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Abstract 

The anthropogenic activity via land use change and fossil fuel and cement emissions 

substantially affect the Earth system, leading to the atmospheric CO2 increase that is recognized 

to be the main cause of the increasing global surface temperatures and consequent climate 

change. The unprecedented human-induced alterations in the Earth system since the Industrial 

Revolution drove the carbon cycle out of equilibrium, so that currently, the global biosphere 

acts as an uptake of more than half of anthropogenic carbon emissions. The largest and the 

most uncertain contributor to the interannual carbon uptake is land. An accurate understanding 

of the impact of anthropogenic activity on the land carbon uptake is crucial for quantifying the 

future carbon-climate feedbacks. 

The land uptake is the net balance of gross primary production (GPP) and terrestrial 

ecosystem respiration (TER). GPP and TER exhibit large magnitudes and interannual 

variabilities that makes it difficult to distinguish the impacts of anthropogenic activity on the 

fluxes, i.e., the GPP and TER anthropogenic effects, from the impacts of natural climate 

variability, i.e. GPP and TER natural effects. Factorial simulations using several biosphere 

models have been used to estimate the effects of long-term climate change on global GPP and 

TER. However, no study has integrated large-ensemble climate simulation data into a 

biosphere model to realistically estimate global terrestrial carbon fluxes with associated 

uncertainty and to project the future changes in the carbon fluxes by using statistical tools such 

as the probability density functions. 

This thesis presents an approach to estimate the global GPP and TER with associated 

climate data-induced uncertainty that combines a diagnostic biosphere model with a large-

ensemble climate simulation data set. I aim to distinguish the GPP and TER anthropogenic and 

natural effects in present 1952–2010 climate and future +2K and +4K warming climate 

simulations, identify the drivers and explore the probabilistic changes in GPP and TER with 

warming. In order to get realistic estimates of the global terrestrial GPP and TER with the 

associated input data-induced uncertainty, I force the biosphere model BEAMS with historical 

(HPB), “nonwarming” (HPB NAT), and future +2K and +4K (warmer than preindustrial) 

climate simulations of the Database for Policy Decision-Making for Future Climate Change 



(d4PDF). In order to identify the drivers of GPP and TER anthropogenic effects, I carry out 

several sensitivity experiments. 

First, I provide evidence for an increasing anthropogenic effect on global terrestrial 

GPP. The GPP anthropogenic effect is driven by CO2 fertilization, which is projected to 

weaken or saturate by 2050–2150, depending on the representative concentration pathway 

scenario used. Model results suggest that shortwave radiation couples with ENSO conditions 

and volcanic eruptions to drive the natural GPP effect. While currently, the CO2 fertilization 

effect primarily drives the tropical GPP increase that dominates the global GPP anthropogenic 

effect, in the future warmer world, the climate drivers are projected to constrain the tropical 

GPP increase, so that the climate-driven non-tropical GPP increase takes over the dominancy 

of the GPP anthropogenic effect. 

Second, I show that despite the benefits of CO2 fertilization effect on global GPP, the 

GPP anthropogenic effect cannot catch up with the increasing carbon emissions. Most likely, 

the major biosphere flux responsible for the increased atmospheric carbon growth is TER. The 

multi-ensemble model simulations show that both magnitude and interannual variability of 

TER increase in warmer climates with larger relative increase in high latitudes. The higher 

TER variability corresponds to higher TER in the tropics and mid-to-high northern latitudes. 

The main driver of future TER anthropogenic effect is temperature, while the effects of vapor 

pressure and precipitation are uncertain due to regional uncertainties in the climate projections. 

While in 1952–2010, temperature played only a minor role in the TER anthropogenic effect, 

its role is projected to increase in the future warmer climates because the contribution of 

temperature in driving TER increases with warming exponentially according to Q10 function. 

Overall, the findings of the present study clarify the mechanism of the changes in land 

carbon fluxes due to the impacts of the anthropogenic activity on the Earth system. I show that 

both GPP and TER anthropogenic effects increased in the past, and are projected to increase in 

future warmer climates. While the GPP anthropogenic effect is the largest in the tropics, the 

TER anthropogenic effect exhibits bipolarity. While in the future climate simulations, the GPP 

anthropogenic effect is projected to weaken at higher CO2 concentrations, no synchronic 

weakening is projected for the TER anthropogenic effect with higher temperatures. The 

disproportional increase in TER with warming towards high latitudes that are a massive 

reservoir of soil carbon highlight the need in the urgent action for stronger mitigation of 

anthropogenic emissions.  
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Chapter 1 

Introduction 

1.1 The impact of anthropogenic activities on the Earth 

system 

The Earth system integrates four spheres, the geosphere, hydrosphere, atmosphere, and 

biosphere, via physical, chemical, and biological processes. The Earth’s climate integrates 

these four spheres, and the energy, water and biogeochemical cycles (Bonan, 2015). The 

Earth’s system was in a state of equilibrium for thousands of years before the anthropogenic 

activities became influential at an unprecedented scale, especially after the Industrial 

Revolution in 1850s. Now an additional sphere, anthroposphere, is defined to refer to a part of 

the Earth that is largely altered by people.  

The major consequence of the anthropogenic activities is emission of greenhouse gases 

(GHGs) to the atmosphere. Because GHGs interact with radiative energy, e.g. solar radiation, 

they are a vital driver of climate via greenhouse effect (Bonan, 2015). The GHG that largely 

altered the Earth’s climate since the Industrial Revolution is carbon. 

The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the 

spheres of the Earth. Both natural processes, e.g. volcano eruptions, photosynthesis, and 

anthropogenic processes, e.g. fossil fuel emissions, affect the concentration of CO2 in the 

atmosphere. The anthropogenic carbon emissions, however, resulted in the unprecedently high 

concentrations in the atmosphere. Currently the atmospheric CO2 concentration reached the 

maximum over 800 000 years (Figure 1.1). The atmosphere increase in greenhouse gases and, 

particularly CO2, is the main reason of the historical global climate change (Canadell et al., 

2007a; IPCC, 2013b). 

The anthropogenic carbon emissions include fossil fuel burning, cement production and 

land-use change (Baldocchi et al., 2016; Le Quéré et al., 2018). The atmospheric CO2 increase 

above preindustrial levels was at first dominated by the deforestation and other land-use change 

activities, however, with the development of industry, the include fossil fuel burning, cement 

production emissions prevailed (Ciais et al., 2013; Le Quéré et al., 2018). The emissions 
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largely affected the Earth system, and particularly atmosphere and biosphere via altered carbon 

cycle. 

 

Figure 1.1. Atmospheric CO2 concentrations in parts per million (ppm) for the past 800 000 

years, based on EPICA (ice core) data. The peaks and valleys in CO2 levels track the coming 

and going of ice ages (low CO2) and warmer interglacials (higher levels). Throughout these 

cycles, atmospheric carbon dioxide was never higher than 300 ppm; in 2018, it reached 407.4 

ppm (black dot). NOAA Climate.gov, based on EPICA Dome C data (Lüthi et al., 2008) 

provided by NOAA NCEI Paleoclimatology Program. Modified reprints from Rebecca 

Lindsey, https://www.climate.gov/. 

Carbon is the major chemical element constituent of most organic matter in the 

biosphere. It is constantly cycled through the Earth system mainly via carbon fluxes such as 

plant photosynthesis and respiration, litter fall and decomposition of soil organic matter by 

microbes and bacteria in land and via dissolution of atmospheric carbon dioxide into seawater, 

transportation of carbon into deep water, photosynthesis and respiration pf phytoplankton in 

ocean. Essentially all carbon pools exchange with the atmosphere on timescales from minutes 

to millions of years. In the preindustrial time when the anthropogenic activities were negligible, 

the atmospheric CO2 concentration was nearly constant and equaled 277 parts per million 

(ppm) with variations in atmospheric CO2 of <20 ppm, during at least the last 11,000 years 

prior to the Industrial Revolution. Likewise, the carbon uptakes by the biosphere, including 

land and ocean, were small with only insignificant interannual variation (Joos et al., 2004). The 

anthropogenic carbon emissions resulted in the increased atmospheric carbon growth, as well 

as uptakes by land and ocean, i.e. land and ocean sinks. Ballantyne et al. (2012) reported that 

the global biosphere uptake doubled in 1961–2010 and absorbed more than half of the 

anthropogenic carbon emissions. In order to reduce the uncertainty of the future biosphere 

uptake, it is essential to have a robust understanding of the effect of the anthropogenic activities 

on the global carbon fluxes.  
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1.2 Terrestrial carbon cycle 

The largest and the most uncertain contributor to the interannual global carbon uptake 

variability is land (Bousquet et al., 2000; Friedlingstein et al., 2014; IPCC, 2013a). The land 

carbon uptake is the net balance between the two large fluxes termed gross primary production 

(GPP) and ecosystem respiration (TER), i.e. 

𝐿𝑎𝑛𝑑 𝑈𝑝𝑡𝑎𝑘𝑒 = 𝐺𝑃𝑃 − 𝑇𝐸𝑅 − 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙,     (1) 

where 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 includes the carbon fluxes not accounted by GPP and TER, e.g. disturbances.  

 GPP is the rate of the total amount of carbon, i.e. carbon input into ecosystem, fixed 

by plants in the process of photosynthesis in a given length of time. TER is the rate of the total 

amount of carbon, total output of carbon, released from the ecosystem to the atmosphere. It 

integrates autotrophic respiration (RA) and soil decomposition (SD). Part of carbon assimilated 

by the ecosystem via GPP is respired by the ecosystem for plant maintenance and growth via 

RA. The remaining carbon is inputted into the soil via litter fall. The carbon stored in the soil is 

then exposed to decomposition by heterotrophic microorganisms via the process of SD. The 

GPP and TER have different sensitivities to the surrounding environmental and climate 

conditions. Because GPP integrates photosynthesis (equation 2) from the cell of a leaf to 

ecosystem level, it strongly depends on the CO2 concentration, water availability and light. 

𝑛𝐶𝑂2 + 2𝐻2𝑂
𝑙𝑖𝑔ℎ𝑡
→   (𝐶𝐻2𝑂)𝑛 + 𝑛𝑂2 + 𝑛𝐻2𝑂    (2) 

The RA is shown to be dependent on GPP and temperature, and SD is dependent on the 

carbon storage in soil, soil temperature and moisture (Sasai et al., 2005). The processes 

responsible for the enhancement of the land uptake remain uncertain. Particularly, it is well 

known that the increase in the CO2 concentration causes a positive feedback on the GPP, and 

the increase in temperature causes a positive feedback on TER (Baldocchi et al., 2016; Wang 

et al., 2013). So far, multiple studies reported that the increase in GPP drove the increase in the 

land carbon uptake. But then, the land uptake as well increased during the warming hiatus in 

1998─2012 when the atmospheric carbon growth stalled. Keenan et al. (2016) suggested that 

the reasons of the increased land uptake during hiatus involve both increased GPP driven by 

CO2 fertilization and decreased TER driven by cooler temperatures. In support to this, Li et al. 

(2018) reported that TER growth stalled in the recent decades during cooler periods, e.g. after 

Pinatubo eruption and during the warming hiatus. These evidences of the increasing role of 

TER in the land carbon uptake raise the question whether the roles of GPP and TER are shifting.  
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1.3 Estimation of global terrestrial gross primary production 

and ecosystem respiration 

The terrestrial gross primary production (GPP) and ecosystem respiration (TER) cannot 

be directly measured at large scales (Ma et al., 2015; Welp et al., 2011), thus, the estimations 

are typically based on upscaling in situ observations, satellite observations, and terrestrial 

biosphere models. Terrestrial biosphere models can be used to analyze the underlying processes 

driving GPP and TER changes because they incorporate a mechanistic understanding of 

biosphere carbon pools and fluxes. Two types of biosphere models exist: prognostic models 

that require only climate input data and diagnostic models that require climate and satellite-

based vegetation input data (Sasai et al., 2005). The prognostic approach benefits from the 

ability to forecast future carbon fluxes. The diagnostic approach gives more realistic estimates 

of carbon fluxes by incorporating satellite data. 

Previous diagnostic studies have revealed the vegetation response to recent climatic 

change. Nemani et al. (2003) reported that climate change drove increases in global terrestrial 

vegetation activity during 1982–1999 primarily via decreased cloud cover and the resultant 

increase in shortwave radiation. Zhao and Running (2010) showed that regional droughts and 

a general drying trend over the Southern Hemisphere (SH) led to a decrease in vegetation 

activity during 2000–2009. These studies well represented interannual-to-decadal changes in 

carbon fluxes. However, they were limited to the satellite era and thus provide rather short term 

(10–30 years) analyses. Interannual climate variability strongly affects global GPP, and a few 

extreme events can explain most of the interannual variability (Doney et al., 2006; Zscheischler 

et al., 2014a). Consequently, current diagnostic approaches cannot distinguish the impact of 

anthropogenic emissions and consequent climate change on GPP (the anthropogenic GPP 

effect) from the impact of interannual natural climate variability on GPP (the natural GPP 

effect). Although a few studies have attributed natural and anthropogenic effects to changes in 

evaporation and leaf area index (LAI; (Mao et al., 2015; Zhu et al., 2016), to the best of my 

knowledge, this type of attribution study has not been performed for global GPP. 

The study of GPP and TER anthropogenic effects involves estimating the long-term 

fluxes at greater than decadal timescales. The recently developed Database for Policy Decision 

Making for Future Climate Change (d4PDF) of Mizuta et al. (2017) includes 100-member 

ensemble outputs of an atmospheric general circulation model (AGCM) and provides the 

ability to compare the actual historical climate with the climate of a world where global 
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industrial-era warming has not taken place. Integration of this newly developed long-term 

(1951–2010/2011) data set into a biosphere model provides the unique opportunity to attribute 

changes in global GPP explicitly to anthropogenic and natural effects, and permits a detailed 

analysis of the primary sources of these effects. Furthermore, by forcing a terrestrial biosphere 

model with large ensembles of climate simulations, one can account for climate data-induced 

uncertainty in GPP estimates that has often been overlooked. Although a few studies have 

estimated model structure-induced uncertainty in GPP and TER estimates (Huntzinger et al., 

2017; Huntzinger et al., 2013; Sitch et al., 2015; Sitch et al., 2008), to the best of my knowledge, 

no study has used large-ensemble climate data to determine input data-induced uncertainty. 

Finally, the multi-ensemble carbon fluxes simulation of future climate projections allow 

analyzing the global terrestrial GPP and TER anthropogenic effects in the future warmer 

climates by using statistical tools such as probability density functions.  
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1.4 Purpose of this study 

The purpose of this study is to estimate the anthropogenic effect on land carbon fluxes 

and their probabilistic change in future climate projections. To this end, I combine the benefits 

of diagnostic carbon fluxes estimations with large-ensemble climate simulations. I estimate the 

global GPP and TER during 1952–2010 by applying 100-member ensembles of high-resolution 

historical, “non-warming”, future +2K and +4K warming climate simulations from the d4PDF 

(Mizuta et al., 2017) to the diagnostic-type biosphere model BEAMS of Sasai et al. (2016). 

