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ABSTRACT 

Recent years have witnessed intense research activities to effectively control the flow of 

photons using various classes of optical structures such as photonic crystals and metamaterials. In 

this regard, optics has benefited from concepts in condensed matter and solid-state physics, where 

similar problems concerning electronic wavefunctions arise. An important example of such 

correspondence is associated with the photon dynamics under the effect of an artificial magnetic 

field. This is especially important since photons, as neutral bosons, do not inherently interact with 

magnetic fields. One way to mitigate this issue is to exploit magneto-optical materials. However, 

as is well known, using such materials comes with several issues in terms of optical losses and 

fabrication challenges. Therefore, clearly of interest would be to devise certain schemes, which 

employ conventional dielectric materials, and yet provide an artificial “magnetic field” e.g. 

through geometric phases imprinted in the photonic wave amplitudes. Here, we utilize such 

schemes to observe various optical wave phenomena arising from the associated artificial 

magnetism. First, we show that light propagation dynamics in a twisted multicore optical fiber is 

governed by the Schrödinger equation in the presence of a magnetic potential. Using this, we 

experimentally observe Aharonov-Bohm suppression of optical tunneling in these structures. 

Moreover, we use notions from topological insulators to demonstrate the first dielectric-based 

topological lasers both in 1- and 2-dimensional lattices of microring resonators. Our measurements 

show that such laser arrays exhibit significant improvement in terms of robustness against defects 

and disorder, as well as higher slope efficiencies as compared to conventional laser arrays. Finally, 

we show both theoretically and experimentally, that the cooperative interplay among vectorial 

electromagnetic modes in coupled metallic nanolasers can be utilized as a means to emulate the 
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classical XY Hamiltonian. In particular, we discern two phases in these systems, akin to those 

associated with ferromagnetic (FM) and antiferromagnetic (AF) materials. 
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triangle with asymmetric exchange couplings. In this case, the angles of the bottom pseudospins 

are expected to change as shown in the figure. b, FEM simulation of the lasing supermode in an 

asymmetric triangular array of nanodisks. Each nanodisk supports a 𝑇𝐸13 mode. c-h Experimental 

measurements (top) together with theoretically calculated results for diffraction intensities and 
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polarization states of the optical fields emitted by such a nanodisk array. The arrows depict the 

direction of the linear polarizer. .................................................................................................. 112 

Figure 51  Polarization measurements for frustrated states. Theoretically predicted and 

experimentally measured polarization profiles for lasing supermodes in arrays of a, 𝑁 = 3, b, 𝑁 =

5, and c, 𝑁 = 6 nanodisk laser arrays. The arrows indicate the direction of linear polarizations.
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CHAPTER 1: INTRODUCTION 

Electrons under the effect of a magnetic field can display an array of interesting and 

counterintuitive effects. These include for example the emergence of Landau levels  [1], quantum 

Hall  [2] and topological insulator effects  [3], as well as the quantization of magnetic flux through 

a superconductor [4], to mention a few. Recently, the prospect of observing processes similar to 

those expected from magnetic fields has been the subject of intense research efforts, including for 

example photon and cold atom dynamics under the action of synthetic magnetic fields [5–12], 

photonic topological insulators  [13–15] and nonreciprocal optical elements [16]. In such 

arrangements, typically an artificial magnetic field is introduced by exploiting the intimate 

connection between Berry’s phase in parameter space and the Aharonov-Bohm (AB) phase [17–

20].  

In electronic systems, an intriguing phenomenon arising from the presence of a magnetic field 

is a possible inhibition of electron tunneling in degenerate quantum channels [21]. This latter effect 

is a direct by-product of an AB phase  [22,23] that in turn leads to a complete elimination of 

tunneling, a process resulting from the destructive interference of the eigenfunctions involved. 

However, despite early theoretical efforts, an experimental observation in this regard is still 

lacking, as of yet, within the context of solid-state physics - primarily due to practical challenges 

associated with the need for ultrahigh magnetic fluxes. Of interest would be to realize an equivalent 

optical structure, that effectively benefits from synthetic magnetic fields to overcome this issue. In  

Chapter 2, we propose one such realization using a twisted multicore optical fiber, and observe the 

AB suppression of optical tunneling for the first time. From a different perspective, our results also 

provide the first observation of a geometric phase in the realm of optics that is associated with the 
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tunneling processes of photons. The effect of optical Kerr nonlinearity on this AB phase is also 

studied both theoretically and experimentally. 

As already mentioned, one important phenomenon arising from the interaction of electrons 

with magnetic fields is the notion of topological insulators (TI). In condensed matter physics, TIs 

represent new forms of matter wherein electron conduction is prohibited in the bulk, while it is 

allowed along the surface by means of edge states [3,24–26]. These gapless edge states emerge 

whenever a TI is terminated either on vacuum or is interfaced with an ordinary insulator- a 

principle better known as bulk-edge correspondence. This property stems from the fact that any 

transition from two distinct topological phases cannot be performed in a continuous fashion, but 

instead requires a bandgap-crossing at the interface of two materials that exhibit different 

topological invariants. In this respect, topological edge states are robust against local perturbations, 

since their characteristics are dictated by their corresponding bulk environment. This is in sharp 

contrast to conventional defect states that originate from imperfections, and are by nature sensitive 

to perturbations. It is this robustness that has incited a flurry of activities aimed to understand and 

harness the ramifications of topology in many and diverse fields ranging from optics to ultracold 

atomic gases, mechanics, and acoustics [27–30]. As indicated in recent studies, the introduction of 

topology in photonics can lead to a host of intriguing and unexpected results. These include for 

example unidirectional light transport, backscattered-free light propagation as well as immunity to 

structural imperfections [16]. Lately, there has been a great deal of interest in studying the interplay 

between non-Hermiticity and topology [31–33]. In this regard, photonics provides a versatile 

platform to perform such studies, since non-Hermiticity can be readily established through the 

introduction of optical gain and loss- something that has been previously exploited in observing 
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PT-symmetric interactions and spontaneous symmetry breaking effects [34,35]. As demonstrated 

in recent works, the isomorphism between the Schrödinger equation and the optical wave equation 

can be fruitfully utilized to design photonic lattice structures capable of displaying topological 

phenomena akin to those encountered in condensed matter physics [13–15,36]. In Chapter 3, we 

demonstrate the first magnet-free topological lasers both in 1D and 2D lattices of ring resonators. 

In 1D, we show that how by lasing in the edge mode of a Su-Schrieffer-Heeger (SSH) [37] array, 

the resulting emitted frequency is robust with respect to coupling disorders. Moreover, we observe 

unidirectional, robust edge-mode transport and enhanced slope efficiencies in our proposed 2D 

laser array. 

Finally, in Chapter 4, we consider arrays of coupled nanodisk laser arrays in metallic claddings. 

A theoretical model describing possible supermodes of such structure is developed, and is shown 

to successfully predict the emergent lasing modes. In this respect, we show that the dissipation 

function in such a platform can be formulated in a way similar to the XY Hamiltonian describing 

interacting magnetic spins. Based on various geometrical parameters and electromagnetic modes 

involved, different regimes of ferromagnetic (FM)- and anti-ferromagnetic (AF)-like couplings are 

identified. Moreover, we show that in certain geometries and under AF-like couplings, the resonant 

electromagnetic modes in these nanolaser arrays will exhibit geometric frustration.  
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CHAPTER 2: GEOMETRIC PHASES AND SYNTHETIC MAGNETIC 

FIELDS IN TWISTED MULTICORE OPTICAL FIBERS 

2.1. Introduction  

Geometric phases appear ubiquitously in many and diverse areas of physical sciences, ranging 

from classical and molecular dynamics to quantum mechanics and solid-state physics. In the realm 

of optics, similar phenomena are known to emerge in the form of a Pancharatnam-Berry phase 

whenever the polarization state traces a closed contour on the Poincaré sphere. While this class of 

geometric phases has been extensively investigated in both free-space and guided wave systems, 

the observation of similar effects in photon-tunneling arrangements has so far remained largely 

unexplored. In this chapter, we first provide the theoretical analysis of light propagation dynamics 

in a twisted ring-shaped multicore optical fiber, both in the linear and nonlinear regimes. After 

that, we provide our pertinent experimental results. We experimentally demonstrate that the 

tunneling or coupling process in a twisted multi-core fiber system can display a chiral geometric 

phase accumulation-analogous to the Aharonov-Bohm effect. In our experiments, the tunneling 

geometric phase is manifested through the interference of the corresponding supermodes. Our 

work provides the first observation of Aharonov-Bohm suppression of tunneling in an optical 

setting. 

2.2. Linear/nonlinear twisted multicore optical fibers 

An intriguing phenomenon arising from the presence of a magnetic field, is a possible 

inhibition of electron tunneling in degenerate quantum channels-a process never been observed 

before in any physical system  [21]. This latter effect is a direct byproduct of an Aharonov-Bohm 
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phase  [22,23] that in turn leads to a complete elimination of tunneling, a process resulting from 

the destructive interference of the eigenfunctions involved. A possible optical realization of this 

effect has also been suggested in a twisted annular or multicore fiber configuration in  [6]. In 

addition, similar systems have also been studied in parity-time-symmetric configurations, where 

it was found that the exact PT phase can be broken in a quantized fashion  [38,39]. Apart from 

being fundamental in nature, this effect can be potentially utilized for applications, such as torsion 

sensors  [40] and mode management  [41], as well as dispersion and polarization control  [42]. At 

this point we emphasize that this topological phenomenon has so far been considered only in the 

linear regime. In this respect, one may ask whether this Aharonov-Bohm tunneling suppression 

will still persist even under nonlinear conditions. In other words, is this process robust enough to 

withstand nonlinear effects? 

This section is devoted to the study of twisted multicore optical fibers [43,44]. We will see 

that the evolution of light in a twisted multicore optical fiber can mimic that of electrons under 

the effect of a constant, perpendicular magnetic field, which manifests itself in a complex 

coupling coefficient between the neighboring elements. In other words, these structures can 

be considered as a viable platform for the realization of synthetic gauge fields for photons. In 

order to examine the role of this in photonics, we first discuss how the topological suppression 

of light tunneling can occur in a twisted ring waveguide array. Following this, we show that 

this topological suppression of light tunneling can be maintained completely intact in spite of 

the presence of optical nonlinearity. This holds true in any ring multicore system irrespective 

of dimensionality. Analytical results pertaining to four-core twisted nonlinear fiber structures 

indicate that the Aharonov-Bohm phase remains invariant and has no dependence whatsoever 



6 

 

on the power levels. At higher intensities, a discrete spatial soliton is formed that further 

suppresses the energy exchange or tunneling process. The effect of the twist rate on the onset 

of these mechanisms is also investigated. Moreover, the aforementioned effect can manifest 

itself even when the waveguide sides are detuned. Beam propagation simulations further 

corroborate our results - as obtained from nonlinear coupled mode theory. 

2.2.1 Light propagation in twisted multicore ring-shaped fiber structures 

In order to elucidate the mechanism behind the inhibition of optical tunneling, 

perhaps it is best to explore this effect under linear conditions. In this respect, consider 

a circular 2N-core waveguide arrangement as shown in Fig. 1 (a). Each waveguide 

channel is supposed to be single-moded, while it is evanescently coupled to its nearest 

neighbors. In addition, the structure is twisted along the propagation axis with a spatial 

period of 𝛬. Under these conditions, one can show that in the rotating frame, the 

evolution of the modal field amplitudes 𝐸𝑛  obeys the following set of differential 

equations  [11]: 

𝑖
𝑑𝐸𝑛
𝑑𝑧

+ 𝛽𝑛𝐸𝑛 + 𝜅(𝐸𝑛+1𝑒
−𝑖𝜙 + 𝐸𝑛−1𝑒

𝑖𝜙) = 0,     𝑛 = 0, 1, … , 2𝑁 − 1 (2.1) 

where the index 𝑛 indicates the site number (modulo 2N), 𝛽𝑛 represents the 

propagation constant of each core, and 𝜅 is the coupling coefficient among nearest 

neighbors. In Eq. 2.1 𝜑 =  (𝑘0𝑛0𝜖𝐷2)/2 is the tunneling phase introduced by the twist, 

𝑘0 = 2𝜋/𝜆0,  𝐷 is the core distance between successive sites, and 𝜖 =  2𝜋/𝛬 is the 

angular twist pitch. Equation 2.1 clearly shows that in such a setting, the coupling 

coefficients are in fact complex, having equal and opposite phases depending on 
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whether the tunneling direction is clockwise or counter-clockwise. In what follows we 

show that for specific twist rates leading to the phase condition 𝑁𝜑 = 𝜋/2 +𝑚𝜋, the 

energy exchange between sites #0 and #N is totally diminished – in other words, these 

two channels become effectively decoupled. To analytically prove this assertion, let us 

consider an infinite version (unfolded) of this same lattice, as shown in Fig. 1 (b). In 

this system the field dynamics are governed by the same equation, only this time 𝑛 ∈

(−∞,+∞). If the central site is the only one initially excited, the field distribution in 

this infinite array is given by: 

𝑖𝑛𝐽𝑛(2𝜅𝑧)𝑒
𝑖𝑛𝜙, 𝑛 = ⋯ ,−1,0,1,⋯   (2.2) 

In the 2N circular array, the field amplitude at site n can then be obtained by summing 

up all the “echoes” resulting from the periodicity of the circular array, and hence one 

finds that  [45]: 

 𝐸𝑛(𝑧) =  ∑ 𝑖𝑛+2𝑚𝑁𝐽𝑛+2𝑚𝑁(2𝜅𝑧)𝑒
𝑖(𝑛+2𝑚𝑁)𝜙∞

𝑚=−∞       𝑛 = 0,1, … , 2𝑁 − 1   (2.3) 

From here, it is straightforward to see that the optical field in waveguide N is always 

zero: 

𝐸𝑁(𝑧) =  ∑[𝑖(2𝑚+1)𝑁𝐽(2𝑚+1)𝑁(2𝜅𝑧)𝑒
𝑖(2𝑚+1)𝑁𝜙

∞

𝑚=0

+ 𝑖−(2𝑚+1)𝑁𝐽−(2𝑚+1)𝑁(2𝜅𝑧)𝑒
−𝑖(2𝑚+1)𝑁𝜙] = 0.   

(2.4) 

 

This completes the proof. 
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To demonstrate these dynamics, let us consider linear light evolution in an 8-core 

twisted fiber as depicted in Fig. 2. In order to achieve topological Aharonov-Bohm 

suppression, we set 4𝜙 = 𝜋/2 . Hence, in this case the twist pitch is given by Λ =

8𝑘0𝑛0𝐷
2. The results of solving the coupled mode Eqs. 2.1 for this structure are shown 

in Fig. 3. It is clear that the core #5 remains dark, confirming the results predicted by 

the above general linear analysis. Because of this topological effect, any cross-talk 

between sites #1 and #3 is totally prohibited. This effect can be intuitively explained by 

noticing the fact that the two coupling paths (from  core #1 to #5 via upper and lower paths, 

Fig. 4) differ from each other by a phase factor of ±𝜋. Subsequently, light transport along these 

two paths results in destructive interference, thus leaving the core #5 completely dark.  

 
Figure 1  (a) Schematic of a 2N-core twisted optical fiber, (b) its equivalent one-dimensional lattice. 
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Figure 2  Schematic of an 8-core twisted optical fiber. 

 

Figure 3  Intensity evolution in the eight-core fiber of Fig. 2. 

 

Figure 4  Destructive interference between photons tunneling through two possible paths in the twisted 

eight-core fiber. 
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From the previous discussion it is clear that the topological phenomenon under 

consideration is by nature linear. In this respect, one may ask whether it can withstand the 

nonlinear conditions. The purpose of this section is to answer this question, which we find it 

to be positive by both solving the coupled mode Eqs. 2.1, as well as using beam propagation 

techniques to analyze the structure. 

In the presence of third order Kerr nonlinearity, Eqs. 2.1 will be modified to the 

following: 

𝑖
𝑑𝐸𝑛
𝑑𝑧

+ 𝛽𝑛𝐸𝑛 + 𝜅(𝐸𝑛+1𝑒
𝑖𝜙 + 𝐸𝑛−1𝑒

−𝑖𝜙) + 𝛾|𝐸𝑛|
2𝐸𝑛 = 0 (2.5) 

 

where 𝛾 is the nonlinear Kerr coefficient. To investigate the wave evolution in this case, 

we study the dynamics for the same 8-core system that we discussed in the linear section. 

The results are presented in Fig. 5. It is clear from the figure that the suppression of 

coupling between cores #1 and #5 is preserved.  

 

 

Figure 5  Intensity evolution in the nonlinear twisted eight-core fiber. 
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To examine the nonlinear dynamics, in what follows, we analyze Aharonov-Bohm 

suppression of optical tunneling the aforementioned behavior in a four-core twisted fiber. 

For this system, Eqs. 2.5 can be reduced to the following equations using the 

normalizations 𝑍 = 𝜅𝑧 and 𝐸𝑛 = 𝜌𝑎𝑛 exp(𝑖𝛽1𝑧): 

𝑖𝑑𝑎1
𝑑𝑍

+ 𝑎2𝑒
𝑖𝜙 + 𝑎4𝑒

−𝑖𝜙 + |𝑎1|
2𝑎1 = 0 

𝑖𝑑𝑎2
𝑑𝑍

+ 𝑎1𝑒
−𝑖𝜙 + 𝑎3𝑒

𝑖𝜙 + 𝛿𝑎2 + |𝑎2|
2𝑎2 = 0 

𝑖𝑑𝑎3
𝑑𝑍

+ 𝑎2𝑒
−𝑖𝜙 + 𝑎4𝑒

𝑖𝜙 + |𝑎3|
2𝑎3 = 0 

𝑖𝑑𝑎4
𝑑𝑍

+ 𝑎1𝑒
𝑖𝜙 + 𝑎3𝑒

−𝑖𝜙 + 𝛿𝑎4 + |𝑎4|
2𝑎4 = 0,    

(2.6) 

 
 

where we have chosen 
𝛾𝜌2

𝜅
= 1 and 𝛿 =  ∆/𝜅 (detuning between the cores).  Here we are 

interested in the case where 𝜙 =  𝜋/4. To examine light dynamics in this case, the system 

of Eqs. 2.6 is solved numerically. The results for the intensities in each core are shown in 

Fig. 10, where it is clear that the coupling from core #1 to #3 is effectively suppressed. This 

suggests that the third amplitude 𝑎3 in Eqs. 2.6 can effectively be decoupled from the rest. 

Therefore, one can cast the problem in the following set of two coupled equations: 

     𝑖
𝑑𝑎1
𝑑𝑍

+ 2𝑒𝑖𝜋/4𝑎2 + |𝑎1|
2𝑎1 = 0 

        𝑖
𝑑𝑎2
𝑑𝑍

+ 𝑒−𝑖𝜋/4𝑎1 + 𝛿𝑎2 + |𝑎2|
2𝑎2 = 0 , 

(2.7) 

where we have  used  the  fact that 𝑎4 = exp(𝑖𝜋/2)𝑎2. These equations can be further simplified 

using the new variables 𝑢 = 𝑎1 exp(−𝑖𝜋/4) and 𝑣 = √2𝑎2: 

𝑖
𝑑𝑢

𝑑𝑍
+ √2𝑣 + |𝑢|2𝑢 = 0 

            𝑖
𝑑𝑣

𝑑𝑍
+ √2𝑢 + 𝛿𝑣 +

1

2
|𝑣|2𝑣 = 0.                           

(2.8) 
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Equations 2.8 define a system of four real equations in terms of the following parameters: 

𝑈0 = |𝑢|
2 + |𝑣|2                                                                                                       (𝑎) 

𝑈1 = |𝑢|2 − |𝑣|2                                                                                                       (𝑏) 

𝑈2 = 𝑢𝑣∗ + 𝑢∗𝑣                                                                                                       (𝑐) 

𝑈3 = 𝑖(𝑢
∗𝑣 − 𝑢𝑣∗),                                                                                                  (𝑑) 

(2.9) 

namely: 

𝑈0̇ = 0                                                                                                                              (𝑎) 

𝑈1̇ = 2√2 𝑈3                                                                                                                   (𝑏) 

𝑈2̇ = (−
1

4
𝑈0 −

3

4
𝑈1 + 𝛿)𝑈3                                                                                     (𝑐) 

𝑈3̇ = −2√2 𝑈1 + (
1

4
𝑈0 +

3

4
𝑈1 − 𝛿)𝑈2 .                                                                 (𝑑) 

 

(2.10) 

Integrating Eqs. 2.10 (a) and 2.10 (c), one obtains the following two conservation laws: 

𝑈0 = 𝐶1                                                                                                                            (𝑎) 

𝑈2 =
1

2√2
(−

𝐶1
4
𝑈1 −

3

8
𝑈1
2 + 𝛿𝑈1) + 𝐶2                                                                 (𝑏) 

 

(2.11) 

where 𝐶1 and 𝐶2 are constants determined by the initial conditions. Here we assume at 𝑧 =

 0 𝑎1(0)  =  𝐸0 while 𝑎𝑖(0)  =  0 for 𝑖 =  2, 3, 4. The constants in Eqs. (1-11) are then given by: 

𝐶1 = |𝐸0|
2                                                                                                                      (𝑎) 

𝐶2 =
1

2√2
(
5

8
|𝐸0|

4 − 𝛿|𝐸0|
2) ,                                                                                 (𝑏) 

(2.12) 

 

Figure 6  Nonlinear Aharonov-Bohm suppression of optical tunneling in a twisted four-core fiber. 
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as a function of the normalized input power and detuning between the cores. Substituting 

these results into Eqs. 2.10, one would obtain the following differential equation for the 

parameter 𝑈1: 

𝑈̇1
2 = −

9

64
𝑈1
4 −

2

3
𝐵1𝑈1

3 + 𝐵2𝑈1
2 + 2𝐵3𝑈1 + 2𝐵4,      (2.13) 

 

where 𝐵1, 𝐵2, 𝐵3, and 𝐵4 are defined as 

𝐵1 =
9

32
𝐶1 −

9

8
𝛿 

𝐵2 = −
𝐶1
2

16
+
𝐶1
2
𝛿 +

3√2

2
𝐶2 − 𝛿

2 − 8 

𝐵3 =
√2

2
𝐶1𝐶2 − 2√2𝛿𝐶2 

                                                      𝐵4 =
9

128
𝐶1
4 +

𝐵1

3
𝐶1
3 −

𝐵2

2
𝐶1
2 − 𝐵3𝐶1.    

