

Points-to-consider Documents: Scientific Information on the Evaluation of Genetic Polymorphisms During Non-Clinical Studies and Phase I Clinical Trials in the Japanese Population

著者	Masahiro Hiratsuka, Noriyasu Hirasawa, Yoshiteru Oshima, Susumu Kodama, Toshio Miyata, Takashi Dan, Hiroyuki Takatoku, Hideaki Kuribayashi, Ryosuke Nakamura, Yoshiro Saito
journal or	Drug Metabolism and Pharmacokinetics
publication title	
volume	33
number	3
page range	141-149
year	2018-06
URL	http://hdl.handle.net/10097/00128257

doi: 10.1016/j.dmpk.2018.01.005

1	Points-to-consider documents: Scientific information on the evaluation
2	of genetic polymorphisms during non-clinical studies and phase I
3	clinical trials in the Japanese population
4	
5	Masahiro Hiratsuka ^{a,} *, Noriyasu Hirasawa ^a , Yoshiteru Oshima ^a , Susumu Kodama ^{a, d,}
6	^e , Toshio Miyata ^b , Takashi Dan ^b , Hiroyuki Takatoku ^c , Hideaki Kuribayashi ^c , Ryosuke
7	Nakamura ^{a, d} , Yoshiro Saito ^{a, d}
8	
9	^a Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
10	^b Graduate School of Medicine, Tohoku University, Sendai, Japan
11	^c Pharmaceuticals and Medical Devices Agency (PMDA), Tokyo, Japan
12	^d National Institute of Health Sciences (NIHS), Tokyo, Japan
13	eGraduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama
14	University, Okayama, Japan (Current Affiliation)
15	
16	*Corresponding author:
17	Dr. Masahiro Hiratsuka, Ph.D.
18	Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of
19	Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki Aoba-ku, Sendai 980-

- 20 8578, Japan.
- 21 Tel. & Fax: +81-22-717-7049. E-mail: mhira@m.tohoku.ac.jp

23 Footnotes:

24	This study was supported by a grant from the Ministry of Health, Labour and
25	Welfare (MHLW) of Japan ('Initiative to facilitate development of innovative drug,
26	medical devices, and cellular & tissue-based product').
27	
28	Running title: Scientific information on evaluation of genetic polymorphisms
29	

30 Abstract

31	Pharmacotherapy shows striking individual differences in pharmacokinetics
32	and pharmacodynamics, involving drug efficacy and adverse reactions. Recent genetic
33	research has revealed that genetic polymorphisms are important intrinsic factors for
34	these inter-individual differences. This pharmacogenomic information could help
35	develop safer and more effective precision pharmacotherapies and thus, regulatory
36	guidance/guidelines were developed in this area, especially in the EU and US. The
37	Project for the Promotion of Progressive Medicine, Medical Devices, and
38	Regenerative Medicine by the Ministry of Health, Labour and Welfare, performed by
39	Tohoku University, reported scientific information on the evaluation of genetic
40	polymorphisms, mainly on drug metabolizing enzymes and transporters, during non-
41	clinical studies and phase I clinical trials in Japanese subjects/patients. We anticipate
42	that this paper will be helpful in drug development for the regulatory usage of
43	pharmacogenomic information, most notably pharmacokinetics.
44	
15	Koywords, genetic polymorphism: pharmacogenomics: non clinical study: phase I

45 Keywords: genetic polymorphism; pharmacogenomics; non-clinical study; phase I
46 clinical trial; precision pharmacotherapy

48 Background

The Project for the Promotion of Progressive Medicine, Medical Devices, and 49Regenerative Medicine by the Ministry of Health, Labour and Welfare was established 50in 2012. One of the projects that was adopted, "evaluation procedures for the efficacy 51and safety of pharmaceuticals that use pharmacogenomics," conducted a non-clinical 5253study and early-phase clinical trials on investigational drugs, and evaluated the effects of genetic polymorphisms of drug-metabolizing enzymes and transporters primarily 54involved in those trials. This work was conducted at the Graduate School of 55Pharmaceutical Sciences and Faculty of Pharmaceutical Sciences, Tohoku University, 56in cooperation with the National Institute of Health Sciences and Pharmaceuticals and 57Medical Devices Agency. 58As a main achievement of this project, we compiled the current scientific 59information on genetic polymorphisms, which had been evaluated during these non-60 clinical studies and phase I clinical drug trials in Japanese subjects/patients, obtained 61through this project and scientific papers. This report focuses on the genetic 62polymorphisms of drug metabolizing enzymes (cytochrome P450 enzymes among 63 others) and transporters with reported functional significance and allele frequencies of 64 1% or higher in the Japanese population, and outlines *in vitro* procedures for the 65evaluation of their functional effects on investigational drugs. This report also 66

 $\mathbf{5}$

67	provides examples of genetic polymorphisms and somatic mutations of proteins
68	involving drug efficacy or adverse drug reactions. We believe that this information
69	will be helpful to accelerate future research and continued discussions on drug
70	development using pharmacogenomic information (e.g., dose adjustment and
71	avoidance of adverse reactions) in Japan and possibly other East Asian countries.
72	Furthermore, a guideline from European Medicines Agency describes that 1) a
73	relevant involvement of a known polymorphic enzyme cannot be excluded (i.e., non-
74	clinical in vitro data predict >50% to be cleared by a single polymorphic enzyme in
75	vivo), it is advised to genotype the first time substance exposure in phase I clinical
76	trial, 2) if phase I studies indicate that pharmacogenetics influences the
77	pharmacokinetics of a drug to a possible clinically relevant extent (i.e., >25% of the
78	drug is metabolized by a single polymorphic enzyme), this should be reflected in the
79	design of the Phase II studies. No such a guideline is there in Japan. Since multi-
80	regional clinical trials including Japan have been common nowadays, clear
81	information on frequent and functional genetic polymorphisms in Japanese population
82	should be useful to promote the safer attendance of Japanese patients into the trials
83	(http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/
84	02/WC500121954.pdf). The Graduate School of Pharmaceutical Sciences and Faculty
85	of Pharmaceutical Sciences, Tohoku University anticipated that this information will

serve as a scientific basis for discussion to make regulatory guidelines in the future.
87

88 **1. Introduction**

89 **1.1 Purpose**

Individual differences in efficacy and safety of drugs are well known, and 90 91factors affecting these differences can be classified into intrinsic and extrinsic factors. As listed in the ICH-E5 guideline, extrinsic factors include climate, culture, degree of 92drug compliance, and method of conducting or endpoint of the clinical trial, while 93 intrinsic factors include gender, body weight and height, and polymorphisms of genes 94involved in drug metabolism. In recent years, many studies on genetic polymorphisms 95in drug-metabolizing enzymes and transporters have demonstrated associations with 96 drug efficacy and/or adverse drug reactions [1-3]. The use of genetic information 97 could lead to increased efficacy and decreased adverse reactions. 98

99 Drug efficacy can be efficiently demonstrated in clinical trials by excluding 100 specific patient groups with certain types of genetic backgrounds that are associated 101 with no or very low efficacy of the drug. For example, some studies showed a linkage 102 between reduced drug efficacy and decreased activity of metabolizing enzymes due to 103 genetic polymorphisms [4, 5]. As another example, drug toxicity can be caused by an 104 elevation in blood/tissue concentrations by a reduction in drug metabolizing enzyme

105	or transporter activities by genetic polymorphisms, leading to decreased excretion or
106	decreased elimination of reactive metabolites [6]. Therefore, the use of information on
107	genetic polymorphisms related to pharmacokinetics/drug efficacy/adverse drug
108	reactions could potentially prevent delays in drug development and reduce costs
109	associated with the onset of serious adverse reactions.
110	This report aims to present scientific information for evaluation of genetic
111	polymorphisms (mainly on drug-metabolizing enzymes and transporters) and their
112	functional effects that can be taken into consideration during non-clinical studies (in
113	vitro studies using human samples) and phase I clinical trials in the Japanese
114	population.
115	
116	1.2 Scope of Application
117	This report will present the methodology and important considerations for
118	referral when pharmaceutical companies obtain information on genetic
119	polymorphisms and/or assess their functional significance for investigational drugs in
120	non-clinical studies. These evaluations will be helpful to design phase I clinical trials
121	in the Japanese population. The scope of this document is limited to exploratory
122	evaluations of the effects of genetic polymorphisms. The methodologies and
123	information presented here are based solely on current knowledge, and thus, future

124 strategies for drug development should not be limited to this document.

126	2. Analysis Methods and Examples of Target Genes
127	2.1 Analytical Methods for Genetic Polymorphisms
128	Analytical methods for genetic polymorphisms can be divided into 1)
129	candidate gene analysis and 2) comprehensive gene analysis. This section briefly
130	outlines the advantages and disadvantages of the two methods.
131	
132	2.1.1 Analysis of Genetic Polymorphisms of Candidate Genes
133	Enzymes that contribute to investigational drug metabolism can be identified
134	by non-clinical studies using human hepatocytes, their microsomal, cytosolic, or S9
135	fractions, or expression systems of each drug-metabolizing enzyme. Cytochrome P450
136	and glucuronyl transferase are present in these samples (except for the cytosolic
137	fraction). In addition, a growing number of studies have revealed the involvement of
138	drug transporters that contribute to the uptake/excretion of drugs into/from the small
139	intestine, liver, kidney, and other organs. When known drug metabolizing
140	enzymes/transporters are involved in pharmacokinetics, efficacy, and the safety of the
141	drug, it is possible to explore novel, related genetic polymorphisms and to evaluate
142	the effects of the polymorphisms on the metabolism of the investigational drug in

143	non-clinical studies; this will allow the importance of these polymorphisms to be
144	considered in subsequent clinical phase I trials. Genetic polymorphisms associated
145	with functional changes have previously been reported, especially for major
146	cytochrome P450s, several conjugating enzymes, and transporters. We can use this
147	information when selecting genes and their polymorphisms for analysis.
148	For candidate gene analysis, we can use several methods, including
149	conventional sequencing (Sanger method) and novel sequencing methods using
150	highly-efficient sequencers (next generation). For analysis of known genetic
151	polymorphisms, a number of methods can be used, including the PCR-restriction
152	fragment length polymorphism (RFLP) method, the allele-specific PCR method, DNA
153	microarrays (products specialized for pharmacokinetics-related genes), and other
154	sequencing/PCR/hybridization-based methods [7, 8]. These methods can be selected
155	based on factors such as the number of samples, adjacent sequences of genetic
156	polymorphisms, instrument availability, and measurement duration.
157	Advantages of candidate gene analysis generally include its relatively low
158	cost, low multiplicity corrections in statistics since it measures limited numbers of
159	polymorphisms, and the need for a relatively small number of patients. A
160	disadvantage of this method is that it cannot find associated polymorphisms when
161	unknown molecules are involved in drug responsiveness. Blood or a buccal swab

162 could be used as a source of DNA, for example.

