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Abstract

The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms

have enhanced the capability of the surface X-ray diffraction technique. This technique has been

used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive man-

ner. An overview of surface X-ray diffraction, from the historical development to recent topics, is

presented. In the early stage of this technique, surface reconstructions of simple semiconductors

or metals were studied. Currently, the surface or interface structures of complicated functional

materials are examined with sub-Å resolution. As examples, the surface structure determination

of organic semiconductors and of a one-dimensional structure on silicon are presented. A new

frontier is time-resolved interfacial structure analysis. A recent observation of the structure and

dynamics of the electric double layer of ionic liquids, and an investigation of the structural evo-

lution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved

surface diffractometer, are presented.
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I. INTRODUCTION

X-ray diffraction has been used for crystal structure determination for over 100 years.

The scattering amplitude of X-rays is given by the Fourier transform of the electron density.

Therefore, in principle, if we obtain the scattering amplitude in a large volume of the recip-

rocal space, we can observe the electron density distribution of any specimen, regardless of

its periodicity or outer shape.

In practice, the scattering intensity at arbitrary points in the reciprocal space is, apart

from the Bragg reflections and the signal caused by the thermal vibration, usually far too

weak to be measured. One major exception is the scattering from flat surfaces. In this case,

there is a finite Fourier component of the electron density in the direction perpendicular

to the surface because of the truncation of the crystal. As a result, each Bragg reflection

has a rod-shaped tail along the surface-normal direction; this is known as crystal truncation

rod (CTR) scattering1,2. Similarly, surface superstructures with a different periodicity in

the surface plane also give a rod-shaped intensity distribution but it appears at different

in-plane positions from the CTRs. The superstructure rods show only a gradual change in

the intensity along the surface-normal direction because of the spatially limited out-of-plane

extent of the surface structure. In both cases, the rod-shaped intensity distribution reflects

the surface structure. By analyzing these intensity distributions, surface X-ray diffraction

(SXD) provides not only the in-plane structure but also the depth profile of the structure

with sub-Å resolution. The large penetration depth allows us to apply this method to solid-

solid or solid-liquid interfaces as well as surfaces in a nondestructive manner. This feature

is particularly useful as methods to study interfacial structures are limited. In this review

article, the recent developments of the SXD technique are presented.

II. PRINCIPLE OF SURFACE DIFFRACTION

In this section, an overview of the principle of SXD and the methods used for SXD

measurements is given, following the historical development.
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A. Grazing-incidence diffraction and in-plane diffraction

The challenge of SXD is to measure the weak signal from one or a few atomic layers at

the surface among the much larger number of layers in the whole sample. This is possible

because the SXD intensity appears at different positions in the reciprocal space compared

with the diffracted intensity from the bulk. Nevertheless, in many cases, it is necessary

to reduce the diffuse background from the bulk and to reduce the amount of data needed

to deduce the two-dimensional structure specific to the surface. Grazing-incidence X-ray

diffraction (GIXD) and in-plane diffraction are two approaches that have been used for this

purpose.

When the glancing angle of the incident X-rays is less than the critical angle of total

reflection, typically 0.2–0.5◦, the penetration depth of the X-rays is less than 100 Å, which

is three to four orders of magnitude smaller than the penetration depth of X-rays incident

normal to the surface. Because of this reduction in penetration depth, the background scat-

tering by the substrate, which is proportional to the illuminated volume, is greatly reduced.

Total reflection is a phenomenon involving multiple scattering processes as the evanescent

wave is excited in the substrate but the scattering is well approximated by kinematical the-

ory when the glancing angle of the X-rays is more than a few times larger than the critical

angle3,4. For this reason, the glancing angle of incident X-rays is usually set outside the to-

tal reflection region for precise structure measurements, which still provides a considerable

reduction in the background. This GIXD geometry is often used in SXD measurements.

In the in-plane geometry, the incident and exit beams both make a glancing angle with the

sample surface. The scattering vector is then nearly parallel to the surface, and the diffracted

intensity reflects the two-dimensional structure projected onto the surface. The reduction

of the dimensionality allows us to obtain the in-plane structure from a comparatively small

number of diffraction spots.

