Visual Text Correction

Text Correction (TC) has been a major application of Natural Language Processing (NLP). Text

Correction can be in form of a single word auto-correction system, which notifies the user of

misspelled words and suggests the most similar word, or an intelligent system that recommends the

next word of an inchoate sentence. In this dissertation, we formulate a new type of Text Correction

problem named Visual Text Correction (VTC). In VTC, given a video and an inaccurate textual

description in terms of a sentence about the video, the task is to fix the inaccuracy of the sentence.

The inaccuracy can be in form of a phrase or a single word, and it may cause grammatical errors,

or an inconsistency in context of the given video. For example, the word “car” in the sentence:
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“He is swimming in a car” is causing a textual inconsistency and the word “hand” is causing an

inaccuracy in the context of the video (See Figure 1.3).

Someone shakes his hand.Inaccurate Sentence:

Inaccuracy Detection: Someone shakes his hand.

Someone shakes his head.

Figure 1.3: An example of an inaccurate sentence for a given video. The VTC task is to find the inaccuracy
and replace it with a correct word.

Why Visual Text Correction? We believe that the VTC is very challenging and is a demanding

problem to solve. During the last few years, the integration of computer vision and natural language

processing (NLP) has received a lot of attention, and excellent progress has been made. Problems

like Video Caption Generation, Visual Question Answering, etc., are prominent examples of this

progress. With this chapter, we start a new line of research which has many potential applications of

VTC in real-world systems such as caption auto correction for video sharing applications and social

networks, false tolerant text-based video retrieval systems, automatic police report validation, etc.

Why is VTC challenging? Given a large number of words in a dictionary, many different com-

binations of words can take place in a sentence. For example, there are
(|V |

3

)
possible triplet

combinations of words from a dictionary of size |V |, which makes pre-selection of all possible

correct combinations impractical. Also, in many cases, even a meaningful combination of words

may result in an incorrect or inconsistent sentence. Furthermore, sentences can vary in length, and

the inaccuracy can be in the beginning, middle or at the end of a sentence. Last but not least, a

VTC approach must find the inaccuracy and also choose the best replacement to fix it. The video

can provide useful information in addition to text since some words of the sentence, like verbs and

nouns, need to be consistent with the video semantics like objects and actions present in the video.
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To formalize the problem, let sentence S = [w1, w2, ..., wN ] consisting of N words be an accurate

description of the video V , where wi ∈ {0, 1}|V |, and |V | is the number of words in our dictionary.

For an inaccurate sentence S̃ = [w̃1, w̃2, ..., w̃N ], the VTC task is to find the inaccurate word w̃t∗

where 1 ≤ t∗ ≤ N and also to estimate the replacement word wt. There can be several inaccurate

words in a sentence; However, we train our system using sentences with just one inaccurate word.

Nonetheless, we show that our trained network can be applied to sentences with multiple inaccurate

words.

Our proposed formulation can solve the VTC problem employing an End-to-End network in two

steps: (1)Inaccuracy detection, and (2)correct word prediction. Figure 1.3 shows the proposed

framework of our approach. During the first step, we detect the inaccuracy by reconstruction, that

is, we embed each word into a continuous vector, and reconstruct a word vector for each of the

words in the sentence based on its neighboring words. A large distance between the reconstructed

vector and the actual word vector implies an inaccurate word. For the second step, the basic idea is

to simply substitute the word with the maximum reconstruction error for a better one. The second

step is essentially a classification problem where the classes are the words in the dictionary as

replacement options.

Contributions of this chapter are three-fold. First, we introduce the novel VTC problem. Second,

we propose a principled approach to solve the VTC problem by decomposing the problem into

inaccurate word detection and correct word prediction steps. We propose a novel sentence encoder

and a gating method to fuse the visual and textual inputs. Third, we offer an efficient way to build

a large dataset to train our deep network and conduct experiments. We also show that our method

is applicable to sentences with multiple inaccuracies.
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1.4 Video Generation in the Wild from Text Employing Latent Path Construction for Temporal

Modeling

Input Sentence:
A2D: “White cat eating something from hand.”

UCF101: “Woman riding next to beach”

Robotic: “Pick-up the blue ring”

Start And End 
Distributions

Stacked 
“UpPooling”

Sampling
Path Generation
In Latent Space

Figure 1.4: In Chapter 6,we tackle the problem of video generation from a sentence. In our proposed
method, given an input sentence, we construct two distributions for the latent representations of the first and
last frames. We build a path in the latent space between distributions of start and end frame. We generate
high fidelity video frames by sampling from the latent constructed path through stacked “UpPooling” layers.

Videos and corresponding descriptions and captions are being produced and stored every moment,

continuously. This amount of joint video and text “big data” makes today the best time ever

for Computer Vision and Machine Learning (ML) to formulate and solve tasks related to a joint

understanding of videos and text. In practice, Natural Language has been the primary tool for

users to communicate with any video-based service. YouTube search query, textual descriptions as

meta-data, textual comments for expressing feelings, and IMDB blogs for summarization convince

us that natural language is the best way for us to deal with video content. We believe that similar

to mentioned use cases, natural language is the best medium to create video content as well. It is

easy for humans to express in detail what they want to see in the video, i.e., describing the colors,

actions, objects. Plus, language is universal! Any human, with any background and skills, can

express what he/she needs to create as a video! Considering all, we believe that generating videos

from textual descriptions is a valuable task to study and solve, from both computer vision and
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real-world usability perspectives.

Realistically, a text to video content creator method must support free-form language and cover a

broad set of activities, objects, etc. However, to the best of our knowledge, current works on text to

video generation are mainly focused on synthetic datasets, or real datasets with a limited content

domain, like only cooking videos. In Chapter 6, we tackle the task of Video Generation with

textual inputs for more realistic datasets i.e. videos in the wild; containing more natural videos

and sentences compared to prior works. Please refer to Figure 1.4 for high-level overview of our

approach.

Modeling video content is one of the ultimate goals of Computer Vision (CV). A video generation

model must be able to produce the spatial and temporal variations which have a natural coherence

and consistency of a real video. Meanwhile, having a textual input sentence, while constraints the

possible variations of a video, adds more complexity to the generative model, since the context of

the input text must be visible and understandable from the generated video. Temporal dynamics is

the key difference between videos and images, and makes the video generation a more challenging

problem. Traditionally, Recurrent Neural Networks (RNNs) and Deconvolutions are intuitive op-

tions to model the temporal dynamics of videos. Instead, in this work, we propose a novel method

to capture temporal dynamics by first regressing the first and last frames’ latent representations

from text description and employing a context-aware interpolation method to build up the latent

representations of in-between frames. We show that our proposed simple but yet efficient model

produces superior results compared to other known techniques like RNNs, or Deconvolution.
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1.5 Organization

In Chapter 2, we review existing literature on joint understanding vision and language, and also

video retrieval. In Chapter 3, we present our proposed multi-concept video retrieval model with

multiple latent variables. In Chapter 4, we explain in details our VQA model for FIB-style ques-

tions and the spatial and temporal attentions employed for video understanding. In Chapter 5, we

propose a new problem related to FIB, named Visual Text Correction (VTC), which has many real

world applications. We also propose a new formulation to solve the VTC problem. Finally, in

Chapter 6, we propose to generate video content out of textual input through a latent path con-

struction.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, we comprehensively study the literature related to this dissertation. In Section 2.1

we go through the general video retrieval models and we get more specific on retrieval models

which work with concepts. In Section 2.2, we briefly review the problems related to both Com-

puter Vision (CV), and Natural Language Processing (NLP). Furthermore, we have a brief review

on Deep Learning methods to process the text, and also more specifically methods for correct-

ing errors in natural language sentences in Section 2.3. Finally, in Section 2.4, we we review the

related works on Generating Videos from Text which includes some brief discussions about Gen-

erative Adversarial Networks (GANs), recent Video Generation works, and Video Generation with

a Textual Constraint.

2.1 Video Retrieval

One of the biggest known challenges in Artificial Intelligence is having systems with understand-

ings close to humans. It has been shown that visual concepts have a promising effect in this

understanding of videos or images specially for retrieval problems [31, 7, 32]. Concepts not only

capture the semantics of an environments, they also bridge the gap between low-level visual cues

and higher level representations which humans can understand.

User queries for a retrieval system can include one or more concepts [16, 17, 18, 15, 19, 20, 21,

33, 34, 35]. The order of the retrieved videos is supposed to be ranked by the relevance of each

video to the query concepts. In many works, this is achieved by manually defined similarities and

heuristic fusion techniques [36, 22, 23, 37] by mapping the user query concepts to the pool of

existing concept detector’s scores. Some works like [38] take into account the positive correlation
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of concepts occurring in videos. In contrast to existing works, we introduce a principled model to

automatically learn both positives and negative correlations of concepts at video and shot-level to

rank videos based on queries containing multiple concepts.

Broadly speaking, concept detection encompasses a wide spectrum of topics that are potentially

useful for the concept-based video retrieval. Some earlier works [39, 40, 41] approached this

task with tens to hundreds of concepts, while the most recent work has significantly upgraded

the scale [42, 14]. Concepts can take different forms. For instance, object bank [43], action

bank [44], image cell based detections [45], classes [46], data-driven concepts [11], sentiment

concepts [42], events [14], and so on. Whereas many concept detectors are trained from manually

labeled datasets [47, 48], some other works harvest detectors from the noisy Web data [49]. Our

approach benefits from these works. Almost all the existing concept detectors can be seamlessly

integrated into our multi-concept based video retrieval model by the two types of scoring functions

to be described in Section 3.1.

Work on image retrieval and ranking using multiple attributes [26, 27] is the most relevant to the

multi-concept based video retrieval. However, due to the vast number of video shots in a database,

the structural SVM [50, 51] model used in [26, 27] becomes intractable in our experiments espe-

cially when the annotations are incomplete like the datasets we use in this research. Instead, we

develop a simpler ranking model with a variety of scoring functions for our retrieval problem. Our

proposed model, which uses multiple latent variables to select shots, is flexible to implement and

merges many different scoring functions and also is robust to partially annotated datasets. Also, in

contrast to [52], which learns to assign a “genre” to each video, our system ranks the videos based

on multiple-concepts. Since, a genre can be too specific or too general for what a user is searching

for and doesn’t match the requirements.

There is a pile of works on learning to rank using the large-margin principle [53, 54, 55, 56, 25, 24].
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The conventional ranking SVMs [54, 55] only learn the ranking function for one query, however,

our model is learned for all the queries in the training set and we show it can be generalized to the

queries not seen in training as well without extra training. The model in [25] is the closest to this

work when coupled with our video-level scoring functions, and the latent ranking SVM [24] is the

closest to ours when coupled with the shot-level scoring functions. However, our scoring functions

are particularly tailored to model the characteristics of videos and despite of [24], we have zero

knowledge about the spatial or temporal structure of the concepts in the videos or queries. Besides,

we introduce a novel training approach to learn the model parameters by involving the 0-1 loss in

an early stopping criterion.

2.2 Visual Question Answering and Fill-In-the-Blank

Deep Convolutional Neural Networks (CNNs) [57, 58, 59, 60] have gain dramatic success in

computer vision, for detection (e.g. object detection [61]) and classification (e.g. action classifi-

cation [62]). And Recurrent Neural Networks (RNN) [30, 63, 64] has been demonstrated useful

in Natural Language Processing (NLP), for translation. Recently, new problems such as Visual

Captioning (VC) [65, 66, 67], Visual Question Answer (VQA) have drawn a lot of attention, as

these are very challenging problems and are extremely valuable for both computer vision and nat-

ural lauguage processing. Both Visual Captioning and Visual Question Answer are related to the

Video-Fill-in-the-Blank (VFIB) problem.

Visual Captioning (VC) needs deep understanding for both visual cues (i.e. image or video) and

textual cues. Many approaches for VC has been introduced recently. Some of these algorithms

focus on leveraging RNNs which takes visual input and produces words one by one. Another type

of approaches, has the benefits to focus on different spatial locations and leverage attention models

to produce better captions [67, 68]. Furthermore, in [68] a dense captioning method has been
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proposed, where for a given image, multiple captions are produced and each caption comes with

a bounding box. Visual Question Answering (VQA)[69, 29, 28, 29, 70, 71, 72] is also related to

our problem. It has a deep root in textual question answering [73, 74, 75]. The goal of textual

question answering is to answer a question based on a collection of sentences.

The major difference between VQA with the VC problem is the existence of a question other than

the image or video. This makes the problem harder since the question could be about details of the

image or video; however, for the VC problem, any fact about the image can be a correct caption.

Some methods use a combination of the question with the image/video through LSTMs [76] and

use the output to answer the question. Other methods combine the image features with the words

one by one, for instance, the method in [71] is an extension of [74], and both visual and textural

information is input into the dynamic memory networks and converted to a sequence through an

RNN with an iterative attention process. In [72], a binary question answering (yes/no) on abstract

(unreal) scenes is discussed. Another binary answering problem which verifies existence of a

relation between two concepts (for example: dogs eat ice cream) is proposed in [77] and it uses

CNNs to verify the questions. In [78], it shows another form of VQA, however the questions in

this case come as a video and a subtitle. In [75], it uses multiple choice questions, but it was

demonstrated that the visual information does not contribute much to the final results.

It is clear that the Video-Fill-in-the-Blank (VFIB) problem is very different from the Visual Cap-

tioning (VC) problem, since the inputs to these problems are totally different. And the major

difference between VFIB problem and the VQA problem is that, the VFIB problem does not have

a complete sentence as the “question"", and the sentence comes as fragments with a blank that

can be at anywhere in the sentence. Therefore, we propose a new method to encode the incom-

plete sentence, and we employ spatiotemporal attention models to capture the object-centric and

motion-centric visual features to fill in the blank.
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2.3 Visual Text Correction

Several NLP works benefit from N-Grams [79, 80], and convolutional N-Grams [81, 82] to en-

code the neighborhood dependencies of the words in a sentence. The recent work in [82] show

the superiority of N-Gram Convolutions over LSTM methods in sequence to sequence translation

task. Therefore, in this paper we leverage N-Grams convolutions and Gating Linear Unit [83] in

encoding the text and also incorporating visual features in our inaccuracy detection network. In

addition, studies on encoding semantics of words [84, 85], phrases and documents [86, 87] into

vectors have been reported. The main goal of all these studies is to represent the textual data in

a way that preserves the semantic relations. In this research, we use the representation and dis-

tance learning to reconstruct each word of a sentence and find the inaccurate word based on the

reconstruction error.

Fill-In-the-Blank (FIB) [88, 89, 90] is the most related to our work. FIB is a Question Answering

task (as explained in Section 2.2), where the question comes in the form of an incomplete sentence.

In the FIB task, the position of the blank word in each sentence is given and the aim is to find the

correct word to fill in the blank. Although FIB is somehow similar to the proposed VTC task, it is

not straightforward to correct an inaccurate sentence with a simple FIB approach. In FIB problem

the position of the blank is given, however in VTC it is necessary to find the inaccurate word in the

sentence first and then substitute it with the correct word.

Traditional TC tasks like grammatical and spelling correction have a rich literature in NLP. For

instance, the authors in [91] train a Bayesian network to find the correct misspelled word in

a sentence. Other line of works like [92, 93], try to rephrase a sentence to fix a grammatical

abnormality. In contrast to works in [91, 94, 92, 92, 93], there is no misspelled word in our

problem, and we solve the VTC problem even for cases when the grammatical structure of the

sentence is correct. Also, reordering the words of a sentence [93] cannot be the solution to our
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problem, since we need to detect and replace a single word while preserving the structure of the

sentence. Moreover, this is the first work to employ the videos in the Textual Correction task.

2.4 Video Generation Using Text

Generative Adversarial Networks (GANs) Currently, Generative Adverserial Networks (GANs)

are some of the most popular frameworks in Deep Learning. There exist numerous variations of

GANs, including Wasserstein GAN [95], Cycle GAN [96], ProgressiveGAN [97], Hinge-loss [98]

GAN, and etc.; however, the backbone of any GAN framework deals with a competition between

a generative and discriminative neural networks, named G and D [99]. GANs are powerful tools

to reconstruct the true distribution of a set of data points, even if it is impossible to estimate the

distribution parameters analytically. In this work, we employ a hinge-loss GAN, to generate videos

out of natural sentences inputs.

Video Generation: Modeling the temporal coherency and consistency of natural video frames

makes the video synthesis problem as one of the most challenging generative problems. Some

forms of the video synthesis task has been studied in recent years. Authors in [100] solve the

task of video synthesis as a conditional generation problem where the condition is the human pose

skeleton; however, it strongly depends on the human pose estimator and needs training data for

each of human subjects, and scenes. Similarly, authors in [101] animate any arbitrary object given

a driving video sample. This method detects a few key-points in each frame, and estimates a dense

warping map by generalizing the key-points motion to all similar points.