(2.14) 

 

The differential Eq. 2.13 can be solved analytically in terms of Jacobi elliptic functions [46–48]: 

𝑈1(𝑍) =
𝑟1𝐵 + 𝑟2𝐴 − (𝑟1𝐵 − 𝑟2𝐴)𝑐𝑛(𝑈, 𝑘)

𝐴 + 𝐵 + (𝐴 − 𝐵)𝑐𝑛(𝑈, 𝑘)
,      (2.15) 

where 𝑟1 and 𝑟2 are real, while 𝑟3 and 𝑟3
∗ are complex conjugate  roots  of  the  fourth  order  

polynomial  of  Eq. 2.13, from which A and B are determined: 

𝐴2 = (𝑟1 −
𝑟3+𝑟3

∗

2
)
2

−
(𝑟3−𝑟3

∗)2

4
  

𝐵2 = (𝑟2 −
𝑟3+𝑟3

∗

2
)
2

−
(𝑟3−𝑟3

∗)2

4
.  

 

(2.16) 

Moreover, 𝑈 is related to the elliptic integral of the first kind 𝐹(𝜑, 𝑘) and the normalized 

propagation distance 𝑍 by 𝑈 = 𝐹(𝜋, 𝑘) −
3𝑍

8𝑔
, with 𝑘2 =

(𝑟1−𝑟2)
2−(𝐴−𝐵)2

4𝐴𝐵
 being the square of 

the elliptic modulus and 𝑔 = (𝐴𝐵)−1/2. In order to show the consistency of this analytical 
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solution, we compared it with the results obtained from numerically solving Eqs. 2.14. Fig. 7 

summarizes these results, indicating the consistency of this analytical solution. 

A possible silica-based four-core arrangement where one can observe the 

aforementioned Aharonov-Bohm tunneling suppression is comprised of cores with radii 

equal to 𝑅 =  4.5 µ𝑚 while the spacing between elements is 𝐷 =  24 µ𝑚. The operating 

wavelength is assumed to be 𝜆0 =  1550 𝑛𝑚 and the numerical aperture of each element 

is 0.1. The structure is twisted around its central axis with a pitch of 𝛬 =  1.4 𝑐𝑚, 

corresponding to 𝜙 =  𝜋/4.  In order to evaluate the coupled mode results presented, we 

use beam propagation method to monitor the intensity evolution in each core along the 

propagation axis for different powers launched into the core #1.  The results are summarized 

in Fig. 8. These dynamics clearly indicate that the differential phase between the two light 

channels is left unchanged even under highly nonlinear conditions. Consequently, the 

quenching of the coupling can be preserved. At considerable higher power levels (∼

10 𝑘𝑊), the nonlinearity starts to dominate the coupling effects.  As a result, a discrete 

 

Figure 7 Comparison between analytical and numerical solutions for the light intensity evolution in the first 

core of the twisted four-core fiber structure.   
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soliton is created on site 1, which further reduces energy transfer to the nearest cores (#2, #4). 

Even in this highly localizing regime, the topological phases are left intact. Finally, we 

examined the robustness of the effect with respect to the detuning of the cores #2 and #4. 

Figure 9 shows the results when there is a detuning of 𝛿 =  0.8 between these channels. 

Although deviation from the ideal case of Fig. 8 is observed, it is evident that the effect 

in general persists such a perturbation in the structure, which can be attributed to the 

topological nature of the Aharonov-Bohm phase. 

  

 

Figure 8 Beam propagation analysis of the twisted four-core fiber structure: intensity evolutions for (a) 

low and (b) high input powers.   
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2.3. Observation of twist-induced geometric phases and inhibition of optical tunneling via 

Aharonov-Bohm effect 

Quantum tunneling plays a central role in a number of intriguing phenomena in physics [49–

53]. An archetypical manifestation of this quantum effect is the possibility of electron tunneling 

between multiple quantum wells when separated by potential barriers. Interestingly, on many 

occasions, even this simple class of systems can exhibit some unexpected quantum behaviors. For 

instance, complete quenching of coherent quantum tunneling can be achieved by appropriately 

imposing a time-harmonic drive to a double-well potential or other more complex lattice 

systems [54–56]. Another intriguing process is that arising from the topological restoration of 

energy degeneracies associated with bound states. These effects can reveal themselves in multiple 

quantum wells that are arranged on a closed loop, when threaded by a constant magnetic flux of 

certain quantized magnitudes [21]. This occurs due to the interference between degenerate 

electronic wavefunctions, when a nonzero Aharonov-Bohm (AB) phase is accumulated [22,23]. 

However, despite early theoretical efforts, an experimental observation of this latter effect is still 

 

Figure 9 The robustness of the effect against nonuniformity, when core 2 is detuned from the rest of the 

structure by δ = 0.8.  
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lacking, as of yet, within the context of solid-state physics - primarily due to practical challenges 

associated with the need for ultrahigh magnetic fluxes.  

In recent years, the realization of synthetic gauge fields in physical settings involving neutral 

entities has provided a flexible platform to observe dynamics similar to those arising from the 

interaction of electrons with magnetic fields [57–59]. In general, such artificial magnetism can be 

achieved through either dynamic temporal/spatial modulation of the couplings [10,13,14], or via 

the use of geometric phases [60,61]. So far, this artificial magnetism has led to the demonstration 

of photonic topological insulators in both passive  [14,15,30,62] and active arrangements [63,64], 

Landau levels for photons [65,66], as well as quantum many-body effects [67,68]. An important 

advantage offered by such schemes is the possibility for experimental demonstrations of a certain 

class of quantum phenomena without invoking magnetic fields, something that would have been 

otherwise impossible within the context of condensed matter physics. In optics, perhaps the earliest 

demonstration of a geometric phase is that associated with polarized light [69]. This arises when 

the polarization state of light follows a closed contour on the Poincaré sphere. As a result, the 

corresponding electric field amplitude acquires a geometric phase, known as the Pancharatnam-

Berry phase [69,70]. Similar effects can also occur for linearly polarized light [20] or speckle 

patterns in a multimode optical fiber [71,72], when the direction of propagation varies in space. 

In this section, we experimentally demonstrate an optical geometric phase, which is associated 

with photon tunneling in a twisted multicore fiber structure. We show that this form of geometric 

phase results from a constant rotation in the local frame of the fiber, and appears in a chiral manner 

in the corresponding coupling coefficients between adjacent cores. Thus far, twisted photonic 

crystal fibers have been employed to demonstrate coreless light guiding, optical activity, as well 
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as orbital angular momentum conservation [73–75]. Alternatively, in our study, we employ the 

twist-induced geometric phase to realize a synthetic magnetic field for the photon coupling 

between nearest-neighbor light channels. As proposed in recent studies [11,43], this is analogous 

to the Aharonov-Bohm effect associated with electron dynamics in the presence of a magnetic 

flux. We further exploit this analogy to demonstrate the Aharonov-Bohm suppression of light 

tunneling in a four-core twisted optical fiber. While this latter effect was originally predicted in 

the context of quantum electronics [21], its experimental observation has so far remained elusive 

due to the requirement of strong magnetic fields. In this regard, it is only recently that an 

experimental observation of this type has been reported in a system involving ultracold Ca ions in 

a linear Paul trap [76]. In our experiments, we investigate the effect of different twist rates, 

emulating synthetic gauge fields of varying magnitudes. In this respect, the conditions for a 

complete tunneling inhibition are investigated, both theoretically and experimentally. Our 

experimental results are in good agreement with those expected from theory for different twist 

rates. Moreover, we study the behavior of this same arrangement under high power conditions - 

where nonlinear effects start to antagonize the coupling mechanisms in the multicore system. In 

this highly nonlinear regime, we find that the suppression of tunneling still persists – a direct 

byproduct of the topological nature of the AB geometric phase. Finally, even in the case where 

each core is multimoded, we demonstrate that the AB inhibition of tunneling occurs in a universal 

fashion. In other words, this same process can totally eliminate the coupling for all higher-order 

modes. 
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2.3.1 A twisted multicore fiber platform for realizing synthetic magnetic fields for photons 

In order to demonstrate AB suppression of light tunneling because of geometric phase effects, 

we fabricated a four-core optical fiber structure as shown in the inset of Fig. 10. Each of the four 

circular cores is coupled to its nearest neighbors, while a fluorine-doped refractive index 

depression in the middle of the structure eliminates any cross-channeling effects between opposite 

cores (see section 2.3.5). An artificial gauge field is then imposed on this system after twisting the 

multicore fiber. In this case, the evolution of the optical modal field amplitudes is described by a 

paraxial wave equation, expressed in the twisted local frame, in a way analogous to that associated 

with electron wavefunctions in the presence of a magnetic field [11,61,77] (Fig. 10). In quantum 

mechanics, in the presence of a uniform magnetic field, a gauge transformation through Peierls 

substitution is known to reduce the electron dynamics to those expected under conventional zero-

field conditions. This result can be directly extended in more complicated settings such as for 

example atomic lattices. By treating this configuration within the tight-binding formalism, one can 

then show that the magnetic field now manifests itself in the form of complex coupling 

coefficients, having phase factors given by the Peierls integral [78]. Similarly, in a twisted 

multicore fiber configuration, the coupling coefficients appearing in the coupled mode equations 

are accordingly modified as 𝜅𝑚𝑛𝑒
𝑖𝜑𝑚𝑛, where 𝜅𝑚𝑛 represents the coupling or tunneling strength 

between subsequent cores in the absence of twisting, while the pertinent phase factor is given by: 

𝜑𝑚𝑛 = 𝑘0 ∫
1

2
𝑟 × 𝐵⃗⃗𝑒𝑓𝑓 . 𝑑𝑙⃗⃗⃗⃗

𝑟𝑛

𝑟𝑚
 ,                                                (2.17) 

where 𝐵⃗⃗𝑒𝑓𝑓 = −2𝑛0𝜖𝑧̂ is the effective magnetic field induced by twisting, and 𝜖 = 2𝜋/Λ is the 

angular twist rate. Λ denotes the spatial pitch associated with this helical structure, 𝑘0 represents 

the free-space wavenumber, 𝑛0 is the refractive index of the cladding region, and 𝑟𝑚,𝑛 stands for 
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the positions of the neighboring cores 𝑚, 𝑛. Under these conditions, the evolution of the modal 

field amplitudes 𝐸𝑛 within the cores are given by 𝑖𝑑|𝜓⟩/𝑑𝑧 + 𝐻|𝜓⟩ = 0, where |𝜓⟩ =

[𝐸1, 𝐸2, 𝐸3, 𝐸4]
𝑇 represents a complex state vector whose evolution is subjected to a Hamiltonian 

𝐻 that is given by: 

𝐻 =

(

 
 

𝛽1 𝜅𝑒−𝑖𝜙

𝜅𝑒𝑖𝜙 𝛽2

0 𝜅𝑒𝑖𝜙

𝜅𝑒−𝑖𝜙 0

0 𝜅𝑒𝑖𝜙

𝜅𝑒−𝑖𝜙 0

𝛽3 𝜅𝑒−𝑖𝜙

𝜅𝑒𝑖𝜙 𝛽4 )

 
 
.                                (2.18) 

In Eq. 2.18, 𝛽𝑛 stands for the propagation constants of the individual cores, 𝜅 is the magnitude of 

the nearest neighbor coupling coefficient, while 𝜙 = (𝑘0 𝑛0 𝜖𝐷
2)/2 represents the Aharonov-

Bohm tunneling phase introduced by the twist, when the core distance between successive sites is 

𝐷, and 𝜖 = 2𝜋/Λ. In the four-core structure prepared, all cores are identical, and so are the 

respective propagation constants 𝛽𝑛. In this case, the 𝛽 terms can be readily eliminated from the 

evolution equations through a trivial gauge transformation. As we will see however, this is no 

longer valid under nonlinear conditions. 
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2.3.2 Controlling and suppressing optical tunneling via twist-induced geometric phases 

Equation 2.18 clearly suggests that photon tunneling in a twisted multicore fiber arrangement 

is accompanied by a geometric phase accumulation, akin to that expected in electron dynamics 

from a path-dependent AB phase. In order to experimentally observe the 𝜙 phase in the four-core 

fiber structure, we initially excite core #1 with coherent light from an external cavity laser, 

operating at 𝜆 = 1550 𝑛𝑚 with an output power of ~1 𝑚𝑊. The coupling length between 

successive cores is estimated to be 𝐿𝑐 ≈ 9 𝑐𝑚. We then monitor the optical power coupled to the 

opposite core #3, as we vary the magnitude of the effective magnetic field (resulting from different 

twist rates). At the same time, the power levels in cores #2 and #4 are also recorded. It is important 

 

Figure 10  Twisted fiber structures as a platform for realizing synthetic magnetic fields for photons. 

A twisted four-core optical fiber in which the photon tunneling evolution dynamics are analogous 

to those expected from electrons in the presence of a magnetic field. The constantly rotating local 

transverse coordinates are depicted at three different planes. The top inset shows a microscope 

image of the input facet of the four-core fiber used in our experiments. The low-index fluorine-

doped core is clearly visible at the center of the fiber. The bottom inset depicts a schematic of a 

two-dimensional atomic lattice in the presence of a static perpendicular magnetic field (arrows), 

where a tight-binding formalism can be utilized to describe the electronic band structure after a 

Peierls substitution. 
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to note that the multicore fiber used here is designed in such a way that at 𝜆 = 1550 𝑛𝑚 only the 

fundamental 𝐿𝑃01 mode is supported by each of the individual cores (section 2.3.5). Figure 11 

shows experimental results where the output intensity from core #3 is plotted against the AB phase 

𝜙. In this same figure, the expected theoretical behavior (section 2.3.5) as obtained after directly 

solving the dynamical evolution equations is also presented. These observations indicate that the 

AB-like suppression of light tunneling from core #1 to #3 occurs when the gauge field corresponds 

to 𝜙 = 𝜋/4. This is formally analogous to AB suppression of tunneling for electrons in the 

presence of a specific magnetic flux.  These results provide the first observation of this intriguing 

effect in an optical setting. 

2.3.3 Impact of nonlinearity on AB tunneling inhibition 

We further explore how the aforementioned AB-like suppression of tunneling is affected by the 

Kerr nonlinearity of these silica multicore fibers. In this respect, we launch ~400 𝑝𝑠 high intensity 

pulses at 𝜆 = 1064 𝑛𝑚 from a Q-switched microchip laser into core #1. At this wavelength, the 

fiber cores in our structure support 𝐿𝑃11 modes in addition to the fundamental 𝐿𝑃01. Because of 

mode confinement, the 𝐿𝑃11 modes are very strongly coupled at 1064 𝑛𝑚, while the 𝐿𝑃01 are 

virtually uncoupled. The initial ratio between the powers launched in 𝐿𝑃01 and 𝐿𝑃11at core #1 is 

adjusted by cleaving the input facet of the fiber at an angle. In this experiment, the sole purpose of 

exciting the fundamental 𝐿𝑃01 mode is to introduce a variable “energy” detuning ∆𝛽𝑁𝐿 =

𝑘0𝑛2|𝐸𝑚𝑎𝑥 |
2 in the cores – thus allowing us to study how the nonlinearity 𝑛2 impacts the 

inhibition of tunneling dynamics of the 𝐿𝑃11 modes. This is achieved through cross-phase 

modulation effects in each core. To observe these effects, we performed intensity measurements 

both at low ~500 𝑊 and high ~6 𝑘𝑊 power levels (section 2.3.5). Figure 12 depicts the output 
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intensity profiles at the end of the four-core fiber, for different twist-induced phases 𝜙. As 

indicated by these results, at 𝜙 = 𝜋/4, the AB-like inhibition of tunneling between opposite cores 

still takes place regardless of the optical power exciting this system. In agreement with previous 

theoretical studies, these observations suggest that this process remains unaffected even under 

highly nonlinear conditions [43]. This robustness can be understood through a formal perturbation 

analysis (section 2.3.7), indicating that to first-order any ∆𝛽 variations (linear or nonlinear) within 

the four cores do not affect the twist-induced degeneracy between the two groups of supermodes 

at 𝜙 = 𝜋/4. This faithful tunneling inhibition is attributed to the topological nature of this optical 

Aharonov-Bohm phase. Finally, as the optical power injected in the first core increases, a discrete 

soliton forms around this waveguide channel - further suppressing any tunneling of light to the 

nearby cores, as also evident in Fig. 12. 
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Figure 11  Dependence of optical tunneling dynamics on the AB phase. Normalized light intensity at the 

output of core #3 for different values of the AB phase 𝜙 (as induced by different twist rates). In all cases, 

core #1 is excited at the input with CW laser light at 𝜆 = 1550 𝑛𝑚. Theoretical results corresponding to 

the same set of parameters are also provided for comparison. At 𝜙 = 𝜋/4, the third core always remains 

dark, clearly indicating AB tunneling suppression. 
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2.3.4 Suppression of tunneling in higher-order spatial modes 

Of interest would be to also investigate the universality of this class of effects even in multimode 

environments. To do so, we used a CW input excitation at 𝜆 = 665 𝑛𝑚 where each core can now 

support four different sets of modes (𝐿𝑃01, 𝐿𝑃11, 𝐿𝑃21, 𝐿𝑃02). The input power used was ~2 𝑚𝑊 

so as to ensure linear conditions. For this set of parameters, the highest-order propagating mode 

incited in this system was 𝐿𝑃02. Our simulations indicate that while the coupling coefficients 

associated with this mode are significant, all other modes exhibit negligible couplings, at least for 

length scales involved in our experiment. This is  in agreement with experimental observations 

 

Figure 12  AB inhibition of tunneling in the presence of optical nonlinearities. Output light intensity profiles 

from a twisted, 24 cm long, four-core fiber when only core #1 is quasi-linearly excited for (A), 𝜙 = 0 (no 

twist), (B), 𝜙 = 𝜋/4, and (C), 𝜙 ≈ 0.27𝜋. In (A-C), the pulses used had a peak power ~ 500𝑊 at 𝜆 =

1064 𝑛𝑚. Plots (D-F) show similar results when the input peak power is ~ 6𝑘𝑊 and hence nonlinear Kerr 

effects are at play. It is evident that the coupling between cores #1 and #3 is completely suppressed in both 

cases (B,E), regardless of the power levels used, indicating an immunity of the AB tunneling suppression 

against nonlinear index changes. For higher input powers (D-F), the self-focusing nonlinearity further 

suppresses light coupling, even among adjacent cores. The inset on the left depicts numbers in panel (A) 

depict the relative arrangement of the four cores in this particular experiment. 
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(section 2.3.5). To study the prospect for Aharonov-Bohm inhibition of tunneling in this 

multimode case, we again excite the first core while we record the output intensity patterns 

corresponding to different values of 𝜙. These results are summarized in Fig. 13, where it is clearly 

evident that the tunneling suppression always occurs, regardless of the number of the modes 

involved in each individual waveguide element. 

 

2.3.5 Experimental methods 

For our experimental demonstrations, we fabricated a silica fiber consisting of four coupled 

cores, each with a diameter of ~7.5 𝜇𝑚 and a numerical aperture of 𝑁𝐴 = 0.12. The neighboring 

elements were separated from each other by a distance of 𝐷 = 23 𝜇𝑚. To observe the tunneling 

suppression between opposite cores, it is essential that any cross couplings are suppressed so that 

the light propagation dynamics in the system are governed by nearest-neighbor interactions. To 

 

Figure 13  AB tunneling suppression for higher-order modes. Light intensity distributions at the output of 

a twisted four-core fiber when the higher-order 𝐿𝑃02 mode is excited with CW light at 𝜆 = 665 𝑛𝑚. These 

results are presented for (A), 𝜙 = 0 (no twist), (B), 𝜙 ≈ 0.11𝜋, and (C), 𝜙 = 𝜋/4. Even though in the 

excited core #1, most of the optical power resides in the fundamental 𝐿𝑃01 mode, only the 𝐿𝑃02 mode 

appears in the remaining cores due to its higher coupling coefficient. Plot (C) clearly reveals that AB 

suppression of light tunneling occurs in a universal fashion, even for higher-order modes. The inset on the 

left depicts numbers in panel (A) depict the arrangement of the cores corresponding to these observations. 
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achieve this, we judiciously incorporated a fluorine-doped low-index core in the center of the fiber, 

having a diameter of ~5 𝜇𝑚. In the absence of any twist, when core #1 is initially excited, the light 

intensity in cores #1 and #3 varies along the propagation distance 𝑧 according to 𝐼1(𝑧) = cos
4 𝜅𝑧 

and 𝐼3(𝑧) = sin4 𝜅𝑧, as obtained after solving the dynamical modal evolution equations when 𝜙 =

0. In other words, light tends to tunnel between these two waveguide channels through cores #2 

and #4, in a way similar to tunneling of electrons in a multi-well potential arranged on a circular 

geometry. 

In order to introduce an artificial “magnetic field” in our arrangement, we twisted the 4-core fiber. 

The fiber was excited at 𝜆 = 1550 𝑛𝑚, with an external cavity laser with a CW output power of 

~1𝑚𝑊. The output intensity profile from the four cores was then recorded on a CMOS-based IR 

beam profiling camera. Moreover, to discern different cores in the structure, we used a visible 

imaging camera in order to capture both the input and output facets of the fiber, once it was twisted. 

In general, for a given twisting rate (corresponding to an AB phase of 𝜙), the light intensity in 

cores #1 and #3  is explicitly given by the expressions: 

  𝐼1,3(𝐿) =
1

4
[cos(2𝜅𝐿 cos𝜙) ± cos(2𝜅𝐿 sin𝜙)]2,                              (2.19) 

where 𝐿 is the length of the four-core fiber. Figure 11 depicts these theoretical results along with 

experimentally observed values for different values of 𝜙 when 𝐿 = 24 𝑐𝑚. As evident from Eq. 

2.19, for the specific case of 𝜙 = 𝜋/4, the third core will always remain dark, irrespective of the 

length 𝐿, in agreement with our experimental results.  

