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Abstract 

During earthquakes, I-shaped beams installed in a braced structure are subjected to a bending moment 

and compressive and tensile axial forces transmitted from the braces. The buckling behavior of a beam 

under the impact of an earthquake is thereby more complex than that under no axial force or constant 

compressive axial forces considered in previous studies. In this paper, cyclic loading tests and numerical 

analyses are presented with emphasis on cyclic buckling behavior and moment and deformation capacity 

of the beams subjected to synchronized flexural and axial loading. As a result, it is confirmed that the 

I-shaped beams originate local buckling under compressive axial force, whereas the strength is regained 

up to the full plastic bending moment under tensile force. Based on the results obtained, this paper 

presents evaluation formulae for estimating the ultimate strength, plastic deformation capacity, and 

cumulative plastic deformation capacity. Finally, an empirical formula to convert cumulative plastic 

deformation capacity into hysteretic energy dissipation is proposed. 

 

Keywords 

I-shaped Beam, Reversed Axial Force, Local Buckling, Equivalent Width-thickness Ratio, Plastic 

Deformation Capacity, Cumulative Plastic Deformation Capacity 

 

1. Introduction 

1.1 Research Background 

Dampers have recently been used extensively in Japan for the steel structures to reduce the response and 

damage of buildings during the earthquakes because: 1) the high-rise buildings often requiring drift 

control are usually steel structures, 2) installation of dampers on the steel structures is simplest, and 3) 

evaluation of the amount of damping is relatively straightforward by virtue of the clear elastic hysteresis 

of the steel frames. 

The most widely used damper in Japan is the buckling restrained brace (BRB). When this brace is 
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installed, the beams in the frame are subjected to axial force as a horizontal component of the damper 

force during earthquakes, and the magnitude of this force can reach as much as 30% of the beam axial 

yield strength 1). The BRB installed in the steel frame shows a stable spindle-shape hysteresis loop 2), 

making the increase in beam axial force more rapid than the increase in the bending moment during 

sidewise swaying of the frame. Therefore, the stress of beams in a frame with BRB differs from the 

stress of the usual moment resisting frame, which carries a small axial force to the beams. However, this 

point is often neglected because the floor is usually assumed to be rigid axially when structural 

engineers analyze braced frames. Moreover, I-shaped beam sections are often designed to be deeper and 

narrower to economically enhance the flexural stiffness and strength like those in conventional moment 

resisting frame, although these beams originate unstable buckling behaviors such as the local buckling 

and lateral-torsional buckling compared with the H-shaped column sections. The current design 

guideline, “Recommended Provisions for Seismic Damping Systems Applied to Steel Structures” 3), 

therefore requires the use of the section as a column rather than a beam when the axial force in the beam 

is equal to or greater than 15% of its yield strength. The requirement, however, assumes a constant 

compressive axial force, in contrast to the transmitted forces from BRBs reversing between compression 

and tension during the earthquakes, and the buckling behaviors of the beam under such axial forces and 

cyclic bending moment considerably differs from those forces and bending moments considered in the 

guideline. This issue, therefore, must be addressed to clarify the performance of beams in the frame 

installed with BRBs. 

In contrast to this need, previous research 4)~12) has been limited only to the local buckling of I-shaped 

beams under the cyclically applied bending moment. The proposed the evaluation formulae of plastic 

deformation capacity and cumulative plastic deformation capacity  4), 11), 12) consider the width-thickness 

ratio of plate elements (flange and web) and shear span-to-depth ratio. Recently, Kimura extended the 

concept of the Bauschinger effect for evaluating the enlargement of hysteretic energy dissipation due to 

cyclic loading with respect to the enlargement due to equivalent monotonic loading 11). 
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However, these studies 11), 12) do not consider the cases of additional application of axial loading, which 

can cause early web local buckling and subsequent degradation of the beam. 

1.2 Organization 

This research evaluates the ultimate strength, plastic deformation capacity, cumulative plastic 

deformation capacity, and hysteretic energy dissipation of I-shaped beams subjected to cyclic bending 

deformation and alternating axial forces in braced structures. 

Kimura et al. experimentally demonstrated that the moment-rotation curves of the beams after reaching 

ultimate moment degrade more rapidly under a larger compressive axial force 13). This research will 

predict such behavior, as well as the ultimate strength, plastic deformation capacity, and cumulative 

plastic deformation capacity, by extending the evaluation formula proposed by Ikarashi and Hasegawa 

14). 

However, the tensile axial force case leads to significant hardening behavior due to the pinching of the 

moment-rotation curve. Considering this, a prediction rule for the hysteretic energy dissipation under 

alternating compressive and tensile axial forces will be proposed by extending Kimura’s formula for the 

case of no axial forces 11). 

The organization of this paper is as follows. Chapter 2 scrutinizes the local buckling behavior of the 

beams under reversed axial forces through cyclic loading tests and finite element analyses. Chapter 3 

applies the width-thickness ratio proposed in Refs. 11) and 12) to the results of loading tests and 

numerical analyses, and their applicability is investigated. In addition, the structural performance of 

I-shaped beams under the reversed axial forces are evaluated based on the width-thickness ratio 

considering the influence of the axial force in this research. Chapter 4 summarizes the findings obtained 

in this paper. 

 

2. Buckling Behavior of I-shaped Beams under Alternating Axial Forces 

In this chapter, the influence of the magnitude of axial force and difference of beam section on the 
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ultimate strength, plastic deformation capacity, and cumulative plastic deformation capacity of I-shaped 

beams under the alternating axial forces are investigated through cyclic loading tests and finite element 

analyses. 

2.1 Outline of Cyclic Loading Tests on I-shaped Beams under Alternating Axial Forces 

The experimental set-up is shown in Fig. 1. The specimen is installed between the slide table and the 

loading frame. Horizontal force is applied by the horizontal jack (1000 kN), and axial force is applied 

by the vertical jacks installed on the right and left sides of the frame. The out-of-plane displacements of 

loading frame and slide table are constrained. Fig. 2 shows the concept of the loading test. The 

displacement of the beam h is measured at the bottom, and the bending moment becomes zero at the 

center of the frame. The orientation of the axial force of the beam goes to the column-beam joint from 

the inflection point on the brace frame, in contrast to the columns, which are subjected to the constant 

axial force going vertically downward. Therefore, the orientation of the axial force deviates from the 

center of the web with an increment in the bending deformation. This experiment models the cantilever 

beam subjected to the reversed axial forces from the brace by fixing the orientation of the axial force on 

the centroid of the web and the jacks on the right and left sides give equal axial force (NL=NR). However, 

the direction of the axial force deviates from the centroid of the beam section, like the beams in the 

braced frame under a large deformation. 

