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Notation
• Let us denote by N and R the sets of natural numbers and real numbers,
respectively.

• For N ∈ N, we denote by RN the N -dimensional Euclidean space.

• RN
+ := {x = (x′, xN) : x

′ ∈ RN−1, xN > 0}, D := RN
+ .

• For any x ∈ RN and r > 0, let

B(x, r) := {y ∈ RN : |x−y| < r}, B+(x, r) := {(y′, yN) ∈ B(x, r) : yN ≥ 0}.

• Differential operators

∂t :=
∂

∂t
, ∆ :=

N∑
i=1

∂2

∂x2i
.

• For 0 < α < 1, (−∆)α denotes the fractional power of the Laplace operator
−∆ in RN and this is defined by

(−∆)αϕ(x) := F−1[|ξ|2αF [ϕ](ξ)](x)

for any x ∈ RN and ϕ ∈ S(RN), where F [v] is the Fourier transform of v.

• Let Ω be a open set in RN . For 1 ≤ r ≤ ∞, Lr(Ω) denotes the usual Lebesgue
space equipped with the norm

∥u∥Lr(Ω) :=


(∫

Ω

|u(x)|r dx
) 1

r

if 1 ≤ r <∞,

ess sup
x∈Ω

|u(x)| if r = ∞.

• For 1 ≤ r <∞, Lr
loc(R

N) denotes

Lr
loc(R

N) :=

{
f : RN → R :

∫
K

|f(x)|r dx <∞ for any compact set K ⊂ RN

}

• We denote by C0(R
N) the set of continuous function with compact support in

RN .

• For 0 < α < 1, we denote by Cα(RN) the set of α-th Hölder continuous
function in RN .
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• For k ∈ N, we denote by Ck(Ω) the set of functions whose derivatives up to
k-th order are continuous on Ω, where Ω ⊂ RN .

• Let Ω ⊂ RN .
C∞(Ω) :=

∩
k∈N

Ck(Ω).

• We denote by C∞
0 (RN) the set of C∞(RN) functions with compact support in

RN .

• For any L1
loc(R

N) function f , we set

−
∫
K

f(y) dy :=
1

|K|

∫
K

f(y) dy,

where K is a measurable set in RN and |K| is volume of K.

• Let Gα = Gα(x, t) be the fundamental solution to

∂tu+ (−∆)αu = 0 in RN × (0,∞),

where 0 < α ≤ 1.

• For any Radon measure µ in RN , we define

[Sα(t)µ](x) :=

∫
RN

Gα(x− y, t) dµ(y), x ∈ RN , t > 0.

• Let ΓN = ΓN(x, t) be the Gauss kernel on RN , that is,

ΓN(x, t) := (4πt)−
N
2 exp

(
−|x|2

4t

)
, (x, t) ∈ RN × (0,∞).

We notice that G1 = ΓN .

• Let G = G(x, y, t) be the Green function for the heat equation on RN
+ with

the homogeneous Neumann boundary condition, that is,

G(x, y, t) := ΓN(x− y, t) + ΓN(x− y∗, t), x, y ∈ D, t > 0,

where y∗ = (y′,−yN) for y = (y′, yN) ∈ D.

• For any Radon measure µ in RN with suppµ ⊂ D, define

[S(t)µ](x) :=

∫
D

G(x, y, t) dµ(y), x ∈ D, t > 0.
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• For any set E, let χE be the characteristic function which has value 1 in E
and value 0 outside E.

• For any set Λ, let f and g be maps from Λ to (0,∞). We say that

f(t) ≍ g(t) for all t ∈ Λ

if there exists a constant C > 0 such that C−1g(t) ≤ f(t) ≤ Cg(t) for all
t ∈ Λ.
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Summary

1.1 Introduction

One of main subjects of research on partial differential equation is the well-posedness
of Cauchy problems, that is, existence of solutions, uniqueness of solutions and
dependence of initial data. In particular, it is significant to ask whether Cauchy
problems have solutions or not. Indeed, this question has attracted many interests
in the mathematical literature. The purpose of this thesis is to investigate the
threshold of the existence and the nonexistence of solutions to the Cauchy problems
for several nonlinear parabolic equations.

It is well-known that nonlinear parabolic problems often appear in the various
mathematical models such as heat transfer, chemical concentration, nonlinear radi-
ation law and so on. The solvability of the nonlinear parabolic problems is taking
on complicated aspects; the solvability depends on a lot of factors such as diffu-
sion effect, nonlinearity of equations, boundary conditions and the shape of initial
functions. This may be a reason why the issue has attracted much attention from
many mathematicians with development of the nonlinear analysis. Here, we give an
example:

Let us consider nonnegative solutions to semilinear parabolic heat equation

∂tu = ∆u+ up, x ∈ RN , t > 0, (P)

where N ≥ 1 and p > 1. This equation is one of the simplest nonlinear parabolic
equation and has been studied extensively by many mathematicians since the pio-
neering work due to Fujita [29] (see, for example, [60], which is a book including
a good list of references for problem (P)). It is known that the singularity of the
initial function is one of the factors that determine the existence of solutions to
problem (P). Precisely, if the singularity of the initial value is too strong, prob-
lem (P) has no local-in-time solutions. Now, what is the strongest singularity of the
initial value for problem (P0) to possess a solution? There is a partial answer to
this question:

In the case of p > 1 + 2/N if the initial value u(0) satisfies

u(x, 0) ≥ c1|x|−
2

p−1
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in a neighborhood of the origin, where c1 > 0 is a constant, then problem (P) has
no local-in-time solutions for sufficiently large c1 > 0 (See [10]). On the other hand,
if the initial value u(0) satisfies

0 ≤ u(x, 0) ≤ c2|x|−
2

p−1 , x ∈ RN ,

where c2 > 0 is a constant, then problem (P) has a local-in-time solution for suffi-
ciently small c2 > 0 (see [41]). See also [39, 50, 61].

By combining these facts, we see that this singularity is the strongest one for the
solvability of problem (P) in the case of p > 1 + 2/N . However, in other cases the
strongest singularity has not been obtained yet.