For the nonlinear experiments, we used a Q-switched microchip laser emitting high intensity 

pulses of duration ~400 𝑝𝑠 at a rate of 500 𝐻𝑧, at 𝜆 = 1064 𝑛𝑚. At this wavelength, the highest-

order mode supported by the cores happens to be the 𝐿𝑃11(see section 2.3.8). Our analysis shows 
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that this higher order mode strongly couples nearest neighbor elements with a coupling length of 

𝐿𝑐 ≈ 2.5 𝑐𝑚, while the fundamental mode remains nearly uncoupled. As indicated in section 2.3.9, 

at high peak powers (~6 𝑘𝑊), the Kerr nonlinearity associated with silica in the fiber structure 

results in a detuning in the propagation constant of the excited core. This strong nonlinearly 

induced detuning starts to compete with the coupling effects, eventually forming discrete solitons 

in the excited core. This antagonizing effect of the nonlinearity with respect to light coupling is 

also evident in our experiments (Fig. 12). Finally, for 𝜆 = 665 𝑛𝑚, each waveguide is multimoded 

and the mode with the highest coupling happens to be the 𝐿𝑃02, exhibiting 𝐿𝑐 ≈ 10 𝑐𝑚 (see section 

2.3.8). This is also evident in the experimental results where the intensity profile of the light 

coupled is clearly that corresponding to a radially symmetric 𝐿𝑃02 mode. 

2.3.6 Supermodes of twisted multicore optical fibers 

In this section, we provide analytical derivations for the supermodes of a twisted multicore optical 

fiber, focusing on the effect of the geometric phase on the eigenstates and their corresponding 

eigenvalues. 

 

Figure 14  Twisted N-core fiber. The tunneling Aharonov-Bohm phase is depicted in the figure by 𝜑. 
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As discussed in section 2.3.1, light dynamics in a twisted multicore optical fiber can be described 

by the following eigenvalue equation: 

𝑖𝑑|𝜓⟩/𝑑𝑧 + 𝐻|𝜓⟩ = 0, 

𝐻 =

[
 
 
 
 
 
𝛽1 𝜅𝑒𝑖𝜙

𝜅𝑒−𝑖𝜙 𝛽2
⋯ 0 𝜅𝑒−𝑖𝜙

0 0
⋮ ⋱ ⋮

0 0
𝜅𝑒𝑖𝜙 0

⋯
𝛽𝑁−1 𝜅𝑒𝑖𝜙

𝜅𝑒−𝑖𝜙 𝛽𝑁 ]
 
 
 
 
 

 ,                                                                                (2.20) 

where |𝜓⟩ = [𝐸1, 𝐸2, … , 𝐸𝑁]
𝑇 represents the electric field amplitudes of an eigenstate of the 

system. Here we assume that all the cores are similar, hence 𝛽𝑖 = 0. In this case, the general form 

of the eigenstates is given by: 

𝐸𝑛 = 𝐴𝑒𝑖𝜇𝑧𝑒𝑖𝑄𝑛,                                                                                                                       (2.21) 

where 𝜇 represents the eigenvalues, while 𝑄 denotes the corresponding Bloch momenta of the 

eigenstates. Substituting this into the eigenvalue equation, one obtains the following form for the 

eigenvalues: 

𝜇 = 2𝜅cos (𝑄 − 𝜙).                                                                                                                   (2.22) 

Applying periodic boundary conditions results in quantized Bloch momenta 𝑄 = 2𝜋𝑚/𝑁,𝑚 =

0,1, … ,𝑁 − 1. It is evident that the tunneling Aharonov-Bohm phase changes the eigenvalues in 

this system through shifting the Bloch momentum 𝑄, while it does not affect the form of the 

eigenstates. This is similar to the way a static magnetic field would modify the electronic states in 

a periodic 2D arrangement. 

By setting 𝑁 = 4, the eigenstates associated with the twisted four-core fiber considered in our 

experiments can be obtained as: 
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|𝜓0⟩ =
1

2
(

1
1
1
1

) , |𝜓1⟩ =
1

2
(

1
𝑖
−1
−𝑖

) , |𝜓2⟩ =
1

2
(

1
−1
1
−1

) , |𝜓3⟩ =
1

2
(

1
−𝑖
−1
𝑖

),                                       (2.23) 

while their respective eigenvalues are: 

𝜇0 = 2𝜅 cos𝜙 , 𝜇1 = 2𝜅 sin𝜙 , 𝜇2 = −2𝜅 cos𝜙 , 𝜇3 = −2𝜅 sin𝜙.                                       (2.24) 

For a twist rate corresponding to 𝜙 = 𝜋/4, these will form two pairs of degenerate eigenmodes 

𝜇0 = 𝜇1 = √2𝜅 and 𝜇2 = 𝜇3 = −√2𝜅. In this case, if core #1 is excited at the input, the initial 

state of the system at 𝑧 = 0 can be expanded in terms of the given eigenstates as: 

|𝜓𝑖𝑛⟩ = (

1
0
0
0

) =
1

2
∑ |𝜓𝑖⟩
3
𝑖=0 .                                                                                                    (2.25) 

Therefore, the propagated state at an arbitrary distance 𝑧 will then be: 

|𝜓(𝑧)⟩ =
1

2
∑ 𝑒𝑖𝜇𝑖𝑧|𝜓𝑖⟩
3
𝑖=0 =

1

2

(

 

cos(2𝜅𝑧 cos𝜙) + cos(2𝜅𝑧 sin𝜙)

𝑖 sin(2𝜅𝑧 cos𝜙) − sin(2𝜅𝑧 sin𝜙)

cos(2𝜅𝑧 cos𝜙) − cos(2𝜅𝑧 sin𝜙)

𝑖 sin(2𝜅𝑧 cos𝜙) + sin(2𝜅𝑧 sin𝜙))

 ,                                (2.26) 

Substituting 𝜙 = 𝜋/4, we find: 

|𝜓(𝑧)⟩ =
1

2

(

 
 

2 cos(√2𝜅𝑧)

(𝑖 − 1) sin(√2𝜅𝑧)

0

(𝑖 + 1) sin(√2𝜅𝑧))

 
 
,                                                                                        (2.27) 

indicating that core #3 will always remain dark irrespective of the length of the fiber. 

2.3.7 Perturbation analysis of the tunneling inhibition 

In this section, we consider how small perturbations in terms of detuning of individual cores or 

variations in coupling coefficients between nearby cores would affect the AB tunneling inhibition 

effect in our four-core twisted fiber. 
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We first consider a diagonal perturbation in the Hamiltonian describing the structure: 

𝐻′ = 𝐻 + ∆𝐻1,  

𝐻 = (

0 𝜅𝑒−𝑖𝜙

𝜅𝑒𝑖𝜙 0
0 𝜅𝑒𝑖𝜙

𝜅𝑒−𝑖𝜙 0
0 𝜅𝑒𝑖𝜙

𝜅𝑒−𝑖𝜙 0
0 𝜅𝑒−𝑖𝜙

𝜅𝑒𝑖𝜙 0

) , ∆𝐻1 = (

𝜖1 0
0 𝜖2

0 0
0 0

0 0
0 0

𝜖3 0
0 𝜖4

).                                     (2.28) 

In this case, the first-order approximation of the perturbed eigenvalues will be: 

𝜇′𝑖 ≈ 𝜇𝑖 + ⟨𝜓𝑖|∆𝐻1|𝜓𝑖⟩ = 𝜇𝑖 + ∆𝜇𝑖,                     

∆𝜇𝑖 =
1

2
(1 𝑒𝑖𝑄 𝑒𝑖2𝑄 𝑒𝑖3𝑄)(

𝜖1 0
0 𝜖2

0 0
0 0

0 0
0 0

𝜖3 0
0 𝜖4

)
1

2
(

1
𝑒−𝑖𝑄

𝑒−𝑖2𝑄

𝑒−𝑖3𝑄

) =
1

4
∑ 𝜖𝑖
3
𝑖=0 ,                        (2.29) 

This shows that a diagonal perturbation would lead into the same first-order correction for all the 

four eigenvalues. Therefore, to first-order, we still have two pair of degenerate eigenstates and 

hence the tunneling inhibition is preserved. 

Now let us consider a perturbation in the coupling coefficients: 

  

𝐻′ = 𝐻 + ∆𝐻2,  ∆𝐻2 = (

0 𝛿𝜅12
𝛿𝜅12

∗ 0
0 𝛿𝜅14

𝛿𝜅23 0
0 𝛿𝜅23

∗

𝛿𝜅14
∗ 0

0 𝛿𝜅34
𝛿𝜅34

∗ 0

).                                                        (2.30) 

Similar to the previous case, the first-order perturbations can be obtained as: 

∆𝜇0 =
1

2
(1 1 1 1)∆𝐻2

1

2
(

1
1
1
1

) =
1

2
𝑅𝑒{𝛿𝜅12 + 𝛿𝜅23 + 𝛿𝜅34 + 𝛿𝜅14},                               

∆𝜇1 =
1

2
(1 −𝑖 −1 𝑖)∆𝐻2

1

2
(

1
𝑖
−1
−𝑖

) = −
1

2
𝐼𝑚{𝛿𝜅12 + 𝛿𝜅23 + 𝛿𝜅34 − 𝛿𝜅14},                            



32 

 

∆𝜇2 =
1

2
(1 −1 1 −1)∆𝐻2

1

2
(

1
−1
1
−1

) = −
1

2
𝑅𝑒{𝛿𝜅12 + 𝛿𝜅23 + 𝛿𝜅34 + 𝛿𝜅14},  

∆𝜇3 =
1

2
(1 𝑖 −1 −𝑖)∆𝐻2

1

2
(

1
−𝑖
−1
𝑖

) =
1

2
𝐼𝑚{𝛿𝜅12 + 𝛿𝜅23 + 𝛿𝜅34 − 𝛿𝜅14}.                    (2.31) 

We are particularly interested in perturbations in the magnitudes of the coupling coefficients, 

therefore we have: 

𝛿𝜅12 = |𝛿𝜅12|𝑒
−𝑖𝜙, 𝛿𝜅23 = |𝛿𝜅23|𝑒

−𝑖𝜙, 𝛿𝜅34 = |𝛿𝜅34|𝑒
−𝑖𝜙, 𝛿𝜅14 = |𝛿𝜅14|𝑒

𝑖𝜙,                 (2.32) 

Hence: 

∆𝜇0 =
1

2
(|𝛿𝜅12| + |𝛿𝜅23| + |𝛿𝜅34| + |𝛿𝜅14|) cos 𝜙,                               

∆𝜇1 =
1

2
(|𝛿𝜅12| + |𝛿𝜅23| + |𝛿𝜅34| + |𝛿𝜅14|) sin𝜙,                            

∆𝜇2 = −
1

2
(|𝛿𝜅12| + |𝛿𝜅23| + |𝛿𝜅34| + |𝛿𝜅14|) cos 𝜙,  

∆𝜇3 = −
1

2
(|𝛿𝜅12| + |𝛿𝜅23| + |𝛿𝜅34| + |𝛿𝜅14|) sin𝜙.                                                         (2.33) 

As indicated by these results, we see that in general, arbitrary perturbations in the coupling 

strengths result in different corrections ∆𝜇𝑖. However, for the special case where 𝜙 = 𝜋/4 which 

corresponds to the inhibition of the tunneling, one obtains ∆𝜇0 = ∆𝜇1and ∆𝜇2 = ∆𝜇3, showing 

that the underlying degeneracy among the eigenstates in our system persists in the presence of this 

type of disorder. This in turn means that the AB tunneling inhibition itself is robust with respect 

to both diagonal and off-diagonal perturbations. 
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2.3.8 Coupling of the fundamental mode and higher-order modes 

In the first set of our experiments, we used light at a wavelength of 𝜆 = 1550 𝑛𝑚. In this case, the 

associated 𝑉 number of the individual cores is: 

𝑉 = 𝑘0𝑟𝑐𝑜𝑟𝑒𝑁𝐴 = 1.8,                                                                                                           (2.34) 

and therefore each core is single-moded in this case (𝐿𝑃01). As we decrease the wavelength to 𝜆 =

1064 𝑛𝑚 and 𝜆 = 665 𝑛𝑚, this 𝑉 number increases, leading to a multimode behavior within each 

of the light channels. Table 1 summarizes these results, where the corresponding mode profiles 

together with their nearest-neighbor coupling coefficients are also reported. 

As mentioned in section 2.3.5, to observe the tunneling suppression between opposite cores, it is 

essential that cross-coupling between them is highly suppressed so that the light propagation 

dynamics in the system are governed by nearest-neighbor interactions. In order to achieve this, we 

incorporated a fluorine-doped low-index core in the center of the fiber, having a diameter of ~5 

μm. Our simulations show that in the absence of such measures the cross-coupling is around ~ 6% 

of the nearest-neighbor coupling coefficients, while by introducing the refractive index 

suppression it is reduced to ~ 2%. 
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Table 1  Effect of surface passivation on current devoted to surface recombination at threshold. 

 𝜆 = 1550 𝑛𝑚 

Mode 

Coupling 

coefficient 

𝜅 [𝑚−1] 

Mode profile 

𝐿𝑃01𝑎 16 

 

𝐿𝑃01𝑏 16 

 

𝜆 = 1064 𝑛𝑚 

𝐿𝑃01 0.24 

 

𝐿𝑃11𝑎 63 

 

𝐿𝑃11𝑏 61.5 
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 𝜆 = 1550 𝑛𝑚 

𝐿𝑃11𝑐 10 

 

𝐿𝑃11𝑑  11.5 

 

𝜆 = 665 𝑛𝑚 

𝐿𝑃01 0.01 

 

𝐿𝑃11 0.08 

 

𝐿𝑃21 0.38 

 

𝐿𝑃02𝑎 16 

 

𝐿𝑃02𝑏 16 
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2.3.9 Kerr-induced detuning in high powers 

As mentioned in section 2.3.5, our high power experiments were performed at 𝜆 = 1064 𝑛𝑚. We 

used optical pulses of duration ~400 𝑝𝑠 from a Q-switched microchip laser with peak powers of 

~500 𝑊 and ~6 𝑘𝑊. Therefore, Kerr induced detuning in the excited core #1 in each case will 

be: 

∆𝛽𝑙𝑜𝑤 = 𝑘0𝑛2
𝐼 𝐼𝑙𝑜𝑤 ≈ 4 𝑚

−1                                                                                                     (2.35) 

∆𝛽ℎ𝑖𝑔ℎ = 𝑘0𝑛2
𝐼 𝐼ℎ𝑖𝑔ℎ ≈ 48 𝑚

−1.                                                                                               (2.36) 

According to these, in the high optical power regime, the nonlinear induced detuning in the 

propagation constant of the excited core is comparable in magnitude with the coupling coefficient 

of the higher-order 𝐿𝑃11 mode. This results in a more confinement of the light in the excited core 

#1, further decreasing the coupling to the other cores. 

2.3.10 Coupling suppression of higher-order modes 

Here we consider coupled mode analysis of the twisted fiber for higher-order modes, e.g. the 𝐿𝑃11 

mode arising in our nonlinear experiments. As indicated by our simulations in Table S1, the 

coupling between cores for higher-order modes can in general differ due to specific orientation of 

the corresponding mode. As shown in Fig. 15, this can be understood by noting that the coupling 

between nearby cores supporting e.g. 𝐿𝑃11 mode is directional, leading to different couplings 𝜅1 

and 𝜅2 in this case (𝜅1 > 𝜅2). 
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Consequently, the coupled mode equations can be formulated as discussed in the main text, except 

that now the equivalent Hamiltonian H is given as 

𝐻1 =

(

 
 

0 𝜅2𝑒
−𝑖𝜙

𝜅2𝑒
𝑖𝜙 0

0 𝜅1𝑒
𝑖𝜙

𝜅1𝑒
−𝑖𝜙 0

0 𝜅1𝑒
𝑖𝜙

𝜅1𝑒
−𝑖𝜙 0

0 𝜅2𝑒
−𝑖𝜙

𝜅2𝑒
𝑖𝜙 0 )

 
 
.                                                                           (2.37) 

For a twist rate corresponding to 𝜙 = 𝜋/4, it can be shown that 𝐻1 exhibits two pairs of degenerate 

eigenmodes 𝜇0 = 𝜇1 = 𝜇− = −√𝜅1
2 + 𝜅2

2 and 𝜇2 = 𝜇3 = 𝜇+ = √𝜅1
2 + 𝜅2

2, together with their 

associated eigenvectors: 

|𝜓0⟩ =
1

2
(

1

−𝑒−𝑖(
𝜋

4
+𝜃)

−1

𝑒−𝑖(
𝜋

4
+𝜃)

) , |𝜓1⟩ =
1

2
(

1

−𝑒−𝑖(
𝜋

4
−𝜃)

1

−𝑒−𝑖(
𝜋

4
−𝜃)

) , |𝜓2⟩ =
1

2
(

1

𝑒−𝑖(
𝜋

4
+𝜃)

−1

−𝑒−𝑖(
𝜋

4
+𝜃)

) , |𝜓3⟩ =

1

2
(

1

−𝑒−𝑖(
𝜋

4
−𝜃)

1

𝑒−𝑖(
𝜋

4
−𝜃)

),                                                                                                                        (2.38)          

where tan 𝜃 = 𝜅1/𝜅2. Under these conditions, if core #1 is initially excited at the input, the initial 

state of the system at 𝑧 = 0 can be expanded in terms of the given eigenstates as: 

 

Figure 15  Inhomogeneous couplings among cores. Different coupling coefficients among various nearby 

cores in a four-core system for an 𝐿𝑃11 mode. 
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|𝜓𝑖𝑛⟩ = (

1
0
0
0

) =
1

2
∑ |𝜓𝑖⟩
3
𝑖=0 .                                                                                                     (2.39) 

Therefore, the propagated state at an arbitrary distance 𝑧 will then be 

|𝜓(𝑧)⟩ =
1

2
∑ 𝑒𝑖𝜇𝑖𝑧|𝜓𝑖⟩
3
𝑖=0 =

1

2

(

 
 

𝑒𝑖𝜇−𝑧 + 𝑒𝑖𝜇+𝑧

−𝑒−
𝑖𝜋

4 cos 𝜃 (𝑒𝑖𝜇−𝑧 − 𝑒𝑖𝜇+𝑧)

0

−𝑖𝑒−
𝑖𝜋

4 sin 𝜃 (𝑒𝑖𝜇−𝑧 − 𝑒𝑖𝜇+𝑧))

 
 
,                                           (2.40) 

indicating that core #3 will always remain dark irrespective of the length of the fiber. 

2.4. Zero-DGD multicore optical fibers 

In this section we consider how the properties of the individual elements of an array can affect the 

characteristics of the system  [79]. In particular, we ask ourselves whether it is possible to eliminate the 

modal dispersion in a multicore fiber by judiciously adjusting the properties of the cores. It is shown that 

the resulting eigenvalue polynomial associated with an N-core MCF structure can be appropriately recast 

into N-1 algebraic equations whose roots can determine the features of the individual waveguide elements 

needed to achieve zero-DGD conditions. This procedure, based on coupled mode theory, can be employed 

in a versatile fashion for any MCF arrangement. A number of examples are provided to elucidate this 

method. By considerably restricting the search space for relevant parameters, these results can be further 

fine-tuned using finite element methods.  

We begin our analysis by considering an N-core MCF system, as shown in Fig. 16 for 𝑁 =  6. In this 

respect we assume that the propagation constants of each waveguide involved is 𝛽𝑙 while the coupling 

coefficients between different sites is 𝜅𝑙𝑚. The evolution of the (local) modal field amplitudes 𝑈𝑙 in this 

coupled array is described by the following set of equations:   
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𝑖
𝑑𝑈𝑙

𝑑𝑧
+ 𝛽𝑙𝑈𝑙 + ∑ 𝜅𝑙𝑚𝑈𝑚𝑙≠𝑚 = 0, (2.41) 

where 𝑙 = 1,2, … ,𝑁. The N eigenvalues 𝜇𝑗 associated with the supermodes 𝑈̅𝑗 = 𝑈̅0𝑗exp (𝑖𝜇𝑗𝑧) of 

this array can then be directly obtained from the eigenvalue problem, 

|

𝛽1 − 𝜇 𝜅12
𝜅21 𝛽2 − 𝜇

⋯ 𝜅1𝑁
⋯ 𝜅2𝑁

⋮ ⋮
𝜅𝑁1 𝜅𝑁2

⋱ ⋮
⋯ 𝛽𝑁 − 𝜇

| = 0 , (2.42) 

which in turn leads to the following characteristic equation: 

 

𝜇𝑁 + 𝑃𝑁−1(𝛽𝑙 , 𝜅𝑙𝑚)𝜇
𝑁−1 + 𝑃𝑁−2(𝛽𝑙 , 𝜅𝑙𝑚)𝜇

𝑁−2 +⋯+ 𝑃0(𝛽𝑙 , 𝜅𝑙𝑚) = 0.         (2.43) 

Here 𝑃𝑗(𝛽𝑙 , 𝜅𝑙𝑚) represent polynomial functions of the propagation constants and coupling 

coefficients.  At this point we emphasize that both parameters 𝛽𝑙 and 𝜅𝑙𝑚 are dispersive, i.e. they 

depend on the optical angular frequency 𝜔. If all the waveguide channels are identical, in which 

case they exhibit the same propagation constant 𝛽0, then it is straightforward to show that the 

resulting eigenvalues are only functions of the inter-site couplings, i.e. 𝜇𝑗 = 𝛽0 + 𝑓𝑗(𝜅𝑙𝑚), where 

𝑓𝑗represents again a polynomial function. In this particular case DGD can be eliminated only if 

𝑑𝜅𝑙𝑚/𝑑𝜔 = 0 , that is only possible under the conditions mentioned above [80]. Otherwise, a 

 

Figure 16  A hexagonal MCF structure involving six dissimilar cores. 

 

 

 

𝛽1 𝛽2 

𝛽3 

𝛽4 𝛽5 

𝛽6 
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uniform array will suffer from considerable differential group delay levels. Hence, in order to 

eliminate DGD one has to resort to multicore fiber designs where the constituent waveguide 

elements are dissimilar. This fact has been recently recognized in connection with zero-DGD two-

core structures with unequal radii [81]. 