Video synthesis can be combined with other computer vision tasks, like object [102] or semantic

segmentation [103], Robot manipulation [104], and etc. Authors in [102] utilize video synthesis

as an unsupervised technique to learn rich features for the task of Video Object Segmentation
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(VOS) with limited supervised data. They train a video generator by decomposing any video

into a foreground object and a background scene. Similarly, authors in [104] learn unsupervised

features for robotic object manipulation tasks. Also, the work proposed in [103] generates videos

conditioned on the first semantically segmented frame. Similarly, authors in [105] can generate

videos out of a sequence of semantically segmented input frame.

Video generation can be also in form of video prediction [104, 106, 107, 108], inpainting [109],

etc. Video prediction is to estimate the future frames of a video given the preceding ones. Video

prediction is the most established and popular kind of video generation. The video inpainting

task [109], similar to image inpainting [110], is to modify a specific spatial region of every single

frame in a video.

A simplified form of video generation problem is to generate a video given a class label. Authors

in [111] show that it is possible to generate high fidelity videos on a large number of classes.

Similarly, the proposed method in [112] decomposes a video into content and motion subspaces

and generates a video by sampling a point and a path in the two subspaces, respectively.

Generation with Textual Constraint: Textual sentences are the simplest form of natural human

language; and transforming them into other mediums like video [113, 114, 115], image [116, 117],

or speech [118, 119] is one of the most interesting problems in Artificial Intelligence. Authors

in [116] propose a progressive [97] text to image generation method which leverages text to image

attention at multiple resolutions. Authors in [115], crawl YouTube by some selected search queries,

and clean results to obtain a dataset for training the text to video neural network that produces a gist

image from a sentence, and animate the gist image; however, sentences in [115] are mostly in the

form of “Action” + “Place”, which is a simple-form compared to the sentences of our target dataset,

A2D [120]. In this work, we use videos in the wild datasets like A2D [121, 120] and UCF101 [62]

(We provide the sentence annotations for nine classes of UCF101 in this paper). Datasets of our
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interest are not curated for the task of text to video generation and have complicated sentence

structures. Authors in [114] solve the task of video generation using text on simpler datasets like

MNIST moving digits [122] and KTH action [123], using a Negative-Log-Likelihood (NLL) loss.

3D Deconvolutions and LSTMs have been used in [113] and [124] to generate multiple frames to

form a video. In this work, we propose our novel method to generate any number of needed frames

to synthesis a video, and we show the performance of text to video generation on more challenging

datasets.

2.5 Summary

In this Section, we provide and discussed several works related to the materials of this disserta-

tion. We include discussions about various types of methods for Video Retrieval, Visual Question

Answering, Text Correction, and also Video Generation.
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CHAPTER 3: LEARNING A MULTI-CONCEPT VIDEO RETRIEVAL

MODEL WITH MULTIPLE LATENT VARIABLES

The work in this Chapter have been published in the following papers:

Mazaheri, Amir, Boqing Gong, and Mubarak Shah. "Learning a Multi-concept Video Retrieval

Model with Multiple Latent Variables." 2016 IEEE International Symposium on Multimedia (ISM).

IEEE, 2016.[125]

Mazaheri, Amir, Boqing Gong, and Mubarak Shah. "Learning a multi-concept video retrieval

model with multiple latent variables." ACM Transactions on Multimedia Computing, Communi-

cations, and Applications (TOMM) 14.2 (2018): 46. [126]

With respect to the recent exponential grow of video data, the goal of this Chapter is to advance the

video retrieval systems. In this chapter, we introduce our main approach to multi-concept based

video retrieval. First, we formalize a ranking model for retrieval problem and then we describe

different scoring functions and how to integrate them into our retrieval model.

3.1 Methodology

3.1.1 A ranking model for multi-concept based video retrieval

Ranking videos according to one or more concepts selected by the users/systems is the main com-

ponent in modern video retrieval systems (cf. Figure 3.1). Whereas most of existing recent works
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consider a weighted-average of the detection confidences of concepts to rank the videos, we aim

to enhance this component by a principled ranking model, which is flexible enough to incorporate

different kinds of concept detectors and also can be generalized to unseen queries and deal with

temporal dynamics of videos and the correlation of concepts.

×

h

Concept detectors

V
ideos

V
ideos

V
ideos

Ranked Videos

×

×

Figure 3.1: How to calculate the ranking scores of videos in response to one or more concepts is the central
component in many video retrieval systems. It takes as input the multi-concept queries and then returns a
ranked list of videos. The multiple concepts in a query could be directly supplied by the users or inferred
by the systems from the users’ text queries. We apply a set of pre-trained concept detectors on all the shots
of the videos. Our model learns to select the most important shots to score a video using multiple latent
variables.

We denote all the concepts defined for the system by Q which users compose queries with and all

the videos in the dataset by V . R(Q) ⊂ V is the set of all videos that are related to a multi-concept

query Q ⊂ Q. Therefore, an ideal retrieval system must use a learning algorithm to select the best

possible subset, named R(Q), among all other subsets of videos from V such that:

∀S ⊂ V , S 6= R(Q), R(Q) is a better output than S. (3.1)

Directly modeling this notion gives rise to a structured prediction model presented in [26] and

strengthened in [27]. We appreciate that this is perhaps the most natural choice for the retrieval
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model. There exists 2|V| distinct subsets from V . Unfortunately, this exponential number of subsets

makes the computations expensive. Moreover, the expressiveness of the model’s scoring function

is limited to special forms, to tailor the function to utilize the training and testing algorithms for

structured prediction [50, 127]. Our own experiments tell that it is computationally intractable to

use this retrieval model for the shot-level concept detections (cf. Section 3.1.3).

3.1.1.1 Retrieval as ranking

To avoid the high cost of aforementioned structure model, we relax the retrieval problem and solve

it as a ranking problem following [25]. We accommodate multiple latent variables in our model to

keep track of the shot-level detections. In particular, the rigorous criterion (eq. (3.1)) for retrieval

is replaced by a less constrained ranking criterion,

∀Vi ∈ R(Q),∀Vj /∈ R(Q), Vi ranks ahead of Vj, (3.2)

given Vi and Vj as a pair of relevant and irrelevant videos in the database V according to the query

Q.

Comparing eq. (3.1) with eq. (3.2), the former calls for a model to operate over 2|V| subsets of

videos while for the latter we only need a model to assign a ranking score for each video V ∈ V .

The exponential computation complexity makes the solution impractical even for datasets with a

few hundreds of videos. We use the following ranking model in this work F : Q× V 7→ R,

F(Q, V ) =
1

|Q|
∑
q∈Q

f(q, V |Θ), (3.3)

which breaks down into several ranking scoring functions f(q, V |Θ), q ∈ Q, each for an individual

concept, and Θ denotes the model parameters. We shall write f(q) , f(q, V |Θ) in the following
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for brevity, and leave the discussion of the scoring functions to Sections 3.1.2 and 3.1.3.

We rank the videos in the database given a multi-concept query Q using F . Top ranked videos

in the database will be returned to the user as the video search results. Compared to the retrieval

model based on structured prediction [26, 27], our model is not able to optimize the number of

videos to output. However, we argue that this does not reduce the usability of our ranking model,

considering that common users are used to ranking lists due to text retrieval.

3.1.1.2 Learning model parameters

To train the described model, with parameters Θ, we follow the ranking SVM [55, 54] strategy.

We write our objective function such that:

min
Θ

∑
Q

1

|N (Q)|
∑

(i,j)∈N (Q)

L (F(Q, Vi)−F(Q, Vj)) , (3.4)

givenN (Q) as the set of all the pairs of videos Vi and Vj in eq. (3.2) for the query Q and L(x) ≥ 0

is a loss function. i and j takes indices of positives and negative videos in the dataset regarding to

query Q. One can obtain the pairs from user annotated ranking lists of videos. In Section 3.2.1,

we provide more details about the selection of positive and negatives in our experiments. The loss

function will impose some amount of penalty when the ranking scores of a pair of videos violate

the ranking constraint of Eq. (3.2).

We exploit two types of loss functions in this work, the hinge loss Lhinge(x) = max(1 − x, 0) and

0-1 loss L0-1(x) which takes the value 1 when x > 0 and 0 otherwise. Note that we cannot actually

solve the optimization problem with the 0-1 loss by gradient descent; we instead use it to define a

novel early stopping criterion when we solve the problem with hinge loss. Namely, the program

stops when the change of the objective function value, computed from the 0-1 loss, is less than a

24



threshold (10−10 in our experiments).

As a result, we are able to take advantage of the fact that the 0-1 loss is more robust than the hinge

loss when there are outliers in the data. The hinge loss alone would be misled by the outliers

and results in solutions that are tuned away from the optimum, while the 0-1 loss helps avoid that

situation by suppressing the penalties incurred by the outliers. Improvements using this novel 0-1

loss stopping criterion, is more sensible in multi-concept video retrieval problem, since for most

of the concepts there are many outliers or videos with very different appearances from usual (e.g.

cartoons, partial occlusion, distance and point of view and etc.) and also noisy annotations for big

datasets. These outliers make the training stage much more harder. Indeed, the novel stopping

criterion by the 0-1 loss significantly improves the results of hinge loss in our experiments.

Note that the 0-1 loss based stopping criterion is another key point clearly differentiating our

approach from [25], which motivates our ranking model. In addition, we introduce a family of

new scoring functions for different concept detections, especially the one with latent variables in

Section 3.1.3.

3.1.2 Video-level concept detection

It is a common practice that the concept detection results φ(V ) over each video V ∈ V are com-

puted off-line and stored somewhere to speed up the responding to the users’ queries. We use φ as

the shorthand of φ(V ). Note that φ is a |Q|-dimensional vector whose entry φq corresponds to the

detection confidence of the concept q (in a video V ). We next describe how to use φ, the video-

level concept detection results, to design the scoring functions f(q), q ∈ Q ⊂ Q (cf. Section 3.1.1).

We start from the weighted average approach which prevails in the existing video retrieval works.
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3.1.2.1 Weighted average

Recall that the overall scoring function F(Q, V ) breaks down into several individual functions

f(q, V |Θ) , f(q), q ∈ Q, each of which accounts for one concept (eq. (3.3)). A common practice

to rank the videos given a multi-concept query Q is by the average of the corresponding concept

detection confidences:

fV
avg(q) = φq , 〈1q,φ〉 , (3.5)

where the weights are simply uniform and q ∈ Q. 1q ∈ {0, 1}|Q| denotes an one-hot vector which

is 1 at the q-th entry and 0’s else, or, when the query is an open-vocabulary text, the weights could

be the similarities inferred between the concepts in Q and the user query [17, 21]. We include the

uniform weights in our experiments without loss of generality.

The mentioned average method fails to model the correlations between the concepts in Q, and also

the correlations between Q and the remaining unselected concepts inQ. To make it more clear, we

have re-written the score function by the one-hot vectors on the rightmost of Eq. (3.5). Therefore,

the model parameters become Θ = (11,12, · · · ,1|Q|)T = I ∈ R|Q|×|Q|, i.e., actually an identity

matrix. The entry Θqp, which is supposed to encode the relationship of concepts q and p, is 0 in

the weighted average (Eq. (3.5)).

3.1.2.2 Encoding concept correlations

To this end, the natural extensions to the weighted average scoring function are the following,

fV
corr-1(q) = 〈θq,φ〉 , such that θqp = 0 if p /∈ Q, (3.6)
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and

fV
corr-2(q) = 〈θq,φ〉 , such that θq ∈ R|Q|, (3.7)

where fV
corr-1(q) considers the contributions from the other concepts p ∈ Q when it scores the

concept q for a video V . Indeed, the existence of “computer” could affect the confidence of “fur-

niture” when both are selected to the query Q ⊂ Q. The other function fV
corr-2(q) further considers

all the other concepts not in the query, when it scores for instance the concept q =“furniture” in a

video, capturing the case that the lack of “beach” may reinforce the confidence about “furniture”.

Note that the parameters Θ = (θ1, · · · ,θ|Q|)T become a full matrix now, offering more modeling

flexibilities.

3.1.3 Shot-level concept detection

Many concept detectors are designed to take frames or video shots as input [14, 44, 45]. We split

any given video V in the database into H shots. This can be done by applying a shot detector [128]

or uniformly select the shot boundaries inside a full sequence video. We compute and store the

concept detection results φh ∈ R|Q|, h = 1, · · · ,H for all the concepts Q over the shots of the

video. Shot-level detections provide more detailed information about the videos than video-level

concept detections considering the dynamics of the video and sudden changes of the scene. There-

fore, we propose our novel family of scoring functions which leverage the shot-level detection

scores.
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3.1.3.1 Scoring the best shot for the querying concepts

One potential benefit we can have from the shot-level concept detections is that, among all the

shots of a video V , we can select the most informative shot for the scoring function:

fS
latent(q) = max

h∈{1,2,··· ,H}

〈
θq,φh

〉
, (3.8)

where the model parameters θq ∈ R|Q|, which correspond to the concept q ∈ Q ⊂ Q, represent

the contributions to q from all the concepts within the shot, which will be selected by the latent

variable h ∈ {1, 2, · · · ,H}.

We argue that this formulation can better model the negative correlations between concepts, if

any, than the fV
corr-2(q) defined over the video level. Indeed, consider a set of negatively correlated

concepts (e.g., “beach”, “furniture”, etc.). They could all have very strong responses across a

video. For instance, a tourist may capture a video within a hotel room and then shift to the beach

outside. As a result, both “beach” and “furniture” will be detected with high confidences in the

video but they are exclusive over a single shot. As a result, the video-level scoring function may

be confused by this video but fS
latent(q) scores a single best shot and is thus robust to this scenario.

3.1.3.2 Scoring best shot for each querying concept

While fS
latent(q) well captures the negative concept correlations by possibly negative off-diagonal

entries, it may be inadequate to track the positive correlations between different concepts by fo-

cusing on only a shot; very few concepts could appear simultaneously in a single shot. We thus
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compensate it by a second term:

fVS
latent(q) = max

h∈{1,··· ,H}

〈
θq,φh

〉
+
∑
p∈Q

max
g∈{1··· ,H}

υqpφ
g
p, (3.9)

where maxg υ
q
pφ

g
p max-pools the confidences of each concept across all the shots of video V . Note

that we therefore provide two complementary types of modeling capabilities in fVS
latent(q). The first

term is robust to the concepts which are negatively correlated with q and the products in the second

term strengthen the detection score of concept q from some positively correlated concepts in the

video. The model parameters θq and υq are learned by solving eq. (3.4) with sub-gradient descent.

Details are given as follow.

3.1.4 Optimization

We use (Sub-)Gradient Descent(SGD) as a solver to learn our model parameters Θ. As discussed

in Section 3.1.1.2, the loss function L is a non-zero and positive value for each pair {(Vi, Vj)}, in

which the negative video Vj has higher ranking score than the positive Vi. As a result, the gradients

for those pairs are non-zero and zero for the others.

Denoting by

Sj =
∂L

∂F(Q, Vj)
× ∂F(Q, Vj)

∂Θ
, (3.10)

we thus have the overall gradients of eq. (3.4) by

∑
Q

1

|N (Q)|
∑

(i,j)∈N (Q)

(Si − Sj) . (3.11)
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Note that the model parameters Θ consist of two parts (θ,υ), corresponding to the two terms of

fVS
latent (cf. eq. (3.9)), respectively. We compute the gradients with respect to the first part θ using

the softmax derivation to approximate a smooth gradients, as suggested by [129]:

∂F(Q, Vj)

∂θ
=

∑
h∈{1,2,··· ,H}

e〈θq ,φh〉φh∑
j∈{1,2,··· ,H} e

〈θq ,φj〉 . (3.12)

We write out the gradients with respect to the second part, υ, over different dimensions of υ.

Recall that he second term of fVS
latent (cf. eq. (3.9)), maxg υ

q
pφ

g
p, max-pools over all the shots of a

video for each single concept. As a result, we have the following:

∂F
υqp

= φg∗p , p = 1, 2, · · · ,H, q = 1, · · · ,H, (3.13)

where g∗ is determined by g∗ ← maxg υ
q
pφ

g
p.

3.2 Results

This section presents our experiments to evaluate the proposed multi-concept video retrieval model

along with the various scoring functions. We firstly describe the experiment setup and then report

the retrieval results. We further give some detailed analyses and qualitative results.

3.2.1 Experiment setup

We use two separate datasets in our experiments respectively for video retrieval and training the

concept detectors. We further exploit four sets of multi-concept queries. Two sets consist of 50

queries each in the form of concept pairs, one for training and testing and the other just for testing.
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Two other sets contain 50 triplets and 30 single concept queries just for testing, respectively. We

train our model using only the first set of queries on the training set and then test it by all four sets

of queries on the test set.

