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While digital integrated circuits with von Neumann architectures, having exponentially evolved for
half a century, are an indispensable building block of today’s information society, recently growing
demand on executing more complex tasks like the human brain has allowed a revisit to the architec-
ture of information processing. Brain-inspired hardware using artificial neural networks is expected
to offer a complementary approach to deal with complex problems. Since the neuron and synapse
are key components of brains, most of the mathematical models of artificial neural networks require
artificial neurons and synapses. Consequently, much effort has been devoted to creating artificial
neurons and synapses using various solid-state systems with ferroelectric materials, phase-change
materials, oxide-based memristive materials, and so on. Here, we review an example of studies on
an artificial synapse based on spintronics and its application to artificial neural networks. The spin-
tronic synapse, having analog and nonvolatile memory functionality, consists of an antiferromagnet/
ferromagnet heterostructure and is operated by spin-orbit torque. After giving an overview of this
field, we describe the operation principle and results of analog magnetization switching of the spin-
tronic synapse. We then review a proof-of-concept demonstration of the artificial neural network
with 36 spintronic synapses, where an associative memory operation based on the Hopfield model is
performed and the learning ability of the spintronic synapses is confirmed, showing promise for
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low-power neuromorphic computation. Published by AIP Publishing.
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I. INTRODUCTION AND BACKGROUND

Current information processing and communication
technologies rely on digital complementary metal-oxide-
semiconductor (CMOS)-based integrated circuits with the
von Neumann architecture. As the technologies advance by
increasing the clock frequency and count of the components
in circuits, the limit of this approach has risen to the surface
year by year in the form of physical scaling limits, significant
stand-by power consumption, data-transfer bottlenecks, and
so on." In addition, while the conventional approach effi-
ciently completes simple iterative operations, it is not suitable
to execute complex tasks such as perception, prediction, and
decision making. Consequently, a growing interest is being
paid on information processing inspired by the brain, a
system that can readily complete such complex cognitive
tasks even from an imperfect set of input information.

A scheme to emulate the information-processing mecha-
nism of the brain in software and run it on conventional hard-
ware, e.g., deep neural network, has been fully recognized as
a powerful means” and has already been implemented as arti-
ficial intelligence. While this approach shows high perfor-
mance that can compete with the human brain,2 however, it
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builds on tremendous hardware resources and power supply,
inhibiting the expansion of the area where the technology can
be utilized. This fact calls for another strategy where sophisti-
cated hardware is employed, which emulates neural networks
of the brain to aim at processing information at a lower level
of hardware resources and power comsumption.>°

Key building blocks of the brains are the neuron and
synapse. The neuron takes a role of information processing; it
integrates frequently input stimuli by a membrane potential and
fires once the potential reaches a certain threshold. The synapse,
on the other hand, takes the role of learning and memorizing;
located at junctions between neurons. The connection strength,
or synaptic weight, corresponding to the memorized informa-
tion, is changed in an analog manner through learning. With
neurons and synapses, information processing, memorizing,
and learning take place locally, in parallel, and asynchronously,
in stark contrast to von Neumann architectures. Mathematical
models that abstract the aforementioned mechanism of informa-
tion processing in neural network or artificial hardware where
operations based on the mathematical model are executed are
referred to as artificial neural networks and are recognized as a
key ingredient to realize low-power, high-performance, and
adaptive neuromorphic computing beyond the currently used
von Neumann architecture-based artificial intelligence.”

In order to construct large-scale and low-power artificial
neural networks, it is effective to utilize artificial neurons and

Published by AIP Publishing.
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synapses using solid-state devices. Also, since real neural net-
works comprise a much larger number of synapses than
neurons, mathematical models for artificial neural networks
mostly require a large number of synapses. It is also noted
that, as in the real synapses, the artificial synapses are desired
to change their state in an analog manner through learning and
store their state in a nonvolatile manner. These facts have led
to extensive efforts on realization of compact, analog, and
nonvolatile artificial synapses using solid-state devices made
of various material systems such as resistance switching mate-
rials (or memristorg),g’10 phase change materials,” and ferro-
electric materials.'>'® In addition, several demonstrations of
brain-like computation have been reported. For example,
Prezioso et al. showed a classification of 3 x 3 pixels images
using a trained 12 x 12 cross-bar network with metal-oxide
memristors.'# Also, Burr et al. showed a classification of
handwritten digits using a trained three-layer perceptron
network with 164 885 phase-change memory devices.'