B. Out-of-plane diffraction

To obtain structural information perpendicular to the surface, it is necessary to use the

out-of-plane geometry, where the incident or exit beam makes a large angle with the substrate

surface. Usually, the incident beam is set to a grazing angle to suppress the background
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scattering except in specular rod (i.e., the rod passing through the origin of the reciprocal

space) measurements.

Since X-rays penetrate deep into the crystal, a semi-infinite crystal truncated at the

surface contributes to the diffraction phenomenon, which is CTR scattering. According to

kinematical theory, the CTR scattering amplitude from a perfect crystal with a flat surface

parallel to the a- and b-axes is given by

FB(Q) = Fhk(l)
−∞∑
n=0

exp(2πinl)

=
Fhk(l)

1− exp(−2πil)
. (1)

Here, Fhk(l) is the scattering amplitude from one atomic layer of the crystal and Q is the

scattering vector defined by Q = ha∗ + kb∗ + lc∗, where h and k are integers denoting the

integral-order rod and l indicates a point on the hk rod; a∗, b∗, and c∗ are the reciprocal

lattice vectors.

When the surface of the crystal has a structure different from the bulk, the total scattering

amplitude is described as

F (Q) = FB(Q) + F S(Q), (2)

using the scattering amplitude from the surface structure F S(Q). Then, the total diffracted

intensity I(Q) from the crystal with the surface structure is given as

I(Q) = C(Q)|F (Q)|2

= C(Q)|FB(Q) + F S(Q)|2, (3)

where C(Q) is a combination of proportional factors depending on the experimental condi-

tions, such as the scale factor, polarization factor, and Lorentz factor.

Figure 1 shows the rod profiles for a simple cubic crystal calculated by Eq. (3). The

dotted curve is the intensity profile of the CTR scattering from a perfect crystal given by

|FB|2. The solid curve was calculated for a crystal whose top layer was relaxed inward by

5%. It should be noted that the CTR scattering amplitude FB(Q) changes its phase by π

at the Bragg points5. Thus, the interference effect between FB(Q) and F S(Q) brings about

the asymmetric profile around the Bragg points, as seen in the solid curve. Moreover, the

CTR intensity at an anti-Bragg point, where l is a half-integer, is given by |Fhk|2/4 from

Eq. (1), that is, less than the diffracted intensity from a single layer. Therefore, SXD is
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sensitive to the surface structure F S(Q). CTR scattering has also been used to investigate

the roughness at surfaces2,6.

FIG. 1. Intensity distribution along the 00 rod (i.e., the profile along the 00l line) calculated for a

simple cubic crystal. The dotted curve is calculated for an ideal perfect crystal (CTR scattering),

and the solid curve is for a crystal whose topmost layer is relaxed inward by 5%.

One of the advantages of SXD is that the diffraction process is well described by kine-

matical theory, that is, only single scattering has to be considered. This has been shown in

work based on the dynamical theory of X-ray diffraction4,7,8, where it was found that the

CTR scattering is well approximated by kinematical theory except at positions very close

(a few times the Darwin width) to the Bragg point.

As is understood from Eq. (3), the measurement of the integral-order rods gives the

three-dimensional surface structure with respect to the substrate crystal. In the case of

superstructures formed on the crystal surface, fractional-order rods (FORs) also appear,

which give the structure inherent to the superstructure.

SXD in transmission geometry, similar to transmission electron diffraction (TED), is

also used to determine the lateral arrangement or to detect a number of diffraction spots

simultaneously9,10.

C. Reflectivity

The specular reflectivity curve corresponds to the 00 rod profile of the CTR scattering

around the region with very small l(= Qz) values. An important characteristic of the

reflectivity measurements is that they do not require any periodicity for the surface structure
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or the substrate as long as the surface and interface are sufficiently flat. This makes the

specular reflectivity useful for a wide range of structural studies of surfaces and interfaces11–14

It is known that the total reflection curve of X-rays from a material with a uniform electron

density is equivalent to the Fresnel’s curve in optics, and, thus, the exact treatment for

surface structure analysis has been well-described by using a recursion formula15. Detailed

analysis of the reflectivity curve gives information about the depth profile of the electron

density at surfaces and interfaces on the nanometer scale.