Evidently, under zero-DGD conditions, the eigenvalues of the MCF configuration should satisfy 

the following relation: 

𝑑𝜇1
𝑑𝜔

=
𝑑𝜇2
𝑑𝜔

= ⋯ =
𝑑𝜇𝑁
𝑑𝜔

, (2.44) 

where all derivatives are evaluated at the central frequency 𝜔 = 𝜔0. Equation 2.44 ensures that 

the group velocities of all N supermodes are equal. By differentiating Eq. (1-42) with respect to 𝜔 

we obtain: 

𝜇𝑁−1 (𝑁
𝑑𝜇

𝑑𝜔
+
𝑑𝑃𝑁−1
𝑑𝜔

) +∑ [(𝑘 + 1)𝑃𝑘+1
𝑑𝜇

𝑑𝜔
+
𝑑𝑃𝑘
𝑑𝜔

] 𝜇𝑘
𝑁−2

𝑘=0

= 0 . (2.45) 

Equation 2.45 represents a polynomial equation in 𝜇 of degree N-1. For Eq. 2.45 to be true for all 

possible eigenvalues 𝜇, it is necessary that the coefficients of all the terms in this polynomial 

vanish, i.e. (𝑘 + 1)𝑃𝑘+1𝜇
′ + 𝑃𝑘

′ = 0 , where 𝜇′ = 𝑑𝜇/𝑑𝜔, etc. By applying this condition to the 

first term in Eq. 2.45 and given that 𝑃𝑁−1 = −∑ 𝛽𝑙
𝑁
𝑙=1  we find that: 

1

𝑣𝑔𝑀𝐶𝐹
=
1

𝑁
(∑

1

𝑣𝑔𝑙

𝑁

𝑙=1

) , (2.46) 

where 𝑣𝑔𝑀𝐶𝐹
−1 = 𝜇′ and 𝑣𝑔𝑙

−1 = 𝛽𝑙
′. Equation 2.46 directly implies that the expected common group 

speed in this MCF system should be in fact the average of all the group velocities associated with 

the different fiber cores involved. In other words, the common group velocity of all the supermodes 
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in this zero-DGD MCF must be 𝑣𝑔𝑀𝐶𝐹
. From Eq. 2.45 and after using this latter result, one obtains 

the following system of N-1 algebraic equations, where 𝑘 = 0,1, … ,𝑁 − 2. 

(𝑘 + 1)𝑃𝑘+1
𝑁

(∑
𝑑𝛽𝑙
𝑑𝜔

𝑁

𝑙=1

) +
𝑑𝑃𝑘
𝑑𝜔

= 0 . (2.47) 

In general, one can introduce the dissimilarity between cores (needed for zero DGD) either by 

employing different index profiles, by using unequal dimensions, or both. Here, to demonstrate 

this method, we assume that the core index profiles are all of the same step index type, while we 

allow the waveguide channel radii to vary around the radius of the first core, which here is held 

constant. In other words, we use the radii of the N-1 waveguides as variables to solve the N-1 

equations of 2.47. The coupling coefficients between different sites 𝑙, 𝑚 are calculated using the 

following relation [82]: 

𝜅𝑙𝑚 = (2∆𝑚)
1
2
𝑈𝑙𝑈𝑚
𝑅𝑙𝑉𝑙

×
𝐾0 (

𝑊𝑙𝑑𝑙𝑚
𝑅𝑙

)

𝐾1(𝑊𝑙)𝐾1(𝑊𝑚)

× {
𝑊𝑙
̅̅̅̅ 𝐾0(𝑊𝑚)𝐼1(𝑊𝑙

̅̅̅̅ ) + 𝑊𝑚𝐾1(𝑊𝑚)𝐼0(𝑊𝑙
̅̅̅̅ )

𝑊𝑙
̅̅̅̅ 2 + 𝑈𝑚2

}, 

(2.48) 

where 𝑊𝑙
̅̅̅̅ = 𝑊𝑙𝑅𝑚/𝑅𝑙, 𝐼𝑚(𝑥) and 𝐾𝑚(𝑥) are modified Bessel functions of the first and second 

kind, and 𝑅𝑙 are the core radii. Moreover, ∆𝑚 = (𝑛1,𝑚 − 𝑛2,𝑚) 𝑛1,𝑚⁄  is the normalized index 

difference, 𝑉𝑙 = 𝑘0𝑅𝑙𝑛1,𝑙√2∆𝑙 represents a dimensionless V number for core 𝑙, while 𝑊𝑙 =

𝑅𝑙(𝛽𝑙
2 − 𝑘0

2𝑛2,𝑙
2 )

1/2
, 𝑈𝑙 = 𝑅𝑙(𝑘0

2𝑛1,𝑙
2 − 𝛽𝑙

2)
1/2

, where 𝑛1,𝑚 and 𝑛2,𝑚are the core and cladding 

refractive indices, 𝑘0 is the free-space wavenumber, and 𝑑𝑙𝑚is the distance between core centers 

at sites 𝑙 and 𝑚. 
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Clearly, for a given set of characteristics, both quantities 𝛽1 and 𝛽1
′  associated with the first waveguide 

are known. Therefore, the only unknowns in the system of Eqs. 2.47 are the propagation constants of the 

remaining N-1 cores and their derivatives with respect to frequency, which are of course functions of the 

characteristics of the individual waveguides comprising the structure. Here we use the core radii as variables 

even though in general one can also exploit other degrees of freedom (index contrast, index profile, etc.). It 

is important to emphasize at this point that the polynomials associated with Eq. 2.47 directly involve the 

propagation constants 𝛽𝑙 (which are inherently large) -hence the resulting eigenvalues 𝜇𝑗 are of the same 

order. This in turn complicates the numerical search for roots. To alleviate this problem, we rewrite each 

propagation constant in terms of a reference value, i.e.  𝛽𝑙 = 𝛿𝛽𝑙 + 𝛽̅ , where in our case 𝛽̅ =

𝑘0(𝑛1(𝜔) + 𝑛2(𝜔))/2. As a result, the common reference value 𝛽̅ drops out from these equations, and 

instead, the polynomials 𝑃𝑗(𝛿𝛽𝑙 ,  𝜅𝑙𝑚) now depend only on the smaller differential propagation constants 

𝛿𝛽𝑙. This latter normalization further facilitates the numerical search for solutions. In this normalized frame, 

the eigenvalues 𝜇𝑗 are also rescaled with respect to the reference floor. With this in mind, we 

computationally search for the N-1 radii capable of simultaneously satisfying the N-1 Eqs. 2.47. In all cases, 

we seek solutions where each waveguide still remains single-moded, i.e. with a V number less than 2.4.  

Note that our results, however close to the optimum design, are still not exact due to the approximations 

inherent in coupled mode theory. Nevertheless, once the search space for relevant core parameters is 

significantly narrowed down using our approach, the final MCF design can be further fine-tuned using 

finite element methods.   

To demonstrate our method, we first consider a four-core fiber design. The structure is composed 

of step-index waveguide elements with centers placed on the vertices of a 16𝜇𝑚 × 16𝜇𝑚 square 

(Fig. 17). Here we set the radius of the first core to be 𝑅1 = 4.42 𝜇𝑚 and we then determine the 
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remaining cores so that the three equations (of Eq. 2.47) are simultaneously satisfied. For this case, 

the core radii are found to be: 𝑅2 =  3.929 µ𝑚, 𝑅3 = 4.095  µ𝑚 and 𝑅4 = 4.219 µ𝑚. At 𝜆0 =

1550 𝑛𝑚, the resulting DGD between any two of the four supermodes (or eight including 

polarizations) varies between 0.8 and 7.7 𝑝𝑠/𝑘𝑚. In other words, zero DGD conditions can only 

be established provided that all elements are quite dissimilar with respect to each other.  The mode 

intensity profiles of the corresponding supermodes are depicted in Fig. 18. 

 

For the scenario explored above, Fig. 18 clearly indicates that each supermode in this four-

element system mostly resides in one core-with little penetration into the other three. This 

 

 

Figure 17  Schematic of a four-core MCF. 

 

 

  

  

 

Figure 18  The four supermode intensity profiles of an ultra-low DGD four-core MCF design. 
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characteristic could be desirable in terms of multiplexing or demultiplexing these modes, in 

particular in connection to MIMO processing. The effective mode indices corresponding to the 

four modes shown in Fig. 18 are 1.4463, 1.4462, 1.4461 and 1.4459, while the core and cladding 

refractive indices are taken here to be 1.449 and 1.444 respectively.  Our results suggest that zero 

DGD is possible even though the different supermode propagation constants are clustered away 

from the cladding radiation modes of the structure. To assess the efficacy of our method, we 

compare the DGD values we found to those associated with a similar four-core arrangement, 

comprised of identical waveguides with a radius of 𝑅1 = 4.42 𝜇𝑚 (all other characteristics remain 

the same). For this uniform array, the maximum DGD was 2.3 ns/km, which is nearly 300 times 

higher than the values obtained for the aforementioned design.  

The method presented here is general and can be applied to MCFs with different numbers of 

cores and geometries. The results for MCFs with two, three, five and six cores, of different 

geometries, are presented in Table 1. In these examples, all the parameters of the MCF structure 

(e.g. core and cladding refractive index, center frequency, spacing between elements, etc.) are the 

same as for the four-core case studied above, and the radii of N-1 cores are chosen as unknowns 

in simultaneously solving the N-1 equations of 2.47. The table provides the V numbers of the 

individual cores in isolation. The maximum expected value of DGD between the various 

supermodes of the structure, as well as the mode intensity profiles for each supermode is also 

presented.  As in the four-core example considered before, even in more complex geometric 

patterns, all the core elements must be different when taken in sequence, to achieve low DGD 

conditions. Moreover, each supermode tends to primarily occupy one waveguide element. Other 

MCF systems can be analyzed in a similar fashion based on the analytical scheme suggested. Even 
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though in our examples we considered step-index elements so as to demonstrate this approach, in 

principle one can apply the same methodology to more involved graded index cores provided the 

respective propagation constants and coupling coefficients are evaluated as a function of 

wavelength. 

Moreover, we have considered how the DGD varies as a function of wavelength for the 

aforementioned designs. As an example, we have numerically obtained the three DGD curves 

associated with the equilateral three-core design in Table 2. This response was determined across 

the C-band, around the operating wavelength of 𝜆0 = 1550 𝑛𝑚 (Fig. 19). Our computations 

indicate that throughout the C-band, the maximum DGD remains always below 28.4 𝑝𝑠/𝑘𝑚. 

Compared to other equilateral equal-core step-index designs of a similar index contrast, our results 

show a ten-fold improvement in DGD variations. We note that for this particular design the DGD 

curves happen to be polarization insensitive. Similar conclusions can be drawn for the other 

designs in Table 2. 

Table 2  Low DGD MCF structures of different geometries 

Configuration 
Maximum 

DGD 

Waveguide V 

numbers 

 

  

 

0.5 ps/km 
𝑉1 = 2.20 

𝑉2 = 2.06 
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Configuration 
Maximum 

DGD 

Waveguide V 

numbers 

 

 

   

 

0.6 ps/km 

 

 

𝑉1 = 2.20 

𝑉2 = 2.37 

𝑉3 = 2.10 

 

 

 

 

 

 

 
 

0.5 ps/km 

 

 

 

𝑉1 = 2.20 

𝑉2 = 2.32 

𝑉3 = 2.10 

 

 

 

 

  

 

  

 

 

10.2 ps

/km 

𝑉1 = 2.17 

𝑉2 = 2.04 

𝑉3 = 2.15 

𝑉4 = 2.37 

𝑉5 = 2.24 

 
11.0 ps

/km 

𝑉1 = 2.10 

𝑉2 = 2.20 

𝑉3 = 2.00 

𝑉4 = 2.09 
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Configuration 
Maximum 

DGD 

Waveguide V 

numbers 

 

   
 

   
 

   

𝑉5 = 2.32 

𝑉6 = 2.22 

 

2.5. Summary 

According to the Aharonov-Bohm effect electron beams acquire a path-dependent phase in their 

corresponding wavefunctions in the presence of a nonzero magnetic flux [22,23]. This phase shift 

is not limited to conducting electrons, but also arises within the context of quantum tunneling [21]. 

Even though the AB effect has been observed for electrons in a superconducting or conductive 

 

Figure 19  Variation of DGD over the C-band for a three-core fiber design. 
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platform [83–85], its observation in quantum well tunneling settings has so far remained out of 

reach, mainly due to the demand for high magnetic fluxes-  which are experimentally inaccessible. 

Quite recently, a relevant observation has been reported [76], where a linear Paul trap was used to 

establish a bistable potential with two degenerate eigenstates for Ca ions. A magnetic field was 

then applied to the structure, and the tunneling rate between the corresponding degenerate states 

was found to be affected by the associated magnetic flux.  

In optics, as originally shown by Pancharatnam, a cyclic change in the polarization of a light 

beam will in general lead to a phase shift accumulated by its corresponding electric field 

amplitude [69]. This can be viewed as the equivalent of the AB phase, where the magnetic flux is 

now replaced by the solid angle subtended by the corresponding cyclic curve on the Poincaré 

sphere for propagating photons [70]. On the other hand, the structure implemented here in our 

study is analogous to the AB effect for tunneling electrons, as predicted in recent theoretical 

studies [43]. Here the uniform twist along a circular multi-core fiber acts as a synthetic magnetic 

field for photon-tunneling between adjacent cores. Accordingly, the magnitude of this gauge field 

can be conveniently varied through mechanical twisting of the fiber, until a complete suppression 

of coupling between the two opposite cores can be achieved. 

As indicated by our experimental results (Fig. 12), the AB tunneling phase in the twisted 

multicore structure remains invariant regardless of the presence of optical nonlinearity. Moreover, 

as confirmed by the observations presented in Fig. 13, this same effect happens in a universal 

manner even for higher-order modes in our optical fiber platform. We would like to emphasize 

here that local defects in the individual waveguide channels, something inevitable in any 

experimental realization, would not significantly affect our results [43]. In other words, this AB-
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induced tunneling inhibition effect happens to be robust against perturbations. This is attributed to 

the topological nature of the AB phase, as can be confirmed by perturbation analysis (section 

2.3.7). Our observations suggest that similar twisted fiber systems can be envisioned as viable 

platforms for studying effects akin to those arising from the interaction of electrons with magnetic 

fields-especially in connection with topological phenomena.  
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CHAPTER 3: TOPOLOGICAL INSULATOR LASERS 

3.1. Introduction  

Topological insulators are a phase of matter featuring an insulating bulk while supporting 

conducting edge states  [3,24,26]. Remarkably, edge-state transport in topological insulators is 

granted topological protection, a property stemming from the underlying topological 

invariants  [3]. For example, in two-dimensional systems the ensued one-way conduction along 

the edge of a topological insulator is by nature scatter-free - a direct outcome of the nontrivial 

topology of the bulk electronic wavefunctions [26]. Although topological protection was initially 

encountered in the integer quantum Hall effect [2], the field of topological physics rapidly 

burgeoned after it was recognized that topologically-protected transport can also be observed even 

in the absence of a magnetic field [25,86]. This in turn, incited a flurry of experimental activities 

in a number of electronic material systems [87]. The promise of robust transport inspired studies 

in many and diverse fields beyond solid-state physics, such as optics, ultracold atomic gases, 

mechanics and acoustics, to mention a few [10,13–15,27–30,36,88–94]. Along these lines, 

unidirectional topological states were observed in microwave settings [16] in the presence of a 

magnetic field (the electromagnetic analogue of the quantum Hall effect), while more recently 

topologically-protected transport phenomena have been successfully demonstrated in optical 

passive all-dielectric environments by introducing artificial gauge fields [14,62].   

In photonics, topological concepts could lead to new families of optical structures and devices 

by exploiting robust, scatter-free light propagation. Lasers in particular, could directly benefit from 

such attributes [63,95]. In general, laser cavities are prone to disorder, inevitably arising from 

fabrication imperfections, operational degradation and malfunction. More specifically, the 
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presence of disorder in a laser gives rise to spatial light localization within the cavity, ultimately 

resulting in a degraded overlap of the lasing mode with the gain profile. This in turn implies lower 

output coupling, multimode lasing, and reduced slope efficiency. These issues become further 

acute in arrays of coupled laser resonators where a large number of elements is involved. Naturally, 

of interest would be to employ topological features in designing laser systems that are immune to 

disorder. In this spirit, recently, edge-mode lasing in topological 1D Su-Schrieffer-Heeger 

resonator arrays has been studied by several groups [64,96,97]. However, being one-dimensional 

they lase in a zero-dimensional defect state, which inherently cannot provide protected transport. 

On the other hand, two-dimensional (2D) laser systems can directly benefit from topological 

protection. Indeed, it was theoretically shown that it is possible to harness the underlying features 

of topological insulators in 2D laser arrays - when lasing in an extended topological state [95,98]. 

As indicated in [95,98], such systems can operate in a single mode fashion with high slope 

efficiencies in spite of appreciable disorder. In a following development, unidirectional edge-mode 

lasing was demonstrated in a topological photonic crystal configuration involving a YIG substrate 

under the action of a magnetic field [99]. In that system, lasing occurred within a narrow spectral 

bandgap induced by magneto-optic effects.  Clearly, of interest would be to pursue magnet-free 

approaches that are by nature more compatible with fabrication procedures and photonic 

integration involving low-loss components. In addition, such all-dielectric systems can prove 

advantageous in terms of substantially expanding the topological bandgap that dictates the degree 

of protected photon transport.  

In this chapter, we report our experimental and theoretical results regarding lasing action in 

the edge modes of a topological photonic lattice of ring resonators in both 1D and 2D  [63,64]. 
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3.2. Lasing in the topological defect of a 1D SSH array 

An archetypical example of one-dimensional discrete lattices that is known to be 

topologically non-trivial (thus allowing edge modes), is that described by the Su-Schrieffer-Heeger 

(SSH) model [37]. Thus far, this class of SSH structures have been employed to experimentally 

probe topological phase transitions  [100,101] and to demonstrate PT-symmetric topologically 

protected bound states in fused silica coupled waveguide arrays [102]. Yet, in spite of the intense 

activity in this area, a comprehensive description as to how such topological structures behave 

under highly non-Hermitian conditions is at this point lacking, and several fundamental questions 

still remain unanswered. For example, can non-Hermiticity and/or nonlinearity impede or assist 

topological edge states? In that case, how do topological attributes depend on the gain/loss levels? 

In this section, we address the above questions by theoretically and experimentally 

investigating these topological aspects in one-dimensional SSH laser arrays- structures that are 

both nonlinear and highly non-Hermitian. As it will be shown, the conventional C-symmetry 

associated with a passive SSH system no longer persists in the presence of non-Hermiticity. 

Instead, by judiciously engineering the gain and loss profile in the SSH laser array in a way that 

respects PT-symmetry, the ensuing Hamiltonian now possesses CT-symmetry, a necessary 

ingredient in this case for robust topologically protected lasing edge states. Here the complex Berry 

phase is used to predict the behavior of the active SSH structure for different levels of non-

Hermiticity. Based on this analysis, three different phases are identified that depend on the gain 

levels involved and the coupling strengths. In this respect, one can observe a broad range of 

behaviors, starting from single edge-mode lasing and eventually ending into multimode emission 

within the bulk of the array. In all cases, the observed intensity mode profiles and spectra emitted 
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by this topological laser arrangement are in good agreement with theoretical models that account 

for carrier dynamics, saturable gain, and laser mode competition. In fact, these latter processes, 

play a crucial role in stabilizing the lasing edge-modes in such topological arrangements. 

In our study, the active SSH array consists of 16 identical coupled microring resonators 

fabricated on InGaAsP quantum wells. The gain-medium consists of six vertically stacked 

quantum wells, each composed of a 10 nm thick well (𝐼𝑛𝑥=0.56𝐺𝑎1−𝑥𝐴𝑠𝑦=0.93𝑃1−𝑦) sandwiched 

between two 20 nm thick barrier layers (𝐼𝑛𝑥=0.74𝐺𝑎1−𝑥𝐴𝑠𝑦=0.57𝑃1−𝑦),with an overall height of 

200 nm, which is capped with a 10 nm thick layer of InP, as depicted in Fig. 14 (a). The coupling 

strengths in this SSH structure alternate between 𝜅1 ≈ 8 × 10
10 𝑠−1 and 𝜅2 ≈ 1.4 × 10

11 𝑠−1, as 

obtained when the distance between successive rings is 200 nm and 150 nm, respectively. The 

resulting bipartite lattice shown in Fig. 20(b) involves a nontrivial termination, capable of 

 

Figure 20  (a) InGaAsP multilayer quantum well structure used in the microrings, (b) a schematic of the 

SSH microring laser array, and (c) a microscope image of the fabricated structure with 16 elements. Insets 

show scanning electron microscope images of the grating at the end of the out-coupling waveguides, and 

the coupling region between two microrings. 
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supporting edge modes. Figure 20 (c) shows a microscope image of a fabricated SSH structure 

(eight unit cells), with each ring being weakly coupled to a waveguide that happens to be equipped 

with two out-coupling gratings - necessary to interrogate the array. Within the tight-binding 

formalism, the unit cell dynamics in this SSH configuration can be described by the following 

Hamiltonian: 

𝐻0 = 𝜖𝐴∑𝑐̂𝑛
𝐴†𝑐̂𝑛

𝐴

𝑛

+ 𝜖𝐵∑𝑐̂𝑛
𝐵†𝑐̂𝑛

𝐵

𝑛

+∑(𝜅1 (𝑐̂𝑛
𝐵† 𝑐̂𝑛

𝐴 + 𝑐̂𝑛
𝐴† 𝑐̂𝑛

𝐵) + 𝜅2(𝑐̂𝑛−1
𝐵† 𝑐̂𝑛

𝐴 + 𝑐̂𝑛
𝐴†𝑐̂𝑛−1

𝐵 ))

𝑛

 , 

(3.1) 

where 𝑐̂𝑛
𝐴†

 and 𝑐̂𝑛
𝐵†

 denote photon creation operators at site 𝑛 in the sublattices 𝐴 and 𝐵 of this 

structure, while 𝜖𝐴 and 𝜖𝐵 represent the complex on-site eigenfrequencies (potentials) of the 

corresponding active rings. Again, 𝜅1 and 𝜅2 are the intra-cell and inter-cell coupling coefficients, 

respectively. The ratio between these two coupling values, here denoted as 𝜈 = 𝜅2/𝜅1, determines 

the dimerization of the SSH structure. In a momentum space representation, the Bloch mode 

Hamiltonian can be obtained via a Fourier transform, i.e.: 

𝐻0(𝑘) = (
𝜖𝐴 𝜅1 + 𝜅2𝑒

−𝑖𝑘

𝜅1 + 𝜅2𝑒
+𝑖𝑘 𝜖𝐵

) .  (3.2) 

If the array system is Hermitian and is composed of identical rings (𝜖𝐴 = 𝜖𝐵 = 0), then the 

Hamiltonian of Eq. 3.2 anti-commutes with the chiral operator 𝑪 = 𝜎𝑧. Hence in this case, the 

eigenvalues are symmetrically distributed around zero, with the two zero-energy edge states being 

located at the ends of the Brillouin zone 𝑘 = ±𝜋 (Fig. 21 (a)). The field profiles associated with 

these two edge states are displayed in the insets of Fig. 15 (a). On the other hand, if the SSH 
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structure is active, then the on-site potentials are now purely imaginary, i.e. 𝜖𝐴 = −𝑖𝑔𝐴 and 𝜖𝐵 =

−𝑖𝑔𝐵. In this latter case, it is easy to show that the structure no longer possesses C-symmetry, i.e. 