163	2.1.2 Comprehensive Analysis of Genetic Polymorphisms
164	Genetic polymorphisms that are involved in drug responsiveness can
165	sometimes be difficult to determine, such as when unknown drug-metabolizing
166	enzymes and transporters contribute to pharmacokinetics, efficacy, and adverse drug
167	reactions. In these cases, it is necessity to search for related genetic polymorphisms
168	by sequencing exon and/or transcriptional regulatory regions of several candidate
169	genes or even performing genome-wide association studies (GWAS) for a large
170	number of genetic polymorphisms.
171	An advantage of this approach is the possibility of finding genetic
172	polymorphisms in unknown molecules related to drug responsiveness. The
173	disadvantages include the high cost and the simultaneous detection of many genetic
174	polymorphisms that may not cause functional changes.
175	At the stage of phase I clinical trial, it would be generally difficult to clarify
176	the gene related to the pharmacokinetics and adverse drug reaction by the
177	comprehensive analysis of genetic polymorphisms because of a small size of samples.
178	However, if there is a gene associated with interindividual differences of
179	pharmacokinetics, the comprehensive analysis can extract the candidates of relevant
180	SNPs. Then, the in vitro functional analysis can be done as a non-clinical studies. So,

181	comprehensive analysis of genetic polymorphisms may be useful in phase I clinical
182	trial.
183	2.2 Information on Known Genetic Polymorphisms and Their In Vitro Functional
184	Analysis
185	This section describes reported genetic polymorphisms (allele frequencies of
186	$\geq 1\%$ in the Japanese population) with functional changes (by <i>in vivo</i> or <i>in vitro</i>
187	studies) and how to evaluate the effects of these genetic polymorphisms on the
188	metabolic or transport activities of the investigational drug (Table 1). It is noteworthy
189	that several reports on cytochrome P450s have shown variable effects of genetic
190	polymorphisms with amino acid changes on enzymatic activities, depending on the
191	substrate structures [9, 10].
192	
193	2.2.1 Cytochrome P450
194	Cytochrome P450 is a superfamily of metabolizing enzymes, and functional
195	effects have been widely reported with genetic polymorphisms. The primary enzymes
196	that contribute to drug metabolism and are expressed in the liver are CYP1A2,
197	CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5.
198	Isoforms with known functional polymorphisms with allele frequencies $\geq 1\%$ in the
199	Japanese population, and thus could be examined in clinical trials, are CYP2A6,

200	CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 [9, 11-16]. The
201	enzymes are anchored on the cytosolic side of the endoplasmic reticulum membrane,
202	and P450 oxidoreductase (POR) is required for their enzymatic activity. It is known
203	that the activities of some isoforms, such as CYP2C9 and CYP3A4, are elevated by
204	co-expression of cytochrome b5. This co-expression could be important as it
205	facilitates the evaluation of enzymatic activity [17]. Functional analysis can be
206	performed using human liver microsomal fractions, in which genotype was
207	determined or microsomal fractions expressing recombinant enzymes bearing amino
208	acid alterations involved in genetic polymorphisms. Peptide sequences of the
209	membrane-anchored region are usually removed to allow soluble expression in E. coli
210	[18, 19]. When expressed in yeast [20, 21], insect [13, 22], or mammalian cells [23,
211	24], the enzymes are usually the membrane-anchored forms. It is important to co-
212	express or add POR in the assay system to ensure enzymatic activity, if cytochrome
213	P450s are expressed in <i>E. coli</i> or insect cells [13, 25, 26]. Although endogenous POR
214	can be used in yeast or mammal cell assays, some studies use elevated activity system
215	by co-expression or addition of POR [21]. Storing microsomal fractions at -80°C or
216	below is important to sustain enzyme activity of cytochrome P450s [27]. However, it
217	is known that storage of liver tissues at -80° C can decrease their enzymatic activity
218	[28]. In addition, an appropriate amount of NADPH or its regenerating system

.....

219	(including NADP, glucose-6-phosphate dehydrogenase, and glucose-6-phosphate)
220	must be present, taking the reaction time into account. Substrates used as positive
221	controls for the measurement of enzymatic activity would be selected as described in
222	the following section for each isoform. Omission of NADPH or a component of the
223	regenerating system is often used as a negative control. Given that other metabolic
224	pathways can potentially contribute to the reduction of the investigational drug, it is
225	generally preferable to measure the metabolite production rate by the target metabolic
226	pathways. However, an assessment of the reduction rate of the investigational drug is
227	beneficial when evaluating the presence of alternate metabolic pathways, or when
228	understanding the contribution of the target metabolic pathway to all of the metabolic
229	pathways of the investigational drug.
230	In the section below, minor allele frequencies (MAFs) are the approximate
231	reported values in the Japanese population.
232	
233	2.2.1.1 CYP2A6
234	CYP2A6 contributes to 1–2% of the metabolism of marketed drugs [29] and
235	there are marked ethnic differences in the frequency of CYP2A6 alleles [30]. Known
236	functional polymorphisms with allele frequencies of $\geq 1\%$ in the Japanese population
237	are as follows: CYP2A6*4 (whole gene deletion, loss of activity, approximately 19%

238	in MAF), CYP2A6*7 (1412T>C, I471T and gene conversion of 3'-flanking region,
239	decreased activity due to reduced protein stability, ~10% in MAF), and CYP2A6*9 (-
240	1013A>G, -48T>G, decreased activity due to reduced gene expression level, ~19% in
241	MAF) [14, 15]. CYP2A6*4, *7, and *9 are prevalent (10-19%) in Asian populations
242	but have a lower frequency (0-8%) in Caucasian populations [15, 30, 96]. Nicotine
243	(cotinine generation) and coumarin (7-hydroxylation) are frequently used as positive
244	controls for functional analysis of this isoform [31, 32].
245	
246	2.2.1.2 CYP2B6
247	CYP2B6 contributes to $1-2\%$ of the metabolism of marketed drugs [29].
248	Known functional polymorphisms with allele frequencies of $\geq 1\%$ in the Japanese
249	population are as follows: CYP2B6*4 (785A>G, K262R, ~9% in MAF), CYP2B6*5
250	(1459C>T, R487C, ~1% in MAF), and CYP2B6*6 (516G>T, 785A>G, Q172H,
251	K262R, ~16% in MAF) [33]. In Caucasians, <i>CYP2B6*2</i> , *3, *4, *5, *6, and *7 were
252	found at variant frequencies of up to 30% [34]. There are reports of elevated protein
253	expression in CYP2B6*4 and decreased protein expression in CYP2B6*5 and
254	CYP2B6*6 by in vitro analyses. For CYP2B6*6, decreased activity was observed
255	against efavirenz, while increased activity was observed for the metabolism of
256	cyclophosphamide and selegiline [16, 35]. Therefore, it is thought that the functional

effect of variation depends on the substrate. Efavirenz (8-hydroxylation) and
bupropion (hydroxylation), are frequently used as positive controls for functional
analysis [35].

260

261 **2.2.1.3 CYP2C8**

262Since the year 2000, CYP2C8 gene polymorphism has been identified in various races. The *CYP2C8*3* allele is the most common in Caucasians 263(approximately 13% in MAF) after the wild type CYP2C8*1 allele [36]. Although 264genetic polymorphisms that cause functional changes and have allele frequencies of 265 \geq 1% were not reported in the Japanese population, *CYP2C8*2* (805A>T, I269F, 266267approximately 16% in MAF among black populations), CYP2C8*3 (416G>A; 1196A>G, R139K; K399R, ~14% in MAF among Caucasians and 2% among black 268populations), and CYP2C8*4 (792C>G, I264M, ~6% in MAF in Caucasians) are 269known to be associated with decreased metabolic activities [37, 38]. Substrates such 270as paclitaxel (6α -hydroxylation) are often used as positive controls for functional 271analysis of this isoform [38]. 272273

274 **2.2.1.3 CYP2C9**

275

CYP2C9 contributes to 15–25% of the metabolism of marketed drugs [29].

276	There are significant ethnic differences in the frequencies of <i>CYP2C9</i> variants [36].
277	CYP2C9*3 (1075A>C, I359L, decreased activity), is a known functional
278	polymorphism with an allele frequencies of 3% and 6% in the Japanese and Caucasian
279	populations, respectively [12]. In contrast, CYP2C9*2 (430C>T, R144C), which has
280	approximately 14% in MAF among Caucasians, is not detected in Japanese.
281	Diclofenac (4'-hydroxylation) and S-warfarin (7-hydroxylation) are frequently used as
282	positive controls in the functional analysis [39-41].
283	
284	2.2.1.4 CYP2C19
285	CYP2C19 contributes to 4–8% of the metabolism of marketed drugs [29].
286	Approximately 15-25% of the Japanese population are poor metabolizers of
287	CYP2C19, whereas the poor metabolizer frequency in Caucasians is less than 5%
288	[36]. Known functional polymorphisms with allele frequencies of $\geq 1\%$ in the Japanese
289	population are as follows: CYP2C19*2 (681G>A, splicing defect, loss of activity,
290	~29% in MAF), CYP2C19*3 (636G>A, W212Stop, loss of activity, ~12.4% in MAF),
291	and CYP2C19*17 (-806C>T, increased activity due to increased gene expression, 1%
292	in MAF) [12]. S-mephenytoin (4'-hydroxylation) is an example of a positive control
293	for the functional analysis [39-41]. However, the functional effects of these three
294	genetic polymorphisms result from changes in protein expression levels. Therefore

they are not considered to have significantly different effects on metabolism amongsubstrates.