In this thesis we identify the strongest singularity of the initial function of the
inhomogeneous term for the solvability of several nonlinear parabolic problems by
studying the existence and nonexistence of solutions and as an application of the
main results of this thesis, we obtain optimal estimates of the life span of solutions.
In the following, we consider three nonlinear parabolic problems (which include
problem (P)):

(1) Cauchy problem for the fractional semilinear heat equation,{
∂tu+ (−∆)αu = up, x ∈ RN , t > 0,

u(0) = µ ≥ 0 in RN ,
(P1)

where N ≥ 1, 0 < α ≤ 1, p > 1 and µ is a Radon measure or a measurable
function in RN ;

(2) Cauchy problem for the fractional semilinear heat equation with an inhomo-
geneous term, {

∂tu+ (−∆)αu = up + µ, x ∈ RN , t > 0,

u(0) = 0 in RN ,
(P2)

where N ≥ 1, 0 < α ≤ 1, p > 1 and µ is a nonnegative Radon measure in RN

or a nonnegative measurable function in RN ;

(3) Cauchy problem for the heat equation with a nonlinear boundary condition,
∂tu = ∆u, x ∈ RN

+ , t > 0,

∂νu = up x ∈ ∂RN
+ , t > 0,

u(x, 0) = µ(x) ≥ 0 x ∈ D,

(P3)

where N ≥ 1, p > 1 and µ is a nonnegative measurable function in RN
+ or a

Radon measure in RN with suppµ ⊂ D.
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The background of each problem is described in Sections 1.2, 1.3 and 1.4, respec-
tively. For these problems, we wish to investigate

• Necessary conditions on the initial value or the inhomogeneous term for the
solvability (which lead the nonexistence of solutions);

• Sufficient conditions on the initial value or the inhomogeneous term for the
solvability (which lead the existence of solutions);

• Optimal estimates of the life span of solutions.

The rest of this thesis is organized as follows: In Chapter 1 we review some known
results on the solvability of problems (P1), (P2) and (P3) and state the main results
of this thesis. Sections 1.2, 1.3 and 1.4 in Chapter 1 deal with problems (P1), (P2)
and (P3), respectively. In Chapter 2 we prove the main results on the solvability
of problem (P1) and in Subsection 2.1.1 we collect properties of the fundamental
solution Gα to the linear fractional heat equation. In Chapter 3 we prove the main
results on the solvability of problem (P2). In Chapter 4 we prove the main results
on the solvability of problem (P3). In Chapter 5, as an application of the results on
the solvability, we give optimal estimates to the life span of solutions to (P1), (P3)
and the Cauchy problem for the higher order semilinear parabolic equation.

1.2 Existence and nonexistence of solutions to (P1)

1.2.1 Motivation

In this section we consider the fractional semilinear parabolic equation

∂tu+ (−∆)αu = up, x ∈ RN , t > 0, (1.2.1)

where ∂t := ∂/∂t, N ≥ 1, 0 < α ≤ 1 and p > 1.
We show that every nonnegative solution to (1.2.1) has a unique Radon measure

in RN as the initial trace and study qualitative properties of the initial trace. Fur-
thermore, we give sufficient conditions for the existence of the solution to Cauchy
problem (1.2.1).

Let us consider the case of α = 1, that is, the semilinear parabolic equation

∂tu−∆u = up, x ∈ RN , t > 0, u(0) = µ ≥ 0 in RN , (1.2.2)

where N ≥ 1, p > 1 and µ is a Radon measure or a measurable function in RN .
The solvability of Cauchy problem (1.2.2) has been studied extensively by many
mathematicians since the pioneering work due to Fujita [29] (see, e.g., [60]). Among
others, in 1985, Baras and Pierre [10] proved the following by the use of the capacity
of potentials of Meyers [56]:
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Theorem 1.2.1 Let u be a nonnegative local-in-time solution to (1.2.2), where µ is
a Radon measure in RN . Then µ must satisfy the following:

If 1 < p < pF , then sup
x∈RN

µ(B(x, 1)) <∞;

If p = pF , then sup
x∈RN

µ(B(x, σ)) ≤ γ |log σ|−
N
2 for sufficiently small σ > 0;

If p > pF , then sup
x∈RN

µ(B(x, σ)) ≤ γσN− 2
p−1 for sufficiently small σ > 0.

Here pF := 1 + 2/N and γ is a constant depending only on N and p.

Then we can find a positive constant c1 with the following property:

Remark 1.2.1 Problem (1.2.2) possesses no local-in-time solutions if µ is a non-
negative measurable function in RN satisfying

µ(x) ≥ c1|x|−N

[
log

(
e+

1

|x|

)]−N
2
−1

for p = pF ,

µ(x) ≥ c1|x|−
2

p−1 for p > pF ,

in a neighborhood of the origin.

For related results, see e.g., [3, 9]. On the other hand, Takahashi [67] proved that, in
the case of p ≥ pF , for any γ > 0, Cauchy problem (1.2.2) possesses no local-in-time
nonnegative solutions with some Radon measure µ satisfying

sup
x∈RN

µ(B(x, σ)) ≤ γσN− 2
p−1

[
log

(
e+

1

σ

)]− 1
p−1

for all σ > 0. See [67, Theorem 1, Proposition 1].
The local solvability of Cauchy problem (1.2.2) has been studied in many papers

(see e.g., [3, 9, 17, 28, 39, 41, 50, 61, 64, 65, 67, 68, 69] and references therein).
It is known that there exists a constant c2 > 0 such that Cauchy problem (1.2.2)
possesses a solution in RN × [0, ρ2], where ρ > 0, if p > pF and

sup
x∈RN

∥µ∥Lr,∞(B(x,ρ)) ≤ c2 with r =
N(p− 1)

2
(1.2.3)

(see [41]). See also [39, 50, 61]. This implies that, if p > pF and

0 ≤ µ(x) ≤ c|x|−
2

p−1 in RN with sufficiently small c > 0,

then (1.2.3) holds for any ρ > 0 and problem (1.2.2) possesses a global-in-time
solution. On the other hand, in the case of p = pF , as far as we know, there are no
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results on the local solvability of Cauchy problem (1.2.2) under such an assumption
as

0 ≤ µ(x) ≤ c3|x|−N

[
log

(
e+

1

|x|

)]−N
2
−1

in RN with sufficiently small c3 > 0.

(1.2.4)
Some of the results on the solvability of Cauchy problem (1.2.2) are available to

fractional semilinear parabolic equations, however there are no results on necessary
conditions such as Theorem 1.2.1.

In Chapter 2 we show the existence and the uniqueness of the initial trace of the
solution to (1.2.1) and obtain a refinement of Theorem 1.2.1. Furthermore, we give
sufficient conditions on the existence of the solution to{

∂tu+ (−∆)αu = up, x ∈ RN , t > 0,

u(0) = µ ≥ 0 in RN ,
(1.2.5)

where N ≥ 1, 0 < α ≤ 1, p > 1 and µ is a Radon measure or a measurable function
in RN . Even in the case of α = 1, our sufficient conditions are new and they ensure
that Cauchy problem (1.2.2) with (1.2.4) possesses a local-in-time solution.

1.2.2 Main results on (P1)

We formulate the definition of solutions to (1.2.1).

Definition 1.2.1 Let u be a nonnegative measurable function in RN × (0, T ), where
0 < T ≤ ∞.

(i) We say that u is a solution to (1.2.1) in RN × (0, T ) if u satisfies

∞ > u(x, t) =

∫
RN

Gα(x− y, t− τ)u(y, τ) dy+

∫ t

τ

∫
RN

Gα(x− y, t− s)u(y, s)p dy ds

for almost all x ∈ RN and 0 < τ < t < T .

