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ABSTRACT

Systems with nonlinear dynamics are theoretically constrained to the realm of nonlinear analysis

and design, while explicit constraints are expressed as equalities or inequalities of state, input, and

output vectors of differential equations. Few control designs exist for systems with such explicit

constraints, and no generalized solution has been provided. This dissertation presents general

techniques to design stabilizing controls for a specific class of nonlinear systems with constraints

on input and output, and verifies that such designs are straightforward to implement in selected

applications. Additionally, a closed-form technique for an open-loop problem with unsolvable

dynamic equations is developed. Typical optimal control methods cannot be readily applied to

nonlinear systems without heavy modification. However, by embedding a novel control framework

based on barrier functions and feedback linearization, well-established optimal control techniques

become applicable when constraints are imposed by the design in real-time. Applications in power

systems and aircraft control often have safety, performance, and hardware restrictions that are

combinations of input and output constraints, while cryogenic memory applications have design

restrictions and unknown analytic solutions. Most applications fall into a broad class of systems

known as passivity-short, in which certain properties are utilized to form a structural framework for

system interconnection with existing general stabilizing control techniques. Previous theoretical

contributions are extended to include constraints, which can be readily applied to the development

of scalable system networks in practical systems, even in the presence of unknown dynamics. In

cases such as these, model identification techniques are used to obtain estimated system models

which are guaranteed to be at least passivity-short. With numerous analytic tools accessible, a

data-driven nonlinear control design framework is developed using model identification resulting

in passivity-short systems which handles input and output saturations. Simulations are presented

that prove to effectively control and stabilize example practical systems.
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CHAPTER 1: BACKGROUND

Recently, there have been few nonlinear control designs for constrained systems that can be used

for different applications. As shown in [1] and [2], specific designs to deal with specific applica-

tions have been developed, but are lacking in generalization to other systems. In most practical

cases, the properties of an entire class of systems may be utilized as a design tool. Scalability is

an important property that is lacking for existing tools developed for linear systems. For instance,

analysis in the Laplace domain becomes daunting to use on a large scale network of systems,

however, the passivity-short framework may be used instead for such networks, which also ap-

plies to nonlinear systems. Although optimal control was developed decades ago, there are still

developments that can be made to improve applicability where real time control is necessary. Com-

binations of data-driven control designs and optimization are required to ensure safety and optimal

performance. If model dynamics are unknown, then system identification techniques are required

to design an effective controller.

In this chapter, some existing techniques, definitions, and properties are presented that will be uti-

lized in subsequent chapters. As such, these tools are useful in regards to control and system design

which are applied to various problems in unique ways. Additionally, this foundation provides a

baseline on which further developments will be presented. Mathematical concepts that serve as the

starting point from which powerful tools for systems and controls are presented, starting with the

concept of system stability.
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Stability Concepts

The underlying concept of system stability is based on whether output can be bounded given a

bounded input. Specifically, if there exists a bound on input, then must exist a bound on output

to achieve stability. This concept is referred to as bounded-input bounded-output (BIBO) stability.

For nonlinear systems, this idea is the first and foremost definition that is addressed. Without

defining stability, we are unable to quantify performance of systems or controls, or even design

adequate controls for systems. Linear system stability has been well-established and thoroughly

investigated, so only brief definitions will be provided.

Consider the general linear system:


ẋ = Ax+Bu

y = Cx+Du,

(1.1)

where x ∈ <n, u ∈ <m, y ∈ <p, and A,B,C,D are matrices of appropriate dimension.

Lemma 1 If u = 0, system (1.1) is said to be stable if one of the following equivalent items is true:

• Real parts of eigenvalues of A are nonpositive

• A ≤ 0 (matrix A is negative semi-definite)

• Roots of L−1{[sI − A]−1} are in the right half-plane

System (1.1) is said to be asymptotically stable if eigenvalues of A have a strictly negative real

part, or A < 0, or roots of L−1{[sI − A]−1} have strictly positive real parts.

It should be noted that stability is tested while either the system behaves autonomously, or the
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control u is designed to close the loop. If a system is not stable with u = 0, a control can be

designed to stabilize the system if the system has some degree of controllability and observability.

Nonlinear Systems

Concepts of stability for nonlinear systems require a different approach than linear systems, since

all stability definitions for linear systems depend on linearity of dynamics. However, definitions

of stability for nonlinear systems can be generalized to linear systems as well, although it may be

easier to use linear system stability concepts when dealing with linear systems. Nevertheless, a

general nonlinear affine system is presented as follows:


ẋ = f(x) + g(x)u

y = h(x),

(1.2)

where x ∈ <n, u ∈ <m, y ∈ <p, and f(x), g(x), and h(x) are nonlinear in general and of

appropriate dimension. Conveniently presented in [3], a common tool which is used to show

stability for nonlinear systems is known as the Lyapunov direct method. This technique requires

choosing an energy-like storage function V (x) which is generally positive definite, and must be

a function of all internal state variables. Additionally, V (x) = 0 must only occur when x = 0.

By default, Lyapunov’s method is valid for equilibrium points at the origin, however, they can be

easily shifted by state augmentation. The following definition restates Lyapunov’s direct method

for nonlinear system stability:

Definition 1 System (1.2) is said to be Lyapunov stable (at least marginally stable) if, for storage

function V (x) > 0, V̇ (x) ≤ 0 for all x 6= 0. Additionally, system (1.2) is said to be asymptotically

stable if V̇ (x) < 0 for all x 6= 0.
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Lyapunov method analysis for energy storage functions (also called Lyapunov candidates) is based

on sufficiency. Unfortunately, if one cannot show that for V (x) > 0, V̇ (x) ≤ 0, then the system’s

stability is inconclusive. Much of the process to prove stability in this manner resides in the

selection of the correct Lyapunov candidate, in which quadratic functions are typically chosen first

due to simplicity. The concept is illustrated in the following example:

Example 1 Consider the system:

ẍ+ ẋ3 + x = 0

Choosing the storage function as V (x) = 1
2
ẋ2 + 1

2
x2 yields

V̇ (x) = −ẋ4,

which satisfies conditions of Definition 1 for stability.

A significant reason to choose Lyapunov candidates as quadratic is due to the energy-like nature of

the behavior. In example 1, the storage function is chosen to be exactly the summation of kinetic

and potential energies of the system. This choice provides insight to the physical behavior, and

since the analysis resulted in V̇ (x) < 0, it is implied that energy is completely conserved and

never lost during transience. It is not always possible to show stability with quadratic candidates,

in which cases a new candidate function may be chosen.

Another type of stability that was first shown in [4] connects state equations with input-output

relationships is known as input-to-state stability (ISS). The concept is defined briefly below.

Definition 2 System (1.2) is said to be input-to-state stable if there exists a continuously increasing

function ζ+ with ζ+(0) = 0, and a function ζ−(x0, t) for all t ≥ 0 which is continuously decreasing

4



to zero for all x0 > 0, such that the following inequality holds:

|x(t)| ≤ ζ−(|x0|, t) + ζ+(‖u‖),

where ζ+ is called the gain.

When ISS has an input equal to zero, it can be seen that system (1.2) becomes globally asymp-

totically stable. Then, the inequality in Definition 2 reduces to |x(t)| ≤ ζ−(|x0|, t). In fact, ISS

implies that a system is globally asymptotically stable with zero input, and BIBO stable if the

output of the system is equal to the state.

A similar stability concept that involves input and output bounds is known as L2 stability based on

the L2 norm, which is equivalent to the Euclidean norm, and is briefly defined as follows [3]:

Definition 3 System (1.2) is said to be L2 stable if for storage function V (x) ≥ 0, the following

holds:

V̇ (x) =
∂V

∂x
f(x, u) ≤ a(γ2‖u‖2 − ‖y‖2), a, γ > 0.

Then for each x(0) ∈ <n, system (1.2) is finite-gain L2 stable with an L2 gain less than or equal

to γ as

‖y‖L2 ≤ γ‖u‖L2 +

√
V (x(0))

a
.

In addition to concrete definitions of stability at equilibrium points, the concept of modes exists

to classify behavior around an equilibrium point. Modes are oscillations around an equilibrium

point with a definitive damping and period of oscillation. In rigid-body dynamics (especially aerial

applications), it is usually a design requirement to ensure that all modes are nominally stable.

The following section discusses useful concepts that stem from Lyapunov’s stability definitions
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and utilize the energy-like nature of the analysis.

Dissipativity

Credited with the introduction of the classification of energy-based analysis of systems, the author

of [5] provides the baseline category on which the remaining concepts are built upon.

Recent research directions require designs of cooperative systems involving distributed controls

with local communication rather than global. The decentralized network framework is becoming

more popular in practice due to safety and security. One such framework is based on passivity,

as shown in [6] and [7]. Specific system structures have been classified as passive in theoretical

environments as in [8], Although passive systems reside in a restrictive subclass of dissipative

systems, very few systems in practice are passive. Graph theoretical methods in [9] have been

developed for communication topology-based design frameworks, which has become a relatively

standard network representation in recent years.

As the name implies, dissipative systems, in general lose energy over time. One exception are

systems which maintain the same amount of energy that is injected. On the other hand, while

inspecting system behavior with a long time horizon, practical systems always lose energy, since

there is physical work being done by the system with respect to the environment, or vice versa.

So-called passive systems encompass systems that never gain energy with respect to the input,

while passivity-short systems may generate some energy during transience. Of course, passivity-

short systems cannot generate more energy than they started with, however, there can be energy

produced based on the input. From this observation, definitions of passive and passivity-short

depend on the relationship between input and output. Although in the scope of this dissertation,

the continuous-time domain is of interest, the discrete-time version of passivity-short theory is

6



discussed in [10] and [11].

Further definitions rely on utilizing the energy storage function and its characteristics from Defini-

tion 1.

Definition 4 System (1.2) is dissipative if, for storage function V (x):

V̇ (x) ≤ −`(x) + uTy + εϕ(u) + ρφ(y),

where `(·), ϕ(·), and φ(·) are positive semi-definite functions and ε and ρ are constant parameters

arising from system dynamics. If storage function V (x) is quadratic, the definition becomes:

V̇ (x) ≤ −a‖x‖2 + uTy + ε‖u‖2 + ρ‖y‖2, (1.3)

where a > 0. The passivity-short system class is a broader class of structure-constrained systems

than passive systems. The structural constraint is that all passivity-short systems must be square,

meaning their input and output dimensions must be equal. The importance in this class of systems

lies in the ability to form a stable plug-and-play network of systems due to underlying proper-

ties. Most practical systems are in fact passivity-short, and can be determined as such through an

energy-based analysis. Recent work which considers general control designs with passivity-short

systems includes [12] and [13], which deal with cooperative design frameworks.

Specific classes which are subcategories of dissipative systems are listed in the following definition,

and depend on the parameters of ε and ρ in (1.3).

Definition 5 System (1.2) with storage function differential (1.3) is said to be:

• passive if ε = ρ = 0;

7



• input passivity-short if ε > 0, ρ = 0;

• output passivity-short if ε = 0, ρ > 0.

More subclasses of dissipative systems are outlined in [3], however, analysis and designs are well-

established for those systems although the subclasses are more restricted than the ones in Definition

5. The realm of passivity-short systems allows relative degrees greater than one, which passivity

does not. Additionally, passivity-short designs for nonminimum phase systems have been devel-

oped in [14], whereas only minimum phase systems can be considered passive. In minimum phase

systems, causality and stability are required for the original system as well as the inverse system.

Equivalently, the linear representation of the system must have all poles and zeros inside the unit

circle. Equivalence in passivity and minimum phase characteristics is investigated in [15], [16],

and [17].

Network stabilizing interconnection of passivity-short systems allows more options than passive

systems, including positive feedback, negative feedback, and a combination of both, as shown in

[12]. Obviously, not all connection schemes are guaranteed to maintain network stability in passive

systems, however, by utilizing this scalable framework, overall networks become plug-and-play

provided that all systems are at least passivity-short.

The following example illustrates the utility of the passivity-short design tool for network stability.

Example 2 Consider the following two systems:

ẋ11 = x12

ẋ12 = −x11 − 3x12 + u1

y1 = x11

ẋ21 = x22

ẋ22 = −2x22 + u2

y2 = x21

8



The storage function candidates for each system are as follows:

V1 =
1

2
(4x211 + x212) + x12x22, V2 =

1

2
(2x221 + x222) + x21x22,

such that:

V̇1 = −3

2
x212 + u1y1 − y21 +

1

2
u21 ≤ u1y1 +

1

2
u21

V̇2 = −1

2
x222 + u2y2 +

1

2
u22 ≤ u2y2 +

1

2
u22

When interconnected, we design a positive feedback connection with individual negative feedback

control inputs as u1 = −k1y1 + y2, and u2 = −k2y2 + y1 such that

V̇1 + V̇2 = −k1y21 − k2y22 +
1

2
[k21y

2
1 − 2k1y1y2 + y22]

= (
k21
2
− k1)y21 + (

1

2
− k2)y22 − k1y1y2

≤ k21 − k1
2

y21 + (
1 + k1

2
− k2)y22

which results in a stable overall system when k1 < 1, and k2 > (1 + k1)/2.

Since Lyapunov stability is based on sufficiency, it is possible that the choices of k1 and k2 are

conservative, however, this also means that stability cannot be guaranteed if the gains violate their

constraints.