2.2.1.5 CYP2D6

299	CYP2D6 contributes to 20–30% of the metabolism of marketed drugs [29].
300	The frequency of CYP2D6 PMs is 5 to 10% in the Caucasian population and less than
301	1% in the Asian population [12]. Known functional polymorphisms with allele
302	frequencies of $\geq 1\%$ in the Japanese population are as follows: <i>CYP2D6*5</i> (whole gene
303	deletion, loss of activity, ~6% in MAF), CYP2D6*10 (100C>T and others, P34S and
304	others, decreased activity, ~37.9% in MAF), and CYP2D6*41 (2988G>A and others,
305	splicing defect, decreased activity, ~1% in MAF) [12]. The decreased activity
306	associated with CYP2D6*10 is attributed to a decrease in both expression level and
307	enzyme activity [9, 42-44]. Although the majority of these polymorphisms has been
308	detected as a haplotype with CYP2D6*10 (~30% in MAF), sole CYP2D6*36 (gene
309	conversion with CYP2D7 in exon 9, loss of activity, $\sim 1\%$ in MAF) should also be
310	taken into consideration [12, 45]. As for $CYP2D6*10$, it has been reported that ~5%
311	are independent alleles and 26% are haplotypes as CYP2D6*36-CYP2D6*10 [45]. In
312	addition, although the frequency is low, it is noteworthy that there are many reported
313	alleles with functional changes in this isoform: CYP2D6*4 (1846G>A and others,

314	splicing defect, loss of activity, ~0.3% in MAF); CYP2D6*21 (2573_2574insC, 267
315	frame-shift, loss of activity, ~0.6% in MAF), CYP2D6*14 (1758G>A and others,
316	G169R and others, decreased activity, ~0.3% in MAF), and CYP2D6*18
317	(4125_4133dupGTGCCCACT, VPT duplication, decreased activity, ~0.5% in MAF)
318	[9, 12, 46]. Please refer to a review paper for detailed descriptions of these low-
319	frequency CYP2D6 genetic polymorphisms [44]. Bufuralol (1'-hydroxylation) and
320	dextromethorphan (o-demethylation) are examples of substrates that are often used as
321	positive controls in functional analysis [39-41]. Furthermore, CYP2D6*3 (2549delA,
322	frame shift, approximately 1.8% in MAF among Caucasians), CYP2D6*4 (~20.5% in
323	MAF among Caucasians and 5.7% among black populations), and CYP2D6*6
324	(1707delT, frame shift, ~1.1% in MAF among Caucasians) are known polymorphisms
325	associated with loss of enzymatic activity that occur at a frequency of $\geq 1\%$ among
326	Caucasians and black populations, but very low frequencies have been reported in
327	Japanese populations [12]. In addition, a duplication polymorphism, CYP2D6*2 \times
328	CYP2D6*2 (~1.7% in MAF among black populations), leading to an ultra-rapid
329	metabolizer phenotype has been reported.

331 2.2.1.6 CYP3A4

332

CYP3A4 contributes to 40–50% of the metabolism of marketed drugs [29].

333	Screening in different ethnic populations identified a number of CYP3A4 variant
334	alleles. Overall, variation of the CYP3A4 genotype may contribute only to a minor
335	extent or only in rare cases, to the interindividual differences in the CYP3A4
336	phenotypes. However, there is some evidence that CYP3A4*16 displays reduced
337	activity, which allele seems to be Asian-specific [47]. CYP3A4*16 (554C>G, T185S,
338	decreased activity, ~1.4% in MAF), is a known functional polymorphism with an
339	allele frequency of $\geq 1\%$ in Japanese [11]. Midazolam (1'-hydroxylation) and
340	testosterone (6β-hydroxylation) are usually used as positive controls in the functional
341	analysis [39-41]. Furthermore, since CYP3A4 and CYP3A5 have similar substrate
342	specificity, it is recommended to use an expression system for each recombinant
343	enzyme (cells or microsomes).
344	
345	2.2.1.7 CYP3A5
346	CYP3A5*3 (6986A>G, splicing defect, markedly decreased activity, ~76% in
347	MAF) is a known functional polymorphism with an allele frequency of $\geq 1\%$ in the
348	Japanese population [12, 13]. There are significant ethnic differences in the frequency
349	of CYP3A5*3, with allele frequencies ranging from 0.14 among sub-Saharan Africans
350	to >0.95 in European populations [48]. Positive controls for the functional analysis of

this isoform are similar to those used for CYP3A4. However, the effect of this genetic

352	polymorphism is a marked reduction in protein expression level, so its functional
353	effect is similar among substrates.
354	
355	2.2.2 Glucuronyl Transferase and Other Drug-Metabolizing Enzymes
356	This section describes genetic polymorphisms with functional changes of
357	\geq 1% in MAF in the Japanese population for drug-metabolizing enzymes other than
358	cytochrome P450. Please see individual references for the functional analysis methods
359	of each enzyme.
360	
361	2.2.2.1 UGT1A1
362	Glucuronyl transferase, which transfers glucuronic acid to the substrate using
363	a UDP-glucuronic acid, is a membrane-anchored enzyme that is expressed on the
364	luminal side of the endoplasmic reticulum. Therefore, its activity generally increases
365	after adding membrane pore-forming reagents, such as alamethicin, but the
366	concentration used should be carefully titered. Recombinant UGT proteins are usually
367	expressed in mammalian cells (e.g., COS-1 or HEK293), and by adding the substrate
368	and UDP-glucuronic acid, functional studies are performed using microsomal
369	fractions [49, 50]. Specific reactions of each isoform can be measured using
370	recombinant UGT protein. However, other metabolic pathways can also contribute to

371	the loss of the investigational drug in assays using microsomes from human liver
372	cells, and thus, it is generally preferable to measure metabolite generation as the
373	metabolic activity. As a negative control, UDP-glucuronic acid is usually omitted.
374	UGT1A1 is one of nine types of UGT1A, and is expressed at high levels in the liver.
375	This enzyme is involved in the metabolism of bilirubin and is known to be a causative
376	gene for Gilbert's syndrome [51].
377	UGT1A1*6 (211G>A, G71R, decreased activity, ~19% in MAF), UGT1A1*28
378	(-5439A(TA) ₆ TAA>A(TA) ₇ TAA, decreased activity due to reduced gene expression
379	level, ~13% in MAF); and UGT1A1*60 (-3279T>G, decreased activity due to reduced
380	gene expression level, 26% in MAF [however, about half are linked to UGT1A1*28])
381	are known polymorphisms with an allele frequency of 1% or higher in Japanese [12,
382	52]. UGT1A1*93 (-3156G>A) is known to be mostly in linkage disequilibrium with
383	UGT1A1*28. The frequencies of UGT1A1*6 and *28 in Caucasians are up to 3% and
384	39%, respectively [12]. SN-38 (generation of 4-deoxy conjugate), a metabolite for
385	irinotecan, and estradiol (3-conjugation, also mediated by UGT2B7) are often used as
386	positive controls in the functional analysis of this enzyme [50, 53]. The functional
387	influence of both UGT1A1*28 and UGT1A1*60 is derived from altered protein
388	expression levels, and thus, their functional effects are considered to be similar among
389	substrates.

391 2.2.2.2 NAT2

392	N-acetyltransferase 2 transfers the acetyl group from acetyl-CoA to the
393	substrates and is expressed in the cytosol [54]. The antituberculosis drug, isoniazid,
394	can be used as a positive control substrate for the functional analysis of this enzyme.
395	However, although there are reports using environmental chemicals as substrates [55],
396	in vitro functional analyses with recombinant NAT2 enzyme using isoniazid as a
397	substrate have not been reported to date. Therefore, in non-clinical studies, the
398	influence of genetic polymorphisms of NAT2 can be evaluated by assessing the
399	relationship between the blood concentration ratio of the investigational drug and its
400	NAT2 metabolite (e.g., area under the curve [AUC] ratio) using blood samples from
401	dosed patients, and the results of a genetic polymorphism screening of the patients in
402	the clinical trials. For example, functional changes of NAT2 by genetic
403	polymorphisms can be evaluated from the ratio of isoniazid and its metabolite
404	acetylisoniazid, 3 h after a single dose [56] [57]. The genetic polymorphisms show
405	ethnic differences in enzyme activities; almost 50% of Caucasian are slow acetylators,
406	whereas the frequency of slow acetylators in Japanese populations is only 10% [58].
407	Of all the NAT2 allelic variants that had been identified, 3 variants (NAT2*5,
408	NAT2*6, and NAT2*7) have been shown to account for the majority of the slow

409	acetylator genotypes in Japanese subjects [59]. NAT2*4 is a wildtype allele. NAT2*5
410	(341T>C, I114T, approximately 1% in MAF), NAT2*6 (590G>A, R197Q, ~21% in
411	MAF), and NAT2*7 (857G>A, G286E, ~9% in MAF) are decreased activity alleles
412	with known MAF $\geq 1\%$ in the Japanese population [12]. Furthermore, the frequency of
413	isoniazid-induced liver injury is reported to be significantly higher in the low activity
414	genotypes (homozygotes or compound heterozygotes of NAT2*5, NAT2*6, and
415	NAT2*7) [60, 61].
416	
417	2.2.2.3 GSTM1/GSTT1
418	These enzymes belong to the glutathione transferase group. The reduced form
419	of glutathione is transferred to the electrophilic compounds (e.g., reactive
420	metabolites), which contributes to reductions in, for example, oxidative stress [62].
421	GSTM1*0/GSTT1*0 (both are whole-gene deletions), which cause loss of
422	activities together with GSTM1 and GSTT1, are known polymorphisms with an allele
423	frequency of $\geq 1\%$ in Japanese populations [12]. The allele frequencies in Japanese
424	subjects are approximately 50% for both GSTM1*0 and GSTT1*0. In contrast, the
425	frequencies of GSTM1*0 and GSTT1*0 in Caucasians are 53% and 20%, respectively
426	[12]. An <i>in vitro</i> functional analysis for metabolic activities of these alleles is
427	considered unnecessary because of the gene deletions

2.2.2.4 TPMT

430	Thiopurine methyltransferase (TPMT) is a cytosolic enzyme that transfers the
431	methyl group from S-adenosylmethionine to substrates [63]. As a functional analysis
432	method, wildtype and variant-type enzymes are expressed in mammalian cells (COS-1
433	or COS-7). Then, substrate and S-adenosylmethionine are added to the cytosolic
434	fraction, and activity is measured [64, 65]. In addition, red blood cell lysates from
435	peripheral blood, as an enzyme source, are also frequently used with 6-
436	mercaptopurine as a substrate to determine the metabolic production of 6-
437	mercaptopurine using high-performance liquid chromatography (HPLC)-ultraviolet
438	(UV) detection [66].
439	TPMT*3A (460A>G and 719A>G) was found in European Caucasians,
440	African-Americans, and Southwest Asians and is the most prevalent allele in
441	European Caucasians (approximately 5% in MAF), but not detected in Japanese [67].
442	<i>TPMT*3C</i> (719A>G, Y240C, ~1% in MAF), which causes decreased activity, is the
443	most prevalent allele with an frequency of $\geq 1\%$ in Japanese populations [68].
444	Compounds, including 6-mercaptopurine (S-methylation) and 6-thioguanine (S-
445	methylation), are often used as positive controls in the functional analysis of this
446	enzyme [64, 65].