𝑪𝐻0𝑪
−𝟏 ≠ −𝐻0. In our experimental realization (Fig. 20 (b)), the parameters 𝑔𝐴 and 𝑔𝐵 are 

dictated by the linear gain coefficients associated with the two sublattices 𝐴 and 𝐵, as induced by 

differential pumping. In general, the dynamics of such an active SSH lattice are described by the 

following set of rate equations  [103]: 

𝑑𝐸𝑛
𝐴

𝑑𝑡
=
1

2
[−𝛾 + 𝜎(𝑁𝑛

𝐴 − 1)](1 − 𝑖𝛼𝐻)𝐸𝑛
𝐴+𝑖𝜅1𝐸𝑛

𝐵 + 𝑖𝜅2𝐸𝑛−1
𝐵  

𝑑𝐸𝑛
𝐵

𝑑𝑡
=
1

2
[−𝛾 + 𝜎(𝑁𝑛

𝐵 − 1)](1 − 𝑖𝛼𝐻)𝐸𝑛
𝐵 + 𝑖𝜅1𝐸𝑛

𝐴 + 𝑖𝜅2𝐸𝑛+1
𝐴           

𝑑𝑁𝑛
𝐴

𝑑𝑡
= 𝑅𝐴 −

𝑁𝑛
𝐴

𝜏𝑟
− 𝐹(𝑁𝑛

𝐴 − 1)|𝐸𝑛
𝐴|2          

𝑑𝑁𝑛
𝐵

𝑑𝑡
= 𝑅𝐵 −

𝑁𝑛
𝐵

𝜏𝑟
− 𝐹(𝑁𝑛

𝐵 − 1)|𝐸𝑛
𝐵|2 .          

(3.3) 

 

Here, 𝐸𝑛
𝐴 and 𝐸𝑛

𝐵 denote the electric modal field amplitudes in sublattices 𝐴 and 𝐵, 𝛾 is inversely 

proportional to the photon lifetime in each of these identical cavities, and 𝑁𝑛
𝐴 and 𝑁𝑛

𝐵 represent the 

carrier population densities normalized with respect to the transparency value 𝑁0. In addition, 𝛼𝐻 

is the linewidth enhancement factor, 𝜎 = Γ𝑣𝑔𝑎𝑁0 is proportional to the unsaturated loss in the 

absence of pumping, Γ is the confinement factor, 𝑎 is the gain proportionality factor, and 𝑣𝑔 =

𝑐/𝑛𝑔 denotes the group velocity within the cavity. In these equations 𝑅𝐴 and 𝑅𝐵 are normalized 

(with respect to 𝑁0) pump rates, while 𝜏𝑟 indicates the carrier recombination lifetime in the 

InGaAsP quantum wells. Finally, 𝐹 = (Γ𝑣𝑔𝑎𝜖0𝑛𝑒𝑛𝑔)/2ℏ𝜔, where 𝜖0 is the vacuum permittivity, 
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𝑛𝑒 is the mode effective index, ℏ is the reduced Planck’s constant, and 𝜔 is the angular frequency 

of the emitted light. The linear gain coefficients can be directly obtained from the above parameters 

via 𝑔𝐴,𝐵 = 𝜎/2[(𝑅𝐴,𝐵 − 1/𝜏𝑟 )/(1/𝜏𝑟  + 𝐹|𝐸|
2 )].  

In order to address the aforementioned aspects, we first consider the simplest possible case, 

i.e. when the pumping is uniform 𝑔𝐴 = 𝑔𝐵 = 𝑔. The linear band structure of this SSH laser system 

under this condition is also depicted in Fig. 21 (a). The optical field distributions corresponding to 

the two edge states are identical to those in the Hermitian case. It is evident that in this scenario, 

the eigenvalues are no longer symmetrically distributed around the zero level, instead, they all rise 

by the same amount −𝑖𝑔 (in their imaginary part), corresponding to an equal amount of gain 𝑔 for 

all supermodes involved. This situation drastically changes once PT-symmetry is introduced, i.e. 

𝑔𝐴 = −𝑔𝐵 = 𝑔. In this regime, the Hamiltonian of Eq. 3.2 now takes the form: 

𝐻0(𝑘) = (
−𝑖𝑔 ρ
ρ∗ 𝑖𝑔

), (3.4) 

 

Figure 21  Eigenvalue diagrams of (a) Hermitian and uniformly pumped (𝑔 =  0 and 𝑔 ≠ 0) and (b) PT-

symmetric SSH lattice. The field profiles of the edge states are also depicted in the right and left insets. 
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where 𝜌 = 𝜅1 + 𝜅2𝑒
−𝑖𝑘. As previously indicated, this Hamiltonian does not respect C-symmetry. 

Instead, 𝐻0 satisfies: 

𝑪𝑻𝐻0𝑻
−𝟏𝑪−𝟏 = 𝐻0 , (3.5) 

where the time reversal operator T is here defined as 𝑻 = 𝑖𝜎𝑦𝐾, with 𝐾 denoting complex 

conjugation. In this respect, if |𝜓⟩ is an eigenstate of 𝐻0 (𝐻0|𝜓⟩ = 𝜀|𝜓⟩), then 𝑪𝑻|𝜓⟩ is also an 

eigenstate of 𝐻0, only this time its eigenvalue happens to be the complex conjugate 𝜀∗. While PT-

symmetry is imposed in real space, the CT operator acts in the momentum domain. Figure 21(b) 

shows the eigenvalues of this CT-symmetric Hamiltonian when 𝑔 < |𝜅2 − 𝜅1|. The inset in this 

figure displays the field amplitudes of the edge states corresponding to the two imaginary 

eigenvalues marked in the plot. Evidently, the field distributions of these states only occupy one 

of the sublattices (𝐴 or 𝐵), and alternate in sign. As a result, one of these modes is expected to 

experience gain, while the other one an equal amount of loss. Note that under PT-symmetric 

conditions, all the bulk modes remain neutral. It is also evident that the edge states in this SSH 

configuration, unlike bulk modes, exhibit spontaneous breaking of CT-symmetry, in other words, 

the left and right edge modes can be converted into one another through the CT operator. 

Figure 22 (a) shows the steady-state intensity distribution as obtained from numerical 

simulations (Eqs. 3.3), for a 16-element SSH laser system when uniformly pumped at 𝑅𝐴,𝐵 =

1.05/ 𝜏𝑟. In these simulations, we assume that 𝛼𝐻 = 4, 𝜏𝑟 = 4 𝑛𝑠, and 𝜎 = 3 × 1011 𝑠−1. It is 

clear that in this case the resulting lasing profile is a complex mixture of all the supermodes 

(including the edge states) supported in this laser array. This is because all modes experience the 

same gain. Nevertheless, the wavelength emission in the array greatly depends on the site number 

(insets of Fig. 22). Our theoretical analysis suggests that the edge state will always lase at the 
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resonance frequency 𝜔0 (Ω/𝜅1  ≈ 0) with a relatively narrow linewidth. Conversely, the spectrum 

emanating from rings in the bulk (bulk modes) will have a considerably more complex structure 

because of mode competition effects. On the other hand, Fig. 22 (b) shows the expected intensity 

distribution under PT-symmetric conditions after numerically solving Eqs. 3.3 – starting from 

noise. In this case, only sublattice A is pumped at 𝑅𝐴 = 1.05/ 𝜏𝑟 while B is kept in the dark. In 

this regime, our simulations show that only one of the edge modes (the one enjoying gain) is 

favored and hence lases, while all the bulk modes are suppressed. In direct contrast to the results 

presented in Fig. 22 (a), CT-symmetry now promotes only the edge state. Consequently, the 

spectrum emitted at the edge happens to be close to the ring resonance 𝜔0 and is single-moded. 

The dynamics of this CT-symmetric SSH laser system can be theoretically predicted by 

considering the non-Hermitian Berry phase associated with the Hamiltonian of Eq. 3.4. In general, 

 

Figure 22  Theoretically predicted steady-state lasing profiles for a) uniformly pumped and b) PT-

symmetric SSH lattice. The insets show the power spectra corresponding to the edge mode and bulk modes 

as obtained from different locations in the array. 
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the Berry phase ϕ corresponding to an eigenstate of a non-Hermitian Hamiltonian H(q) is given 

by  [104]: 

ϕ = ∮⟨𝜆(𝒒)|i∇𝒒𝜓(𝒒)⟩. 𝑑𝒒, (3.6) 

 

where the integral is evaluated on a closed path traced by q in the parameter space on which H(q) 

is defined, while|𝜓(𝒒)⟩ and |𝜆(𝒒)⟩ are the right and left (biorthogonal) eigenstates of H(q), 

respectively. From here, the complex Berry phase acquired from the upper (+) and lower (-) bands 

of the Hamiltonian can be obtained from the following integral  [105]: 

ϕ± =
1

2
∮(1 ± cos𝛼)

𝑑𝜃

𝑑𝑘
 𝑑𝑘, (3.7) 

where = tan−1 (
|𝜌|

𝑖𝑔
) , and 𝜃 = −arg(𝜌). The integration in Eq. 3.7 is performed over the Brillouin 

zone of the Hamiltonian, i.e. 𝑘 ∈ [−𝜋, 𝜋]. In the Hermitian limit of 𝑔 = 0, this phase ϕh coincides 

with the conventional Zak phase  [106]:  

ϕ+ = ϕ− = ϕℎ =
1

2
∫ 𝑑𝜃
𝜋

𝑘=−𝜋

= {
𝜋       𝜈 > 1

0              𝜈 < 1
 (3.8) 

Equation 3.8 clearly indicates that the dimerization ratio 𝜈 = 𝜅2/𝜅1 plays an important role in 

establishing a topological phase transition, a well-known result when dealing with Hermitian SSH 

arrays. On the other hand, in the presence of non-Hermiticity (𝑔 ≠ 0), the cosine term in the 

integral of Eq. 3.7 will lead to a complex Berry phase. In what follows, we show how different 

phase transitions of this PT-symmetric laser SSH system can be predicted by examining this 
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complex phase. Under these conditions, the integral of Eq. 3.7 can be analytically obtained in 

closed form. In this case, the complex Berry phase is given by  [105]: 

ϕ± = ϕℎ ±
𝑖𝜂

2
√
𝑦

𝜈
(𝐾(𝑦) +

𝜈 − 1

𝜈 + 1
Π(𝑥, 𝑦)). (3.9) 

In this expression the real quantities =
4𝜈

(𝜈+1)2
 ,  𝑦 =

4𝜈

(𝜈+1)2−𝜂2
 depend on both the normalized gain 

𝜂 = 𝑔/𝜅1 and the dimerization coefficient 𝜈, while 𝐾 and Π denote complete elliptic integrals of 

the first and third kind, respectively. Figure 23 (a) shows the Berry phase associated with the upper 

band ϕ+  as a function of the normalized gain 𝜂 when 𝜈 = 2. A close inspection of this figure 

reveals three distinct phases, as predicted from Eq. 3.9. More specifically, if the SSH system is 

operated in the range of 0 < 𝜂 < 𝜈 − 1 (denoted as phase I), only the edge state is expected to 

lase. In this domain, under steady-state conditions (Eqs. 3.3) the structure is single-moded and the 

 

Figure 23  The complex Berry phase Φ+ as a function of the normalized gain 𝜂. The different phases are 

indicated through different colors. The simulated intensity distributions corresponding to these three 

distinct phases I, II, and III are depicted in (b), (c), and (d), respectively. 
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intensity profile across the array varies exponentially with the site number (Fig. 23 (b)). As the 

gain in the system increases, i.e. for 𝜈 − 1 < 𝜂 < 𝜈 + 1 in Fig. 23 (a), the SSH structure enters 

phase II, where some of the bulk modes of the structure start to acquire complex eigenvalues (after 

entering the PT-symmetry broken phase), resulting in a multimode operation  (Fig. 17 (c)). Note 

that in phase II the intensity profile across the array is asymmetrically one-sided, biased towards 

the edge mode. Finally, for even higher values of gain/loss contrast, i.e. 𝜂 > 𝜈 + 1 , the system 

crosses another threshold and moves into phase III, as also corroborated by analyzing Eqs. 3.3. At 

this point, all of the bulk modes of the active lattice break their PT-symmetry, and as such, they 

start to lase - all competing for the gain. Unlike what happens in the first two phases, after crossing 

into phase III, the edge state is now obscured by bulk modes. This in turn results into a more 

uniform intensity profile, as shown in Fig. 23 (d). In other words, in this range, the pumped 

sublattice is uniformly lasing, while its lossy counterpart remains dark. The theoretically expected 

spectra corresponding to these three phases can be found in section 3.2.1. We would like to note 

that the phase transition points coincide with the three distinct morphing stages of the complex 

band structure of this non-Hermitian PT-symmetric SSH lattice (section 3.2.1).  

To verify these predictions, we have conducted a series of experiments with a 16 ring SSH 

array, each having a radius of 5 𝜇𝑚.  To enforce single-transverse mode operation at 1.59 𝜇𝑚, the 

width of the resonators was set to 500 𝑛𝑚. In order to reduce the lasing threshold, the microrings 

were surrounded by a low-index dielectric, entailing a higher confinement. As previously 

indicated, each ring was individually interrogated (intensity-wise and spectrally) through an 

extraction bus waveguide, featuring a pair of grating out-couplers (Fig. 20 (c)). To introduce PT-

symmetry, the microresonators were alternately pumped at 1.06 𝜇𝑚 by using a titanium amplitude  
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mask. Figure 24 shows the extracted intensity profile from every ring, the corresponding raw data 

as imaged onto an infrared InGaAs camera as well as the spectra associated with the three phases 

previously mentioned. In particular, (a), (b), and (c) present the data corresponding to phase I, II, 

and III.  

At a pump intensity of I = 26 kW/cm2 the edge mode is the only one to lase (Fig. 24 (a)). Once the 

first phase transition occurs, other modes start competing for the gain (Fig. 24 (b) at I =41 kW/cm2) 

and eventually the edge mode is obscured (Fig. 24 (c) at I = 83 kW/cm2). The emergence of these 

 

Figure 24  The left panels depict the measured intensity distributions in the 16-element SSH array at every 

site. The middle panels show raw data from the extraction ports, while the right panels the corresponding 

power spectra. Each of the successive rows (a), (b), and (c) are progressively associated with phase I, II, 

and III observations. The inset in (a) provides the exponential intensity distribution of the lasing edge-state 

in a log-linear scale. 
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three phases is also evident in their spectra. While the spectrum of the edge mode is single-moded, 

once the first phase transition occurs, bulk modes also appear, with upshifted frequencies as 

expected from theory (section 2.1.2). Interestingly, Fig. 18 (a) reveals that the exponential intensity 

decay of the edge mode (log-linear inset) is in good agreement with that expected from theory 

(~(
𝜅1

𝜅2
)
2𝑛

) when 𝜈 = 1.7. Finally, in all our experiments we found that gain saturation plays a 

prominent role in stabilizing the lasing edge mode at different pumping levels. 

3.2.1 Theoretically predicted spectra emitted by the PT-symmetric SSH laser array 

The simulated spectra expected for the three different phases of the PT-symmetric SSH laser 

array corresponding to Fig. (23) of the main text are presented in Fig. 25. As evident in this figure, 

phase I involves single edge-mode operation, which lases close to the central frequency 𝜔0 (Fig. 

25 (a)). In phase II, bulk modes of the system will enter the PT-symmetry broken phase, resulting 

in extra emission lines in the spectra (Fig. 25 (b)). Finally, in phase III all the supermodes 

(including the edge modes) acquire nonzero gain and loss. This leads to a more involved emission 

spectra corresponding to those supermodes associated with gain, as shown in Fig. 20 (c). The 

qualitative behavior of the system as summarized here is consistent with the experimental results 

of the right panels in Fig. (26). 
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3.2.2 Complex band structure of the CT-symmetric Hamiltonian 

     Consider the Hamiltonian: 

𝐻0(𝑘) = (
−𝑖𝑔 𝜅1 + 𝜅2𝑒

−𝑖𝑘

𝜅1 + 𝜅2𝑒
𝑖𝑘 𝑖𝑔

), (3.10) 

with the eigenvalues: 

𝜀(𝑘) = ±𝜅1√1 + 𝜈2 + 2𝜈 cos(𝑘) − 𝜂2. (3.11) 

The eigenvalue diagrams corresponding to Eq. 3.11 for three different regimes of 𝜂 < 𝜈 − 1, 𝜈 −

1 < 𝜂 < 𝜈 + 1, and 𝜈 + 1 < 𝜂 are shown in Fig. 20, where 𝜈 = 2. It can be observed that in the 

first regime (phase I), only the edge states of the SSH structure cross the PT-symmetry threshold 

(the threshold for these modes is at 𝑔 = 0), while all the bulk modes are in the PT-symmetry 

unbroken phase. This is shown in Fig. 20 (a) for 𝜂 = 0.9, where the eigenvalues of the bulk modes 

 

Figure 25  Calculated spectra for the system considered in Fig. 17 in (a) phase I, (b) phase II, and (c) phase III. 
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of 𝐻0 are all real. As the gain parameter is increased such that the structure enters phase II, part of 

the spectrum becomes complex for some values of the Bloch momentum 𝑘. This morphing of the 

spectrum is depicted in Fig. 26 (b) when the normalized gain is 𝜂 = 1.5. Finally, as the gain is 

increased even further, the system will operate in phase III and the Hamiltonian of Eq. 3.10 exhibits 

an entirely imaginary spectrum for all values of 𝑘. Consequently, all the modes of this active SSH 

lattice (including edge modes as well as bulk modes) now experience nonzero gain and loss, so 

that half of the modes enjoy the gain provided by the system. As a result, there will be a gain 

competition among these modes which in turn results into a more complex emitted spectrum by 

this SSH array. Figure 26 (c) illustrates this effect for 𝜂 = 3.1.   

3.2.3 Frequency upshift in the spectra 

In this section we present the theoretical analysis which explains the upshift in the frequency 

spectrum in the PT-symmetric SSH laser array, due to a positive linewidth enhancement factor. In 

this respect, we consider the modified version of the Hamiltonian of Eq. 3.4: 

𝐻1(𝑘) = (
−𝑖𝑔(1 − 𝑖𝛼𝐻) 𝜌

𝜌∗ 𝑖𝑔(1 − 𝑖𝛼𝐻)
), (3.12) 

 

Figure 26  Eigenvalue diagrams associated with the CT-symmetric Hamiltonian of Eq. (2-10) for three 

different normalized gain values indicated at the top. The three diagrams correspond to (a) phase I, (b) 

phase II, and (c) phase III. 

 

 



66 

 

where again 𝜌 = 𝜅1 + 𝜅2𝑒
−𝑖𝑘, and 𝛼𝐻 represents the linewidth enhancement factor. The 

eigenvalues of this new Hamiltonian can be obtained as: 

𝜀±
′ = ±√|𝜌|2 − 𝑔2(1 − 𝑖𝛼𝐻)2. (3.13) 

For relatively high values of gain which satisfy |𝑔𝛼𝐻| ≫ |𝜌|, the result of Eq. (2-13) can be 

simplified as: 

𝜀±
′ ≈  ±𝑖𝑔(1 − 𝑖𝛼𝐻). (3.14) 

Now the supermodes which experience gain are the ones associated with 𝜀−
′ ≈  −𝑖𝑔 − 𝑔𝛼𝐻, where 

the negative real part signals an upshift in the resonance frequency for 𝑔, 𝛼𝐻 > 0, due to the chosen 

base 𝑒−𝑖𝜔𝑡. In other words, in a PT-symmetric active SSH array, the emission spectra of the lasing 

bulk modes (when the system is operated in phases II and III) will be upshifted with respect to the 

central frequency 𝜔0 of the individual rings. 

3.2.4 Analytical solution for the edge state in the SSH array 

Consider the semi-infinite PT-symmetric SSH array depicted schematically in Fig. 27. The 

coupled mode equations involving the modal field amplitudes inside the rings are given by: 

𝑑𝐸𝑛
𝐴

𝑑𝑡
= 𝑔𝐸𝑛

𝐴+𝑖𝜅1𝐸𝑛
𝐵 + 𝑖𝜅2𝐸𝑛−1

𝐵          (3.15) 

 

Figure 27  A schematic of a semi-infinite PT-symmetric SSH microring laser array. 
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𝑑𝐸𝑛
𝐵

𝑑𝑡
= −𝑔𝐸𝑛

𝐵 + 𝑖𝜅1𝐸𝑛
𝐴 + 𝑖𝜅2𝐸𝑛+1

𝐴  , 

with the boundary condition: 

𝑑𝐸1
𝐴

𝑑𝑡
= 𝑔𝐸1

𝐴+𝑖𝜅1𝐸1
𝐵. (3.16) 

We seek solutions of the form 𝐸𝑛
𝐴 = 𝐴𝑒𝑖𝑄𝑛𝑒−𝑃𝑛𝑒𝜉𝑡and 𝐸𝑛

𝐵 = 𝐵𝑒𝑖𝑄𝑛𝑒−𝑃𝑛𝑒𝜉𝑡. By direct 

substitution of these solutions in Eqs. (2-15, 2-16), one obtains the following solution for the edge 

state: 

𝜉 = 𝑔   

𝐵 = 0    

𝑄 = ±𝜋 

𝑒−𝑃 =
𝜅1
𝜅2
 .     

(3.17) 

Therefore, the solution for the edge mode in this semi-infinite PT-symmetric SSH array is given 

by: 

𝐸𝑛
𝐴 = 𝐴(−

𝜅1
𝜅2
)
𝑛

 

𝐸𝑛
𝐵 = 0.                 