Another connection scheme that is relevant in the context of constrained systems and control is

that of a passivity-short and L2 stable system (denoted as PS L2 in Figures 1.1 and 1.2) in series

with a saturation function. Both saturations on output and input are considered, and the analysis is

done independently for each. Specifically, the following lemma is presented:
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Lemma 2 Consider a system that is passivity-short and L2 stable. Equivalently, from definition 2

in [13], for storage function V > 0,

V̇ ≤ uTy +
ε

2
‖u‖2 − ρ

2
‖y‖2,

where ε, ρ ≥ 0. Then, the system with input and output saturation is also passivity-short and L2

stable as:

V̇ ≤ uTy +
ε′

2
‖u‖2 − ρ′

2
‖y‖2,

where ε′ = 7+2ε
2

, and ρ′ = ρ− 2.

Proof: For the configuration shown in Figure 1.1 with saturation on the output and from Definition

5, there exists a storage function V ≥ 0 such that

V̇ ≤ uTv +
ε

2
‖u‖2 − ρ

2
‖v‖2,

with ε, ρ > 0.

Figure 1.1: Passivity-Short System with Output Saturation Block Diagram

Then, it can be concluded that

V̇ = uTy + uT (v − y) +
ε

2
‖u‖2 − ρ

2
‖v‖2

≤ uTy +
5 + 2ε

4
‖u‖2 − ρ− 1

2
‖v‖2,
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which is passivity-short from u to y with ρ ≥ 1 when the inequality SAT[v]2 ≤ v2 holds. This

can be guaranteed to hold when the saturation function is centered at zero, or can be shifted to be

centered at zero. Similarly, the configuration shown in Figure 1.2 with a saturation on input, the

following analysis shows it the overall system is passivity-short and remains to be L2 stable.

V̇ ≤ vTy +
ε

2
‖v‖2 − ρ

2
‖y‖2

V̇ = uTy + vTy − uTy +
ε

2
‖v‖2 − ρ

2
‖y‖2

≤ uTy +
1 + ε

2
‖u‖2 − ρ− 1

2
‖y‖2

Figure 1.2: Passivity-Short System with Input Saturation Block Diagram

�

Optimal Control with Exogenous Input

Since the 1950s, optimal control theory has continued to develop. Powerful computational tools

are available to solve assorted unconstrained problems, but robust designs for output and/or input

constrained optimal control and tracking have not been well established. Because many practical

systems are constrained due to important elements such as safety or performance, this has attracted

the attention of many researchers.

11



Based on the foundation in Definition 1, a general framework for designing control inputs that

optimally approach equilibrium points was developed most completely in [18], although the math-

ematical theory of calculus of variations was developed much earlier. The strive for advancing

technology that occurred during and after World War II led to important developments involving

previously known mathematics, without a chance for application until that time period. Optimal

control theory, which is still used extensively today, is a Lyapunov-based theory that provides

generally closed form solutions for linear systems, however is somewhat lacking in the realm of

nonlinear systems.

Consider a special case of system (1.2) as follows:


ẋ = F (x) + Ax+Bu+Gr̂,

y = h(x),

(1.4)

where F (x) is generally nonlinear, A,B,G are constant matrices of appropriate dimension, and

r̂ is an exogenous input. In what follows, an optimal tracking control is derived for system (1.4)

using standard techniques outlined in [19]. Consider the Hamiltonian with costate vector λ(t) as:

H =
1

2
ỹTQỹ +

1

2
uTRu+ λT (F (x) + Ax+Bu+Gr̂), (1.5)

where ỹ = y−yd, yd is the desired output vector, andQ ≥ 0, andR > 0 are constant square penalty

matrices. Then, the corresponding optimization problem is to minimize the following performance

index:

J =
1

2
ỹTf Sf ỹf +

∫ tf

t0

[H− λT ẋ]dt, (1.6)

where Sf ≥ 0 and yf = y(tf ). It follows from calculus of variation [18], [19] that the first-order
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variation of the performance index is given by

δJ = (Sf ỹf − λTf )δx

+

∫ tf

t0

[
(
∂H
∂x

+ λ̇)T δx+ (
∂H
∂u

)T δu

+(
∂H
∂λ
− ẋ)T δλ

]
dt, (1.7)

with λf = Sf
∂ỹ
∂x
|y=yf . By setting δJ in (1.7) equal to zero, the following necessary conditions are

obtained:

ẋ = F (x) + Ax+Bu+Gr̂, x(t0) = x0

λ̇ = −

(
∂y(x)

∂x

T

Q[y(x)− yd]

+[
∂F (x)

∂x
+ A]Tλ

)
u = −R−1BTλ.

Parameterizing the above expression, we know that

λ = k(x, t)− v(r̂, t),

is a valid choice [19]. Embedding k(x, t) and v(r̂, t) into the previous equations yields the follow-

13



ing:

∂k(x, t)

∂t
=−∂k(x, t)

∂x

T

[F (x) + Ax−BR−1BTk(x, t)]

−∂y(x)

∂x

T

Qy(x)− [
∂F (x)

∂x
+ A]Tk(x, t), (1.8)

dv(r̂, t)

dt
=

[
A−BR−1BT ∂k(x, t)

∂x
+
∂F (x)

∂x

]T
v(r̂, t)

−∂k(x, t)

∂x
Gr +

∂y(x)

∂x

T

Qyd; (1.9)

with terminal conditions k(xf , tf ) = Sfyf , v(r̂, tf ) = Sfy
d.

Although equations (1.8) and (1.9) can only be solved numerically in the general setting, it should

be noted that, if F (x) = 0 and ∂y
∂x

= Cx, then the equations reduce to the well-known linear

quadratic tracker:

Ṡ=−SA− ATS + SBR−1BTS − CTQC (1.10)

v̇=[A−BR−1BTS]Tv − SGr̂ + CTQyd (1.11)

ẋ=Ax+Bu+Gr̂ (1.12)

u∗=−R−1BT (Sx− v), (1.13)

where (1.10) and (1.11) are solved in reverse time and u∗ is the optimal control input.

Since we have split conditions between λ and x, the implementation must technically be open-loop

as the control must be solved ahead of time, although calculations can be done during real-time

operation if values of r̂ are updated. For systems with vanishing nonlinearities, the formulation

is significantly simplified. Such systems include linear systems with constraints or saturations on

output, input, and/or input rate where most partial derivatives omit the nonlinearities, which will

be the subject of chapter 2.
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Dynamic Inversion

An important and straightforward approach to design controls for nonlinear systems is known as

dynamic inversion, which is a type of feedback linearization. As the name implies, the dynamics

of the given nonlinear system are linearized in the feedback loop, then stabilized, then returned

to its nonlinear form. This general process is outlined in Figure 1.3. There are a few types of

feedback linearization including state feedback, and additional steps which involve state transfor-

mation, however, these other types will not be considered. Instead, as the input-output feedback

linearization technique in the current context.

Figure 1.3: Feedback Linearization General Procedure Diagram

In a general form, the Lie derivative may be used to describe the first step of the dynamic inversion

process, which is defined as follows:

15



Definition 6 Let Lfh(x) be defined as the Lie derivative of h(x) along f(x) as

Lfh(x) =
∂h(x)

∂x
f(x).

Additionally, let L(n)
f be the recursive Lie derivative as

L(µ)
f h(x) =

∂

∂x
[L(µ−1)

f h(x)]f(x), (1.14)

which can continue from µ−2 down to µ = 1 recursively, and where µ is called the relative degree.

For a square system, the dimensions of input and output must match, i.e. p = m in system (1.2).

Provided that system (1.2) is square, minimum phase with stable zero dynamics, and that the

derivatives of h(x) remain continuous, the general process of input-output feedback linearization

is presented below using Definition 6:

1. Calculate y(µ) = L(µ)
f h(x) + LgL(µ−1)

f h(x)u, where µ is the relative degree

2. Define tracking error e(y(t)), and error differential equation
∏µ−1

j=0 (s−aj)e(y(t)) = 0, where

aj > 0 are chosen such that all real parts of s are negative.

3. Solve for the control input as:

u = [LgL(µ−1)
f h(x)]−1(−L(µ)

f h(x) +

µ−1∏
j=0

(s− aj)e(y(t))). (1.15)

Of course, in order to reach (1.15), both LgL(1)...(µ−2)
f h(x) = 0 and LgL(µ−1)

f h(x) 6= 0 must hold.

Requirements of minimum phase and stable zero dynamics are relatively common and easy to

verify. For stable zero dynamics, an output of zero must imply that the input also equals zero while

the remaining state differential equations are stable.
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The following example illustrates the dynamic inversion design process.

Example 3 Consider the system

ẋ1 = x2

ẋ2 = − sinx1 − x2 + cos(x1)u

y = x1

Following Definition 6, we have

y(1) = x2,

y(2) = − sinx1 − x2 + cos(x1)u,

Consider the linear error system ė(t) = −Ke(t), where K > 0 is a gain matrix. It is obvious

that, when K > 0, the error system is stable, which can be easily verified a number of ways. An

equilibrium point at x1 = 0, x2 = 0, is known, although we notice we will need two derivatives

of the output to reach the input (relative degree is two), so we can define our error as the second

order system

ė(t)
ë(t)

 =

 0 1

−k1 −k2


e(t)
ė(t)

, and develop the following equivalent relationship

to force the system to stabilize at the equilibrium:

ë(t) + k2ė(t) + k1e(t) = 0. (1.16)

Since the output is considered in this context, we may force e(t) = y(t), such that

ė(t) = ẏ(t) = x2,
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and

ë(t) = ÿ(t) = − sinx1 − x2 + cos(x1)u.

It follows from the above and from (1.16), that

− sinx1 − x2 + cos(x1)u+ k2x2 + k1x1 = 0.

Then, by choosing k1 and k2 such that (1.16) becomes asymptotically stable, i.e. k1 = 1, k2 = 2,

which is also critically damped, the stabilizing control can then be found as:

u =
1

cos(x1)
[sinx1 − x2 − x1].

Now, the closed loop system becomes

ẋ1 = x2,

ẋ2 = −2x2 − x1,

which is asymptotically stable.

Essentially, we have canceled the nonlinear terms in the dynamics and forced the remaining terms

to stabilize the system.

Jacobian Equivalence

A global equivalence condition together with Lyapunov stability allows us to conclude stability of

original nonlinear systems by using its Jacobian system. Based on the lemma in [20] and Definition

1, and restated from [21], the following lemma is presented:
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Lemma 3 Consider an error system in the form of ė = F(e, t), and assume that its Lyapunov

function V(e, t) is positive definite and decrescent. If Jacobian matrix5eF has the property that

5tV + [5eV ]T 5wF(w, t)|w=x−δe ≤ −ρ(‖e‖)

for some class-K function ρ(·), for all x ∈ <n and for all constants δ ∈ (0, 1), then the system is

uniformly asymptotically stable.

The result of Lemma 3 is especially useful for systems with saturations. Referred to as vanish-

ing nonlinearities, saturations on input, state, or output disappear after one differentiation. The

remaining terms will either be the original input, state, or output, or zero.

Hammerstein-Wiener Model Identification

In general, system identification is a mathematical process to obtain a set of differential equations

that match the behavior of a given unknown system. All known methods of system identification

require two sets of data, namely, input and output. Based on the measured data, assorted algorithms

are used to determine the best possible model of the given system. Most algorithms are based on

linear regression as shown in [22]. State variables are estimated as a weighted linear combination

of parameters and error in the following generalization of regression algorithms:

y(t) = ΦΘ + error,

where y(t) is the known output data, Φ is a matrix of regressors, and Θ can be estimated as

Θ̂ = (ΦTΦ)−1ΦTy(t) or by a correlation matrix. Better estimations involve optimization to itera-

tively solve for Θ. Typically, the identification process involves solving an optimization problem
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involving a cost function in the form of:

J(Θ) =
1

N

N∑
n=1

(y(n)− ŷ(n,Θ))2,

where values of ŷ(n) are the samples of the model output and values of y(n) are samples of

the measured output. The topic of model identification has been explored in depth, and many

algorithmic variations have been developed with practical implementation in mind [23].

For any given system, it may not always be possible to identify a model. The following definition

provides requirements for models based on their structure [24].

Definition 7 A model G(Θ) called structurally identifiable at Θ0 if for all Θ1,Θ2 in a neighbor-

hood of Θ0, the following implication is true:

G(Θ1) = G(Θ2) =⇒ Θ1 = Θ2.

The simplest types of systems that are structurally identifiable are single-input single-output (SISO)

transfer functions with parameters, and SISO state space models in canonical form. The result of

Definition 7 is applicable to the process of identifying parameters for the estimated system. Since

dynamics of the original system may be completely unknown, there is no such identifiability quan-

tification, however, customized identification methods can be developed for original systems that

are more complicated.

While these techniques can be used to obtain a linear model, the Hammerstein-Wiener (HW) model

specifically includes nonlinearities on input and output. In the scope of this dissertation, such non-

linearities are considered as saturations. The block diagram in Figure 1.4 illustrates the specified

HW model structure.
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Figure 1.4: Hammerstein-Wiener Model Block Diagram

Incidentally, this structure is identical to the combination of input and output saturated passivity-

short structures shown previously in Figures 1.1 and 1.2. Of course, the linear system acquired

from model identification is assumed to be passivity-short and L2 stable already. If the original

system is unstable, then a focus on stabilization is required first. Known model identification

methods deal with SISO models, however, identification can be done on each pair of measured

inputs and outputs to comprise a full multi-input multi-output model if necessary.