2.2.2.5 ALDH2

449	Aldehyde dehydrogenase (ALDH) is an enzyme that metabolizes aldehyde to
450	carboxylic acid and is known to metabolize acetaldehyde (an ethanol metabolite) into
451	acetic acid. It is known to metabolize nitroglycerin [69, 70]. Although few functional
452	analyses have been reported, some have used recombinant wildtype or variant-type
453	enzymes expressed in E. coli or insect cells (Sf9) [71, 72]. Approximately 50% of
454	Japanese have inactive ALDH2 whereas none of the Caucasian show this isozyme
455	abnormality [73].
456	ALDH2*2 (1510G>A, E504K, decreased activity, ~27% in MAF) is a known
457	polymorphism with an allele frequency of $\geq 1\%$ in Japanese subjects [73, 74].
458	Nitroglycerin (1, 2-dinitro glycerol generation) and acetaldehyde (acetic acid
459	generation) are commonly used as positive controls in the functional analysis of this
460	enzyme [71, 72].
461	
462	2.2.3 Drug Transporters
463	Drug transporters are responsible for the uptake/excretion of drugs into/from
464	tissues such as small intestine, liver, and kidney. Generally, a drug can be a substrate
465	of multiple transporters, and in many cases, one transporter is not rate-limiting for

466	drug clearance. In addition, transporter functions sometimes affect tissue
467	concentrations of the drug more strongly than they do blood concentrations.
468	Therefore, the functional significance of transporter genetic polymorphisms is often
469	difficult to assess, and thus, many transporter polymorphisms await establishment of
470	their clinical significance, including ABCB1 (P-gp) polymorphisms. Therefore,
471	smaller numbers of functionally significant genetic polymorphisms have been
472	established compared with those of metabolizing enzymes. However, evaluation of the
473	investigational drugs that become substrates for the following two transporters is
474	worthwhile, since highly frequent and functionally significant genetic polymorphisms
475	were reported in the Japanese population [75].
476	
477	2.2.3.1 OATP1B1 (SLCO1B1)
478	Organic anion transporting polypeptide (OATP)1B1, encoded by SLCO1B1,
479	is primarily expressed in the basolateral (basal) membrane of hepatocytes and
480	facilitates the transport from the blood into cells of organic compounds with an
481	anionic state at physiological pH [76]. Wild and variant-type transporters can be
482	expressed in mammalian cells (e.g., HEK293 and HeLa), and are used to determine
483	the initial velocity of transporting substrates into cells as an <i>in vitro</i> functional
484	analysis system [77, 78].

485	The alleles 521T>C (V174A, decreased expression and activity,
486	approximately 13.9% in MAF, named OATP1B1*5) [12] and 388A>G (N130D,
487	increased activity, ~66.7% in MAF, OATP1B1*1b) [79] are known polymorphisms
488	with an allele frequency of $\geq 1\%$ among Japanese populations. The 521T>C is in
489	linkage disequilibrium with 388A>G, and they form haplotypes (OATP1B1*15 and
490	OATP1B1*17), especially in Japanese subjects [79]. Many clinical studies have
491	reported significantly increased blood concentrations of most OATP1B1 substrates in
492	521T>C (OATP1B1*5, OATP1B1*15, OATP1B1*17) carriers. However, a significant
493	decrease or tendency toward decrease in the blood concentrations of some OATP1B1
494	substrates was observed in OATP1B1*1b (bearing only 388A>G, 46.9% in MAF)
495	carriers [80]. The allele frequencies of "OATP1B1*5, OATP1B1*15, OATP1B1*17"
496	and OATP1B1*1b vary between races; approximately 16% and 25% in Caucasians and
497	5% and 76% in African populations, respectively [12]. The 388A>G is assumed to
498	cause elevated transporting function via increased OATP1B1 protein expression,
499	because increased protein expression was detected with an increased number of
500	388A>G alleles in human liver, but no change was observed in the net transporting
501	activity. [81]. Estrone 3-sulfate and pitavastatin, for example, are often used as
502	positive controls in functional analysis [82]. The substrate selectivity of OATP1B1 is
503	known to be similar to that of OATP1B3 and much overlap is observed for both

transporter substrates. In addition, as mentioned previously, the functional effect of
the 388A>G could be derived from increased protein expression levels, so that its
functional effect is probably similar among substrates.

507

508 **2.2.3.2** *ABCG2* (BCRP)

509The ATP-binding cassette transporters transport substrates from cells using ATP as an energy source. Breast cancer resistance protein (BCRP), encoded by 510ABCG2, is a multi-drug resistant transporter expressed in the canalicular (apical) 511membrane of the bile duct, small intestine, and rectum [83]. As in vitro functional 512assay systems, wild and variant-type transporters are expressed in mammalian cells 513(e.g., HEK293), and the velocities of substrate accumulation into the cells are 514compared. Another method utilizes the expression of recombinant wild and variant-515type transporters in polarized cells (such as Caco-2), and the flux ratios [i.e., the 516permeability of the investigational drug from the apical side (A) to the basal side (B) 517and the permeability of the drug in the opposite direction (from B to A) are measured 518and expressed as a ratio (B to A/A to B)] are compared between the expressed cells. In 519this method, a correction using the flux ratio of non-expressing cells is applied to 520calculate the net flux ratio [(flux ratio of expressing cells)/(flux ratio of non-521expressing cells)]. The third method uses assays that compare the velocity of substrate 522

523	accumulation into vesicles expressing wild and variant-type transporters [84].
524	The allele 376C>T (Q126X, loss of activity, ~1% in MAF) and 421C>A
525	(Q141K, decreased expression and activity, ~31% in MAF) are known polymorphisms
526	with an allele frequency of $\geq 1\%$ among Japanese populations [12, 85]. The allele
527	frequency of 421C>A in Japanese subjects is about 3-fold higher than that in
528	Caucasians (11%) [12]. Estrone 3-sulfate and sulfasalazine, for example, often used as
529	positive controls in the functional analysis. Estrone 3-sulfate is also a substrate of
530	OATP1B1. The functional effect of the 376C>T polymorphism is based on the loss of
531	protein expression, so its functional effect is considered similar among substrates.
532	
533	2.2.4 Efficacy or Adverse Drug Reaction-Related Molecules
534	Genetic polymorphisms can potentially have an influence on the efficacy or
535	safety of drugs, where amino acid substitutions or altered expression levels of
536	molecules related to efficacy or adverse drug reactions are observed. Please refer to
537	the appropriate papers for specific functional analyses, since the methods vary for
538	each molecule. As examples, two cases are described in the following section.
539	
540	2.2.4.1 EGFR/K-RAS

541 Recently, tyrosine kinase inhibitors and antibodies against epidermal growth

542	factor receptor (EGFR) have been developed for the treatment of various cancers, and
543	somatic mutations of EGFR and its downstream molecules are reported to be
544	associated with the drug's efficacy. For example, patients with L858R or deletion of
545	exon 19 (variations of the tyrosine kinase domain, collectively reported to account for
546	85% of mutations) of EGFR, showed higher response rates to gefitinib [3, 86]. K-
547	RAS, an intracellular signal transduction molecule of EGFR, is also known to have
548	somatic mutations that alter the glycine at codon 12 or 13, which is associated with
549	low efficacy of cetuximab and panitumumab (low response rates and short overall
550	survival time) [87, 88]. These acquired mutations are only detected in tumor cells (in
551	somatic cell lineages), and thus are not detected in leukocyte-derived genomic DNA
552	in the blood. It is noteworthy that use of a highly sensitive and specific detection
553	method is important, because the percentage of the cells bearing the mutations are
554	sometimes very low [89].

2.2.4.2 HLA

Some types of human leukocyte antigens (HLAs) are known to be related to
specific drug-induced severe cutaneous adverse reactions (SCARs) and hepatotoxicity,
which are believed to be idiosyncratic. For example, *HLA-B*58:01* is associated with
allopurinol-induced SCARs, and HLA-B75 (for example, *HLA-B75*15:02* or *HLA-*

561	B75*15:11) and HLA-A*31:01 are associated with carbamazepine-induced SCARs
562	[90]. These data suggest that HLA molecules are off-targets of these drugs. In fact,
563	carbamazepine and oxypurinol, an allopurinol metabolite, were suggested to bind to
564	HLA-B75 and HLA-B*58:01 proteins, respectively; these bindings are known to
565	induce cytotoxic T cell activation [91, 92].
566	
567	3. Points to Consider when Designing Phase I Clinical Trials, Based on the
568	Results of the Non-Clinical Studies
569	• When the drug is metabolized by a single enzyme, the metabolism will be greatly
570	influenced by its genetic polymorphisms. In such cases, functional evaluation of
571	the genetic polymorphisms for the investigational drug through the methods
572	described in this paper is of general importance. However, in the case of multiple
573	enzyme involvement in the investigational drug metabolism, the effect of genetic
574	polymorphisms in one metabolizing enzyme will be limited.
575	• In some cases, care must be exercised when other drugs are co-administered.
576	Where one metabolic pathway is affected by genetic polymorphisms and the other
577	is inhibited by a co-administered drug (i.e., drug interaction), safety issues need
578	to be considered [93, 94]. In such cases, functional evaluation of genetic
579	polymorphisms using the methods described in this report will be important.