For vegetation input data, I integrate satellite observations into a prognostic air temperature-

based estimation, assuming an extension of the growing season and an increase in plant growth 

with temperature rise (Knyazikhin et al., 1999; Myneni et al., 1997). There are two sub-

purposes in this study. First is to estimate the current (1952 2010) anthropogenic effect on 

global GPP with input-data uncertainty and identify drivers of GPP change. Second is to 

explore the changes in TER with future warming and identify the drivers of TER change. 

The outline of the paper is as follows. Chapter 2 describes the methods and data, 

including the outline of the biosphere model BEAMS used in to estimate carbon fluxes and 

The Database for Policy Decision making for Future climate change (d4PDF) used to force 

BEAMS. In Chapter 3, I investigate the GPP anthropogenic and natural effects in 1952–2010 

and their drivers. In Chapter 4, I investigate the TER anthropogenic effect in terms of 

magnitude and interannual variability in future +2K and +4K climates in comparison to 

preindustrial. In Chapter 5, I discuss the GPP and TER anthropogenic effects based on the 

Chapters 3 and 4, and the shifting roles of GPP and TER in the land carbon uptake with climate 

warming. Conclusions of this study are summarized in Chapter 6.  
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Chapter 2 

Data and methods 

2.1 The terrestrial biosphere model BEAMS 

The diagnostic-type Biosphere model integrating Eco-physiological And Mechanistic 

approaches using Satellite data (BEAMS ver.1.3) by Sasai et al. (2016) has been previously 

validated globally and used in numerous studies (Sasai et al., 2005; Setoyama & Sasai, 2013). 

BEAMS consists of four carbon fluxes of GPP, autotrophic respiration (RA), litter fall, and soil 

decomposition (SD). It estimates GPP via the light use efficiency (LUE) concept and accounts 

for the environmental effects of air temperature, relative humidity, soil moisture, and 

atmospheric CO2 concentrations on vegetation growth by including “stress” biophysical 

responses of photosynthesis to environmental factors using a photosynthesis model coupled 

with a stomatal conductance algorithm. TER consists of two fluxes, autotrophic respiration, 

RA, and soil decomposition, SD. RA is modeled in proportion to the potential net primary 

production (NPP) with temperature dependency. The SD modeling is based on the carbon cycle 

component of the Century model (Parton et al., 1993) with water and temperature dependences. 

Figure 2.1 describes the BEAMS carbon processes and dependencies. The detailed explanation 

is given by Sasai et al. (2005) and Sasai et al. (2007).  

 

Figure 2.1. Outline of the BEAMS model structure. 
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BEAMS incorporates carbon, energy, and water processes in the terrestrial ecosystem 

and requires monthly surface climate inputs for air temperature, land surface temperature (LST), 

precipitation, shortwave radiation at the surface, vapor pressure, wind speed, monthly satellite 

observations of vegetation (fraction of absorbed photosynthetically active radiation, FAPAR 

and LAI), and monthly global mean atmospheric CO2 concentrations, and temporally invariant 

inputs, namely land cover type, elevation, soil texture, and soil depth. The time-invariant and 

space-invariant (CO2 concentration) data for BEAMS is explained in Table 2.1. The land cover 

change was not accounted for in the present study and the time-invariant MOD12C1 land cover 

of year 2004 was utilized. 

Table 2.1. BEAMS input data.  

Parameter Data set Reference 

Land cover MODIS Land Cover Type (MCD12Q1) Friedl et al. (2010) 

Ground 

elevation 

Shuttle Radar Topography Mission 

(SRTM-30) 

Farr et al. (2007) 

Soil depth & 

texture 

Soil Map of the World produced by the 

Food and Agriculture Organization of the 

United Nations/United Nations 

Educational, Scientific, and Cultural 

Organization (FAO/UNESCO) 

Webb et al. (1993) 

CO2 

concentration 

Global historical CO2 concentration The Institute for 

Atmospheric and Climate 

Science, Zürich, Switzerland 

BEAMS requires monthly inputs of satellite-based LAI and FAPAR. However, long-

term satellite data sets began during the 1980s and, therefore, do not cover the required 60-year 

period. Several prognostic models can simulate LAI and FAPAR and provide long-term 

monthly data (Huntzinger et al., 2018; Sitch et al., 2015; Zhu et al., 2016). They estimate 

vegetation variables from climate inputs, such as temperature, soil water, or photosynthetic 

carbon allocations. Prognostic models have been shown to overestimate mean LAI, the length 

of the growing season, interannual variability over the high-latitude Northern Hemisphere (NH; 

(Murray-Tortarolo et al., 2013), and the CO2 fertilization effect (Smith et al., 2015). In fact, 

models often simulate a temporal mismatch in spring green-up on the order of 1–2 months and 
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estimate a much larger positive temporal trend in global mean (Stöckli et al., 2011). Smith et 

al. (2015) showed that prognostic models may be oversensitive to CO2 fertilization. 

The vegetation variables LAI and FAPAR were derived by integrating satellite 

observations into prognostic air temperature-based estimations. Previous studies revealed the 

dependence of LAI on temperature (Kunkel et al., 2004; Melnikova et al., 2018). In this study, 

I derived LAI and FAPAR using the 30-year satellite LAI and FAPAR data set GIMMS3g 

from Boston University and the d4PDF air temperature. I chose the GIMMS3g data set over 

newer but shorter-term LAI products with higher resolution (i.e. MODIS, SPOT, etc.) because 

the 30-year period provides the response of the LAI and FAPAR to long-term warming. I used 

the method proposed by Sasai et al. (2016) that assumes an extension of the growing season 

and an increase in plant growth with increasing temperature (Knyazikhin et al., 1999; Myneni 

et al., 1997). First, I calculated the relationship between satellite-based vegetation and 

historical air temperature data. Then, I estimated LAI and FAPAR for each member of the 

d4PDF HPB, HPB NAT, +2K and +4K climate simulations based on this empirical relationship 

and the air temperature. A detailed description of this process is provided by Sasai et al. (2016) 

and the method used is as follows. 

1) Calculate the monthly GIMMS3g average LAI and FAPAR, and the 100-member 

ensemble mean d4PDF 2-m air temperature of the HPB climate simulation for the period 

1982–2011. 

2) For leaf-dropping vegetation: calculate the average leafing and leaf dropping months 

based on the cumulative air temperatures above 0°C before leafing and during leaf 

dropping for the study period. The 12 months of the year are divided into leafing, leaf 

dropping, growing, and dormant months. 

3) For leaf-dropping vegetation: calculate the acceleration/deceleration of leafing and leaf 

dropping assuming that the growing season lengthens with warming for each member of 

the 100-member ensemble HPB and HPB NAT climate simulations of the d4PDF for the 

period 1951–2010. 

4) For months other than leafing and leaf dropping for leaf-dropping vegetation, and for all 

months for evergreen vegetation, calculate the increase/decrease of LAI and FAPAR 

assuming increasing plant growth with rising temperature. The maximum increment is 

constrained for each plant functional type. Here, I use the difference in air temperature 

between the simulation month for each ensemble member and the average derived in (1).  



10 

 

2.2 Database for Policy Decision-Making for Future Climate 

Change 

The d4PDF is a large ensemble of high-resolution (0.5625° grid) climate simulations 

that covers the period 1951 – 2010/2011 and provides the projected climates 2K and 4K warmer 

than preindustrial (+2K and +4K). The d4PDF was developed for use in estimations of the 

effects of anthropogenic climate change on extreme local weather and climate events and 

planning for adaptation to global warming (Mizuta et al., 2017). The database uses the 

Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM) 

version 3.2, which is a Coupled Model Intercomparison Project Phase 5 (CMIP5) member. It 

is coupled with an aerosol model to represent the direct and indirect effects of aerosols on 

radiation (Mizuta et al., 2012). The cloud fraction and water content are provided from the 

cloud scheme. The calculation of downward surface shortwave radiation considers both the 

effects of aerosols and the optical properties of clouds based on the cloud water content (Mizuta 

et al., 2012; Slingo, 1989). The d4PDF provides simulations of the historical climate (HPB), 

the climate of a world where global warming has not taken place in the industrial era (HPB 

NAT) and future +2K and +4K climates. Table 2.2 describes duration, ensemble size, and 

prescribed boundary conditions of the four simulations of d4PDF. The HPB simulation uses 

the observed sea surface temperature (SST) and sea ice from the Centennial Observation-Based 

Estimates of SST version 2 (COBE-SST2) data set (Hirahara et al., 2014) as the lower 

boundary conditions, and global-mean concentrations of greenhouse gases (GHGs) and three-

dimensional distributions of ozone and aerosols as external forcings. The HPB NAT simulation 

is of a non-warming climate and uses the same SST except that the long-term trend is removed 

using the average values during 1900–1919 as the baseline of the detrended SST, it uses 

preindustrial GHGs and aerosols (fixed at 1850 values), and ozone is fixed at 1960 values. 

Small perturbations were added to the SST to generate different initial conditions for the 

ensemble members. On a global scale, the SST pattern drives interannual climate variability 

and can be described in terms of El Niño Southern Oscillation (ENSO), the dominant feature 

of cyclic climate variability on subdecadal timescales (Yeh et al., 2009). Both the HPB and 

HPB NAT simulations include the natural climate variability of ENSO. However, only HPB 

includes the anthropogenic climate effect related to the long-term SST trend and historical 

changes to GHG concentrations. Thus, the difference between HPB (including the 

anthropogenic effect and climate variability) and HPB NAT (including only climate variability) 
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gives an explicit measure of the anthropogenic effect. Mizuta et al. (2017) describes the d4PDF 

in detail. 

Table 2.2. Duration, ensemble size, and prescribed boundary conditions of the 

four simulations of d4PDF. Modified from Mizuta et al. (2017). 

Parameter HPB HPB NAT +2K +4K 

 Historical 

simulation 

Non-warming 

simulation 

Future 

simulation 

Future 

simulation 

Duration 60 (1951–2010) 60 (1951–2010) 60 60 

Members 100 100 6 × 9 6 × 15 

GHGs Observed Values at 1850 Values at 2040 

of RCP8.5 

Values at 2090 

of RCP8.5 

Aerosols Monthly output 

from MRI-

CGCM 

Sulfate, black carbon, 

organic carbon at 

1850; mineral dust, 

sea salt same as HPB 

2040 output 

from MRI-

CGCM 

2090 output 

from MRI-

CGCM 

SST Observed 

(COBE-SST2) 

Detrended  

(COBE-SST2) 

Added ΔSST 

2031–2050 

Added ΔSST 

2080–2099 

The +2K and +4K scenarios provide future climate projections in which the global-

mean surface air temperature becomes 2K and 4K warmer than the preindustrial climate. The 

+2K simulation uses GHGs values of year 2040, and +4K simulation—of 2090 under the 

representative concentration pathway 8.5 (RCP8.5) of CMIP5. Mizuta et al. (2017) gave the 

detailed explanation of d4PDF. These two sets of climate simulation in addition to the internal 

climate variability, account for the uncertainty in future climate projections from differences 

in CMIP climate models. Six models that cover the most part of the uncertainty of the patterns 

in all the CMIP5 models are used by the data set. Specifically, the d4PDF utilizes SST changes 

of by CCSM4 of National Center for Atmospheric Research (United States), GFDL CM3 of 

National Oceanic and Atmospheric Administration GFDL (United States), HadGEM2-AO of 

Met Office Hadley Centre (United Kingdom), MIROC5 of AORI, NIES, JAMSTEC (Japan), 

MPI-ESM-MR of Max Planck Institute for Meteorology (Germany) and MRI-CGCM3 of 

Meteorological Research Institute (Japan). 
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2.3 Evaluation of input data 

The d4PDF climate data were evaluated with six reanalyses (20CR V2c, ERA-Interim, 

JRA-55, MERRA-2, NCEP NCAR, and NCEP CFSR), four observation-based data sets (CRU 

TS 4.00, GPCC, GPCP, University of Delaware 4.01) and two reanalyses-observation hybrids 

(CRU-NCEP, Princeton University), as listed in Table 2.3.  

Table 2.3. Climate and leaf area index (LAI) data sets. 

Data set Resolution Period Reference 

Reanalyses    

NCEP NCAR 2.5˚ 1948‒2016 Kalnay et al. (1996) 

NCEP CFSR 0.5˚ 1979‒2010 Saha et al. (2010) 

ERA-Interim 0.75˚ 1979‒2016 Dee et al. (2011) 

JRA-55 1.25˚ 1958‒2013 Kobayashi et al. (2015) 

MERRA-2 0.675 ˟ 0.5˚ 1980‒2016 Bloom et al. (2016) 

20CRV2c 2.5˚ 1851‒2014 Compo et al. (2011) 

Observation-based     

CRU TS 4.00 0.5˚ 1901‒2015 Harris et al. (2014) 

GPCC 1˚ 1901‒2013 Schneider et al. (2011) 

GPCP 2.5˚ 1979‒2016 Adler et al. (2003) 

University of Delaware 4.01 0.5˚ 1900‒2014 Lawrimore et al. (2011) 

Reanalyses-observation hybrids 

CRU-NCEP 0.5˚ 1901‒2010 N. Viovy and P. Ciais, 

unpublished, 2010 

Princeton University 1˚ 1948‒2010 Sheffield et al. (2006) 

Satellite-based LAI    

GIMMS3g 1/12 degree 1982‒2011 Zhu et al. (2013) 

GLASS ver.4 1-km 1982‒2014 Xiao et al. (2014) 

GLOBMAP 8-km 1982‒2016 Liu et al. (2012) 

MODIS 1-km 2000‒2016 Yuan et al. (2011) 

SPOT 1-km 2000‒2016 Verger et al. (2016) 
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Table 2.4. Global 1982–2009 mean and interannual variation (by standard 

deviation) of climate variables from different data sets (sea surface, desert and ice 

areas are excluded). 