A combination of the above preliminary methods and definitions provide a solid foundation for

the remainder of the content. Most techniques in this chapter are expounded upon in subsequent

chapters and applied to practical systems.
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CHAPTER 2: OPTIMIZED INPUT/OUTPUT-CONSTRAINED

CONTROL DESIGN

Ensuring optimality in conjunction with designing controls for constrained systems is important

for applications that involve mandatory constraints on safety and performance. Many designs

have been proposed that focus on designing optimal controls with state constraints [25], or input

constraints [26], but not both simultaneously. Methods such as model predictive control (MPC)

that include constraints are often solved over a finite-time horizon when applied in real-time [27].

Disadvantages of MPC involve the difficulty of finding closed-form solutions for the control when

constraints are present, hence the open-loop iterative design requirement for real-time applications.

The MPC framework works well in the presence of known linear dynamics, in which exact solution

can be obtained, however, nonlinear systems or The fundamental procedure of using MPC on-line

requires an optimization problem to be solved at every discrete step of a given system trajectory to

predict the behavior of the system at the next discrete step [28]. Optimization algorithms require

multiple iterations until an acceptable solution is reached, thus, the solution must be found before

the next discrete time step. Because of these micro-optimization problems that must be solved in

between time steps, the overall solution is discontinuous, so a closed-form is not obtainable. For

practical applications requiring fast response time, computational hardware constraints are present

which may not be capable of solving trajectories ahead of time.

Another topic that partially addresses safety and performance concerns involves design structures

with the State-Dependent Ricatti Equation (SDRE) as explored in [25]. In general, SDRE cannot

guarantee global asymptotic stability and may not have an analytic solution, which forces more

computational effort on-line. Detailed parameterization is required when developing appropriate

controls based on SDREs, under the condition that the resulting state dependent system matrix
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is point-wise stabilizable. In fact, the authors of [29] have combined SDRE and MPC in a cus-

tomized design, however, this design method unfortunately inherits a combination of analytic and

computational disadvantages of SDRE and MPC, and adds a linear matrix inequality optimization

within the existing algorithms to achieve a sub-optimal control. In applications where compu-

tational power is freely available, SDRE is a powerful mechanism when dealing with estimated

system models that are updated in real-time.

Barrier function methods have been shown to be effective in constrained control environments.

Most existing techniques do not consider exact barrier functions and optimality simultaneously

in a closed-form sense. For instance, authors of [30] employ barrier functions in MPC, while

the authors of [31] approximate barrier functions from trajectory constraints. Alternatively, sat-

isfaction of constraints is guaranteed by the control design presented in [32], however, the use of

log-barrier functions forces control action of two orders of magnitude larger than nominal when

close to the boundaries. In [33], a design is presented for the purpose of controlling linearized

systems, although only output constraints are considered.

Using exact barrier functions formed from any given constraints on input rate or input/output mag-

nitude embedded in an optimal tracking framework, a novel control method is created that not only

satisfies constraints, but guarantees smooth control action and optimal performance. The design

incorporates constraints in real-time while providing a closed form solution to maintain system

stability in the presence of an exogenous input.
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Barrier Formulation

The foundation of the control design maps existing constraints into barrier functions, and the map-

ping technique is provided in a general form for the class of systems of the following type:



ż = A′z +B′SAT[u′] +G′r,

u̇′ = SAT[u],

y′ = SAT[C ′z],

η′ = SAT[y′],

(2.1)

where z is the state vector, the control vector u′ is subject to magnitude and rate saturations, and

the constrained output η′ depends upon the unconstrained output y′. The vector to be designed

is u ∈ <m, and the SAT function denotes a vector of saturations. Matrices A′, B′, C ′, G′ are

assumed to constant for simplicity of derivation, although this assumption is not necessary for the

design to be successful. State saturations are not considered simply because the output is already a

function of the states. Essentially, state constraints that are not outputs are embedded in dynamics

and would be trivial to consider since no design is needed for trajectories that are already bounded

internally. Exogenous input r is a function of time, and in the context of power systems, its value is

recorded. An estimated value r̂ is typically known, and can be generated by various data analytic

tools including those developed in [34], [35], and [36].

Introducing the augmented state x ∈ <n and redefining η ∈ <p+m as

x , [zT u′T ]T , η , [η′T SATT [u′] SATT [u]]T ,

24



the dynamics of system (2.1) can be written as


ẋ = F (x, u) + Ax+Bu+Gr,

y = Cη,

η = H(x, u).

(2.2)

The augmented system (2.2) is subject to η ∈ Ω, where

Ω = {ci ≤ Hi(x, u) ≤ ci, i = 1, ..., (p+m)}, (2.3)

in which ci is a known lower bound and ci is a known upper bound. The system matrices are

formed as follows:

A =

Az Bz

0 0

 , B =

0

I

 , CT =


I

0

0

 , G =

Gz

0

 . (2.4)

Now, y is the unconstrained output after augmentation, and η includes all variables subject to

constraints. The function F (x, u) : <n+m → <n consists of all vanishing nonlinearities that

disappear in Ω. Specifically, F (x, u) ≡ 0 if η ∈ Ω, where Ω ⊂ <p with 0 ∈ Ω. For controllable

systems, output constraints can generally be satisfied through appropriate control synthesis. On

the other hand, input constraints restrict what type of stabilizability is achievable, and in general

Lyapunov unstable systems cannot be stabilized (globally) under saturated controls. As such, the

uncontrolled nominal of system (2.1) needs to be Lyapunov stable. It is straightforward to show

that, under (2.4), controllability and Lyapunov stability of the uncontrolled nominal system are

equivalent between system (2.2) and system (2.1).

The control problem addressed in this chapter consists of the following aspects:
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• Stability conditions are derived for nonlinear system (2.1), its control design, and its robust-

ness in the presence of forecasting error (r − r̂).

• An optimal tracking control is developed for system (2.1) with respect to performance index

J =
1

2
ỹTf Sf ỹf +

1

2

∫ tf

t0

[ỹTQỹ + uTRu]dt, (2.5)

formed from similar terms in (1.5) and (1.6), where yf = Cx(tf ), Sf = S(tf ) ≥ 0. The

terminal conditions at tf are to be decided during the design process. A design based on

Lemma 3 and optimal control formulation (1.10)-(1.13) is presented to force the nonlinear

system to move into and remain in set Ω, which is explicitly constructed for systems with

saturations on the state and control.

• By embedding the optimal tracking control law in the barrier control design, constraints are

imposed to handle the system’s reactions to discrepancies in r̂(t) and r(t).

In this section, a general nonlinear control design is presented for system (2.1), and the correspond-

ing stability condition shown in Lemma 3 is utilized.

Inherently, Lemma 3 yields a more straightforward approach to apply the standard Lyapunov sta-

bility result to Jacobian systems derived from the original nonlinear system without loss of gener-

ality. In the case where V is quadratic, the property of Lemma 3 is used to construct the following

theorem, restated from [21] for convenience:

Theorem 1 Consider system (2.1) under control

u = −R−1BT (k(x, t)− v(r̂, t)), (2.6)
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where v is a uniformly bounded function of r̂ and time. If matrix

Γ(w) , Ṡ + S 5w [F (w) + Aw −BR−1BTk(w, t)]

+{5w[F (w) + Aw −BR−1BTk(w, t)]}TS

is positive definite for all w ∈ <n, then system (2.1) under control (2.6) has the following proper-

ties:

• If r̂ = r, the state is asymptotically convergent to equilibrium state xe described by

ẋe = [F (xe) + Axe −BR−1BTk(xe, t)]

+BR−1BTv(r, t) +Gr. (2.7)

• If r̂ 6= r, the tracking error is input-to-state stable with respect to forecast error (r − r̂).

Proof: Under control (2.6), system (2.1) becomes

ẋ = [F (x) + Ax−BR−1BTk(x, t)] +BR−1BTv(r̂, t) +Gr.

If r̂ = r, the trajectory of equilibrium state xe is governed by (2.7). Conversely, if r̂ 6= r, then for

the state error e = x− xe, we have the error system

ė = [F (x)− F (xe) + Ae

+BR−1BT (−k(x, t) + k(xe, t))]

+BR−1BT (v(r̂, t)− v(r, t)).
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For positive definite matrix S(t), we choose the Lyapunov function

V =
1

2
eTS(t)e. (2.8)

It follows that, for some δ ∈ (0, 1),

V̇ =
1

2
eTSė+

1

2
ėTSe+

1

2
eT Ṡe

= eTSBR−1BT [v(r̂, t)− v(r, t)] +
1

2
eT
[
Γ|w=x−δe

]
e

≤ λmax(SBR
−1BT )‖e‖‖v(r̂, t)− v(r, t)‖

−1

2
λmin(Γ)‖e‖2, (2.9)

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues, respectively, and from

which asymptotic stability is seen from Lemma 3 and input-to-state stability can be concluded [3].

�

In general, many choices of k(x, t) can be made as the feedback control law. The closed-form

control (1.13) is only optimal for x ∈ Ω. Although, for x 6∈ Ω, a stabilizing control can be de-

signed according to theorem 1 for system (2.1) whose nonlinearities consist of saturation functions.

Specifically, the linear optimal tracker can always be embedded into control (2.6) with v(r̂, t) given

by (1.11) together with (1.10), and the nonlinear feedback control part k(x, t) will be chosen to

force x into set Ω and hence achieve both stability and optimality over time. This design using

barrier functions is the topic of the next section.
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Barrier Function Design

A barrier function is a representation of algebraic constraints on the output. In particular, any

bound on a state variable will be imposed as a barrier function, and the control forces the state into

set Ω. By nature, such a design ensures stability and, by making Ω an invariant set, control (1.11)

is applied within set Ω to achieve optimal performance.

Applying Definition 6, the relative degree can be found between the barrier function ξi(x) and

control input u. Using the concept of relative degree, for differential operator s, we can write

high-order time derivatives of ξi(x) as:

ξ
(j)
i (x) , sjξi(x) = L(j)

f ξi(x), j = 1, ..., µi − 1; (2.10)

and

ξ
(µi)
i (x) , sµiξi(x) = L(µi)

f ξi(x) +
∂

∂x
[L(l−1)

f ξi(x)]Bu. (2.11)

The following lemma based on the comparison theorem provides the mechanism of embedding a

set of barrier functions, denoted by ξi(x) ≤ 0 for i = 1, · · · , p, into a control design. By abuse

of notation, ξi(t) = ξi(x(t)). From (1.15) and the feedback linearization process, the following

lemma from [21] generalizes the equation to inequalities.

Lemma 4 Consider the following differential inequality:

µi∏
j=1

(s+ γij)ξi(t) ≤ 0, (2.12)

where γij > 0 are constants. Then, solution ξi(t) has the property ξi(t) ≤ 0 for all the time
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provided that ξi(0) ≤ 0, and

k∏
j=1

(s+ γij)ξi(t)

∣∣∣∣∣
t=0

≤ 0, ∀k ∈ {1, · · · , µi − 1}, (2.13)

If ξi(0) � 0, then ξi(t) ≤ 0 becomes true exponentially, given inequality (2.12).

Proof: Let

α0 = ξi(t), α1 = (s+ γi1)ξi(t),

and

αj = (s+ γij)αj−1, j = 2, · · · , µi. (2.14)

Then, differential inequality (2.12) can be expressed as

αµi = (s+ γiµi)αµi−1 ≤ 0,

in which u is present and can always be enforced by design. Now, consider whether αl(0) ≤ 0

implies αl(t) ≤ 0 and whether

(s+ γil)αl(t) = αl+1(t) ≤ 0. (2.15)

Upon analyzing the solution to the above differential equation: for l = µi − 1, · · · , 1,

αl(t) = αl(0)e−γilt + e−γilt
∫ t

0

eγilταl+1(τ)dτ, (2.16)

it can be seen that it is valid. The lemma is proven by using the above result to differential equation

(2.15) recursively, from which non-positive values can be concluded from αµi(t) to αµi−1(t) and

recursively down to α0.
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When ξi(0) � 0, inequality (2.13) may not hold, however, we know αµi(t) ≤ 0 can be satisfied

with a proper choice of u regardless of whether αl(0) ≤ 0 for any l, thus, the integral term in solu-

tion (2.16) is negative and non-increasing, which in turn dominates the decrescent initial condition

term for each αl(t). Therefore, ξ(l)i (t) decreases exponentially. �

Remark: If µi = 1, then (2.13) is not needed, and only ξi(0) can be verified, since from (2.11) and

definition 1, ∂
∂x

[L(0)
f ξi(x)]Bu 6= 0.

The specific steps of designing a successful barrier control are as follows:

Step 1: It follows from (2.3) that there are a total of 2p constraints and their corresponding barrier

functions are:

ξ2i−1 = Hi(x)− ci, ξ2i = ci −Hi(x), i = 1, · · · , p.

Determine the relative degree µi for each ξi.