(ii) Let µ be a Radon measure in RN . We say that u is a solution to (1.2.5) in
RN × [0, T ) if u satisfies

∞ > u(x, t) =

∫
RN

Gα(x−y, t) dµ(y)+
∫ t

0

∫
RN

Gα(x−y, t−s)u(y, s)p dy ds (1.2.6)

for almost all x ∈ RN and 0 < t < T . If u satisfies (1.2.6) with = replaced by ≥,
then u is said to be a supersolution to (1.2.5) in RN × [0, T ).

(iii) Let u be a solution to (1.2.5) in RN × [0, T ). We say that u is a minimal
solution to (1.2.5) in RN × [0, T ) if

u(x, t) ≤ v(x, t) for almost all x ∈ RN and 0 < t < T

for any solution v to (1.2.5) in RN × [0, T ).
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The definition of Gα is contained in Notation.
Now we are ready to state the main results on the solvability of problem (P1).

In the first theorem we show the existence and the uniqueness of the initial trace of
the solution to (1.2.1) and obtain a refinement of Theorem 1.2.1.

Theorem 1.2.2 Let N ≥ 1, 0 < α ≤ 1 and p > 1. Let u be a solution to (1.2.1) in
RN × (0, T ), where 0 < T < ∞. Then there exists a unique Radon measure µ such
that

ess lim
t→+0

∫
RN

u(y, t)ϕ(y) dy =

∫
RN

ϕ(y) dµ(y) (1.2.7)

for all ϕ ∈ C0(R
N). Furthermore, there exists γ1 > 0 depending only on N , α and

p such that

(1) sup
x∈RN

µ(B(x, T
1
2α )) ≤ γ1 T

N
2α

− 1
p−1 if 1 < p < pα;

(2) sup
x∈RN

µ(B(x, σ)) ≤ γ1

[
log

(
e+

T
1
2α

σ

)]− N
2α

for all 0 < σ ≤ T
1
2α if p = pα;

(3) sup
x∈RN

µ(B(x, σ)) ≤ γ1 σ
N− 2α

p−1 for all 0 < σ ≤ T
1
2α if p > pα.

Here pα := 1 + 2α/N .

Remark 1.2.2 (i) Sugitani [66] showed that, if 1 < p ≤ pα and µ ̸≡ 0 in RN , then
problem (1.2.5) possesses no nonnegative global-in-time solutions.

(ii) Let u be a solution to (1.2.1) in RN × [0,∞) and 1 < p ≤ pα. It follows from
assertions (1) and (2) that the initial trace of u must be identically zero in RN .
Then Theorem 1.2.2 leads the same conclusion as in Remark 1.2.2 (i).

As a corollary of Theorem 1.2.2, we have

Corollary 1.2.1 Let N ≥ 1, 0 < α ≤ 1 and p > 1. Let u be a solution to (1.2.1)
in RN × (0, T ), where 0 < T < ∞. Then there exists γ > 0 depending only on N ,
α and p such that

sup
x∈RN

−
∫
B(x,(T−t)1/2α)

u(y, t) dy ≤ γ(T − t)−
1

p−1

for almost all 0 < t < T .

Corollary 1.2.1 in the case of α = 1 has been already obtained in [55, Lemma 4.4 (i)].
Our argument in the proof of Theorem 1.2.2 is completely different from those

in [3, 9, 10]. Let u be a solution to (1.2.1) in RN × (0, T ), where 0 < T < ∞. We
first prove the existence and the uniqueness of the initial trace of the solution u.
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Next, in the case of p ̸= pα we apply the iteration argument in [68, Theorem 5] to
obtain an L∞(RN) estimate of the solution u. This yields a uniform estimate of
∥u(τ)∥L1(B(z,ρ)) with respect to z ∈ RN and τ ∈ (0, T/2) for all small enough ρ > 0,
and we complete the proof of Theorem 1.2.2. In the case of p = pα we follow the
argument in [29, 31, 66] and obtain an inequality related to∫

RN

u(x, t)Gα(x, t) dx.

Then, applying the iteration argument in [52, Section 2], we prove Theorem 1.2.2.
Furthermore, by Theorem 1.2.2 we obtain

Theorem 1.2.3 Assume the same conditions as in Theorem 1.2.2. Let µ be a Radon
measure satisfying (1.2.7). Then u is a solution to (1.2.5) in RN × [0, T ).

We give sufficient conditions for the solvability of problem (1.2.5). We modify the
arguments in [41, 61] and prove the following two theorems.

Theorem 1.2.4 Let N ≥ 1, 0 < α ≤ 1 and 1 < p < pα. Then there exists γ2 > 0
such that, if µ is a Radon measure in RN satisfying

sup
x∈RN

µ(B(x, T
1
2α )) ≤ γ2T

N
2α

− 1
p−1 for some T > 0, (1.2.8)

then problem (1.2.5) possesses a solution in RN × [0, T ).

Theorem 1.2.5 Let N ≥ 1, 0 < α ≤ 1 and 1 < θ < p. Then there exists γ3 > 0
such that, if µ is a nonnegative measurable function in RN satisfying

sup
x∈RN

[
−
∫
B(x,σ)

µ(y)θ dy

] 1
θ

≤ γ3σ
− 2α

p−1 , 0 < σ ≤ T
1
2α , (1.2.9)

for some T > 0, then problem (1.2.5) possesses a solution in RN × [0, T ).

Furthermore, we state the following theorem, which is a refinement of Theorem 1.2.5
in the case of p = pα and enables us to prove the existence of the solution to (1.2.5)
under assumption (1.2.4).

Theorem 1.2.6 Let N ≥ 1, 0 < α ≤ 1 and p = pα. For s > 0, set

Ψα(s) := s[log(e+ s)]
N
2α , ρα(s) := s−N

[
log

(
e+

1

s

)]− N
2α

. (1.2.10)

Then there exists γ4 > 0 such that, if µ is a nonnegative measurable function in RN

satisfying

sup
x∈RN

Ψ−1
α

[
−
∫
B(x,σ)

Ψα(T
1

p−1µ(y)) dy

]
≤ γ4ρ(σT

− 1
2α ), 0 < σ ≤ T

1
2α , (1.2.11)

for some T > 0, then problem (1.2.5) possesses a solution in RN × [0, T ).
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As a corollary of Theorems 1.2.2, 1.2.5 and 1.2.6, we have

Corollary 1.2.2 Let N ≥ 1, 0 < α ≤ 1 and p ≥ pα. Then there exists γ∗ > 0 with
the following properties:

(i) If p = pα and

µ(x) = γ|x|−N

[
log

(
e+

1

|x|

)]− N
2α

−1

+ C

for some γ ≥ 0 and C ≥ 0, then

– problem (1.2.5) possesses a local-in-time solution if 0 ≤ γ < γ∗;

– problem (1.2.5) possesses no local-in-time solutions if γ > γ∗.