Spintronics also offers an attractive platform for solid-
state device technologies. Spintronics devices inherently
achieve fast and virtually infinite information writing operation
(magnetization switching) with standard CMOS-compatible
voltages and store their state without the use of a power
supply. Following magnetoresistive random access memories
(MRAMs) utilizing a magnetic-field-induced switching
scheme commercialized since 2006,'® MRAM:s utilizing spin-
transfer torque (STT)-induced magnetization switching
(STT-MRAMs) are about to hit the mass market.!”'® In addi-
tion, these features hold promise for high-performance and
low-power artificial neural networks that are adaptive through
continuous learning and robust against environmental agita-
tion. At the same time, a variety of physical aspects of spin-
tronics devices make them various constituents in artificial
neural networks, unlimited to artificial synapses.'®*
Spintronic or magnetic material systems in general represent
digital information as their magnetization direction, e.g., up or
down. However, proper engineering of material systems
allows one to deal with analog information by their magnetic
domain structures, providing opportunities to realize spintronic
synapse for high-performance, low-power, and adaptive artifi-
cial neural networks.

In the following, we review our studies on a spintronic
artificial synapse” " and its implementation to the artificial
neural network.”® The synaptic device is operated by
spin-orbit torque [Fig. 1(a)] and consists of an antiferromag-
net/ferromagnet bilayer system [Fig. 1(b)], allowing analog
control of magnetization state by electric current. For the
demonstration of artificial neural network, the Hopfield
model, a representative model of neural network, is employed
and an associative memory operation is tested. Through this
proof-of-concept demonstration, we show that the employed
spintronic artificial synapse has functions of learning and
memorizing.

Il. ARTIFICIAL SYNAPSE

In this section, we describe the structure, operation prin-
ciple, and the mechanism that accounts for the analog opera-
tion of the developed artificial spintronic synapses.

J. Appl. Phys. 124, 151904 (2018)

Viable spintronics devices require an efficient scheme to
electrically control magnetization. STT-induced magnetiza-
tion switching®>** in magnetic tunnel junctions is a leading
example and has allowed successful development of
STT-MRAMs.'7!8 Meanwhile, recent studies have revealed
that torque arising from spin-orbit interactions, spin-orbit
torque (SOT), also provides a promising scheme to induce
magnetization switching. SOT arises when one introduces an
in-plane current to magnetic crystals with noncentrosymme-
try>! or magnetic heterostructures with broken space inver-
sion symmetry,>> which have sizable spin-orbit interaction.
The origin of SOT in heterostructures is still under debate
and could be different from one system to another. One of
the most likely mechanisms is the spin Hall effect, in which
charge current is converted to a spin current in the transverse
direction to the original charge current®*>® as shown in
Fig. 1(a). The generated spin current accumulates spin-
polarized electrons in the adjacent ferromagnetic layer, exert-
ing a torque on its magnetization. Another possible factor is
the Rashba-Edelstein effect, in which charged carriers
moving in a two-dimensional interface with an effective elec-
tric field feels an effective magnetic field in the transverse
direction to both the momentum of the carrier and the electric
field.*°® This eventually causes a non-equilibrium spin
accumulation as well. Importantly, both effects give rise to
similar torques with two different symmetries:**** a field-
like torque with mx o symmetry and a Slonczewski-like
torque with mx (mx o) symmetry, where m is the unit
vector of magnetization and ¢ is the spin accumulation vector
(o /'y in case that current flows in the x direction). There are
three types of SOT switching schemes in terms of magnetic
easy axis direction with respect to the applied current
(flowing along the x direction); perpendicular (Type Z)
scheme,* in-plane and orthogonal-to-current (Type Y)
scheme,*' and in-plane and collinear-to-current (Type X)
scheme.*? For Types Z and X structures, the effective field of
the field-like torque always points to the y (hard-axis) direc-
tion and the switching is driven by the Slonczewski-like
torque. Since the effective field of the Slonczewski-like
torque has rotational symmetry about the y axis [Fig. 1(c)],
breaking the rotational symmetry of the Slonczewski-like
torque is necessary to determine the switching direction
[Fig. 1(d)], posing an obstacle for integrated-circuit imple-
mentation. While several means have been proposed and
demonstrated,“_47 here we describe a method to utilize anti-
ferromagnet/ferromagnet bilayer systems, which leads to the
analog control of magnetization and makes it a candidate for
artificial synapses.