Step 2: Choose positive constants γij for j = 1, · · · , µi and calculate the corresponding character-

istic polynomial:

∆i(s) ,
µi∏
j=1

(s+ γij) = sµi +

µi−1∑
j=0

βjs
j. (2.17)

It follows from the above expression, equation (2.11) and definition (2.14) that

αµi =
∂

∂x
[L(µi−1)

f ξi(x)]Bu+ L(µi)
f ξi(x) +

µi−1∑
j=0

βjL(j)
f ξi(x).

Step 3: We know from Lemma 4 that barrier ξi(x) ≤ 0 can be ensured under differential inequality

(2.12) even when ξi(0) � 0, which in turn is guaranteed by choosing the barrier control as

∂

∂x
[L(µi−1)

f ξi(x)]Bu ≤ −

[
L(µi)
f ξi(x) +

µi−1∑
j=0

βjL(j)
f ξi(x)

]
. (2.18)
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Step 4: Given that the inequalities in Step 3 may admit many solutions of u, hence the best control

in the whole state space is given by the following real-time optimization problem:

u = argminu ‖u− u∗‖2 (2.19)

subject to inequality (2.18) for i = 1, · · · , 2p,

where u∗ is given by (1.13).

In fact, if u and u∗ evolve according to the same time scale and all constraints are enforced, Step 4

is not required, and if implemented it may actually slow down the calculation of input values when

the time increments are small. Step 4 is useful if there is significant delay in update rates for either

u or u∗, or if r and r̂ are significantly different.

Theorem 2 [21]:Consider system (2.2) with A′ being Lyapunov stable and pair {A′, B′} being

controllable. Suppose that the augmented nonlinear system (2.1) with “output” ξi is input-output

feedback linearizable of relative degree µi and with Lyapunov stable internal dynamics [3]. Then,

nonlinear system (2.1) is controllable, it has a Lyapunov stable nominal system, and tracking

control (2.19) is stabilizing for all feasible reference signal r(t) and with its (good) forecast r̂(t).

If r̂(t) is close to r(t) and if control (2.6) with v(r̂, t) renders that u′ stays within its bounds, the

control is also optimal.

Proof: It follows from (2.4) that A is Lyapunov stable if and only if A′ is Lyapunov stable and that

{A,B} is controllable if and only if {A′, B′} is controllable. Hence, linear optimal control u∗ in

(1.13) is stabilizing for nonlinear system (2.1) whenever F (x) = 0. In the region that F (x) 6= 0,

the barrier controls in (2.18) and the optimized version obtained from (2.19) are stabilizing controls

and both force x into Ω exponentially as shown in Lemma 4.
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Application of Theorem 2 involves dynamic inversion, which holds for general nonlinear system

of form (2.1) provided that the system has controllable pair {A,B}, that its uncontrolled nominal

systems is Lyapunov stable, and that it is input-output feedback linearized with respect to the

constraints to be imposed. For those systems, Theorem 2 provides a real-time near-optimal control.

In Figure 2.1, a block diagram of the implementation structure is shown. In real-time, r̂ is used to

synthesize the optimal control, which may be updated as often as a new forecast is acquired.

Figure 2.1: Barrier Function in Optimal Control Block Diagram

The following examples are included to illustrate details of the design steps.

Example 4 Consider the following system with output and state dynamics saturations:

ẋ1 = x2 + u

ẋ2 = −SAT±1[x1] + r

η = SAT±1[x1],

which can be written in the form of (2.1) with F (x) = x1−SAT±1[x1], A =

 0 1

−1 0

, B = [1 0]T ,

G = [0 1]T , SAT±1[x1] = H(x). The objective of the control is to stabilize the oscillating dynamics

subject to the exogenous input, which may be considered as a reference signal that is susceptible
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to disturbance. While the control is active, the state trajectory must remain within the set Ω, which

has the following structure:

Ω =

{
x ∈ <2 : −1 ≤ x1 ≤ 1

}
.

Tracking control (1.13) can be used to achieve an optimal trajectory. However, to ensure the

constraints are obeyed, the design is continued by determining relative degrees from Definition 6,

then forming the barrier control from αµ with βj = 1 ∀j as

u ≤ −x2 − (x1 − 1)

−u ≤ x2 − (−1− x1)

In real-time, optimization (2.19) is applied subject to the above constraints to achieve a near-

optimal trajectory.

Example 5 Consider the following system with input rate saturation:

ż1 = z2

ż2 = −z1 − 0.5z2 + u′ + r

u̇o = SAT±1[u]

yo = z1.
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After augmenting, we arrive at:

ẋ1 = x2

ẋ2 = −x1 − 0.5x2 + x3 + r (2.20)

ẋ3 = SAT±1[u]

where the initial condition vector is x0 = [1 1 1.1]T . The set Ω has the following structure:

Ω =
{
x ∈ <3 : −1 ≤ u ≤ 1

}
.

It follows from Definition 6, Lemma 4, and (2.18), that the control barrier is

u ≤ 1

−u ≤ 1.

The dynamics of system (2.20) resemble that of a second order oscillator subject to a sinusoidal

exogenous input r. The objective of the control is to minimize the oscillations of the internal

dynamics of the system, that is, to force x1 and x2 to zero by using the augmented state x3, which

is controlled by u.

35



Figure 2.2: Control and State Trajectories of Input Rate Saturated System

We see that, in Figure 2.2, the states x1 and x2 do not converge to zero as desired due to the input

rate saturation. There are a few important points of interest that are present in these results:

• The initial condition of u is outside the barrier but is immediately forced within the bounds

by the design.

• Although the original internal state dynamics are not saturated, the input rate saturation

alone causes the entire system to oscillate.

• When r is relatively large and fast, the rate-limited control cannot keep up, therefore, opti-

mality is compromised.

• Even through state augmentation, x3 is the original control to be designed, but since the

augmented control (or rate of x3) u is saturated, the speed of x3 is too slow.
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If such a signal is provided that the system is incapable of handling with respect to operation speed

and constraints, then the signal r may be considered infeasible, which is the exception for Theorem

2.

Imposing the original constraints as barrier functions allows us to determine a solution that re-

mains within the given state and input limits. Because the trajectory of r̂ is an estimation, the true

trajectory of r can effect dynamics differently than expected. In real-time, the nonlinear control

can compensate for cases where r̂ 6= r. The linear optimal solution pair of x∗, u∗ is obtained by

including r̂ as the reference, not r, so it is necessary to correct any disturbances produced by the

real-time reference r. Standard optimal control procedures are only optimal if the system trajec-

tory does not deviate from the solved trajectory of x∗ when u = u∗. Thus, a real time solution is

provided to guarantee the state and control trajectories remain optimal or close to optimal. Updates

in the estimated reference signal drive adaptation of the barrier, such that a better estimation allows

for increased performance.

Summary

A generalized nonlinear control was designed for systems with input rate and input/output mag-

nitude limits. The design imposes constraints in real-time by using a barrier function formulation

along with input-output feedback linearization. Although saturations are the only static nonlinear-

ity included in the form of existing system constraints, the nature of the barrier function formula-

tion allows any nonlinearity to be modeled within the barrier function. The result is a slightly more

complicated calculation of the barrier function polynomial, in which multiple derivatives of other

nonlinearities may not lead to equaling zero. Embedded in an optimal tracking control, the con-

trol design ensures that constraints are satisfied while achieving optimal performance subject to an

unknown exogenous input. In practical systems, exogenous inputs resemble real-time data being
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gathered. Typical designs may not consider discrepancies between the real-time exogenous input

and the estimated value, which can lead to stability problems in sensitive situations. Optimizing

trajectories based on estimated data while ensuring that constraints are satisfied by real-time data

provides an encompassing solution for maintaining performance and safety. Applications which

involve forecast-dependent control meld well together with the design discussed in this chapter,

especially when forecasts are not completely accurate.

The scenario of microgrid power control lends itself to the usage of the barrier design structure with

a known (and feasible) but not guaranteed estimation r̂, which is discussed in the next chapter.
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CHAPTER 3: MICROGRID CONTROL WITH HIGH-PENETRATION

OF PHOTOVOLTAICS

As the structure of modern microgrids becomes more complex, there is a greater need for advanced

control techniques to address important issues such as power balance and system stability, customer

satisfaction, and optimal operating costs. Although large-scale renewable generation proves to be

an effective power contributor, it can have adverse effects in regards to traditional generation and

frequency stabilization. High penetration of renewables can cause major power swings which

require governor actions that stress existing components in traditional generation.

A common solution to assist in balancing power in distributed energy resources (DER) is by forced

reduction of generation from renewables, or curtailment, which is extremely costly and sometimes

ineffective [37]. In [38], a thorough overview of DERs in microgrids is presented, and the difficul-

ties of grid integration and maintaining system stability are addressed.

In a microgrid, frequency deviation can occur due to the intermittent nature of renewable genera-

tion. Higher penetration of renewables can lead to larger frequency deviations, and can possibly

destabilize the microgrid if not handled accordingly. To avoid destabilization and minimize fre-

quency deviations, battery energy storage systems (BESS) and demand response (DR) must be

utilized properly. However, since traditional generation, battery operation, and DR act at different

time scales, the coordination of each of these elements must be addressed carefully.

Additionally, the battery energy storage system (BESS) capacity must be determined. In [39], a

battery sizing strategy is proposed through a novel cost-benefit analysis, and further, in [40], a

detailed description of various types of energy storage systems is presented, although specifically

for wind power integration.
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Similarly, controlling charging/discharging of the BESS has been addressed by many researchers.

A distributed control method is shown in [41] to regulate voltage in distribution networks with

high photovoltaics (PV) penetration. In [42], reactive power control is coupled with BESS control

to regulate voltage profiles in a residential distribution network setting; and the authors of [43]

present a frequency control strategy for three-phase BESSs. In [44], a survey of DR in smart grids

is presented along with scheduling, modeling, issues, and various solutions to those issues. More

specifically, the authors of [45] propose a distributed cooperative method to provide a load control

for ancillary services.

Using advanced techniques to control separate microgrid elements may not be enough when con-

sidering the diversity of devices and DERs present in the system without considering physical

interactions among devices. By implementing an optimal control that can handle constraints as

well as real-time disturbances can coordinate usage of multiple microgrid elements. In [1], a sim-

plified design of a locally coordinated optimal control is proposed, however, the design assumes

system constraints are satisfied so no nonlinear design was explicitly shown, and real-time distur-

bances could not be handled well. In [46], the authors propose a three-layer control strategy to

stabilize microgrid frequency, however, they aggregate renewable generation into electric power

without specified dynamics.

In the context of power systems, optimization and optimal control is mostly used on a higher level

of direct power control or distributed network control, and typically is not used to delve into sys-

tem dynamics for transient stability analysis due to the difficulties with existing methods. In [47],

an optimization problem is formed to determine the optimal power generation of each agent in a

power network, but does not consider specified generation sources and dynamics thereof. Also, in

[48], an optimal power flow control technique is employed by using Pontryagin’s minimum princi-

ple without considering the impact of dynamics. On the other hand, the authors of [49] considered

the notoriously problematic saddle point dynamics to develop an extremum seeking distributed
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optimization in application to energy consumption in smart grids. However, in scenarios consid-

ering inter-area oscillations, dynamics of power generation are focused upon while integration of

renewables is aggregated [13].

State constraints in power systems are often considered when solving optimal power flow, however,

when real-time transient stability is in question, designs become much more complex. Various

works have investigated transient stability constrained optimal power flow [50], [51], but do not

consider fluctuations during transience. Common problem formulations such as solving optimal

power flow do not contain input or input rate constraints due to the lack of transient analysis since

the dynamics themselves are used as the constraint. Transient stability is explored in [52], where

oscillator-based synchronization of first order unconstrained models is shown.

Constrained Control in a Microgrid

This problem structure is directly applicable to power distribution systems, where r̂ represents the

net load forecast. In this context, the objective is to balance load and generation through the use of

the control input. Typically, power systems have constraints that must be satisfied for safety and

performance reasons, such as frequency and turbine gate limits. More components are added in

modern microgrid structures, which also adds more constraints on the system. Including a BESS

and DR control capabilities adds system constraints of capacity limits and acceptable DR range,

respectively. Naturally, barrier functions are advantageous in this situation due to well-defined

boundedness while remaining continuous.

The coordination of the controls for traditional generation, BESS, and DR can be primarily done

by using a typical linear-quadratic optimal tracking control as long as the real-time reference r

does not deviate from the estimated r̂. The relative priorities or costs of utilizing each element can

41



be assigned parameters in the performance index, namely R, to minimize costs associated with

each power contributing component.

PV, Duck Curve, and Saturations

Disturbances in real-time cannot be easily reconciled in standard optimal control or typical power

systems, and can lead to destabilization of the system. Since tracking control is derived from

an open-loop method, when there are deviations in real-time, the solved trajectory is no longer

optimal. The open-loop portion of the design depends on an estimation, therefore, a base load

profile from [53] on January 1, 2017 is selected as the day-ahead load forecast, combined with

solar generation data from a test case in the software OpenDSS to craft a net load profile that

includes intermittent solar generation behavior, which is shown in Figure 3.1. When renewable

penetration is high, the net power consumption dips far below the base load during the middle of

the day. The shape produced looks similar to that of a duck, thus, such a load profile is commonly

referred to as a “duck curve.”
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Figure 3.1: Sample Net Load Profile with Intermittent Solar Generation

In a modern microgrid, frequency stabilization and load balancing are main concerns. When in-

cluding the power contribution of DR and readily available battery energy in the microgrid, fre-

quency stabilization becomes more difficult, especially if local system objectives are prioritized

without coordination. The model of a microgrid can be presented as a series of first order differen-

tial equations that are coupled through state feedback. The state equation representation illustrates

how each control input should be designed to effect power generation.