Table 3.1: The multi-concept queries used in our experiments. The concept-pair queries shown in
this table are mentioned as seen queries and has been used for training the system.

Queries
(Chair, Computers), (Boat/Ship, Oceans), (Classroom, Computers), (Instrumental_Musician, Singing ), (Chair, Classroom)
(Boat/Ship, Running), (Chair, Nighttime), (Boat/Ship, Quadruped), (Bicycling, Forest), (Chair, Hand), (Chair, Flags)
(Boat/Ship, Forest), (Nighttime, Singing ), (Cheering, Singing ), (Forest, Lakes), (Chair, Telephones), (Running, Stadium)

50 (Chair, Forest), (Beach, Boat/Ship), (Oceans, Quadruped ), (Forest, Quadruped ), (Beach, Quadruped), (Running, Forest)
Concept (Bridges, Forest), (Boat/Ship, Bridges), (Instrumental_Musician, Nighttime), (Highway, Nighttime), (Beach, Oceans)

Pairs (Bus, Highway), (Bus, Chair), (Nighttime, Forest), (Highway, Forest), (Computers, Telephones), (Nighttime, Running)
(Bridges, Highway), (Cheering, Flags), (Cheering, Instrumental_Musician), (Cheering, Nighttime), (Forest, Oceans)
(Chair, Highway), (Chair, Quadruped ), (Boat/Ship, Lakes), (Running, Quadruped), (Nighttime, Flags), (Bridges, Chair)
(Boat/Ship, Nighttime), (Demonstration_Or_Protest, Flags), (Airplane, Boat/Ship), (Boat/Ship, Chair), (Chair, Running)
(Ocean, Quadruped, Boat/ship), (Chair, Classroom, Computers), (Beach, Boat/Ship, Quadruped), (Cheering, Boat/Ship, Flags)
(Chair, Computers, Telephones), (Cheering, Instrumental_Musician, Singing), (Instrumental_Musician, Nighttime, Singing)
(Forest, Boat/Ship, Oceans), (Lakes, Boat/Ship, Oceans), (Beach, Ocean, Boat/Ship), (Quadruped, Beach, Ocean)
(Forest, Lakes, Quadruped), (Boat/Ship, Bridges, Forest), (Chair, Nighttime, Forest), (Bridges, Forest, Lakes)

50 (Boat/Ship, Forest, Quadruped), (Boat/Ship, Forest, Lakes), (Running, Oceans, Boat/Ship), (Highway, Boat/Ship, Bridges)
Concept (Running, Beach, Oceans), (Quadruped, Running, Forest), (Cheering, Instrumental_Musician, Nighttime)
Triplets (Boat/Ship, Nighttime, Forest), (Chair, Ocean, Boat/Ship), (Running, Oceans, Quadruped), (Chair, Highway, Bridges)

(Beach, Forest, Oceans), (Bridges, Oceans, Boat/Ship), (Lakes, Bridges, Boat/Ship), (Running, Beach, Boat/Ship)
(Cheering, Singing, Flags), (Demonstration, Bus, Flags), (Lakes, Boat/Ship, Quadruped), (Bus, Chair, Computers)
(Boat/Ship, Flags, Oceans), (Forest, Bus, Boat/Ship), (Quadruped, Forest, Bicycling), (Oceans, Forest, Lakes)
(Bridges, Chair, Boat/Ship), (Boat/Ship, Bridges, Bus), (Forest, Boat/Ship, Highway), (Cheering, Nighttime, Singing)
(Quadruped, Ocean, Forest), (Flags, Demonstration, Nighttime),(Bus, Bridge, Highway), (Boat/Ship, Nighttime, Oceans)
(Chair, Boat/Ship, Forest), (Forest, Chair, Quadruped), (Highway, Bus, Chair), (Bridges, Highway, Forest)

3.2.1.1 The IACC.2.B dataset for video retrieval

We mainly test our approach over the IACC.2.B dataset which is the test set used in the Semantic

Indexing (SIN) task of TRECVID 2014 [130] challenge. The dataset comprises 2,371 Internet

videos which are “characterized by a high degree of diversity in creator, content, style, production

qualities, original collection device/encoding, language, etc.” [130]. The video durations range

from 10 seconds to 6.4 minutes with the mean of 5 minutes. Standard shot partitions (106,000

shots in total) are provided by the dataset and 30 concepts are annotated for the shots. We use

TRECVID 2015 SIN Task’s test set, named IACC.2.C dataset, as the second dataset for more
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experiments as a correctness proof of our approach. All the settings such as splits ratios are as

same as IACC.2.B.

We randomly split IACC.2.B to 712 videos as the training set, 474 videos as the validation set

and 1,185 videos as the test set. We select 50 pairs of concepts from the total
(
30
2

)
possible pairs.

We select them based on the number of positive examples in the training set and call them the

seen queries which always will be used in training and in one experiment as the test. A video is a

positive or related sample for a query when there is at least one shot annotated as positive for all

the concepts in that query. This results in minimally 27, maximally 86, and on average 44 out of

the 1,185 videos in the database (i.e., the test set) related to the concept-pair queries. See Table

3.1.

Additionally, we build a set of concept-triplet queries with the size of 50. On average each concept-

triplet query has 24 related videos. As a matter of fact, by increasing the number of concepts the

retrieval task becomes more challenging due to less number of positive examples and we show

in our experiments that our method can handle them very well. We never use concept-triplets as

training and use them just for a test as unseen queries. In Table 3.1 we show our set of concept-

triplets.

3.2.1.2 Evaluation

We use one of the most popular metrics in information retrieval, Normalized Discounted Cumu-

lative Gain (NDCG) [131], to evaluate the ranking lists returned by our model in response to the

multi-concept queries. Given a ranking list for query Q, NDCG is calculated by:

NDCG@k =
1

Z

k∑
j=1

G[j]

1 + log2 j
, (3.14)
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given the gain function G[j] = rel(j)2 and j as the rank of a video which has rel(j) number of

concepts that video shares with the query Q. By changing the power in the gain function, we

can tune how important is for us that a retrieved video contains all the desired concepts. The

partition Z is the ideal gain value computed by ground truth which will produce an ideal ranking

list. As a result, any NDCG@k value is normalized between 0 and 1. We shall report the results at

k = 5, 10, · · · , 50 in the following experiments.

3.2.1.3 Concept detectors

Learning robust concept detectors has a rich literature [10, 14, 12]. All kinds of concept detectors

can be potentially employed in our retrieval model. We train our independent concept detectors

following the practice of [132].

In particular, we train 60 independent detectors from the training data (IACC.1.tv10.training,

IACC.1.A, IACC.1.B, and IACC.1.C) of the TRECVID 2014 SIN task [130] for the concepts with

key frame annotations, including the 30 concepts annotated in IACC.2.B. To this end, we extract

dense SIFT [133] (DSIFT) and Convolutional Neural Network (CNN) features [57] from the an-

notated (both positive and negative) key frames for the 60 concepts. The DSIFT features computed

using VLFeat [134] toolbox, are encoded by Fisher vectors [135] as an image representation and

then input to linear SVMs. For CNN features, we use the activations of “relu6” and “fc7” layers

as two types of image representations, train SVMs with histogram intersection kernels for each of

them, and then average the detection scores of the two types of SVMs. Overall, we thus harvest

two complementary detection confidences for any concept, one from the DSIFT and the other from

the CNN features. They are both transformed to probabilities using the Platt calibration. At the

testing stage, we firstly average them to obtain the concept detection confidences for each frame,

then max-pool the scores within a shot to have the shot-level results φh, and finally arrive at the
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video-level concept detection results φ by max-pooling.

3.2.1.4 Practical considerations in implementation

In order to prevent the model from overfitting, we have employed an L2 − norm as regularizer.

In particular, we add
∑

q∈Q λ ‖θq‖
2
2 + γ ‖υq‖22 term to regularize the optimization problem in

Eq. (3.4). We have used the validation set to tune the hyper-parameters λ and γ. Note that γ = 0

except for the scoring function fVS
latent(q). We also remove all the videos which has no shot annotated

as negative or positive for the given query.

Table 3.2: Comparison results of different scoring functions in pair-concept based video retrieval.

Baselines
Functions NDCG@5 @10 @15 @20 @25 @30 @35 @40 @45 @50 Mean

PAMIR [25] 04.3% 04.2% 04.1% 04.3% 04.7% 05.2% 05.7% 06.1% 06.5% 06.7% 05.22%
Fast0Tag [136] 07.6% 07.2% 07.3% 07.7% 08.0% 08.2% 08.6% 08.9% 09.0% 09.1% 08.2%
Common practice fV

avg 62.6% 57.1% 55.6% 56.1% 57.5% 58.8% 59.7% 61.0% 62.0% 62.6% 59.3%
TagProp [137] 30.0% 27.3% 25.6% 26.8% 27.7% 28.6% 29.4% 30.1% 30.8% 31.4% 28.8%
Rank-SVM [138] 57.9% 52.9% 52.2% 52.6% 54.3% 55.4% 56.5% 56.8% 57.7% 58.1% 55.5%
Co-occurrence [38] 59.4% 50.7% 48.6% 49.5% 51.8% 53.4% 54.9% 55.6% 56.4% 57.4% 53.8%
PicSOM 2013 [139] 63.0% 57.1% 55.5% 55.9% 57.3% 58.1% 59.2% 60.5% 61.5% 62.1% 59.0%
|Q|= 30 concepts
Video-level fV

corr-1 61.6% 57.0% 55.5% 55.8% 57.0% 58.1% 59.5% 60.5% 61.5% 62.2% 58.9%
Video-level fV

corr-2 64.8% 59.2% 57.4% 57.6% 58.9% 60.3% 61.5% 62.3% 63.1% 63.3% 60.9%
Shot-level fS

latent 68.2% 61.0% 59.5% 59.5% 61.2% 62.1% 63.6% 64.9% 65.8% 66.1% 63.2%
Shot-Video-level fVS

latent 62.9% 58.8% 58.3% 60.0% 61.8% 63.1% 64.7% 65.4% 66.2% 67.1% 62.8%
|Q|= 60 concepts
Video-level fV

corr-1 61.6% 57.0% 55.5% 55.8% 57.0% 58.1% 59.5% 60.5% 61.5% 62.2% 58.9%
Video-level fV

corr-2 64.8% 58.8% 57.3% 57.3% 58.8% 60.0% 61.1% 62.4% 62.9% 63.2% 60.7%
Video-level with RBF Distance fV

corr-2 64.0% 59.3% 57.3% 57.3% 58.7% 60.1% 61.1% 62.4% 62.9% 63.3% 60.6%
Shot-level fS

latent 67.6% 61.8% 59.8% 59.7% 61.5% 62.6% 64.1% 65.1% 65.8% 66.5% 63.5%
Shot-Video-level fVS

latent 69.8% 63.8% 61.7% 60.9% 63.0% 64.1% 65.4% 66.4% 66.8% 67.4% 64.9%
Shot-Video-level with RBF Distance fVS

latent 70.2% 62.2% 60.0% 60.3% 62.1% 63.2% 64.5% 65.4% 66.1% 67.1% 64.1%

3.2.2 Comparison results

We compare different scoring function results in Table 3.2. For this experiment, we have used

IACC.2.B dataset and the 50 pair-concepts queries shown in Table 3.1 for both training and testing.
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We evaluate using NDCG@k where k = 5, 10, · · · , 50 for different columns. The most left column

shows the mean of NDCG for all k values.

Following the common practice in the existing concept-based video retrieval systems, we empir-

ically test a variety of fusion methods [35, 36, 139] as the (old) baselines—our approach offers a

new set of simple yet more advanced ranking scheme for the multi-concept-based video retrieval.

Probably because our detectors output probabilities after the Platt calibration, the average opera-

tion in fV
avg performs the best among the fusion techniques discussed in [35]. We thus only show

the results of fV
avg and the second best, PicSOM [139], in the rows tagged by “Common practice”

and “PicSOM 2013”, respectively, in Table 3.2. The PicSOM fusion strategy [139] involves a con-

vex combination of the product and the average of the querying concepts’ detection scores. Also,

we used an another common technique as explained in [38] to capture just positive correlation

between pairs of concepts, using a Co-occurrence matrix of them built in training stage.

We further include ranking SVM [55] and TagProp [137] in the table as more advanced baselines.

Both take as input the video-level representations; they are not able to handle the set of shot-level

features in each video. We use two types of inputs, the video-level concept detection scores, and

CNN features as the video representations to train the TagProp and ranking SVM models. Note

that we train a ranking SVM model for each of the pair-concept queries. TagProp is a state-of-the-

art image tagging algorithm. It uses K-nearest neighbor and metric learning to propagate the tags

of training examples to any testing instance. We report the best results for each after parameter

tuning on our validation set. Probably because our training set is relatively small, the TagProp

results are very low. Ranking SVM gives comparable results with the other fusion techniques.

Moreover, we adopt Fast0Tag [136] and Passive Aggressive Model for Image Retrieval (PAMIR) [25]

methods on all three datasets (cf. Table 3.4). Both of these methods try to find a mapping between

image feature and concepts. Fast0tag uses the popular pre-trained word2vec [140] model that is
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trained on a large text corpus, to embed each concept in a high dimensional space where word

(concept) similarities can be measured more accurately. It maps each image to its corresponding

unique direction to rank concept scores. PAMIR also follows the same idea; however, this method

learns to represent each query of multi-concept by a single vectors.

There are four types of scoring functions in our approach, fV
corr-1 and fV

corr-2 accounting for the

video-level concept detections and fS
latent and fVS

latent for the shot-level concept detections. We learn

these models’ parameters by the 0-1 loss based early stopping and the 50 pair-concept queries (cf.

Table 3.1) using the videos in the training set. Experiments comparing the hinge loss and the 0-1

loss are presented in Section 3.2.3.

To further study our model’s behavior, we replace the linear distance between positive and neg-

ative neighbors described in Eq. 3.4 with a non-linear distance. To be more specific, we replace

F(Q, Vi) − F(Q, Vj) in Eq. 4, with sign(F(Q, Vi) − F(Q, Vj)).(1 − K(F(Q, Vi),F(Q, Vj))),

where K is the Radial Basis Function (RBF) similarity function. We keep the sign of the distance

since we are solving a ranking problem and the order of the ranked samples must be preserved.

Comparison

There are |Q| = 30 concepts labeled for our video database V , which are drawn from the IACC.2.B

dataset. All our queries are constructed from these concepts such that we have the ground truth

ranking list for evaluation. We first show the video retrieval results in the top half of Table 3.2.

The variations of our model with different scoring functions all improve the common practice fV
avg.

The margins between fV
avg and our latent shot-level functions are especially significant.

The benefit of more concepts: Though the queries are built from the vocabulary of 30 con-

cepts, we are actually able to harvest more concept detectors from another independent dataset,

36



TRECVID 2014 SIN task training set. Our model is flexible to include them by expanding the

concept detection vectors φ (see Section 3.1). The bottom half of Table 3.2 shows the results cor-

responding to 60 concept detectors. We see that the observations about the relative performances

of the model variations from the |Q| = 30 concepts still hold. In addition, the video retrieval

results using the shot-level scoring functions have been significantly improved over those of the

30 concepts. This is in accordance with our intuition as well as the results in [27]. Indeed, the

inter-dependences of more concepts may provide better information for our scoring functions and

make them more robust to the unreliable concept detection confidences.

Note that, however, introducing more concepts does not change the results of the video-level scor-

ing function fV
corr-2 too much, fV

corr-1 is not affected by extra concepts. We argue that this is mainly

due to the fact that our detectors are not developed for the video-level concept detections. For the

future work, it will be interesting to see whether more video-level concept detectors, such as the

action classifiers [141, 142], can benefit our video-level function fV
corr-2 as well. Another interesting

direction would be to pursue the weak attributes/concepts in the video retrieval task [27].

3.2.3 The effect of the 0-1 loss

We study the effect of the novel 0-1 loss based stopping criterion in this section. Figure 3.2 shows

the retrieval results of both the video-level scoring function fV
corr-2 and shot-level function fVS

latent,

respectively, with and without using the 0-1 loss in the optimization. We can see that coupling

the 0-1 loss as a stopping criterion with the hinge loss in optimization significantly improves the

performance of the hinge loss alone for both types of scoring functions. This is not surprising. The

0-1 loss is advantageous over the hinge loss especially when there are “difficult” positive-negative

pairs which heavily violate the ranking constraint in the training/optimization stage. The hinge

loss would penalize more those pairs and consequently ignore the other pairs, but the 0-1 loss is
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resilient to those pairs. Although in practice we cannot fully harvest the appealing modeling power

of the 0-1 loss due to the gradient descent, our results in Figure 3.2 verify that the nice properties of

the 0-1 loss can be transferred indirectly by defining the new stopping criterion with the 0-1 loss.