580	•	The frequencies of several genetic polymorphisms are known to show ethnic
581		differences. During drug development, it is important to consider the allele
582		frequency of genetic polymorphisms in each ethnicity when such genetic
583		polymorphisms are considered to have an effect on pharmacokinetics, efficacy, or
584		the safety of the investigational drug. In general, however, the differences in
585		allele frequencies between adjacent populations, such as within Europeans or East
586		Asians, are not large for drug-metabolizing enzymes and transporters [12].

588 Acknowledgments

589	We deeply thank the Drug Evaluation Committee, The Japan Pharmaceutical
590	Manufacturers Association, and the Councils and members of Regulation DIS, The
591	Japanese Society for the Study of Xenobiotics, for giving us many valuable comments
592	on this document (Japanese version). The contents and opinions in this paper are
593	personal and not an official ones of Pharmaceuticals and Medical Devices Agency and
594	National Institute of Health Sciences. We also thank Ms. Chie Sudo for secretarial
595	assistance.
596	

597 **Conflict of interest**

598 The authors declare no conflict of interest.

599 **References**

604

607

610

- International Warfarin Pharmacogenetics C, Klein TE, Altman RB, Eriksson N,
 Gage BF, Kimmel SE, Lee MT, Limdi NA, Page D, Roden DM, Wagner MJ, Caldwell
 MD, Johnson JA. Estimation of the warfarin dose with clinical and
 pharmacogenetic data. N Engl J Med 2009;360: 753-64.
- 605 [2] Sai K, Sawada J, Minami H. [Irinotecan pharmacogenetics in Japanese cancer
 606 patients: roles of UGT1A1*6 and *28]. Yakugaku Zasshi 2008;128: 575-84.
- 608 [3] Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor
 609 signaling pathway in lung cancers. *Int J Cancer* 2006;118: 257-62.
- [4] Hulot JS, Collet JP, Silvain J, Pena A, Bellemain-Appaix A, Barthelemy O, Cayla
 G, Beygui F, Montalescot G. Cardiovascular risk in clopidogrel-treated patients
 according to cytochrome P450 2C19*2 loss-of-function allele or proton pump
 inhibitor coadministration: a systematic meta-analysis. JAm Coll Cardiol 2010;56:
 134-43.
- [5] Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomas M, Masia R,
 Marrugat J, Brugada R, Elosua R. Meta-analyses of the association between
 cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular
 outcomes in patients with coronary artery disease treated with clopidogrel. *Heart*2012;98: 100-8.
- 622
- [6] Watanabe I, Tomita A, Shimizu M, Sugawara M, Yasumo H, Koishi R, Takahashi T,
 Miyoshi K, Nakamura K, Izumi T, Matsushita Y, Furukawa H, Haruyama H, Koga
 T. A study to survey susceptible genetic factors responsible for troglitazoneassociated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. *Clin Pharmacol Ther* 2003;73: 435-55.
- 628
- 629 [7] Deeken J. The Affymetrix DMET platform and pharmacogenetics in drug
 630 development. *Curr Opin Mol Ther* 2009;11: 260-8.
- 631
- [8] Hiratsuka M. [Development of simplified and rapid detection assay for genetic
 polymorphisms influencing drug response and its clinical applications]. Yakugaku
 Zasshi 2002;122: 451-63.
- 635

636 [9] Hiratsuka M. In vitro assessment of the allelic variants of cytochrome P450. Drug
637 Metab Pharmacokinet 2012;27: 68-84.

638

[10] Maekawa K, Harakawa N, Yoshimura T, Kim SR, Fujimura Y, Aohara F, Sai K, Katori N, Tohkin M, Naito M, Hasegawa R, Okuda H, Sawada J, Niwa T, Saito Y. CYP3A4*16 and CYP3A4*18 alleles found in East Asians exhibit differential catalytic activities for seven CYP3A4 substrate drugs. *Drug Metab Dispos* 2010;38: 2100-4.

- 644
- [11] Fukushima-Uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T,
 Kurose K, Sai K, Komamura K, Ueno K, Kamakura S, Kitakaze M, Hanai S,
 Nakajima T, Matsumoto K, Saito H, Goto Y, Kimura H, Katoh M, Sugai K, Minami
 N, Shirao K, Tamura T, Yamamoto N, Minami H, Ohtsu A, Yoshida T, Saijo N,
 Kitamura Y, Kamatani N, Ozawa S, Sawada J. Haplotypes of CYP3A4 and their
 close linkage with CYP3A5 haplotypes in a Japanese population. *Hum Mutat*2004;23: 100.
- 652
- [12] Kurose K, Sugiyama E, Saito Y. Population differences in major functional
 polymorphisms of pharmacokinetics/pharmacodynamics-related genes in Eastern
 Asians and Europeans: implications in the clinical trials for novel drug development. *Drug Metab Pharmacokinet* 2012;27: 9-54.
- 657
- [13] Maekawa K, Yoshimura T, Saito Y, Fujimura Y, Aohara F, Emoto C, Iwasaki K,
 Hanioka N, Narimatsu S, Niwa T, Sawada J. Functional characterization of
 CYP3A4.16: catalytic activities toward midazolam and carbamazepine. *Xenobiotica*2009;39: 140-7.
- 662
- 663 [14] Minematsu N, Nakamura H, Furuuchi M, Nakajima T, Takahashi S, Tateno H,
 664 Ishizaka A. Limitation of cigarette consumption by CYP2A6*4, *7 and *9
 665 polymorphisms. *Eur Respir J* 2006;27: 289-92.
- 666
- [15] Nakajima M, Fukami T, Yamanaka H, Higashi E, Sakai H, Yoshida R, Kwon JT,
 McLeod HL, Yokoi T. Comprehensive evaluation of variability in nicotine
 metabolism and CYP2A6 polymorphic alleles in four ethnic populations. *Clin Pharmacol Ther* 2006;80: 282-97.
- 671
- 672 [16] Watanabe T, Sakuyama K, Sasaki T, Ishii Y, Ishikawa M, Hirasawa N, Hiratsuka
 673 M. Functional characterization of 26 CYP2B6 allelic variants (CYP2B6.2-

CYP2B6.28, except CYP2B6.22). Pharmacogenet Genomics 2010;20: 459-62.

- 675
- [17] Peyronneau MA, Renaud JP, Truan G, Urban P, Pompon D, Mansuy D. Optimization
 of yeast-expressed human liver cytochrome P450 3A4 catalytic activities by
 coexpressing NADPH-cytochrome P450 reductase and cytochrome b5. *Eur J Biochem* 1992;207: 109-16.
- 680
- [18] Iwata H, Fujita K, Kushida H, Suzuki A, Konno Y, Nakamura K, Fujino A,
 Kamataki T. High catalytic activity of human cytochrome P450 co-expressed with
 human NADPH-cytochrome P450 reductase in Escherichia coli. *Biochem Pharmacol*1998;55: 1315-25.
- 685
- [19] Yamazaki H, Nakamura M, Komatsu T, Ohyama K, Hatanaka N, Asahi S, Shimada
 N, Guengerich FP, Shimada T, Nakajima M, Yokoi T. Roles of NADPH-P450
 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by
 12 recombinant human cytochrome P450s expressed in membranes of Escherichia
 coli. *Protein Expr Purif* 2002;24: 329-37.
- [20] Imaoka S, Yamada T, Hiroi T, Hayashi K, Sakaki T, Yabusaki Y, Funae Y. Multiple
 forms of human P450 expressed in Saccharomyces cerevisiae. Systematic
 characterization and comparison with those of the rat. *Biochem Pharmacol* 1996;51:
 1041-50.
- 696

701

- Rao KN, Suman SK, Kiran YR, Kuanr AR, Gupta AK, Bhalla K, Kumar V, Kundu P,
 Arora K, Soni R. Co-expression of recombinant human CYP2C9 with human
 cytochrome P450 reductase in protease deficient S. cerevisiae strain at a higher
 scale yields an enzyme of higher specific activity. *Drug Metab Lett* 2010;4: 246-53.
- Yu A, Kneller BM, Rettie AE, Haining RL. Expression, purification, biochemical
 characterization, and comparative function of human cytochrome P450 2D6.1,
 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. *J Pharmacol Exp Ther* 2002;303: 1291300.
- 706
- [23] Saito Y, Hanioka N, Maekawa K, Isobe T, Tsuneto Y, Nakamura R, Soyama A,
 Ozawa S, Tanaka-Kagawa T, Jinno H, Narimatsu S, Sawada J. Functional analysis
 of three CYP1A2 variants found in a Japanese population. *Drug Metab Dispos*2005;33: 1905-10.
- 711

712[24]Sakuyama K, Sasaki T, Ujiie S, Obata K, Mizugaki M, Ishikawa M, Hiratsuka M. 713Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A-B, 71418, 27, 36, 39, 47-51, 53-55, and 57). Drug Metab Dispos 2008;36: 2460-7. 715716 [25]Lee CA, Kadwell SH, Kost TA, Serabjit-Singh CJ. CYP3A4 expressed by insect cells 717 infected with a recombinant baculovirus containing both CYP3A4 and human 718NADPH-cytochrome P450 reductase is catalytically similar to human liver 719 microsomal CYP3A4. Arch Biochem Biophys 1995;319: 157-67. 720721[26]Pritchard MP, Glancey MJ, Blake JA, Gilham DE, Burchell B, Wolf CR, Friedberg 722T. Functional co-expression of CYP2D6 and human NADPH-cytochrome P450 723reductase in Escherichia coli. Pharmacogenetics 1998;8: 33-42. 724725[27]Yamazaki H, Inoue K, Turvy CG, Guengerich FP, Shimada T. Effects of freezing, 726thawing, and storage of human liver samples on the microsomal contents and 727activities of cytochrome P450 enzymes. Drug Metab Dispos 1997;25: 168-74. 728729[28]Pearce RE, McIntyre CJ, Madan A, Sanzgiri U, Draper AJ, Bullock PL, Cook DC, 730Burton LA, Latham J, Nevins C, Parkinson A. Effects of freezing, thawing, and 731storing human liver microsomes on cytochrome P450 activity. Arch Biochem 732Biophys 1996;331: 145-69. 733734[29]Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into 735rational therapeutics. Science 1999;286: 487-91. 736 737 [30]Di YM, Chow VD, Yang LP, Zhou SF. Structure, function, regulation and 738polymorphism of human cytochrome P450 2A6. Curr Drug Metab 2009;10: 754-80. 739740[31]Higashi E, Nakajima M, Katoh M, Tokudome S, Yokoi T. Inhibitory effects of 741neurotransmitters and steroids on human CYP2A6. Drug Metab Dispos 2007;35: 742508-14. 743744[32]Yoo HH, Lee MW, Kim YC, Yun CH, Kim DH. Mechanism-based inactivation of cytochrome P450 2A6 by decursinol angelate isolated from Angelica Gigas. Drug 745746Metab Dispos 2007;35: 1759-65. 747[33]Hiratsuka M, Takekuma Y, Endo N, Narahara K, Hamdy SI, Kishikawa Y, Matsuura 748749M, Agatsuma Y, Inoue T, Mizugaki M. Allele and genotype frequencies of CYP2B6

755

and CYP3A5 in the Japanese population. Eur J Clin Pharmacol 2002;58: 417-21.