(ii) If p > pα and

µ(x) = γ|x|−
2α
p−1 + C

for some γ ≥ 0 and C ≥ 0, then the same conclusion as in assertion (i) holds.
Furthermore, if C = 0 and γ is small enough, then problem (1.2.5) possesses
a global-in-time solution.

The proofs of the main results on problem (P1) are contained in Chapter 2.

1.3 Existence and nonexistence of solutions to (P2)

1.3.1 Motivation

In this section we consider the Cauchy problem for a fractional semilinear heat
equation with an inhomogeneous term{

∂tu+ (−∆)αu = up + µ, x ∈ RN , t > 0,

u(0) = 0 in RN ,
(1.3.1)

where ∂t := ∂/∂t, N ≥ 1, 0 < α ≤ 1, p > 1 and µ is a nonnegative Radon measure
in RN or a nonnegative measurable function in RN .

We study necessary conditions and sufficient conditions on the inhomogeneous
term µ for the existence of nonnegative solutions to problem (1.3.1) and identify the
strongest singularity of µ for the solvability of problem (1.3.1). Our identification is
new even for α = 1.

Before considering problem (1.3.1), we recall some results on Cauchy prob-
lem (1.2.5). In [34] the author of this thesis and Ishige studied necessary conditions
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and sufficient conditions on the initial data for the solvability of problem (1.2.5) and
identified the singularity of the initial data

µ(x) =


c|x|−

2α
p−1 if p > 1 + 2α/N,

c|x|−N

[
log

(
e+

1

|x|

)]− N
2α

−1

if p = 1 + 2α/N,
(1.3.2)

as the strongest one for the solvability of problem (1.2.5), where c > 0 is a constant.
Precisely, if µ satisfies (1.3.2) in a neighborhood of the origin, problem (1.2.5) has no
local-in-time solutions for sufficiently large c > 0. On the other hand, if µ satisfies
(1.3.2) inRN , problem (1.2.5) has a local-in-time solution for sufficiently small c > 0.
See Theorem 1.2.2, Theorem 1.2.4 and Corollary 1.2.2.

The existence of solutions to nonlinear parabolic equations with inhomogeneous
terms has been studied in many papers, see e.g. [8, 10, 12, 46, 47, 48, 49, 51, 74,
75, 76, 77] and references therein. However, there are no results concerning the
identification of the strongest spatial singularity of the inhomogeneous term for the
existence of solutions.

In Chapter 3, motivated by [34], we study necessary conditions and sufficient
conditions on the inhomogeneous term µ for the existence of solutions to prob-
lem (1.3.1) and identify the strongest singularity of the inhomogeneous term µ for
the solvability of (1.3.1).

1.3.2 Main results on (P2)

We formulate the definition of solutions to problem (1.3.1) and state our main
results.

Definition 1.3.1 Let u be a nonnegative measurable function in RN × (0, T ), where
0 < T ≤ ∞. We say that u is a solution to problem (1.3.1) in RN × [0, T ) if u
satisfies∫ T

0

∫
RN

u(−∂tφ+ (−∆)αφ) dx dt =

∫ T

0

∫
RN

upφdx dt+

∫ T

0

∫
RN

φdµ(x) dt

for φ ∈ C∞
0 (RN × [0, T )).

The first theorem is concerned with necessary conditions on the inhomogeneous term
µ for the solvability of problem (1.3.1). Set

p∗ :=
N

N − 2α
if 0 < 2α < N and p∗ := ∞ if 2α ≥ N.

Theorem 1.3.1 Let N ≥ 1, 0 < α ≤ 1 and p > 1. Let u be a solution to prob-
lem (1.3.1) in RN × [0, T ), where 0 < T <∞. Then there exists γ = γ(N,α, p) > 0
such that

sup
x∈RN

µ(B(x, σ)) ≤ γσN− 2αp
p−1 (1.3.3)
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for 0 < σ ≤ T 1/2α. Furthermore, if p = p∗, then there exists γ′ = γ′(N,α) > 0 such
that

sup
x∈RN

µ(B(x, σ)) ≤ γ′
[
log

(
e+

T
1
2α

σ

)]− N
2α

+1

(1.3.4)

for 0 < σ ≤ T 1/2α.

If 1 < p < p∗, then the function σ 7→ σN−2αp/(p−1) is decreasing for σ > 0. This
means that (1.3.3) is equivalent to

sup
x∈RN

µ(B(x, T
1
2α )) ≤ γ T

N
2α

− p
p−1

in the case of 1 < p < p∗. As corollaries of Theorem 1.3.1, we have

Corollary 1.3.1 Let N ≥ 1, 0 < α ≤ 1 and p ≥ p∗. Then there exists γ =
γ(N,α, p) > 0 such that, if a nonnegative measurable function µ in RN satisfies

µ(x) ≥


γ|x|−

2αp
p−1 if p > p∗,

γ|x|−N

[
log

(
e+

1

|x|

)]− N
2α

if p = p∗,

in a neighborhood of the origin, then problem (1.3.1) possesses no local-in-time so-
lutions.

Corollary 1.3.2 Let N ≥ 1 and 0 < α ≤ 1.

(1) Let 1 < p ≤ p∗ and µ ̸≡ 0 in RN . Then problem (1.3.1) possesses no global-
in-time solutions.

(2) Let p > p∗ and µ be a nonnegative measurable function in RN . Then there
exists γ = γ(N,α, p) > 0 with the following property: If there exists R > 0
such that

µ(x) ≥ γ|x|−
2αp
p−1

for almost all x ∈ RN \ B(0, R), then problem (1.3.1) possesses no global-in-
time solutions.

Next we state our results on sufficient conditions for the solvability.

Theorem 1.3.2 Let N ≥ 1, 0 < α ≤ 1 and 1 < p < p∗. Then there exists
γ = γ(N,α, p) > 0 such that, if a nonnegative Radon measure µ in RN satisfies

sup
x∈RN

µ(B(x, σ)) ≤ γσN− 2αp
p−1 for some σ > 0,

then problem (1.3.1) possesses a solution in RN × [0, T ) with T = σ2α.
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Theorem 1.3.3 Let N ≥ 1, 0 < α ≤ 1 and p > p∗. Let 1 < r <∞ be such that

r > r∗ :=
N(p− 1)

2αp
.

Then there exists γ = γ(N,α, p, r) > 0 such that, if a nonnegative measurable
function µ in RN satisfies

sup
x∈RN

∥µ∥Lr(B(x,σ)) ≤ γσ
N
r
− 2αp

p−1 for some σ > 0, (1.3.5)

then problem (1.3.1) possesses a solution in RN × [0, T ) with T = σ2α.