And also, it shows a better performance for top retrieved videos (smaller k values in Figure 3.2)

where the 0-1 stopping criterion shows a lot of improvement. We also provide qualitative results

in Figure 3.6 for more clarifications.
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Figure 3.2: The effects of the 0-1 loss based stopping criterion in optimization. For both the video-level
scoring function fV

corr-2 and shot-level function fVS
latent, the introduction of the 0-1 loss significantly improves

the performance of the hinge loss.

3.2.4 Generalizing out to unseen queries

We expect our model to generalize well to other multi-concept queries. To demonstrate this, we

train our system with pair-concept queries shown in Table 3.1 and test it on three other set of queries
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of which none of them have any query in common with the ones used in training: (a) 30 single-

concept queries, (b) 50 new pair-concept queries, and (c) 50 new triple-concept queries. None

of them are used to train our model. The 50 concept triplets are shown in Table 3.1. Figure 3.3

shows the retrieval results using different variations of our model. We can see our model with

the shot-level scoring functions fS
latent and fVS

latent performs quite well upon the new queries. The

results are not only significantly better than the simple average, but also comparable to those for

the previously seen pair-concept queries (cf. Table 3.2). The video-level scoring function fV
corr-2

unfortunately degrades and gives similar or worse performance compared to the averaging baseline

fV
avg. It implies that our multi-latent variable based scoring function is able to generalize the trained

model and use it to retrieve unseen queries.

In a complementary experiment, we show our model can be used on TRECVID SIN challenge.

Even though this challenge is based on short video shots and single concept queries retrieval, an

improvement is expected due correlation of concepts that our model captures. For this experiment,

we use the same testing pipeline. Shots are considered as videos and each frame as a single shot.

Th results are given in Table 3.3. We use the same settings as explained in Section 3.2.1 and the

learned model is the same as used in other experiments. To give an insight into performance of the

independent concept detectors, we try them on the full set as well. The numbers are reported using

mean InfAP [143] over 30 concepts. First 2,000 retrieved shots for each concept are considered.

Note that our model is not applicable to full dataset due to 50% usage of that in training stage.

Table 3.3: Results for TRECVID 2014 SIN challenge.

Method fV
avg fVS

latent

IACC.2.B (Full) - TRECVID SIN 2014 24.01 -
IACC.2.B (Half) - TRECVID SIN 2014 24.56 24.80
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Figure 3.3: previously unseen queries: (a) single-concept queries, (b) pair-concept queries, and (c) triple-
concept queries.
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Table 3.4: Baseline averages of NDCG@5-50 on three different datasets

Dataset IACC.2.B IACC.2.C IACC.2.B + C
PAMIR 5.2% 38.3% 18.0%

Fast0Tag 8.2% 30.6% 18.4%
TagProp 28.8% 24.1% 12.3%

Rank-SVM 55.5% 26.4% 39.5%
Co-occurrence 53.8% 44.4% 30.2%

PicSOM 59.0% 53.2% 40.3%
fV

avg 59.3% 53.7% 40.4%
fV

corr-2 60.7% 50.1% 37.8%
fVS

latent 64.9% 56.9% 43.5%

3.2.5 Extensive Experiments on IACC.2.C dataset

To have an extensive set of experiments we use IACC.2.C dataset. As explained in Section 3.2.1.1,

we use similar setting for extracting queries and also training/validation/test sets as IACC.2.B. We

go further integrate IACC.2.C and IACC.2.B to build one super dataset. In Table 3.4, we show a

side by side comparison between three different datasets as well as different scoring functions and

baselines. Clearly, our multi-latent variables method gives the superior performance in all three

cases.

Notice a drop in all the performances in Table 3.4. To explain this, we compute the ratio of an

average number of positive of all queries and the total number of videos in each dataset (Table 3.5).

Smaller ratio makes the retrieval harder since there are less number of samples in training stage

and also a higher drop even a single positive sample is lost in the testing stage.

Table 3.5: Mean ratio of positives to total number of videos for pair-concept queries

Dataset IACC.2.B IACC.2.C IACC.2.B + C
Mean Ratio 0.0159 0.0134 0.0106
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3.2.6 Time Complexity

In Table 3.6, we show the time complexities comparison between different methods, where n is

the number of training samples, |H| << n is the number of shots in the video and |Q| << n is

the number of concepts.

Table 3.6: Time Complexities Comparison.

Method Time Complexities
PicSOM O(1)
Co-occurrence O(n)
Fast0tag O(n)
Rank-SVM O(n2)
Tagprob O(n2)
fV

corr-2 O(n2)
fV

corr-2 O(n2)
fS

latent O(|H| × n2)
fVS

latent O(|H| × |Q| × n2)

3.2.7 User study on YouTube search engine

We build a new dataset using 230 videos gathered from YouTube. These videos are retrieved using

9 pair-concept queries shown in Table 3.1. 20 to 30 videos for each of the queries are downloaded

and their actual ranks in YouTube are saved. Shots are also built by clipping videos into 2-second

shots. We apply our method for each query and get a new ranking list. 10 randomly selected

users are asked to compare these two ranking lists. One of them is YouTube original list and the

other is from our method, and we ask users to choose the best list for corresponding query search,

just based on visual cues. User voting is completely blind and participants do not have access to

other participants’ decisions. Even though our detectors are trained on training set explained in

Section 3.2.1.1, which is different from YouTube videos, in Figure 3.4 we show for some queries,
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users mostly like the re-ranked list using our method. YouTube ranking has a bias toward meta-

data coming with the videos and our method can retrieve videos containing the actual concepts

instead.
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Figure 3.4: The number of user votes for different ranking lists and queries. Users preferred the ranking
lists by our algorithm to Youtube’s default ranking lists for six out of nine queries.

3.2.8 Qualitative analyses

We show some videos and their ranks using fV
avg and also after applying fVS

latent in Figure 3.5. In

general, our approach works especially well under the following two scenarios. One is when the

concepts appear in different video shots, and the other is when the concepts are not very relevant

and more unlikely to happen in the same video. (e.g., bridge, chair, and highway).

We also show how our method can correctly rank videos for a given query. In Figure 3.6, we
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show top five videos retrieved by our method for one of the pair-concept queries and a comparison

with the average baseline. The top ranked videos are more important especially for common users

searches since people tend to find a proper video at the top of their searching list result.

Average Baseline Our MethodRanks:

63 35Singing - Night 

QUERY 
32 25Forest - Lake

4 1Cheering - Flags

Boat - Night - Forest 5
1

3
8

144 4
0

63 3
5

Bridge - Chair - Highway

Ocean – Beach - Quadruped

Average Baseline Our MethodRanks:QUERY 

Figure 3.5: Some examples of queries and the rank of one video containing all the concepts. We show two
numbers for each video, the red one is the rank of the video using the Average baseline and the green one is
the rank of the video using our method. We show queries with pair concepts and triplet concepts on the left
and right columns respectively. In all of the provided examples, the ranking value has been improved using
our method.
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Ours Top 5 GT Average Baseline Top 5 GT

Figure 3.6: Top Ranked videos for the query “Cheering - Night Time”. The left panel shows the first top 5
videos ranked by our method and the right panel shows the same for the average baseline method. We also
show which of the videos are tagged as positive in ground truth. Note that, a positive video must have both
concepts included.

45



3.3 Summary

In this Chapter, we introduced a new baseline for multi-concept based video retrieval. Our method

uses a principled model which can be integrated and leverage from other existing methods of

video/image retrieval. We have designed a multi-latent variable scoring function which can deal

with noisy and incomplete annotations of large datasets while it can learn both inter and intra shots

dependencies of concepts. We show a technique named 0-1 loss based early stopping criterion

which can make the training process more robust to outlier data. Our extensive experiments show

our model superiority over other methods. As multi-concept based video retrieval plays a central

role in video retrieval systems, we expect our model to advance the state-of-the-art research in

video retrieval.
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CHAPTER 4: VIDEO FILL IN THE BLANK USING LR/RL LSTMS

WITH SPATIAL-TEMPORAL ATTENTIONS

The work in this Chapter have been published in the following paper:

Mazaheri, Amir, Dong Zhang, and Mubarak Shah. "Video fill in the blank using lr/rl lstms with

spatial-temporal attentions." Proceedings of the IEEE International Conference on Computer Vi-

sion. 2017. [90]

Video Fill-In-the-Blank (VFIB) is a visual question answering problem where the question is in

the form of a video description with one missing word. In this Chapter, we propose our solution

to solve the VFIB. Our method is composed of a textual encoder that can deal with a fragmented

sentence, and also spatial and temporal attention mechanisms which can select spatial regions and

temporal segments of a video to answer an input question. Note that, since there is not spatial and

temporal annotations available in the dataset, similar to Chapter 3, we formulate the spatial and

temporal attentions as latent variables.

4.1 Methodology

We formulate the VFIB problem as a word prediction problem with two sentence fragments (left

sentence fragment “ql”, and right sentence fragment “qr”) and the video υ:

b̂ = arg maxb∈β p(b|ql, qr,υ,θ), (4.1)
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where β ⊂ V is the set of words to fill in the blank and V is the dictionary of all the words in

our dataset. b̂ is the prediction (the word to be filled in the blank), and θ is the model parameters.

Our framework is depicted in Figure 4.1. The proposed approach consists of four components: 1)

source sentence encoding, 2) spatial attention model, 3) temporal attention model, and 4) inference

of the missing word. We discuss these four components in the following subsections.

Temporal	Attention

Spatial	Attention

Joint	Representation

Framework:

The	Missing	Word

VGG19

C3D

frames

shots

Visual	Encoder

Left	sentence	fragment

Right	sentence	fragment

Source	Sentence	Encoder

Textual 
Representation

Figure 4.1: Our proposed method to solve Video Fill In the Blank (VFIB) problem. Source sentence
encoding, spatial and temporal attention models are shown.

4.1.1 Source Sentence Encoding

In this section, we introduce how to encode the source sentence which consists of left and right

fragments and a blank between them. Figure 4.2 shows an illustration of the proposed source

sentence encoding approach. The blank can be anywhere in a source sentence, thus a single LSTM

architecture will not work very well, since left or right fragment can be very short, and in many

cases the missing word depends on both fragments. However, a simple LSTM will fail if one

fragment is very short or both fragments are needed for prediction. Also, the blank can belong to
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any classes of words (e.g. verb, adjective, etc.). These complexities of the source sentence make

the textual encoding difficult.

Word 1 Word 2 Word t-1

!"#$%&
' !"#$%&

' !"#$%&
' ()*

Word n Word n-1 Word t+1

!"#$&%
' !"#$&%

' !"#$&%
' (+*

Source Sentence Representation
(, = ./01	(	4(, ()* (+*	 (+5	 ()5 )

Left	Sentence	Fragment

Right	Sentence	Fragment

Word 1 Word t-1

!"#$%&
7 !"#$%&

7 !"#$%&
7 ()5

Word n Word t+1

!"#$&%
7 !"#$&%

7 !"#$&%
7 (+5

Left	Sentence	Fragment

Right	Sentence	Fragment
48

Figure 4.2: An illustration of the source sentence encoding approach. In the first stage, Each source sentence
is formatted as two fragments, the left and right sentence fragments. Each sentence fragment is passed
through an LSTM. In the second stage, left and right fragments’ LSTMs are combined with a memory from
the opposite side.

We treat the source sentence as two fragments; the left fragment from the first word to the word

before the blank and the right fragment backward from the last word to the word after the blank.

Our source sentence encoding module has three stages. In the first stage, we encode each of the

left and right fragments separately with two independent LSTMs. In the second stage, we encode

left and right fragments along with the encoded fragments from the opposite side in stage one.

Namely, we use the encoded left fragment in the first stage as an external memory to encode the

right fragment in stage two and vice versa. We call it “external memory”, since it is computed

using the opposite fragment. In fact, the external memory makes the model to understand each

fragment better, since it has some information from the opposite fragment. Finally, the model

learns to combine the output of both stages and generates the final source sentence’s representation

called uq (Figure 4.2). Our approach has two major differences compared to BiLSTM [144, 30].

First, we use the the opposite fragments as an external memory for each sides, and second, our

method learns how to combine the left and right encoded fragments. In the following, we provide
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more details.

Assume that the source sentence has n words, and the t’th word is missing. The left and right

fragments’ sequences can be embedded as:

q1l = W 1
x [x1,x2, ...,xt−1]

q1r = W 1
x [xn,xn−1, ...,xt+1],

(4.2)

where xi ∈ {0, 1}|V | is an one-hot vector representation of i’th word in the source sentence, and

W 1
x ∈ Rc×|V | is a word embedding matrix (|V | is the size of the dictionary, and c is the encoding

dimension). q1l and q1r are two sequences where each element q1l(j) ∈ Rc is a continuous vector

representing j’th word in q1l sequence. We model the left and right sentence’s fragments separately

using two LSTMs:

u1
l = LSTM1

LR(q1l(i)), (i = 1, ..., (t− 1))

u1
r = LSTM1

RL(q1r(i)), (i = 1, ..., (n− t))
(4.3)

where u1
l ,u

1
r ∈ Rh are the last hidden states from the “LR” and “RL” LSTMs respectively

(Fig. 4.2) and h is the LSTMs’ hidden state size. Since the missing word is related to both left

and right fragments of a sentence, we have an extra stage to encode Left/Right fragments with re-

spect to an external memory coming from the opposite side, namely Right/Left fragments. In this

way, the first stage processes each of fragments separately and the second stage processes them

with respect to opposite side’s encoded representation.

q2l = [µl,W
2
x [x1,x2, ...,xt−1],µl]

q2r = [µr,W
2
x [xn,xn−1, ...,xt+1],µr],

(4.4)

where W 2
x is of the same size as W 1

x and µr,µl ∈ Rc are two external memory vectors obtained

50



by:

µr = u1
lWµ

µl = u1
rWµ

(4.5)

where Wµ ∈ Rh×c encodes the LSTMs outputs to memory vectors. q2l and q2r are two sequences

while |q2l | − |q1l | = |q2r | − |q1r | = 2 because of the external memory vectors attached to them and

each element of them is a continuous vector. Similar to Eq. 4.3, we encode these two sequences

with two different LSTMs, namely LSTM2
LR and LSTM2

RL (Fig 4.2), to obtain u2
l ,u

2
r ∈ Rh as

encoded left and right fragments in the second stage. Note that; sinceW 1
x andW 2

x are two different

matrices, LR/RL LSTMs of first and second stages, observe completely different sequence of

vectors. Also, none of these four LSTMs share any parameters with the other ones.

Finally, a proper combination ofu1
l , u

1
r , u

2
l andu2

r as the final representation of the source sentence

is needed. We concatenate and combine them by a fully connected layer as the final representation

of the source sentence:

uq = tanh(Wuq[u
1
l |u1

r|u2
l |u2

r]), (4.6)

where Wuq ∈ Rd×4h is a trainable weights matrix applied to learn a proper combination of four

vectors. We refer uq ∈ Rd as the source sentence representation (textual feature) in the following

sections and it is a bounded vector due to tanh(·) activation function.

4.1.2 Spatial Attention Model

We use a CNN (i.e., VGG-19 [58], more details are provided in Section 4.2.4) to extract visual

features. The output from the last pooling layer of CNNs can be considered as a feature map with

spatial information about the input image. Figure 4.3 shows an illustration of the spatial attention
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model. First, we apply max-pooling over the raw CNN features (i.e the output from the last pooling

layer of VGG-19 pre-trained network) from all video key-frames to obtain a spatial visual feature

from the whole video:

ΦF = tanh(WfΘ(Φf (f
t))|f t∈F ), (4.7)

where Φf (·) is the spatial visual feature map extraction function (more details are provided in

Section 4.2.4), F represents all the video key-frames in υ, ft is a video frame at time t, Θ(·)

is the max-pooling function, Wf is a trainable transformation matrix, and ΦF ∈ Rd×m is the

intermediate visual feature matrix where each column is a feature vector corresponding to a spatial

region in the original video frames, d is the same as uq in Eq.4.6, and m is the number of spatial

regions in the video frame.

Source	Sentence

Spatial	Attention
[m]Max	Pooling	over	

last	Pooling	layersVGG19
Video	Frames

Textual	
Encoder

Visual	
Features
[k	x	m]

Augmented	
Textual	
Features
[k	x	m]

Augmentation

Combined	
Representation

[k	x	m]

Trainable	
Weights
[k x	1]

Spatial	Attention	Network:

Figure 4.3: An illustration of the spatial attention model. The model assigns importance score to each
region of an image based on the source sentence.