Traditional generation is often represented by the swing equation:

Mω̇ = −Dω + Pm − Pb − r − Pdr, (3.1)

where M is the generator inertia constant, ω is frequency, D is the generator damping, Pm is

mechanical power, Pb is battery power, and Pdr is the consumer load from demand response. While
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r̂ still signifies a reference to be tracked in system (2.1), here it represents the net load forecast.

Intuitively, the amount of power generated should equal the net load for optimal performance.

Each of the power generating components have individual first or second order dynamics relative

to the control input. The control for traditional generation is implemented in the governor dynamic

equation in the form of:

Mgẋg = −xg + ug, (3.2)

whereMg is the governor inertia constant, xg is governor state signal, and ug is the governor control

signal. The relationship between the governor control and power generation can be described by

the mechanical power dynamic equation:

MsṖm = SAT(xg − Pm), (3.3)

where Ms is the inertia constant. The rate of mechanical power generation is limited by the satu-

ration in (3.3). Typically, this physical constraint is called the ramping rate, and can be related to

the rate of valve operations for the governor and turbine [54].

Demand response dynamics have a direct first order relationship with its control input, as shown

in the following equation:

MdrṖdr = −Pdr + udr, (3.4)

where Mdr is considered as a time constant, and udr is the DR command signal. Due to the sign

definition of Pdr in (3.1), a positive value indicates that DR is absorbing power. Here, we assume

that power from DR is always possible to control if needed. Of course, this assumption does not

consider consumer decisions involving price dynamics or incentives, which is beyond the scope of
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this topic.

The final two dynamic equations are related to the BESS and are presented below:

τ Ṗb = −SAT[ub], (3.5)

Ė = Pb, (3.6)

where τ is a time constant, ub is the battery power command signal, and E is the battery energy

state. Since the rate of charging and discharging can change much faster than traditional gener-

ation, the time constant τ is much smaller than M . The capacity limit on E does not depend on

dynamics, although it is important to determine the minimum acceptable value as well as the min-

imum required capacity. Due to the sign definition in (3.1), a positive value of Pb results in the

battery charging, which constitutes a loss of available generation.

The constraints on specified system states to ensure safe power system operation are presented

below in a compact form:

|SAT(xg − Pm)| ≤ us (3.7)

−0.05 ≤ ω − ω0 ≤ 0.05 (3.8)

|Pdr| ≤ Pdr (3.9)

0 ≤ E ≤ E, (3.10)

where us is defined as the ramping rate limit. Typical frequency deviation limits are within 5%

of nominal values; and we allow the minimum energy of the battery to be zero. The required

DR should be limited by an upper bound of Pdr to ensure that customer action is not necessarily

required, but commands can be issued if needed. Constraints (3.7)-(3.10) are imposed by the

barrier function design using the results in the previous chapter.
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If the traditional generation maximum ramping rate is not large enough, the generation will lag

behind the net load, which can cause large deviations in frequency. An estimate of the maximum

required ramping rate can be gathered from the net load envelope, not considering intermittent

renewable generation. This can simply be done by calculating the approximate slope of the duck

curve during the largest ramping phase, which can be seen approximately between 12:00 and 18:00

in Figure 3.1, and making sure that traditional generation alone can achieve that slope.

Figure 3.2: Trajectory of ug and its Limiting Values

Figure 3.2 shows the trajectory of ug as well as the limiting values of ug, which are calculated

from barrier functions formed according to constraint (3.7). It is apparent that, during the periods

of the net load profile changes rapidly, control ug makes the ramping rate reach but not exceed its

boundary. Nonetheless, ug is incapable of compensating for the large swings in PV generation due

to the ramping rate limits.

The upper bound of the battery energy can be determined based on solar firming shown in the
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following equation:

E =

∫ tf

0

(r̂ − Pr(t))dt. (3.11)

However, is important to determine the lowest battery capacity needed in order to help minimize

the required cost of the BESS. This type of firming procedure is done by integrating the difference

in the net load forecast and the actual solar generation. This calculation takes into account the

variability of solar, in which it is best to assume a highly intermittent case, where Pr(t) is the

“worst-case” past solar data in the region.

Figure 3.3: Difference in Forecast vs. Actual Net Load due to Solar Generation

In Figure 3.3, the difference between net load and the load envelope is shown. Due to the penetra-

tion level of solar in this case, large fluctuations in power occur, and can reach beyond 0.7 per unit

in a short amount of time. These differences can be captured by integration, which allows us to
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determine the maximum required battery capacity. In Figure 3.4, the integration of the difference

in net load and the load envelope is shown. Thus, a safe choice for the battery capacity would

be E = 0.3 if only the BESS is used for these sharp changes in load. Additionally, the energy

calculation in (3.11) does not consider the fact that the battery can be charged from a temporary

excess in traditional generation, so the chosen value of 0.3 can be treated as highly conservative

capacity.

Figure 3.4: Integration of Difference in Forecast vs. Actual Net Load

Since machine inertia plays an important role in microgrids, whether physical or virtual, as shown

in [55], some portion of traditional generation can cover the low frequency variations in renewable

intermittency. Also, we can attribute some generation to DR by reducing loads, such that we may

greatly reduce the required capacity of the BESS.

Additionally, knowledge of r̂ is advantageous in determining a smaller battery capacity than what

firming can provide. An offline simulation can be performed and tuned using the linear optimal
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tracker (1.10)-(1.13) and can even include the past solar data Pr. From this reasoning, with the

inclusion of DR and the effect of inertia, we choose the BESS capacity as E = 0.07.

Simulation and Discussion

By coordinating the usage of traditional generation, DR, and BESS, the microgrid can success-

fully provide power to consumers while maintaining an operational status within the boundaries of

safety and performance. Different power contributing elements have different effects on the micro-

grid, and can be handled by the proposed control design. The impact of each component is shown

through simulations in various scenarios. For all cases, the optimal tracking parameter matrices are

chosen as R = diag{1, 20, 10} for the control vector [ug udr ub]
T and Q = diag{0, 500, 250, 200}

for the output vector y = [(xg − Pm) ω Pdr E]T .

Each power generating or power consuming component has an impact on stabilizing system fre-

quency. Obviously, the goal is to minimize the deviation of frequency from nominal. The most

straightforward way to achieve this in the design is to penalize deviations within the optimal track-

ing control, however, this may lead to other state variables not being penalized enough. Typically,

the safe range of operation for the system frequency is within 5% of nominal, so we shall deem

anything beyond a 0.05 per unit deviation unacceptable.

As an important parameter, ramping rate limits can cause frequency deviation when the traditional

generation rate is saturated. With inertia constants of M = Ms = Mg = 1, the operational speed

of traditional generation is relatively slow. To gain an understanding of the effect of ramping rate

limits, DR and BESS are inactive at this point. In Figure 3.5, it can be seen that when the net load

exhibits large swings, traditional generation cannot keep up with the change, so the frequency rides

on the bounds. This is due to the maximum ramping rate of us = 0.1.
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Figure 3.5: Frequency and Traditional Generation at 100% solar penetration, us = 0.1

Figure 3.6: Frequency and Traditional Generation at 100% solar penetration, us = 0.22

50



In such a system with 100% renewable penetration, a low ramping rate limit does not allow tra-

ditional generation to react fast enough to the net load envelope. By allowing a higher maximum

ramping rate, traditional generation alone can be fast enough to cover the large net load variations,

and thus allows the frequency to remain closer to nominal, or at least keeps the frequency from

riding along the bounds, which can be seen in Figure 3.6. Even though the governor signal xg

reaches zero, the mechanical power value Pm does not.

Choosing the BESS capacity too large can be wasteful, however, it is important to understand what

is required based on the other power sources in the microgrid. With time constants Mdr = 0.1 and

τ = 0.01, operational speeds of DR and the BESS are approximated as ten times and one hundred

times faster than traditional generation, respectively. In Figure 3.7, while the ramping rate limit

remains at 0.1, the battery energy is saturated, and DR reaches the limit. From this behavior, we can

conclude that BESS and DR will not have a significant impact on frequency stability if traditional

generation cannot follow the net load envelope. A possible but not recommended solution is to

increase the BESS capacity. To illustrate this further, Figure 3.8 shows the traditional generation

and frequency of the case where BESS and DR are active.

Thus, in this case, not even firming is a valid solution if the BESS is the only component capable of

handling net load changes due to renewables, although the frequency stability problem still exists.

However, the saturation of BESS is primarily due to the level of renewable penetration, not the

intermittency.

If there is a larger ramping rate limit, frequency deviations are reduced, however, with only the

BESS contributing to counteract such large changes in net load, the frequency performance is not

yet at a desirable stage. In Figures 3.9 and 3.10, by prescribing us = 0.22 and keeping the battery

capacity at E = 0.3, the contribution of the BESS is not enough to have a significant effect on

frequency stabilization.
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Figure 3.7: Stressing BESS and DR Behavior due to Low Ramping Rate Limit, us = 0.1, E = 0.3

Figure 3.8: Frequency and Traditional Generation, us = 0.1, with BESS and DR, E = 0.3
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Figure 3.9: Frequency and Traditional Generation, us = 0.22, with BESS, E = 0.3, without DR

Figure 3.10: BESS Behavior without DR, E = 0.3
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Figure 3.11: Frequency and Traditional Generation, us = 0.22, with BESS, E = 0.07, and DR

Figure 3.12: Optimal BESS and DR Behavior, E = 0.07

54



Frequency becomes easier to deal with when traditional generation is fast enough to cover the net

load envelope, which allows the BESS and DR to focus on handling intermittent behavior and

excess generation. In Figures 3.11 and 3.12, the frequency performance is substantially better

with both BESS and DR. Additionally, since DR is included, the BESS capacity needed is 0.07.

Ultimately, available operation of both BESS and DR allows the storage capacity to be drastically

reduced while stabilizing frequency even more. Since DR is capable of operating on a time scale

in between traditional generation and the BESS, it can assist in both regards.

There is a natural trade-off between BESS and DR usage, since both can directly contribute to

highly intermittent behavior of renewables. The penalties on either can be customized in the off-

line optimal tracker according to microgrid requirements. Since DR remains positive for the major-

ity of time during the day, consumers are required to use more load, which is more acceptable than

requiring consumers to reduce loads. Of course, the usage of more load during the solar peak hours

can be encouraged through incentives, but this concept is beyond the scope of this dissertation.

Summary

The optimized control presented in chapter 2 is applied in a modern microgrid environment with

various power generating and power consuming elements. By optimally coordinating these el-

ements, the novel control design successfully stabilizes and balances loads subject to input rate

and input/output magnitude saturations. Simulation results show relationships between specified

capacity limits and available generation, and their impact on system stability. Ultimately, the op-

timal capacities of microgrid elements are determined through simulations while satisfying all

constraints in real-time subject to disturbances due to intermittent PV generation. Thus far, coordi-

nation of modern grid elements with existing traditional generation has been addressed, however,

in the absence of traditional generation, inverter-based designs inclusive of grid-forming structures
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require more attention. As smaller but numerous distributed energy resources become more promi-

nent in designs over large centralized traditional generation, machine inertia can no longer be relied

upon to anchor the system despite quick power fluctuations, and wide-area stabilization and con-

trol becomes the focus rather than local controls. Theoretically, the advantages of passivity-short

network properties can be exploited to contribute to such distributed systems, especially when in

combination with utilizing HW model identification for complex power elements.
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CHAPTER 4: NONLINEAR AUTOPILOT DESIGN

Applications in which practicality is of utmost importance lie in aerospace. With highly nonlin-

ear dynamics and numerous explicit constraints, control designs for aerospace applications are

generally challenging. When designing controls with the possibility of real implementation, lin-

earization techniques and approximations are sometimes used although stability and performance

may be compromised in certain stressing situations. Given the highly nonlinear and coupled dy-

namics of typical aerial vehicles, the process of designing stabilizing controllers can be done while

simplifications are made. Usually such designs involve small angle approximations or lineariza-

tion around an equilibrium point or multiple points. These approximate control designs may be

sufficient for specific applications where states or trajectories are guaranteed to fall within the lin-

earized system domain. In the presence of input and output constraints, many existing control

methods must be highly customized. Many existing nonlinear control techniques can be tedious,

involving differentiation of unknown variables in which approximation can serve its purpose.

Designs including real-time parameter estimation from a linear model reference have contributed

to improve performance of 6 degree-of-freedom vehicle simulations [56]. However, when vehi-

cle motion exceeds the expected range of maneuverability, control designs based on small angle

approximations are no longer effective. In [57], the authors design a complex three-layer con-

trol based on a simplified model that categorizes velocity changes as uncertainties. Although their

design is highly detailed, simulation results show that there is difficulty in reference tracking. Non-

linear control techniques were used in [58], but constraints were applied as saturations directly in

the simulation without control compensation.