(3.18) 

3.3. 2D Topological laser 

In this section, we report our observation of topologically-protected edge-mode lasing in 

nonmagnetic, two-dimensional topological cavity arrays. These systems can operate in single 

mode, even considerably above threshold, with a slope efficiency that is considerably higher than 

that achieved in their corresponding trivial realizations. Moreover, we show experimentally that 
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the topological protection is still manifested, thus leading to high efficiencies, even in the presence 

of defects. Finally, we assemble a topological system based on S-chiral resonator elements, which 

– in addition to the topological properties – also displays unidirectional transport of light in the 

cavity.    

To demonstrate topological lasing, we fabricate a 10 × 10 coupled ring-resonator array on an 

active platform involving vertically stacked 30 nm thick InGaAsP quantum wells (see section 

3.3.2), as shown in Fig. 28 (A). The array is interrogated at specific sites using out-coupling 

gratings (Fig. 28 (B), corresponding to the yellow framed regions in Fig. 28 (A)). The active lattice 

investigated here employs a topological architecture that is similar to that suggested in 

Refs. [13,95]. This 2D setting is comprised of a square lattice of ring resonators which are coupled 

to each other via link rings (Fig. 28, A and C). The link rings are designed so as to be antiresonant 

to the main ring resonators. In this all-dielectric design, the intermediary links are judiciously 

spatially-shifted along the y-axis, with respect to the ring resonators, to introduce an asymmetric 

set of hopping phases. The phase shift is sequentially increased along the y-axis in integer multiples 

of ±2𝜋𝛼, where in our case 𝛼 = 0.25. In this way, a round trip along any plaquette (consisting of 

4 rings and 4 links) results in a total accumulated phase of  ±2𝜋𝛼, where the sign depends on the 

direction of the path along this unit cell. This provides the lattice with a synthetic magnetic field 

and establishes two topologically non-trivial bandgaps, as shown in Fig. 28 (D). The cross-section 

of each ring (500 nm width and 210 nm height) is designed to ensure single transverse mode 

conditions at the wavelength of operation 1,550 nm (see section 3.3.2). The nominal separation 

between the ring-resonators and off-resonant links is 150 nm, thus leading to two frequency 

bandgaps, each having a width of 80 GHz (0.64 nm). The spectral size of the two bandgaps was 
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obtained by experimentally measuring the frequency splitting (0.8 nm) in a binary system of 

primary resonators, linked via an intermediate racetrack ring.  In order to promote protected edge-

mode lasing, we optically pump only the outer perimeter of this array at 1064 nm with 10 ns 

pulses (Fig. 28E). This is achieved using a set of appropriate amplitude masks (see section 3.3.1). 

The intensity structure of the lasing modes is captured using an InGaAs infrared camera, and their 

spectral content is then analyzed using a spectrometer with an array detector. In what follows we 

compare the features of the topological insulator lasers (𝛼 = 0.25) with those of their trivial 

counterparts (𝛼 = 0) under various conditions. 

As shown in  [95], edge mode lasing can be incited by pumping the boundary of the topological 

array. In this case, a clear signature of topological lasing would be a highly efficient single-mode 

emission even at gain values high above the threshold. To experimentally observe these features, 

we pump the perimeter of the topological and trivial arrays, and measure the lasing output power 

(integrated over the two out-coupling gratings) and its spectral content. The measured light-light 

curves for the topological and the trivial arrays are shown in Fig. 29A, clearly indicating that the 

topological system lases with a higher efficiency than its trivial counterpart. Their measured 

spectra are shown in Fig. 29 (B-D). We observe that the topological arrays remain single-moded 

over a wide range of pumping densities (Fig. 29C), whereas the trivial arrays (tested over multiple 

samples) always emit in multiple wavelengths with considerably broader linewidths (Fig. 29D). 



70 

 

Importantly, if we only compare the power emitted in the dominant (longitudinal) mode, the 

topological array outperforms the trivial one by more than an order of magnitude. This difference 

 

Figure 28  Topological insulator laser: lattice geometry and associated band structure.  (A) Microscope 

image of an active InGaAsP topologically non-trivial 10x10 micro-resonator array. (B) SEM image of the 

out-coupling grating structures used to probe the array at the location indicated in (A). (C) SEM micrograph 

of a unit cell comprised of a primary ring site surrounded by four identical intermediary racetrack links. (D)  

Frequency band diagram corresponding to an infinite ribbon structure based on the topological lattice used 

in this study. The bulk bands are colored in black, while the two counter-propagating edge-state bands in 

green and red. (E) A schematic of the topological array when pumped along the perimeter so as to promote 

edge mode transport. The directionality of energy flow is monitored through the power extracted from the 

out-coupling gratings. 
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in performance is attributed to the physical properties of the topological edge-modes. The trivial 

array suffers from several drawbacks. First, the trivial lasing modes extend into the lossy bulk, 

thus experiencing suppressed emission. Second, the trivial lasing modes try to avoid the output 

coupler so as to optimize their gain. And finally, due to intrinsic disorder in fabrication, the lasing 

mode localizes in several different parts of the trivial lattice, each lasing at a different frequency, 

thereby giving rise to a multimode behavior. Conversely, apart from a weak exponential 

penetration, in topological arrays the edge-states are completely decoupled from the bulk. 

Moreover, since they only flow around the perimeter, they are always in contact with the output 

coupler. Finally, because of its inherent topological properties, the lasing edge mode does not 

suffer from localization, and therefore it uniformly extends around the perimeter (in single mode), 

using all the available gain in the system by suppressing any other parasitic mode.  

In order to demonstrate that these active lattices exhibit topological features, we compare their 

lasing response against that of their trivial counterparts (𝛼 = 0) when their periphery is pumped. 

The emission intensity profiles obtained from these two systems are shown in Figs. 30 (A, B).  To 

check whether the lasing modes are extended or localized around the perimeter of the lattice, we 

measure the spectrum of the light emitted from different sites around the arrays (Figs. 30 (C, D)). 

For the trivial array, we observe that the spectrum varies around the lattice, with emission 

occurring over a wide wavelength range spanning from 1543nm to 1570nm, as shown in Fig. 30 

(C). This is an indication that the trivial array lases in localized domains, each one at a different 

frequency. In sharp contrast, in the topological array, all sites emit coherently at the same 

wavelength (Fig. 30 (D)). This lasing, in a single extended topological edge mode is a direct 

manifestation of a topologically-protected transport, akin to that taking place in topological 
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insulators. These results are consistent with those presented in Fig. 29. Topological transport in 

these structures is further investigated by selectively pumping the lattice. First, we pump only one 

edge of the 2D array, as depicted in Fig. 30 (E). Under these conditions, the lasing mode in the 

trivial system is confined to the pumped region (Fig. 30 (E)). In this arrangement, the emission is 

heavily suppressed both in the bulk as well as along the perimeter and consequently no light is 

extracted from any of the output grating couplers. In contrast, for the topological array, even 

though only one side is pumped, the edge mode flows along the periphery - finally reaching the 

output coupler, as shown in Fig. 30 (F). In this case, only one output coupler grating emits strongly. 

This indicates that the lasing mode that reaches the output coupler has a definite chirality in each 

ring. Given that the emission is in a single mode, one can conclude that lasing takes place in only 

one topological mode. To show that indeed the bulk states are mostly suppressed in the trivial 

arrangement, we then expand the pumping region at the bottom edge (Fig. 30 (G)). In the trivial 

case, even though pumping over a larger area is now provided, still no laser light reaches the output 

ports. On the other hand, for the topological array, the lasing edge mode reaches the output coupler 

with a fixed chirality within each ring (Fig. 30 (H)). This shows that the topological lasing mode 

extends around the perimeter, whereas the lasing in the trivial case occurs in stationary localized 

modes. In this vein, we tested multiple samples, and found that these same features consistently 

emerged in a number of different designs (different resonance frequencies, couplings, etc.) in a 

universal manner. 
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Next, we study lasing in a topological structure and in its trivial counterpart, in the presence of 

defects, which are intentionally introduced into the structures. To do so, we removed specific 

microrings along the perimeter, where pumping is provided. Figure 31 shows the light emission 

from these two types of structures. These results demonstrate that in a topological system (Fig. 31 

(A)), light is capable of bypassing the defects by penetrating into the lossy bulk and displaying 

lasing in an extended edge mode of almost uniform intensity. Conversely, in the trivial structure 

 

Figure 29  Slope efficiencies and associated spectra of topological and trivial lattices. (A) Output intensity 

vs. pump density for a 10x10 topological array with 𝛼 = 0.25 and its corresponding trivial counterpart 

(𝛼 = 0). In this experiment the enhancement of the slope efficiency ratio is approximately 3x. (B) Emission 

spectra from a trivial and a topological array when pumped at 23.5 kW/cm2. Evolution of the spectrum as 

a function of the pumping levels for (C) topological and (D) trivial arrays. Single-mode, narrow-linewidth 

lasing in (C) is clearly evident.   
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(Fig. 31 (B)), the intensity of the emitted light is considerably subdued, and the defects are 

subdividing the perimeter into separate regions which lase independently. Hence, the topological 

insulator laser is robust against defects, even when introduced into the gain regions.  

 

 

Figure 30  Lasing characteristics of topological lattices vs. that of their corresponding trivial counterparts 

under different pumping conditions. Lasing in a (A) non-topological and (B) topological array when only 

their periphery is selectively pumped. (C) and (D) represent the spectral content as obtained from specific 

edge-sites of the arrays as depicted in (A) and (B), correspondingly. Notice that the topological lattice 

remain single-moded while the trivial one emits in several modes. Lasing transport in a (E) trivial array and 

in a (F) topological lattice when the bottom side is pumped. The excitation of the edge-mode in (F) is clearly 

visible. (G) and (H) present similar results when the pumping region at the bottom side is further extended. 

In (H) the edge-mode is again excited. No laser radiation is observed from the extracting ports in the trivial 

lattice (G). The pumping conditions are shown in the insets at the top. 
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At this point, it is important to recall that in the absence of a magnetic field, all passive photonic 

topological insulators demonstrated thus far are by nature reciprocal. This raises an interesting 

question: is it possible to enforce unidirectionality in an all-dielectric lasing topological array? To 

address this aspect, we break the symmetry between the clockwise (CW) and counter-clockwise 

(CCW) topological edge modes. To do so, we modify the individual resonators: instead of using 

conventional rings we employ a special S-bend design [107], for each primary cavity element in 

the topological lattice (Fig. 32 A and B). The intermediary links remain the same as in the previous 

designs (Fig. 28A). In this system, each laser micro-resonator operates in a single spin-like manner, 

i.e. in either the CW or the CCW direction by exploiting gain saturation and energy recirculation 

among these modes. To some extent, this imposed unidirectionality is analogous to the spin-orbit 

coupling process enabling one-way topological conduction in magnet-free electronic topological 

insulators. The S-chiral elements involved, allow one to add unidirectionality to the topological 

protection of transport. In other words, edge mode lasing takes place in a topologically protected, 

scatter-free, unidirectional fashion even in the absence of a magnetic field. In our experiments, we 

 

Figure 31  Robust behavior of the lasing edge mode with respect to defects in a topological array. Lasing 

response of a (A) topological and (B) trivial array in the presence of two defects intentionally inserted on 

the periphery. Note that the edge mode transport in (A) clearly bypasses the defects, whereas no such 

behavior is observed in its trivial counterpart. 
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observe a 9 dB suppression between the right- and left-hand spins in each resonator. Finite 

difference time domain simulations (see section 3.3.6) also indicate that the differential photon 

lifetime between the right/left spins in these S-bend cavities is approximately 3 ps, corresponding 

to an equivalent loss coefficient of 10 cm-1. The field distribution in the prevalent spinning mode 

in these active S-resonators is shown in Fig. 32 (C), featuring a high degree of power-recirculation 

through the S-structure that is responsible for the spin-like mode discrimination. The 

corresponding intensity distribution associated with this unidirectional edge-mode energy 

transport is shown in Fig. 32 (D). As expected in this case, energy is pre-dominantly extracted 

from only one of the two out-coupling gratings (with a 9 dB rejection ratio) – a direct indication 

of unidirectional energy flow in this topological array.  
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3.3.1 Characterization setup 

In order to pump, and spatially/spectrally resolve the output of the micro-resonator arrays a 

measurement setup as depicted in Fig. 33 (A) was employed. The micro-resonator arrangements 

were optically pumped with a pulsed 1064 nm laser beam (SPI fiber laser). The diameter of the 

beam was arranged such that at the surface of the sample it had a diameter of ~300 μm. A 

microscope objective with a numerical aperture of 0.42 was used to project the pump beam on the 

rings, as well as to collect the output light from the samples. Alignment of the pump beam to the 

samples was performed by imaging the sample surface through two cascaded 4-f imaging systems 

onto an IR camera (Xenics Inc.), using a broadband IR light source.  Output spectra were obtained 

using a spectrometer (Horiba Scientific iHR320) equipped with a 900 g/mm grating in conjunction 

 

Figure 32  Topological active array involving chiral S-micro-resonator elements. (A) SEM image of a 

10x10 topological array. The primary resonators feature an internal S-bend for enforcing in this case a right-

spin, while the intermediate link design is the same as in Fig. 1 (C). (B) A closeup SEM micrograph of the 

basic elements involved. (C) Field distribution in an individual S-element as obtained from FDTD-

simulations. (D) Measured intensity profile associated with the lasing edge-mode in a topological array 

with 𝛼 = 0.25. In this system, the periphery is selectively pumped, and the energy flows unidirectionally 

in a clock-wise manner, as also indicated by the radiation emerging from the extracting ports.   
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with an electrically cooled InGaAs detector (Synapse EM). The spectrometer entrance slit was set 

to 100 μm in order to obtain a resolution of ~0.13 nm. The micro-resonator array was pumped by 

imaging a titanium mask onto the surface of the sample leaving only the perimeter to be pumped. 

Additionally, both out-coupling waveguides were obscured with a knife-edge as indicated in Fig. 

33 (B).  

3.3.2 Fabrication procedures 

 

 

Figure 33  (A) Sketch of the measurement setup: sample on the lower left, pump laser on top and analysis 

setup on the right. (B) Pumping scheme and masks employed for the interrogation of the micro-resonator 

arrays.   

 

 

 

 

 

Figure 34  Manufacturing steps of the micro-ring resonators. 
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This section discusses the steps (Fig. 33) followed to fabricate the investigated micro-resonator 

arrays. The multiple quantum well gain system is comprised of six Inx=0.74Ga1-xAsy=0.57P1-y wells 

(thickness: 10 nm each) and is sandwiched between two cladding layers of Inx=0.56Ga1-xAs y=0.93P1-

y (thickness: 20 nm), all grown on a p-type InP substrate. The quantum wells are covered by a 10 

nm thick InP protective layer.  The MOCVD epitaxially-grown wafer was supplied by OEpic Inc. 

To fabricate the microring resonators, a hydrogen silsesquioxane (HSQ) solution in methyl 

isobutyl ketone (MIBK) was first spin-coated on the wafer as a negative tone inorganic electron 

beam resist and patterned using electron beam lithography.  The structures were developed with 

tetramethylammonium hydroxide (TMAH) and subsequently transferred to the wafer through a 

reactive ion etching process. The dry etching used the gases H2:CH4:Ar with flows of 40:4:20 

SCCM, RIE/ICP  power of 150 W, and a chamber pressure of 30 mT. Scanning electron 

micrograph (SEM) images of samples at the end of this step are shown in Fig. 28 (B, C). To remove 

the remaining resist the structures were immersed into BOE for 10s. Next, a 3 μm silicon dioxide 

(SiO2) film was deposited on the structure using plasma enhanced chemical vapor deposition 

(PECVD). SiO2 increases the confinement factor of the propagating modes and additionally gives 

mechanical support to the micro-resonators once the InP substrate is removed. Subsequently, the 

SiO2 film was covered with SU8 photoresist and attached to a glass slide. Finally, the InP substrate 

was removed by wet etching in hydrochloric acid (HCl). This wet etching process is highly 

selective and abruptly stops after removing InP substrate, leaving the InGaAsP quantum wells 

intact. After this process, the micro-rings are partially embedded in the SiO2 matrix and partially 

exposed to air. 
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3.3.3 Spectra from extended edge states 

The spectra used to extract the spectral content from eight different positions along the perimeter 

to create Fig. 29 (G, H) in the previous sections are displayed in Fig.35. While the perimeter of the 

(A) trivial array exhibits a position dependent spectral content, the one of the (B) topological lattice 

features only one mode along the whole array. This is because of the extended nature of the edge-

state.    

3.3.4 Calibration of output couplers 

The out-coupling gratings were calibrated such as to allow a comparison of their emitted 

intensities. To this end, two knife edges were introduced into the pump beam, one covering the 

gratings completely, the other edge blocking most of the array leaving only the closest rings to the 

grating to be pumped (Fig. 36 (A)). A camera image at low pump power and without the notch 

filter (Fig. 33 (A)) is shown in Fig. 36 (B). Employing OD filters in order to not saturate the 

camera, all micro-resonator arrays were pumped at the same pump level and the total output of 

 

Figure 35  Spectra along the perimeter for (A) trivial and (B) topological sample. The axes are the same 

for all graphs and are denoted in the center. 
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each grating output port was determined (example of a raw data set in Fig. 36 (C)). By this means, 

the light-light curves in Fig. 30 were corrected.  

3.3.5 Mode directionality depending on pumping conditions 

Pumping conditions were found to have a great impact on the directionality of the mode and 

coupling to the probing grating. With an OD filter inserted at 45 degrees into the pump beam (Fig. 

37 (A)) the two ports were selectively excited depending on the position of the OD filter. The field 

intensity profiles at two different configurations are shown in Fig. 37 (B, C) with the corresponding 

spectra from both ports to the right. It is clearly visible that depending on the position of the filter 

the excited out-coupling port changes and hence the direction of the edge-mode.  

3.3.6 FDTD simulation of microring resonator involving an S-bend 

In order to further understand the principles behind the chiral operation of the S-bend 

microresonators, we analyzed an individual primary S-microring resonator, as shown in Fig. 38, 

identical to those embedded in our topological array shown in Fig. 31. To do so, we used finite-

difference-time-domain method to analyze the temporal evolution of a pulse in this type of cavities, 

 

Figure 36  (A) Pumping scheme of micro-resonator arrays. (B) Camera image of a sample pumped as 

shown in (A). (C) Recorded intensity profiles from the two out-coupling ports.   
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both for the clockwise and anti-clockwise modes. Figure 38 shows this time dependence for the 

anti-clockwise mode, where an exponential decay in the pulse peaks is detected.  

Using this method, the differential photon lifetime can be deduced from the corresponding 

lifetimes of the two counter-propagating modes of this chiral cavity using 1/∆𝜏𝑝 = 1/𝜏𝑝1  −

1/𝜏𝑝2, resulting in ∆𝜏𝑝 = 3 𝑝𝑠 and subsequently ∆𝛼~10 𝑐𝑚−1. 

 

Figure 37  (A) pumping configuration, (B) and (C) field intensity profiles at different OD filter positions 

with spectra of the two ports to the right. 

 

Figure 38  Exponential decay in the amplitude of an anti-clockwise pulse in an S-microresonator cavity 

identical to those implemented in the design of Fig. 32. 
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3.4. Summary 

Topological insulators are a new phase of matter which have insulating properties in their bulk 

but are conductors in their edges. This peculiar behavior is a result of the particular band structure 

in these systems, where a nontrivial bandgap is a host of topologically protected “edge modes”. 

Moreover, this conduction in the edge is fundamentally different from a conventional conductor, 

in the sense that it is unidirectional and robust against local perturbations. Our idea was to properly 

implement such robustness and unique behavior of topological insulators in arrays of laser 

systems. Laser cavities are in general prone to disorder, which is inevitable due to fabrication 

imperfections, operational degradation and failure. It is well-known that the presence of disorder 

in a laser results in spatial light localization in the cavity, giving rise to several performance issues 

including lower output coupling, multimode lasing and reduced slope efficiency. Therefore, it is 

natural to contemplate exploiting topological features to design laser systems that are immune to 

disorder. 

In our research, we introduced the “topological insulator lasers” in 1D and 2D. In 1D, we 

developed a successful theoretical model that captures the complex dynamics of photons in the 

system which involves a mixture of nonlinear effects including gain saturation, carrier dynamics 

associated with the gain material, as well as linewidth enhancement effect. We then designed an 

experimental realization for our theoretical model based on semiconductor multilayer quantum 

well structures (InGaAsP material), and used the operational parameters associated with the 

experimental setup in my simulations to predict the behavior of the system under different 

pumping levels. We successfully demonstrated that the introduction of topology in 1D lasers leads 

into robust lasing in the defect mode of the structure with ultra-stable emission frequency, in sharp 
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contrast to conventional 1D lasers which are highly prone to disorder. We further generalized our 

ideas to higher dimensions and devised a 2D topological insulator laser. After fabrication, our 

measurements confirmed our theoretical predictions regarding desirable attributes of the 2D 

topological insulator laser in contrast to a conventional laser array. More specifically, we were 

able to observe scatter-free, single edge-mode lasing even in pump powers well above lasing 

threshold. This in turn led into a considerably higher slope-efficiency as compared to trivial 

systems. In addition, our predictions in terms of spectral purity of the emission from the device 

were confirmed by detailed experimental measurements. 

 

 

 

 

 

 

 

 

 

 

 



85 

 

CHAPTER 4: SPIN-LIKE BEHAVIOR AND GEOMETRICAL 

FRUSTRATION IN NANOLASER ARRAYS 

4.1. Introduction  

Geometric frustration occurs when a certain type of local order, associated with a minimum 

energy state, cannot extend throughout a system due to geometrical constraints [108]. This effect 

appears in a variety of physical problems and settings, ranging from residual entropy in water [109] 

and spin ice [110,111], to orbital exchange in Mott insulators [112] and the emergence of the blue 

phases in cholesteric liquid crystals [113]. In magnetic materials, frustration is typically associated 

with a set of highly degenerate ground states of a spin Hamiltonian, which in turn leads to complex 

macroscopic behaviors such as those observed in spin-liquid or spin-ice phases [114].  