- 752Mo SL, Liu YH, Duan W, Wei MQ, Kanwar JR, Zhou SF. Substrate specificity, [34]753regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab 7542009;10: 730-53.
- 756[35]Zanger UM, Klein K. Pharmacogenetics of cytochrome P450 2B6 (CYP2B6): 757 advances on polymorphisms, mechanisms, and clinical relevance. Front Genet 7582013;4:24.
- 760 [36] Hiratsuka M. Genetic Polymorphisms and in Vitro Functional Characterization of 761CYP2C8, CYP2C9, and CYP2C19 Allelic Variants. Biol Pharm Bull 2016;39: 1748-762 59.
- 763

767

759

- 764[37]Pechandova K, Buzkova H, Matouskova O, Perlik F, Slanar O. Genetic 765polymorphisms of CYP2C8 in the Czech Republic. Genet Test Mol Biomarkers 7662012;16: 812-6.
- 768Soyama A, Saito Y, Hanioka N, Murayama N, Nakajima O, Katori N, Ishida S, Sai [38]769K, Ozawa S, Sawada JI. Non-synonymous single nucleotide alterations found in the 770CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol Pharm Bull 7712001;24: 1427-30.
- 772
- 773[39]Tucker GT, Houston JB, Huang SM. Optimizing drug development: strategies to 774assess drug metabolism/transporter interaction potential--toward a consensus. 775Pharm Res 2001;18: 1071-80.
- 777[40]Walsky RL, Obach RS. Validated assays for human cytochrome P450 activities. 778Drug Metab Dispos 2004;32: 647-60.
- 779

776

780[41]Yuan R, Madani S, Wei XX, Reynolds K, Huang SM. Evaluation of cytochrome P450

- 783
- 781probe substrates commonly used by the pharmaceutical industry to study in vitro 782drug interactions. Drug Metab Dispos 2002;30: 1311-9.
 - [42]Hanioka N, Okumura Y, Saito Y, Hichiya H, Soyama A, Saito K, Ueno K, Sawada J,
- 784Narimatsu S. Catalytic roles of CYP2D6.10 and CYP2D6.36 enzymes in mexiletine 785786 metabolism: in vitro functional analysis of recombinant proteins expressed in Saccharomyces cerevisiae. Biochem Pharmacol 2006;71: 1386-95. 787

793

798

803

[43] Muroi Y, Saito T, Takahashi M, Sakuyama K, Niinuma Y, Ito M, Tsukada C, Ohta
K, Endo Y, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of wildtype and 49 CYP2D6 allelic variants for N-desmethyltamoxifen 4-hydroxylation
activity. Drug Metab Pharmacokinet 2014;29: 360-6.

- [44] Nakamura K, Ariyoshi N, Yokoi T, Ohgiya S, Chida M, Nagashima K, Inoue K,
 Kodama T, Shimada N, Kamataki T. CYP2D6.10 present in human liver microsomes
 shows low catalytic activity and thermal stability. *Biochem Biophys Res Commun*2002;293: 969-73.
- [45] Soyama A, Saito Y, Kubo T, Miyajima A, Ohno Y, Komamura K, Ueno K, Kamakura
 S, Kitakaze M, Tomoike H, Ozawa S, Sawada J. Sequence-based analysis of the
 CYP2D6*36-CYP2D6*10 tandem-type arrangement, a major CYP2D6*10 haplotype
 in the Japanese population. *Drug Metab Pharmacokinet* 2006;21: 208-16.
- [46] Chida M, Yokoi T, Kosaka Y, Chiba K, Nakamura H, Ishizaki T, Yokota J, Kinoshita
 M, Sato K, Inaba M, Aoki Y, Gonzalez FJ, Kamataki T. Genetic polymorphism of
 CYP2D6 in the Japanese population. *Pharmacogenetics* 1999;9: 601-5.
- 808 [47] Werk AN, Cascorbi I. Functional gene variants of CYP3A4. *Clin Pharmacol Ther*809 2014;96: 340-8.
- 810

815

807

[48] Suarez-Kurtz G, Vargens DD, Santoro AB, Hutz MH, de Moraes ME, Pena SD,
Ribeiro-dos-Santos A, Romano-Silva MA, Struchiner CJ. Global pharmacogenomics:
distribution of CYP3A5 polymorphisms and phenotypes in the Brazilian population. *PLoS One* 2014;9: e83472.

816 [49] Gagne JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C.
817 Common human UGT1A polymorphisms and the altered metabolism of irinotecan
818 active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). *Mol Pharmacol*819 2002;62: 608-17.

820

[50] Jinno H, Tanaka-Kagawa T, Hanioka N, Saeki M, Ishida S, Nishimura T, Ando M,
Saito Y, Ozawa S, Sawada J. Glucuronidation of 7-ethyl-10-hydroxycamptothecin
(SN-38), an active metabolite of irinotecan (CPT-11), by human UGT1A1 variants,
G71R, P229Q, and Y486D. *Drug Metab Dispos* 2003;31: 108-13.

- 826 [51] Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase
 827 enzymes. *Pharmacogenomics J* 2003;3: 136-58.
- 828

837

841

846

849

854

[52] Saeki M, Saito Y, Jinno H, Sai K, Ozawa S, Kurose K, Kaniwa N, Komamura K,
Kotake T, Morishita H, Kamakura S, Kitakaze M, Tomoike H, Shirao K, Tamura T,
Yamamoto N, Kunitoh H, Hamaguchi T, Yoshida T, Kubota K, Ohtsu A, Muto M,
Minami H, Saijo N, Kamatani N, Sawada JI. Haplotype structures of the UGT1A
gene complex in a Japanese population. *Pharmacogenomics J* 2006;6: 63-75.

- 835 [53] Soars MG, Ring BJ, Wrighton SA. The effect of incubation conditions on the enzyme
 836 kinetics of udp-glucuronosyltransferases. *Drug Metab Dispos* 2003;31: 762-7.
- 838 [54] Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US,
 839 Nangju NA, Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2
 840 acetylation polymorphisms. *Cancer Epidemiol Biomarkers Prev* 2000;9: 29-42.
- Ferguson RJ, Doll MA, Rustan TD, Gray K, Hein DW. Cloning, expression, and
 functional characterization of two mutant (NAT2(191) and NAT2(341/803)) and
 wild-type human polymorphic N-acetyltransferase (NAT2) alleles. *Drug Metab Dispos* 1994;22: 371-6.
- 847 [56] Seifart HI, Parkin DP, Botha FJ, Donald PR, Van Der Walt BJ. Population screening
 848 for isoniazid acetylator phenotype. *Pharmacoepidemiol Drug Saf* 2001;10: 127-34.
- 850 [57] Hiratsuka M, Kishikawa Y, Takekuma Y, Matsuura M, Narahara K, Inoue T, Hamdy
 851 SI, Endo N, Goto J, Mizugaki M. Genotyping of the N-acetyltransferase2
 852 polymorphism in the prediction of adverse drug reactions to isoniazid in Japanese
 853 patients. Drug Metab Pharmacokinet 2002;17: 357-62.
- [58] Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I. Arylamine
 N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated
 Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet
 1995;57: 581-92.
- 859
- 860 [59] Mashimo M, Suzuki T, Abe M, Deguchi T. Molecular genotyping of N-acetylation
 861 polymorphism to predict phenotype. *Hum Genet* 1992;90: 139-43.
- 862
- 863 [60] Huang YS, Chern HD, Su WJ, Wu JC, Lai SL, Yang SY, Chang FY, Lee SD.

- 864 Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for 865antituberculosis drug-induced hepatitis. Hepatology 2002;35: 883-9. 866 867 [61]Possuelo LG, Castelan JA, de Brito TC, Ribeiro AW, Cafrune PI, Picon PD, Santos 868 AR, Teixeira RL, Gregianini TS, Hutz MH, Rossetti ML, Zaha A. Association of slow 869 N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients 870 from Southern Brazil. Eur J Clin Pharmacol 2008;64: 673-81. 871 872 [62]Strange RC, Spiteri MA, Ramachandran S, Fryer AA. Glutathione-S-transferase 873 family of enzymes. Mutat Res 2001;482: 21-6. 874 875 [63]Wang L, Weinshilboum R. Thiopurine S-methyltransferase pharmacogenetics: 876 insights, challenges and future directions. Oncogene 2006;25: 1629-38. 877 878 [64]Salavaggione OE, Wang L, Wiepert M, Yee VC, Weinshilboum RM. Thiopurine S-879 methyltransferase pharmacogenetics: variant allele functional and comparative 880 genomics. Pharmacogenet Genomics 2005;15: 801-15. 881 882 Ujiie S, Sasaki T, Mizugaki M, Ishikawa M, Hiratsuka M. Functional [65]883 characterization of 23 allelic variants of thiopurine S-methyltransferase gene (TPMT*2 - *24). Pharmacogenet Genomics 2008;18: 887-93. 884 885886 [66]Chouchana L, Narjoz C, Roche D, Golmard JL, Pineau B, Chatellier G, Beaune P, Loriot MA. Interindividual variability in TPMT enzyme activity: 10 years of 887 888 experience with thiopurine pharmacogenetics and therapeutic drug monitoring. 889 Pharmacogenomics 2014;15: 745-57. 890 891 [67]Tai HL, Krynetski EY, Yates CR, Loennechen T, Fessing MY, Krynetskaia NF, Evans 892 WE. Thiopurine S-methyltransferase deficiency: two nucleotide transitions define 893 the most prevalent mutant allele associated with loss of catalytic activity in 894 Caucasians. Am J Hum Genet 1996;58: 694-702. 895 896 [68]Hiratsuka M, Inoue T, Omori F, Agatsuma Y, Mizugaki M. Genetic analysis of 897 thiopurine methyltransferase polymorphism in a Japanese population. Mutat Res 898 2000;448: 91-5. 899 900 [69]Kollau A, Hofer A, Russwurm M, Koesling D, Keung WM, Schmidt K, Brunner F, 901 Mayer B. Contribution of aldehyde dehydrogenase to mitochondrial bioactivation of
 - 42