Data set Shortwave radiation 

(W m-2) 

Air temperature 

(degC) 

Land surface 

temperature (degC) 

HPB 197.42 ± 0.64 12.61 ± 0.29 12.85 ± 0.30 

20CR V2c 199.40 ± 0.77 13.21 ± 0.31  

CRU TS 4.00  12.90 ± 0.31  

CRU-NCEP 191.18 ± 0.53 12.74 ± 0.31  

ERA-Interim 184.47 ± 0.69 13.01 ± 0.32 13.05 ± 0.31 

GPCC    

GPCP    

JRA-55 198.72 ± 0.99 12.99 ± 0.31 13.10 ± 0.30 

MERRA-2 196.50 ± 1.14 12.89 ± 0.33 13.19 ± 0.34 

NCEP CFSR 189.15 ± 1.47 12.63 ± 0.37 12.80 ± 0.37 

NCEP NCAR 219.53 ± 0.87 11.92 ± 0.25 12.03 ± 0.25 

Princeton 181.21 ± 0.73 12.88 ± 0.30 14.19 ± 0.34 

Delaware  12.71 ± 0.30  

Data set Precipitation (mm) Vapor pressure (hPa) 
Wind speed 

(m sec-1) 

HPB 1051.73 ± 12.82 13.07 ± 0.18 3.42 ± 0.01 

20CR V2c 1074.65 ± 28.83 12.59 ± 0.23 3.23 ± 0.03 

CRU TS 4.00 898.12 ± 22.94 13.26 ± 0.21  

CRU-NCEP 859.02 ± 22.91 12.49 ± 0.19 2.48 ± 0.02 

ERA-Interim 1025.27 ± 15.97 13.14 ± 0.17 3.22 ± 0.02 

GPCC 901.90 ± 18.74   

GPCP 975.64 ± 19.33   

JRA-55 1047.23 ± 28.7 13.38 ± 0.16 2.53 ± 0.1 

MERRA-2 900.14 ± 27.53 12.82 ± 0.16 3.32 ± 0.03 

NCEP CFSR 1088.61 ± 59.46 12.05 ± 0.24 3.01 ± 0.03 

NCEP NCAR 1021.96 ± 28.63 13.75 ± 0.18 2.94 ± 0.02 

Princeton 873.66 ± 22.43 14.52 ± 0.17 2.84 ± 0.03 

Delaware 872.61 ± 17.35   
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The global long-term climate data sets that maximally cover the temporal range of the 

study period were selected. Decker et al. (2012) evaluated several climate variables, including 

air temperature, wind speed, precipitation, and shortwave radiation, from four reanalysis data 

sets using eddy-covariance site observations, and showed that all the reanalysis data sets 

include biases. The NCEP NCAR reanalyses overestimate shortwave radiation by >25 W m−2 

(Decker et al., 2012) and also overestimate surface temperature (Wang & Zeng, 2013). The 

NCEP CFSR data set has a large precipitation bias (Decker et al., 2012), JRA-55 has an 

erroneous trend in 10-m wind speed (personal communication), and 20CR has inaccuracies in 

the long-term trends of wind speed according to observations (Krueger et al., 2013). I excluded 

data with large confirmed biases from the analysis (i.e. shortwave radiation and air temperature 

from NCEP NCAR, LST from NCEP NCAR and Princeton University, precipitation from 

NCEP CFSR, and wind speed from 20CRV2c and JRA-55; Table 2.4). Table 2.5 provides a 

summary of terrestrial means and interannual variations (IAVs) of both included and excluded 

from the analysis climate data. 

Table 2.5. Global 2001–2010 mean and interannual variation (by standard 

deviation) of leaf area index (LAI) from different data sets. 

 HPB GIMMS3g GLOBMAP GLASS ver.4 

LAI 1.50 ± 0.01 1.5 ± 0.04 1.59 ± 0.02 1.72 ± 0.02 

 MODIS SPOT PhenoAnalysis  

LAI 1.35 ± 0.02 0.77 ± 0.04 1.62 ± 0.01  

 BIOME-BGC CLM4 CLM4-VIC GTEC 

LAI 4.22 ± 0.05 2.67 ± 0.04 2.09 ± 0.03 2.46 ± 0.01 

 LPJ-wsl SiB-CASA VEGAS 2.1  

LAI 3.25 ± 0.07 3.89 ± 0.02 3.52 ± 0.02  

Because LAI and FAPAR are related by the Beer–Lambert law according to the Monsi–

Saeki theory (Melnikova et al., 2018), and because not all of the satellite data sets provide 

FAPAR, I evaluated only the derived LAI by comparing it with several satellite data sets, as 

described in Table 2.3. In addition, I compared the estimated LAI with the LAI of prognostic 

models of the global 0.5° Model outputs of Multi-scale Synthesis and Terrestrial Model 

Intercomparison Project, MsTMIP (Huntzinger et al., 2018) downloaded from 

https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_TBMO.html and the LAI of the Global 

Phenology Reanalysis (PhenoAnalysis) of Stöckli et al. (2011). To check whether the 
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substitution of satellite data with the derived LAI and FAPAR distorts the GPP estimates, I 

performed an additional model run. The BEAMS setup was identical to that of the HPB run, 

(using the HPB ensemble-mean climate data), except for the use of a shorter simulation period 

(1982–2011) and the use of GIMMS3g LAI and FAPAR input data. 
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2.4 The default simulation and sensitivity experiment 

I estimate the impact of anthropogenic activities on the global GPP and TER, i.e. the 

GPP and TER anthropogenic effects, by combining the diagnostic-type biosphere model 

BEAMS (Sasai et al., 2016) with large ensemble climate simulations of d4PDF (Mizuta et al., 

2017). Here I distinguish the GPP and TER anthropogenic and natural effects by forcing 

BEAMS with the data of historical (HPB), 2K and 4K warmer than preindustrial climates (+2K 

and +4K) and nonwarming or preindustrial (HPB NAT) climate simulations. I define the GPP 

(TER) anthropogenic effect as the difference between GPP (TER) of HPB/+2K/+4K and GPP 

(TER) of HPB NAT climate simulations. Figure 2.2 illustrates the study design. First, I prepare 

and evaluate the surface d4PDF climatology by comparing it with existing modern climate data 

sets, including reanalyses, observation-based data sets and reanalyses-observation hybrids. 

Next, I derive BEAMS input vegetation data, i.e. leaf area index (LAI) and fraction of absorbed 

photosynthetically active radiation (FAPAR), using satellite (GIMMS3g) LAI and FAPAR and 

d4PDF air temperature, and evaluate the derived vegetation data by comparing it with existing 

satellite data sets.  

 

Figure 2.2. The study design used to estimate terrestrial gross primary production (GPP) and 

ecosystem respiration (TER) anthropogenic effect with the input data-induced uncertainty. 

The BEAMS was run 2 ×100 times using the climate and vegetation inputs based HPB 

and HPB NAT climate simulations, 6 × 9 based on +2K and 6 × 15 based on +4K climate 
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simulations. During the spin-up, I ran BEAMS iteratively with the first year’s monthly inputs 

for each ensemble member for 10,000 years until the model reached equilibrium state, 

including that of soil carbon pool. The equilibrium criterion for the spin-up is the zero 

difference between GPP and TER, i.e. Net Ecosystem Production (NEP). The trajectory of both 

GPP and NEP of the first two decades was checked in order to confirm the fulfilment of the 

equilibrium criterion together with absence of large drifts of GPP in the subsequent years 

following spin-up for HPB (Figure 2.3). Although some transient spin-up artifact may remain 

in the GPP estimates, it does not largely affect the results. However, the GPP and TER 

estimates of the first year were excluded from the analysis because they were largely affected 

by spin-up.  

 

Figure 2.3. The trajectory of annual BEAMS estimates following spin-up of multi-ensemble 

(a) gross primary production (GPP) and (b) net ecosystem production (NEP). Gray lines 

indicate 100 ensemble members and green lines indicate the ensemble-mean with error bars 

showing standard deviation of 100 ensemble members. Year 1951 is the initial year of spin-up. 

In total, 5900 years of carbon fluxes estimates in HPB and HPB NAT (100 members × 

59 years of 1952–2010), 3240 years in +2K (9 × 6 members × 60 years of 2032–2091) and 

5400 years of +4K (15 × 6 members × 60 years of 2052–2111) were obtained. The 0.5625-

degree grid monthly d4PDF climate outputs of the six climate variables were used, including 

surface air temperature at 2 m (K), effective ground temperature (degC), surface air wind speed 

at 10 m (m sec-1), surface air relative humidity at 2 m (%), total precipitation (mm), and 

downward shortwave radiation at the bottom (W m-2). The relative humidity was converted to 

vapor pressure using air temperature. I used monthly global mean CO2 concentration for HPB 

runs, 1850 monthly values for HPB NAT runs, 2040 and 2090 monthly values under the 

RCP8.5 of CMIP5 for +2K and +4K runs, respectively.  
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The seven ensemble HPB sensitivity runs were performed for time variable inputs in 

order to identify the drivers of the GPP anthropogenic effect. The following drivers were 

selected: CO2 (atmospheric CO2 concentration), radiation (shortwave radiation), temperature 

(air temperature and LST), precipitation, vapor pressure, vegetation (LAI and FAPAR) and 

wind (wind speed). In the sensitivity runs, only target variables were allowed to vary, while 

climate data and CO2 inputs were kept constant at their 1951 monthly values. The same initial 

conditions as in the default runs were used for the sensitivity experiment. In addition, in order 

to examine the future evolution of the CO2 fertilization effect, the CO2 sensitivity experiment 

was extended till year 2300 using the CO2 concentration data of four CMIP5 Representative 

Concentration Pathway (RCP) scenarios, namely RCP2.6, RCP4.5, RCP6.0 and RCP8.5 

(Meinshausen et al., 2011). The sensitivity experiment provided the ground for the discussion 

of the drivers of GPP anthropogenic and natural effects. 

Additional four ensemble sensitivity runs were performed for time variable inputs in 

order to examine the impact of climate variables on TER interannual variability in future +2K 

and +4K climates: radiation run (shortwave radiation), temperature run (air temperature and 

land surface temperature), precipitation run, and vapor pressure run. Similar to HPB 

experiment, in the future sensitivity runs, only target variables were allowed to vary, while 

other inputs kept constant at the monthly values of initial year.  
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2.5 Evaluation of the simulated carbon fluxes by BEAMS 

The GPP estimates by BEAMS was compared against GPP observations at 19 eddy-

covariance sites of FLUXNET2015 database (http://daac.ornl.gov/FLUXNET/) in order to 

confirm the performance of BEAMS forced by d4PDF inputs. The sites that cover the major 

plant functional types globally were chosen. The observations covered the period of 1991‒

2010 depending on the site (Table 2.6). 

The global mean, IAV and linear trend of GPP by BEAMS were evaluated by 

comparing the estimates with the existing GPP grid-data sets of two approaches: data-driven 

data sets and process-driven models. For the comparison with data-driven approach, I used two 

data sets. First data set is FLUXNET Multi-Tree-Ensemble (MTE GPP) (Jung et al., 2011) that 

provides GPP upscaled from observations of the global network of eddy-covariance sites using 

the machine learning technique model tree ensembles. The data set involves two flux 

partitioning methods. Eddy-covariance technique uses continuous net ecosystem exchange 

(NEE) measurements, where NEE is the net balance between GPP and TER. The technique 

partitions NEE into the fluxes, GPP and TER, assuming that at night GPP is zero and TER > 0 

and during daytime GPP > TER. The utilized in the present study data sets involve two flux 

partitioning methods according to methods by Lasslop et al. (2010) and Reichstein et al. (2005), 

where daytime and nighttime NEE data, respectively, are used to constrain estimation of GPP. 

The second data set is FLUXCOM (RS+METEO) Global Land Carbon Fluxes using 

CRUNCEP climate data (Jung et al., 2017; Tramontana et al., 2016). This data set provides 

estimates of GPP by three machine-learning techniques and two flux-partitioning methods. I 

used the means of two estimates for MTE GPP and six estimates for FLUXCOM. For the 

comparison with process-driven approach, I used global 0.5-degree Model outputs of MsTMIP 

(Huntzinger et al., 2018). MsTMIP provides global estimates of GPP simulated by a standard 

protocol to account for the uncertainty from model structure with reference input data (Wei et 

al., 2014). It is a factorial set of fifteen models simulations that aims to attribute the historical 

changes in the global terrestrial carbon fluxes to the biophysical and biogeochemical drivers 

(Huntzinger et al., 2017; Huntzinger et al., 2013). 10 out of 15 MsTMIP models that did not 

have any reported issues and that were used in other studies were used (Table 2.7) (Fang et al., 

2017; Schwalm et al., 2015). For GPP evaluation, the 100-member ensemble means with 

distribution expressed through standard deviation of the ensemble members were used. In order 

to evaluate the climate, vegetation and carbon flux data, I converted them to 1-degree monthly 
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by either averaging (higher spatial resolution to lower) or linear interpolation lower spatial 

resolution to higher) depending on the data set’s original resolution. The data of lesser than 

monthly temporal resolution (LAI, U and V wind components) were converted to monthly. 

Only land values excluding sea surface, desert and ice areas were utilized. 

Table 2.6. FLUXNET2015 sites utilized for validation of gross primary 

production by BEAMS. 

 
ID PFT Latitude Longitude Period 

1 IT-BCi Crops 40.5238 14.9574 2004–2010 

2 FR-Gri Crops 48.8442 1.9519 2004–2010 

3 DE-Geb Crops 51.1001 10.9143 2001–2010 

4 US-ARM Crops 36.6058 -97.4888 2003–2010 

5 US-Ne1 Crops 41.1651 -96.4766 2001–2010 

6 US-Ne2 Crops 41.1649 -96.4701 2001–2010 

7 US-Ne3 Crops 41.1797 -96.4397 2001–2010 

8 CH-Oe2 Crops 47.2863 7.7343 2004–2010 

9 DE-Kli Crops 50.8931 13.5224 2004–2010 

10 BR-Sa3 Tropical ENF -3.018 -54.9714 2000–2004 

11 MY-PSO Tropical ENF 2.973 102.3062 2003–2009 

12 US-Ha1 DBF 42.5378 -72.1715 1991–2010 

13 DE-Hai DBF 51.0792 10.453 2000–2010 

14 US-WCr DBF 45.8059 -90.0799 1996–2006 

15 AU-DaS Savannas -14.1593 131.3881 2008–2010 

16 RU-Che Wetland 68.613 161.3414 2002–2005 

17 RU-Cok Shrubland 70.8291 147.4943 2003–2010 

18 RU-Fyo ENF 56.4615 32.9221 1998–2010 

19 RU-Ha1 Grassland 54.7252 90.0022 2002–2010 

Note: PFT is plant functional type, ENF is evergreen needle forest, and DBF is deciduous 

broadleaf forest 

The TER anthropogenic effect was evaluated in comparison to the existing TER grid-

data sets of two approaches: data-driven data sets and process-driven models. The first data set, 

the inter-model comparison “Trends in net land-atmosphere carbon exchange over the period 

1980–2010” (TRENDY) for the Regional Carbon Cycle Assessment and Processes (RECCAP) 
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by Sitch et al. (2008) consists of a number of biosphere models forced with the same input data. 