We use spatial attention model [145] to pool the intermediate visual features ΦF . The first step is

to combine the source sentence representation uq with the intermediate visual features ΦF :

ΨF = tanh((WFΦF )⊕ (Wuuq + bu)), (4.8)

where WF ∈ Rk×d and Wu ∈ Rk×d are two transformations on the intermediate visual features
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and source sentence representation to align them and have the same dimensions. bu is the bias

term, and ⊕ is a summation between a matrix and an augmented vector (i.e. the source sentence

representation uq has to be expanded, or repeated m times, in order to have the same dimension as

WFΦF . The matrix ΨF ∈ Rk×m is used to find the final attention scores over all the regions:

psp = softmax(ΨT
Fwsp), (4.9)

wherewsp ∈ Rk×1 is a trainable weight vector and psp ∈ Rm×1 is the spatial attention vector. The

final spatial pooled visual vector is a weighted average over all m regional intermediate spatial

feature vectors:

usp = ΦFpsp, (4.10)

where usp ∈ Rd is the spatial pooled visual vector. It is a bounded vector since ΦF is bounded.

4.1.3 Temporal Attention Model

Temporal dynamics of a video and the motion information plays a significant role in video under-

standing, especially in actions and events understanding. However, in our spatial-pooled visual

representation presented in previous section, the whole video is represented as one vector, and

there is no temporal information. Therefore, we propose to model the temporal dynamics of the

video using a temporal attention model. Figure 4.4 shows an illustration of this component in our

approach. We divide a video into a number of shots and represent the shots as below:

ΦG = tanh(Wg[Φg(g
1),Φg(g

2), ...,Φg(g
|G|)]), (4.11)

where Φg(·) is the feature extraction function (C3D [146], which encodes the temporal informa-

tion. More details are provided in Section 4.2.4), G represents the set of video shots and gi is the
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ith video shot. Wg ∈ Rd×z is a transformation matrix, where z is the original dimension of the

feature vector Φg(g
i), and k is the encoding dimension.

LSTM LSTM ...	 LSTM

C3D C3D … C3D

Textual
Encoder

LSTM
Encoder

Attention
Vectors Ω"# …

Temporal	Attention	Network:

Source	Sentence

Video
Shots

Ω"$ Ω"%

Figure 4.4: An illustration of the temporal attention model. An LSTM is used to find relevant shots based
on the source sentence.

We combine the video shots representation ΦG ∈ Rd×|G| and the source sentence representation

uq as:

ΨG = tanh((WGΦG)⊕ (Wuuq + bu)), (4.12)

whereWG ∈ Rk×d, is a mapping for shot representation ΦG. We shareWu and bu with the spatial

attention model in Eq. 4.8. Similar to Eq. 4.8, in order to apply the summation ⊕, uq is repeated

|G| times to have the same number of columns as ΦG. Each column of matrix ΨG ∈ Rk×|G| is

the combination of a single shot and the source sentence. An LSTM is employed to model the
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dynamics between shots and the source sentence:

Ωi
G = LSTM(Ψi

G) (i = 1...|G|), (4.13)

where Ψi
G is the i’th column of ΨG. The output of this LSTM is a sequence of attention vectors

corresponding to each shot ΩG = [Ω1
G,Ω

2
G, ...,Ω

|G|
G ] (See Fig. 4.4). However, we need to make

probabilities out of these vectors and for this purpose we simply use a softmax operator:

ptp = softmax(ΩGwtp), (4.14)

where wtp ∈ Rk×1 is a trainable weight vector and ptp ∈ R|G|×1 is the temporal attention of the

shots and the final temporal-pooled representation is a weighted average over all the shot features

ΦG with the attention model:

utp = ΦGptp, (4.15)

where utp ∈ Rd is of the same dimension as the spatial-pooled features and the source sentence

representation. Its values are also bounded since ΦG is obtained by passing through a tanh(·)

activation in Eq. 4.11. Using this temporal attention model, we capture the dynamics of the visual

features which are related to the source sentence representation.

4.1.4 Inference of the Missing Word

Here, we discuss how to infer the missing word or fill in the blank. Let β be the vocabulary to fill in

the blank (|β| as its size). We aim to find a probability for each word candidate in β, which needs

a joint representation (summation fusion [145]) of all three components as mentioned earlier:

u = [uq + usp + utp], (4.16)
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where u ∈ Rd is an joint representation of all three features: source sentence representations,

spatially- and temporally-pooled visual representations. Note that all three vectors uq, usp and

utp in equations 4.6, 4.10 and 4.15 are bounded, since they have been obtained by passing

through a tanh(·) activation. They also have the same dimension d and this makes the summation

fusion [145] applicable and effective. For the final inference of the missing word, we compute a

probability of each candidate word as follows:

Pblank = softmax(Wblanku), (4.17)

where Wblank ∈ R|β|×d. This is followed by a multinomial logistic regression “softmax” to find

the probabilities vector Pblank ∈ R|β|. Based on Eq. 4.1, the final answer is:

b̂ = arg maxb∈β Pblank(b). (4.18)

4.2 Results

We perform experiments on two datasets: the original LSMDC Dataset [88] to evaluate the single

blank VFIB problem (i.e. there is only one blank in the source sentence), and an extended LSMDC

Movie Dataset to evaluate our performance on the multiple blanks VFIB problem (i.e. there are

multiple blanks in the sentence).

4.2.1 LSMDC Movie Dataset (Single Blank)

In this set of experiments, we use the movie dataset [88, 1, 147], which has been used in Large

Scale Movie Description and Understanding Challenge (LSMDC) [88]. Movies are a rich source

of visual information and become much more valuable when proper textual meta-data is provided.
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Movies benefit from many textual data like the subtitle, audio descriptions and also movie synopsis.

LSMDC dataset consists of respectively “91, 908”, “6, 542”, “10, 053” and “9, 578” movie clips as

Training, Validation, Public and Private Test sets. We use the standard splits provided by [88].

Each clip comes with a sentence annotated by an expert. There can be multiple source sentences

built for one clip. We use respectively “296, 960”, “21, 689” and “30, 349” samples as training,

validation and test as the standard split provided by [88].

4.2.1.1 Quantitative Results

Here, we compare our proposed method with other approaches and baselines to show its superior

performance for the VFIB task. We have chosen some of these baselines from methods for visual

question answering problem, which are applicable to this problem as well. The comparison table

(Table 4.1) has four parts. The first part is for methods which only use the text to find the missing

word; the second part is for methods which just use the video; the third part is for methods which

use both text and video; and the last part is for different configurations of the proposed method.

We report the accuracy (same as in [88]) of each method which is the ratio of number of missing

words that are inferred correctly to the total number of blanks. Here are some details about these

methods:

LSTM Left/Right Sentence fills the blank by just looking at the left/right fragment of the miss-

ing word. This experiment shows that both fragments are equally important. BiLSTM finds the

missing word based on a BiLSTM [30], which encodes the input sentence using two different

LSTMs; one takes the input from the last word to the first word and the other one in the reverse.

The blank word is recovered based on BiLSTM’s output in missing word location. Our Sentence

Embedding as described in section 4.1.1. This approach finds the missing word by using just

vector uq, without any visual features. For a fair comparison with BiLSTM method, we have fixed
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the LSTM cells sizes and also the word embedding lengths in all the experiments. The authors in

[88] report a few baselines using GoogleNet [59] and C3D [146] features. The difference between

the baselines in[88] and ours, shows the actual importance of our attention models and integration

of the textual encoding and visual modules in our method. Video+ Textual Encoding corresponds

to “IMG+LSTM” in [29]. Key-frames are passed through the VGG-19 pre-trained network to

extract 4, 096 dimensional vector of “fc7” layer for each key-frame. Then, a max-pooling over all

the features of all frames will generate a video feature vector and the rest of steps are the same as

explained in [29]. We have used simple BiLSTM instead of LSTM to deal with two fragments of

sentence in VFIB. 2Videos+ Textual Encoding [29], similar to previous case, uses two different

representations of the video. One is attached to the beginning of each fragment and the other one

to the end. Ask Your Neurons [76] encodes the visual CNN feature and concatenate with each of

words and pass them through left and right LSTMs one by one. The answer is inferred based on the

last output of LSTMs. SNUVL [148] is the best reported method on LSMDC FIB. It uses a con-

cept detection method over the videos, following by an attention model over the detected concepts,

to find the missing word. Ensemble model [149] is a technique to boost the performance, when

the optimization process reaches different local optima, based on random factors like initialization.

We train the model multiple times with different initializations and sum the final scores from all

the trained models.

We also test our model performance by removing each of components, namely spatial attention,

temporal attention and also replacing our source sentence encoding with the BiLSTM in baselines.

We also show the results of our text encoder without Second Stage, by removing u2l and u2r

from Eq. 4.6. In one more complementary experiment, we try our textual encoding with C3D

and VGG19 features without any attentions. These experiments show that all the components

contribute to final results.
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4.2.2 Multiple Blanks VFIB

In this section, we explore a harder version of the VFIB problem where more than one word is

missing from the sentence. We have generated a new dataset based on the original LSMDC Movie

Dataset by inserting multiple blanks in the sentences, and we call it the “Extended LSMDC Movie

Dataset”. To be specific, we remove all the words which have appeared at least once as a blank in

the original LSMDC dataset from all the sentence. In this case, most of sentences have more than

one blank and this makes the LSMDC dataset suitable to be extended for multiple blanks problem.

In Figure 4.5, we show some statistics about the number of blanks in sentences. About 79.3% of

the sentences have more than one blank. To clarify, in each sentence, there are known number of

blanks (with known locations), but there are various number of blanks in different sentences. For

multiple blanks’ experiments, we include all the sentences with one or more blanks in all sets and

also for the evaluation, we consider equal value for all the blanks.

We employ two strategies to encode the source sentence for the multiple blanks VFIB problem.

For the first one, we consider the left and right fragments of a missing word, as a fragment from

that word to the next blank, or if there is no other blank, to the end of the sentence (both left and

right fragments are used). For example, for the source sentence “She took her Blank1 out of the

garage and Blank2 at the house for a moment.”. The left phrase of “Blank1" is “She took her”

and right phrase is “out of the garage and" and we find the left and right phrases for “Blank2"

with the same approach as well. We call it the “Subdivision" approach since it makes multiple

fragments out of the source sentence and each blank has one left and one right fragment. The

second approach is to remove all other blanks and treat them as left and right fragments as normal.

In our example, the left fragment of “Blank2” is “She took her out of the garage” and the right

fragment of the “Blank2” is “out of the garage and at the house for a moment”. In this case, we

deal with each blank similar to single blank problem and we just ignore other blanks in each of left
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and right fragments. We call it “Masking” approach since we are masking the other missing words

from each fragment. After finding left and right fragments based on any of these approaches, we

can apply our method or any other baselines (Table 4.2).
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Figure 4.5: Number of sentences as a function of the number of blanks in training set of LSMDC.

4.2.3 Qualitative Results

In Fig. 4.6, we show some qualitative results. For generating the attention map, we have reshaped

the psp ∈ Rm=196 in Eq. 4.9 into a 14× 14 matrix, then up-sampled it back to the original frames

size. We smooth the attention map by a Gaussian filter and also suppress low intensity pixels to be

zero. Brighter parts have higher attention score than the darker parts. For the temporal attention

model, we extract the ptp vector as the temporal attention. In Fig. 4.6, we show one frame from

each shot and the color bar under the sequence of shots shows the attention scores. Yellow and blue

respectively represent the maximum and minimum attentions. In Fig. 4.7 we provide examples of

multiple blanks VFIB and predicted missing words using different methods.
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Temporal Attention Spatial Attention

Someone grabs her arm, pulls her close and ____ her a lingering kiss. GT: gives               Ours: gives

Someone watches out of the corner of his eye as the kid finds a cheap _____ 
inside. 

GT: sweet               Ours: sweet

Someone stops his ____ and kisses her on the head. GT: daughter           Ours: jacket

Figure 4.6: On the left we show representative frames from different shots. The colors below the frames
show the temporal attention: yellow/blue means the most/least attention. On the right, we show an spatial
attention map obtained by our method and also we show the attention map on one of selected key-frames.

Someone _____ and ______ his ______.

Cutting:
2Videos – Textual Encoding
Our Model
Masking:
2Videos – Textual Encoding
Our Model
Ground Truth:

(turns, faces, gaze)
(smiles, raises, wife)

(smiles, shakes, gaze)
(smiles, shakes, head)
(smiles, shakes, head)

In his ______, someone ______ at his ______ 
glowering.
Cutting:
2Videos – Textual Encoding
Our Model
Masking:
2Videos – Textual Encoding
Our Model
Ground Truth:

(room, sits, desk)
(office, glances, desk)

(office, stares, desk)
(office, sits, computer)

(office, sits, desk)

Figure 4.7: Examples for Multiple Blank VFIB problem which requires a higher level of video and text
alignment to find all the missing words correctly.
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4.2.4 Implementation Details

We use VGG-19 [150] network, pre-trained on ImageNet [61], and extract last pooling layer

(“pool5”) as our spatial visual features consumed in section 4.1.2. The output feature map is a

14 × 14 × 512 matrix which can be reshaped as a 196 × 512 matrix and each of 512 dimensional

vectors are representing a 32 × 32 pixels region of input frame. We believe any other very deep

CNN network like GoogLeNet [59] or ResNet [60] can produce similar results. We extract and

pass the frames through this network with 2fps rate. For temporal attention in section 4.1.3, we

use pre-trained 3D CNN (C3D) network [146] pre-trained on [151] and followed settings defined

in [146]. We extract the “fc6” output of the network for each 16 frames (one shot) of videos. We

assume each video has 10 shots. For shorter videos, we use all-zero vectors for remaining shots

and for longer ones we uniformly select 10 shots.
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Table 4.1: Results on “Movie Fill-in-the-Blank” dataset.

Method Accuracy
Text Only
Random Guess 0.006
LSTM Left Sentence 0.155
LSTM Right Sentence 0.165
BiLSTM 0.320
Our Sentence Encoding (w/o Second Stage) 0.340
Our Sentence Encoding 0.367
Human [88] 0.302
Video Only
BiLSTM Just Video 0.055
Text + Video
GoogleNet-2D [88] 0.349
C3D [88] 0.345
GoogleNet-2D-Finetuned [88] 0.353
GoogleNet-2D + C3D-Finetuned [88] 0.357
Video + Textual Encoding [29] 0.341
2Videos + Textual Encoding [29] 0.350
Ask Your Neurons [76] 0.332
SNUVL [148] 0.380
SNUVL (Ensembled Model) [148] 0.407
Human [88] 0.687
Ours
Single Model (VGG19 + C3D w/o Attention) 0.378
Single Model (w/o Spatial Attention) 0.390
Single Model (w/o Temporal Attention) 0.392
Single Model (w/o Second Stage) 0.396
Single Model (w/o LR/RL LSTMs) 0.387
Single Model 0.406
Ensembled Model 0.434
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Table 4.2: Results on the LSMDC Dataset (Multiple Blanks). Our method has superior results.

Method Accuracy
Baselines
Random Guess 0.006
Left LSTM (Masking) 0.104
Bi-LSTM (Masking) 0.156
2Videos + Textual (Subdivision) [29] 0.136
2Videos + Textual (Masking) [29] 0.177
Ours
Text Only (Subdivision) 0.136
Text + Video (Subdivision) 0.148
Text Only (Masking) 0.180
Text + Video (Masking) 0.201
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4.3 Summary

We proposed a new method for the Video-Fill-in-the-Blank (VFIB) problem which leverages the

“source sentence” structure and also spatial-temporal attention models. We have introduced “exter-

nal memory” to deal with the complexity of “source sentence” in VFIB problem. We have achieved

superior performance over all other reported methods. Also, an extension and more general version

of VFIB which deals with multiple blanks in sentences, is introduced and discussed.
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CHAPTER 5: VISUAL TEXT CORRECTION

The work in this Chapter have been published in the following paper:

Mazaheri, Amir, and Mubarak Shah. "Visual Text Correction." Proceedings of the European Con-

ference on Computer Vision (ECCV). 2018. [152]

In this Chapter, we formulate the Visual Text Correction (VTC) task which is one of the real-world

use cases of the VFIB. In fact, we decompose the VTC problem into an inaccurate word detection,

and a correct word prediction to replace the inaccurate word. The second part of the approach is

essentially the VFIB. However, our proposed approach is end-to-end trainable meaning that we

train both of inaccuracy detection, and correct word prediction sub-modules simultaneously.

5.1 Methodology

To formulate the VTC problem, assume S̃ = [w̃1, w̃2, ..., w̃N ] is a given sentence for the video V .

Our aim is to find the index of the incorrect word, t∗, and correct it with w∗t∗ as follows:

(t∗, w∗t∗) = arg max1≤t≤N,wt∈β p((t, wt)|S̃,V), (5.1)

where wi ∈ {0, 1}|V | is an one-hot vector representing the i′th word of the sentence, |V | is the size

of our dictionary andN is the length of the sentence. Also, β ⊆ V represents the set of all potential

substitution words. Since t∗ and w∗t∗ are sequentially dependent, we decompose the Equation 5.1
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into two sub-tasks: Inaccurate word detection as:

t∗ = arg max1≤t≤N p(t|S̃,V), (5.2)

and the accurate word w∗t∗ prediction as:

w∗t∗ = arg maxw∈β p(w|S̃,V , t∗ ). (5.3)

5.1.1 Inaccuracy Detection

We propose detection by reconstruction method to find the most inaccurate word in a sentence,

leveraging the semantic relationship between the words in a sentence. In our approach, each word

of a sentence is reconstructed such that the reconstruction for the inaccurate word is maximized.

