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Abstract: We studied the precipitates that were induced duringγ-εphase transformation in biomedical
Co-28Cr-6Mo (mass%) alloys that were fabricated by electron beam melting with carbon contents of
0.184 and 0.018 mass%. In the high-C as-built alloy, M23X6-type, π-phase (M3T2X-type), and η-phase
(M6X-M12X-type) precipitates were observed (M and T: metallic elements, X: C and/or N). σ-phase
(Co(Cr,Mo)), π-phase, and Co3Mo2Si-type precipitates were observed in the low-C as-built alloy.
This is the first report that shows the presence and chemical composition of this precipitate, as the
Co3Mo2Si-type precipitate has not been detected in biomedical Co-Cr-Mo alloys before. After aging in
the ε-phase stability region, the high-C and low-C alloys both contained a single ε-phase matrix, and
the amount of π-phase precipitates increased. Conversely, the amount of π-phase precipitates in both
alloys decreased when a reverse transformation treatment was applied in the γ-phase stability region
after aging. In the low-C alloy, the amount of Co3Mo2Si-type precipitates increased after reverse
transformation treatment. These results indicate that the dissolution of π-phase precipitates and the
formation of Co3Mo2Si-type precipitates during reverse transformation promote the formation of
fine γ-phase grains at the precipitate/ε-phase matrix interface, because the formation and dissolution
of these precipitates affect the γ-phase stability of the matrix.

Keywords: Co-Cr-Mo alloy; additive manufacturing; heat treatment; reverse transformation treatment

1. Introduction

The Co-28Cr-6Mo (mass%, CoCrMo) alloys have been used in biomedical implant devices, such
as the sliding parts of artificial joints, spinal fixation rods, and dental denture bases, due to their of their
excellent strengths, wear resistance, and corrosion resistance [1–5]. CoCrMo alloys exhibit low stacking
fault energy (SFE); therefore, the ε-phase (HCP structure) is stable at room temperature, resulting in
poor workability [6]. The γ-phase (FCC structure) can be stabilized, even at room temperature by
adding C and/or N to a CoCrMo alloy [7,8]. However, a martensitic transformation, i.e., from γ to ε,
occurs during plastic deformation.
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The fabrication of CoCrMo alloy products has been attempted by additive manufacturing (AM)
to solve this problem [9,10]. In AM, the products can be fabricated without being affected by the
workability of the alloy; moreover, medical devices can be tailor-made for each patient. There are
two types of AM processes: selective laser melting (SLM) and electron beam melting (EBM). The
microstructure, mechanical properties, and corrosive properties of CoCrMo alloys that were fabricated
by SLM and EBM have been investigated [10–19].

In this study, we focused on EBM, which is an AM technique [9]. In the EBM process, an alloy
powder is preheated to 50–80% of its melting point by a fast scanning electron beam before being
melted. This process facilitates the melting of the alloy powder, suppresses the formation of pores
and cracks, and reduces the residual stress of the final product [9,12–14]. A pre-heating temperature
of approximately 1023 K is required for a CoCrMo alloy in the EBM process, which is lower than its
γ-εmartensitic transformation temperature (~1173 K) [14]. Therefore, the γ-phase that is formed by
solidification during rapid cooling following electron-beam irradiation is transformed into the ε-phase
during the pre-heating process. In addition, the thermal history depends on the part of the product,
e.g., the exposure time of the pre-heating process for the bottom part is longer than that for the top
part. In other words, the γ→ εmartensitic transformation occurs during the pre-heating process to
form an inhomogeneous structure with different γ/ε phase fractions, depending on the location in the
product [16–19].

A reverse transformation treatment with γ-ε martensitic transformation has been reported to
homogenize the structure and refine the grains of EBM products [19–22]. In this process, an alloy is
heat treated at 1023 K for 43.2 ks (aging), which results in a single ε-phase structure. Subsequently, the
alloy is heat treated at 1273 K for 0.6 ks (reverse transformation treatment) to simultaneously yield a
single γ-phase structure and grain refinement. The eutectoid structure of the ε-phase and the Cr2N that
formed during aging become γ-phase nucleation sites, and the fine γ-phase grains are formed through
the ε + Cr2N→ γ reaction during the reverse transformation [20]. However, Cr2N-type precipitates
have not been detected in CoCrMo alloys that were fabricated by EBM [17], and the relationship
between the precipitates and grain refinement during reverse transformation has not been clarified.