Fig. 3 shows a case of the loading protocol. The loading is conducted as alternating gradual increase 

loadings (one cycle or two cycles) at one loading amplitude, the same as Ref. 13). The loading 

amplitude is controlled by a normalized horizontal displacement of h/p=1, 2, 4, or 6 regardless of the 

magnitude of the axial force, where p is the yield displacement (=Mpl2/3EI) and Mp is the full plastic 

bending moment. Fig. 4 shows the loading protocol of the axial force. Since the damper deformation 

prior to yielding is usually small 15), the damper deformation can be considered to indicate that the 

difference in the damper stiffness gives little influence on the ultimate strength and plastic deformation 

capacity. The loading protocol of the axial force is, thereby, determined to be the rigid-plastic hysteresis 
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to model the ideal damper. Thus, the direction of the axial force switches when the horizontal force is 

reversed to zero 13). Nmax in the vertical axis is a maximum axial force. Nmax is determined by the axial 

force ratio, n(=Nmax/Ny)=0, 0.15, 0.3, where Ny is the yield axial strength. 

Fig. 5 illustrates the position to attach the strain gauges. The beam length L, the distance from the 

endplate to the horizontal jack, is 1500 mm. The strain gauges investigate the distribution of 

out-of-plane deformation and the origination of local buckling. 

The list of specimens is tabulated in Table 1. The total number of specimen is 7: 4 of them are from 

Kimura’s experiment 13), and 3 are tested in this research. The specimens from Kimura’s experiment 13) 

are marked by * beside their designations. The parameters are the beam section, the number of the 

loading cycle at each loading amplitude, and the magnitude of the axial force ratio (n=0, 0.15, 0.3). The 

designation of the specimen is determined by the following rule: 1) the first letter is the beam section, 2) 

the second number is the loading cycle at each loading amplitude (1: one cycle, 2: two cycles), 3) the 

third letter is the loading protocol of the axial force (N: no axial force, R: alternating axial force), and 4) 

the last number is the magnitude of the axial force ratio, n. The full plastic bending moment, Mp, the 

yield bending moment, My, and the yield axial strength, Ny, are displayed beside the beam section. 

The material property is given in Table 2. The type of steel is SS400, and the yield stress varies from 

330 to 352N/mm2. 

2.2 Outline of Numerical Analyses on I-shaped Beams under Alternating Axial Forces 

In this section, the elasto-plastic large deformation analyses are carried out using Abaqus (version 

6.14-5), an FEA software package 16), manufactured by Dassault Systems. Fig. 6 illustrates the 

numerical model. The numerical model consists of 4-noded shell elements, and the beam-end is defined 

as a rigid body. The numerical model ranging from z=0 to L1 (=L/3) is divided into 8 elements in the 

flange and 16 elements in the web to grasp the buckling behavior accurately. The partition becomes 

coarse near the free end. The horizontal and axial forces are applied at the top of the numerical model. 

Imperfections of the flange and web plates are defined based on the deformation of the buckling 
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eigenvalue analysis, and their maximum magnitudes are standardized as 1% of the flange and web 

thicknesses, respectively. One side of the beam is a fixed end, and the other side is fixed on the x-axis. 

The loading protocol of the horizontal force and the axial force is the alternating gradual increase in 

loading (Fig. 3) and alternating axial force (Fig. 4), respectively. The horizontal force is controlled by 

the normalized horizontal displacement h/p=1, 2, 4, 6, 8, or 10 regardless of the magnitude of the axial 

force. The axial force reverses when the horizontal force, P, is reversed to zero, the same as the cyclic 

loading test stated in the previous section. Fig. 7 illustrates the way to control the orientation of the axial 

force. One element is attached to connect the bottom and top of the numerical model and the axial force 

is applied in parallel to the added element. The element remains elastic, and its stiffness is small so that 

it can carry a small load. 

The list of numerical models is tabulated in Table 3. The analytical parameters possess the different 

flange width, flange thickness, and web thickness, whereas the beam height and beam length are fixed 

as H=300 mm and L=1500 mm, respectively. The normalized flange width-thickness ratio  

is 0.20 to 0.35, and the normalized web width-thickness ratio  is 1.34 to 2.40. The beams 

are classified as P-I-1 or P-II as beams and P-I-2 or P-III for columns in “Recommendation for Limit 

State Design of Steel Structures” 17) published by the Architectural Institute of Japan. The equivalent 

width-thickness ratio is calculated by the following equation proposed by Kadono et al. 18). 

2 2
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In addition, the new width-thickness ratio, Wf, is proposed by Ikarashi et al. 12) as an evaluation index of 
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 (4) 

where Af is the flange cross sectional area, Aw is the web cross sectional area,  is the gradient of the 

flexural moment, and w is the web aspect ratio. The slenderness ratio of the numerical model is 

classified as L-I 17). 

Fig. 8 shows the classification of the width-thickness ratio guided by the Architectural Institute of Japan. 

The gray lines are the classification for beams (P-I-1, P-I-2, and P-II), and the black lines are the 

classification for columns (P-I-1, P-I-2, and P-II). Ref. 17) assures us that the beams classified as P-I-1 

possess the plastic deformation capacity ('max =max/p -1), 'max ≥ 4, P-I-2 possesses, 'max ≥ 2, P-II 

possesses, 'max ≥ 0, where max is the rotation at ultimate flexural strength and p is the yield rotation 

(=Mp/(3EI/L)). All specimens in this research belong to P-I-1 or P-II in the beam classification scheme, 

and P-I-1 to P-III in the column classification scheme. 

The magnitude of the axial force ratio varies from 0 to 0.3 with an interval of 0.05. The number of 

loading cycles in each loading amplitude is one or two cycles. The two cycles of loading are conducted 

only at n=0, 0.15, and 0.3. The yield strength is fixed as 300 N/mm2 regardless of the plate thickness to 

target the influence of beam sections and the magnitude of the axial force on the structural performance. 