Theorem 1.3.4 Let N ≥ 1, 0 < α ≤ 1 and p ≥ p∗. Let µ be a nonnegative
measurable function in RN such that

0 ≤ µ(x) ≤


γ|x|−

2αp
p−1 + C0 if p > p∗,

γ|x|−N

[
log

(
e+

1

|x|

)]− N
2α

+ C0 if p = p∗,
(1.3.6)

for almost all x ∈ RN , where γ > 0 and C0 ≥ 0. Then there exists γ∗ = γ∗(N,α, p) >
0 such that problem (1.3.1) possesses a local-in-time solution if γ ≤ γ∗ and a global-
in-time solution if γ ≤ γ∗, C0 = 0 and p > p∗.

By Theorems 1.3.1, 1.3.2 and 1.3.4 we can identify the strongest spatial singularity
of µ for the solvability of problem (1.3.1). Furthermore, by Theorems 1.3.1 and 1.3.2
we easily obtain

Corollary 1.3.3 Let δ be the Dirac delta function in RN . Then problem (1.3.1)
possesses a local-in-time solution with µ = Dδ for some D > 0 if and only if
1 < p < p∗.

Remark 1.3.1 (i) Corollary 1.3.2 (1) and Theorem 1.3.4 imply the following prop-
erties.

(a) If 1 < p ≤ p∗ and µ ̸≡ 0, then problem (1.3.1) possesses no global-in-time
solutions;

(b) If p > p∗, then problem (1.3.1) possesses a global-in-time solution for some
µ (̸≡ 0).

(ii) In the case of α = 1, assertions (a) and (b) were first obtained by [75] and
they have been extended to various nonlinear parabolic equations with inhomogeneous
terms. See e.g. [8, 48, 74, 75, 76, 77] and references therein. In the case of 0 < α < 1,
see [49].
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(iii) Necessary conditions and sufficient conditions for the existence of solutions to
the problem {

∂tu−∆u = |u|p−1u+ δ ⊗ ν, x ∈ RN , t > 0,

u(0) = 0 in RN ,

were discussed in [46, 47], where p > 1 and ν is a Radon measure in [0,∞). Corol-
lary 1.3.3 with α = 1 follows from [46, Theorem 2.2] and [47, Theorem 2.1].

We explain the idea of proving our theorems. Kartsatos and Kurta [48] obtained
necessary conditions on the existence of global-in-time solutions to problem (1.3.1)
with α = 1. Except for the case of 0 < α < 1 and p = p∗, their arguments are
available for the proof of Theorem 1.3.1. Indeed, the proof of Theorem 1.3.1 except
for such a case is given as a modification of the arguments in [48]. In the case of
0 < α < 1 and p = p∗, using a fractional Poisson equation, we modify arguments
in [48] to prove Theorem 1.3.1. The regularity of solutions to the fractional Poisson
equation plays an important role in the proof. On the other hand, the proofs of
Theorems 1.3.2 and 1.3.3 are based on the contraction mapping theorem in uniformly
local Lebesgue spaces. Theorem 1.3.4 is proved by the construction of supersolutions
to problem (1.3.1). This requires delicate estimates of volume potentials associated
with the fundamental solution to the fractional heat equation. The proofs of these
results are contained in Chapter 3.

1.4 Existence and nonexistence of solutions to (P3)

1.4.1 Motivation

We are interested in finding necessary conditions and sufficient conditions on the
initial data for the solvability of problem{

∂tu = ∆u, x ∈ RN
+ , t > 0,

∂νu = up x ∈ ∂RN
+ , t > 0,

(1.4.1)

with the initial condition

u(x, 0) = µ(x) ≥ 0, x ∈ D, (1.4.2)

where N ≥ 1, p > 1 and µ is a nonnegative measurable function in RN
+ or a Radon

measure in RN with suppµ ⊂ D.
For the solvability of problem (1.4.1) with (1.4.2), sufficient conditions have been

studied in many papers (see e.g., [6], [7], [19], [26], [30], [38], [43] and [44]). However
little is known concerning necessary conditions and the strongest singularity of initial
data for which problem (1.4.1) possesses a local-in-time nonnegative solution is still
open as far as we know.
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This section is motivated by the results on the solvability of the Cauchy problem
for semilinear parabolic equations. In 1985, Baras and Pierre [10] studied necessary
conditions on the initial data for the existence of nonnegative solutions to

∂tu = ∆u+ uq, x ∈ RN , t > 0,

where N ≥ 1 and q > 1. (See Theorem 1.2.1). Subsequently, the author of this
thesis and Ishige [34] proved the existence and the uniqueness of the initial trace
of a nonnegative solution to a fractional semilinear heat equation (1.2.5). Further-
more, they obtained necessary conditions on the initial data for the existence of the
solution to (1.2.5) (See Theorem 1.2.2). In [34], developing the arguments in [41]
and [61], they also obtained sufficient conditions on the initial data for the exis-
tence of the solution to (1.2.5) and identified the strongest singularity of the initial
data for the solvability of Cauchy problem (1.2.5) (See Corollary 1.2.2). We are
interested in finding similar necessary conditions for the existence of solutions to
(1.4.1) and identifying the strongest singularity of the initial data for the solvability
of problem (1.4.1).

The study of the initial traces of solutions is a classical subject and it has been
investigated for various parabolic equations, for example, the heat equation (see
[4, 70]), the porous medium equation (see [5, 11, 33]), the evolution of p-Laplacian
(see [21, 22]), the doubly nonlinear parabolic equation (see [37, 38, 79]), the frac-
tional diffusion equation (see [16]), the Finsler heat equation (see [2]), and parabolic
equations with nonlinear terms (see e.g., [3, 10, 13, 34, 42, 54, 78]).

In Chapter 4 we show the existence and the uniqueness of the initial trace of a
nonnegative solution to (1.4.1) and obtain necessary conditions on the existence of
nonnegative solutions to (1.4.1) and (1.4.2). We also obtain new sufficient conditions
on the existence of nonnegative solutions to (1.4.1) and (1.4.2). Our necessary
conditions and sufficient conditions enable us to identify the strongest singularity of
initial data for which problem (1.4.1) possesses a local-in-time nonnegative solution.
Surprisingly, the strongest singularity depends on whether it exists on ∂RN

+ or not
(see Corollary 1.4.1).

1.4.2 Main results on (P3)

We introduce some notation and define solutions to (1.4.1). Throughout this thesis
we often identify RN−1 with ∂RN

+ . For any L ≥ 0, we set

DL := {(x′, xN) : x′ ∈ RN−1, xN ≥ L1/2},
D′

L := {(x′, xN) : x′ ∈ RN−1, 0 ≤ xN < L1/2}.