- 902nitroglycerin: evidence for the activation of purified soluble guanylate cyclase 903 through direct formation of nitric oxide. Biochem J 2005;385: 769-77. 904 905[70]Mackenzie IS, Maki-Petaja KM, McEniery CM, Bao YP, Wallace SM, Cheriyan J, 906 Monteith S, Brown MJ, Wilkinson IB. Aldehyde dehydrogenase 2 plays a role in the 907 bioactivation of nitroglycerin in humans. Arterioscler Thromb Vasc Biol 2005;25: 908 1891-5. 909 910 [71]Beretta M, Gruber K, Kollau A, Russwurm M, Koesling D, Goessler W, Keung WM, 911 Schmidt K, Mayer B. Bioactivation of nitroglycerin by purified mitochondrial and 912 cytosolic aldehyde dehydrogenases. J Biol Chem 2008;283: 17873-80. 913Li Y, Zhang D, Jin W, Shao C, Yan P, Xu C, Sheng H, Liu Y, Yu J, Xie Y, Zhao Y, Lu [72]914 915 D, Nebert DW, Harrison DC, Huang W, Jin L. Mitochondrial aldehyde 916 dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J Clin Invest 2006;116: 506-11. 917918 919 [73]Maezawa Y, Yamauchi M, Toda G, Suzuki H, Sakurai S. Alcohol-metabolizing 920 enzyme polymorphisms and alcoholism in Japan. Alcohol Clin Exp Res 1995;19: 921951-4. 922Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G, 923[74]924 Bhatia K, Chen LZ, Fang B, Lisker R, et al. Distribution of ADH2 and ALDH2 925genotypes in different populations. Hum Genet 1992;88: 344-6. 926 927 [75]Maeda K, Sugiyama Y. Impact of genetic polymorphisms of transporters on the 928 pharmacokinetic, pharmacodynamic and toxicological properties of anionic drugs. 929 Drug Metab Pharmacokinet 2008;23: 223-35. 930 931[76]Nakanishi T, Tamai I. Genetic polymorphisms of OATP transporters and their 932 impact on intestinal absorption and hepatic disposition of drugs. Drug Metab 933 Pharmacokinet 2012;27: 106-21. 934 935[77]Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K. Functional 936characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 937 938 cells. Pharmacogenet Genomics 2005;15: 513-22. 939
 - 43

940 [78] Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. Role of organic anion transporter
941 OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7942 ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide
943 polymorphisms. *Drug Metab Dispos* 2005;33: 434-9.

- [79] Kim SR, Saito Y, Sai K, Kurose K, Maekawa K, Kaniwa N, Ozawa S, Kamatani N,
 Shirao K, Yamamoto N, Hamaguchi T, Kunitoh H, Ohe Y, Yamada Y, Tamura T,
 Yoshida T, Minami H, Ohtsu A, Saijo N, Sawada J. Genetic variations and
 frequencies of major haplotypes in SLCO1B1 encoding the transporter OATP1B1 in
 Japanese subjects: SLCO1B1*17 is more prevalent than *15. Drug Metab
 Pharmacokinet 2007;22: 456-61.
- 951

944

[80] Maeda K. Organic anion transporting polypeptide (OATP)1B1 and OATP1B3 as important regulators of the pharmacokinetics of substrate drugs. *Biol Pharm Bull*2015;38: 155-68.

955

959

963

967

- Peng KW, Bacon J, Zheng M, Guo Y, Wang MZ. Ethnic variability in the expression
 of hepatic drug transporters: absolute quantification by an optimized targeted
 quantitative proteomic approach. *Drug Metab Dispos* 2015;43: 1045-55.
- 960 [82] Yoshida K, Maeda K, Sugiyama Y. Transporter-mediated drug-drug interactions
 961 involving OATP substrates: predictions based on in vitro inhibition studies. *Clin*962 *Pharmacol Ther* 2012;91: 1053-64.
- 964 [83] Ieiri I. Functional significance of genetic polymorphisms in P-glycoprotein (MDR1,
 965 ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab
 966 Pharmacokinet 2012;27: 85-105.
- 968 [84] Kondo C, Suzuki H, Itoda M, Ozawa S, Sawada J, Kobayashi D, Ieiri I, Mine K,
 969 Ohtsubo K, Sugiyama Y. Functional analysis of SNPs variants of BCRP/ABCG2.
 970 Pharm Res 2004;21: 1895-903.
- 971
- [85] Maekawa K, Itoda M, Sai K, Saito Y, Kaniwa N, Shirao K, Hamaguchi T, Kunitoh
 H, Yamamoto N, Tamura T, Minami H, Kubota K, Ohtsu A, Yoshida T, Saijo N,
 Kamatani N, Ozawa S, Sawada J. Genetic variation and haplotype structure of the
 ABC transporter gene ABCG2 in a Japanese population. *Drug Metab*Pharmacokinet 2006;21: 109-21.

- 978 [86] Janne PA, Johnson BE. Effect of epidermal growth factor receptor tyrosine kinase
 979 domain mutations on the outcome of patients with non-small cell lung cancer
 980 treated with epidermal growth factor receptor tyrosine kinase inhibitors. *Clin*981 *Cancer Res* 2006;12: 4416s-20s.
- [87] Karapetis CS, Khambata-Ford S, Jonker DJ, O'Callaghan CJ, Tu D, Tebbutt NC,
 Simes RJ, Chalchal H, Shapiro JD, Robitaille S, Price TJ, Shepherd L, Au HJ,
 Langer C, Moore MJ, Zalcberg JR. K-ras mutations and benefit from cetuximab in
 advanced colorectal cancer. N Engl J Med 2008;359: 1757-65.
- 988 [88] Siddiqui AD, Piperdi B. KRAS mutation in colon cancer: a marker of resistance to
 989 EGFR-I therapy. Ann Surg Oncol 2010;17: 1168-76.
- 991 [89] Milbury CA, Li J, Makrigiorgos GM. PCR-based methods for the enrichment of
 992 minority alleles and mutations. *Clin Chem* 2009;55: 632-40.
- (90] Kaniwa N, Saito Y. Pharmacogenomics of severe cutaneous adverse reactions and
 drug-induced liver injury. J Hum Genet 2013;58: 317-26.
- 997 [91] Wei CY, Chung WH, Huang HW, Chen YT, Hung SI. Direct interaction between
 998 HLA-B and carbamazepine activates T cells in patients with Stevens-Johnson
 999 syndrome. J Allergy Clin Immunol 2012;129: 1562-9 e5.
- 1000

982

987

990

993

- 1001 [92] Yun J, Marcaida MJ, Eriksson KK, Jamin H, Fontana S, Pichler WJ, Yerly D.
 1002 Oxypurinol directly and immediately activates the drug-specific T cells via the
 1003 preferential use of HLA-B*58:01. *J Immunol* 2014;192: 2984-93.
- 1005 [93] Mikus G, Schowel V, Drzewinska M, Rengelshausen J, Ding R, Riedel KD, Burhenne
 1006 J, Weiss J, Thomsen T, Haefeli WE. Potent cytochrome P450 2C19 genotype-related
 1007 interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir.
 1008 Clin Pharmacol Ther 2006;80: 126-35.
- 1009
- 1010 [94] Shi HY, Yan J, Zhu WH, Yang GP, Tan ZR, Wu WH, Zhou G, Chen XP, Ouyang DS.
 1011 Effects of erythromycin on voriconazole pharmacokinetics and association with
 1012 CYP2C19 polymorphism. *Eur J Clin Pharmacol* 2010;66: 1131-6.
- 1013
- 1014 [95] Piliguian M, Zhu AZ, Zhou Q, Benowitz NL, Ahluwalia JS, Sanderson Cox L,
 1015 Tyndale RF. Novel CYP2A6 variants identified in African Americans are associated

with slow nicotine metabolism in vitro and in vivo. *Pharmacogenet Genomics* 2014;24: 118-28.

- 1018
- 1019 [96] Yoshida R, Nakajima M, Nishimura K, Tokudome S, Kwon JT, Yokoi T. Effects of
 1020 polymorphism in promoter region of human CYP2A6 gene (CYP2A6*9) on
 1021 expression level of messenger ribonucleic acid and enzymatic activity in vivo and
 1022 in vitro. *Clin Pharmacol Ther* 2003;74: 69-76.
- 1023
- 1024 [97] Niinuma Y, Saito T, Takahashi M, Tsukada C, Ito M, Hirasawa N, Hiratsuka M.
 1025 Functional characterization of 32 CYP2C9 allelic variants. *Pharmacogenomics J*1026 2014;14: 107-14.
- 1027

1032

1036

1040

- 1028 [98] Drogemoller BI, Wright GE, Niehaus DJ, Koen L, Malan S, Da Silva DM,
 1029 Hillermann-Rebello R, La Grange AM, Venter M, Warnich L. Characterization of
 1030 the genetic profile of CYP2C19 in two South African populations.
 1031 Pharmacogenomics 2010;11: 1095-103.
- 1033 [99] Scott SA, Martis S, Peter I, Kasai Y, Kornreich R, Desnick RJ. Identification of
 1034 CYP2C19*4B: pharmacogenetic implications for drug metabolism including
 1035 clopidogrel responsiveness. *Pharmacogenomics J* 2012;12: 297-305.
- [100] Ragia G, Arvanitidis KI, Tavridou A, Manolopoulos VG. Need for reassessment of
 reported CYP2C19 allele frequencies in various populations in view of CYP2C19*17
 discovery: the case of Greece. *Pharmacogenomics* 2009;10: 43-9.
- 1041 [101] Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans
 1042 and their descendants. *Pharmacogenomics* 2002;3: 229-43.
- 1044 [102] Dodgen TM, Hochfeld WE, Fickl H, Asfaha SM, Durandt C, Rheeder P, Drogemoller
 1045 BI, Wright GE, Warnich L, Labuschagne CD, van Schalkwyk A, Gaedigk A, Pepper
 1046 MS. Introduction of the AmpliChip CYP450 Test to a South African cohort: a
 1047 platform comparative prospective cohort study. *BMC Med Genet* 2013;14: 20.
- 1048
- [103] Gaedigk A, Twist GP, Leeder JS. CYP2D6, SULT1A1 and UGT2B17 copy number
 variation: quantitative detection by multiplex PCR. *Pharmacogenomics* 2012;13:
 91-111.
- 1052
- 1053 [104] Montane Jaime LK, Lalla A, Steimer W, Gaedigk A. Characterization of the

 $1054\\1055$

CYP2D6 gene locus and metabolic activity in Indo- and Afro-Trinidadians: discovery of novel allelic variants. *Pharmacogenomics* 2013;14: 261-76.