2.3 Local Buckling Behavior of I-shaped Beams under Alternating Axial Forces 

Fig. 9 shows the hysteresis curves of I-shaped beams under the cyclic loading. Black solid lines depict 

analytical results, and gray dotted lines illustrate experimental results. Figs. 9(a) and (b) are the 

hysteresis curves obtained from the beam section with H-300×150×6×9. Fig. 9(a) is under no axial force, 

and Fig. 9(b) is under alternating axial force, whose magnitude is 30% of the yield axial force. Figs. 9(c) 

and (d) are the hysteresis curves obtained from the beam section with H-300×125×6×9. Fig. 9(c) is 
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under no axial force, and Fig. 9(d) is under alternating axial force, whose magnitude is 30% of the yield 

axial force. The vertical axis and horizontal axis are normalized by the full plastic bending moment Mp, 

which neglects the influence of axial force and yield rotation p (=Mp/(3EI/L)), respectively. Symbols 

(triangle or inverted triangle) give maximum bending moment in numerical analyses and experiments, 

respectively. 

In Fig. 9(a), the strength deterioration due to the local buckling on the flange and the web occurs at 

/p=2.5 in the cycle of /p=4, and another side of the flange originates the local buckling at /p=-2.0 

in the cycle of /p=4. In contrast, as given in Fig. 9(b), although the local buckling originates at 

/p=-1.4 under the compressive axial force (negative side loading) in the cycle of /p=2, the residual 

deformation is stretched by tensile axial force (positive side loading) and bending moment increases up 

to the final loading cycle (/p=6). Figs. 9(c) and (d) show the same characteristics as Figs. 9(a) and (b). 

As a result, the ultimate strength and hysteretic energy dissipation under the alternating axial force 

become larger than the ultimate strength and hysteretic energy dissipation under the constant 

compressive axial force. 

From Fig. 9, the strength deterioration is more severe in the wider beam width (B=150mm) than in 125 

mm of beam width regardless of the existence of the axial force. In addition, the amount of energy 

dissipation and flexural stiffness in the positive side loading in 150 mm of beam width decrease than in 

125mm of beam width. 

The numerical model grasps the ultimate strength and deflection angle when the beam reaches the 

ultimate strength, the gradient of strength deterioration, and the pinching effect under the tensile axial 

force, proving the validity of the analysis model. 

Fig. 10 displays the residual deformation (/p=6) under no axial force and n=0.3 obtained from the 

cyclic loading tests and numerical analyses in H-300×150×6×9. The local buckling can be confirmed to 

occur on the compressive side of the flange in cyclic loading tests and numerical analyses, both under 

no axial force and n=0.3. The web buckling also originates with the local buckling of the flange. The 
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residual deformation appears on both sides of the flange under no axial force. However, the residual 

deformation on the flange, which is subjected to compressive stress due to bending on the positive side 

loading, decreases than under no axial force, whereas its magnitude is almost the same on the negative 

side loading under the alternating axial force. The deformation of the web buckling slightly enlarges due 

to the compressive axial force, as shown in Fig. 10. 

Fig. 11 illustrates the distribution of out-of-plane strain along the beam axis obtained from cyclic 

loading tests and numerical analyses in the cycle of /p=4. The out-of-plane strain is calculated as a 

remainder between left and right sides of the in-plane strain on a flange plate. The in-plane strain is 

computed by removing the plate bending through averaging the axial strain on both sides of the flange 

plate. Figs. 11(a) and (b) are the cases of no axial force and n=0.3, respectively. A small out-of-plane 

strain originates in H-300×150×6×9 (No. 2), whereas 0.5% and 4.0% of out-of-plane strain under no 

axial force and n=0.3 originates in H-300×125×6×9 (No. 8) at a maximum, indicating that beams with 

slender sections tend to collapse with combined (local and lateral-torsional) buckling near the fixed end. 

Fig. 12 shows the contour figures of out-of-plane deformation under n=0.3 in the cycle of /p=6. Figs. 

12(a) and (b) are obtained from H-300×150×6×9 (No. 2) and H-300×125×6×9 (No. 8), respectively. In 

Figs. 12 (a-2) and (b-2), the out-of-plane deformation is constrained at 0.25 L from the fixed end. With 

regard to the position of the out-of-plane deformation, it can be assumed to be 0.3 L to 0.4 L based on 

the optimum bracing position, which switches the first buckling mode to the secondary mode, derived 

by Kimura and Yoshino 19); previous cyclic loading tests on I-shaped beams collapsed with the local 

buckling in the tests conducted by Ikarashi et al. 20); and the wavelength of local buckling along the 

beam axis obtained from the strain distribution on the flange reported by Kimura 11) under no axial force. 

In addition, under compressive axial force, the preliminary analyses confirm that the wavelength of the 

local buckling becomes shorter, and the out-of-plane deformation due to the lateral-torsional buckling 

tends to be larger than that under no axial force. Therefore, the position of constraint for out-of-plane 

deformation is determined as 0.25 L, which is nearer to the fixed end than the optimum bracing position 
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by Kimura and Yoshino 19) and cyclic loading tests by Ikarashi et al. 20). In Fig. 12(a), H-300×150×6×9 

(No. 2), which possesses a larger flange width, originates local buckling only, regardless of the 

existence of out-of-plane constraint, whereas H-300×125×6×9 (No. 8), which possesses a smaller flange 

width, shows lateral deformation from the fixed end to 0.25 L and originates the combined buckling in 

Fig. 12(b-1). In contrast, an I-shaped beam with out-of-plane constraint gives the local buckling only in 

Fig. 12(b-2). 

Fig. 13 investigates the influence of out-of-plane constraint on skeleton curves. Figs. 13(a) and (b) 

display the skeleton curves on the negative side loading (under compressive axial force) arranged by the 

magnitude of the axial force ratio in H-300×150×6×9 (No. 2) and H-300×125×6×9 (No. 8), respectively. 

The skeleton curve is drawn by connecting the skeleton parts, where the hysteresis curve exceeds the 

maximum strength in the previous loading cycle, with reference to Kimura’s experiment 11). In addition, 

after the strength deterioration occurs, the skeleton parts, which dip below the strength at the unloading 

point in the previous loading cycle, are coupled. The vertical axis and the horizontal axis are normalized 

by the full plastic bending moment Mpc, which considers the influence of the axial force and 

corresponding yield rotation pc (=Mpc/(3EI/L)), respectively. Fig. 13 also depicts the skeleton curves 

obtained from the numerical model under one time loading in each loading cycle. The skeleton curves 

of H-300×150×6×9 (No. 2), which has a wider flange width, are almost the same regardless of the 

existence of out-of-plane constraint. On the other hand, the ultimate strength and plastic deformation 

capacity decrease when the out-of-plane constraint does not exist in H-300×125×6×9 (No. 8), which 

possesses a smaller flange width. The difference between both results becomes larger when the axial 

force is applied on the beam, proving that the structural performance of the beam collapsed with 

combined buckling decreases than the collapse with dominant local buckling. 