We remark that D = D0 = RN
+ . For any locally integrable nonnegative function ϕ

on D, we often identify ϕ with the Radon measure ϕ dx. It follows that

lim
t→+0

∥S(t)η − η∥L∞(D) = 0, η ∈ C0(D : [0,∞)). (1.4.3)
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Definition 1.4.1 Let u be a nonnegative and continuous function in D × (0, T ),
where 0 < T <∞.
(i) We say that u is a solution to (1.4.1) in (0, T ) if u satisfies

u(x, t) =

∫
D

G(x, y, t− τ)u(y, τ) dy +

∫ t

τ

∫
RN−1

G(x, y′, 0, t− s)u(y′, 0, s)p dy′ ds

(1.4.4)
for (x, t) ∈ D × (τ, T ) and 0 < τ < T .

(ii) Let µ be a nonnegative measurable function in RN
+ or a Radon measure in RN

with suppµ ⊂ D. We say that u is a solution to (1.4.1) and (1.4.2) in [0, T ) if u
satisfies

u(x, t) =

∫
D

G(x, y, t) dµ+

∫ t

0

∫
RN−1

G(x, y′, 0, t− s)u(y′, 0, s)p dy′ ds (1.4.5)

for (x, t) ∈ D × (0, T ). If u satisfies (1.4.5) with “ = ” replaced by “ ≥ ”, then u is
said to be a supersolution to (1.4.1) and (1.4.2) in [0, T ).

(iii) Let u be a solution to (1.4.1) and (1.4.2) in [0, T ). We say that u is a minimal
solution to (1.4.1) and (1.4.2) in [0, T ) if u(x, t) ≤ v(x, t) in D × (0, T ) for any
solution v of (1.4.1) and (1.4.2) in [0, T ).

The definition of G is contained in Notation.
Now we are ready to state our main results. In Theorem 1.4.1 we show the

existence and the uniqueness of the initial trace of the solution to (1.4.1) and give
necessary conditions on the initial trace. In what follows, we set p := 1 + 1/N .

Theorem 1.4.1 Let p > 1 and u be a solution to (1.4.1) in (0, T ), where 0 < T <∞.
Then there exists a unique Radon measure µ in RN with suppµ ⊂ D such that

lim
t→+0

∫
D

u(y, t)ϕ(y) dy =

∫
D

ϕ(y) dµ(y), ϕ ∈ C0(R
N). (1.4.6)

Furthermore, for any δ > 0, there exists γ1 = γ1(N, p, δ) > 0 such that

sup
x∈D

exp

(
−(1 + δ)

x2N
4σ2

)
µ(B(x, σ)) ≤ γ1 σ

N− 1
p−1 (1.4.7)

for 0 < σ ≤ T
1
2 . In particular, in the case of p = p, there exists γ′1 = γ′1(N, δ) > 0

such that

sup
x∈D

exp

(
−(1 + δ)

x2N
4σ2

)
µ(B(x, σ)) ≤ γ′1

[
log

(
e+

T
1
2

σ

)]−N

(1.4.8)

for 0 < σ ≤ T
1
2 .
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In Theorem 1.4.2 we show that the initial trace of the solution to (1.4.1) and (1.4.2)
coincides with its initial data.

Theorem 1.4.2 Let p > 1 and µ be a Radon measure in RN with suppµ ⊂ D.

(a) Let u be a solution to (1.4.1) and (1.4.2) in [0, T ) for some T > 0. Then
(1.4.6) holds.

(b) Let u be a solution to (1.4.1) in (0, T ) for some T > 0. Assume (1.4.6). Then
u is a solution to (1.4.1) and (1.4.2) in [0, T ).

Combining Theorem 1.4.1 with Theorem 1.4.2, we obtain necessary conditions on
the initial data for the solvability of problem (1.4.1) with (1.4.2).

Remark 1.4.1 (i) If 1 < p ≤ p∗ and µ ̸≡ 0 on D, then problem (1.4.1) possesses
no nonnegative global-in-time solutions. See [19] and [30].

(ii) Let u be a solution to (1.4.1) in [0,∞) and 1 < p ≤ p. It follows from (1.4.7) and
(1.4.8) that the initial trace of u must be identically zero in D. Then Theorem 1.4.2
leads the same conclusion as in Remark 1.4.1 (i) by taking T → ∞.

Next we state our main results on sufficient conditions for the solvability of prob-
lem (1.4.1) with (1.4.2).

Theorem 1.4.3 Let 1 < p < p, T > 0 and δ ∈ (0, 1). Set λ := (1 − δ)/4T . Then
there exists γ2 = γ2(N, p, δ) > 0 with the following property:

• If µ is a Radon measure in RN with suppµ ⊂ D satisfying

sup
x∈D

−
∫
B(x,T 1/2)

e−λy2N dµ(y) ≤ γ2T
− 1

2(p−1) , (1.4.9)

then there exists a solution u of (1.4.1) and (1.4.2) in [0, T ) such that

0 ≤ u(x, t) ≤ 2[S(t)µ](x), (x, t) ∈ D × (0, T ).

Theorem 1.4.4 Let p > 1, α ∈ (1, p), T > 0 and δ ∈ (0, 1). Set λ := (1 − δ)/4T .
Then there exists γ3 = γ3(N, p, α, δ) > 0 with the following property:

• Let µ1 be a Radon measure in RN such that suppµ1 ⊂ DT and

sup
x∈DT

−
∫
B(x,T 1/2)

e−λy2N dµ1(y) ≤ γ3T
− 1

2(p−1) . (1.4.10)

Let µ2 be a nonnegative measurable function in RN
+ such that suppµ2 ⊂ D′

T

and

sup
x∈D′

T

[
−
∫
B(x,σ)

µ2(y)
α dy

] 1
α

≤ γ3σ
− 1

p−1 for 0 < σ < T
1
2 . (1.4.11)
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Then there exists a solution u of (1.4.1) and (1.4.2) in [0, T ) with µ = µ1+µ2

such that

0 ≤ u(x, t) ≤ 2[S(t)µ1](x) + 2 ([S(t)µα
2 ](x))

1
α , (x, t) ∈ D × (0, T ).

Remark 1.4.2 Let p > p. Let γ > 0 be sufficiently small and

µ(x) = γ|x|−
1

p−1 in D.

Then, for any T > 0, µ satisfies the assumptions in Theorem 1.4.4 with some
α > 1. This implies that problem (1.4.1) with (1.4.2) possesses a global-in-time
solution. On the other hand, if γ is sufficiently large, then Theorem 1.5.1 implies
that problem (1.4.1) with (1.4.2) possesses no local-in-time solutions.