Our group previously established an analysis method for the precipitates of CoCrMo alloys [23–28].
Elucidating the role of the precipitates in grain refinement through reverse transformation treatment in
CoCrMo alloys fabricated by EBM is the purpose of this study.

2. Materials and Methods

2.1. Specimens

Two types of CoCrMo alloy bar with carbon contents of 0.184 and 0.018 mass% were fabricated
by EBM and they were used as base materials, hereinafter referred to as high-C and low-C alloys,
respectively. Table 1 lists the chemical compositions of the two alloys. The EBM process was conducted
under the same conditions as in our previous study [17]. The dimensions of the as-built high-C and
low-C alloy rods were φ 18 mm × 160 mm and φ 18 mm × 140 mm, respectively. Three parts of each
rod, namely the top, center, and bottom were tested in this study, as shown in Figure 1.

Table 1. Chemical compositions of Co-Cr-Mo alloys used in this study (mass%).

Alloy Co Cr Mo Ni Fe Si Mn C N O S

high-C
(mass%) Bal. 28.1 6.12 0.13 0.23 0.35 0.42 0.184 0.114 0.0058 0.0024

low-C
(mass%) Bal. 27.5 6.01 0.01 0.02 0.6 0.41 0.018 0.101 0.0076 0.0006
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Figure 1. Schematics of as-built bar specimens used in this study: (a) high-C and (b) low-C alloys. 

2.2. Heat Treatment 

The as-built alloys were aged at 1023 K (ε-phase stability region) for 43.2 ks (aged alloys). 
Subsequently, the aged alloys were heat treated at 1273 K (γ-phase stability region) for 0.6 ks 
(reversely transformed alloys). The reverse transformation treatment of some of the low-C-aged 
samples was interrupted at 76, 78, 80, and 90 s to analyze the precipitation and phase transformation 
behavior during the reverse transformation treatment; these alloy specimens are referred to as 
middle-RT 76–90 alloys. Figure 2 shows the heat treatment process that was used in this study. The 
coin-shaped top, center, and bottom parts were cut from the high-C and low-C as-built alloy bars, 
and then further divided into three to secure the required number of specimens. The alloys were 
sealed inside SiO2 ampoules under an Ar atmosphere at a pressure of approximately 0.02–0.03 MPa 
to avoid decarburization and/or denitrization during heat treatment [24,25]. The SiO2 ampoules 
containing the specimens were placed in an electric-resistance muffle furnace heated to the desired 
temperature. The alloys were simultaneously water-quenched by breaking the SiO2 ampoules after 
heat treatment.  

 

Figure 2. Schematic of the heat treatment process that was used in this study. 

2.3. Microstructure Observation and Analysis 

Figure 1. Schematics of as-built bar specimens used in this study: (a) high-C and (b) low-C alloys.

2.2. Heat Treatment

The as-built alloys were aged at 1023 K (ε-phase stability region) for 43.2 ks (aged alloys).
Subsequently, the aged alloys were heat treated at 1273 K (γ-phase stability region) for 0.6 ks (reversely
transformed alloys). The reverse transformation treatment of some of the low-C-aged samples was
interrupted at 76, 78, 80, and 90 s to analyze the precipitation and phase transformation behavior during
the reverse transformation treatment; these alloy specimens are referred to as middle-RT 76–90 alloys.
Figure 2 shows the heat treatment process that was used in this study. The coin-shaped top, center,
and bottom parts were cut from the high-C and low-C as-built alloy bars, and then further divided
into three to secure the required number of specimens. The alloys were sealed inside SiO2 ampoules
under an Ar atmosphere at a pressure of approximately 0.02–0.03 MPa to avoid decarburization
and/or denitrization during heat treatment [24,25]. The SiO2 ampoules containing the specimens were
placed in an electric-resistance muffle furnace heated to the desired temperature. The alloys were
simultaneously water-quenched by breaking the SiO2 ampoules after heat treatment.
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Figure 2. Schematic of the heat treatment process that was used in this study.