In this paper, the out-of-plane constraint is installed at 0.25 L from the fixed end to investigate the 

structural performance governed by the local buckling. Additionally, the experimental result obtained 

from H-300×150×6×9, which collapses with the local buckling, is considered below.  
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3. Evaluation for Structural Performance of I-shaped Beams under Alternating Axial Forces 

Collapsed with Local Buckling 

3.1 Ultimate Strength, Plastic Deformation Capacity, and Cumulative Plastic Deformation 

Capacity 

In this section, the structural performance is evaluated based on the numerical results of I-shaped beams 

with out-of-plane constraint at 0.25 L from the fixed end. 

Fig. 14 shows the relationship between the structural performance and magnitude of the axial force. Figs. 

14(a), (b), and (c) illustrate the ultimate strength ratio cmax (=Mmax/Mpc), plastic deformation capacity 

’cmax (= (max/pc) - 1), and cumulative plastic deformation capacity cmax (=1+(cmax+1)('cmax-1)/2), 

which is the normalized area of the skeleton curve up to the ultimate strength 13). In Fig. 14, the 

structural performance can be confirmed to deteriorate with the increase in the magnitude of the axial 

force, although their values are inconsistent, depending on the beam sections even under the same 

magnitude of axial force. “Recommended Provisions for Seismic Damping Systems Applied to Steel 

Structures” 3) published by the Architectural Institute of Japan is defined to apply the width-thickness 

ranks of the columns for the beams subjected to equal to or greater than 15% of the compressive axial 

force to the yield axial force 3). Ref. 17) assures us that the beams classified as P-I-1 possess 'max ≥ 4, 

P-I-2 possesses 'max ≥ 2, and P-II possesses 'max ≥ 0. Fig. 14(b) displays the plastic deformation 

capacity of H-300×150×8×10 (No.5) and H-300×125×8×10 (No.10), which are classified as P-I-2 in 

columns, exceeding 4, which satisfies the criteria of P-I-1, under n=0.3. However, the plastic 

deformation capacity under n=0.15 surpasses 4 in all numerical models except H-300×150×5×9 (No.1), 

although they are categorized as P-III in columns. This trend indicates that “Recommended Provisions 

for Seismic Damping Systems Applied to Steel Structures” guides the conservative criteria for beams in 

braced structures 3). 

Fig. 15 depicts the relationship between the equivalent width-thickness ratios and the structural 

performance of beams. Figs. 15(a), (b), and (c) show the ultimate strength ratio, plastic deformation 
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capacity, and cumulative plastic deformation capacity, respectively. The horizontal axis is the 

equivalent width-thickness ratio calculated by Eq. (1). The structural capacities of beams degrade with 

the increase in the equivalent width-thickness ratio. The plastic deformation capacity exceeds 4 when 

the equivalent width-thickness ratio is smaller than 0.42 under n=0.15 and 0.32 under n=0.3. However, 

the evaluation formulae cannot be proposed directly since the ultimate strength ratio, plastic 

deformation capacity, and cumulative plastic deformation capacity differ depending on the magnitude of 

axial force among the same equivalent width-thickness ratio. In addition, the plots scatter approximately 

0.34 to 0.4 in the equivalent width-thickness ratio under n=0.3 in Figs. 15(a), (b), and (c). 

Therefore, this section investigates the structural performance of I-shaped beam with different web 

thickness ratios and flange thickness ratios within the same equivalent width-thickness ratio. Fig. 16 

gives the skeleton curves of beams which possess different web thickness and flange thickness among 

the same equivalent width-thickness ratio. The skeleton curves on the negative side (under compressive 

axial force) are drawn as in Fig. 13. The vertical axis and the horizontal axis are normalized by the full 

plastic bending moment, Mpc, and corresponding yield rotation pc (=Mpc/(3EI/L)), respectively. Fig 

16(a) compares between H-300×150×6×9 (No. 2) and H-300×125×6×7.5 (No. 7), whose equivalent 

width-thickness ratio is 0.42, and Fig. 16(b) is for H-300×150×6×12 (No. 4) and H-300×150×8×10 (No. 

5), whose equivalent width-thickness ratio is 0.36. In Fig. 15(a), the skeleton curves match with each 

other regardless of the magnitude of the axial force. In contrast, the ultimate strength ratio and plastic 

deformation capacity of H-300×150×6×12 (No. 4), which possesses a larger web-thickness ratio, 

become less than the ultimate strength ratio and plastic deformation capacity of H-300×150×8×10 (No. 

5). The gaps between the beam sections are 7%, 79%, and 87% in the ultimate strength ratio, plastic 

deformation capacity, and cumulative plastic deformation capacity, respectively. Although the 

equivalent width-thickness ratio calculated by Eq. (1) considers the contribution of the flange 

width-thickness ratio and web width-thickness ratio uniformly, irrespective of the magnitude of the 

axial force, the ultimate strength ratio, plastic deformation capacity, and cumulative plastic deformation 
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capacity deteriorate when the I-shaped beams have a large flange-thickness ratio as the web local 

buckling can originate in smaller deformations, indicating the necessity to reset the influence of the web 

width-thickness ratio in the equivalent width-thickness ratio under a large axial force. 

3.2 Validity of Previous Evaluation Formulae and Application of Equivalent Width-thickness 

Ratio Considering Compressive Axial Force 

Fig. 17 illustrates the comparison between the predicted values by Ikarashi 14) and analytical results, 

experimental results in this paper, and previous experimental results by Kimura 11). The ultimate 

strength ratio and plastic deformation capacity in Figs. 17(a) and (b) are calculated with a new 

width-thickness ratio, Wf, and cumulative plastic deformation capacity in Fig. 17(c) is obtained as 

cmax=1+(cmax+1)('cmax-1)/2 using the ultimate strength ratio and plastic deformation capacity with 

reference to Kimura’s research 11). In Figs. 17(a) and (b), almost all ultimate strength ratios and plastic 

deformation capacities exceed the predicted values because Ikarashi et al. 14) set the evaluation formulae 

as the lower bound of experimental and analytical results. The assessed numbers agree with numerical 

and experimental values in the smaller region of the ultimate strength ratio and plastic deformation 

capacity. However, the conservativism is enlarged in the larger region, assuming that the previous 

formulae cannot be applied to the alternating axial forces, as Ikarashi et al. 14) targets the constant 

compressive axial force. 