In recent years, there has been a number of attempts to cast various computational optimization 

problems in terms of finding the ground state of a corresponding spin Hamiltonian [115,116]. In 

this regard, ultracold atomic platforms have been extensively pursued to emulate magnetic-like 

interactions [117–120]. Alternatively, active optical configurations provide an attractive approach 

for physically implementing and effectively studying such spin Hamiltonians. In contrast to other 

methodologies that rely on classical or quantum annealing, optical schemes can quickly converge 

to the global minimum loss, once gain is introduced. This has incited a flurry of activities in 

designing photonic “machines” capable of emulating classical Ising or XY Hamiltonians. So far, 

such active spin systems have been demonstrated using optical parametric oscillators [121–123], 

polaritonic arrangements [124,125], and degenerate laser cavities [126,127]. Of interest will be to 

open up new possibilities by introducing additional degrees of freedom through the vectorial nature 

of the electromagnetic modes in ultracompact spin-like optical resonant structures. Such systems 
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can enable addressing large-scale optimization problems in nanoscale integrated platforms. 

In this chapter, we show how the interactions among resonant vectorial modes in coupled 

metallic nanolaser arrays lead to Hamiltonians akin to those encountered in classical XY spin 

systems. Consequently, by designing the array elements, two regimes of exchange coupling can 

be identified, signifying the occurrence of a ferromagnetic (FM) and an antiferromagnetic (AF) 

phase (Fig. 39 a). By observing the diffraction patterns as well as the winding numbers associated 

with the vortices formed within the structures, one can then experimentally characterize these 

phases. Depending on the vectorial profile of the modes involved, in the AF state, we demonstrate 

geometrical frustration in various scenarios, in full accord with theoretical predictions. In what 

follows, we will outline the mathematical foundation required to explain our results and will 

present experimental observations corroborating the role of the vectorial nature of light in 

producing spin-like behaviors in active optical nanocavities – a response that is in sharp contrast 

with scalar optical settings or oscillator networks [128–130].  

4.2. Theory of coupled metallic nanolasers 

To illustrate the spin-like behavior in metallic nanolaser arrays, we consider a circular array of 𝑁 

identical metallic nanodisk lasers, as depicted in the SEM image of Fig. 39b for 𝑁 = 6. Here, the 

coupling between the nearest-neighbor cavity elements takes place via their overlapping near-

fields. In the weak coupling regime, one can obtain the transverse distribution of the resonant 

electromagnetic fields within the nanodisk 𝑗 from the corresponding longitudinal component of 
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the electric (magnetic) field of the associated 𝑇𝑀 (𝑇𝐸) mode, i.e. 𝜓𝑗 ∝ 𝐽𝑛(𝑘𝜌𝜌) cos(𝑛𝜙 +

𝜙𝑗). The integer 𝑛 denotes the azimuthal mode number, while 𝜙𝑗 is the relative phase with respect  

to the local coordinates of each site. In such an arrangement, the metallic cladding leads to a mode-

dependent dissipation. More specifically, the average power loss for the 𝑇𝐸𝑛𝑚 and 𝑇𝑀𝑛𝑚 modes 

can be expressed as  

𝒫𝐿 ∝

{
  
 

  
 𝒫1 − 𝒫𝑧,𝑇𝐸 ∑ 𝑐𝑜𝑠 (𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗) 𝑐𝑜𝑠 (−𝑛𝜋 + 𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗+1)             

𝑁
𝑗=1

       +𝒫𝜙,𝑇𝐸 ∑ 𝑠𝑖𝑛 (𝑗
2𝜋

𝑁
𝑛 + 𝜙𝑗) 𝑠𝑖𝑛 (−𝑛𝜋 + 𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗+1)

𝑁
𝑗=1 ,    𝑇𝐸

𝒫2 + 𝒫𝜙,𝑇𝑀 ∑ 𝑐𝑜𝑠 (𝑗
2𝜋

𝑁
𝑛 + 𝜙𝑗) 𝑐𝑜𝑠 (−𝑛𝜋 + 𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗+1)

𝑁
𝑗=1 ,    𝑇𝑀.

 (4.1) 

In Eq. 4.1, 𝒫1,2 represent constant loss terms for the TE, TM modes, while 𝒫𝑧 and 𝒫𝜙 depend on 

the relative strengths of the longitudinal (𝐻𝑧) and transverse (𝐻𝜙) magnetic field components, 

respectively (see section 4.6). The resulting lasing supermodes supported by this lattice can then 

be found by minimizing the total loss function 𝒫𝐿 which defines the energy landscape of the 

system. In order to preserve the discrete symmetry associated with the geometry of the structure, 

the respective solutions are expected to exhibit a constant discrete rotation ∆𝜙 between 

consecutive cavity elements, i.e. 𝜙𝑗+1 = 𝜙𝑗 + ∆𝜙. Equivalently, the extrema of Eq. 4.1 correspond 

to the minimum energy eigenstates of the following Hamiltonian (ℋ) (see section 4.6): 
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ℋ = ℋXY +ℋ0, 

ℋXY =∑𝐽𝑗,𝑗+1𝜎⃗𝑗. 𝜎⃗𝑗+1

𝑁

𝑗=1

,   

ℋ0 =∑𝐽0𝑗,𝑗+1 cos[𝜙𝑗 +𝜙𝑗+1 + 2𝑗 × 2𝑛𝜋/𝑁]

𝑁

𝑗=1

, 

(4.2) 

where ℋXY is the XY Hamiltonian describing exchange interactions between the ensuing classical 

pseudospins defined in each laser cavity as 𝜎⃗𝑗 = (cos𝜙𝑗 , sin𝜙𝑗), while ℋ0 represents a 

Hamiltonian component responsible for lifting the continuous U(1) symmetry within individual 

cylindrical disks. The corresponding coupling strengths 𝐽 and 𝐽0 for the TE and TM modes are 

polarization dependent and are respectively given by 𝐽𝑇𝐸 = (𝒫𝜙,𝑇𝐸 − 𝒫𝑧,𝑇𝐸)/2 × (−1)
𝑛, 𝐽0,𝑇𝐸 =

(𝒫𝜙,𝑇𝐸 + 𝒫𝑧,𝑇𝐸)/2 × (−1)
𝑛+1 and 𝐽0,𝑇𝑀 = 𝐽𝑇𝑀 = 𝒫𝜙,𝑇𝑀/2 × (−1)

𝑛. Meanwhile, the second term 

ℋ0 in the Hamiltonian can lead to additional minima in the eigenvalue spectrum of the system. 

Depending on the modes involved, such states with minimal dissipation can coincide with those 

associated with the original XY Hamiltonian, or may introduce new stable lasing supermodes. As 

we will show, in the latter case, this will induce richer frustration patterns in the lasing eigenstates 

of such nanolaser lattices. 
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The Hamiltonian presented in Eq. 4.2 can give rise to a variety of field patterns corresponding 

to ferromagnetic-like (FM) or antiferromagnetic-like (AF) interactions between neighboring 

pseudospins 𝜎⃗𝑗. For instance, as shown in Fig. 40 a, in a simple two-element arrangement, the 

resonant 𝑇𝐸22 mode leads to a negative exchange, 𝐽𝑇𝐸 < 0, that in turn results in an FM-like 

coupling between the associated pseudospins. On the other hand, for a similar configuration albeit 

with a slightly different size, once the 𝑇𝐸14 lasing mode dominates, the underlying coupling 

becomes positive (𝐽𝑇𝐸 > 0), as expected from an AF Hamiltonian (Fig. 40 b). When dealing with 

larger lattices, the AF coupling condition can lead to more complex ground states. In this respect, 

the competing interactions arising from various nearest neighbor couplings can result in a scenario 

where the anti-aligned solution is prevented from extending across the entire structure due to 

geometrical constraints.  Consequently, instead of having a single global minimum, the energy 

 

Figure 39  Spin-like behavior in coupled metallic nanolaser arrays. a, Different regimes in spin systems 

with ferromagnetic (FM) and anti-ferromagnetic (AF) exchange interactions. b, SEM image of an array of 

six coupled active nanodisks (before silver deposition) used in this study. 
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spectrum of the respective Hamiltonian acquires multiple local minima – representing a set of 

degenerate ground eigenstates, the so-called geometrically frustrated states. Perhaps the simplest 

known example of such an effect is the way three magnetic spins with AF couplings can arrange 

themselves on a triangle. Figures 40 c show two possible degenerate ground states of such a system 

with opposite winding numbers (±1). The geometric frustration in this three-coupled nanolaser 

configuration is evident in Figs. 4.2 c, d. We note that in this three-element system, the degeneracy 

between the two eigenstates shown in Figs. 40 c, d can be lifted in the presence of ℋ0, in which 

case, the vortex mode with winding number +1 emerges as the ground state.  
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4.3. Observing ferromagnetic and antiferromagnetic behavior in coupled nanolasers 

In order to experimentally demonstrate the aforementioned FM and AF behaviors in nanolaser 

networks, we fabricated multiple structures consisting of several coupled elements. Figure 39 b 

shows a scanning electron microscope (SEM) image of an array with 𝑁 = 6 coupled nanodisks 

before metal deposition. Each nanodisk is cladded with silver, and is separated from its adjacent 

 

Figure 40  Lasing supermodes in coupled nanolasers and their corresponding pseudospins when arranged 

in simple geometric configurations. a, Ferromagnetic and b, anti-ferromagnetic interactions between 

pseudospins associated with the longitudinal component of the magnetic field in coupled nanodisk lasers.  

Depending on the size of the individual elements (575 nm in a, or 930 nm in b), different 𝑇𝐸22 and 𝑇𝐸14 

electromagnetic modes predominantly lase, leading to an FM and an AF regime of coupling between 

nanodisk dimers. c, Geometrically frustrated ground states of the classical XY Hamiltonian corresponding 

to vortices with opposite winding numbers +1 (top) and -1 (bottom). d, Resonant electromagnetic 

supermodes in a triangular array of AF-coupled metallic nanodisks associated with the frustrated states of 

c. 
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elements through a metallic silver gap. The gain medium comprises of six InGaAsP quantum wells 

(with an overall height of 200 𝑛𝑚) and is covered by a 10 𝑛𝑚 InP layer for protection. The top 

and bottom sides of each disk are terminated nominally by a 50 𝑛𝑚 SiO2 and a 30 𝑛𝑚 air plug, 

respectively (section 4.7). The nanolaser arrays are characterized using a micro-

photoluminescence setup as described in section 4.8. In order to identify the pertinent cavity lasing 

modes, we closely study the experimentally observed diffraction patterns for structures of various 

sizes in terms of their spatial profile, polarization, and wavelength. Along these lines, different 

states (FM and AF) are promoted by varying the size of the nanodisks involved as well as the 

lattice configuration. In some cases, laser ambient temperature has been adjusted (78K to room-

temperature) in order to match the desired cavity mode with the gain lineshape of the active 

medium. 

Figure 41 presents experimental results demonstrating FM and AF behaviors in arrays involving 

four nanodisk lasers. For characterizing the FM-like response (𝐽 < 0), we designed cavity elements 

having a radius of 575 nm and a 50 nm separation from its nearest neighbors. Our FEM simulations 

indicate that the individual disks tend to predominately lase in the  𝑇𝐸22 mode. Meanwhile, from 

Eq. 4.2 one can conclude that in such polygonal arrays comprised of four elements, this same mode 

can give rise to an FM-like exchange coupling between adjacent pseudospins. The resulting ground 

state corresponding to this case is illustrated in Figs. 41 a-c, along with experimental results, 

corroborating these predictions. On the other hand, a different design is used in order to observe 

AF-like interactions. In this case, the nanodisk elements involved in the 𝑁 = 4 array have a radius 

of 940 nm and are separated from each other by 50 nm. From simulations, this cavity is expected 

to lase instead in the 𝑇𝐸14 mode – at a wavelength coinciding with the gain bandwidth of the QWs. 
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Unlike the FM case, here the exchange term is positive (𝐽 > 0), resulting in an anti-aligned field 

distribution in the neighboring elements (Figs. 41 d-f). The experimental results corresponding to 

the AF case were obtained at a wavelength of 1415 𝑛𝑚. In all cases depicted in Fig. 41, the fields 

are aligned in such a way so as to enable the system to reach its global minimum in the energy 

landscape. 

 

Figure 41  FM and AF interactions in four-element coupled nanodisk lasers. Observation of FM (a-c) and 

AF (d-f) states in different scenarios of coupled metallic nanolasers with various sizes. a, Longitudinal 

magnetic field profiles corresponding to the lasing 𝑇𝐸22 mode in four coupled nanodisks of radius 575 𝑛𝑚. 

b, Theoretically predicted and c, experimentally measured optical field intensities and polarization 

characteristics of the light emitted by such an array. d-f, Similar results for the AF case where nanodisks 

having radii of 940 𝑛𝑚 are employed in the same square geometry. The yellow arrows indicate the direction 

of the linear polarizer. No geometric frustration is observed in either the FM or the AF regimes. 
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4.4. Geometric frustration in nanolaser lattices 

We next consider situations where the competing constraints imposed by dissipative 

interactions among nearest neighbors lead to geometric frustration. Such states occur in AF 

systems with 𝐽 > 0, in which case the ground state of the optical Hamiltonian no longer follows 

an anti-aligned field distribution because of the geometry of the lattice configuration itself. To 

experimentally demonstrate such states, we fabricated two arrays with 𝑁 = 3, 5 elements, where 

each nanodisk has a radius of 930 𝑛𝑚. FEM simulations in this case predict a 𝑇𝐸14 lasing mode 

in each element. Figures 42 a-h show simulation results of the arrays together with experimentally 

measured intensity profiles and topological charges associated with the lasing supermodes of these 

lattices. The associated pseudospins in these cases display a 120° and 144° rotation between 

consecutive elements, respectively (illustrated in Figs. 42 c, g). These results match the 

geometrically frustrated ground states of the XY Hamiltonian. As mentioned earlier, in some cases, 

the presence of the second term ℋ0 in Eq. 4.2 poses additional constraints on the ground states of 

the system. An interesting example in this regard is the case of a hexagonal nanodisk laser 

arrangement (𝑁 = 6) with AF interactions, exhibiting geometric frustration (Fig. 42 i). To observe 

this behavior, we fabricated 850 𝑛𝑚 nanodisks, each supporting a 𝑇𝐸13 lasing mode. In this 

scenario, the competing interactions described by ℋ𝑋𝑌 and ℋ0 lead to a frustrated ground state 

with successive 120° rotations between adjacent pseudospins, as shown in Figs. 42 i-k.  

The geometrically frustrated states in Fig. 42 represent vortices with a nonzero topological 

charge. One can map the corresponding orbital angular momenta to a discrete set of spots by 

monitoring the far-field diffraction patterns after passing through an equilateral triangular 

aperture [131]. Using this technique, a light beam carrying orbital angular momentum (OAM) with 
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charge 𝑞, emerges in the far field as a triangular intensity distribution with |𝑞| + 1 spots on each 

side. Moreover, the sign of the associated topological charge can be inferred from the direction of 

this diffracted triangular pattern (see section 4.8). Experimental results obtained from such 

measurements for 𝑁 = 3, 5, 6 lattices are depicted in Figs. 42 d, h, l, clearly indicating that in these 

cases the vortex charge is 𝑙 = +1,−2,−2, respectively. One may improve the characterization 

precision of the modal profile of the lattice by using near field scanning microscopy. 

4.5. Lasing in the ferromagnetic state of a square lattice 

In order to extend our analysis to larger arrays, we consider a square lattice of FM coupled 

nanolasers involving 20 × 20 elements (Figs. 43 a-c). Each nanolaser in this structure is designed 

so as to emit in the 𝑇𝐸22 lasing mode at 𝜆 = 1445 𝑛𝑚 . The far-field diffraction from this array 

was experimentally characterized both below and above the lasing threshold. As shown in Fig. 43 

d, in the sub-threshold regime, the spontaneously emitted far-field has a Gaussian profile and is 

unpolarized (Fig. 43 b) – in a way analogous to that anticipated from randomly-oriented 

pseudospins. As the power of the optical pump is increased, the structure starts to lase and 

consequently the system settles in the FM ground state of the XY Hamiltonian where the 

corresponding pseudospins are all aligned (Fig. 43 c).  This FM state is corroborated by far-field 

and polarization measurements – as expected from the emission of aligned vectorial fields in this 

nanolaser system (Fig. 43 e). In this regard, the pump sets the “temperature” in this platform, as in 

actual magnetic materials [127,132]. 
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Figure 42  Frustrated states in spin-like lasing fields emerging from nanolaser arrays. a, Simulated lasing 

profile, b, experimentally measured optical intensities, and c, associated pseudospin configuration for a 

geometrically frustrated lasing supermode emitted from an 𝑁 = 3 nanolaser array with an AF-type 

interaction. In this case each nanodisk has a radius of 930 𝑛𝑚, leading to a 𝑇𝐸14 cavity mode. d, Optical 

intensity pattern obtained after diffraction from a triangular aperture, indicating a topological charge of 

𝑙 = +1, as expected from the pseudospin arrangement of c. e-h & i-l present similar results for 𝑁 = 5 and 

𝑁 = 6 nanolaser arrays involving elements with radii 930 𝑛𝑚 and 850 𝑛𝑚 (TE13 mode), respectively. 

Note that for these structures the triangular diffraction pattern indicates an 𝑙 = −2 topological charge (h 

& l). The triangular diffraction measurements were all performed by incorporating a 𝜆/4 waveplate 

before the aperture followed by a linear polarizer so as to filter for the right-hand circularly polarized 

component. 
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Figure 43  Square lattice of 20 × 20 nanolasers exhibiting FM spin-like behavior. a, SEM image of a 20x20 

square lattice of coupled active nanodisks used in this study. b, Below the lasing threshold, the orientation 

of the pseudospins associated with the electromagnetic 𝑇𝐸22 mode within each laser element are randomly 

fluctuating. c, Once the pump exceeds the threshold, the array starts to lase in an FM state, with the 

pseudospins aligned in the same direction. d & e, Experimentally measured optical intensity patterns and 

polarization characteristics of the light emitted by this square lattice below (spontaneous emission) and 

above the lasing threshold, respectively. In the lasing regime, the far-field from this nanolaser square lattice 

clearly indicates in-phase coherent emission in the 𝑇𝐸22 mode (ferromagnetic state). The yellow arrows 

indicate the orientation of the linear polarizer. 
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4.6. Derivation of the energy landscape function 

In order to obtain the resonant modes supported by the nanodisks, we consider the two general sets 

of transverse electric (𝑇𝐸) and transverse magnetic (𝑇𝑀) modes.  Using separation of variables, 

and after solving the Helmholtz equation in cylindrical coordinates, one finds the field components 

for 𝑇𝐸𝑛𝑚 modes in a nanodisk at site 𝑗 as 

𝐸𝜌,𝑗 ∝
𝑛

𝜌
𝐽𝑛(𝑘𝜌𝜌) 𝑠𝑖𝑛(𝑛𝜙 + 𝜙𝑗), 

𝐸𝜙,𝑗 ∝
𝑘𝜌

2
[𝐽𝑛−1(𝑘𝜌𝜌) − 𝐽𝑛+1(𝑘𝜌𝜌)] cos(𝑛𝜙 + 𝜙𝑗) 

𝐸𝑧,𝑗 = 0 

𝐻𝜌,𝑗 ∝

−√𝑘2 − 𝑘𝜌2 × 𝑘𝜌

2𝜔𝜇0
[𝐽𝑛−1(𝑘𝜌𝜌) − 𝐽𝑛+1(𝑘𝜌𝜌)] cos(𝑛𝜙 + 𝜙𝑗) 

𝐻𝜙,𝑗 ∝

𝑛√𝑘2 − 𝑘𝜌
2

𝜔𝜇0𝜌
𝐽𝑛(𝑘𝜌𝜌) sin(𝑛𝜙 + 𝜙𝑗) 

𝐻𝑧,𝑗 ∝
𝑖𝑘𝜌
2

𝜔𝜇0
𝐽𝑛(𝑘𝜌𝜌) cos(𝑛𝜙 + 𝜙𝑗). 

(4.3) 

On the other hand, the expression for the total dissipated electromagnetic power due to the metallic 

walls can be obtained from the surface integrals 
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𝒫𝐿,𝑇 ∝∑∫ [|𝐻𝜙,𝑗|
2
+ |𝐻𝑧,𝑗|

2
] 𝑑𝑠

𝑆𝑗

𝑁

𝑗=1

− 𝛥𝑆∑{|𝐻𝑧,𝑗|
2
+ |𝐻𝑧,𝑗+1|

2
− |𝐻𝑧,𝑗+1 − 𝐻𝑧,𝑗|

2
}

𝑁

𝑗=1

+ {|𝐻𝜙,𝑗|
2
+ |𝐻𝜙,𝑗+1|

2
− |𝐻𝜙,𝑗+1 + 𝐻𝜙,𝑗|

2
}, 

(4.4) 

where 𝑆𝑗 is the cylindrical surface of the 𝑗th nanodisk, while 𝛥𝑆  is the effective common area 

between nearby nanodisks. From equations (S-1), one can further simplify equation (S-2) as 

follows 

 

𝒫𝐿,𝑇𝐸 ∝ 𝒫1 − 𝒫𝑧,𝑇𝐸∑𝑐𝑜𝑠 (𝑗
2𝜋

𝑁
𝑛 + 𝜙𝑗) 𝑐𝑜𝑠 (−𝑛𝜋 + 𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗+1)

𝑁

𝑗=1

+ 𝒫𝜙,𝑇𝐸∑𝑠𝑖𝑛 (𝑗
2𝜋

𝑁
𝑛 + 𝜙𝑗) 𝑠𝑖𝑛 (−𝑛𝜋 + 𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗+1)

𝑁

𝑗=1

 

(4.5) 

where 𝒫𝑧,𝑇𝐸 = 2𝛥𝑆
𝑘𝜌
4

𝜔2𝜇0
2 𝐽𝑛
2 (𝑘𝜌𝑎), 𝒫𝜙,𝑇𝐸 = 2𝛥𝑆

𝑛2(𝑘2−𝑘𝜌
2)

𝜔2𝜇0
2𝑎2

𝐽𝑛
2(𝑘𝜌𝑎), and 𝑎 is the radius of the 

nanodisks. Equation (S-3) can be rewritten as 

𝒫𝐿,𝑇𝐸 ∝ 𝒫1 + (−1)
𝑛+1∑{

𝒫𝑧,𝑇𝐸 − 𝒫𝜙,𝑇𝐸

2
𝑐𝑜𝑠[𝜙𝑗+1 − 𝜙𝑗]

𝑁

𝑗=1

+
𝒫𝑧,𝑇𝐸 + 𝒫𝜙,𝑇𝐸

2
𝑐𝑜𝑠 [𝜙𝑗+1 + 𝜙𝑗 + 2𝑗 ×

2𝑛𝜋

𝑁
]} . 