D. Instruments for measuring SXD

The conventional method for measuring SXD uses a collimated and monochromatic X-

ray beam, and measures the diffracted X-rays sequentially at different sample and detector

angles, similar to the X-ray diffraction measurements of bulk crystals. Usually, synchrotron

radiation is used because of the weak scattering from surfaces. SXD is different from bulk

X-ray diffraction in that the diffracted intensity depends on the experimental geometry,

such as the angles of the incident and exit beams to the sample surface4,16. The angle

between the intensity rod and the major axis of the resolution function also affects the signal

intensity. When measuring SXD with standard four-circle diffractometers, these effects must

be corrected in the data analysis, or a certain amount of systematic error in the intensities

must be accepted. To control these angles, several kinds of multiaxis diffractometers suitable

for SXD (six-axis diffractometers are popular) have been developed on the basis of a four-

circle diffractometer17–26. Angle calculations for the diffractometers and correction factors to

evaluate the diffracted intensity I(Q) from the observed intensity are given in Refs. 27–32.

Until a few years ago, the intensity at each reciprocal space point was usually obtained

by integrating the intensity measured with a point detector during a rotational scan of

the sample, with a few exceptions5. Recently, two-dimensional detectors have often been

used to observe the intensity around a reciprocal space point without rotating the sample,

which speeds up the measurement. For time-resolved experiments, methods that are able

to simultaneously observe an extended region of reciprocal space have been developed, as

explained in Sec. IV. They use an incident X-ray beam with a range of energies and/or

incident angles.

Ultrahigh vacuum (UHV) conditions are often essential for surface studies and UHV
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chambers have been combined with diffractometers from the beginning of SXD. Although

the whole UHV chamber was rotated in early experiments17, rotary feedthroughs compatible

with UHV conditions are usually adopted for sample rotation. A simple practical method

is to use a portable baby chamber mountable on a multiaxis diffractometer33.

E. Direct methods in SXD

In X-ray diffraction measurements, the intensity of the diffracted X-rays is obtained.

Thus, the phase of the diffracted X-ray wave is lost in the measurements. This is known as

the phase problem in X-ray diffraction. If one can obtain the phase of the diffracted X-rays,

one can reconstruct the electron density distribution of the object by the inverse Fourier

transform.

Methods that aim to obtain structural information directly from the measured intensities,

without any structural models, are termed as direct methods. The simplest method is the

Patterson map34, which is the Fourier transform of the measured intensities. The result

is proportional to the autocorrelation function of the electron density. The peaks in the

Patterson map correspond to interatomic vectors. For comparatively simple structures,

models can be surmised from the Patterson map, but for more complicated structures, more

sophisticated methods that are able to retrieve the phase information are needed.

1. SXD as holography

Holography is well known as one of the most powerful methods for solving the phase

problem in optics. SXD can be interpreted as a holographic process as follows. The total

scattering amplitude given by Eq. (2) consists of two waves: FB, the wave diffracted from the

bulk crystal whose structure is known, and F S, the wave diffracted from the surface structure

whose structure is unknown. The former and the latter can be treated as the reference wave

and the object wave in holography, respectively. Thus, the diffracted intensities measured

for a number of rods are equivalent to a hologram.

Using the diffracted intensity from the known part I0(Q) ≡ |FB(Q)|2, the hologram

function χ(Q) in SXD can be defined as

χ =
I − I0
A

=
|FB + F S|2 − |FB|2

A
, (4)
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where A is a normalization factor; here, the Q dependence is omitted for visibility. Although

the normalization factor is usually defined by A = I0 or
√
I0 in electron or X-ray fluorescence

holography35, Takahashi et al.36 adopted A = FB∗
as the normalization factor since the

diffracted amplitude from the bulk crystal is easily calculated by Eq.(1). Then, the hologram

function has the component of the surface structure F S as

χ = F S +
FB

FB∗F
S∗ +

|F S|2

FB∗ . (5)

Since the first term of the right-hand side is F S, which has the phase information, we may

expect to obtain images of the surface atoms by the inverse Fourier transform of χ. The

second term of Eq. (5), corresponding to twin images, might be smeared out and the third

term is negligible particularly in the case where |F S| < |FB|. Thus, the inverse Fourier

transform of χ directly reflects the electron density ρ(r) of the surface atoms.