For this purpose, we build embedded word vector xi ∈ Rdx for each corresponding word wi using

a trainable lookup table θx ∈ R|V |×dx . We exploit both Short Term and Long Term Dependencies

employing respectively Convolutional N-Grams and LSTMs to reconstruct the word vectors.

5.1.1.1 Short-Term Dependencies:

Convolutional N-Gram networks[82] capture the short-term dependencies of each word surround-

ing. Sentences can vary in length, and a proper model should not be confused easily by long

sentences. The main advantage of N-Gram approach is its robustness to disrupting words in long

sentences, since it considers just a neighboring block around each word.

Let X = [x1;x2; . . . ;xN ] be the stacked vectors representing embedded word vectors. Since the

location of each word provides extra information about the correctness of that word in a sentence,
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we combine it with word vectors X . We denote pt ∈ Rdx as an embedded vector associated to the

t’th position of each sentence, which is one row of the trainable matrix, P ∈ RN×dx . We use pt

values as gates for the corresponding word vectors xt for each sentence and get final combination

I as:

It = xt � σ(pt), (5.4)

where � denotes element-wise multiplication, and I ∈ RN×dx is the input to a 1-D convolution

with 2dx filters and receptive field size of m. We call the resulting activation vectors C ∈ RN×2dx .

Furthermore, we use Gated Linear Units (GLU) [83] as the non-linear activation function. First,

we split the C matrix in half along its depth dimension:

[A,B] = C,

Φ = A� σ(B),

(5.5)

where A,B ∈ RN×dx , and Φ = [φ1;φ2; . . . ;φN ], and φi ∈ Rdx . The idea is to use the B matrix

as gates for the matrix A. An open gate lets the input pass, and a close gate changes the input to

zero. By stacking multiple 1-D convolutions and GLU activation functions the model goes deeper

and the receptive field becomes larger. The output, Φ, from each layer is the input, I , for the next

layer. We call the final output Φ, from the last Convolutional N-Grams layer, X̂C ∈ RN×dx . In

Figure 5.1, we illustrate one layer of the N-Grams encoding.

5.1.1.2 Long-Term Dependencies:

Recurrent networks, and specifically LSTMs, have been successfully used to capture the long-

term relations in sequences. Long-term relations are beneficial to comprehend the meaning of a
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text and also to find the possible inaccuracies. To reconstruct a word vector based on the rest of the

sentence using LSTMs, we define a left fragment and a right fragment for each word in a sentence.

The left fragment starts from the first word of the sentence to one word before the word under

consideration; and the right fragment is from the last word of the sentence to one word after the

word under consideration in a reverse order. We encode each of the left and right fragments with a

LSTM and extract the last hidden state vector of the LSTM as the encoded fragment:

x̂Rt = Wc × [ult|urt ], (5.6)

where ul/rt ∈ Rh are the encoded vectors of left/right fragments of the t’th word, and Wc ∈ Rdx×2h

is a trainable matrix to transform the [ult|urt ] into the x̂Rt .
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Figure 5.1: (a) One layer of Convolutional Text Encoding which captures the neighboring relationships.
To extend one layer to multiple layers, we simply consider the φi vectors as Ii for the next layer. (b) Our
proposed Visual Gating Bias process. Given each word vector, we filter out some parts of a given visual
feature through a gating process.

5.1.1.3 Detection Module:

We design a module to learn the distance between an actual word vector xt and the reconstructed

x̂t as explained above. This module learns to assign a larger distance to the inaccurate words and
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reconstruct the predictions as follows:

Dt = Wd × (
x̂t
‖x̂t‖

� xt
‖xt‖

), (5.7)

where Wd ∈ R1×dx , and Dt is a scalar. x̂t is the output of the text encoding; namely, x̂t = x̂Ct for

Convolutional N-Grams or x̂t = x̂Rt in case of Recurrent Networks. Next, we combine both as a

vector x̂t = x̂Rt + x̂Ct to capture both long term and short term dependencies of a sentence. We

design our distance module as a single layer network for simplicity; however, it can be a deeper

network.

5.1.1.4 Visual Features as Gated Bias:

Visual features can contribute in finding the inaccuracy in a video description; however, it can

be very challenging since some words may not correspond to any visible form or shape (e.g.

‘weather’), while some others may correspond to distinct visual appearances (e.g. ‘cat’). We

introduce a gating model to incorporate the visual features to measure the inconsistency of each

word. The main idea is to find a dynamic vector for the visual features which changes for each

word as follows (see Figure 5.1):

ΨV = Wv × Ω(V), (5.8)

where Ω(V) ∈ Rdv is the visual feature vector, and Wv ∈ Rdx×dv is a transformation matrix for

the visual features. We build the visual bias vt for each word vector xt:

vt =
ΨV
‖ΨV‖

� σ([Wg × xt]), (5.9)

and Wg ∈ Rdx×dx is transformation matrix, and ‖.‖ denotes L2-Norm of a vector. The Sigmoid

(σ(.)) operator bounds its input into (0, 1). It makes the model capable of refusing or accepting
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visual features dynamically for each word in a sentence.

The most intuitive way to incorporate the V vectors in Equation 5.7, is to use them as a bias term.

In fact, the features which are refused by the word gates will have zero value and will act as neutral.

Therefore, we use the following updated form of Equation 5.7 with the video contribution:

Dt = Wd × (
x̂t
‖x̂t‖

� xt
‖xt‖

⊕ vt), (5.10)

where ⊕ denotes element-wise summation.

For the last step of the detection process, we find the word with maximum D value:

t∗ = arg max1≤t≤N (Dt). (5.11)

5.1.1.5 Detection loss:

We use the cross-entropy as detection loss function. Given the ground-truth one-hot vector y ∈

{0, 1}N , which indicates the inaccurate word, and the T ∗ = softmax(D) as probabilities, we

compute the detection loss ld.

5.1.2 Correct Word Prediction

The second stage of our proposed method to solve the VTC problem is to predict a substitute word

for the inaccurate word. Proposed correct word prediction consists of three sub-modules: 1- Text

Encoder, 2- Video Encoder, and 3- Inference sub-modules.

71



5.1.2.1 Text Encoder:

This sub-module must encode the input sentence in such a way that the network be able to predict

the correct word for the t∗’th word. We leverage the reconstructed word vectors x̂t in equation 5.7,

since these vectors are rich enough to detect an inaccuracy by reconstruction error. We can feed the

output of inaccuracy detection, t∗, to our accurate word prediction network; however, the argmax

operator in Equation 5.11 is not differentiable and prevents us to train our model End-to-End.

To resolve this issue, we approximate the Equation 5.11 by vector T ∗ = Softmax(D), which

consists of probabilities of each of N words being incorrect in the sentence. We build the encoded

text vector qt:

qt = tanh(Wq × x̂t), (5.12)

where Wq ∈ Rdq×dx is trainable matrix. qt ∈ Rdq is in fact a hypothetical representation of the

textual description. To be more specific, qt is the encoded sentence, assuming that the word t is

the incorrect word, which is to be replaced by a blank, according to the Equation 5.12. Finally, the

textual representation uq ∈ Rdq , is formulated as a weighted sum over all qt vectors:

uq =
N∑
t=1

T ∗t qt. (5.13)

Note that, due to the “tanh(.)” operator in Equation 5.12, both qt and uq vectors have bounded

values.

5.1.2.2 Video Encoding:

We leverage the video information to find the accurate word for t∗’th word of a sentence. While the

textual information can solely predict a word for each location, visual features can help it to predict
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a better word based on the video, since the correct word can have a specific visual appearance. We

extract the visual feature vector Ω(V) and compute our video encoding using a fully-connected

layer:

uV = tanh(WV × Ω(V)), (5.14)

where WV ∈ Rdq×dv , and uV ∈ Rdq is our visual representation, which has bounded values. For

simplicity, we have used just one layer video encoding; however, it can be a deeper and more

complicated network.

5.1.2.3 Inference:

For the inference, we select the correct substitute word from the dictionary. In fact, this amounts

to a classification problem, where the classes are the words and the inputs are the textual represen-

tation and the visual features:

w∗t∗ = arg maxw∈β(Wi × [uq + uV ]), (5.15)

where Wi ∈ R|β|×dq . Finally, we use cross-entropy to compute the correct word prediction loss,

namely lf . The total loss for our VTC method is l = lf + ld and we train both sub-tasks together.

5.2 Results

5.2.1 Dataset

In this section, we describe our visual text correction dataset and the method to generate it. The

main idea behind our approach to build a dataset for the VTC task is to remove one word from

73



each sentence and substitute it with an inaccurate word; however, there are several challenges to

address in order to build a realistic dataset. Here, we list a few and also propose our approach to

address those challenges.

Our goal is to build a large dataset with a variety of videos with textual descriptions. We require

that the vocabulary of the dataset and the number of video samples be large enough to train a deep

network; hence we choose “Large Scale Movie Description Challenge(LSMDC)” dataset [88, 1],

which is one of the largest video description datasets available. Also, LSMDC has been annotated

for “Video Fill In the Blank (FIB)” task. In FIB dataset, each video description contains one or

more blanks, which needs to be filled in. For the VTC problem, we introduce inaccurate word in

place of the blanks in FIB dataset. If there is more than one blanks in a sentence of the FIB dataset,

we generate multiple examples of that sentence.

Note that there are some important points related to selection of the replacement words, which

we need to keep in mind. First, there shouldn’t be a high correlation between the original and

replacement words. For example, if we exchange the word “car” with “bicycle” frequently, any

method will be biased and will always suggest replacing “bicycle” with “car” in all sentences.

Second, we want our sentences to look natural even after the word substitution. Therefore, the

replacement word should have the same “Part Of Speech” (POS) tag. For example, a singular verb

is better to be replaced by another singular verb.

It is costly to manually annotate and select the replacement words for each sample, because of

the significant number of videos, and the vast vocabulary of the dataset. Also, it is hard for the

human annotators to prevent the correlation between the original and replacement words. We have

considered all the mentioned points to build our dataset. Following we describe how we build a

proper dataset for the VTC problem.
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5.2.1.1 Random Placement:

In this approach, for each annotated blank in the LSMDC-FIB dataset, we place a randomly se-

lected word from dictionary. This approach evidently is the most straightforward and simple way

to introduce the incorrect word. However, in this method, a bias towards some specific words may

exist, since the selected inaccurate words may not follow the natural distribution of the words in the

dictionary. For example, we have many words with less than 4 or 5 occurrences in total. By Ran-

dom Placement approach, rare words and the words with high frequencies have the same chance

to show up as an inaccurate word. This increases the rate of “inaccurate occurrences to accurate

occurrences” for some specific words. This imbalanced dataset allows any method to detect the

inaccuracy just based on the word itself not the the word in the context. Also, since replacement

and original words may not take the same POS tag, Random Placement approach cannot meet one

of the requirements mentioned above.

5.2.1.2 POS and Natural Distribution:

Due to the weaknesses of the Random Placement, we introduce a more sophisticated approach that

selects the inaccurate words from a set of words with the same tag as the original (or accurate)

word. We first extract the POS tags of all the words from all the sentences using Natural Language

Toolkit (NLTK) [153], resulting in 32 tags. Let Sr be the set of all the words that takes the tag

r (1 ≤ r ≤ 32) at least once in the training sentences. To find a replacement for the annotated

blank word w with the tag r in a sentence, we draw a sample from Sr and use it as the inaccurate

word. Obviously, some tags are more common than the others in natural language and as a result

the incorrect words are similarly the same.

To draw a sample from a set, we use the distribution of the words in all sentences. As a result, the
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words with more occurrences in the training set have more chance to be appeared as an inaccurate

word. Therefore, the rate of incorrect to correct appearances of different words are close to each

other. With this approach, we prevent the rare words to be chosen as the inaccurate word frequently

and vice versa.

5.2.2 Results

5.2.2.1 Detection Experiments:

In this subsection, we present our results for detection module and examine our method with

various settings. The results are summarized in Table 5.1. Following we explain each experiment

in more details.

Random guess is to select one of the words in the sentence randomly as the inaccurate word. In

Text Only Experiments part of Table 5.1, we compare all the blind experiments, where no visual

features are used to detect the inaccuracy. Vanilla LSTM uses a simple LSTM to directly produce

the Dt(Equation 5.7) out of its hidden state using a fully connected layer.

One-Way Long-Term Dependencies uses just ul in Equation 5.6. Long-Term Dependencies exper-

iment uses Recurrent Neural Networks method explained in Section 5.1.1.2. Convolutional N-

Grams w/o Position Embedding uses just Convolutional N-Grams, however, without the contribu-

tion of the positions of each word explained in Section 5.1.1.1 while Convolutional N-Grams is the

complete explained module in Section 5.1.1.1. These two experiments show the effectiveness of

our proposed words position gating, and finally, Convolutional N-Grams + Long-Term Dependen-

cies uses the combination of Convolutiona N-Grams and RNNs as mentioned in Section 5.1.1.3.

The last experiment reveals the contribution of both short-term and long-term dependencies of

words in a sentence for the TC task.
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To further study the strength of our method to detect the wrong words, we compare our method

with a Commercial Web-App1. This application can detect structural or grammatical errors in text.

We provide 600 random samples from the test set to the web application and examine if it can detect

the inaccuracy. In Table 5.1, we show the comparison between our method and the aforementioned

web application. This experiment shows the superiority of our results and also the quality of our

generated dataset.

In Video and Text Experiments part of the Table 5.1, we show experiments with both video and

text. Visual Gated Bias experiment shows the capability of our proposed formulation to leverage

the visual features in the detection sub-task. To show the superiority of our visual gating method,

we conduct Visual Feature Concatenation experiment. In this experiment, we combine the visual

feature vector Ω(V) with each of the vectors xt and x̂t in Equation 5.7 using concatenation and a

fully connected layer. For these experiments, we have used the pre-trained C3D [146] to compute

the Ω(V).

5.2.3 Correction Experiments

In Table 5.2, we provide our results for the correction task. Note that, the correction task is com-

posed of both inaccurate word detection and correct word predictions sub-tasks; thus, a correct

answer for a given test sample must have the exact position of the inaccurate word and also the

true word prediction ((t∗,w∗t∗) in Equation 5.1).

Our Model - Just Text experiment demonstrates our method performance with only textual in-

formation. Our Model With C3D Features uses both video and text, with C3D [146] features as

visual features. Similarly, Our Model With VGG19 Features shows the results when VGG19 [150]

1www.grammarly.com
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features are the visual input. In Our Pre-trained Detection Model + Pre-Trained FIB [90] exper-

iment we use our best detection model from Table 5.1 to detect an inaccurate word. We remove

the inaccurate word and make an incomplete sentence with one blank. Then, we use one of the

pre-trained state of the art FIB methods [90], which uses two staged Bi-LSTMs (LR/RL LSTMs)

for text encoding + C3D and VGG19 features + temporal and spatial attentions, to find the missing

word of the incomplete sentence. We show the superiority of our method which has been trained

End-to-End. In both of detection (Table 5.2) and correction (Table 5.1) tasks, there are accuracy

improvements after including visual features. We also report the Mean-Average-Precision (MAP)

metric, to have a comprehensive comparison. To measure the MAP, we compute N × |β| scores

for all the possible (t∗, w∗t∗).

Table 5.1: Detection Experiments Results. For these experiments we just evaluate the ability of different
models to localize the inaccurate word.

Method Accuracy (%)
Random 8.3
Text Only Experiments
Commercial Web-App 18.8
Vanilla LSTM (One LSTM w/o Prop. Detection Formula) 28.0
One-Way Long-Term Dependencies (One LSTM) 58.0
Long-Term Dependencies (BiLSTM) 67.2
Conv N-Grams w/o Position Embedding 66.8
Conv N-Grams 69.0
Conv N-Grams + Long-Term Dependencies 72.5
Video and Text Experiments
Conv N-Grams + Long-Term Dependencies + Visual Feature Concatenation 72.8
Conv N-Grams + Long-Term Dependencies + Visual Gated Bias 74.5
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Table 5.2: Text Correction Experiments Results. For the correction task, a model needs to successfully
locate the inaccurate word and provides the correct substitution.