Fig. 18 shows the comparison of skeleton curves of H-300×150×6×9 and H-300×125×6×9 under a 

constant compressive axial force and alternating axial forces. The ultimate strength ratio, plastic 

deformation capacity, and cumulative plastic deformation capacity under the alternating axial forces 

may be 1.1 times (H-300×150×6×9, n=0.15), 2.1 times (H-300×150×6×9, n=0.15), or 2.2 times 

(H-300×150×6×9, n=0.15) higher than those parameters under the constant compressive axial force, 

respectively, because the residual deformation of local buckling is stretched by the tensile axial force. 

Thus, the evaluation formulae 14) of Ikarashi underestimate the numerical and experimental results under 

alternating axial forces. 
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Therefore, this chapter establishes the evaluation formulae for the ultimate strength ratio, plastic 

deformation capacity, and cumulative plastic deformation capacity considering the influence of the axial 

force based on Kimura’s report 11). Fig. 15 and Fig. 16 display the inconsistency of the relationship 

between structural performance of beams and equivalent width-thickness ratios under the large 

magnitude of the axial force, which evinces the necessity to reset the influence of the web-thickness 

ratio. The modified equivalent width-thickness ratio is therefore proposed to estimate the analytical and 

experimental results in Eqs. (5) and (6). 

2 2

1 1

1

yf yw

f f weq

b b d'

t E t C n' E t

      
               

 (5) 

1max

y ,web

N
n'

N
   (6) 

where Nmax is the maximum axial force and Ny,web is the web yield axial force. Here, the coefficient C is 

defined as 41 since this paper focuses on beams. 

Fig. 19 gives the ultimate strength ratio, plastic deformation capacity, and cumulative plastic deformation 

capacity obtained from numerical analyses and experiments arranged by the modified equivalent 

width-thickness ratio. Figs. 19(a), (b), and (c) are the ultimate strength ratio, plastic deformation capacity, 

cumulative plastic deformation capacity, respectively. Symbols depict the experimental and numerical 

results in this paper, and the experimental values collapsed with the local buckling in Kimura’s 

experiment 11) are also included in Figs. 19(a), (b), and (c). 

The modified equivalent width-thickness ratio can arrange the structural performance of the I-shaped 

beams under the alternating axial forces with less scatter regardless of the beam sections and magnitude 

of the axial force ratio. 

Based on the findings above, the evaluation formulae for the ultimate strength ratio, plastic deformation 

capacity, and cumulative plastic deformation capacity are proposed as Eqs. (7), (8), and (9) by replacing 

the width-thickness ratio of previous formulae in Kimura’s research 11) by the modified equivalent 
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width-thickness ratio. In addition, the scope of application of Eqs. (7), (8), and (9) is fixed as 

(b/tf)eq’≤0.68 as structural performance does not become negative values. 

 
0 07 0 1

1 1 0 01 1 1
0 2

cmax

f xi
eq

. . N
. . L H .

b t ' .




    
             
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
 (8) 

  1 1

2

cmax cmax cmax

cmax

'  


  
  (9) 

The proposed formulae are illustrated in Fig. 19. The error rates are indicated as ±10% in Fig. 19(a) and 

±30% in Figs. 19(b) and (c) as the lower and upper bounds. In Fig. 19, the I-shaped beams under the 

alternating axial forces satisfy the required plastic deformation capacity of P-I-1 ('max≥4) and P-I-2 

('max≥2) in “Recommendation for Limit State Design of Steel Structures” 17) published by the 

Architectural Institute of Japan when the modified equivalent width-thickness ratio is smaller than 0.43 

and 0.50, respectively. 

Fig. 20 illustrates the structural performance obtained from numerical analyses, experiments, and 

Kimura’s experiment 11) arranged by the modified Wf, Wf’, which considers the influence of the axial 

force on the web width-thickness ratio. The equation of Wf’ is shown in Eq. (10). 

2 2

2 2

1 1 25 0
3 43

1
f

fw

y y

b td t .
W ' .

n' k kE E 

    
      
          

 (10) 

The coefficients k and  are obtained by Eqs. (3) and (4), respectively. Figs. 19(a), (b), and (c) show the 

ultimate strength ratio, plastic deformation capacity, and cumulative plastic deformation capacity, 

respectively. All structural performance have a negative relationship with Wf’, and the scatter is found to 

be smaller than in Figs. 15(a), (b), and (c). The applicable scope range is determined as Wf’≤1.5, which 

corresponds to 0.68 in the modified equivalent width-thickness ratio. 

3.3 Bauschinger Effect Coefficient and Hysteretic Energy Dissipation 
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Fig. 21 illustrates the relationship between the Bauschinger effect coefficient, b, of I-shaped beams 

under the alternating axial forces and number of loading cycles and cumulative loading amplitude. The 

Bauschinger effect coefficient is defined as the proportion of hysteretic energy dissipation in the 

cumulative hysteresis curve to the cumulative plastic deformation capacity in the skeleton curve. Ref. 21) 

guides us to set the Bauschinger effect coefficient as a constant, 2.0 for beams and 1.67 for columns. 

However, Kimura revealed that the Bauschinger effect coefficient relates to the number of loading cycles 

and cumulative loading amplitude, and the coefficient can be evaluated by the equation below 11). In 

addition, the vertical axis in Fig. 21 is the second term of Eq. (11). 

 
1

1 0.5 1 logB xii
N 


   

 (11) 

where N is the number of loading cycles and xi is the cumulative normalized loading amplitude. 

Although N becomes 0.5 (half cycle) under the monotonic loading, this research determines N as the 

same as Kimura’s research 11). The only first loading is counted when the loading remains in the elastic 

region during the cyclic loading. This research also applies Eq. (11) to the beams under the alternating 

axial forces and investigates its validity. The experimental results collapsed with the local buckling in 

Kimura’s experiment 11) are also given in Fig. 21. The Eq. (11) is illustrated by a dashed line in Fig. 21. 

The Bauschinger effect coefficient increases with enlargement of the number of loading cycles and 

cumulative normalized loading amplitude and is roughly estimated by Eq. (11). 