The holographic method was first applied to a monolayer of Ge epitaxially grown on a

Si(001)-2×1 surface, and atomic images of Ge were reconstructed three-dimensionally with

respect to the Si(001) crystal37. This method is also helpful to check whether additional

atomic layers exist at the interface38–40.

2. Other model-free phase retrieval methods

Iterative approaches are a common strategy to solve inverse problems like the phase

problem. Fienup has developed an iterative algorithm that involves both the real and

Fourier spaces to recover the phases from the intensity data41,42. This method is used for

coherent X-ray diffractive imaging43,44.

Saldin and co-workers have applied the algorithm to the analysis of SXD in which the

sample lacks periodicity in the direction perpendicular to the sample surface, and succeeded

in obtaining images with atomic resolution45–51.

Figure 2 shows the algorithm. Starting from an appropriate initial electron density ρ(r)

(for example, flat), the scattering amplitudes F (Q) are calculated by a Fourier transform.

Only the phases are used and combined with the absolute values from the experiment

|Fexp(Q)|. The scattering amplitudes from the surface region U(Q) are calculated by sub-

tracting the scattering amplitudes from the bulk crystal S(Q) from the total scattering am-

plitudes F (Q). Next, the real-space electron density of the surface region ρ′(r) is calculated
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FIG. 2. Schematic drawing of the iterative phase recovery method for surface/interface structures.

S(Q) is the scattering amplitude from the known part, that is, the bulk crystal, and U(Q) is that

from the unknown part to be determined.

by the inverse Fourier transform. The electron density is constrained to be non-negative,

which yields ρ′′(r). Then, other constraints specific to SXD are imposed, for example, the

electron density should be zero in the vacuum over the surface and equal to the bulk electron

density below the surface region. The result is used as the new initial electron density ρ(r),

and this cycle is repeated until the electron density converges.

Another phase retrieval method, coherent Bragg rod analysis (COBRA), has been de-

veloped by Yacoby and co-workers52–56. In their method, the phase is semianalytically

recovered within the reciprocal space using the scattering amplitude from the known part.

In this aspect, COBRA has a similarity with the holographic method.

In both the holography and model-free phase retrieval methods, the structure of the sam-

ple surface including the substrate crystal is reconstructed as the three-dimensional electron

density distribution. The atomic positions and the magnitude of positional fluctuations are

estimated from the electron density distribution.

III. STATIC STRUCTURE ANALYSES

The structural information of the surface is, similar to the bulk case, essential to obtain

physical insight into various surface phenomena. Naturally, the development of the surface

structure analysis techniques has commenced from static objects.

The first SXD experiment was performed by Marra et al.57, who characterized Al thin

films epitaxially grown on GaAs(001) substrates using a laboratory X-ray source, and then
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investigated the structure of the reconstructed clean surface of Ge(001)-2×1 under UHV

conditions using synchrotron radiation58 . Soon after their work, this technique was applied

to the structure analysis of clean surfaces59–62, adsorbed surfaces63, and buried interfaces64

of simple metals and semiconductors to clarify how the surface affects the atomic arrange-

ment (known as surface relaxation and reconstruction). In these studies, mostly in-plane

diffraction was used and the Patterson map34 proved to be effective for determining the two-

dimensional surface structures60,61. Structural changes accompanying surface melting65–68,

electrodeposition69, and phase transitions21,70,71 were also investigated.

Even at this stage, the structure determination of surface reconstructions was a difficult

task. Although the in-plane periodicity of the reconstructed surface structure was observed

directly, a detailed structure determination sometimes required many years of discussion.