A large spin Hall effect has been mostly observed in
nonmagnetic materials such as Pt,48 Ta,41 and W.*
However, recent theoretical studies pointed out that some of
the noncollinear antiferromagnets exhibit a giant anomalous
Hall effect, originating from the Berry curvature®® which is
confirmed experimentally.’’ Experimental studies on the
inverse/direct spin Hall effect in antiferromagnetic materials
have also been performed, and sizable effects have been
observed in various systems.’>~’ Antiferromagnet/ferromag-
net bilayer systems are also known to exhibit exchange
bias, where a unidirectional anisotropy is exerted on the
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FIG. 1. Field-free and analog switching by spin-orbit

torque in antiferromagnet/ferromagnet heterostructure.

Hs. (a) Schematics of generation of spin-orbit torque in het-

erostructure. (b) Schematic of antiferromagnet (PtMn)/

S0 0 ferromagnet (Co/Ni) heterostructure used for an artificial

"":;:::;Q synapse. [(c), (d)] Mechanism of field-free switching.

Dfan Effective field of the Slonczewski-like spin-orbit torque

has rotational symmetry (c) and breaking it by exchange
bias achieves field-free switching (d). (e) Optical micro-
graph of fabricated Hall device. (f) Measured Hall resis-
tance Ry versus applied channel current Icy under
various in-plane external field Hx. (g) Hall resistance
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ferromagnet at the interface.>® Therefore, combination of
these two effects is expected to achieve field-free switching
of perpendicular magnetization, where the antiferromagnet
plays the role of the source of SOT and the source of
in-plane field simultaneously [Figs. l(b)—l(d)].zs’59 In the
following, the experimental results based on this concept®
will be reviewed.

For this work, antiferromagnetic PtMn and ferromag-
netic Co/Ni multilayers were employed. The stack structure
was, from the substrate side, Ta(3)/Pt(4)/PtMn (8)/[Co(0.3)/
Ni(0.6)],/Co(0.3)/MgO(1.2)/Ta(2) (numbers in parentheses
are nominal thickness in nanometers). The films were depos-
ited on high-resistance Si substrate by dc/rf magnetron sput-
tering. After the deposition, the films were annealed in a
magnetic field of 1.2 T along the x direction at 300 °C for
one hour. We confirmed from the magnetization hysteresis
loop measurement using vibrating sample magnetometer that
perpendicular easy axis and finite exchange bias were simul-
taneously obtained at the PtMn thickness of 8 nm (thinner
PtMn resulted in negligible exchange bias whereas thicker
PtMn resulted in in-plane easy axis due to too strong
exchange bias). The films were processed into cross-shaped
Hall-bar devices with a width of 10 um by photolithography
and Ar ion milling, as shown in Fig. 1(e). The channel was
fabricated along the x direction, the same direction with the
exchange bias. To evaluate the magnetization reversal, the
anomalous Hall resistance was measured with a dc current
magnitude of 1 mA. The details are described in Ref. 25.

Figure 1(f) shows the Hall resistance as a function of the
applied channel current measured at various in-plane mag-
netic fields uoHy along the x direction (i, is the permeability
in free space). A hysteresis loop is observed at zero magnetic

40 -30 -20 -10 0 10 20 30 40
Channel current, I,y (MA)

field. The loop collapses at uoHyx=—10mT, meaning that
the effective field due to the exchange bias is canceled by
the external field. The switching direction reverses above
—10mT. Change in the switching direction indicates that the
switching is driven by SOT and finite hysteresis at zero field
indicates field-free SOT switching of perpendicular magneti-
zation owing to the exchange bias as expected. We confirmed
that the switching direction changes when we reverse the
exchange bias direction by reversing the magnetic-field
annealing direction, indicating that the exchange bias causes
the field-free switching.

We then take a closer look at the current-induced hystere-
sis loop at zero field. The outer curve in Fig. 1(g) shows the
loop obtained by sweeping the current between +44 mA, in the
direction indicated by arrows. The inner curves, on the other
hand, show the results when the increase of the current in the
negative direction was stopped below —44 mA. Depending on
the applied maximum current Iyjax, intermediate states of dif-
ferent levels are realized. The intermediate states are found to
be stable after turning off the current, which indicates that the
present system functions as an analog and nonvolatile memory
device, which is expected to be useful as an artificial synapse
in artificial neural networks as described earlier. In Sec. III, a
proof-of-concept demonstration of an artificial neural network
using the analog SOT device will be presented.