Therefore, the hysteretic energy dissipation of I-shaped beams under the alternating axial forces can be 

calculated as a product of cumulative energy dissipation, cmax, in Eq. (9) and the Bauschinger effect 

coefficient, b, in Eq. (11). Fig. 22 displays the comparison of the hysteretic energy dissipation obtained 

from evaluation formulae and the numerical analyses and experiments. The predicted values agree with 

the analytical and experimental results. The hysteretic energy dissipation under the compressive axial 

force, therefore, can be estimated by the proposed formulae in this research. 

Next, the hysteretic energy dissipation under the tensile axial force is investigated. Fig. 23 gives the 

comparison of the hysteretic energy dissipation of the I-shaped beams under compressive axial force and 
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tensile axial force. The vertical axis and the horizontal axis are the positive side loading (tensile axial 

force) and negative side loading (compressive axial force), respectively. The hysteretic energy 

dissipation in the second loading under two cycles of loading in each loading amplitude is targeted in this 

comparison. The hysteretic energy dissipation is almost the same in the small and mid-magnitude loading 

amplitudes (/p=1, 2, 4, 6). However, the hysteretic energy dissipation on the positive side loading 

becomes greater than the hysteretic energy dissipation on the negative side loading in the large 

magnitude of loading amplitude (/p=8, 10) under no axial force because the local buckling originates 

on the negative side loading, while it does not happen on the positive side loading. 

However, the hysteretic energy dissipation under the alternating axial force is almost the same in the 

positive (tensile axial force) and negative (compressive axial force) side loading, explained by the 

hysteresis curve in Fig. 24. Figs. 24(a) and (b) illustrate the hysteresis curves in the positive and negative 

side loading under n=0.15 and n=0.3 in /p=6, respectively. The I-shaped beam under the alternating 

axial forces originates the strength deterioration due to local buckling under the compressive axial force, 

whereas the pinching, which gives a smaller flexural gradient, happens under the tensile axial force. Thus, 

the hysteretic energy dissipation on both sides of the loading do not differ from each other. The obtained 

energy dissipation under compressive axial force, therefore, can be applied to the obtained energy 

dissipation under the tensile axial force. 

 

4. Summary and Conclusion 

In this chapter, the ultimate strength ratio, plastic deformation capacity, cumulative plastic deformation 

capacity, and hysteretic energy dissipation under the compressive axial force are evaluated through 

cyclic loading tests and numerical analyses on the I-shaped beams connected with buckling restrained 

braces. The obtained findings are summarized as follows. 

1) The ultimate strength ratio, plastic deformation capacity, and cumulative plastic deformation 

capacity of I-shaped beam collapsed with the local buckling under the alternating axial forces 
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degrade with the increase in the magnitude of the axial force ratio. The required plastic deformation 

capacity for P-I-1 can be secured when the equivalent width-thickness ratio is less than 0.42 under 

n=0.15 and 0.32 under n=0.3. 

2) The ultimate strength ratio, plastic deformation capacity, and cumulative plastic deformation 

capacity of I-shaped beams under the alternating axial forces are assessed regardless of the beam 

sections and magnitude of the axial force ratio by the modified equivalent width-thickness ratio, 

which considers the proportion of the axial force to web yield axial strength as a coefficient. The 

structural performance above is predicted by the proposed formulae employing the modified 

equivalent width-thickness ratio as shown in Eqs. (7), (8), and (9). In addition, the modified Wf, 

which is capable of estimating the structural capacities, can be calculated using the same coefficient 

as the modified equivalent width-thickness ratio. 

3) The Bauschinger effect coefficient of I-shaped beams under the alternating axial forces increases 

with enlargement of the number of loading cycles and normalized cumulative loading amplitude the 

same as under no axial force. In addition, the coefficient can be assessed by Eq. (11). The hysteretic 

energy dissipation of I-shaped beams under compressive axial force is, therefore, calculated as a 

product of the cumulative plastic deformation capacity (Eq. (9)) and the Bauschinger effect 

coefficient (Eq. (11)). 

4) The total hysteretic energy dissipation is obtained by doubling the hysteretic energy dissipation 

under compressive axial force since the hysteretic energy dissipation under the tensile axial force is 

almost the same as under the compressive axial force. 
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Appendix I. Investigation of the Validity of the Combined Hardening Rule in Numerical Analysis 

The validity of the combined hardening rule was investigated through the numerical analysis of the 

hourglass-shaped specimen. Fig. A-1 shows the numerical model of the hourglass-shaped specimen 

consisting of 8-noded solid elements. The length of the specimen is 145 mm, and diameters at the center 

and end of the specimen are 10 mm and 20 mm, respectively. The numerical model in divided into 50 

elements along the axis of the specimen, 32 elements along the circumference, and 7 elements along the 

radius. Fig. A-1 illustrates the deformation at =0.05. 

Fig. A-2 depicts the comparison of stress-strain curves between the experimental 22) and numerical 

results. The experimental and numerical results agree well with each other, and the validity of the 

numerical model is proven here. 

 

Figure Captions 

Fig 1.Loading apparatus 

Fig. 2 Concept of the loading test 

Fig. 3 Loading protocol for the horizontal force 

Fig. 4 Loading protocol for the vertical force 

Fig. 5 Position of the displacement and strain gauges 
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Fig. 6 Numerical model 

Fig. 7 Method to apply axial force 

Fig. 8 Flange and web width-thickness ratio of the numerical model and guideline value of the AIJ 

Fig. 9 Comparison between experimental and numerical results (hysteresis curve): (a) No. 2 (n=0); (b) 

No. 2 (n=0.3); (c) No. 8 (n=0); (d) No. 8 (n=0.3) 

Fig. 10 Local buckling deformation (/p=6): (a) n=0 (experiment); (b) n=0.3 (experiment); (c) n=0 

(analysis); (d) n=0.3 (analysis) 

Fig. 11 Distribution of out-of-plane deformation (/p=4): (a) n=0; (b) n=0.3 

Fig. 12 Out-of-plane deformation (/p=6): (a-1) without constraint; (a-2) with constraint; (b-1) without 

constraint; (b-2) with constraint 

Fig. 13 Difference of skeleton curves due to out-of-plane constraint: (a) H-300×150×6×9; (b) 

H-300×125×6×9 

Fig. 14 Relation between magnitude of axial force and structural performance: (a) ultimate strength ratio; 