Theorem 1.4.5 Let p = p, T > 0 and δ ∈ (0, 1). Set λ := (1− δ)/4T and

Φ(s) := s[log(e+ s)]N , ρ(s) := s−N

[
log

(
e+

1

s

)]−N

for s > 0. (1.4.12)

Then there exists γ4 = γ4(N, δ) > 0 with the following property:

• Let µ1 be a Radon measure in RN such that suppµ1 ⊂ DT and

sup
x∈DT

−
∫
B(x,T 1/2)

e−λy2N dµ1(y) ≤ γ4T
− 1

2(p−1) . (1.4.13)

Let µ2 be a nonnegative measurable function in RN
+ such that suppµ2 ⊂ D′

T

and

sup
x∈D′

T

Φ−1

[
−
∫
B(x,σ)

Φ(T
1

2(p−1)µ2(y)) dy

]
≤ γ4ρ(σT

− 1
2 ) for 0 < σ < T

1
2 .

(1.4.14)
Then there exists a solution to (1.4.1) and (1.4.2) in [0, T ) with µ = µ1 + µ2

such that

0 ≤ u(x, t) ≤ 2[S(t)µ1](x) + dΦ−1 ([S(t)Φ(µ2)](x)) , (x, t) ∈ D × (0, T ),

where d is a positive constant depending only on p and β.

Remark 1.4.3 Let p = p. Let γ > 0 be sufficiently small and

µ(x) = γ|x|−N | log |x||−N−1χB(0,1/2) in D.

Then, for any sufficiently small β > 0, µ satisfies the assumptions in Theorem 1.4.5
with some T > 0. This implies that problem (1.4.1) with (1.4.2) possesses a local-
in-time solution. (See also Remark 1.4.1 (i).) On the other hand, if γ is sufficiently
large, then Theorem 1.4.1 implies that problem (1.4.1) with (1.4.2) possesses no
local-in-time solutions.
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As a corollary of our theorems, we have:

Corollary 1.4.1 Let δ be the Delta function in RN and x0 ∈ D. Let µ(y) = δ(y−x0)
in RN . Then there exists a solution to (1.4.1) and (1.4.2) in [0, T ) for some T > 0
if and only if, either

(i) x0 ∈ ∂RN
+ and 1 < p < p∗ or (ii) x0 ∈ RN

+ and p > 1.

We develop the arguments in [34] and prove our theorems. Let u be a solution
to (1.4.1) in (0, T ) for some T > 0. By the same argument as in [34] we can prove
the existence and the uniqueness of the initial trace of the solution u. Furthermore,
we study a lower estimate of the solution u near the boundary ∂D by the use of
∥u(τ)∥L1(B+(z,ρ)), where z ∈ D, ρ ∈ (0, T 1/2) and τ ∈ (0, T ). Combining this lower
estimate with [19, Lemma 2.1.2], we complete the proof of Theorem 1.5.1 in the case
of p ̸= p. For the case of p = p, we obtain an integral inequality with respect to the
quantity ∫

∂D

ΓN−1(y
′, t)u(y′, 0, t) dy′.

Then we apply a similar iteration argument as in [52, Section 2] to obtain ∥u(τ)∥L1(B+(z,ρ)),
where z ∈ D, ρ ∈ (0, T 1/2) and τ ∈ (0, T ). This completes the proof of Theorem 1.4.1
in the case of p = p. Theorem 1.4.2 is proved by a similar argument as in the proof
of [34, Theorem 1.2] with the aid of Theorem 1.4.1. Furthermore, we prove a lemma
on an estimate of an integral related to the nonlinear boundary condition and apply
the arguments in [34, 41, 61] to prove Theorems 1.4.3–1.4.5. Chapter 4 contains the
proofs of these results.

1.5 Application: Optimal estimates of the life span

of solutions to nonlinear parabolic problems

1.5.1 Introduction

Consider the nonnegative solution to the heat equation with a nonlinear boundary
condition {

∂tu = ∆u, x ∈ RN
+ , t > 0,

∂νu = up, x ∈ ∂RN
+ , t > 0,

(1.5.1)

with the initial condition

u(x, 0) = κψ(x), x ∈ D := RN
+ , (1.5.2)

where N ≥ 1, p > 1, κ > 0 and ψ is a nonnegative measurable function in RN
+ :=

{y ∈ RN : yN > 0}. The aim of this section is to obtain an optimal estimate of the
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life span T (κψ) of solutions to problem (1.5.1) with (1.5.2), as κ → ∞ or κ → +0.
In general, the life span T (κψ) is complicated and the research on the life span
T (κψ) has fascinated many mathematicians.

Problem (1.5.1) can be physically interpreted as a nonlinear radiation law and
it has been studied in many papers (see e.g., [6, 7, 19, 25, 26, 30, 35, 38, 43, 44]
and references therein). Among others, the author of this thesis and Ishige [35]
obtained the necessary conditions and the sufficient conditions for the solvability of
problem (1.5.1) and identified the strongest singularity. See Section 1.4. It follows
from these conditions that the behavior of the life span T (κψ) as κ → ∞ depends
on the singularity of ψ and that of the life span T (κψ) as κ→ +0 depends on that
of ψ at the space infinity. In this section, we investigate these relationships and give
an estimate to the life span T (κψ) as κ→ ∞ and κ→ +0. Our results are optimal
and give complete classifications of the behavior of the life span T (κψ) as κ → ∞
and κ→ +0 (See Subsection 1.4).

The main idea is to apply the necessary conditions and the sufficient conditions
for the solvability, which have been proved in [35] (see Section 1.4). Unfortunately,
since these conditions have many parameters and are complicated, careful calculation
is required to apply them.

1.5.2 Preliminaries

Before stating the main results of this section, we have to define the life span T (κψ)
of solutions to (1.5.1) with (1.5.2) strictly. To do that, we formulate the definition
of minimal solutions to (1.5.1).

Definition 1.5.1 Let u be a nonnegative and continuous function in D × (0, T ),
where 0 < T <∞.

• We say that u is a minimal solution to (1.5.1) in [0, T ) with u(0) = φ (in the
sense of Definition 1.4.1) if u is a solution to (1.5.1) in [0, T ) with u(0) = φ
and satisfies

u(x, t) ≤ w(x, t) in D × (0, T )

for any solution w to (1.5.1) in [0, T ) with w(0) = φ.

Since the minimal solution is unique, we can define the life span T (κψ) as following:

Definition 1.5.2 The life span T (κψ) of solutions to (1.5.1) with (1.5.2) is defined
by the maximal existence time of the minimal solution to (1.5.1) with (1.5.2).

1.5.3 Main results

Now we are ready to state the main results of this section. In Theorem 1.5.1 we
obtain the relationship between the singularity of ψ and the life span T (κψ) as
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κ → ∞ and give an optimal estimate to the life span as κ → ∞. Subsection 1.4
contains a brief summary of Theorem 1.5.1 (See Tables 1, 2 and 3).