In this chapter, a novel nonlinear control design is used to maneuver a 6 degree-of-freedom hypo-

thetical vehicle with constraints applied through the barrier function design.
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Problem Formulation

Consider the following equations of motion:

V̇B =
1

m
(FB − ṁVB)− ωB × VB (4.1)

ω̇B = J−1B (MB − J̇BωB − ωB × JBωB) (4.2)

where subscript B signifies the Body reference frame, VB = [u v w]T is the translational velocity

vector, ωB = [p q r]T is the rotational velocity vector, m is the vehicle mass, FB is the translational

force applied, MB = [MR MP MY ]T is the rotational force applied, and JB is the inertia matrix

of appropriate dimension. It should be noted that ṁ may be considered as zero in implementation

even in the presence of variable mass due to the discrete nature of simulation and practical imple-

mentation. Instead, values of mass can simply be updated at each discrete-time step in practice

without needing a differential. The same can be true for J̇B.

The goal is to design a fully nonlinear translational acceleration autopilot control, where the only

control surface is through momentMB. Typically, one may take the derivative of (4.1) and approx-

imate unknown terms, or make assumptions on small angles for the pointing direction of velocity

versus the x-axis body frame (known as the angle of attack, α, and sideslip, β). Enforcing small

angle dynamics is not guaranteed automatically, so barrier functions may be used to manually

impose constraints on α and β.

It is assumed that only the pitch and yaw moments can be controlled, therefore, it is assumed that

p = ṗ = 0. Suppose it is desired to constrain incidence angles α and β such that a linearized

model could be used for dynamic simulations. Physically assuming α and β are small means that
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commands issued to the control surface are also small. The idea is to minimize instantaneous angle

changes, which is equivalent to minimizing instantaneous velocity changes along the y and z axes,

which can be seen according to (4.3). Therefore, an acceleration control could be put to best use.

α
β

 =

 tan−1
(
w
u

)
sin−1

(
v
‖VB‖

)
 (4.3)

In Figure 4.1, coordinate frame sign conventions as well as angle definitions are shown. The

incidence angles are calculated from the labeled body velocity components w and v.

Figure 4.1: Coordinate Frame and Angle Convention for Aerial Vehicles with Canards

Aerodynamics govern the rotational motion of the vehicle since the control surfaces are the ca-

nards. The angle of the canards is denoted as δ, which can be decomposed into components δP

and δY signifying pitch and yaw deflection angles, respectively. The following equations show a
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hypothetical relationship between canard angles and aerodynamics:

δP =
1

d1

[
1

qSref lref
Md

P − (c1α
3 + c2α|α|+ c3α + c4α|β|)

]
,

δY =
1

d1

[
1

qSref lref
Md

Y − (c1β
3 + c2β|β|+ c3β + c4β|α|)

]
,

where Sref and lref are known area and length, q is dynamic pressure, and d1, c1, c2, c3, c4 are

coefficients determined from parameters. The process of imposing constraints to ensure small

angle approximations are valid is shown in the following section.

Nonlinear Control for Autopilot

Dynamic equations (4.1) and (4.2) are each first order, however, they are coupled through ωB×VB,

which means MB is part of the inner loop control input, and FB is part of the outer loop control

input. For notational purposes, Md
B and F d

B will be the inputs to design, while MB and FB are

the leftover moments and forces due to aerodynamics. The relationship between the control loops

and aerodynamics is kinematic, which means effort will only be required for designing two control

input vectors.

Reflecting an output from guidance, a desired translation acceleration command V̇ d
B is provided.

For convenience, system (4.1) can be represented as:

 v̇
ẇ

 = A+B

q
r

 , (4.4)

where A = 1
m

(FB − ṁVB) and B =

0 −u

u 0

. Then, the control design based on backstepping
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is applied to obtain nonlinear expressions for qd and rd, which serve as the outer loop control.

Usually for nominal flight trajectories, angle of attack and sideslip should not be large. Exceptions

to this include vehicles designed for high-maneuverability, which takes advantage of the fact that

the vehicle structure can withstand high values of angle of attack and sideslip. For part of the

current study, it is assumed that constraints bound both angles as constants according to:

α ≤ α ≤ α, β ≤ β ≤ β.

The above constraints are imposed by the use of barrier functions within the outer loop control.

Details of the development are provided in Appendix B for authorized readers.

Continuing to design the inner loop control results in a nonlinear expression for the vector Md
B

which stabilizes the system in closed loop. If desired, one can apply the same method to impose

constraints on canard angle deflection, although some observer estimations are required due to

unknown derivatives.

Software Framework

Implementation of the outer and inner loop controls is done in the Autopilot block in the simula-

tion structure in Figure 4.2, which was originally provided as an academic model. Other blocks

include dynamics with aerodynamics, actuators, and modeled measurement devices. The novel

autopilot design is implemented in the Autopilot block, and details of implementation are shown

in Appendix B.
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Figure 4.2: 6 Degree-of-Freedom Aerial Vehicle Simulation Block Diagram

In order to verify the utility of the proposed control design, two sets of simulations are performed.

The first set of results are shown in Figures 4.3-4.5, which are simulated without constraints on α

and β, while the second set of results shown in Figures 4.6-4.7 include constraints of 5 degrees

for each channel. From each result, it can be seen that from dynamic coupling between the y

and z body axes, a movement in one axis causes motion in the other axis. Although usually this

is undesirable, it is also unavoidable in practice due to asymmetric mass distribution, which is

equivalent to possessing inertia matrices that are not simply diagonal matrices.

62



Figure 4.3: Pitch Channel Acceleration Command Response

Figure 4.4: Yaw Channel Acceleration Command Response
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Figure 4.5: Simultaneous Pitch and Yaw Acceleration Command Responses

Dynamic coupling, along with relatively high control gains for speed cause small spikes when

commands change drastically. In the single channel test results shown in Figures 4.3-4.4, the

command is switched to ±50 m/s2 every 5 seconds, then in the simultaneous command results

shown in Figure 4.5, the frequency of changes for each channel is different.

In Figure 4.6, it can be seen that the acceleration response does not reach the command signal

because of the constraints on α and β. While imposing these constraints may provide a more

accurate model if small angle approximation is used on incidence angles, the overall performance

may suffer due to the magnitude and speed of fluctuation of given commands. This concept is

tied in with the previous chapter’s concept of a feasible reference signal. Although such stressing

maneuvers are excellent choices for model and control validation, angle constraints must not be

forgotten when angle dynamics are approximated.
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Figure 4.6: Acceleration Response with Constraints Imposed on α and β

HW Modeling

Although the simulated vehicle has explicit dynamic equations which govern its behavior, in reality

the governing dynamics or a part thereof may be unknown. If dynamics are unknown, but input

and output data can be measured, then the dynamic model can be estimated by model identification

techniques. Since we have applied constraints on certain states, we have created nonlinearities that

must be taken into account. The Hammerstein-Wiener model fits this structure well. Results of HW

identification vary based on what is being analyzed, even in the same system. After applying the

HW approach to a single channel while unconstrained, the pitch acceleration results are presented

in Figure 4.7, with a 99.34% match. This means that under the step-type commands given, it is

expected that 99.34% of the output data in the approximated model will match the actual model
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output data. The Simulated data is considered as the original simulated data with known dynamics,

while the Estimated data is generated from the model identification technique.

Figure 4.7: HW Model Comparison with Measured Data in Unconstrained Single Channel
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Figure 4.8: HW Model Comparison in Pitch Channel with Constraints

Figure 4.9: HW Model Comparison in Yaw Channel with Constraints

However, if we run the same model identification on separate channels while imposing constraints,

the results are less accurate. Since separate channels are dynamically coupled, this proves to be
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a more challenging task to identify an accurate model. As shown in Figures 4.8 and 4.9, the

HW model does not fit the pitch and yaw channel acceleration data (respectively) as well as the

independent channel analysis. Although with a data match of 86.30% for pitch and 81.96% for

yaw, the identified model still provides reasonable behavior of the system.

It must be noted that model identification for control purposes is highly sensitive to input data.

For instance, if the command signal is changed to a sinusoidal signal, the model estimated from

using a square wave will most likely be inaccurate. The underlying goal of model identification for

control is not to create the highest quality model, but instead to obtain a model that is valid under

the given control or family of control inputs.

There are two methods of HW model identification that are used to produce the results shown in

Figures 4.7, 4.8, and 4.9. Both methods require the System Identification Toolbox available in

MATLAB/Simulink 2019. Shown below is the first method in which the function ‘nlhw’ in the

Toolbox is called in line 8, specifying saturations on both input and output.

Since by default, the HW model can identify other types of nonlinearities, specification is needed

for identifying saturations only. Options for optimization parameters can be assigned as necessary.

The output and input arguments refer to the measured data sets of the model which needs identifi-

cation. The argument ‘order’ refers to the number of poles the identified system will possess. An

example of usage in a MATLAB script file is shown below:
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Here, the variables ‘pitchChannel’ and ‘yawChannel’ are stored as custom data structures specific

to the System Identification Toolbox. Here, body acceleration data is sent as the ‘output’ argu-

ment, and body acceleration commmands are sent as the ‘input’ argument. For validation, the data

structures ‘pitchChannel’ and ‘yawChannel’ can be navigated to locate the Linear Model parame-

ter matrices, to which the same control signals are applied. The original output is plotted against

the output of the obtained Linear Model output, and a comparison can be made.

The second method of using the HW model identification technique yields the same result as the

first method, but involves a graphical user interface instead of code. The user interface below

appears upon opening the System Identification Toolbox, or by entering ‘systemIdentification’ in

the MATLAB command window.
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By navigating through the user interface, data can be imported (on the left) and identification

techniques can be chosen and configured (in the center) to obtain a final model (on the right).

More details can be found at https://www.mathworks.com/products/sysid.html.

Real-Time Data-Driven Modeling and Control

Using the same HW model identification process in real-time leads to an indirect adaptive method

that consists of two parts: First, input and output data is gathered and fed into the HW model

algorithm that provides estimated system dynamics and nonlinearities considered as saturations.

Second, using system matrices, an SDRE-like equation is formed as a constraint for an optimiza-

tion problem whose solution provides the feedback control gain matrix and impact coefficients.

Consider the original system that needs to be identified as a generalization of equations (4.1) and

(4.2) as follows:

ẋ = Ax+ f(x) + g(x)w,

y = h(x),

(4.5)

where x ∈ <n, w ∈ <m, y ∈ <p, and where g(x) and h(x) are nonlinear in general. Here, f(x)

may consist of saturations induced by hardware limits. Notice that (4.5) is similar to (1.4) without

the exogenous input.

The resulting system from HW modeling is presented as follows:

ˆ̇x = (Â−BK)x̂+ B̂u, u = SAT[w],

ŷ = Ĉx̂, z = SAT[ŷ],

(4.6)

where system matrices Â, B̂, and Ĉ are estimated, and state vector x ∈ <l. Since model identifi-
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cation requires a guess of the order of the system, the resulting order l may not be the same as the

original order n if it is unknown.

Through HW modeling and control design, the overall system is known to be passivity-short and

L2 stable. Additionally, it has been shown that passivity-short and L2 stable systems with input

and output saturations are also passivity-short and L2 stable. Therefore, the impact coefficients ε

and ρ exist and can be determined by obtaining a solution to the following inequality:

(Â−BK)TP + P (Â−BK) + ρĈT Ĉ +
1

ε
‖PB̂ − ĈT‖2 < 0, (4.7)

which can be done by minimizing ε and maximizing ρ until a sufficient gainK is found. Saturations

are not present in (4.7) since it is assumed that the barrier function-based control design in chapter 2

can be embedded to satisfy constraints, and since (4.7) only considers the linear part of the result of

the HW model. Details involving the implementation of the constrained control are to be developed

in the future. Figure 4.10 shows a block diagram of the structure of implementation. During

operation, the output y can be compared with the estimated model output ŷ, and adjustments to the

HW model can be made if necessary.

An important extension to the data-driven modeling and control concept in this context would be

to develop a direct adaptive approach, where standard model identification tools would need to be

modified, or algorithms within the tools would need to be extracted and customized. One possible

technique that may need modification involves finite impulse response parameterization of input

and output data which is used to form a quadratic programming problem, then sorting data with

respect to relative values to find nonlinearities. The objective of a direct adaptive approach would

be to identify passivity-short parameters and control gains without the need to estimate system

matrices first. This process would consolidate a two-step technique into a single step which still

utilizes the passivity-short framework as a design for local and network level control.
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Figure 4.10: Indirect Adaptive Approach to Data-Driven Modeling and Control

Summary

A two-loop nonlinear acceleration autopilot is designed and implemented in a MATLAB/Simulink

environment. Comparisons of behavior with and without constraints on specified incidence angles

are made, and stressing acceleration commands are issued in both pitch and yaw channels to illus-

trate the reaction in both cases. Constraints are imposed though the barrier function formulation

presented in chapter 2 that guarantees stability in real-time. From recorded data of input and out-

put, models are identified using the HW structure, and the accuracy of results is compared in cases

where commands are issued in single channels versus both channels simultaneously. The study

shows that although constraints are imposed successfully, commands with high magnitudes cannot

be reached. Specifically, acceleration limits are reached due to the imposition of incidence angle

constraints, which is easily determined through simulations. Currently, HW model identification is
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used as an open-loop tool before implementation of controls. A highly beneficial extension to this

process would be to configure HW model identification to provide real-time system models that

are then controlled by using the barrier-based design. With known saturations on input and/or out-

put, implementation of the control would be straightforward in the identified models alongside the

actual system. Unpredictable external forces could in turn be modeled in real-time, which provides

a more robust design overall.