(b) plastic deformation capacity; (c) cumulative plastic deformation capacity 

Fig. 15 Relation between equivalent width-thickness ratio and structural performance: (a) ultimate 

strength ratio; (b) plastic deformation capacity; (c) cumulative plastic deformation capacity 

Fig. 16 Skeleton curves for the same equivalent width-thickness ratios: (a) (b/tf)eq=0.42; (b) (b/tf)eq=0.36 

Fig. 17 Comparison between experimental and numerical results and predicted values: (a) ultimate 

strength ratio; (b) plastic deformation capacity; (c) cumulative plastic deformation capacity 

Fig. 18 Skeleton curves under different loading protocol for the axial force: (a) H-300×150×6×9; (b) 

H-300×125×6×9 

Fig. 19 Relation between modified equivalent width-thickness ratio and structural performance: (a) 

ultimate strength ratio; (b) plastic deformation capacity; (c) cumulative plastic deformation 

capacity 

Fig. 20 Relation between modified Wf and structural performance: (a) ultimate strength ratio; (b) plastic 
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deformation capacity; (c) cumulative plastic deformation capacity 

Fig. 21 Relation between Bauschinger effect coefficient and number of loading cycles and amplitude: (a) 

all data; (b) horizontal axis limited to 5 

Fig. 22 Comparison of hysteretic energy absorption between numerical and predicted results 

Fig. 23 Comparison of hysteretic energy absorption under tensile and compressive axial forces 

Fig. 24 Hysteretic curves under tensile and compressive axial forces at /p=6: (a) n=0.15; (b) n=0.3 

Fig. A-1 Numerical model (=0.05) 

Fig. A-2 Stress-strain curve 
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Table 1 List of specimens 

Designation 
Loading protocol Magnitude of 

axial force Horizontal Vertical 

A-1-N one cycle no - 

A-1-R0.3 one cycle alternating ±0.3 

A-2-R0.3 two cycles alternating ±0.3 

B-1-N* one cycle no - 

B-1-R0.3* one cycle alternating ±0.3 

B-2-R0.15* two cycles alternating ±0.15 

B-2-R0.3* two cycles alternating ±0.3 

Number of cycles for the same displacement amplitude is 

indicated. The displacement amplitude is increased after 

completing the cycle. 

 

  

A - 2 - R0.3

Protocol of axial force
     N: no   R: alternating

Number of cycles
     1: one, 2: two cyles in one loading amplitude

Beam section
     A: H-300×150×6×9    178  0.0067  154  0.0058  160  1,546
     B: H-300×125×6×9    155  0.0067  136  0.0059  138  1,388

Mp p Mpc pc My Ny

kNm      rad        kNm       rad        kNm     kN

Magnitude of axial force ratio
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Table 2 Material properties 

 Material 
E 

N/mm2 

Est 

N/mm2 
y 

N/mm2 

u 

N/mm2 

u 

% 

PL-6 SS400 204,000 3,100 330 444 14.9 

PL-9 SS400 213,000 2,700 352 430 14.7 

PL-12 SS400 211,000 2,600 345 430 14.4 

E: Young’s modulus, Est: strain hardening modulus, y: yield stress, u: ultimate stress, u: strain at u 
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Table 3 Parameters of the numerical models 

No. 
Section [mm] L 

[mm] 

(b/tf)eq 
Wf 

Classification Slenderness 

ratio 

Classifi

cation 
N/Ny 

Number 

of cycles H B tw tf Beam Column Beam Column 

1 300 150 5 9 

1500 

0.46 0.56 0.68 P-I-1 P-III 0.15 

L-I 

0, 

0.05, 

0.1, 

0.15, 

0.2, 

0.25, 

0.3 

one, 

two 

(only 

under 

N/Ny=0, 

0.15, 0.3) 

2* 300 150 6 9 0.42 0.50 0.62 P-I-1 P-III 0.17 

3 300 150 6 11 0.39 0.46 0.57 P-I-1 P-III 0.15 

4 300 150 6 12 0.36 0.44 0.54 P-I-1 P-III 0.15 

5 300 150 8 10 0.36 0.40 0.52 P-I-1 P-I-2 0.16 

6 300 125 4.5 9 0.46 0.58 0.68 P-II P-III 0.18 

7 300 125 6 7.5 0.42 0.50 0.62 P-I-1 P-III 0.19 

8* 300 125 6 9 0.39 0.47 0.56 P-I-1 P-III 0.19 

9 300 125 6 12 0.34 0.42 0.50 P-I-1 P-III 0.18 

10 300 125 8 10 0.32 0.37 0.46 P-I-1 P-I-2 0.19 

11 300 100 6 9 0.35 0.44 0.51 P-I-1 P-III 0.24 

 



1 

 

 

  

L
en

g
th

Reaction Beam

Vertical Jack
Cap. ±1,000 kN

Loading Frame

Horizontal Jack
Cap. ±1,000 kN

Slide Table

Base
:H-488x300x11x18

Specimen



2 

 

 

  

Q L=M
Plastic hinge

NL=NR

Q

NL

Q

M

N

NR

Pin-support and
restraint of
warped deformation



3 

 

 

  

two
cyclesdh /dp

0
-2.0
-4.0
-6.0

2.0
4.0
6.0

two
cycles

two
cycles

two
cycles



4 

 

 

  

two
cycles

N/Nmax

0

-1.0

1.0

two
cycles

two
cycles

two
cycles



5 

 

 

  

NP

P
M

900

l=
1
5
0
0

End Plate

Measuring
Frame

Base PlateReference
Point

:Strain Gauge

:Displacement Gauge
Unit:mm

7
1 141

66

7
1

7
1

7
1

141

7
1

7
1

7
1

7
1

75 75 66

Section A-C

A:25
B:75

C:150

D:300

E:450

F:600

G:900

Section D, E

Section F, G

End Plate



6 

 

 

  

y

z
x

l1

l2

l3
L B

H
N

P

P

Fixed end

4 noded shell element

Rigid element

Displacement constraint on x-axis
and restraint of warped deformation

l1 = l2 = l3 = L/3



7 

 

 

  

Axial force

Supplemental element
to define vector

Numerical model
of I-shaped beam



8 

 

 

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8

E

F

t

d y

w

E

F

t

b y

f

P-I-1 P-I-2 P-II

 
  