I use ensemble mean of the five models—NCAR-CLM-4C and NCAR-CLM4-CN (Oleson et 

al., 2010), LPJ (Sitch et al., 2003), LPJ GUESS (Smith et al., 2001), and VEGAS (Zeng et al., 

2005). The second and third data sets are data-driven, however, the utilized observational data 

are different. I use the global annual soil respiration (RS) estimates over the period of 1901–

2012 by Hashimoto et al. (2015) who developed a climate-driven model of soil respiration 

based on a global database of soil respiration data (SRDB) by Bond-Lamberty and Thomson 

(2018). Finally, TER of FLUXCOM (RS+METEO) Global Land Carbon Fluxes using 

CRUNCEP climate data (Jung et al., 2017; Tramontana et al., 2016) were utilized. This data 

set provides estimates of TER by three machine-learning techniques and two flux-partitioning 

methods (I used the ensemble-mean of six estimates). Note that RS differs from TER by the 

exclusion of aboveground RA. Usually RS comprises between 50 and 80% of TER. Therefore, 

its absolute value is expected to be lower than TER. 

Table 2.7. Model outputs of Multi-scale Synthesis and Terrestrial Model 

Intercomparison Project (MsTMIP) models utilized for evaluation of BEAMS 

performance. 

Model Affiliation 

Biome-BGC NASA Ames (Weile Wang) 

ISAM University of Illinois Urbana Champaign (Atul Jain) 

CLM4 Oak Ridge National Lab (Dan Hayes) 

CLM4-VIC Pacific Northwest National Lab (Maoyi Huang) 

DLEM Auburn University (Hanqin Tian) 

GTEC Oak Ridge National Lab (Dan Riccuito) 

LPJ-wsl 
Laboratoire des Sciences du Climat et l’Environnement (LSCE), 

France (Ben Poulter) 

ORCHIDEE-LSCE 
Laboratoire des Sciences du Climat et de l’Environnement (LSCE), 

France (Gwenaëlle Berthier) 

VEGAS University of Maryland (Ning Zeng) 

VISIT National Institute for Environ. Studies, Japan (Akihiko Ito) 
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2.6 Auxiliary data 

The data other than terrestrial biosphere fluxes were used from the Global Carbon 

Project (GCB) by Le Quéré et al. (2018). The fossil fuel and cement emissions are from Boden 

et al. (2017), land-use change emissions are from Houghton et al. (2012), atmospheric carbon 

growth rate is from Edward Dlugokencky and Pieter Tans, NOAA/ESRL and ocean sink is 

from Le Quéré et al. (2016). The residual biosphere source is defined as the difference between 

anthropogenic carbon emissions, atmospheric carbon growth and the biosphere uptake based 

on the mass balance. It involves all unaccounted fluxes. 

In order to derive RS by statistical methods, I used the soil moisture and soil temperature 

for level 1 (surface, <20 cm) depths, precipitation and surface air temperature of d4PDF and 

applied the statistical relationships derived by Hursh et al. (2017) decribed in Table 2.8. 

Table 2.8. The statistical relationships between soil respiration and climate 

variables derived by Hursh et al. (2017). 

Climate driver Relationship R2 

Air temperature (degC) 𝑦 = 34.99𝑥 + 439.1 0.89 

Precipitation (mm) 𝑦 = 270.33 + 0.43𝑥 0.88 

Soil temperature (degC) 𝑦 = 39.5𝑥 + 327.2 0.91 

Soil moisture (m3 m-3) 𝑦 =  150803.45𝑥 −  277187.14𝑥2 −  19562.43 0.45 

The temperature sensitivity of RS is often estimated via a simple exponential 

temperature function based on Q10 function that refers to the increase in the respiration rate 

for a temperature interval of 10 degrees (Hashimoto et al., 2015). Here I derived the Q10 effect 

on TER of HPB, +2K and +4K multi-ensemble climate simulations of d4PDF by using the 

equation 3: 

𝑇𝐸𝑅𝑛𝑒𝑤 = 𝑇𝐸𝑅𝐻𝑃𝐵 𝑁𝐴𝑇 × 𝑄10
𝑇𝑠𝑜𝑖𝑙 𝑛𝑒𝑤 −𝑇𝑠𝑜𝑖𝑙 𝐻𝑃𝐵 𝑁𝐴𝑇

10⁄ , (3) 

where 𝑇𝐸𝑅𝑛𝑒𝑤 and 𝑇𝑠𝑜𝑖𝑙 𝑛𝑒𝑤 are TER and soil temperature, respectevely, of intended multi-

member ensemble climate simulation (HPB, +2K or +4K), 𝑇𝐸𝑅𝐻𝑃𝐵 𝑁𝐴𝑇 and 𝑇𝑠𝑜𝑖𝑙 𝐻𝑃𝐵 𝑁𝐴𝑇 

are long-term ensemble mean of monthly TER and soil temperature, respectively, of HPB NAT 

simulation, i.e. mean monthly TER and soil temperature of pre-industrial climate. Q10 is values 

estimated using the temperature function from Hashimoto et al. (2015).  
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Chapter 3 

The impact of anthropogenic activities on gross 

primary production 

(Melnikova, I., & Sasai, T. (2020). Effects of anthropogenic activity 

on global terrestrial gross primary production. Journal of Geophysical 

Research: Biogeosciences, 125, e2019JG005403. 

https://doi.org/10.1029/2019JG005403) 

3.1. Evaluation of input data 

The accuracy of surface climatology of the Database for Policy Decision-Making for 

Future Climate Change (d4PDF) was confirmed in comparison to the d4PDF interannual and 

latitudinal variations with the existing climate data sets, frequently used in the studies of carbon 

fluxes (Figure 3.1). Previously, Yukimoto et al. (2012) evaluated the performance of the MRI-

AGCM ver.3 and concluded that the model reproduces the overall mean climate, seasonal 

variation, and IAV, including El Niño Southern Oscillation (ENSO). The authors 

acknowledged the existing cold bias in the Northern Hemisphere (NH) and warm bias in the 

Southern Hemisphere (SH). Here, the d4PDF suitability for uses in the studies of the carbon-

climate feedbacks is addressed. The surface climatology of d4PDF is within the range of other 

data sets, except for wind speed that is higher in HPB, especially in the NH (Table 2.3). The 

difference in wind speed between the satellite observations based high-resolution MERRA-2 

reanalyses and d4PDF is only about 0.1 m sec-1. Besides, wind speed is only a minor input 

variable in BEAMS. The range of climate data set estimates is as follows: 18.2 W m-2 for 

shortwave radiation, 0.4 degC for LST, 0.6 for air temperature, 215.6 mm year -1 for 

precipitation, 2.5 hPa for vapor pressure, and 0.83 m sec-1 for wind speed (1982‒2009 mean).  

The latitudinal similarity with existing data sets is overall high (Figure 3.1b). The 

d4PDF agrees well with other data sets in terms of positive temporal trends in air temperature, 

LST and vapor pressure. The anomalies of d4PDF data are consistent with the modern data sets 

(Figure 3.1a). Overall, d4PDF reproduces the interannual variability of surface climate 

variables in consistency with existing climate data sets.   
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Figure 3.1. (a) Interannual anomalies and (b) latitudinal variations in climate variables from 

different data sets (sea surfaces, deserts, and ice areas are excluded) for the 1982‒2009 mean. 

HPB indicates the ensemble mean of the historical d4PDF simulation. Error bars indicate one 

standard deviation of the 100 ensemble members. Solid lines indicate reanalyses, square dotted 

lines indicate observational data sets, and dash-dot lines correspond to reanalysis–observation 

hybrids. (c) Global leaf area index (LAI) interannual variations (left) and latitudinal variations 

(right) based on the 2000‒2010 average LAI from several satellite data sets. HPB indicates the 

ensemble-mean LAI derived from the GIMMS3g LAI and the d4PDF (HPB) air temperature. 
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The climatology of derived LAI has overall reasonable temporal and latitudinal 

agreement with the satellite data sets (Figure 3.1c). The absolute values and temporal trends of 

d4PDF are within the range of existing data sets, but the derived LAI (HPB) has smaller IAV 

compared to that of the satellite data sets, especially the long-term (i.e., GIMMS3g and 

GLASS). The long-term change in the derived LAI is somewhat over-smoothed. For example, 

the LAI decrease after a large volcano eruption in 1991 (Pinatubo) is absent. In the previous 

study, Jiang et al. (2017) compared the modern long-term satellite data sets and reported that 

the available long-term LAI satellite products are neither intraconsistent over time nor latitude. 

The major reasons for the LAI discrepancy in the products are the differences in input surface 

reflectance and reflectance preprocessing algorithms, the retrieval algorithm, and the treatment 

of vegetation types (Jiang et al., 2017; Liu et al., 2018a). The comparison of interannual LAI 

variation with the prognostic LAI estimates (Table 2.4) showed larger linear LAI trends that 

were reported before (Smith et al., 2015). The effect of Pinatubo eruption on the global 

vegetation is not completely understood yet. Some studies reported a decrease in vegetation 

growth in 1992–1993 due to temporary cooling caused by the eruption (Lucht et al., 2002), 

especially in the high latitudes of the NH (Nemani et al., 2003). Other studies reported the GPP 

increase in northern deciduous forest due to the aerosol-induced increase in diffuse radiation 

(Gu et al., 2003). In fact, the presence of clouds and aerosols reduces the quality of satellite 

observations dramatically.  

Overall, due to large divergence in LAI products, the estimated by empirical method 

LAI cannot be either confirmed or discredited. The data set is appropriate for the use in GPP 

simulations. However, the related level of uncertainty in the results of this study due to 

uncertainties in LAI estimates exists.   
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3.2. Validation and evaluation of the simulated gross primary 

production 

The BEAMS estimates of GPP forced with d4PDF data against observations at 19 eddy-

covariance sites with a Pearson correlation coefficient 𝑅 = 0.923  (Figure 3.2). BEAMS 

underestimated the interannual GPP variation compared to the in situ observations. There are 

several possible reasons for this underestimation. One is that the underestimation of LAI IAV 

(described in Section 3.1) may have translated to the underestimation of GPP IAV. However, 

the underestimation of GPP IAV, although to a lower degree, remains even when BEAMS is 

forced with satellite-based vegetation data (Figure 3.3). Therefore, underestimation of IAV of 

input climate variables in d4PDF should have contributed to the underestimation of GPP IAV 

by BEAMS. Indeed, the IAVs of d4PDF climate variables are lower than the average of 

existing grid climate data sets (Table 2.4), although they are usually not the lowest ones among 

the existing data sets. Finally, the larger pixel size of the BEAMS estimates compared to the 

size of in situ site should have contributed to the smaller GPP IAV because it flattens over large 

area (Melnikova et al., 2018). All three factors are considered to contribute to the 

underestimation of GPP IAV by BEAMS compared to the in situ observations.  

Because BEAMS estimated higher very high GPPs compared to observations, I tested 

whether the substitution of satellite data with the derived LAI and FAPAR distorted the GPP 

estimates. The comparison of BEAMS GPP forced by both derived in this study and satellite 

LAI and FAPAR data (Figure 3.3) showed analogous performance with the correlation 

coefficient 𝑅 = 0.995 between BEAMS GPP estimates at 19 sites. Therefore, the use of 

derived vegetation data could not be the reason of higher very high BEAMS GPPs compared 

to observations. A thorough study on the matter is required because the earlier study of BEAMS 

validation by Sasai et al. (2005) did not involve GPPs higher than 2000 gC m-2 year-1. Because 

the correlation coefficient is overall high, the reasonable performance of BEAMS forced by 

d4PDF climate and vegetation data is confirmed. 
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Figure 3.2. Comparison between interannual mean gross primary productions (GPP) by 

BEAMS forced with d4PDF data and in situ GPP observations at 19 eddy-covariance sites 

globally. The sites are divided into plant functional types by colors: tropical evergreen 

broadleaf forest (green), crops (orange), deciduous broadleaf forest (blue) and evergreen needle 

forest (dark blue), wetlands (light blue), grasslands (magenta), savannas (dark red) and shrub-

lands (purple). The error bars indicate interannual variation. 

The estimated global GPP equaled 145.7 ± 1.6 GtC year-1 (the spread indicates IAV by 

SD) in 1982–2010 and fell within the range of existing global terrestrial GPP estimates of 

112.0–169.0 GtC year−1 reviewed by Anav et al. (2015) and 133.0 ± 15.0 GtC year−1 by Piao 

et al. (2013). However, the estimate is higher than the global GPP mean of 123.0 ± 8.0 GtC 

year−1 by Beer et al. (2010). Note, that SD of the estimates by Anav et al. (2015), by Piao et al. 

(2013) and Beer et al. (2010) indicate the spread of estimates by different models and 

approaches. One possible reason of high global GPP by BEAMS is the high input shortwave 

radiation of d4PDF compared to existing climate data sets (Figure 3.1). The second possible 

reason is that BEAMS estimated higher high GPPs (>2000 gC m-2 year-1) compared to 

observations (Figure 3.3). The moderate spatial resolution of simulated GPP, 0.5625 degree-
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grid, aggregates area of about 60 km. Sasai et al. (2016) compared BEAMS simulation of net 

ecosystem production (NEP) with 1-degree and 10-km grid-scale resolutions and suggested a 

tendency of coarser resolution to have lower low and higher high NEP values. Similarly, Joiner 

et al. (2018) pointed out that better statistical comparisons with the eddy-covariance data are 

achieved when satellite data are used at high spatial resolution similar to the typical footprint 

of eddy-covariance site of one km2. Meanwhile, the annual GPP by BEAMS agreed well with 

the study that used chlorophyll fluorescence and estimated GPP of 137 ± 6 GtC year−1 in 2015 

(Norton et al., 2018). 

 

Figure 3.3. (a) Comparison between interannual mean gross primary production (GPP) by 

BEAMS forced with GIMMS3g- and d4PDF-based leaf area index (LAI) and fraction of 

absorbed photosynthetically active radiation (FAPAR) data. The sites are divided into plant 

functional types by colors: tropical evergreen broadleaf forest (green), crops (orange), 

deciduous broadleaf forest (blue) and evergreen needle forest (dark blue), wetlands (light blue), 

grasslands (magenta), savannas (dark red) and shrub-lands (purple). The error bars indicate 

interannual variation by standard deviation. (b) Comparison of GPP by BEAMS forced with 

GIMMS3g and d4PDF against GPP flux tower observations at 21 sites globally. 

The global mean, IAV and linear trend of GPP by BEAMS were compared with the 

grid-data sets of two types, data-driven (MTE GPP and FLUXCOM) and process-driven 

(MsTMIP) approaches for the shared period for all data sets of 1982–2010. The three statistical 

parameters—the mean, IAV and linear trend—of the ensemble-mean GPP by BEAMS (HPB) 

were within the range of existing data sets by data- and process-driven approaches (Table 3.1). 