Thus far, the selected applications have shown implementation of control designs in chapter 2,

whereas the subsequent chapter deals with a different type of input constraint along with various

design constraints. A control solution is presented as an additional technique to handle nonlinear

systems, especially those with dynamics that do not have an analytic solution.
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CHAPTER 5: CRYOGENIC MEMORY STATE TRANSITIONS

As computing technology advances, there is an increasing need for efficiency due to the scalable

nature of modern computing systems. Main aspects of improvement include faster operation, re-

duced power consumption, and decreased size. Such physical constraints cannot be addressed

solely by hardware. Algorithmic techniques provide advantages of speed and performance for

existing devices that are reaching their physical limits. Development of superconducting devices

at low temperatures addresses performance concerns compared with classical transistor-based de-

vices, although theoretical results have not been shown to be effective when scalability is consid-

ered. Recently, experimental results in [59], [60], and [61] have shown that it is possible to im-

plement cryogenic memory with Josephson junction arrays, however, there has not been a closed

form solution for implementation in applications.

The author of [62] explains that cryogenic computing can assist in reducing power consumption

and speeding up memory access, although [63] shows that there are still difficulties in developing

scalable superconducting memory with respect to power dissipation. It is described in [59] that if

rapid single flux quantum (RSFQ) technology is implemented in a petascale computer system at

a temperature of 4 K, the system would dissipate 85 MW of power. With such an unreasonable

amount of power dissipation, other options for cryogenic memory must be explored.

Single flux quantum (SFQ) logic operations are binary operations, however, by utilizing the dy-

namics of a memory cell consisting of Josephson junctions, non-binary states are possible if a

different method of logic operation is used. Whereas SFQ pulses have a quantized area that is

generated at the junction when the phase difference is exactly 2π, the method of logic operation

proposed and explored in [64], [65], and [66] describes that phase differences for each junction do

not necessarily equal 2π. Most Josephson junction memory circuit equilibrium triplet states are
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distinguishable, which allows to a single memory cell to occupy non-binary states.

In the scope of this chapter, a closed-form control design is shown to facilitate transitions among

stable equilibrium states. The main difficulty of this problem lies in the nonlinear model, for which

there is no exact analytical solution. Based on selective linearization, a pulse control synthesis is

shown to be effective at controlling memory states for a memory cell consisting of three junctions.

By nature, this contribution is an open-loop problem since other hardware usually present in CPU-

type applications such as the arithmetic logic unit and register are not considered due to prematurity

of the field. Difficulty lies in the unsolvable nature of the dynamic equations of the resistively

shunted junction (RSJ) model in a general manner as proven in [67] and [68], hence the analytical

content of this chapter addresses an alternative method to estimate and predict the behavior of the

junction array in order to facilitate such transitions with a specified control input.

The RSJ model obeys coupled 2nd order nonlinear dynamic equations as follows:

φ̈1 + γ1φ̇1 + sinφ1 = v1 + µ1(φ2 − φ1)

φ̈2 + γ2φ̇2 + sinφ2 = v2 + µ1(φ1 − φ2) + µ2(φ3 − φ2)

φ̈3 + γ3φ̇3 + sinφ3 = v3 + µ2(φ2 − φ3) (5.1)

where γi are the damping coefficients, µ1, µ2 are the coupling coefficients, φi is the angular position

(junction phase), and vi is the current input for each junction i ∈ {1, 2, 3}. The structure of vi

consists of an AC pulse gi(ki, t) as well as a fixed DC bias ci in the form of

vi = gi(ki, t) + ci, (5.2)

where ki is to be designed. It is assumed that
∫∞
0
gi(ki, t) <∞, and may be subject to saturations

such that the nature of gi(ki, t) is any finite-energy pulse. The pulse is prescribed as a saturated
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Gaussian pulse such that

vi = SATvi,vi

[
ki√
2πσ2

i

e−(t−τi)
2/2σ2

i

]
+ ci, (5.3)

where vi is a constant lower bound and vi is a constant upper bound on the pulse signal.

Equilibrium Definitions

Equilibrium points are determined from the steady state solution of (5.1), which are found by

solving the following system:

sinφ1 = c1 + µ1(φ2 − φ1)

sinφ2 = c2 + µ1(φ1 − φ2) + µ2(φ3 − φ2)

sinφ3 = c3 + µ2(φ2 − φ3).

Notice that the individual junction equilibrium points change when neighboring junctions leave the

initial equilibrium point. From the above dynamics, it can be seen that there are an equal number

of unstable equilibrium points as stable equilibrium points. In Figure 5.1, example isoclines are

shown in black overlaid on a vector field showing scaled gradient directions. The red asterisks

denote equilibrium points, where φ†i (ni) is unstable and φ∗i (ni) is stable. For consistency, equi-

librium triplets are denoted as {n1, n2, n3}, where element ni is the desired equilibrium integer

corresponding to the ith junction, such that the exact desired equilibrium point is calculated in

φ∗i (ni) ∈ (2niπ − π, 2niπ + π).
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Figure 5.1: Isoclines and Equilibria of Autonomous Nonlinear Oscillator

An additional degree of stability must be considered in the context of the RSJ model. As shown in

[65], equilibrium state triplets are not always stable. In order to maintain such unstable states, con-

tinuous control is required. Only stable equilibrium triplets are considered, since the bias currents

ci can be adjusted during the design to change which triplets are stable. Similar to the develop-

ment in [64], system (5.1) is linearized to determine the relationship between equilibrium states

and selected bias currents, which is shown in the following expression:

c1 = µ1(φ
∗
1(n1)− φ∗2(n2)) + φ∗1,

c2 = µ1(φ
∗
2(n2)− φ∗1(n1)) + µ2(φ

∗
2(n2)− φ∗3(n3)) + φ∗2,

c3 = µ2(φ
∗
3(n3)− φ∗2(n2)) + φ∗3.

Here, φ∗i denotes the value of the offset from 2πni, while φ∗i (ni) denotes the value of the equilib-
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rium point. It follows that the above systems can be solved as


φ∗1

φ∗2

φ∗3

 =


µ1 + 1 −µ1 0

−µ1 µ1 + µ2 + 1 −µ2

0 −µ2 µ2 + 1


−1 

c1 − µ1(n1 − n2)

c2 − µ1(n2 − n1)− µ2(n2 − n3)

c3 − µ2(n3 − n2)

 ,

in which all angles are scaled by 2π.

It is at the discretion of the designer to choose which equilibrium triplets should be stable, which

may signify customized memory operations. Iteratively, one can determine whether equilibrium

triplet combinations are stable, and change the values of ci during the design phase. Numerical

minimization methods can be used on a total energy function of system (5.1) with chosen bias

values to calculate which triplets are stable as shown in [64], and one can force a certain triplet to

be stable by careful selection of bias values. Typically, if numerical methods cannot find a solution,

then the triplet cannot be guaranteed to be stable.

Memory Control Design

The closed-form impulse control synthesis was mostly developed in [69], which is analyzed in

detail in this section. First, we classify regions of attraction for each stable equilibrium in each

junction based on impulse control. Second, a few important observations can be made of undamped

oscillators that assist in the pulse control design of a single junction in nonlinear system (5.1).

Third, effects of coupling are considered and combined into the pulse design for the entire memory

cell.

Shown in Figure 5.2, single oscillator sample system trajectories are drawn in solid black, while

separatrices are drawn in blue, and predictive initial condition regions are specified for each equi-
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librium. It can be seen that the equilibrium points are exactly multiples of π, since no coupling or

bias is present (ci = 0, µi = 0 ∀i).

Figure 5.2: Single Uncoupled Oscillator Equilibrium Definitions

In between control pulses, energy in the junction dissipates until an equilibrium is reached, thus

resulting in the state trajectory behaving as an autonomous system. In fact, after a control pulse is

applied, the system can be modeled subject to an impulse as:

φ̈i + γiφ̇i + sinφi = kiEiδ(t),

where δ(t) is the unit impulse, Ei is the unit energy, and gain k is to be designed. Immediately after

the pulse, all energy is injected into the system, such that the system becomes fully autonomous

as:

φ̈i + γiφ̇i + sinφi = 0, (5.4)

with initial velocity φ̇i(tf ) = kiEi/γi, in which the selection of tf as the initial time will become

apparent later.
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The behavior of a single oscillator in (5.1) is illustrated in Figure 5.3. The red lines represent

the method to find the desired initial phase velocity to reach a specified equilibrium point. The

equation of the red lines can be written as:

φ̇i(t) = −γiφi(t) + φ̇∗i (ni), (5.5)

which is derived from the fact that the initial slopes of the sample trajectories in Figure 5.3 are equal

to −γi for each separate oscillator. While the boundary trajectories are shown as dashed black

lines, the blue lines show the maximum linear trajectory acceptable to reach the corresponding

equilibrium below the line. It can be seen that the blue lines end at the unstable equilibrium point

to the right of the desired equilibrium point.

Figure 5.3: Coupled Oscillator Sample Trajectories with Boundaries

Although now we have a method to approximate where the oscillators will settle, the trajectory in

between the aimpoint and the desired impulse must still be characterized. This characterization is
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done through determining the value of work that would be done by damping, if it were included in

an undamped oscillator.

Because system (5.1) does not have a known solution, knowledge of a similar undamped system

can be used. Consider the following undamped oscillator equation:

ϕ̈i + sinϕi = 0, (5.6)

with initial condition ϕi(tf ) = kiEi/γi. To predict the behavior of (5.6) alone, we recall the

elliptical trajectories obey the following equation:

ϕ̇2
i (t) + ϕ2

i (t) =
k2i
γ2i
E2
i . (5.7)

Fortunately, for uncoupled oscillator circuits, the phase plane separatrices are obtainable as the

following equation:

ϕ̇i = ±2 cos(ϕi/2), (5.8)

which, in essence is a region of attraction for |ϕ̇i| < 2 cos(ϕi/2). Also, it is important to note the

approximate period of revolution when kiEi/γi >> 2 is T = 2πγi/(kiEi).

An analytical solution to (5.6) with the given initial conditions can be found through the use of the

total energy equation:

1

2

k2i
γ2i
E2
i =

1

2
ϕ̇2
i (t) + (cosϕ∗i (ni)− cosϕi(t)) (5.9)

It follows that,

ϕ̇i
2(t) =

k2i
γ2i
E2
i + 2(cosϕi(t)− cosϕ∗i (ni)). (5.10)

To consider the system damping, using equation (5.6) and results from [69], the work done by
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damping can be determined as:

W (ϕi) =
8γi
β
E(π/2, Θ) (5.11)

where E(Λ,Θ) is the elliptic integral. Approximation of energy loss involves the elliptical integral

of the second kind E with arbitrary angle ϕ:

E(Λ,Θ)
4
=

∫ Λ

0

√
1−Θ2 sin2 ϕdϕ,

where Λ = π/2 and

Θ =
2√

k2

γ2
E2 + 2− 2 cosϕ∗(i)

.

See Figure 5.4 for values in ϕ ∈ (0, 2π).

Figure 5.4: Elliptic Function Values for Λ = π/2
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Alternatively, work done by friction over time is

Wi(t) = γi

∫ T

0

ϕ̇i(t)
dϕi
dt
dt = γi

∫ T

0

ϕ̇2
i (t)dt (5.12)

Equation (5.11) can be used to perform an analytical design, while expression (5.12) can be used

to calculate a real-time approximate solution.

Although the design is sufficient if impulse control is used, the application in question does not

operate under impulses, and thus we require an extension to the design in the form of a pulse

control. From [69], the estimated dynamics of impulse-controlled oscillators was derived from

(5.10). However, the derivation accounted for coupling in a conservative manner. By estimating

neighboring oscillator’s behavior by selective linearization, a better approximation is obtainable.

Coupling introduces difficulties in phase plane analysis, for instance, phase trajectories are inter-

dependent on neighboring systems. Thus, adjacent junctions are considered as linear systems with

no pulse injection. This method will guarantee that while analyzing single junctions, the behavior

of phase plane trajectories reflect motion of neighboring junctions that is somewhat determinis-

tic. Fortunately, results for system (5.1) can be closely approximated by selective linearization of

adjacent junctions.

Since dynamics of all junctions are known, the neighbor’s behavior can be predicted locally

through linearization. The following lemma presents a generalized form of approximating be-

havior of neighboring junctions in terms of oscillators, since their dynamics are equivalent.

Lemma 5 The following equation approximately represents the behavior of oscillator i:

φ̈i + γiφ̇i + sinφi + µiφi −
∑
j

µjhj(φi) = 0, (5.13)
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where function hj(φi) accounts for the behavior of neighboring oscillator j which only depends

on the phase angle of oscillator i.

Proof: Consider oscillator j as a neighbor of oscillator i. Treating the dynamics of oscillator j as

linear yields the following equation:

ẍj + γjẋj + (1 + µj)xj − µjφi = 0,

which has a well known solution:xj(t)
ẋj(t)

 = eAjt

xj(0)

ẋj(0)

+

∫ t

0

eAj(t−τ)Bjφi(τ)dτ ,

hj(φi)
ḣj(φi)

 , (5.14)

with Aj =

 0 1

−(1 + µj) −γj

, Bj =

 0

µj

.