2.3. Microstructure Observation and Analysis

The microstructures of the alloys were observed by scanning electron microscopy-backscattered
electron imaging (SEM-BSE, Philips XL30FEG, Royal Philips, Amsterdam, The Netherlands) and
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electron backscattering diffraction (EBSD, OIM Analysis, AMETEK Inc., Berwyn, PA, USA). The ε-phase
fraction of the matrix was calculated from the EBSD phase maps of the alloys. Calculating the areal
percentage of the precipitation region from the SEM-BSE images using the Image J image-analyzing
software (Version 1.51, NHI, Bethesda, MD, USA) determined the amount of precipitates. In addition,
transmission electron microscopy-energy dispersive X-ray spectrometry (TEM-EDX, JEM-2100, JEOL
Ltd. Tokyo, Japan) analyzed the chemical compositions of the precipitates.

The precipitate phases were analyzed. The precipitates were electrolytically extracted at 1 V for
10.8 ks in a 10%H2SO4–90%CH3OH (vol.) solution. The precipitates that were electrolytically extracted
from the alloys were collected as residue after filtering the electrolyte and then analyzed by X-ray
diffraction (XRD, D8 Advance, Bruker AXS K.K., Karlsruhe, Germany) [23–28].

The microstructure of each specimen was analyzed at least three times.

3. Results

3.1. Phase Transformation Behavior during Aging and Reverse Transformation Treatment

Figure 3 shows the ε-phase fraction and grain size of the as-built, aged, and reversely transformed
alloys. In the high-C alloy, the ε-phase fraction increases after aging and then decreases after the
reverse transformation treatment. In the low-C alloy, no significant change in the ε-phase fraction
was observed upon aging, but the ε-phase fraction decreased upon reverse transformation treatment,
as was observed for the high-C alloy. The ε-phase fraction is independent of the height of the alloy
specimens except for the high-C as-built alloy specimen. The grains at the top parts of the as-built
alloys are smaller than those at the bottom. The aged and as-built alloys have largely similar grain sizes.
The reverse transformation treatment helped to refine the grains and reduce the grain size dependency
on part location.
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3.2. Precipitation during Aging and Reverse Transformation Treatment

Figure 4 shows the SEM-BSE images of the high-C as-built alloy. Three types of blocky precipitate
(black, white, and gray) can be observed in all parts. These precipitates were also observed after aging
and reverse transformation treatment. The precipitates are formed at both the grain boundaries and
in the intragrain regions. Figure 5 shows the SEM-BSE images of the as-built, aged, and reversely
transformed low-C alloys. In the low-C as-built and aged alloys, blocky white, blocky gray, and
needle-shaped black precipitates can be observed, whereas only two types of precipitate (blocky white
and blocky gray precipitates) are observed in the low-C reversely transformed alloy.
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Figure 6 shows the XRD patterns of the precipitates that were electrolytically extracted from
the high-C alloys. Peaks that are associated with M23X6-type, π-phase, and η-phase precipitates can
be detected from all parts of the high-C alloy. The aging and reverse transformation treatment did
not affect the phases of the precipitates. In Figure 6a, the peaks corresponding to the -phase matrix
were detected. We conclude that part of the matrix peeled off with the precipitates during electrolytic
extraction. Figure 7 shows the XRD patterns of the precipitates that were electrolytically extracted
from the low-C alloys. In the low-C as-built and aged alloys, Co3Mo2Si-type, σ-phase (intermetallic
phase), and π-phase precipitates can be detected, whereas the Co3Mo2Si-type and σ-phase precipitates
are detected in the low-C reversely transformed alloy. Among the precipitates, the Co3Mo2Si-type
precipitate that was detected in the low-C alloy has not been reported in previous studies on biomedical
CoCrMo alloys.
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4. Discussion

4.1. Effect of Carbon Content on the Phase and Amount of Precipitates

As shown in Figure 3, the difference in the behavior of the ε-phase fraction between the high-C
and low-C alloys during aging is due to the difference in the initial ε-phase fractions of the two alloys.
In the CoCrMo alloy, carbon acts as a γ-phase-stabilizing element [8]. In addition, the γ-phase formed
during does not fully transform into an ε-phase during the pre-heating process, since the top part is
less affected by pre-heating than the center and bottom parts. Therefore, the top part of the high-C
as-built alloy retains the γ-phase. Aging for a sufficient time completely transforms the matrix from
the γ-phase to the ε-phase and ensures that all parts are single ε-phase.