In comparison with the existing GPP grid-data sets, BEAMS estimated higher IAV and linear 

trend of GPP than the data-driven approach, and lower IAV and linear trend of GPP than the 

process-driven approach. The data-driven approach estimates GPP by upscaling the eddy-
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covariance observations. The eddy-covariance sites are usually located in the areas of little 

anthropogenic disturbance, and therefore, the resulting data sets do not explicitly account for 

the anthropogenic disturbance, i.e. land-use change. In addition, the observations are affected 

by the specific conditions of the given ecosystem (age, successional stage etc.) and are 

frequently limited to the short periods. The process-driven approach, on the other hand, 

overestimated GPP trend due to overestimation of CO2 fertilization effect. Only BEAMS 

simulated the large GPP increase during intensive warming in 1980–2000 and zero trend during 

warming hiatus in 2000–2010. This finding agrees with the satellite-based studies of NPP 

(Zhao & Running, 2010), LAI (Alton, 2018) and GPP (Ballantyne et al., 2017). 

Table 3.1. Global mean, interannual variation (IAV) and 1982–2010 linear trend 

of terrestrial gross primary production (GPP). 

  
BEAMS (HPB) MTE GPP FLUXCOM 

 
 

Mean GPP 145.7 ± 0.1 116.0 114.1  
 

IAV  1.6 ± 0.1 1.4 0.4  
 

Linear trend 0.16*** 0.08** 0.01ns  
 

  
BIOME-BGC ISAM CLM4 CLM4-VIC DLEM 

Mean GPP 128.0 94.1 133.2 105.5 101.9 

IAV 3.0 1.9 4.3 3.8 3.4 

Linear trend 0.25*** 0.21*** 0.48*** 0.42*** 0.37*** 

  
GTEC LPJ-wsl VEGAS 2.1 VISIT 

TRIPLEX-

GHG 

Mean GPP 175.6 129.2 107.0 111.6 118.9 

IAV  4.3 4.1 2.4 4.1 3.9 

Linear trend 0.49*** 0.45*** 0.24*** 0.44*** 0.42*** 

Note: The unit of mean and interannual variation, IAV (through standard deviation) of 

GPP is GtC year-1, the unit of GPP linear trend is GtC year-2; ns corresponds to non-significant 

trends, * corresponds to p-value < 0.05, ** corresponds to p-value < 0.01, *** corresponds to 

p-value < 0.001.  
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3.3. The comparison between historical and preindustrial 

simulations 

To determine the GPP anthropogenic effect, first, the effect of anthropogenic activities 

on global climate was investigated. Figure 3.4a shows the IAV of global land climate variables 

for six decades. Air temperature, LST, precipitation and vapor pressure displayed a clear 

positive trend. The difference in the shortwave radiation of the HPB and HPB NAT climate 

simulations was 3.17 ± 0.65 W m-2 in the beginning of the study period, and increased over 

time due to the negative trend in HPB; the difference in 10-m wind speed of two simulations 

was nearly constant over time. The differences in climate variables, emerging with warming, 

were consistent with existing studies that reported increased surface temperatures, intensified 

water cycle with warming (Boucher et al., 2013; Richardson et al., 2018). The anthropogenic 

effect on the surface radiation is less certain, although model-based studies report decrease in 

shortwave radiation at surface with warming (Richardson et al., 2018). To the best of my 

knowledge, there is no observational evidence of the long-term decrease in surface shortwave 

radiation with instead the large decadal variability (Wild, 2016). The existing observation-

based studies report that the surface shortwave radiation decreased until 1980s and increased 

in many regions since then (Hayasaka, 2016). The MRI-AGCM simulated a 3.3 W m-2 

difference in shortwave radiation between HPB and HPB NAT climates already in the 

beginning of the study period (Figure 4a). The difference in shortwave radiation between HPB 

and HPB NAT simulations by the AGCM most probably occurred due to the differences in the 

input anthropogenic aerosols and water vapor that is in line with conclusions of Hayasaka 

(2016). 

Overall, the global anthropogenic effect on climate based on the difference between 

2001–2010 and 1951–1960 means was as follows: 4.07 ± 0.66 W m-2 decrease in mean 

shortwave radiation, 1.20 ± 0.18 degC increase in temperature, 28.66 ± 13.52 mm year-1 

increase in precipitation, 0.89 ± 0.09 hPa increase in vapor pressure, and 0.01 ± 0.02 m sec-1 

decrease in wind speed. The global terrestrial shortwave radiation, air temperature, LST, and 

vapor pressure of HPB and HPB NAT share neither ensemble means nor spread of global 

annual values. Figure 3.4b provides an outlook on the spatial patterns of the HPB and HPB 

NAT climate simulations. The largest decrease in shortwave radiation takes place in Africa and 

Southeast Asia, the largest increase in temperature takes place in the northern high latitudes. 

Precipitation increases in the high-precipitation and decreases in the low-precipitation regions. 
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Vapor pressure increases globally with the largest increase in SH, especially tropics. The 

changes in wind speed are globally small and regionally heterogeneous: there are slight 

increases over North America, central Australia and northern Eurasia, and decreases elsewhere. 

 

Figure 3.4. (a) Interannual variation of 100-member ensemble means of climate variables from 

historical (HPB) and nonwarming (HPB NAT) climate simulations. The error bars indicate 

standard deviation between ensemble members. (b) Spatial distribution of the ensemble means 

of the anthropogenic effect (HPB – HPB NAT) on the climate variables (excluding sea surface, 

desert and ice areas). 
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Figure 3.5. The gross primary production (GPP) anthropogenic effect. (a) Long-term 

interannual variation of 100-member ensemble means of the historical and nonwarming 

climates. The error bars indicate standard deviation between ensemble members. The names of 

the erupted volcanoes with climatologically corrected Volcanic Explosivity Index (VEI) > 5 

are provided. The Multivariate ENSO Index (MEI) data were downloaded from 

https://www.esrl.noaa.gov/psd/enso/mei.ext/table.ext.html and volcano aerosols data were 

from http://www.juergen-grieser.de/downloads/VolcanicAerosolForcing/vaod.dat. (b) The 

difference between 1952–2010 GPP of the historical (HPB) and nonwarming (HPB NAT) 

climate simulations. Latitudinal pattern (1° bands) of mean GPP anthropogenic effect. The 

shading indicates the longitudinal variation by standard deviation. The sea surface, desert and 

ice areas are excluded. 

The long-term (1952–2010) global mean GPP equaled 143.8 ± 0.1 GtC year-1 in HPB 

and 140.8 ± 0.1 GtC year-1 in HPB NAT climate simulations. The mean GPP anthropogenic 
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effect equaled 2.2% of GPP in HPB NAT. It increased over time from the mean 0.9 ± 0.1 Gt 

year-1 in the first decade to 6.1 ± 0.3 Gt year-1 in the last decade of the study period, while the 

spread (by standard deviation) of the ensemble runs constantly remained 0.6 Gt year-1. The 

1952–2010 linear GPP trend in HPB was 0.12 GtC year-2 (p < 0.001), and the trend also 

increased over time. The interannual GPP variation appeared rather similar in HPB and HPB 

NAT with only some minor differences (Figure 3.5). The GPP peaks coincide with ENSO 

events: positive peaks covariate with El Niño and negative peaks–with La Niña. The typical 

increase during El Niño did not occur after Pinatubo eruption that resulted in cooler 

temperatures and decreased length of growing-season in NH (Nemani et al., 2003). The input-

data induced uncertainty in GPP estimated by multi-member ensemble BEAMS runs indicates 

that GPP of the HPB was significantly different from the GPP of HPB NAT climate simulation, 

the difference increased over time. Neither the GPP natural effect, nor the climate input-data 

induced uncertainty can explain the global GPP change in 1952–2010. The GPP anthropogenic 

effect was accountable for the large changes in the global GPP over the six decades. 

 

Figure 3.6. Interannual variation of gross primary production (GPP) absolute values for seven 

driving factors of the sensitivity experiment. The default runs of historical (HPB) and 

nonwarming (HPB NAT) GPP are plotted for comparison. The error bars indicate the spread 

of 100 ensemble members by standard deviation. 

The global GPP anthropogenic effect is overall positive but varies regionally. The 

largest positive GPP anthropogenic effect is observed in the semi-arid regions of SH. This 
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finding is in line with the study by Ahlström et al. (2015) who highlighted that the semi-arid 

regions dominate the positive trend of the global land uptake. The GPP anthropogenic effect 

may have initiated the positive trend in the semi-arid regions due to relaxed water stress and 

increased water use efficiency through CO2 fertilization (Sato et al., 2015). The anthropogenic 

effect resulted in the GPP decreases in the equatorial tropics, Southeast Asia and Europe. 

 

Figure 3.7. The interannual gross primary production (GPP) from the CO2 sensitivity 

experiment using HPB climate simulation data and CO2 concentration data of four 

Representative Concentration Pathway (RCP) scenarios as a function of (a) year and (b) 

atmospheric CO2 concentration. 

The sensitivity experiment of HPB climate simulation allowed identifying the drivers 

of GPP anthropogenic and natural effects (Figure 3.6). The main driving factors of the GPP 

anthropogenic and natural effects in 1952–2010 were CO2 fertilization and shortwave radiation, 

respectively. Besides, the IAV of the radiation sensitivity run coupled with the ENSO events 

and large volcanic eruptions. E.g., the decrease in shortwave radiation contributed to the 

decrease in GPP after Pinatubo eruption. The global decrease in shortwave radiation had also 

the largest negative effect on the global GPP. Temperature contributed to the GPP positively 

in 1950–1960s, and negatively in the later period, the negative effect of temperature on the 

GPP intensified over time. Vapor pressure contributed to the GPP positively in a similar way 

to vegetation, and intensified over time. The precipitation had only minor and highly uncertain 

contribution to the GPP change. The main driving factor of the GPP anthropogenic effect, CO2 

fertilization, is expected to saturate in future at the CO2 concentration levels over 700 ppm 

(Canadell et al., 2007b; De Kauwe et al., 2016). The extended CO2 sensitivity run (Figure 3.7) 

shows that the CO2 fertilization may saturate by year 2050–2150 depending on the RCP 

scenario. The maximum annual GPP in the case of RCP8.5 scenario is nearly 173 GtC year-1. 

In comparison, the annual GPP by BEAMS in in 1982–2010 equals 145.7 ± 0.1 GtC year-1. 



35 

 

Thus, the capability of the CO2 fertilization effect to increase the global GPP is limited to 27.3 

GtC year-1 from the current level of GPP. 

The spatial distribution of the GPP linear trends from the sensitivity experiment 

(Figures 3.8 and 3.9) clarifies the mechanism of the GPP changes. CO2 fertilization dominated 

the global GPP increase globally, followed by the positive effect of temperature in the northern 

high latitudes, shortwave radiation in Europe and negative effect of shortwave radiation in the 

part of South-East Asia (Figure 3.8). The CO2 fertilization had the largest effect in the tropics. 

The increases in temperature and vapor pressure, and vegetation greening led to the positive 

GPP changes in the northern high latitudes. The increase in temperature and decrease in 

shortwave radiation drove the negative GPP anthropogenic effect in the tropics and Southeast 

Asia.  

 

Figure 3.8. (a) The 1952–2010 linear trend (95% significance) of gross primary production 

(GPP) of default HPB run. (b) Spatial distribution of dominant driving factors of GPP trend 

defined as the driving factor from the sensitivity experiment that contributes the most to the 

increase (or decrease) in GPP in each vegetated grid cell. The driving factors include CO2, 

temperature (Temp) and shortwave radiation (Rad). A prefix “+” of the driving factors 

indicates a positive effect on GPP trends, whereas “-” indicates a negative effect. 

The spatial distribution of the negative GPP anthropogenic effect overlaps with the 

negative anthropogenic effect on the shortwave radiation (figure 3.4b). Previously, Nemani et 

al. (2003) suggested that the shortwave radiation is the main climatic constraint over the 

radiation-limited regions in Western Europe and the equatorial tropics. The results of the 

sensitivity experiment suggest that the increase in temperature had a negative GPP 

anthropogenic effect in Europe, while changes in precipitation and wind speed had only minor 

effect globally. The largest spread in the ensemble GPP estimates is in the northern high 

latitudes and tropics for radiation, and in the central Eurasia for temperature sensitivity runs. I 

provide only simple investigation of the 60-year changes, and thus, the future studies should 
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focus on the regional distribution of the GPP anthropogenic effect and analyze the inter-decadal 

GPP change. In addition, more attention should be paid to the regional uncertainty. 

 

Figure 3.9. The 1952–2010 linear trends (95% significance) of gross primary production 

(GPP) for seven driving factors of the sensitivity experiment. The ensemble spreads are defined 

through standard deviation and relative standard deviation, i.e. standard deviation divided by 

the ensemble mean. 
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3.4. The future changes in gross primary production 

I compared the GPP estimates of RCP8.5 CO2 sensitivity run with that of the default 

future warming experiments (Figure 3.10). The +2K and +4K multi-ensemble future warming 

climate simulations of d4PDF correspond to the RCP8.5 scenario. Specifically, +2K set of 

simulations uses ΔSSTs between 1991–2010 and 2031–2050 and +4K set of simulations uses 

ΔSSTs between 1991–2010 and 2080–2099 in the historical and RCP8.5 experiments by the 

six CMIP5 models. In addition, the GHGs and aerosols values at 2040 and 2090 of RCP8.5 are 

utilized for +2K and +4K, respectively. Therefore, the comparison of the year 2040 and 2090 

of RCP8.5 CO2 sensitivity run with +2K and +4K default runs allows analyzing the relative 

contribution of CO2 fertilization effect and climate drivers to the global GPP increase. 

 

Figure 3.10. The interannual variation of gross primary production (GPP) from the CO2 

sensitivity experiment using HPB, 2K, +4K climate simulation data and CO2 concentration 

data of four Representative Concentration Pathway (RCP) 8.5. The error bars indicate 

ensemble-spread by standard deviation.  

Figure 3.10 suggests that while CO2 fertilization effect plays the major role in the 

current increase in global GPP (1951–2010), the role of CO2 decreases in the future with 

warming of the climate, especially in +4K climate, when CO2 fertilization effect approaches 

saturation. Figure 3.11 provides a spatial variation of these changes. In both future warming 

cases, the tropical and subtropical areas are characterized stronger positive CO2 fertilization 

effect compared to the effect of climate, while the opposite is true for everywhere else. Taking 

into account that the GPP of default simulation is higher than that of CO2 sensitivity experiment, 

it is safe to conclude that climate-driven non-tropical GPP increase is projected to take over 

the dominant role of global GPP increase in the future. While CO2 fertilization chiefly drives 
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GPP increase in the tropics, in the future warmer climates, climate variables are projected to 

constrain the tropical GPP increase. 

 

Figure 3.11. The difference between (a) +2K default GPP simulation and CO2 sensitivity 

experiment based on CO2 concentration data of Representative Concentration Pathway (RCP) 

8.5 of year 2040 and (b) +4K default GPP simulation and CO2 sensitivity experiment based on 

RCP8.5 of year 2090. The sea surface, desert and ice areas are excluded. The negative values 

suggest stronger positive effect of CO2 concentration increase on GPP, and negative values 

suggest stronger positive effect of climate. 