Method Accuracy (%) MAP (%)
Random 0.04 '0
Vanilla LSTM - Just Text 17.2 17.7
Our Model - Just Text 35.2 36.9
Our Pre-trained Detection Model + Pre-Trained FIB [90] 36.0 38.6
Our Model With C3D Features 38.6 39.8
Our Model With VGG19 Features 38.8 40.1
Our Model With VGG19 + C3D Features 38.9 40.7

5.2.4 Multiple Inaccuracies

Here, we show that our method is capable of to be generalized to sentences with more than one

inaccurate words. We conduct a new experiment with multiple inaccuracies in the test sentences

and show the results in Table 5.3. In fact, we replace all the annotated blank words in the LSMDC-

FIB test sentences with an inaccurate word. We assume that the number of inaccuracies, k, is

given for each test sample, but the model needs to locate them. To select the inaccuracies in each

sentence, we use the LSMDC-FIB dataset annotations. Note that in training we use sentences that

contain just one inaccurate word, similar to previous experiments. During the test time, we modify

the Equation 5.11 to t∗i=1,..,k = arg kmax(Dt), where arg kmax returns the top k inaccurate word

candidates. Number of inaccurate words in our test set sentences reaches up to 10 words. However,

in Table 5.3, we show the detection results for sentences with each k ≤ 4 value separately, and

also the overall accuracy for all the k values.
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Table 5.3: Detection and Correction results for sentences with multiple inaccuracies. Two types of Ac-
curacy evaluations are provided. (1) Word-Based (WB) Accuracy: All correctly fixed incorrect words are
counted independently. (2) Sentence-Based (SB) Accuracy: All inaccurate words in a sentence must be
fixed correctly. Similarly, two types of MAP is reported: (1) WB-MAP, in which, one AP per each incorrect
word is computed. (2) SB-MAP, in which, one AP per each sentence, including all the k incorrect words, is
computed. k represents the number of inaccuracies in each sentence.

k = 1 2 3 4 All 1 2 3 4 All
# Of Test Samples 1805 4856 5961 520 30349 1805 2428 1987 130 9575

Detection WB-Acc. (%) SB-Acc. (%)
Vanilla LSTM - Just Text 59 63 67 68 66 59 37 27 18 36
Our Method - Just Text 80 81 80 80 80 80 65 48 37 59

Our Method - Text + Video 85 83 83 82 83 85 68 54 39 63
Correction WB-Acc. (%) SB-Acc. (%)

Our Method - Just Text 19 12 12 11 3 19 2 ' 0 ' 0 5
Our Method - Text + Video 24 18 17 17 18 24 4 ' 0 ' 0 7

Correction WB-MAP (%) SB-MAP (%)
Our Method - Just Text 30 14 10 8 12 30 15 11 9 17

Our Method - Text + Video 35 17 11 7 14 35 18 12 10 19

5.2.5 Qualitative Results

We show a few VTC examples in Figure 5.2. For each sample, we show frames of a video and

corresponding sentence with an inaccuracy. We provide the qualitative results for each example

using our “Just Text” and “Text + Video” methods. We show two columns for the detection and

correct word prediction. The green and red colors respectively indicate true and false outputs. Note

that, for the VTC task, just a good detection or prediction is not enough. Both of these sub-tasks

are needed to solve the VTC problem. For example, the left bottom example in Figure 5.2 shows a

failure case for both “Just Text”, and “Text + Video”, although the predicted word is correct using

“Text + Video”.
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He peeks into the vacant living room, then shuts upstairs. Someone lips someone’s shirt revealing his mic.

He points to a large banner, then notices a pretty girl in the 
cab.

She moves on and looks over a mink stole with a very 
critical eye.

Figure 5.2: Here we show four samples of our test results. For each sample, we show a video and an
inaccurate sentence, the detected inaccurate word, and the predicted accurate word for substitution. The
green color indicates a correct result while the red color shows a wrong result.

5.3 Summary

We have presented a new formulation of text correction problem, where the goal is to find an

inaccuracy in a video description, and fix it by replacing the inaccurate word. We propose a novel

approach to leverage both textual and visual features to detect and fix the inaccurate sentences,

and we show the superior results are obtained our approach. Moreover, we introduce an approach

to generate a suitable dataset for VTC problem. Our proposed method provides a strong baseline

for inaccuracy detection and correction tasks for sentences with one or multiple inaccuracies. We

believe that our work is a step forward in the research related to intersection of Natural Language

Processing and Computer Vision.
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CHAPTER 6: VIDEO GENERATION IN THE WILD FROM TEXT

EMPLOYING LATENT PATH CONSTRUCTION FOR TEMPORAL

MODELING

The work in this Chapter is currently under review for ECCV 2020:
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Figure 6.1: In this figure, we show a block-diagram of different steps of our proposed method. We en-
code the sentence using pre-trained BERT model and some trainable layers, and represent it by e(S) (see
Section 6.1.1 for details). Given e(S), we construct two distributions and draw one sample from each cor-
responding to latent representations of start (z1) and end (zT ) frames, respectively. We then determine T
latent representations, [z̄1, z̄2, . . . , z̄T ], corresponding to T frames, employing a context-aware interpolation
in the latent space. We use Conditional Batch-Normalization (CBN, Section 6.1.3) with e(S) and noise as
the condition. Subsequently, we transform each z̄i into a spatial representation using an FC and reshape
layers, and increase its size to the desired resolution through stacked “UpPooling” blocks (Section 6.1.2.1).
Inputs to the Discriminator are encoded sentence e(S), and the video (real or fake). We augment the video
input to the Discriminator by concatenating it with an average frame from the whole batch and edge maps
of the frames. The discriminator employs a single and multi-frame based videos encoders along with e(S),
to measure if each frame and the video (D2D and D3D) are relevant to the input sentence and if each spa-
tial regions of each frame are naturally looking (Dr). Finally, we train the proposed network with GAN
Hinge-loss (Equations 6.6 and 6.5).

In this chapter, we address the task of video content generation using natural language sentences

(as text). Our proposed method to solve the text to video generation follows the Generative-

Adversarial framework, which includes a generator and a discriminator sub-modules. In Fig-

ure 6.1, we show our method diagram, including all the steps in both Generator(G) and Discrimi-
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nator(D). In the rest of this Chapter, we present the details of our proposed model.

6.1 Methodology

In this section, we describe our proposed method in more details. Our method consists of Text En-

coder (Section 6.1.1), Generator (Section 6.1.2.1) and Discriminator (Section 6.1.4) sub-modules.

6.1.1 Text Encoder

Given a sentence as the sequence of words S = [w1, w2, . . . , wN ], the purpose of the text encoder

is to represent S as a vector of real numbers. Ideally, one can train a neural network from scratch

or end-to-end with the rest of the system, similar to [113]. However, in this work, we target

realistic datasets, i.e., A2D and UCF101, and due to the complex nature of such target datasets

and annotations, we do not have enough number of examples for each of the words in the dataset.

A large portion of the words in our target datasets are rare words. In addition, more than 500

verbs, adjectives, and nouns in the A2D dataset appear only once. Also, this amount of rare

words makes models like [116] impractical. Therefore, in this research, We employ the BERT

(Bidirectional Encoder Representations from Transformers) [154] sentence encoder, pre-trained

on English Wikipedia1. BERT provides us a rich representation of all the sentences even if they

contain rare words. We transform the 1024 dimensional output of BERT encoding into 256D using

two blocks of Fully-Connected, Batch-normalization, and Leaky-ReLU layers. We denote the

encoded sentence by e(S) ∈ R256.

1https://github.com/hanxiao/bert-as-service
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6.1.2 Video Generator

Let e(S) be the encoded sentence. We estimate two Gaussian distributionsNs(µs, σs) ∈ R256, and

Ne(µe, σe) ∈ R256 for the starting and ending frames:

µs, µe, σs, σe = F([e(S);N (0, 1)]). (6.1)

Here, F is a Multilayer perceptron (MLP). Concretely, we split the output of the F into four

equally length vectors, and we use sigmoid non-linearity on top σs and σe. Note that, [; ] denotes

concatenation operation throughout this chapter. We draw one vector from each of the distributions

N (µs, σs) and N (µe, σe), and denote them by z1 and zT . To generate a video with T frames, we

employ an interpolation to extract the latent representation for frame i:

zi =
T − i
T

z1 +
i

T
zT . (6.2)

Note that, there exist many interpolation methods like bi-linear, bi-cubic, and etc. We choose the

linear interpolation for this step as the most simple option. We concatenate each of zi vectors

with a normal noise vector N (0, 1) ∈ R32 and pass it through a Conditional Batch-Normalization

(CBN) [155] (see Section 6.1.3), where the condition is [e(S);N (0, 1)]. We denote normalized

latent representations by z̄i. We briefly explain the CBN module and its effect on the training

in Section 6.1.3. The added random noise N (0, 1) brings in the needed variability to the final

motion. In addition, the CBN provides a stochastic context-aware transformation on each latent

representation, to finally produce z̄1 . . . z̄T .
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6.1.2.1 Frame Generator

In the second part of our Generator network, we propose a CNN based network to transform

each of zi latent vectors into a RGB frame. First, we transform the latent vectors into a spatial

representation using a linear transformation and reshape. Basically, we map each z̄i into a h1 ×

w1× c1 vector using a Fully-Connected layers, and reshape it into a spatial tensor ∈ Rh1×w1×c1 . In

our experiments, we choose h1 = 4, w1 = 4, and c1 = 2048.

To build the frames of desired resolution, we employ a CNN based module to increase (up-pooling)

the resolution of spatial features (see Figure 6.2). The proposed module increases the resolution

of the given input via two paths, a short path with only one convolution layer, and a longer path

with two convolution layers with Conditional Batch-Normalization (Section 6.1.3) and ReLU ac-

tivation in between . The short path plays a role of skip-connection that facilitates the training

process. However, the longer path increases the capacity of the model by adding non-linearity and

normalization. We use Nearest-Neighbour (NN) interpolation to increase the spatial size of each

tensor. We tried PixelShuffle [156], and 2D-Deconvolutions as other design choices, however,

NN-interpolation consistently produced better results in all experiments.

We stack the “UpPooling” block (as explained in Figure 6.2) to reach the desired output resolution.

In our experiments, our generated frames are 64 × 64; thus, we need four blocks of UpPooling

Blocks. Finally, we apply a 3D convolution on the output of the final layer with 3 (RGB) filters

and tanh non-linearity to build the final RGB frame.
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Figure 6.2: Here we present the frame generator sub-module. We transform each latent point, z̄i, which
corresponds to i’th frame of the video, into a spatial representation using a Fully-Connected layer and
reshape. We increase the resolution of the spatial representation by a factor of two in each “UpPooling
Block”. The UpPooling block has a short and a long path. The short path has only a linear 1×1 Convolution
and the long path, which has two 2D CNNs from Conditional Batch Normalization (CBN) and Leaky-
ReLU. We increase the resolution in both paths by a Nearest Neighbour(NN) interpolation. Note that, the
concatenation of the encoded text and a 32 dimensional noise ([e(S);N (0, 1)]) are used as a condition to all
CBNs. Finally, we build the RGB frame by a 1× 1 Convolution and tanh non-linearity.

6.1.3 Conditional Batch-Normalization (CBN)

Here, we briefly explain the conditional Batch-normalization we employ in our generator. Given

an input x and condition c we compute x̄ as follows:

x̄ = γ(c)µ=1

x− µx
σx

+ β(c)µ=0, (6.3)

where γ(.) and β(.) are neural networks that have the same output shape as shape of x. In our case,

we use a single linear FC layer to implement each of them. Also, γ(c)µ=b = γ(c)−µγ(c) + b (same

for β(c), that simply means to shift the mean value of the batch, µγ(c), to b), and we compute the

mean µ, and variance σ over the batch. Conditional Batch-Normalization, in fact, normalizes the
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mean and variance of each sample with respect to the statistical data of whole batch, and applies

a context-aware affine transformation (scale γ(c), and shift β(c)), where the context is represented

as condition c, on the normalized input.

6.1.4 Discriminator

Our proposed Discriminator (D) consists of a frame-based and a video-based encoder sub-modules.

The frame-based sub-module encodes each frame globally and locally using 2D CNN blocks. It

encodes each frame into one vector (global frame encoding), and estimates its relevance to the input

text, while it uses spatial features, extracted before the global average pooling (see Figure 6.3), to

compute one score for each region of the frame. It helps the discriminator not only to determine

if the global context of the video is related to the text, but also each spatial region of the frames

is locally natural looking. Similarly, the multi-frame (video-based) sub-module D, leverages 3D

CNN blocks to encode all frames of a video, as a sequence, into a vector. To compute the relevance

between the encoded video v ∈ Rdv , which can be a single or multi-frame based encoded vector,

and the encoded sentence e(S) ∈ Rde , we compute the discriminator score by:

D(v, e(s)) = WD × (σ(We × e(S))� v), (6.4)

where � represents element-wise multiplication, WD ∈ Rdv×1 and We ∈ Rde×dv . We denote the

discriminator scores from 3D CNN multi-frame video-based encoder by D3D, and from 2D CNN

frame-based encoder by D2D. Also, we use Dr for the spatial regions’ scores which is computed

along with the single-frame encoder. Note that, Dr is independent of e(S). Finally, we take an

average of all the scores from all the frames to compute the final D2D and Dr.
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Figure 6.3: Our proposed Discriminator building block. First, we compute the average frame of a batch
and each frames’ edge map using the Sobel edge detector and concatenate them to the input frames. To
reduce the input resolution, we implement a stacking encoder block that consists of a short path of a 1 × 1
convolution followed by average pooling, and in parallel, a long path with a 3× 3 convolution followed by
average pooling and a 1 × 1 Convolution. We sum the outputs of short and long paths, resulting in half of
the resolution of the input. We stack several blocks like this until we reach a 4 × 4 spatial resolution. Note
that, for the multi/single-frame based discriminator, we use 3D/2D convolutions and average pooling layers.

6.1.4.1 Discriminator Input Enrichment

We observe that using Batch-Normalization or Conditional Batch-Normalization in Discriminator

(D) architecture do not facilitate the training process. In our experiments, D containing BN domi-

nates the G in early iterations, and results in severe mode-collapse. To utilize the stochastic batch

information, we propose to concatenate each RGB frame with an average RGB frame of all the

frames in a batch. In this scenario, D benefits from information in both single sample and batch

statistics. This technique reduces the mode-collapse in our experiments; without this technique,

we observe that there is a high chance that the model collapses into one or two modes during train-

ing, and we need to reload an earlier checkpoint to continue training. Additionally, as shown in

previous studies [157], edge information is useful; therefore, we augment each RGB frame with
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its Sobel edge map. See Figure 6.3 for more details.

6.1.5 Loss Function

We use the hinge-based loss to train our GAN architecture. We compose the Generator loss as:

LG = −D3D(G(S), e(S))−D2D(G(S), e(S))−Dr(G(S)), (6.5)

and the discriminator loss as:

LD = [1−D3D(V , e(s))]+ + [D3D(G(S), e(S)) + 1]+

[1−D2D(V , e(S))]+ + [D2D(G(S), e(S)) + 1]+

[1−Dr(V)]+ + [Dr(G(S)) + 1]+, (6.6)

where [x]+ = max(0, x) and V is a real video from training set with the text annotation S, and

G(S) is a generated video given S.

6.2 Experimental Results

In this section, we describe the experimental settings, including the datasets, the metrics we use

to quantify the performance of our approach, a brief description of the baselines, quantitative and

qualitative results. Finally, we provide more details about the hardware and implementations.
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6.2.1 Dataset

Actor and Action (A2D) The A2D dataset is a popular dataset for the actor and action video

segmentation task. The authors in [120] provide sentence annotations corresponding to video actor

segmentation, and authors in [158] provide frame level bounding box for each actor. A2D contains

3,782 videos with 6,656 sentences corresponding to actor segmentation, including 811 different

nouns, 225 verbs, and 189 adjectives. Each sentence corresponds to one actor throughout the whole

video. Therefore, there can be more than one sentence annotated for each video, corresponding to

multiple actors. We crop the video for each sentence by constructing a maximal bounding box that

covers all the instances of the object in all the frames. This way we get one video sequence for

each sentence; hence, we have 6,656 cropped video sequences with one sentence for each.

UCF101 is one of the popular datasets for the task of human action recognition. However, to the

best of our knowledge, there has been no video level captioning annotations for UCF101. We have

annotated 9 classes of UCF101. The selected classes are: “Fencing”, “Basketball”, “Basketball

Dunk”, “Biking”, “Golf Swing”, “Gymnastics”, “Cricket Bowling”, and “Cliff Diving”. We asked

the annotators to describe each video by a short sentence. Note that some of videos in each of

UCF101 classes are very similar, and we let the annotators use identical annotations based on their

judgment. The corpus of video captions have 182 unique words, and the maximum sentence length

is 22 words.