We concluded that the blocky black, white, and gray precipitates observed in the SEM-BSE
image are M23X6-type, η-phase, and π-phase, respectively, in our previous study on the
Co-28Cr-6Mo-0.23C-0.2N alloy (mass%, high-C composition) [17].

Co3Mo2Si-type, σ-phase, andπ-phase precipitates are formed in the low-C alloy (see Figure 7), with
no M23X6-type and η-phase precipitates. According to the results of our previous study, the formation
of the σ-phase is promoted when the carbon content is 0.16 mass% or less, and the precipitation of the
M23X6-type and η-phase is suppressed [24–26]. The lack of M23X6-type and η-phase precipitates in
low-C alloys is considered to be due to their low carbon contents.

TEM examined the precipitates in the low-C as-built alloy. Figure 8 shows bright field (BF)
TEM images and selected area diffraction patterns (SADPs) of the blocky white, blocky gray, and
needle-shaped black precipitates in the low-C as-built alloy, which are identified as Co3Mo2Si-type,
σ-phase, and π-phase, respectively.
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The chemical compositions of the precipitates in the low-C alloys were quantitatively analyzed
by TEM-EDX. Table 2 lists the chemical compositions of the Co3Mo2Si-type precipitates in the low-C
as-built and reversely transformed alloys. The Co3Mo2Si-type precipitate is Cr-poor when compared
with the Co-based matrix (Cr: 20 mass%).

Table 2. Chemical compositions of Co3Mo2Si-type precipitates observed in the low-C as-built
and reverse treated alloys (analyzed by transmission electron microscopy-energy dispersive X-ray
spectrometry (TEM-EDX)).

Alloy Co Cr Mo Si

mass% at% mass% at% mass% at% mass% at%

as-built 40.37 46.03 13.95 18.02 43.36 30.37 2.33 5.58
reversely

transformed 35.84 42.14 11.88 15.83 49.82 35.98 2.45 6.05

Figure 9 summarizes the areal percentages of the precipitates that were calculated from the
SEM-BSE images and the phase fractions of the precipitates calculated from the XRD peak intensity ratios.
The total amount of precipitates increases after aging, but decreases after the reverse transformation
treatment. In the case of the high-C alloys (Figure 9a), the amount of M23X6-type and π-phase
precipitates increase during aging and decrease during reverse transformation treatment. As shown
in Figure 9b, in the case of the low-C alloys, the amount of π-phase precipitates increases slightly
after aging, and the π-phase was completely dissolved by reverse transformation treatment. On the
other hand, the amount of Co3o2Si-type precipitates was slightly lower after aging, and higher after
reverse transformation treatment. These results suggest that the formation and/or dissolution of the
precipitates play a role in the γ-ε phase transformation. Section 4.3 discusses the relevant details.
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4.2. Co3Mo2Si-Type Precipitates

The Co3Mo2Si-type precipitates are called Laves phases and they are represented by the AB2

formula [28,29]. Si stabilizes the MoCo2 structure by substituting Co in the B site, where other elements,
such as V, Cr, Mn, Fe, Ni, or Al, can be introduced [30]. Therefore, Mo(Co,Cr,Si)2 can represent
the chemical composition of the Co3Mo2Si-type precipitate for a CoCrMo alloy. The formation
of Co3Mo2Si-type precipitates has been reported in Si-containing Co-Cr alloys, such as tribaloy
(Co-Mo-Cr-Si alloys) and carbon-free Co-Cr-Mo-W alloy fabricated by powder bed fusion while using
direct metal laser sintering technique [31–33]. Liu et al. investigated the effect of alloy composition on
the microstructure of a Co-Cr-Mo-Ni alloy and reported the formation of Co3Mo2Si-type precipitates
when the carbon content was low and the Mo and Si contents were high [32]. However, they did not
determine the chemical composition of the Co3Mo2Si-type precipitate. Our study is the first to reveal
the presence and chemical compositions of Co3Mo2Si-type precipitates in biomedical CoCrMo alloys.
Santecchia et al. reported that a Co3(Mo, W)2Si-type precipitates were formed by performing the heat
treatment on the carbon free Co-Cr-Mo-W alloy [33]. The alloy that was used in the study of Santecchia
et al. has higher Si content than the CoCrMo alloy that was used in this study. In addition, the CoCrMo
alloys that were used in this study contain carbon and do not contain W. We concluded that in the
Co-Cr-Mo type alloys, Co3Mo2Si-type precipitates are formed when the carbon content is low and Si
content is high by combining the results that were reported by Santecchia et al. [33] and the results of
this study. The effect of W on the precipitation behavior of Co3Mo2Si-type precipitates needs to be
studied in the future.