The error in approximation is calculated from the difference in energy as

∆Ei = 1− cos(φ̂j)−
1

2
x2j ,

where φ̂j is an estimation of φj . �

The nature of solution (5.14) considers φi as the only independent variable other than t, which can

equivalently be considered as an input. Hence, function hj(φi) can be calculated at junction i if

the dynamics of junction j are known.

Based on the work equation, Lemma 5, and (5.14), the contribution of neighboring oscillators’
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motion is determined as:

Ŵi =

∫ [∑
j

ḣj(φi)
2 + µi(hj(φi)− φ̂i)

]
dt, (5.15)

Then, from (5.10), (5.12), and (5.15), the dynamics of oscillator i are estimated as

ˆ̇φi =

√
ϕ̇2
i + 2(cos φ̂i − cosϕi −Wi − Ŵi) + ∆Ei. (5.16)

Every cycle of oscillator i must reset the values of the work done due to damping as well as the

work done by coupling. Now that approximate behavior can be predicted, the pulse gains can be

designed to intersect the trajectory of the desired impulse region of attraction.

The Gaussian pulse operates in the time span of t ∈ (t0, tf ), where tf ≈ 8σi or tf = 2τi if τi > 4σi,

which is illustrated in Figure 5.5. Since the pulse injects a finite amount of energy into the system,

Figure 5.5: A Typical Gaussian Pulse with Defined Amplitude

it can be concluded that at t = tf , all of the energy in the pulse has been transferred to the system,

therefore, after time tf , the system becomes autonomous in the form of (5.4) and behaves similar

to a system under an impulse control (as in the previous subsection). Upon the application of the

pulse within t ∈ (t0, tf ), the initial point will deviate from φ∗i (ni), but still be constrained to the
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region (2niπ+π, 2niπ−π). Thus, we can assert that φi(tf ) 6= φ∗i (ni), but with tf < 1, the amount

shifted will be small for the duration of the pulse.

Applying the same Gaussian pulse to the undamped system results in a similar effect, that is, under

the assumption that tf < 1, it follows that |ϕi(t0) − ϕi(tf )| << 1, which allows us to use small

angle linearization for the undamped system as:

ϕ̈i + ϕi = vi (5.17)

In order to estimate the damped trajectory, we must first determine the undamped trajectory after

the pulse. Specifically, we can determine the point (ϕi(tf ), ϕ̇i(tf )) and quantify the total energy of

the Gaussian pulse by
∫∞
−∞(vi − ci)dt.

In state space, (5.17) is represented as

d

dt

 ϕ̇i

ϕi

 =

 0 −1

1 0


 ϕ̇i

ϕi

+

 vi − ci

0

 . (5.18)

which has the following analytical solution:

 ϕ̇i

ϕi

 = e

 0 −1

1 0

t
∗

 vi − ci

0

 (5.19)

where ∗ denotes the convolution. System (5.18) can be solved numerically to acquire values for

ϕ̇(tf ) and ϕ(tf ) ahead of time. After time tf , the system behaves exactly like the impulse con-

trolled system with the given conditions. That is, once the desired velocity is reached in the esti-

mated system ˆ̇φi(tf ) the system should behave similar to the illustrations in Figure 5.3 based on

the region of the initial velocity.
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When the magnitude of the pulse is constrained, the pulse can be designed to have a time extension.

A longer pulse guarantees more energy, and since the design is based only the pulse’s energy, one

can easily increase the duration of the pulse to obtain the same amount of energy required for a

desired equilibrium transition. Extending a saturated pulse is illustrated in Figure 5.6.

Figure 5.6: A Saturated Gaussian Pulse

Now, the objective is to design pulse magnitudes such that junctions settle to a desired stable

equilibrium triplet. The following theorem is presented as a local solution to design pulse gains.

Theorem 3 Consider system (5.1). To facilitate equilibrium triplet transitions from state n =

{0, 0, 0} to state n = {n1, n2, n3}, the following gain is designed for a Gaussian pulse injection at

all three junctions:

k2i = (γ2i + 1)φ2
i (tf )− 2γiφi(tf )φ̇

∗
i (ni) + φ̇∗i (ni)

2 −

xi(t0)
ẋi(t0)


T

eA
T
i tf eAitf

xi(t0)
ẋi(t0)

 ,(5.20)

where A , [Ai|Aj] for representative system ẋ = Ax, x ∈ <n.

Proof: Given that system (5.1) behaves linearly in the time interval t ∈ [t0, tf ], the following
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system is representative of the dynamics of a pair of junctions:


ẍi(t) + γiẋi(t) + xi(t) = fi(t) + µi(xj − xi)

ẍj(t) + γjẋj(t) + xj(t) = fj(t) + µj(xi − xj),
(5.21)

where fi(t), fj(t) are input injections that have a nonzero value in the time interval [t0, tf ], and zero

otherwise, and initial conditions xi(t0), ẋi(t0), xj(t0), ẋj(t0) are known. Define the state vector as

x = [xi ẋi xj ẋj]
T such that system (5.21) can be written as ẋ = Ax when fi(t) = fj(t) = 0; t >

tf , where

A =



0 1 0 0

−(1 + µi) −γi µi 0

0 0 0 1

µj 0 −γj −(1 + µj)


, [Ai|Aj].

The solution to ẋ = Ax is x(t) = eAtx(t0) and we can determine that x(tf ) = eAtfx(t0). If

f(t) , [fi(t) fj(t)]
T 6= 0, the total energy of system (5.21) is

E(t) =
1

2
xTx+

1

2

∥∥∥∥∫ tf

t0

f(t)dt

∥∥∥∥2 . (5.22)

Since pulses are designed before operation, their energy can be determined as a vector of constants:∫ tf
t0
f(t)dt = k, such that the total energy at the end of the pulse is

E(tf ) =
1

2
[eAtfx(t0)]

T eAtfx(t0) +
1

2
‖k‖2. (5.23)

Then, linear equation (5.5) is used as the terminal pulse constraint:

φ̇i(tf ) = −γiφi(tf ) + φ̇i
∗
(ni). (5.24)
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Equating energies (5.22) and (5.23) while separating systems i and j yields:

φ̇2
i (tf ) + φ2

i (tf ) =

xi(t0)
ẋi(t0)


T

eA
T
i tf eAitf

xi(t0)
ẋi(t0)

+ k2i ,

φ̇2
j(tf ) + φ2

j(tf ) =

xj(t0)
ẋj(t0)


T

eA
T
j tf eAjtf

xj(t0)
ẋj(t0)

+ k2j ,

in which (5.24) can be substituted to result in (5.20) for i and j when solving for ki or respectively

kj . �

By design, the calculation of ki occurs locally which means knowledge of neighboring junctions’

states is not required. Theoretically, the result of Theorem 3 is scalable, in that it may be applied

to any number of daisy-chain connected oscillators. More complex topologies would require addi-

tional efforts, however, in the context of Josephson junction arrays, the original problem has been

addressed and solved.

Next, the terminal pulse phase angle must be determined or estimated. Since the phase velocity will

generally be significantly larger than the phase angle for any given pulse, we prescribe φi(tf ) =

π
2

+ φ∗i (ni).

Now, pulse gain (5.20) results in a sufficient amount of energy required to reach line (5.5), and

only depends on the current equilibrium point and desired equilibrium point.

As shown in Figure 5.7, the intersection of the red line is close to the maximum point of the

trajectory. At that point denoted as a blue asterisk, all energy from the pulse has been transferred

to the system such that the system behaves autonomously. Additionally, the maximum point is

exactly at time tf . We see that the angle traveled is no more than π/2, so our linearization approach

for the time interval [t0, tf ] remains valid.
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Figure 5.7: Intersection of Pulse Controlled Oscillator with Linear Trajectory Objective

Memory Cell Control Validation

System parameters are prescribed as follows [64], [65]:

γ1 = 0.7, γ2 = 1.1, γ3 = 0.7;

c1 = 1, c2 = 0.8, c3 = −1;

µi = 0.1 ∀i.

From the bias current values and coupling coefficients, the initial equilibrium points are determined

as: φ∗1(0) = (0.1992)2π, φ∗2(0) = (0.1187)2π, φ∗3(0) = (−.1551)2π. In Figure 5.8, a Gaussian

pulse is applied to junctions 1 and 2 to achieve the specified transition, which was chosen to

exemplify the non-binary capability of the system. The dashed lines represent the trajectories

generated from (5.16), with the values of work done by damping reset every cycle. However, we

notice that the same transition can be achieved without applying a pulse to the second junction, as
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shown in Figure 5.9. The same pulse in junction 1 is used in both simulations of Figures 5.8 and

5.9.

Figure 5.8: Three-Junction Memory Transition {0, 0, 0} → {2, 1, 0}, Dual Pulse

The corrected undamped trajectory design is scalable enough to design addition transitions, such

as the one shown in Figure 5.10. Even though the pulse magnitude is significantly larger, the third

junction remains at its zero equilibrium, while the effects of coupling are absorbed into the second

junction. Furthermore, since the state {3, 1, 0} is unstable, the first equilibrium in junction 2 is

bypassed. Therefore, certain transitions can be optimized to use less total energy to achieve the

same result. Although the reason for such a transition in the case of Figure 5.9 can be attributed to

the state {2, 0, 0} being unstable [70]. Even when commanding a transition to an unstable state, it

is improbable that the system can settle there when behaving autonomously. Thus, we can assume

the reasonable behavior of junction 2 is to be forced out of its current equilibrium due to coupling,

and settle at the next equilibrium.
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Figure 5.9: Three-Junction Memory Transition {0, 0, 0} → {2, 1, 0}, Single Pulse

This phenomenon leads to lower energy requirements to reach certain memory cell states if un-

stable triplet states are known. Furthermore, more options for pulse gains lie in ranges that are

modified by such unstable equilibrium states, which allows for flexibility or larger error margins

in practice.

Although it is possible to reach desired equilibria with a single pulse, it is not necessarily more

efficient in terms of total cell energy. The ranges of pulse gains for single pulse transitions are

shown in table 5.1, along with the minimum energy dual-pulse gains.

In table 5.1, the first column indicates the transition being made, along with the indication of min-

imum energy transitions. The second column presents the range of viable pulse gains to reach the

desired equilibrium triplet for non-minimum transitions, and shows the minimum pulse gain re-

quired for junction 1 corresponding to the applied dual-pulse. In dual-pulse controlled transitions,

the third column shows the minimum pulse gain for junction 2 to reach the desired equilibrium.
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Figure 5.10: Three-Junction Memory Transition {0, 0, 0} → {3, 2, 0}, Single Pulse

Table 5.1: Transition Pulse Gains

{0, 0, 0} → k1 k2
{1, 1, 0} [2.0, 5.2] -

min{1, 1, 0} 0.7 0.6
{2, 1, 0} [5.3, 11.2] -

min{2, 1, 0} 3.4 3.0
{3, 2, 0} [11.3, 17.2] -

min{3, 2, 0} 8.7 8.6

In the case of the transition {0, 0, 0} → {3, 2, 0}, the dual pulse minimum gains do not inject a

lower energy than the single pulse (8.72 + 8.62 > 11.32). Conversely, we can conclude that at

least for smaller equilibrium distances (0→ 1, 2) the dual pulse is more energy efficient, since the

energy requirement to reach higher equilibrium points increases exponentially.
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Summary

A novel pulse-based control method was presented with the purpose of switching stable equilib-

rium states in a Josephson junction array. These types of switches in the memory cell may repre-

sent writing values to memory. Of course, one can choose a smaller pulse gain than the regions

specified in Table 5.1 to simulate a read operation. Exploration of the topic of cryogenic memory

control is motivated by fast development of superconducting devices and the need to effectively

operate them. Recently, researchers have been able to perform experiments with fabricated Joseph-

son junction arrays, although on a small scale. Still, theoretical insight into the behavior of these

devices must be provided alongside experimental testing. Physically constrained by temperature,

size, and operational energy, developments in cryogenic computing technology require progress

in multiple areas of research to advance the entire topic toward meaningful implementation. This

chapter has presented an analytical contribution for the effective operation of cryogenic memory

cells.
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CHAPTER 6: CONCLUSION

Implementation of the nonlinear control design for constrained systems is shown to be straightfor-

ward by demonstrating its use in selected applications. Various seed controllers may be utilized

while the barrier function formulation ensures satisfaction of all constraints during transience.

Driven by data obtained at intervals or in real-time, models of systems with unknown dynamics

can be identified and cast into the broad class of passivity-short systems. The scalable nature of

the passivity-short network framework in combination with system identification and nonlinear

control satisfying constraints theoretically allows any number of systems with unknown dynam-

ics to be interconnected in a network with guaranteed stability. Explicit constraints as well as

design constraints are considered in the context of nonlinear systems. Applications including mi-

crogrid stabilization and control of a generalized aerial vehicle possess such explicit constraints,

whereas the application of cryogenic memory technology has design constraints. Capitalizing on

the availability of data on the fly for systems such as microgrids and aerial vehicles, a framework

with real-time model identification would be a beneficial extension. For time-varying and espe-

cially unknown constraints in similarly unknown dynamics, providing estimated system models

during operation is necessary for effective real-time stabilization and control. Analytical results

are derived for nonlinear systems which possess known but unsolvable dynamic equations, and

difficulties in dealing with such an unsolvable system are addressed. Theoretical and algorithmic

developments presented in this dissertation provide readily implementable solutions to various ap-

plications not exclusive to the applications discussed.
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