(4.6) 

Similarly, for 𝑇𝑀𝑛𝑚 modes, the fields within cavities are given according to 
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𝐸𝜌,𝑗 ∝

−√𝑘2 − 𝑘𝜌2 × 𝑘𝜌

2𝜔𝜖0
[𝐽𝑛−1(𝑘𝜌𝜌) − 𝐽𝑛+1(𝑘𝜌𝜌)] 𝑐𝑜𝑠(𝑛𝜙 + 𝜙𝑗), 

𝐸𝜙,𝑗 ∝

𝑛√𝑘2 − 𝑘𝜌2

𝜔𝜖0𝜌
𝐽𝑛(𝑘𝜌𝜌) 𝑠𝑖𝑛(𝑛𝜙 + 𝜙𝑗) 

𝐸𝑧,𝑗 ∝
𝑖𝑘𝜌
2

𝜔𝜖0
𝐽𝑛(𝑘𝜌𝜌) 𝑐𝑜𝑠(𝑛𝜙 + 𝜙𝑗) 

𝐻𝜌,𝑗 ∝ −
𝑛

𝜌
𝐽𝑛(𝑘𝜌𝜌) 𝑠𝑖𝑛(𝑛𝜙 + 𝜙𝑗) 

𝐻𝜙,𝑗 ∝ −
𝑘𝜌

2
[𝐽𝑛−1(𝑘𝜌𝜌) − 𝐽𝑛+1(𝑘𝜌𝜌)] 𝑐𝑜𝑠(𝑛𝜙 + 𝜙𝑗) 

𝐻𝑧,𝑗 = 0. 

(4.7) 

Therefore, the total dissipated power can again be obtained in a similar way: 

𝒫𝐿,𝑇𝑀 ∝ 𝒫2 + 𝒫𝜙,𝑇𝑀∑𝑐𝑜𝑠 (𝑗
2𝜋

𝑁
𝑛 + 𝜙𝑗) 𝑐𝑜𝑠 (−𝑛𝜋 + 𝑗

2𝜋

𝑁
𝑛 + 𝜙𝑗+1)

𝑁

𝑗=1

, (4.8) 

where 𝒫𝜙,𝑇𝑀 =
𝑘𝜌
2

2
𝛥𝑆[𝐽𝑛−1(𝑘𝜌𝜌) − 𝐽𝑛+1(𝑘𝜌𝜌)]

2
. Using this, it is straightforward to show that 

𝒫𝐿,𝑇𝑀 ∝ 𝒫2 + (−1)
𝑛𝒫𝜙,𝑇𝑀∑{

1

2
𝑐𝑜𝑠[𝜙𝑗+1 − 𝜙𝑗]

𝑁

𝑗=1

+
1

2
𝑐𝑜𝑠 [𝜙𝑗+1 + 𝜙𝑗 + 2𝑗 ×

2𝑛𝜋

𝑁
]} . 

(4.9) 

Equations 4.1 and 4.2 in section 4.2 can be directly extracted from Eqs. 4.5, 4.8 and 4.6, 4.9, 

respectively. These equations provide the energy landscape functions associated with the 

Hamiltonians of this system. 
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4.7. Fabrication procedure and SEM images 

The fabrication steps involved in implementing metallic nanolaser lattices are depicted in Fig. 44. 

The wafer (grown by OEpic Inc.) consists of six quantum wells of Inx=0.734Ga1-xAsy=0.57P1-y (thickness: 

10 nm), each sandwiched between two cladding layers of Inx=0.56Ga1-xAsy=0.938P1-y (thickness: 20 nm), 

with an overall height of  200 nm, grown on an InP substrate. The quantum wells are covered by a 10 nm 

thick InP over-layer for protection (Fig. 44 a). An XR-1541 hydrogen silsesquioxane (HSQ) solution in 

methyl isobutyl ketone (MIBK) is used as a negative electron beam resist. The resist is spun onto the wafer, 

resulting in a thickness of 50 nm (Fig. 44 b). The lattices are then patterned by electron beam lithography 

(Fig. 44 c). The wafer is next immersed in tetramethylammonium hydroxide (TMAH) to develop the 

patterns. The HSQ exposed to the electron beam now remains and serves as a mask for the subsequent 

reactive ion etching process. To perform the dry etching, a mixture of H2:CH4:Ar gas is used with a ratio 

of 40:6:15 sccm, RIE power of 150 W, and ICP power of 150 W at a chamber pressure of 35 mT (Fig. 

44 d). The wafer is then cleaned with oxygen plasma to remove organic contaminations and polymers that 

form during the dry etching process. After this, a 1000 nm layer of silver is deposited onto the sample 

using electron beam evaporation at a pressure of 5 × 10−7 Torr at a rate of 0.1 𝐴̇/𝑠 for the first 

400 nm, at which point the rate is ramped up to 1 𝐴̇/𝑠 (Fig. S1e). SU-8 is then used to bond the 

silver side to a glass substrate for support (Fig. 44 f). Lastly, the sample is wet etched in 

hydrochloric acid to remove the InP substrate (Fig. 44 g). SEM images of all lattices discussed in 

the main text are provided in Fig. 45, after the intermediate dry etching step. 
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Figure 44  Fabrication process of a metallic nanolaser lattice. This same process is used in other geometries 

as well. The bottom right corner provides a legend to the materials of the structure. a, Cleaned wafer with 

InGaAsP quantum wells grown on an InP substrate. b, A thin layer of negative tone HSQ ebeam resist is 

spun onto the sample. c, The wafer is patterned by ebeam lithography and the resist is developed. d, A dry 

etching process is used to define the lattice. e, 1 μm Ag is deposited by means of ebeam evaporation. f, The 

sample is mounted and bonded to a glass microscope slide silver side down with SU-8. g, Sample is 

immersed into HCl to remove the InP substrate. 
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4.8. Characterization setup  

A micro-photoluminescence (μ-PL) setup, depicted in Fig. 46, is used to characterize the metallic 

nanolaser lattices. The lattices are optically pumped by a pulsed laser (duration: 15 ns, repetition 

rate: 290 kHz) operating at a wavelength of 1064 nm (SPI fiber laser). A beam shaping system is 

implemented to realize the desired pump profile. In this study, the pump focus spot on the sample 

has a diameter of 45 𝜇𝑚. A 50x microscope objective (NA: 0.42) is used to project the pump beam 

on the lattice and also serves to collect the emission. For temperature tuning, the sample is inserted 

into a cryostat (Janis ST-500) and cooled. The surface of the sample is imaged by two cascaded 4-

f imaging systems in an IR camera (Xenics Inc.). A broadband ASE source passed through a 

rotating ground glass is used to illuminate the sample surface for pattern identification. A notch 

filter is placed in the path of emission to attenuate the pump beam. Output spectra are obtained by 

a monochromator equipped with an attached InGaAs linear array detector. A powermeter is 

inserted at the focus of the beam to collect the output power of the laser lattices. A linear polarizer 

 

Figure 45  SEM images of the lattices. In all lattices the nanodisks elements are separated by 50 nm. a, 20 

x 20 array of nanodisks (radius 545 nm). b, zoomed in view of the front left corner of the 20 x 20 array. c, 

4-element array of nanodisks (radius 575 nm). d, e, & f, 3-, 4-, & 5-element arrays (radius 930 nm, 940 nm, 

and 930 nm, respectively). g, 6-element array (radius 850 nm). 
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is placed in the setup to observe the polarization resolved intensity distribution. To measure the 

topological charge of the light emitted by the lattices, a removable equilateral triangular aperture 

is inserted at the back focal plan of the lens before the IR camera, to facilitate a Fourier-transform. 

A quarter-wave plate is used to extract the right- and left-handed components of the polarization. 

To measure the orbital angular momentum of the emitted light emitted, different techniques can 

be used based on interference, including self-interference and interference of the OAM beam with 

a plane wave. In these circumstances, the phase information is assessed by analyzing the fringes. 

In particular, the formation of a fork-like structure at the center of the vortex is an indication of a 

topological charge. Here the topological charge measurements are augmented using a different 

approach based on the relationship between the phase of the light carrying OAM and its diffraction. 

This latter technique provides an unambiguous measurement of the order and sign of a vortex 

beam’s topological charge. In short, when a scalar light beam carrying orbital angular momentum 

passes through an equilateral triangular aperture, the beam diffracts, hence generating a truncated 

triangular optical lattice rotated by ±30°, with respect to the aperture, in the far-field. This lattice 

then reveals the value of the topological charge (𝑞), given by the relationship |𝑞|  =  𝑠‒ 1, where 

𝑠 is the number of spots along each side of the formed triangular lattice. The sign of the charge is 

determined by the direction that the triangle rotates. For example, in our setup, a triangle pointed 

right has a positive OAM, while the sign is negative if it points to the left. 

To establish the validity of the triangular aperture approach for measuring the topological 

charge of an optical vortex beam, we compare the results of the triangle technique experimentally 

to that of a simulated vectorially rotating electric field. In the experiment, we tested a 7-element 

lattice laser at room temperature (Fig 47 a). As the 𝑇𝐸13 is a quasi-linear like mode, we simulate 
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this structure by considering six dipoles arranged in a hexagonal ring, emitting radiation with an 

electric field 𝐸⃗⃗ ∝ −cos(2𝜑) 𝑥̂ + sin(2𝜑) 𝑦̂, where 𝜑 is the angle of rotation along the periphery. 

This in turn can be represented in terms of left- (𝐿̂) and right-hand circular polarizations (𝑅̂) 

(L,RHCP), 𝐸⃗⃗ ∝ −𝑒𝑖2𝜑𝐿̂ − 𝑒−𝑖2𝜑𝑅̂. Figures 47 b, c, & d provide the simulated intensity and the 

polarization resolved intensity distributions, which are in excellent agreement with the observed 

modal profiles (Fig. 47 e, f, & g). Figure 47 h shows the result of the simulated diffraction pattern 

when filtering for the RHCP, and compares it to the experimentally observed diffraction profile 

(Fig. 47 i). Lastly, the associated light-light (L-L) and spectral evolution curves are provided in 

Fig. 47 j & k, respectively, clearly showing the threshold characteristic associated with lasing as 

well as linewidth narrowing.     
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Figure 46  Characterization microphotoluminescence setup schematic. The samples are pumped with a 1064 

nm fiber laser and focus onto the sample with a 50x objective (N.A. 0.42). Light is either directed to an 

InGaAs camera to observe emission patterns, or to a monochromator with an attached InGaAs linear array 

detector. The emission power is collected at the location of the first focus after the pump notch filter. The 

triangular aperture used to reveal the OAM of the radiated beams is removable so as to not obstruct imaging 

the sample surface and to collect proper modal profiles. 
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Figure 47  Characterization of charge measurement using a 7-element metallic lattice operating at room 

temperature. a, Simulated z-component of the magnetic field.  b, c, & d, The simulated intensity profile and 

the polarization resolved intensity distributions when filtered for horizontal (c) and vertical (d) 

polarizations. e, f, & g, The experimentally observed emission pattern and intensity distributions. h, The 

simulated far-field diffraction pattern of the lattice after passing through a triangular aperture. i, The 

experimentally observed profile is in agreement and has 𝑙 = −2. j, The light-light curve shows a clear onset 

in lasing.  k, The spectral evolution of this laser shows linewidth narrowing and single-mode behavior. 



108 

 

4.9. Light-light curves and spectral evolutions 

In addition to the emission profile and topological charges provided in the main text, light-light 

and spectral evolution curves were also collected for these metallic nanolaser lattices. As 

mentioned before, the ambient temperature of the lasers was tuned in order to promote lasing in 

certain desired modes. All of the curves shown in this section of the supplementary display a 

threshold and a linewidth narrowing behaviors with increased pumping, attributes associated with 

lasing. The reported pump intensities represent the incident light at the sample surface. Figure 48 

provides the L-L and spectral evolutions of the four lattices that orient their fields in an 

antiferromagnetic-like arrangement. The 3-, 4-, & 5-element structures have individual element 

radii of 930 nm, 940 nm, and 930 nm, respectively, (𝑇𝐸14 mode) and are tuned to a temperature 

of 225 K (Fig. 48 a-f). On the other hand, the 6-element lattice (nanodisk radius of 850 nm) is left 

at room temperature to promote lasing in the 𝑇𝐸13 mode (Fig. 48 g & h). 

Figure 49 shows the curves for the lattices that orient their fields in a ferromagnetic-like manner. 

In these lattices all the cavities support the 𝑇𝐸22 mode. The 4-element arrangement operates at a 

temperature of 78 K and the characteristics of the L-L and spectral evolution (575 nm nanodisk 

radius) is provided in Fig. 49 a & b. In the case of the 20 × 20 element array, the nanodisks have 

a smaller radius of 545 nm and were operated at an ambient temperature of 225 K (Fig. 49 c & d).  

 



109 

 

 

Figure 48  Light-light and spectral evolutions curves for the lattices with antiferromagnetic-like coupling.  

All the lattices indicate a clear onset of lasing and linewidth narrowing. a & b, c & d, and e & f, show the 

light-light and the spectral evolutions of lattices operating in the 𝑇𝐸14 mode at temperature of 225 K for 

the 3-, 4-, & 5-element lattices, respectively. The radii of the nanodisks are 930 nm, 940 nm, and 930 nm, 

respectively. g & h the 6-element lattice supports lasing at room temperature in the 𝑇𝐸13 mode (850 nm 

radius elements). 
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4.10. Tuning the exchange couplings 𝑱𝒊𝒋 

In order to show the versatility of the coupled nanolaser array platform to realize XY 

Hamiltonians with various exchange couplings, one may consider varying the metallic gap 

between nanodisks as a means to adjust the associated exchange couplings in equation (2). To 

demonstrate this aspect, we study an asymmetric three-element configuration, as depicted 

schematically in Fig. 50 a. In this configuration, we adjust the relative strengths of the 

corresponding exchange couplings in the equivalent Hamiltonian of equation (2) such that 𝐽12 =

 

Figure 49  Output charactersitics of the 4-element and 2020-element array displaying ferromagnetic like 

coupling. Both lattices operate in the 𝑇𝐸22 mode, albeit at differing temperatures. a & b, the 4-element 

arrangement is cooled to 78 K and has disks with radii of 575 nm. c & d, the 20  20-element lattice (radius 

of 545 nm) generates more than 10 mW peak output power. 
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𝐽13 ≈ 𝐽23/3 . This is obtained by incorporating a larger gap distance between the top nanodisk and 

the remaining ones on the bottom of the structure (50 𝑛𝑚 versus 25 𝑛𝑚). Each of the nanodisks 

in this case have a radius of 775 𝑛𝑚 and emit in the 𝑇𝐸13 mode.  In this case, one expects that the 

previous 120° arrangement of the pseudospins in an equilateral geometry to be modified towards 

an anti-aligned pseudospin configuration for the sites located on the bottom of the triangle, as 

expected from the limiting case of an AF-like coupled dimer geometry. Figure 50 b shows 

simulated field profile of the associated supermode with the lowest loss in such a geometry, as 

expected from such asymmetric couplings. Figures 50 c-h display the measured diffracted field 

intensities and polarization characteristics of light emitted by such a structure (top) together with 

the associated simulation results (bottom). The coupling between the adjacent elements can be 

further tuned by depositing additional metallic barriers using focused ion beams. 
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4.11. Polarization measurements for frustrated states 

To further characterize the lasing supermodes in the case of arrays with 𝑁 = 3, 5, 6 nanodisk lasers 

with an AF-type coupling, we performed polarization measurements in each case and compared 

the results with those expected from simulations (Fig. 51). These observations further corroborate 

the results in Fig. 42 of the manuscript. 

 

 

Figure 50  Asymmetric triangle geometry. a, A schematic of three pseudospins arranged on a triangle with 

asymmetric exchange couplings. In this case, the angles of the bottom pseudospins are expected to change 

as shown in the figure. b, FEM simulation of the lasing supermode in an asymmetric triangular array of 

nanodisks. Each nanodisk supports a 𝑇𝐸13 mode. c-h Experimental measurements (top) together with 

theoretically calculated results for diffraction intensities and polarization states of the optical fields emitted 

by such a nanodisk array. The arrows depict the direction of the linear polarizer. 
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4.12. Summary 

We have shown for the first time that the classical XY Hamiltonian can be realized by exploiting 

the dissipative cooperative interplay among vectorial electromagnetic modes. Using coupled 

metallic nanolaser lattices, both ferromagnetic and anti-ferromagnetic phases have been 

demonstrated experimentally, while in the AF regime, geometric frustration has been realized in 

full accord with theoretical predictions. In general, the proposed optical spin arrangement can be 

judiciously tailored so as to attain broader classes of XY Hamiltonians with arbitrary exchange 

couplings 𝐽𝑖𝑗 (section 4.10). Furthermore, in principle, it is possible to extend the use of this 

platform for implementing Ising Hamiltonian by modifying the mode in individual cavity 

elements. Finally, by providing a radically integrated solution for realizing photonic spin 

 

Figure 51  Polarization measurements for frustrated states. Theoretically predicted and experimentally 

measured polarization profiles for lasing supermodes in arrays of a, 𝑁 = 3, b, 𝑁 = 5, and c, 𝑁 = 6 

nanodisk laser arrays. The arrows indicate the direction of linear polarizations. 
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machines, this platform could pave the way towards emulating more complex networks wherein a 

wide class of optimization algorithms and phase transition phenomena can be studied. 
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CHAPTER 5: CONCLUDING REMARKS 

 

It is known that electrons interacting with a magnetic field can display an array of interesting 

and counterintuitive effects. These include for example topological insulators - a new phase of 

matter which have insulating properties in their bulk but are conductors in their edges. This 

peculiar behavior is a result of the particular band structure in these systems, where a nontrivial 

bandgap is a host of topologically protected “edge modes”. Moreover, this conduction in the edge 

is fundamentally different from a conventional conductor, in the sense that it is unidirectional and 

robust against local perturbations. 

In recent years, the possibility of observing similar effects that arise from the interaction of 

magnetic fields with electrons, has been largely explored in photonic settings. However, the main 

challenge in such arrangements is the fact that photons, as neutral bosons, are in general not 

affected by magnetic fields. One possibility to circumvent such a limitation is to use magneto-

optic materials, where applying a magnetic field would change optical properties of the medium. 

Even though such an idea might seem appealing in the first glance, the limitations in terms of weak 

magneto-optic coefficients for the existing materials and also the high costs imposed by the use of 

such materials make such propositions impractical. Therefore, clearly of interest would be to 

devise schemes based on standard optical material systems which exhibit some type of synthetic 

magnetic fields for photons. This can be achieved, in general, by exploiting the aforementioned 

connection between geometric phases in such photonic systems and the Aharonov-Bohm phase in 

electronic structures. In addition to fundamental science, such results are expected to provide new 

optical functionalities including unidirectional light propagation and novel sensors. 
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As detailed in Chapter 2, here we used the duality between the geometric phase arising in the 

tunneling of light in a twisted multicore fiber structure and the Aharonov-Bohm phase to 

experimentally observe an artificial magnetic field in such arrangements. To observe this coupling 

phase, we proposed an interferometric technique based on a four-core fiber system, and showed 

that the magnitude of the equivalent artificial magnetic field can be experimentally tuned by 

changing the rate of twist in the structure. Based on this, we demonstrated for the first time the 

Aharonov-Bohm suppression of tunneling in a photonic setting. In addition, I showed both 

theoretically and experimentally that this new type of geometric phase remains invariant in the 

presence of optical nonlinearity and multimode behavior.  

In Chapter 3, we introduced the “topological insulator lasers” in both 1- and 2-dimensions. 

Laser cavities are in general prone to disorder, which is inevitable due to fabrication imperfections, 

operational degradation and failure. It is well-known that the presence of disorder in a laser results 

in spatial light localization in the cavity, giving rise to several performance issues including lower 

output coupling, multimode lasing and reduced slope efficiency. Therefore, it is natural to 

contemplate exploiting topological features to design laser systems that are immune to disorder. 

In 1D, we developed a successful theoretical model that captures the complex dynamics of photons 

in the system which involves a mixture of nonlinear effects including gain saturation, carrier 

dynamics associated with the gain material, as well as the linewidth enhancement effect. We 

designed an experimental realization for our theoretical model based on semiconductor multilayer 

quantum well structures (InGaAsP material), and used the operational parameters associated with 

the experimental setup in our simulation models to predict the behavior of the system under 

different pumping levels. We successfully demonstrated that the introduction of topology in 1D 
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lasers leads into robust lasing in the defect mode of the structure with ultra-stable emission 

frequency, in sharp contrast to conventional 1D lasers which are highly prone to disorder. We 

further generalized our ideas to higher dimensions and devised a 2D topological insulator laser. 

After fabrication, our measurements confirmed our theoretical predictions regarding desirable 

attributes of the 2D topological insulator laser in contrast to a conventional laser array. More 

specifically, we were able to observe scatter-free, single edge-mode lasing even in pump powers 

well above lasing threshold. This in turn led into a considerably higher slope-efficiency as 

compared to trivial systems. Also, our predictions in terms of spectral purity of the emission from 

the device was confirmed by detailed experimental measurements. 

Finally, in Chapter 4 we showed for the first time that spin Hamiltonians can be realized by 

exploiting the dissipative cooperative interplay among vectorial electromagnetic modes. Using 

coupled metallic nanolaser lattices, both ferromagnetic and anti-ferromagnetic phases were 

demonstrated experimentally. In the AF regime, geometric frustration was realized in full accord 

with theoretical predictions. In general, the proposed optical spin arrangement can be judiciously 

tailored so as to attain broader classes of XY Hamiltonians with arbitrary exchange couplings 𝐽𝑖𝑗. 

Furthermore, in principle, it is possible to extend the use of this platform for implementing Ising 

Hamiltonian by modifying the mode in individual cavity elements. Finally, by providing a 

radically integrated solution for realizing photonic spin machines, this platform could pave the 

way towards emulating more complex networks wherein a wide class of optimization algorithms 

and phase transition phenomena can be studied. 
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