In conclusion, although currently the CO2 fertilization drives the global anthropogenic 

GPP effect, its relative contribution decreases with warming in future climates. Future studies 

should investigate the relative contributions of other climate drivers on GPP in +2K and +4K 

climates. 
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Chapter 4 

The changes in global terrestrial ecosystem 

respiration with climate warming 

4.1. Evaluation of the simulated terrestrial ecosystem 

respiration 

The global terrestrial ecosystem respiration (TER) remains the least well-constrained 

terrestrial flux in the biosphere models and observations are sparse (Bond-Lamberty & 

Thomson, 2010; Tramontana et al., 2016). As a result, the global TER estimates by the models 

and observations are inconsistent (Carvalhais et al., 2014). I compared the TER anomaly and 

TER anthropogenic effect estimated by BEAMS with atmospheric carbon growth and 

alternative global TER estimates currently available (Figure 4.1). The 1960–2010 linear trends 

for TER products are highly divergent, starting from a slope of 0.08 GtC year-2 in observation-

based respiration by Hashimoto et al. (2015) to 0.26 GtC year-2 in TRENDY model-ensemble 

(p<0.001). The anomaly of TER anthropogenic effect by BEAMS is amongst the TER 

anomalies by observation- and model-based estimation approaches. It is essential to note that 

the anomaly in TER anthropogenic effect cannot be directly compared to the anomalies in TER, 

because it does not include the interannual TER variability. In addition, the fact that Hashimoto 

et al. (2015) estimates include RS, not TER should be kept in mind. 

The comparison provides verification of reasonable TER estimate by BEAMS 

compared to other data sets, and the evidence of the increasing trend of the TER anthropogenic 

effect in the recent decades. The largest increase in the TER anomaly is the TRENDY suit of 

the prognostic models. Because the RA largely depends on the GPP, the overestimation of the 

GPP due to ovestimation of CO2 ferilization effect (Smith et al., 2015) leads to overestimation 

of RA and thus, TER. In addition, the little constraint by the input data causes the large spread 

in global TER estimates due to differences in model structure. The TER estimate by 

FLUXCOM shows the lowest slope of linear trend and smallest interannual variation among 

data set similar to that of GPP (Table 3.1). 
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Figure 4.1. The interannual variation of the terrestrial ecosystem respiration (TER) 

anthropogenic effect estimated by BEAMS and TER, TER Q10 effect estimated using d4PDF 

soil moisture, soil respiration (RS) anomalies by various approaches from the 1980–2010 mean. 

The anomaly of atmospheric carbon growth is plotted for comparison. 
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4.2. The comparison between preindustrial and future 

warming simulations 

In order to determine the terrestrial ecosystem respiration (TER) anthropogenic effect, 

it is first necessary to investigate the effect of anthropogenic activities on global climate (Figure 

4.2). In the future warmer climate the shortwave radiation at surface decreases with larger 

decrease in +4K compared to +2K climate simulation. The dimming is spatially 

heterogeneous—larger decrease of shortwave radiation in the northern high latitudes, 

continental Southeast Asia and central Africa. The shortwave radiation decrease is consistent 

with increase in precipitation, especially in the northern high latitudes and eastern Eurasia. The 

precipitation and shortwave radiation anthropogenic effect differs between +2K and +4K 

climates in Australia. This suggests strong cloud-radiative feedbacks in the future warmer 

climates and a possibility of large regional changes in future precipitation. The changes in air 

temperature and vapor pressure are consistent with those of the historical climate of 19512010 

(Figure 3.4b). Air temperature increases globally with the larger increase in the north, and 

vapor pressure increases globally with the largest increase in the tropical and subtropical areas 

of the Southern Hemisphere. These fluctuations again indicate large future changes in the 

global water cycle via spatial change of relative humidity. 

Bond-Lamberty et al. (2018) provided multiple lines of evidence of rising heterotrophic 

respiration on a global scale. Authors suggested that the increases are climate-driven. I 

analyzed the probability density functions (PDFs) of the multi-ensemble TER estimates by 

BEAMS in +2K and +4K climates in comparison to HPB NAT (Figure 4.3). The PDFs 

confirmed an increase of TER magnitude up to 8 and 18% in +2K and +4K climates, 

respectively (Figure 4.3a). The interannual TER variability and occurrence of years with 

extremely high global TER also increases in warmer climates (Figure 4.3b). 
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Figure 4.2. Spatial distribution of the ensemble means of the anthropogenic effect (difference 

between +2K or+4K and HPB NAT) on the climate variables (sea surface and desert areas are 

excluded). 
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Figure 4.3. Probability density functions of global terrestrial ecosystem respiration (TER) in 

HPB NAT, +2K and +4K climates based on (a) absolute TER values, (b) TER anomalies of 

the default experiment and (c–f) TER anomalies of future sensitivity experiments for shortwave 

radiation, vapor pressure, temperature and precipitation (5900 years of HPB NAT, 6 ×540 years 

of +2K and 6 × 900 years of +4K simulations). 

The future climate simulations of d4PDF in addition to perturbations include the 

uncertainty of CMIP5 models. Thus, the increase in interannual TER variation shown in Figure 

4.3b includes the uncertainty in future TER. In order to distinguish the probabilistic increase 
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in interannual TER variation from the increase in uncertainty, it is necessary to treat the relative 

frequencies of sic CMIP5 models used in d4PDF separately (Figure 4.3b and c). The GDFL 

CM3 model grounds the largest spread of global TER estimates in +2K that transfers into a 

larger spread of global TER estimates in +2K than in +4K simulation. On the other hand, when 

the GDFL CM3 based TER estimates are excluded, the interannual variation of global TER 

appears larger in +4K compared to cooler climates. Overall, the interannual TER variation and 

occurrence of years with extremely high global TER increases in warmer climates. 

The TER sensitivity experiment (Figure 4c–f) provides the reasoning of these changes. 

The radiation run does not display any large impact of the changes in shortwave radiation on 

the global TER in the future. To the best of my knowledge, there is no evidence of the direct 

control of shortwave radiation over TER. Its control is indirect via increase in GPP according 

to the LUE concept. Because only one RA largely depends on GPP, the sensitivity of TER to 

radiation is insignificant. The anthropogenic effect on the shortwave radiation remains poorly 

understood, although several studies report recent trend of global dimming due to the 

intensifying water cycle and anthropogenic aerosol emissions (Wang et al., 2017; Wild, 2012; 

Zou et al., 2016). Shortwave radiation is not anticipated to cause extreme low or high values 

of global GPP unless the volcano eruption occurs. Because the d4PDF data does not involve 

any probabilistic occurrence of volcano eruption, there is no increase in global TER interannual 

variation compared to HPB NAT. Finally, the anthropogenic effect on shortwave radiation at 

surface is secondary, compared to other climate variables, such as temperature and 

precipitation. The vapor pressure and precipitation runs display an elongation towards high 

global TER and appears multimodal in +2K and +4K simulations. The multimodality might be 

related to the large model spread of the regional changes in vapor pressure and precipitation 

and, thus, uncertainty in the anthropogenic effect in future climates (Gettelman & Sherwood, 

2016). Temperature run displays the largest increase in the interannual variability of global 

TER and, specifically, an occurrence of years with extremely high and low global TER.  

Figure 4.4 illustrates the latitudinal variation of the TER, TER anthropogenic effect and 

relative TER anthropogenic effect. Despite the peak of the global aboveground biomass, and 

thus GPP in the tropics, the tropical peak in TER anthropogenic effect does not appear apparent 

(Figure 4.4b). Moreover, the relative TER anthropogenic effect is the highest in the high 

latitudes (Figure 4.4c). 
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Figure 4.4. Latitudinal variation of the average global terrestrial ecosystem respiration (TER) 

in three climate simulations (a), the +2K and +4K TER anthropogenic effect (b) and relative 

TER anthropogenic effect relative to the ensemble-mean TER estimated by BEAMS (c). 

Calculations are based on 5900 years of HPB NAT, 3240 years of +2K and 5400 years of +4K 

simulations. The shading indicates the longitudinal variation by standard deviation. 

Figure 4.5 illustrates the spatial distribution of TER in the regions that are accountable 

for the extreme increase in the global TER interannual variation. The extreme increase occurs 

in the tropical and sub-tropical areas of the Southern Hemisphere and mid- to high latitudes 

over 45 degrees north. Contrariwise, the semi-arid regions of southern North and South 

America seem to have negligible effect on the increase in global TER variation. The sensitivity 

experiment indicates that all analyzed climate drivers contribute to the increase in amplitude 

of the global TER variation in the tropics. The increase in the amplitude of the global TER in 

the mid- to high latitudes differs amongst +2K and +4K climate simulations. In the +2K, all 

climate drivers play role in the increase of the global TER interannual variation, and in +4K, 

only temperature plays a significant role. Other regions that are shown not to contribute to the 

extreme increase in the global TER variability, perhaps contribute to the global TER and TER 

anthropogenic effect only insignificantly. 
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Figure 4.5. Spatial distribution of the terrestrial ecosystem respiration (TER) corresponding to 

the difference between the 95th and 5th percentiles of global TER in +2K and +4K in default 

and sensitivity experiments based on 3240 years of +2K and 5400 years of 4K simulations. 

The two parts of TER—RA and SD—have uneven responce to the climate changes. 

While Ra relates to the increases in GPP, SD relates to the available litter fall mass and 

microbial activity. In order to clarify the mechanism of the increasing TER, to ensure that the 

results are not sensitive to averaging over the ecosystems, and to distinguish the climate drivers 
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of extremely high global TER, the extremely high global TER in the default and sensitivity 

experiments and spatial distributions of the corresponding climate drivers were analyzed 

(Figure 4.6). The regional responses of the extreme global TER in cases of in +2K and +4K 

climates are inconsistent. The extremely high global TER is dominated by northern mid-

latitudes in +2K, and tropics in +4K climate.  

 

Figure 4.6. Spatial distribution of the differences between 95th percentiles and medians of 

global TER averaged over all years of +2K and +4K climates in (a) default and (b) four 

sensitivity runs. (c) The spatial distribution of the climate variables that correspond to the 

differences between 95th percentiles and medians of global TER in four multi-ensemble 

sensitivity runs. Figures are based on 3240 years for +2K and 5400 years for +4K. 

The spatial distribution of the vast shortwave radiation increases corresponds to that of 

extremely high TER. This suggests, as expected, that the overall increase in the GPP, and thus, 

litter mass results in higher Ra, and thus TER. The increase in air temperature in the +2K 

climate suggests the increase in both GPP-driven increase in both Ra and SD due to longer 

season and SD via Q10 dependency in the mid-latitudes and only SD via Q10 dependency in 
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the tropics. In even warmer +4K climate the mechanism of the mid-latitudinal TER increase of 

+2K spreads further to the northern high-latitudes and simultaneously weakens in the mid-

latitudes. Vapor pressure sensitivity run shows that increased VPD in the grasslands and 

agricultural lands of India and central Africa, as well as Europe may dominate extremely high 

global in +2K, and increased VPD in the southern Hemisphere, including both tropics and 

semi-arid and arid areas, may dominate high global TER in +4K climate. Finally, increased 

precipitation in tropics of Africa and Southeast Asia and decreased precipitation in the northern 

high latitudes causes extremely high global TER in +2K, while very low precipitation in the 

tropics causes extremely high global TER in +4K climate. The TER response to the changes in 

water availability is rather complex and poorly understood. Both Ra and SD depend on water 

availability—decreased precipitation and increased droughts, lead to stomatal closure, 

decreased GPP, and, thus, decreased Ra and TER (van der Molen et al., 2011) on the one hand, 

and increased tree mortality, consequently, increase litter fall, and, thus, increased SD and TER 

on the other hand. In addition, SD is on the chemical composition, microbial community 

composition and acclimation. (van der Molen et al., 2011). Overall, the major driver of high 

global TER is temperature, followed by water-related climate variables. 
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4.3. Sensitivity of terrestrial ecosystem respiration to future 

climate change by alternative approaches 

In order to confirm the TER estimates in the future warming climate simulations, I used 

the empirically derived statistical relationships of RS with four climate drivers, air temperature, 

precipitation, soil temperature and moisture, derived by Hursh et al. (2017). Figure 4.7 

illustrates the PDFs of global soil respiration (RS) in HPB NAT, +2K and +4K climates. Based 

on the availability of spatial coverage of data, in total I analyzed RS estimates based on 39049 

pixels of air temperature, 39086 pixels of precipitation, 38429 pixels of soil temperature and 

30473 pixels of soil moisture. Because of large difference in the number of available pixels 

between climate drivers, the results of TER estimates may be only used for evaluation of the 

BEAMS-based TER estimates, not for the analysis. 

 

Figure 4.7. Probability density functions of global soil respiration (RS) in HPB NAT, +2K and 

+4K climates based on RS estimated using the statistical relationships with four climate drivers 

determined by Hursh et al. (2017). 5900 years of HPB NAT, 6 × 540 years of +2K and 6 × 900 

years of +4K simulations are used. 
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Consistent with the findings described in the Section 4.2, air and soil temperatures 

explain the RS increase in the future warmer world. Together with the increase in magnitude, 

IAV of RS increases. Precipitation drives a small increase in global RS, while soil moisture 

changes suggest a decrease in mean RS with warming. Hursh et al. (2017) suggested a quadratic 

soil moisture function to estimate RS as opposed to the linear functions based on the other three 

climate drivers, warning on the consequent increase in root mean square error. In addition, 

there were the least number of soil moisture pixels available for the analysis. Overall, the 

figure shows a large uncertainty in climate driven statistically estimated global RS in future 

climate simulations. The largest uncertainty exists for soil moisture- and precipitation-based 

estimates and +4K air and soil temperatures. In Section 4.2, I came to the analogous conclusion 

in regards of precipitation and vapor pressure sensitivity experiments (Figure 4.3c–f). 

 

Figure 4.8. The interannual variation of terrestrial ecosystem respiration (TER) from the 

BEAMS and Q10 effect on TER based on d4PDF soil temperature data simulated for 

Representative Concentration Pathway (RCP) 8.5 scenario. The error bars indicate ensemble-

spread by standard deviation.  

Finally, because temperature was shown to be the major driver of the TER 

anthropogenic effect, I compared the BEAMS-based TER estimates with the d4PDF-based 

empirically estimated Q10 effect on TER using equation 3. Figure 4.8 confirms the increasing 

role of temperature via Q10 in the future warming climates. Both the BEAMS temperature 

sensitivity experiment and Q10 effect on TER suggest that in 1951–2010, only minor part of 

TER increase was affected by temperature. However, the contribution of temperature in driving 

TER increases with warming exponentially. This means that the temperature will play larger 

role in TER and, thus land carbon uptake in the future warmer climates.   
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Chapter 5 

Discussion 

5.1. The gross primary production anthropogenic effect 

I provide the evidence of the anthropogenic effect on the global terrestrial gross primary 

production (GPP) by combining the advantages of the diagnostic approach and the large-size 

ensemble climate data. The GPP of the HPB with the associated climate input-data uncertainty 

is significantly different from the GPP of the HPB NAT. While the multi-member ensemble 

spread constantly remained 0.6 GtC year-1 throughout the study period, the GPP anthropogenic 

effect, increased from 0.9 ± 0.1 GtC year-1 in 1952–1961 to 6.1 ± 0.3 Gt year-1 in 2001–2010. 