4.3. Effect of π-Phase and Co3Mo2Si-Type Precipitates on γ-ε Transformation during Heat Treatment

Figure 10 shows EBSD inverse pole figures (IPFs) and phase maps of the middle RT 76, 78, 80,
and 90 alloys, the reverse transformation treatments of which were interrupted at 76, 78, 80, and 90 s,
respectively. The ε-to-γ phase transformation can be observed at 78 s, and the γ-phase fraction increases
with increasing reverse transformation treatment time. In addition, a γ-phase was formed from both
the grain boundary and intragrain regions. The formation of the π-phase by aging is considered to
cause a local decrease in the carbon concentration in the matrix (γ-phase). Carbon acts as a γ-phase
stabilizer in CoCrMo alloys [8]. The γ → ε phase transformation at the π-phase/matrix (γ-phase)
interface can be attributed to the decrease in the γ-phase stability due to π-phase precipitation. On
the other hand, because the π-phase dissolved during the reverse transformation treatment, carbon
diffused around the π-phase, and the γ-phase stability increased at the π-phase/matrix (ε-phase)
interface. We speculate that the formation of new γ-phase grains originate from the π-phase/matrix
(ε-phase) interface. Co3Mo2Si-type precipitates were formed during the reverse transformation
treatment in the low-C alloy. Figure 11 shows the TEM-BF image and SADP of the middle-RT 80 alloy.
A new γ-phase grain is formed from the Co3Mo2Si-type precipitate/matrix (ε-phase) interface. The
concentration of Mo, which is known to be a ε-phase stabilizer in CoCrMo alloys [34], locally decreases
around the Co3Mo2Si-type precipitates, and the γ-phase of the matrix becomes more stable due to
the formation of Co3Mo2Si-type precipitates during the reverse transformation treatment. The ε→ γ

phase transformation originates from the Co3Mo2Si-type precipitate/matrix (ε-phase) interface during
the reverse transformation treatment.
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5. Conclusions

We fabricated Co-Cr-Mo alloys with low and high carbon contents by EBM and studied their
precipitation during aging in the ε-phase stability region and their subsequent reverse transformations
in the γ-phase stability region. The following are the main results of this study:

(1) M23X6-type, η-phase, and π-phase precipitates were observed in the high-C alloy, and the
π-phase, σ-phase, and Co3Mo2Si-type precipitates were observed in the low-C alloy.

(2) In the case of the high-C alloy, the amounts of M23X6-type and π-phase precipitates increased
during aging and decreased during the reverse transformation treatment. In the case of the low-C alloy,
the amount of π-phase precipitates increased slightly during aging, and the π-phase was completely
dissolved by the reverse transformation treatment. The amount of Co3Mo2Si-type precipitates slightly
decreased during aging and increased during the reverse transformation treatment.

(3) Co3Mo2Si-type precipitation in biomedical Co-Cr-Mo alloys was confirmed in this study for
the first time, and its chemical composition was revealed, which confirmed that Cr and Si substituted
Co in the B site of the AB2 Laves phase structure.

(4) The dissolution of the π-phase precipitates and the formation of the Co3Mo2Si-type precipitates
helped to stabilize the γ-phase during the reverse transformation treatment at the precipitate/matrix
(ε-phase) interface, owing to the increasing carbon content and decreasing Mo content, respectively;
therefore, new fine γ-phase grains were formed at the interface.
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