No. 1 No. 2 No. 3 No. 4 No. 6 No. 7No. 5

No. 8 No. 9 Ref. 11)No. 10 No. 11

tf

tw

d

b



9 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -5 0 5 10

Experiment
Analysis

M/M
p Ultimate strength

0.02 0.04 0.060-0.02-0.04-0.06

,

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -5 0 5 10

Experiment
Analysis

/
p

0.02 0.04 0.060-0.02-0.04-0.06

M/M
p Ultimate strength,

 
 (a) (b) 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -5 0 5 10

Experiment
Analysis

0.02 0.04 0.060-0.02-0.04-0.06

M/M
p Ultimate strength,

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-10 -5 0 5 10

Experiment
Analysis

0.02 0.04 0.060-0.02-0.04-0.06

/
p

M/M
p Ultimate strength,

 
 (c) (d) 

  



10 

 

  
 (a) (b) 

 
 (c) (d) 

  



11 

 

 

-6

-3

0

3

6

0 100 200 300 400

[%]

x [mm]

-6

-3

0

3

6

0 100 200 300 400
x [mm]

[%]

 
 (a) (b) 

  

No.2

Analysis Experiment13)

No.8 Section A Section B



12 

 

 

     
 (a-1) (a-2) (b-1) (b-2) 

  

-500 3331670-333 -167

[N/mm2]

500
: Out-of-plane constraint



13 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15

M/M
pc

/
pc

Ultimate strengh

(with constraint)

Ultimate strength

(without constraint)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15

M/M
pc

/
pc

Ultimate strengh

(with constraint)

Ultimate strength

(without constraint)

 
 (a) (b) 

  

0 0.15 0.3

with

without

Out-of-plane 

constraint
Axial force ratio, n



14 

 

 

1.0

1.2

1.4

1.6

0 0.1 0.2 0.3

cmax

n

0

4

8

12

16

20

0 0.1 0.2 0.3

'cmax

n

P-I-2

P-I-1

0

5

10

15

20

25

0 0.1 0.2 0.3

cmax

n  
 (a) (b) (c) 

  

No. 1 No. 2 No. 3 No. 4 No. 6

No. 7

No. 5

No. 8 No. 9 No. 10 No. 11 Section A



15 

 

 

1.0

1.2

1.4

1.6

0.3 0.35 0.4 0.45 0.5

cmax

eqf
tb )(

 

0

4

8

12

16

20

0.3 0.35 0.4 0.45 0.5

'cmax

eqf
tb )(

P-I-2

P-I-1

 

0

5

10

15

20

25

0.3 0.35 0.4 0.45 0.5

cmax

eqf
tb )(

 
 (a) (b) (c)  

  

0

Analysis

N/Ny 0.15 0.3

Experiment

0 0.15 0.3

Symbol



16 

 

   

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15

M/M
pc

/
pc

Ultimate strength (No. 2)

Ultimate strength (No. 7)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20

M/M
pc

/
pc

Ultimate strength (No. 4)

Ultimate strength (No. 5)

 
 (a) (b) 

  

0 0.15 0.3

No. 2

N/Ny

No. 7

0 0.15 0.3

No. 4

N/Ny

No. 5



17 

 

 

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.0 1.1 1.2 1.3 1.4 1.5 1.6
cmax (analysis)

cmax (predicted)

0

5

10

15

20

25

0 5 10 15 20 25
'cmax (analysis)

'cmax (predicted)

0

5

10

15

20

25

0 5 10 15 20 25
cmax (analysis)

cmax (predicted)

 
 (a) (b) (c) 

  

Ref. 11)

No. 1 No. 2 No. 3 No. 4 No. 6 No. 7No. 5

No. 8 No. 9 No. 10 No. 11 Section A



18 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10

M/M
pc

/
pc

constantalternating

0.3

0.15

n

Ultimate strength (alternating)

Ultimate strength (constant)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10

M/M
pc

/
pc

Ultimate strength (alternating)

Ultimate strength (constant)

constantalternating

0.3

0.15

n

 
 (a) (b) 

  



19 

 

 

1.0

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

cmax

Equation (7)

-10%

+10%

')( eqftb

0

4

8

12

16

20

0 0.2 0.4 0.6 0.8 1

'cmax

-30%

P-I-2

P-I-1

Equation (8)

+30%

')( eqftb

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

cmax

-30%

Equation (9)

+30%

')( eqftb
 

 (a) (b) (c) 

  

0 0.05 0.1 0.15 0.20 0.25 0.3

Analysis

Experiment

N/Ny

Ref. 11)



20 

 

 

1.0

1.2

1.4

1.6

0 0.5 1 1.5 2

cmax

-10%

+10%

Wf '

0

4

8

12

16

20

0 0.5 1 1.5 2

'cmax

-30%

P-I-2

P-I-1

+30%

Wf '

0

5

10

15

20

25

0 0.5 1 1.5 2

cmax

-30%

+30%

Wf '  
 (a) (b) (c) 

  

0 0.05 0.1 0.15 0.20 0.25 0.3

Analysis

Experiment

N/Ny

Ref. 11)



21 

 

 

0

2

4

6

8

10

0 4 8 12


B

xiN  log)1(


 B

=1+0.5(N -1)log  
i=1


xi 

0

1

2

3

4

0 1 2 3 4 5


B

xiN  log)1(


 B

=1+0.5(N -1)log  
i=1


xi 

 
 (a) (b) 

  

0N/Ny 0.05 0.10

one cycle

0.15 0.20 0.25 0.30 Ref. 11)Section A

two cycles

Analysis Experiment



22 

 

 

0

20

40

60

0 20 40 60


B


max
 (predicted)


B


max
 (analysis)

 
  

No. 1 No. 2 No. 3 No. 4

No. 6 No. 7No. 5 No. 8

No. 9 No. 10 No. 11 Section A



23 

 

 

0

5

10

15

20

0 5 10 15 20


B


max
 (compression)


B


max
 (tension)

 
  

0

N/Ny

0.15

0.30

1 2 4 6 8 10
/p



24 

 

0

0.5

1

1.5

0 5 10 15 20

tension
compression

M/M
pc

/
pc

0

0.5

1

1.5

0 5 10 15 20

tension
compression

M/M
pc

/
pc  

 (a) (b) 

  



25 

 

 

  

-500 3331670-333 -167

[N/mm2]

500



26 

 

-800

-400

0

400

800

-0.06 -0.03 0 0.03 0.06

Experiment
Analysis (N/mm2)



 