I decomposed the temporal change in the global terrestrial GPP into two parts—the long-term 

trend and the interannual GPP variability, i.e. GPP anthropogenic and natural effects. The long-

term GPP trend corresponded to the change in CO2 concentration, suggesting that CO2 

fertilization was the main driver of the GPP anthropogenic effect during the study period. 

Likewise, Sitch et al. (2015) reported that increasing CO2 concentration drives the increasing 

terrestrial carbon uptake. The extended sensitivity experiment (Figure 3.6c) shows that CO2 

fertilization is going to saturate by 2050–2150 depending on Representative Concentration 

Pathway (RCP) scenario. The interannual GPP variability corresponded to the changes in 

shortwave radiation (Figure 3.6a). The model results suggest that shortwave radiation is the 

main driver of the GPP natural effect. The GPP peaks of both default HPB and radiation 

sensitivity runs coincide with El Niño Southern Oscillation (ENSO) events: positive peaks 

covariate with El Niño and negative peaks–with La Niña. Especially large increases in GPP 

occur during 19871988 and 1997–1998 El Niño events. This increase can be explained by 

radiation anomalies alone (Figure 3.5) and is in line with existing model-based studies (Ichii et 

al., 2005). The large volcano eruptions contribute to the changes in global terrestrial GPP by 

altering the response of GPP to ENSO. E.g., the eruption of El Chichon in 1982 and Pinatubo 

in 1991 suppressed the effects of 19821983 and 19911992 El Niño on GPP, respectively. 

The volcano eruptions influence the incoming shortwave radiation by releasing the aerosols 

into the atmosphere. The ENSO events are related to the total cloudiness fraction of the sky, 

and thus, shortwave radiation at surface in the tropics. The strong radiation control over 

vegetation growth in the tropics has been previously acknowledged by Nemani et al. (2003) 

and Ichii et al. (2005). Because of the large tropical biomass and production, the radiation 
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control over GPP in the tropics translates to the control over global GPP. The variation in 

shortwave radiation together with the volcano activity are the “natural” forcing that controls 

ENSO via variability of the SST anomaly (Liu et al., 2015). Although the coupling of 

shortwave radiation with ENSO in determining the GPP is currently a topic of the active 

research (Zhang et al., 2019a), and the mechanism is yet to be clarified, the model results 

suggest that two factors, CO2 fertilization and shortwave radiation, explain nearly entire GPP 

change in 1952–2010.  

The d4PDF data set based on the multi-member ensemble climate simulations indicates 

a decrease in surface shortwave radiation with warming. Despite that, the biosphere model 

based on the LUE approach and forced with d4PDF data suggest the increase in GPP with 

warming (Figure 3.5), thus, implying that the negative radiation effect on GPP is being 

canceled by the positive effect of CO2 fertilization (Figure 3.6). The GPP anthropogenic effect 

appeared spatially heterogeneous. The CO2 fertilization dominates the GPP increase globally, 

the decrease in shortwave radiation drives the negative GPP anthropogenic effect in Southeast 

Asia and positive effect in Europe, and temperature increase drives the positive effect in high 

latitudes (Figures 3.8 and 3.9). The relaxed water stress via increased water vapor and 

precipitation, and increased water-use efficiency via CO2 fertilization effect are likely to drive 

the positive GPP effect in the semi-arid regions. 

The results of BEAMS simulations suggest that the decrease in shortwave radiation had 

a strong negative feedback on global GPP (Figure 3.6). The shortwave radiation at surface 

depends on the atmospheric aerosols, water vapor and cloud cover. The positive anthropogenic 

effect on shortwave radiation due to increased anthropogenic aerosols and water vapor in the 

atmosphere has been reported elsewhere (Boucher et al., 2013; Richardson et al., 2018). The 

current understanding of the cloud-radiative feedbacks to climate change remains insufficient. 

The cloud formation scheme is the largest source of disagreement in the GCMs: the CMIP5 

models agree that the cloud feedback is positive, but disagree on its magnitude (Ceppi et al., 

2017; Dessler, 2010; Gettelman & Sherwood, 2016). The satellite observations do not provide 

sufficient evidence on the temporal surface shortwave radiation trends (dimming or 

brightening), although in the majority, they are consistent with the model simulations (Norris 

et al., 2016; Trenberth & Fasullo, 2009). The linear trends of shortwave radiation by global 

reanalyses (1951–2010 and 1982–2010) do not agree on the sign of the trends (Figure 3.1a). 

The decrease in shortwave radiation with warming simulated by the MRI-AGCM in d4PDF is 

consistent with the simulations by most GCMs, although, Li et al. (2013) highlighted the 
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existence of large regional biases of the annual means of shortwave radiation in the modern 

GCMs.  

 

Figure 5.1. (a) Interannual variation of 100-member ensemble means of the anthropogenic 

effect (difference between HPB and HPB NAT simulations) on global surface shortwave 

radiation and total cloud cover from d4PDF data set. Error bars indicate standard deviation of 

100 ensemble members. Sea surface, desert and ice areas are excluded.(b) same for the 

Northern High Latitudes that correspond to region over 25N, tropics—to region 25S–25N and 

Southern High Latitudes—to the region over 25S. Sea surface, desert and ice areas are excluded. 
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Figure 5.2. Interannual anomalies of total cloud cover from CRU TS 4.03 and d4PDF (sea 

surface, desert and ice areas are excluded) based on 1951‒2010 mean. HPB indicates ensemble-

mean of the historical simulation d4PDF data with error bars indicating standard deviation of 

100 ensemble members. (a) Global mean, (b) mean of the tropics corresponding to region 25S–

25N, (c) Northern High Latitudes—region over 25N, and (d) Southern High Latitudes—region 

over 25S. 

The d4PDF trends in shortwave radiation are not universally consistent with trends in 

the total cloud cover and are spatially divergent (Figure 5.1). The comparison of cloud cover 

of d4PDF and an observation-based data set CRU TS 4.03 suggests reasonable reproducing of 

overall interannual variation of cloud cover although with discrepancy in the SH, especially in 

1991–2010 (Figure 5.2). The future study would benefit from including a GCM that has an 

alternative cloud formation scheme from that of the MRI-AGCM, in order to account for the 

model uncertainty. Besides, although the warming increases cloud cover and, thus, decreases 

surface shortwave radiation, it also increases the diffuse component of radiation (Kanniah et 

al., 2012; Mercado et al., 2009). Diffuse radiation enhances GPP because diffuse light can 

more effectively penetrate the canopy. It is yet uncertain to what degree the two feedbacks, 

decreasing total shortwave radiation and increasing diffuse component compensate each other. 

In this study, I did not focus on the cloud-surface radiation, as well as aerosol-surface radiation 

feedbacks. However, the finding of the major role of interannual variation in surface shortwave 

radiation on GPP highlights the necessity of such studies in the future. Boucher et al. (2013) 

reported that clouds and aerosols are the largest source of uncertainty in the estimates of Earth’s 
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changing energy budget. I encourage future studies to make use of currently available 

stationary and satellite data in order to understand the mechanism of GPP feedback on the 

anthropogenic changes in clouds and aerosols both temporally and regionally. 

This study is pioneer to apply the large-size ensemble climate simulations to estimate 

the long-term GPP. Previously, the d4PDF was used only to study the effect of climate change 

on the crop economic production (Iizumi et al., 2018). Consequently, there is a need to 

summarize the limitations of the d4PDF surface data use in the studies of carbon-climate 

feedbacks. First, the HPB NAT climate simulation of d4PDF represents the climate without 

historical warming, and thus it uses detrended SSTs and constant preindustrial concentrations 

of GHGs, aerosols and ozone. However, HPB NAT simulation does not account for the effect 

of anthropogenic climate change on the interannual climate variability. In this study, I found 

that the climate variables of both HPB and HPB NAT simulations peak at ENSO events. The 

question of how climate change affects the climate variability in terms of ENSO is yet 

unanswered because the ENSO signal remains both in HPB and HPB NAT simulations via 

IAV of the SST. Thus, the d4PDF is beneficial for the studies of the effect of the long-term 

climate change on the global carbon fluxes rather than their interannual-to-decadal change. 

Second, shortwave radiation of d4PDF is close to that of 20CRv2, MERRA-2 and JRA-55 

reanalyses that all have high biases (Zhang et al., 2016). Shortwave radiation is the major input 

in the diagnostic-type terrestrial biosphere models based on LUE approach, like BEAMS, and 

therefore, the overestimation of the shortwave radiation may lead to overestimation of GPP. 

Third, the d4PDF user should be aware that HPB NAT climate simulation excludes interannual 

atmospheric aerosol variability from both anthropogenic and natural sources, e.g., volcano 

eruptions, by using constant 1850 values (except for mineral dust and sea salt). Thus, in this 

study, the difference between the long-term GPP estimates of HPB and HPB NAT represents 

the difference between long-term GPP that involves only natural climate variability (HPB 

NAT) and GPP affected by natural climate variability, natural and anthropogenic aerosols and 

the anthropogenic effect. The d4PDF focuses on the intrinsic natural climate variability, thus, 

no d4PDF simulations except for HPB, account for the natural external climate forcing 

(volcano eruptions). For this reason, the drop in the shortwave radiation induced by 1991 

volcano eruption that was present in HPB disappears in HPB NAT. The user of d4PDF should 

be aware of these data peculiarities initiated from the primary aim of d4PDF to study the 

probability of extreme events. 
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The present study estimated the climate data-induced uncertainty of the single MRI-

AGCM with prescribed observed SST as the lower boundary conditions. In addition, small SST 

perturbations based on SST analysis error are added to the observed SST (Mizuta et al., 2017). 

Because the uncertainty in climate variables from AGCM depends on the lateral boundary 

conditions, the use of the large-size ensembles of climate simulations enables realistic 

representation of climate with associated internal variability. Evaluation of the surface climate 

variables of d4PDF by comparison with grid-observations and reanalyses confirmed the 

model’s reasonable performance. While there are numerous studies that attempted to compare 

variations in climate and carbon fluxes between CMIP5 models (Friedlingstein et al., 2014; Li 

et al., 2013), the present study attempts to look at the internal variability. This allows statistical 

estimation of the changes in climate and GPP by comparing different climate scenarios, e.g. 

HPB and HPB NAT simulations. Here I succeeded to distinguish the anthropogenic and natural 

effects on the climate and GPP. The benchmarking of the results of this large-ensemble data 

based study with the study that uses different climate model to generate large-ensemble data 

when such data set becomes available will provide further insights on the findings. 

The empirical method of LAI estimation used in the present study involves only 

dependency on the surface air temperature. Recent studies report the increasing constraint of 

moisture on global vegetation (Garonna et al., 2018; Pan et al., 2018). Thus, the water stress 

on global GPP and the impact of El Niño–related droughts on the tropical GPP might have 

been underestimated. The results should be interpreted with this caveat in mind. 

Here I aimed to estimate the drivers of the GPP anthropogenic effect, specifically CO2 

increase and changes in climate due to anthropogenic emissions from both fossil fuels and land 

use and land cover changes (LULCC). The LULCC influence global ecosystem directly, i.e. 

via changes in the land cover, and indirectly via increases in the atmospheric GHGs and 

aerosols. The indirect influences are accounted for in the d4PDF data set where HPB climate 

simulation uses the factual concentrations of GHGs and aerosols as opposed to HPB NAT. This 

enables estimating the impacts of anthropogenic emissions on both climate and carbon fluxes, 

e.g. GPP. However, the direct influences of LULCC were not accounted for in the biosphere 

model because the dynamic change in land cover could interfere the results in a way that the 

climate driving factors were suppressed. In addition, the large uncertainty present in the 

existing land use data sets would add to the uncertainty in GPP estimates (Meiyappan & Jain, 

2012; Sitch et al., 2015; Zhu et al., 2016). By exploiting these findings, the future study would 

benefit from the attribution of GPP drivers separately to the LULCC and fossil fuel emissions. 
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On the other hand, exclusion of land use change processes led to the uncertainty in the estimates 

of the GPP anthropogenic effect. The possible underestimation of the negative GPP 

anthropogenic effect includes urbanization, deforestation and human-induced fires, especially 

in the tropics. The possible underestimation of the positive GPP anthropogenic effect include 

afforestation and agricultural intensification, especially in Europe, former Soviet Union and 

China (Wang et al., 2017; Zou et al., 2016).  

In conclusion, this study is pioneer to provide the estimates of the GPP anthropogenic 

effect. Such approach allows deeper understanding of how and what part of carbon fluxes was 

altered by anthropogenic activities with the estimated uncertainty. It contributes to the efforts 

of both scientific and policy communities to stabilize the climate.  
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5.2. The contribution of gross primary production into 

terrestrial carbon cycle 

Both terrestrial GPP and TER globally increase with positive temperature and humidity 

anomalies (Doney et al., 2006). The question to what degree the two processes can compensate 

each other remains unanswered. Because the d4PDF provides not only historical but future 

climate data for +2K and +4K, in future studies, I have an opportunity to investigate the future 

anthropogenic effects on GPP and TER using statistical methods. 

Figure 5.3 illustrates the interannual variation of the land carbon uptake, GPP 

anthropogenic effect and anthropogenic carbon emissions in 1960–2010 (note, that the 

anthropogenic effect does not include GPP interannual variability). During the study period, 

the land uptake increased with large interannual variability. The GPP anthropogenic effect 

coupled with the biosphere sinks until mid-1970s. However, the coupling weakened with time 

in a way that although the GPP anthropogenic effect increased, the land uptake did not catch 

up with it. These long-term changes in the land carbon uptake suggest that the role of the global 

terrestrial GPP decreases. Despite the benefits of the anthropogenic activities on GPP via CO2 

fertilization and climate change, the GPP anthropogenic effect cannot catch up with the 

increasing anthropogenic and biosphere carbon emissions. 