- 1056
- 1057 [105] Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik RH. CYP3A4*22:
 1058 promising newly identified CYP3A4 variant allele for personalizing
 1059 pharmacotherapy. *Pharmacogenomics* 2013;14: 47-62.
- 1060
- 1061 [106] Keshava C, McCanlies EC, Weston A. CYP3A4 polymorphisms--potential risk
 1062 factors for breast and prostate cancer: a HuGE review. Am J Epidemiol 2004;160:
 1063 825-41.
- 1064
- 1065 [107] Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S, Zhang J, Schuetz
 1066 EG. Common allelic variants of cytochrome P4503A4 and their prevalence in
 1067 different populations. *Pharmacogenetics* 2002;12: 121-32.
- 1068
- [108] Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A,
 Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan
 R, Strom S, Thummel K, Boguski MS, Schuetz E. Sequence diversity in CYP3A
 promoters and characterization of the genetic basis of polymorphic CYP3A5
 expression. Nat Genet 2001;27: 383-91.
- 1074
- 1075 [109] Tseng E, Walsky RL, Luzietti RA, Jr., Harris JJ, Kosa RE, Goosen TC, Zientek MA,
 1076 Obach RS. Relative contributions of cytochrome CYP3A4 versus CYP3A5 for
 1077 CYP3A-cleared drugs assessed in vitro using a CYP3A4-selective inactivator
 1078 (CYP3cide). Drug Metab Dispos 2014;42: 1163-73.
- 1079
- [110] Uesugi M, Kikuchi M, Shinke H, Omura T, Yonezawa A, Matsubara K, Fujimoto Y,
 Okamoto S, Kaido T, Uemoto S, Masuda S. Impact of cytochrome P450 3A5
 polymorphism in graft livers on the frequency of acute cellular rejection in livingdonor liver transplantation. *Pharmacogenet Genomics* 2014;24: 356-66.
- 1084
- [111] Palomaki GE, Bradley LA, Douglas MP, Kolor K, Dotson WD. Can UGT1A1
 genotyping reduce morbidity and mortality in patients with metastatic colorectal
 cancer treated with irinotecan? An evidence-based review. *Genet Med* 2009;11: 2134.
- 1089
- 1090 [112] Stingl JC, Bartels H, Viviani R, Lehmann ML, Brockmoller J. Relevance of UDP1091 glucuronosyltransferase polymorphisms for drug dosing: A quantitative systematic

review. Pharmacol Ther 2014;141: 92-116.

1093

1097

- [113] Innocenti F, Grimsley C, Das S, Ramirez J, Cheng C, Kuttab-Boulos H, Ratain MJ,
 Di Rienzo A. Haplotype structure of the UDP-glucuronosyltransferase 1A1
 promoter in different ethnic groups. *Pharmacogenetics* 2002;12: 725-33.
- [114] Sugatani J, Yamakawa K, Yoshinari K, Machida T, Takagi H, Mori M, Kakizaki S,
 Sueyoshi T, Negishi M, Miwa M. Identification of a defect in the UGT1A1 gene
 promoter and its association with hyperbilirubinemia. *Biochem Biophys Res Commun* 2002;292: 492-7.
- 1102

1107

1110

- [115] Maeda H, Hazama S, Shavkat A, Okamoto K, Oba K, Sakamoto J, Takahashi K,
 Oka M, Nakamura D, Tsunedomi R, Okayama N, Mishima H, Kobayashi M.
 Differences in UGT1A1, UGT1A7, and UGT1A9 polymorphisms between Uzbek and
 Japanese populations. *Mol Diagn Ther* 2014;18: 333-42.
- [116] Karas-Kuzelicki N, Mlinaric-Rascan I. Individualization of thiopurine therapy:
 thiopurine S-methyltransferase and beyond. *Pharmacogenomics* 2009;10: 1309-22.
- 1111 [117] Ho RH, Choi L, Lee W, Mayo G, Schwarz UI, Tirona RG, Bailey DG, Stein CM, Kim
 1112 RB. Effect of drug transporter genotypes on pravastatin disposition in European1113 and African-American participants. *Pharmacogenet Genomics* 2007;17: 647-56.
- 1114

1119

- [118] Kim HS, Sunwoo YE, Ryu JY, Kang HJ, Jung HE, Song IS, Kim EY, Shim JC, Shon
 JH, Shin JG. The effect of ABCG2 V12M, Q141K and Q126X, known functional
 variants in vitro, on the disposition of lamivudine. *Br J Clin Pharmacol* 2007;64:
 645-54.
- [119] Tamura A, Onishi Y, An R, Koshiba S, Wakabayashi K, Hoshijima K, Priebe W,
 Yoshida T, Kometani S, Matsubara T, Mikuriya K, Ishikawa T. In vitro evaluation
 of photosensitivity risk related to genetic polymorphisms of human ABC
 transporter ABCG2 and inhibition by drugs. *Drug Metab Pharmacokinet* 2007;22:
 428-40.
- 1125

Gene	Allele	Locations			Activity	Allele freque	ncies		References
		Nucleotide changes	Amino	acid		Japanese	Caucasian	African	
			changes					American	
	*4	gene deleted			None	0.19	0	0.009	[15, 95, 96]
CVD246	*7	1412T>C, gene conversion in	1471		Decrease	0.008	0	0	[15, 95, 96]
CIFZAO		the 3' flanking region	14711			0.098	0	0	
	*9	-1013A>G, -48T>G	TATA box		Decrease	0.19	0.08	0.085	[15, 95, 96]
	*4	785A>G	K262R		Change	0.093	0.040	0.000	[33, 35]
CVD2D6	*5	1459C>T	R487C		Decrease?	0.011	0.109	0.01-0.04	[33, 35]
017200	*6	516C>T 785A>C	Q172H,		Change	0.164	0.256	0 33 0 50	[33, 35]
		5100-1, 765A-U	K262R			0.104	0.230	0.33-0.30	

1127 Table 1. Major genetic polymorphisms of drug-metabolizing enzymes and transporters in Japanese populations

CYP2C9	*3	1075A>C	I359L	Decrease	0.029	0.064	0.018	[12, 97]
	*2	681G>A, 991A>G	Splicing	None	0.267-0.29	0.050-0.250	0-0.330	[12, 98, 99]
			defect, I331V					
CYP2C19	*3	636G>A, 991A>G	W212Stop,	None	0.108-0.128	0-0.004	0-0.060	[12, 98, 100]
			I331V					
	*17	-806C>T; 99C>T	I331V	Increase	0.011	0.188	0.235	[12}
	*5	gene deleted		None	0.041-0.072	0.016-0.082	0.028-0.107	[101-103]
	*10	100C>T, 1661G>C, 4180G>C	P34S, S486T	Decrease	0.333-0.408	0.001-0.080	0.019-0.086	[101-103]
CVP2D6	*41	-1584C, -1235A>G, -740C>T, -	Daoce	Decrease				[102-104]
CH 2D0		678G>A, CYP2D7 gene	R2900,					
		conversion in intron 1,	Splicing		0-0.016	0.031-0.150	0.004-0.149	
		1661G>C, 2850C>T,	defect, S486T					

		2988G>A, 4180G>C							
CYP3A4	*16	554C>G	T185S	Decrease	0.014	0	0	[105-1	07]
CYP3A5	*3	210-2374>C	Splicing	Decrease	0.71-0.85	0.9	0.07.0.5	[108-110]	
		217-2378-0	defect		0.71-0.85	0.9	0.27-0.5		
	*6	2116>4	C71B	Decrease	0 13-0 19	0.001-0.03	0	[12,	111,
		2110-7	0711		0.15-0.19	0.001-0.05	0	112]	
	*28	-54		Decrease	0.09-0.13	0 30-0 39	0 36-0 45	[12,	111,
UGT1A1		39A(TA)6TAA>A(TA)7TAA			0.09-0.15	0.30-0.37	0.50-0.45	112]	
	*60	-3279T>G		Decrease	0.14-0.26	0.45-0.55	0.79-0.85	[112-1	14]
	*93	3156G>A		Decrease	0.12	0 28 0 33	0 28 0 32	[112,	113,
		-51500-A			0.12	0.20-0.33	0.20-0.32	115]	
NAT2	*5	341T>C	I114T	Decrease	0.014	0.448	0.342	[12, 60	, 61]

	*6	590G>A	R197Q	Decrease	0.205	0.283	0.213	[12, 60, 61]	
	*7	857G>A	G286E	Decrease	0.088	0.018	0.063	[12, 60, 61]	
GSTM1	*0 (null)	gene deleted		None	0.501	0.529	0.266	[6, 12]	
GSTT1	*0 (null)	gene deleted		None	0.496	0.197	0.231	[6, 12]	
TPMT	*3C	719A>G	Y240C	Decrease	0.008-0.028	0.017-0.080	0.024-0.076	[65, 68, 116]	
ALDH2	*2	1510G>A	E504K	None	0.267	0	0.002	[69, 72, 73]	
	*1b	388A>G	N130D	Increase	0.469	0.246	0.763	[79, 117]	
SLCO1B1	*5, *15, *17	521T>C	V174A	Decrease	0.139	0.161	0.048	[12, 77, 78]	
ABCG2(BCRP)		421C>A	Q141K	Decrease	0.313	0.105	0.027	[12, 118, 119]	
		376C>T	Gln126Stop	None	0.009-0.017	0	0	[83, 118]	