Robot Object Manipulation: Authors in [159] provide an object manipulation robotic dataset

containing videos and corresponding user-to-robot textual command. This dataset contains “push”

and “pick-up” tasks for multiple objects. Sentences are in form of “task + object description”. For

example, “pick-up the blue box”. Each video is about 20 seconds, and we randomly pick 16 frames

to train the system.
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6.2.2 Evaluation Metrics

Inception Score (IS) [160]is widely used in quality assessment of generative models. Inception

Score is computed based on a pre-trained classifier on the dataset. Ultimately, any generated sam-

ple must belong to a specific class (high probability output on a single activation of the classifier),

and the model must generate outputs from all the available categories (diversity on the classifier

output). A higher IS is better. To compute the Inception Score, we fine-tune the I3D model [161]

pre-trained on Kinetics [162] and imagenet [61] on each of datasets with the same number of

classes (in our case, 43,9 and 11 classes for A2D, UCF101, and Robotic datasets, respectively),

and other settings like the frame size, frame rate (fps), etc. We fine-tune the pre-trained I3D

model [161] on Kinetics [162] and imagenet [61] on each of datasets.

Fréchet Inception Distance (FID) [163] compares the statistics of two sets of samples, namely

real and fake. We use the same fine-tuned I3D classifier used for the IS score and extract 1024

dimensional features. The lower FID is better. This quantitative measurement for video synthesis

is also known as FVD [111].

R-Precision:Following [116], we employ R-Precision, which is a retrieval evaluation metric. To

compute the R-Precision, we first train a CNN based retrieval network (again based on pre-trained

I3D), that can rank a set of sentences, given a video. The retrieval network architecture consists of

a video encoder and a text encoder, and we train it with a hinge ranking loss and cosine similarity

until it fully converges on the training data. This network achieves “top-1 accuracy” of 80% and

60% for UCF101 and A2D training data, respectively. Later, given a sentence, we generate a video

and using the retrieval network, we rank a set of 100 sentences, including unseen and seen. As-

suming that there are R related sentences in the 100 sentences, and r of them are in top R ranked

sentences, the R-precision score is:
r

R
. Note that, in contrast to [116], our datasets do not have

multiple sentences per video sequence. Or simply, R = 1. To overcome this issue, we slightly al-

ter each sentence by randomly dropping/replacing some words. Using this technique, we generate
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between 6 to 12 related sentences for each video. We believe that if a sentence is slightly changed,

it must be still ranked above totally unrelated sentences. We use this metric for A2D and UCF101

datasets.

Accuracy: Since there are only 11 unique sentence in the Robotic dataset [159], and some of them

have only one word difference, the R-Precision is not a good option for evaluation. Instead, we

train a classification network that given a video, classifies which of the 11 classes (unique sentence)

the video belongs to. Later, we use this classification network and test it on the generated videos.

A higher accuracy is better.

Table 6.1: A2D experimental results. All-FID: The FID on all the videos from all classes. Intra-FID: Mean
of FID within videos of each class. R-P: R-Precision. IS: Inception Score.

IS ↑ All-FID ↓ Intra-FID ↓ R-P↑
Temporal Modeling Baselines

Deconvolution 3.84± 0.12 31.56 108.04 0.31
SLERP + LSTM 4.04± 0.17 25.74 104.13 0.34

ConvGRU 3.97± 0.33 34.78 109.78 0.30
Ablation Study on Textual Encoding

Only Class Labels 3.90± 0.12 49.35 119.37 N/A
BiLSTM Sentence Encoder 3.09± 0.13 54.12 131.58 0.05

Ablation Study on Discriminator
Frame Based Discriminator (D2D) 3.52± 0.11 169.59 49.17 0.06
Video Based Discriminator (D3D) 3.17± 0.09 39.75 117.92 0.08
Region-Based Discriminator (Dr) 3.77± 0.20 38.14 100.18 0.05

Ours - Full Model 4.85± 0.16 25.91 94.26 0.39
Real Data 9.93± 1.18 11.55 71.56 0.45

6.2.3 Quantitative Results

We evaluate our trained model on UCF101 and A2D dataset using the explained metrics in Sec-

tion 6.2.2. For a comprehensive study, we include some baselines in which we use other design

choices from previous works. We provide the following baselines for all A2D, UCF101, and

Robotics datasets. Only Class Labels: We train the model merely with video class labels. By
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comparing the results of this method with our final method, we show that sentences are more

compelling conditions for the task of video generations; and our generative model benefits from

additional information contained in a sentence compared to employing only labels.

SLERP + LSTM: We follow the design of [102] which construct the temporal domain of a video

by a Spherical Linear Interpolation (SLERP), and estimates each latent point representation z̄i us-

ing an LSTM.

Deconvolution: In this baseline, similar to [113], we expand the number of generated frames by

Stacking Deconvolution layers (also known as Convolution Transpose).

Conv-RNN: Similar to [111], we estimate a distribution out of the input text, and transform it into

a spatial representation using a linear transformation and reshape. The resulting spatial representa-

tion is repeated T times and is passed to a Convolutional Recurrent Neural Network. We observe

that a Convolutional Gated Recurrent Unit (ConvGRU) with layer Normalization is the best choice

for this baseline.

Real Data: Evaluation on the “Real Data” gives us a better understanding of what would be a real-

istic expected value for each of the Inception Score, Fréchet Inception Distance, and R-Precision.

We do not expect even on real data, we will get the best possible scores, since neither of I3D or our

retrieval network is perfect. Note that, the FID value would be ideally zero on the real data itself;

however, we split the set of all the real videos in half and compute the FID between these two sets.

Furthermore, for the A2D dataset, which is the most challenging dataset, we provide more abla-

tion studies (Table 6.1) to show the contribution of the proposed components in our method. In

BiLSTM Sentence Encoder experiment, we replace the pre-trained BERT encoder with a simple

BiLSTM that trains from the scratch, and the performance of the method drops drastically. This

is due to the reasons mentioned in Section 6.1.1. Moreover, we provide ablation study on the

Discriminator. We isolate each of the discriminator terms, namely Dr, D2D, and D3D. By com-

paring the performance of these ablation studies with the full model, we show that the terms in
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Equations 6.5, and 6.6 are complementary.

For the sake of fairness, we keep the implementation of all the baselines and our proposed method

as similar as possible. For example, the discriminator architecture, hardware, and etc. In Ta-

bles 6.1, 6.2, and 6.3 we show the results of our proposed method respectively on A2D, UCF101,

and Robot-Object-Manipulation datasets. Our proposed method is competitive to the baselines

based on all the evaluation metrics.

Table 6.2: UCF 101 Quantitative Results. Here we report the Inception Score (IS), R-Precision (R-P),
Fréchet Inception Distance (FID). For the FID score, all the videos from all the classes of the dataset, are
used to compute the FID score. And in another experiment (Intra-Classes FID) we compute the FID score
for the videos within each class.

All-Videos Intra-Classes FID
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Only Class Labels 3.69± 0.19 N/A 60.38 163.97 77.93 131.31 144.57 49.37 48.52 121.26 77.89 39.86 94.96
SLERP + LSTM 1.02± 0.00 0.04 127.05 181.59 132.14 132.03 190.87 222.27 101.90 134.91 174.22 94.22 151.57
Deconvolution 3.95± 0.19 0.19 51.64 126.85 116.87 53.06 98.28 85.80 59.81 105.05 103.95 49.91 88.84

ConvGRU 5.93± 0.18 0.35 30.24 63.31 54.99 70.03 66.61 68.52 23.01 90.65 40.53 35.89 57.06
Ours 7.01± 0.36 0.43 17.12 29.20 28.08 54.69 46.48 48.54 19.44 46.24 31.40 35.44 37.72

Real Data 8.24± 0.20 0.56 6.92 14.51 18.71 16.21 11.19 16.76 3.87 18.75 12.64 15.78 14.27

Table 6.3: Robotic experimental results. All-FID: The FID on all the videos from all classes. Intra-FID:
Mean of FID within videos of each class. IS: Inception Score.

IS ↑ All-FID ↓ Intra-FID ↓ Accuracy (%) ↑
Only Class Labels 1.99± 0.19 20.39 73.2 10.4

Deconvolution 2.97± 0.21 6.59 18.49 70.4
SLERP + LSTM 3.47± 0.16 4.60 18.22 73.7

ConvGRU 3.17± 0.26 6.65 25.74 50.4
Ours 3.36± 0.15 3.79 16.45 76.6

Real Data 3.64± 0.3 3.4 11.8 100
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6.2.3.1 Qualitative Results

In Figures 6.4 and 6.5 we provide qualitative results for A2D and UCF101 datasets. Each figure

comes with multiple sentences and generated videos corresponding to each of them. In Figure 6.6,

we show generated videos that contain 16 frames. Note that, for the Robot dataset, each video

represents a full task performance, which usually has around 200 frames in the original dataset.

These results show that our method can handle datasets with a higher skip frame rate (lower fps).

In more realistic and wild datasets like A2D, videos can have various ranges of motion. A video

can have minimal motion (static video) or jumpy consecutive frames. We observe that our model

can successfully cover various motions. For example, in Figure 6.4, the top left example (“The

bird is climbing the chair”) has much less motion than the bottom left example (“A bird is flying”).

6.2.4 Experimental Setup Details

For both of UCF101 and A2D dataset, we randomly select 5 to 9 frames, with skip rate of 1 frame

(' 15 fps); meaning that the training clips can be from the beginning, middle or end of a video

sequence. For the Robotic dataset, we sample 16 frames from a full length demonstration of the

robot that can be up to 20 seconds. Thus, the videos shown in Figures 6.4, and 6.5 represent about

0.5 of an actual video, and the videos shown in Figure 6.6 covers a longer range (up to 20 seconds)

of time. We train the models on different datasets in slightly different manners. We use 1 Titan

X Pascal GPU to train the experiments of UCF101, and 4 GPUs to train the A2D dataset. Due to

the higher variance of videos in A2D dataset, it takes more time for our model to start generating

meaningful videos. The model takes 1 day to train on UCF101 and Robotic, and 3 days on A2D.

We employ Spectral Normalization [164] on both of Generator and Discriminator modules in all

training iterations. We train the Generator and Discriminator equally, i.e., training Generator and

Discriminator alternatively, with one iteration for each. We use Adam optimizer with learning rate
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0.0001 for both of G and D.

“Red ball rolling” “Red car rolling on the lawn”

“The bird is climbing the chair” “A cat is rolling on the floor”

“Baby crawling on the floor” “White cat eating something from hand”

“A bird is flying” “A cat is running in the snow”

Figure 6.4: Qualitative Results on A2D dataset. Corresponding to each sentence we show the frames of
generated videos. All samples are 6 frames with 64 × 64 resolution. Our proposed model can successfully
produce diverse videos with different amount of motions, backgrounds and objects.
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“Cricket Bowling, front-view of man wearing green”

“Floor Gymnastics, side-view wearing red”

“Side view fencer lunging forward”

“side view wearing white tshirt and black shorts”

“Back view with white tshirt and shooting basketball”

“Woman riding next to beach”

Figure 6.5: UCF101 qualitative results. Corresponding to each sentence we show the frames of generated
videos. All samples are 6 frames with 64× 64 resolution.

Pick-up the red ring

Push the white plate from left to right

Figure 6.6: Robotic dataset qualitative results. Corresponding to each user command (sentence) we show
the frames of generated videos. All samples are 16 frames with 64× 64 resolution.
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6.3 Summary

In this chapter, we tackle the problem of text to video generation on realistic datasets with free-

form sentences. Our proposed method models the temporal dynamics of a video by constructing

a path in the latent space. Each point on this path will transform into an RGB frame through a

set of stacking “upPooling” layers. Our method provides superior results compared to well-known

approaches like Deconvolution and ConvLSTM. To the best of our knowledge, we are the first to

solve this problem on challenging datasets like A2D and UCF101. We believe that solving the

video content generation using text has a lot of research value and has many real-world use cases.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

The research and methods outlined in the preceding sections have been motivated by the unprece-

dented surge of unanalyzed video and text data in our modern world. As humans, we are incapable

of comprehensively processing and analyzing this wealth of data and in turn must harness the

power of Artificial Intelligence to extract meaningful information.

7.1 Summary

In this dissertation, we have studied the joint comprehension of video and text data. We have

proposed methods to solve real-world problems involving natural language and video data, such

as Video Retrieval, Question Answering, Text Correction, and Video Creation. The power of the

problem-specific solutions we have provided rely on the nascent field of Artificial Intelligence,

and specifically on the sub-field of Machine Learning. With the introduction of each problem-

solution pair, we have illustrated our competitive results in conjunction with ablation studies on

the respective domains.

In Chapter 3, we studied the problem of Video Retrieval in large video datasets. We proposed a

framework that can improve the traditional video retrieval models, which we refer to as video-level

methods in Chapter 3, in which the user query contains more than one concept, like a sentence.

We proposed a ranking based model, motivated by a ranking SVM, that captures both inter and

intra-shot concept correlations. This model also utilized a 0-1 loss to ensure robustness against

outlier samples in the training data. Finally, we illustrated the superior results of the proposed

model compared to traditional video-level models.

In Chapter 4, we studied the Video Fill-In-the-Blank (VFIB) problem that is a novel form of Vi-
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sual Question Answering (VQA). Compared to Video Retrieval, a VQA model can extract more

detailed knowledge from a video by enabling a user to ask questions about a video or image. In

our proposed approach, we leverage spatial and temporal attention to extract relevant information

from the video to answer a given fill-in-the-blank question. We also presented a new text encoder,

lr/rl LSTMs, that encodes the segmented FIB question better than traditional BiLSTMs and vanilla

LSTMs. We use the Large-Scale-Movie-Description-Challenge (LSMDC) to train and test our

method. We also extend the VFIB problem from only one blank to multiple blanks.

In Chapter 5, we follow the problem outlined in Chapter 4, as well as introduce a real-world appli-

cation of VFIB, which is Visual Text Correction (VTC). In this chapter, we present the previously

unformulated problem of detecting an inaccuracy in a video caption and suggesting correct words

to replace the inaccurate word. To solve the VTC problem, we proposed to leverage LSTMs and

1D-CNNs to capture the long-term and short-term dependencies of a sentence, respectively. To

handle the words without a specific visual pattern, like “love”, we propose a novel method named

“Visual Gated Bia”. The proposed Visual Gated Bias approach enables the network to transform

the visual features in a specific way for each word in a sentence through a gating process. We

present the accuracy and Mean Average Precision (MAP) quantitative results for the inaccuracy

detection and correct word prediction tasks.

In Chapter 6, we tackled the challenging problem of text-conditioned video generation. Our

method proposed the novel approach of modelling the temporal dynamics of a video with a straight

line in the latent space. We transform each point in the latent space into an RGB frame; hence, the

line in the latent representation transforms into a video. We show the superior results on realistic

datasets like Actor-Action Dataset (A2D), UCF101, and Robotics.
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7.2 Future Work

Our work in this field has led us to believe that solutions to the joint video-text understanding

problem have far-reaching, real-world applications. In light of this conclusion, we hope our work

herein will encourage other researchers to continue to define and study new problems in this area.

While our work has advanced numerous problems in the field, there are still many great strides

to conquering the problem in its entirety. In addition, we believe that our work has laid the foun-

dation for many extensions which will continue the overall goal of a comprehensive solution. In

the following, we outline several specific areas in which we feel immediate contributions may

precipitate.

We postulate that retrieval models can be further improved, specifically for rare concepts that do

not have many training examples. In our research, we observed that our methods suffered from

word-concepts with few positive training examples. We believe that deep learning has a lot to offer

to improve the retrieval problem results, including rare concepts. We suggest Active Learning

for the re-sampling and annotation process to create a balanced dataset. Generative models have

the potential to generate synthetic data to compensate for rare concept samples. We also suggest

studying new forms of loss functions and regularization techniques for the ranking problem that

takes concepts with limited positive samples into account.

As mentioned above, we have addressed the Video Fill In the Blank (VFIB) and Visual Text Correc-

tion (VTC) problems. These problems provide tools to learn better features for text and video and

to ultimately improve other tasks in Computer Vision and Natural Language Processing. VFIB and

VTC are great options for self-supervised learning. One can remove or replace words of sentences

and learn rich representations by solving VTC and VFIB tasks, similar to [154]. Furthermore, we

address the VTC problem by constructing a synthetic dataset. It is our belief that a valuable next

step in future works will be to find a way to collect human-made video description errors (inac-
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curacies) effectively, as well as to train and examine machine learning models on more realistic

data.

At present, a solution to the Video Generation problem is highly coveted in the Computer Vision

community. For future work, we suggest collecting larger video datasets that include captions

and atomic actions, actors, and objects. These larger datasets will allow future researchers to better

evaluate their methods on real-world data. Furthermore, our observations have led us to the opinion

that the process of training video generation systems is an unstable process. With said instability,

models can easily face mode-collapse. Thus, it is our belief that further research into methods and

techniques which provide stability to the training process will be of great significance.
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