We then investigated the underlying mechanism that
causes the observed nonvolatile and analog behavior.”® To
examine it, we fabricated dot devices, in which the ferromag-
netic Co/Ni multilayer was processed into nanodots with
various diameters Dy, from 1 um to 50 nm and formed on
top of a PtMn Hall bar. The channel width W, was varied
according to Dy Figure 2(a) shows the scanning electron
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microscopy image of a fabricated dot device with a nominal
Dy of 100 nm. For reference, micrometer-wide Hall devices
were also fabricated. The details of the sample fabrication are
described in Ref. 26.

Figure 2(b) shows the Hall resistance vs. channel current
for devices with different Dgyo,. The measurement procedure
is the same with that for Fig. 1(g). All the measurements were
performed at zero magnetic field. The loop for Dy =1 um is
similar to the one for the 5-um-wide Hall device. As Dy
decreases, the loop becomes stepwise and the number of
steps decreases. Finally, below Dy, =200nm, the loop
shows a simple binary feature. These results suggest that the
Co/Ni dot consists of a number of magnetic domains with
different properties that separately switch at different levels
of the applied current. By counting the number of intermedi-
ate levels for each loop with different Dy, the size of the
domain was derived to be around 200 nm. Meanwhile, the
size of crystalline grain was observed to be around 15nm
from cross-sectional transmission electron microscopy, indi-
cating that the domain consists of multiple crystalline grains.
A schematic picture inferred from detailed analysis is shown
in Fig. 2(c). We found that the magnitude and direction of
the exchange bias along both perpendicular and in-plane
directions are different among the domains, making the
threshold switching current different among them. Also, such
variation of exchange bias can stabilize the multidomain
states. As a result, each domain switches at different levels of
current and resultant multidomain state remains even after
the current is turned off, eventually causing the synapse-like
analog and nonvolatile property.*®

The mechanism that stabilizes the multidomain structure
has yet to be clarified. It should be noted, however, that

(b)

J. Appl. Phys. 124, 151904 (2018)

such behavior is also observed in other antiferromagnet/ferro-
magnet bilayer systems.®“®" Moreover, recent experiments
on the electrical switching of antiferromagnets also show
similar behavior,éz*65 leading to the inference that the
observed analog and nonvolatile behavior may be a common
nature of the antiferromagnetic systems.

lll. ARTIFICIAL NEURAL NETWORK

As described in Sec. II, antiferromagnet/ferromagnet
bilayer systems operated by spin-orbit torque achieve
magnetic-field-free, analog magnetization switching and store
the state in a nonvolatile manner, making it a promising
building block for an artificial synapse in artificial neural net-
works. In this section, a proof-of-concept demonstration of
an artificial neural network with the spintronic artificial
synapse”® will be described.

As an example of neuromorphic computation, we exam-
ined an associative memory operation, which is a typical
operation that von Neumann computers struggle with and
yet the human brain readily completes. For the associative
memory operation, the Hopfield model® is used, which is a
form of recurrent neural networks, is originally developed
from an analogy with spin glass systems, and is known to
be useful for the optimization problem. The Hopfield
network stores information in a matrix, the so-called synap-
tic weight matrix, and can robustly associate the closest
memorized information with noise-contained inputs by
defining an energy function and minimizing the energy.
Configuration of each matrix element collectively represents
the stored information, where the individual matrix elements

take arbitrary analog numbers. To realize hardware
1 L] L] L] L]
5x15 pm? Dgo = 350 nm, W,,, = 500 nm
- 1t 42
L 4t Jo
.{\‘.
L L L L L L
L] L] L L] L]
Dgo = 1 pm, W, = 1.1 um Do = 225 nm, W, = 500 nm ]
- 4k Jo
IL N
= b= S i - -1
L L L
L] L] L]
= Dyot =50 nm, W, =150 nm =1
it o
1F -1
1 L 1 L

L ]
10 0 10 -4 0 4
Channel current, /., (mA)

FIG. 2. Mechanism of analog behavior. (a) Scanning electron micrograph of fabricated dot devices with nominal diameter Dy, of 100 nm. (b) Hall resistance
Ry as a function of channel current Iy for microscale Hall bar and dot devices with Dyo = 1 mm, 800, 350, 225, 50 nm. (c) Schematic of the texture of crystal-
line grain and exchange bias direction. Cylinders represent crystalline grains and arrows represent the direction of exchange bias. Reprinted with permission
from Appl. Phys. Lett. 110(9), 092410 (2017). Copyright 2017 AIP Publishing LLC.?
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executing the Hopfield model-based associative memory
operation, artificial analog synaptic devices (or circuit units)
are necessary. The work in Ref. 28 was performed based on
this concept.