Theorem 1.5.1 Assume that

ψ(x) := |x|A
[
log

(
e+

1

|x|

)]−B

χB+(0,1)(x) ∈ L1(RN
+ ) \ L∞(RN

+ ),

where −N ≤ A ≤ 0 and

B > 0 if A = 0, B ∈ R if −N < A < 0, B > 1 if A = −N.
(1.5.3)

Then T (κψ) → 0 as κ→ ∞ and following holds:

(i) T (κψ) behaves

T (κψ) ∼


[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 if A > −min

{
N,

1

p− 1

}
,[

κ(log κ)−B+1
]− 2(p−1)

A(p−1)+1 if 1 < p < p, A = −N, B > 1,

and

| log T (κψ)| ∼


κ

1
B if p > p∗, A = − 1

p− 1
, B > 0,

κ
1

B−N−1 if p = p∗, A = −N, B > N + 1,

as κ→ ∞;

(ii) Let p > p. If, either

A < −1/(p− 1) and B ∈ R or A = −1/(p− 1) and B < 0,

then problem (1.5.1) with (1.5.2) possesses no local-in-time solutions for all
κ > 0. If

A = −1/(p− 1) and B = 0,

then problem (1.5.1) with (1.5.2) possesses no local-in-time solutions for suf-
ficiently large κ > 0;

(iii) Let p = p. If
A = −N and B < N + 1,

then problem (1.5.1) with (1.5.2) possesses no local-in-time solutions for all
κ > 0. If

A = −N and B = N + 1,

then problem (1.5.1) with (1.5.2) possesses no local-in-time solutions for suf-
ficiently large κ > 0.
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We remark that when ψ is as in Theorem 1.5.1, ψ satisfies (1.5.3) if and only if
ψ ∈ L1

loc(R
N
+ ). It is obvious that T (κψ) = 0 for all κ > 0 if (1.5.3) does not hold.

Remark 1.5.1 Ishige and Sato [43] obtained following: if ψ satisfies

ψ(x) = |x|A

in a neighborhood of the origin, where

−N < A ≤ 0 if 1 < p < p and − 1

p− 1
< A ≤ 0 if p ≥ p,

then
T (κψ) ∼ κ−

2(p−1)
A(p−1)+1

for sufficiently large κ > 0. Compare with Theorem 1.5.1.

Theorem 1.5.2 gives an optimal estimate to the life span T (κψ) as κ→ +0 with
ψ behaving like |x|−A(A > 0) at the space infinity. Subsection 1.4 contains a brief
summary of Theorem 1.5.2 (See Tables 4 and 5).

Theorem 1.5.2 Let A > 0 and ψ(x) = (1 + |x|)−A. Then T (κψ) → ∞ as κ → 0
and following holds:

(1) Let 1 < p < p or 0 < A < 1/(p− 1). Then

T (κψ) ∼


κ−(

1
2(p−1)

− 1
2
min{A,N})

−1

if A ̸= N,(
κ−1

log(κ−1)

)( 1
2(p−1)

−N
2 )

−1

if A = N,

as κ→ +0;

(2) Let p = p and A ≥ 1/(p− 1). Then

log T (κψ) ∼

{
κ−(p−1) if A > N,

κ−
p−1
p if A = N,

as κ→ +0;

(3) Let p > p and A ≥ 1/(p − 1). Then problem (1.5.1) with (1.5.2) possesses a
global-in-time solution if κ > 0 is sufficiently small.
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Remark 1.5.2 An optimal estimate of the life span T (κψ) as κ → +0 have been
already obtained in some cases. Specifically, if ψ satisfies

ψ(x) = (1 + |x|)−A (A > 0)

for all x ∈ D, then the following holds:

T (κψ) ∼


κ−

(
1

2(p−1)
−A

2

)−1

if p ≥ p, 0 ≤ A < 1/(p− 1),

κ−
(

1
2(p−1)

− 1
2
min {A,N}

)−1

if p < p, A ̸= N,(
κ−1

log(κ−1)

)( 1
2(p−1)

−N
2

)−1

if p < p, A = N,

for sufficiently small κ > 0 (See also [43])

Finally, we show that limκ→0 Tκ = ∞ does not necessarily hold for problem (1.5.1)
if ψ has an exponential growth as xN → ∞.

Theorem 1.5.3 Let p > 1, λ > 0 and ψ(x) := exp (λx2N). Then

lim
κ→+0

T (κψ) = (4λ)−1. (1.5.4)

1.5.4 Summary of Theorems 1.5.1 and 1.5.2

By Theorem 1.5.1, we obtain following tables. These tables show the behavior of
the life span T (κψ) as κ → ∞ when ψ is as in Theorem 1.5.1. For simplicity of
notation, we write Tκ instead of T (κψ).

Table 1.1: In the case of 1 < p < p (as κ→ ∞)
HHHHHHB

A
A > −N A = −N

B > 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 Tκ ∼

[
κ(log κ)−B+1

]− 2(p−1)
A(p−1)+1

B ≤ 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 Tκ = 0
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Table 1.2: In the case of p > p (as κ→ ∞)
HHHHHHB

A
A > − 1

p−1
A = − 1

p−1
−N ≤ A < − 1

p−1

B > 0 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 | log Tκ| ∼ κ

1
B Tκ = 0

B = 0 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 Tκ = 0 Tκ = 0

B < 0 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 Tκ = 0 Tκ = 0

Table 1.3: In the case of p = p (as κ→ ∞)
HHHHHHB

A
A > −N A = −N

B > N + 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 | log Tκ| ∼ κ

1
B−N−1

B = N + 1 Tκ ∼
[
κ(log κ)−B

]− 2(p−1)
A(p−1)+1 Tκ = 0

B < N + 1 Tκ = 0 Tκ = 0

By Theorem 1.5.2, we obtain following tables. These tables show the behavior
of the life span T (κψ) as κ→ +0 when ψ is as in Theorem 1.5.2.

Table 1.4: In the case of A ̸= N (as κ→ +0)
HHHHHHp

A
A < 1

p−1
A = 1

p−1
A > 1

p−1

p < p Tκ ∼ κ−(
1

2(p−1)
− 1

2
min{A,N})

−1

Tκ ∼ κ−(
1

2(p−1)
−N

2 )
−1

Tκ ∼ κ−(
1

2(p−1)
−N

2 )
−1

p = p Tκ ∼ κ−(
1

2(p−1)
−A

2 )
−1

none log Tκ ∼ κ−(p−1)

p > p Tκ ∼ κ−(
1

2(p−1)
−A

2 )
−1

Tκ = ∞ Tκ = ∞
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Table 1.5: In the case of A = N (as κ→ +0)

HHHHHHp
A

A = N

p < p Tκ ∼
(

κ−1

log(κ−1)

)( 1
2(p−1)

−N
2 )

−1

p = p log Tκ ∼ κ−
p−1
p

p > p Tκ = ∞

The proofs of Theorems 1.5.1, 1.5.2 and 1.5.3 are contained in Chapter 5. Fur-
thermore, Chapter 5 deals with the optimal estimate of solutions to the Cauchy
problem for the higher order semilinear parabolic equation (see Section 5.3).
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