 

Figure 5.3. Interannual variation of the land carbon uptake, gross primary production (GPP) 

anthropogenic effect and anthropogenic carbon emissions. Interannual variation is not included 

into the GPP anthropogenic effect. Error bars indicate the standard deviation of 100-member 

ensemble runs of BEAMS to estimate GPP. 
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The findings of this study suggest the major but decreasing role of GPP in the land 

carbon sink. A number of studies have previously attributed the increase in the land sink to the 

CO2 fertilization-driven increase in the GPP in the recent decades (Ballantyne et al., 2017; 

Friedlingstein et al., 1995; Schimel et al., 2015b). The multi-ensemble biosphere model 

simulation shows that the increase in the GPP anthropogenic affect in terms of both magnitude 

and trend exceeds the increase in land sink, suggesting the increase in the biosphere carbon 

emissions to the atmosphere. Although I accept uncertainty related to the magnitude of 

estimated GPP due to input data uncertainty and model parametrization, I show that besides 

the magnitude of GPP anthropogenic effect, its linear trend is also large. Zhang et al. (2019b) 

reported weaker increase rate of GPP compared to greening rate. I caution, however, that the 

study was short-term (2000–2015) and included warming hiatus period (1998–2012), when 

GPP anthropogenic effect slowed down (Figure 5.1). The findings are in line with overall 

conclusions by Zhang et al. (2019b) that the capacity of terrestrial GPP may be weakened due 

to anthropogenic activities. 

The absolute magnitude of the GPP anthropogenic effect largely depends on the 

magnitude of GPP estimate by BEAMS. Thus, the larger absolute magnitude of model GPP 

estimates will certainly lead to the larger GPP anthropogenic effect. In the case of BEAMS, 

the absolute value of GPP estimate is largely dependent on the input shortwave radiation. Note, 

that I do not claim that the estimated magnitude of the GPP anthropogenic effect is certainly 

exact. However, regardless the magnitude of the GPP anthropogenic effect, its trend does not 

catch up with the carbon emissions. To support this idea, in addition to the magnitudes, I show 

the linear trends of the major contributors to the biosphere carbon uptake (Table 5.1). The GPP 

anthropogenic effect and ocean sink together increased faster than the anthropogenic carbon 

emissions. Despite that, the rate of the anthropogenic carbon growth continued to increase, 

suggesting that the anthropogenic effect on the biosphere fluxes, other than terrestrial GPP, 

play an increasing role in the land sink. The anthropogenic activities resulted in the 347.5 GtC 

of carbon emissions in five decades. The emissions doubled from 1960s to 2000s. Consistent 

with Ballantyne et al. (2012), I show that the biosphere uptook 55% of anthropogenic carbon 

emissions. The ocean was steadily uptaking nearly 24% of the anthropogenic carbon emissions. 

On the contrary, the carbon uptake via the GPP anthropogenic effect largely increased in both 

magnitude and fraction. While the amount of the carbon uptake from 1960s to 2000s almost 

doubled, larger part of the emissions remained in the atmosphere. This finding offers evidence 

of the progressive increase of the biosphere carbon emissions in the recent decades.  
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Table 5.1. Interannual means and linear trends of the global carbon fluxes in 

1960–2010. 

 Mean ± IAV 

(GtC year-1) 

Linear trend 

(GtC year-2) 

Emissions from fossil fuel consumption and 

cement production 
5.52 ± 1.70 0.11*** 

Land-use change emissions 1.30 ± 0.16 0.00** 

Total anthropogenic carbon emissions 6.81 ± 1.67 0.11*** 

Atmospheric carbon growth 3.04 ± 1.27 0.05*** 

Biosphere uptake (from mass balance) 3.77 ± 1.29 0.06*** 

Ocean sink 1.64 ± 0.44 0.03** 

GPP anthropogenic effect 4.58 ± 2.13 0.14** 

Residual atmospheric accumulation 2.45 ± 2.04 0.11*** 

GPP anthropogenic effect & ocean sink 6.22 ± 2.53 0.17*** 

Note: IAV stands for interannual variation via standard deviation. ** corresponds to p- value 

< 0.01, *** corresponds to p-value < 0.001.  

  



61 

 

5.3. The terrestrial ecosystem respiration anthropogenic effect 

Most likely, the major biosphere flux responsible for the increased atmospheric carbon 

growth is TER. The global TER remains the least well-constrained terrestrial flux in the 

biosphere models and observations are sparse (Bond-Lamberty & Thomson, 2010; Tramontana 

et al., 2016). As a result, the global TER estimates by the models and observations are 

inconsistent (Carvalhais et al., 2014). Liu et al. (2018b) reported that the short-term carbon 

uptake variability might be more sensitive to TER losses than previously thought. Here I further 

develop this idea and suggest that currently the role of TER in the land carbon sink is on the 

rise. 

The studies of the effects of climate change to the global TER remain scarce (Bond-

Lamberty et al., 2018; Hashimoto et al., 2015; Hursh et al., 2017; Li et al., 2018; van der Molen 

et al., 2011). This flux, containing autotrophic and heterotrophic, aboveground and soil parts 

is yet poorly understood and constrained, especially on a global scale. The current ability of 

Earth satellites does not allow estimating TER from space, the in situ observations are lacking, 

especially, in the areas of high soil carbon content, i.e. high latitudes, and, the areas of high 

litter production, i.e. tropics (Bond-Lamberty & Thomson, 2010; Hursh et al., 2017; 

Tramontana et al., 2016). The bipolarity of land carbon storage accompanied with 

disproportionate climate feedback (Schimel et al., 2015a) only add up to the uncertainty. 

Schimel et al. (2015b) highlighted that the TER or combustion may increasingly dominate over 

GPP in the northern high latitudes, resulting in the release of the massive amount of 

belowground carbon to the atmosphere in response to climate change. The findings also suggest 

the bipolarity of the future increase in global TER dominated by mid-latitudes in +2K and 

tropics in +4K climates. Note, however, that the utilized version of BEAMS did not account 

for permafrost melting effects. The permafrost melting has the capacity to surpass the amount 

of carbon released via TER in both mid-latitudes and tropics. Schuur et al. (2015) provided 

evidence of projected gradual and prolonged release of greenhouse gas emissions in the 

permafrost lands. 

TER is likely the major contributor to the increasing land carbon source TER stalled 

during cooler periods after Pinatubo eruption and 1998–2012 warming hiatus and contributing 

to the increased land sink (Li et al., 2018). Both magnitude and interannual variability of TER 

are projected to increase in the future warmer climates. The changes dramatically increase from 

+2K to +4K climate. Global TER and its interannual variability increase in future with larger 
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relative increase in high latitudes. Currently, anthropogenic TER effect is driven by plant 

biomass. In future +2K and +4K climates, temperature contribution to the anthropogenic TER 

effect is projected to increase. 

The land carbon sink is a relatively small flux arising from the difference between two 

fluxes of much larger magnitudes—GPP and TER. I warn that the positive effects of the 

anthropogenic activities on the land sink, including CO2 fertilization, greening and increase in 

the growing season (Forkel et al., 2016; Graven et al., 2013; Zhu et al., 2016) may soon be 

surpassed by the by the positive effects on the land source.  

Previously, Hursh et al. (2017) analyzed the relationships between soil respiration (that 

involves both RA and SD) with the climate variables and reported the increasing soil respiration 

with temperature and precipitation, and parabolic relationships with the soil moisture. Authors 

indicated that soil moisture is the driver of soil respiration in temperate and boreal forests. 

Carvalhais et al. (2014) suggested that the role of water in the terrestrial carbon cycle might 

increase with time. Contrariwise, the anthropogenic activities-induced CO2 fertilization lead to 

increased water use efficiency that can partly compensate for the decreased water availability 

(Drake et al., 2017). This possibly large effect was neglected in the analysis. The TER response 

to the changes in water availability is rather complex and poorly understood. Both Ra and SD 

depend on water availability—decreased precipitation and relative moisture, e.g. droughts, lead 

to stomatal closure, decreased GPP, and, thus, decreased Ra and TER (van der Molen et al., 

2011) on the one hand, and increased tree mortality, consequently, increase litter fall, and, thus, 

increased SD and TER on the other hand. In addition, SD is on the chemical composition, 

microbial community composition and acclimation. (van der Molen et al., 2011). 

In addition to the direct effect of water availability on TER, Frank et al. (2015) and 

Zscheischler et al. (2014a) reported that water scarcity is likely the main driver for negative 

extreme events. The anthropogenic effect on vapor pressure and precipitation combined with 

temperature may lead to more frequent and severe weather extremes and disturbances, e.g. 

droughts, fires and pest outbreaks, that in their turn largely affect GPP. Extreme events 

contribute to the increase in the land carbon source via not only alterations of TER processes, 

but also the decrease in photosynthetic capacity. E.g., the increased frequency of the extreme 

events corresponds to the increase in the GPP extreme events (Frank et al., 2015; Zscheischler 

et al., 2014b). Modern biosphere models are not skillful enough to correctly estimate the effects 

of extreme events and disturbances on the terrestrial carbon fluxes, e.g., increased tree mortality 

(Xiao et al., 2016). The models are shown to underestimate the effects of extreme events. E.g., 
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the MsTMIP models estimate NPP decrease as a response to drought approximately four times 

shorter and weaker than observations suggest (Ito et al., 2017; Kolus et al., 2019; von Buttlar 

et al., 2018). The best way to account for the effects of extreme events on the carbon fluxes is 

to use satellite data that provide reference of the state of terrestrial vegetation (Reichstein et al., 

2013). BEAMS is a diagnostic model, however there is no satellite data available as input data 

for five decades. Therefore, the long-tern estimation likely does not capture total effect of 

extreme events on GPP. This means that the increase in frequency of the extreme GPP events 

is larger than estimated, and the GPP anthropogenic effect is lower than shown in Figure 5.1. 

Overall, these findings add up to the existing evidences of the shifting roles of global 

GPP and TER in the land carbon sink. Specifically, I show that currently both magnitude and 

interannual variation of TER are on the rise and dominated by temperature, followed by highly 

unceratin effect of water availability, e.g. vapor pressure and precipitation. The autotrophic and 

heterotrophic fluxes of TER correspond to the changes in climate in different ways. RA is tight 

to GPP and limited by it, meaning that the increase in Ra is driven by CO2 fertilization in 

proportion to GPP. Meanwhile, SD is tight to temperature and water availability and is not 

limited by GPP but rather soil carbon content. The weakening role of the GPP and 

strengthening role of TER and other biosphere carbon sources, e.g. permafrost melting and 

increased probability of extreme weather events affecting both GPP and TER, highlight the 

need in the urgent action for stronger mitigation of anthropogenic emissions. 
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Chapter 6 

Conclusion 

This thesis aimed to clarify the mechanism of the recent and future changes in the global 

terrestrial gross primary production (GPP) and ecosystem respiration (TER) by combining the 

advantages of the diagnostic-type biosphere model and the large-size ensemble climate data. I 

estimated the anthropogenic effect on the global surface climate and land carbon fluxes, 

identified their drivers and explored the shifts in the roles of GPP and TER in the land carbon 

uptake with warming. 

First, I decomposed the temporal change in the global GPP into the long-term trend and 

interannual variability. I associated the long-term GPP with the effect of the anthropogenic 

emissions and resulting climate change on GPP, i.e. GPP anthropogenic effect, and the 

interannual GPP variability with the effect of natural climate variability on GPP, i.e. GPP 

natural effect. Such approach allowed explicit estimating the long-term GPP, and to distinguish 

the GPP anthropogenic and natural effects with the associated large-size ensemble climate 

input-data uncertainty. The sensitivity experiment allowed identifying the drivers of the GPP 

change. The anthropogenic activity altered global climate via increased surface temperatures, 

intensified water cycle, and reduced shortwave radiation. These changes together with 

increased atmospheric CO2 concentration led to the positive GPP anthropogenic effect. It 

increased from 0.9 ± 0.1 GtC year-1 in 1952–1961 to 6.1 ± 0.3 GtC year-1 in 2001–2010, and 

significantly exceeded the climate input-data induced uncertainty. The CO2 fertilization was 

the main factor that controlled the GPP anthropogenic effect, and the shortwave radiation that 

coupled with El Niño Southern Oscillation (ENSO) events and large volcano eruptions was the 

main factor that controlled the GPP natural effect. Overall, CO2 fertilization and shortwave 

radiation explained almost all of GPP change in 1952–2010. The largest positive GPP 

anthropogenic effect associated with the relaxed water stress and CO2 fertilization occurred in 

the semi-arid regions of Southern Hemisphere. The largest negative effect associated with the 

increased temperature and decreased shortwave radiation occurred in Europe and equatorial 

tropics. The CO2 fertilization effect that currently drives the global GPP anthropogenic effect 

is expected to saturate at >700 ppm CO2 concentration levels. I project that saturation will 

happen by year 2050–2150 depending on the Representative Concentration Pathway (RCP) 

scenario. Meanwhile, in 1952–2010, the CO2 fertilization effect canceled the negative effect of 
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the decreased shortwave radiation. While currently, the CO2 fertilization effect primarily drives 

the tropical GPP increase that dominates the global GPP anthropogenic effect, in the future 

warmer world, the climate drivers are projected to constrain the tropical GPP increase, so that 

the climate-driven non-tropical GPP increase takes over the dominancy of the GPP 

anthropogenic effect. 

Second, I analyzed the temporal changes in the anthropogenic and biosphere carbon 

fluxes with the explicit accountancy of the GPP and TER anthropogenic effects. I showed that 

despite the benefits of CO2 fertilization, the positive GPP anthropogenic effect could not catch 

up with the increasing anthropogenic and biosphere carbon emissions. The role of the TER is 

likely to dominate over GPP in the land carbon uptake of future warmer world. I showed that 

both magnitude and interannual variation of TER increase with warming. The main driver of 

the TER anthropogenic effect is temperature. The probability of years with extremely high 

global TER increases in the climates +2K and +4K warmer than pre-industrial. The high global 

TER during extreme years corresponds to high TER in mid-latitudes in +2K and northern high 

latitudes and equatorial tropics in +4K climate. I attributed these changes to increased 

autotropic and heterotrophic respirations driven by increased GPP and air temperature. While 

in 1952–2010, temperature played only a minor role in the TER anthropogenic effect, its role 

in TER and, thus land carbon uptake is projected to increase in the future warmer climates 

because the contribution of temperature in driving TER increases with warming exponentially 

according to Q10 function. Overall, the weakening role of the GPP and strengthening role of 

TER, marked with a disproportional increase in TER with warming towards high latitudes that 

are a massive reservoir of soil carbon highlight the need in the urgent action for stronger 

mitigation of anthropogenic emissions. 

Because of the poor current understanding of cloud–radiation feedbacks to climate 

change and their effects on the carbon cycle, I encourage future studies to focus on cloud–

radiation feedbacks. The present study used a single biosphere model and large-ensemble 

climate simulations using a single climate model. Thus, the results include some uncertainty. 

In addition, because the utilized d4PDF data set involved some limitations for studying the 

anthropogenic effect on the climate change, i.e. absence of the natural atmospheric aerosol 

variability in the nonwarming simulation, the results include the associated level of uncertainty. 

Finally, estimation of unaccounted land carbon fluxes, e.g. permafrost thawing and subsequent 

decomposition of organic matter, fires, etc. would further contrite to deepening the 

understanding of the impact of anthropogenic activities on the terrestrial carbon fluxes. 
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