Figures 3(a) and 3(b) show the block diagram and
photograph of the developed demonstration system, respec-
tively. It consists of a software-implemented PC, field-
programmable gate array (FPGA) development board, and
analog front-end circuit board. Chips with 36 SOT devices
with an antiferromagnet/ferromagnet bilayer were packed
into ceramic packages and mounted on the analog front-end
circuit board. The SOT devices play the role of the synapse
in the Hopfield model. The PC operates the whole system
based on the programmed Hopfield model. The FPGA sends
read/write currents to the SOT devices according to control
signals received from PC. We here note that, in a final form
of sophisticated artificial neural network hardware, the
synaptic devices are embedded in an integrated circuit and
the circuit performs all the operations that are executed by
PC and FPGA in the current proof-of-concept demonstration
system.

The SOT devices employed here consisted of a stack
with Ta(3)/Pt(2.2)/PtMn(9.5)/Pt(0.6)/[Co(0.3)/Ni(0.6)],/Co(0.3)/
MgO(1)/Ru(l), where the 0.6-nm-thick Pt dusting layer
between the PtMn and Co/Ni multilayer was found to
enhance both the perpendicular magnetic anisotropy of Co/
Ni multilayer and the exchange bias at the interface.”’ The
films were patterned into micrometer-sized Hall devices as
shown in Fig. 1(e). The synaptic weight is stored as the mag-
netization state and extracted as the Hall resistance. Note that
while the anomalous Hall effect is used to detect the magne-
tization state in this proof-of-concept demonstration, the
device will be processed into a three-terminal structure®’ for
practical use, where the tunneling magnetoresistance effect
exhibiting much larger resistance change will be used for
reading operation.

(a)

Analog Front-end Circuit Board

V| s
- I' o ’ .
s v i
I° [ .
V7 .
oltag SOTjDevices
0 0 a
6 6
12
D ADC =
DP
FPGA Development Board PC

J. Appl. Phys. 124, 151904 (2018)

Using the developed systems, an associative memory
operation was tested for three kinds of 3 x 3-block patterns,
“I, C, and T,” shown in Fig. 4(a). The procedure for the asso-
ciative memory operation is as follows (see Refs. 28 and 68
for details). First, Hall resistance vs. current loops were mea-
sured for all the 36 SOT devices, and the region where a vir-
tually linear change of the Hall resistance with the current is
ensured for all the 36 devices was determined. This was fol-
lowed by writing synaptic weights for the “I, C, and T” pat-
terns to each SOT device via the FPGA, where the weight
was calculated in the PC based on the Hopfield model and
was mapped to the write current based on the measured rela-
tion between the Hall resistance and current. At this stage, if
the 36 SOT devices were uniform and had sufficient linearity,
“I, C, and T” patterns would be already memorized.
However, this was not the case due to the variability of the
properties among the devices and inevitable non-linearity,
and thus correct “I, C, and T” patterns were not recalled from
the inputs, even without noise. To compensate for such
imperfection of the devices, adjustment of synaptic weights,
i.e., a learning process, was performed. In this experiment,
Hebbian and anti-Hebbian learning processes® were itera-
tively applied. In this process, we first read Ry from all the
devices and configure the synaptic weight matrix in PC.
Then, we calculate the recalled pattern from the original three
patterns using the synaptic weight matrix. According to the
discrepancy between the original pattern and the recalled
pattern, the modified synaptic weight matrix to reduce the dis-
crepancy is calculated from the Hebbian and anti-Hebbian
learning rule, and new weights are stored to the SOT devices
by sending a new set of write current. From a number of
trials, we confirmed that the leaning process converges after
about 5-20 times iterations, where the recalled patterns match
with the original patterns. Figures 4(b) and 4(c) show the
measured Hall resistance for 36 SOT devices before and after
the learning process, respectively. We confirmed that, after

(b)

FIG. 3. Demonstration system of artificial neural network. (a) Block diagram. (b) Photograph. Adapted from W. A. Borders, H. Akima, S. Fukami, S. Moriya,
S. Kurihara, Y. Horio, S. Sato, and H. Ohno, Appl. Phys. Express 10(1), 013007 (2017). Copyright 2017 The Japan Society of Applied Physics.?®



151904-6

S. Fukami and H. Ohno

(a)

v v v ’ a -0.02 I_I
(@

-0.04

(c)

0.00 ‘ |
-0.02 II I ! ‘
-3

Hall resistance, Ry (

J. Appl. Phys. 124, 151904 (2018)

FIG. 4. Associative memory operation. (a) Three kinds
of 3x3 pattern “I” “C” and “T”. [(b), (c)] Hall resis-
tance Ry, representing the synaptic weight, for 36
spin-orbit torque (synaptic) devices before (b) and after
(c) the learning process. (d) Example of input noisy pat-
terns, where randomly-selected one block is inverted.
(e) Example of associated patterns using Hopfield
| model.

Synaptic weight

the learning process, all of the memorized patterns, “I, C, and
T,” were successfully recalled from the inputs without noise.

Using the synaptic weight matrix after learning
[Fig. 4(c)] that memorizes the patterns shown in Fig. 4(a),
we then tested the associative memory function, where we
input patterns with random noise and calculated the associ-
ated patterns based on the Hopfield model. Figure 4(d)
shows an example of the input patterns, in which one ran-
domly selected block was inverted, and Fig. 4(e) shows the
corresponding associated patterns. Degree of agreement
between the input and output (associated) patterns was
evaluated by the direction cosine, given by (1/N){,{,, where
N is the number of blocks (neurons), and &, and {, are a
number representing the color of each block for memorized
and associated patterns, respectively (white =—1, gray =+1).
In the case of “I, C, and T” patterns, the ideal value of the
direction cosine, calculated for the ideal synaptic weight
matrix, is 0.905 for this experiment. The obtained mean
direction cosine when we used the synaptic weight matrix
before and after the learning process was 0.601 and 0.852,
respectively, from 100 trials. The improved direction cosine
clearly indicates that the developed artificial synapse can
function as an artificial synapse with learning capability,
allowing associative memory operation. We also found from
a numerical calculation that the remaining gap of the direc-
tion cosine to the ideal value is caused by the variability
among the devices of the dynamic range of the Hall resis-
tance. The dominant factor and countermeasure of the vari-
ability will be described elsewhere.®®

We finally discuss potential advantage of the proposed
approach, i.e., artificial neural network with spintronic artifi-
cial synapse, over the conventional computing paradigm. In
terms of power consumption and chip area, it has been shown
that nonvolatile integrated circuits with digital spintronics
devices achieve a significant power reduction by a factor of
1/100 at the same or smaller chip area compared with conven-
tional semiconductor-based integrated circuits, owing to the
nonvolatility and back-end-of-line compatibility of spintronics
devices.”>””® This benefit holds true for the artificial neural
network paradigm with analog spintronics device. In addition,
if one uses nanoscale spintronic synapse with the analog

nature, significant reduction of the count of components
should be achieved, leading to further reduction of power con-
sumption and chip size. More importantly, unique features of
spintronics devices such as nonvolatility and high endurance
allow one to combine two important aspects of brain-inspired
computing, learning, and memory. This fact makes the spin-
tronic artificial neural network qualitatively different from
conventional systems and offers unexplored opportunities,
e.g., low-power, compact, and adaptive systems.

IV. CONCLUSION

In conclusion, this article has reviewed material and
device studies on an artificial spintronic synapse and a
proof-of-concept demonstration of artificial neural network
using the artificial synapse. Hardware inspired by the struc-
ture and information processing mechanism of the brain
offers a promising pathway to execute complex cognitive
tasks at a lower power consumption level. In particular, to
realize high-performance, low-power, and adaptive artificial
neural networks, the use of artificial synapses consisting of
solid-state devices with nonvolatile and analog-memory func-
tionality provides an attractive approach. We have shown that
antiferromagnet/ferromagnet heterostructures operated by the
spin-orbit torque not only allow field-free switching of per-
pendicular magnetization, but also achieve analog control of
magnetization depending on the magnitude of applied
current. The detailed investigation revealed that the magneti-
zation reversal proceeds in the unit of fine magnetic domain
with the scale of around 200 nm, resulting in the analog
behavior. Using this analog nature, an artificial neural
network was developed, where the 36 analog spin-orbit
torque devices were implemented, and Hopfield model-based
associative memory  operation was tested as a
proof-of-concept demonstration of spintronics neuromorphic
computing. We confirmed that the artificial spintronic
synapse can learn the patterns, enabling execution of the
brain-like associative memory operation.

Spintronics devices, in general, allow for high-speed and
virtually unlimited read/write operation as well as storage of
information without the use of a power supply, holding
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promise for realization of low-power and adaptive neuromor-
phic hardware. Through further advances, they will open new
avenues for information processing technologies.
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