CTR scattering was used by Robinson et al.72 to obtain information about the structure

of the Si(111)-7×7 surface, for which the dimer-adatom-stacking fault (DAS) model had

been proposed by Takayanagi et al.73 from TED experiments. They provided evidence

for the stacking faults by the measurements of nonspecular 01 and 10 rods using a sample

encapsulated with amorphous Si72. Takahashi et al. applied CTR scattering to the structural

analysis of the adsorbed surface of Si(111)-
√
3×

√
3-Bi. The three-dimensional structure of

Bi, with respect to the Si(111) substrate, was determined by measuring the specular rod as

well as nonspecular rods5. They also proposed a new honeycomb-chained-triangle (HCT)

arrangement of Ag atoms in the Si(111)-
√
3×

√
3-Ag surface74, showing that the protrusions

observed in scanning tunneling microscopy (STM) images do not always correspond to the

atomic sites75,76. The CTR scattering was further applied to study the interface structure

of an ultrathin NiSi2 film grown on a substrate Si(111) crystal77. The early SXD work is

summarized in Table 3 of Ref. 3.

Later, samples possessing complex structures were examined. Typical examples are

transition-metal oxide surfaces and interfaces. The surface reconstructions of SrTiO3
78,79

and LaAlO3
80, which are typical substrate materials, were reported in the 2000s. Phase

transition phenomena in metal oxides have also been studied81–84, although the detailed

real-space structures were not discussed.

As the structure becomes more complex, the difficulty of the intuitive construction of a

good structural model increases and becomes practically impossible. Holography and model-

free electron density analysis are powerful methods for constructing a good structure model
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regardless of the complexity of the bulk structure. In Ref. 85, the authors stressed that the

structure refinement of ultrathin films of LaAlO3 can only converged by using the result of

holographic analysis (in this case, COBRA) as the starting point for the refinement. There

are many other reports on oxide interfaces studied by holographic analyses55,86,87.

Another example of the application of the holographic technique is the interfacial struc-

ture analysis of a Bi(001) thin film epitaxially grown on Si(111)39, which has a Bi wetting

layer at the interface. This explains why the spin splitting expected from the Rashba effect

is not observed in the Bi quantum well states88. To demonstrate the necessity for model-free

electron density analysis, we present two examples of the static structure analysis of surfaces.

A. Organic semiconductors

Electronic devices based on organic semiconductors have been extensively studied in

the past few decades89. Organic electroluminescent displays and organic solar cells are

already commercially available. The carrier mobility of organic semiconductors is usually

studied with field-effect transistors (FETs) made of the organic semiconductors90–92. In these

devices, carriers move mainly in the vicinity of interfaces93. Since the transport properties in

organic materials are strongly affected by the molecular arrangements, the surface structure

of the organic semiconductors is of importance.

Until 2010, there were no experimental reports on the surface relaxation of organic

semiconductors94. All the studies on organic semiconductor devices were performed with

the assumption that the molecular arrangement is kept unchanged up to the very surface

layer with the crystal structure realized deep inside the crystal. The CTR scattering method

provides a good picture of the surface relaxation of organic semiconductors. In this case, the

unit cell contains too many atoms and the three-dimensional structure is hardly analyzed.

Instead, only the depth profile of the electron density is analyzed. For this purpose, only

the intensity profile along the 00L line (or 00 rod) is required.

Rubrene and tetracene have almost the same highest occupied molecular orbitals (HO-

MOs), while the carrier mobility of rubrene single crystals is an order of magnitude larger

than that of tetracene single crystals. A structural comparison was made on the two

materials95.

The intensity distribution along the 00 rod of tetracene is presented in Fig. 3(a). When
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(a)

(b)

-12.15 0.00 12.15 24.30 36.45

 Exp.
 Ideal model
 Surface relaxation model
 COBRA

Tetracene (00L)

FIG. 3. (Color online) (a) CTR scattering profile of tetracene. (b) Depth profile of the electron

density of tetracene single crystal. Figure reproduced from Ref. 95. (c) [2014] Springer Nature.

we assume an ideal surface, that is, a surface with no relaxation, reconstruction, or rough-

ness, the CTR profile drawn by the dashed curve is expected. Since the calculated intensity

distribution does not reproduce the experimental results, a large surface relaxation is obvi-

ous. COBRA provides the depth profile of the electron density as presented in Fig. 3(b).

The electron density profile shows that there are adsorbed molecules on the surface and that

the topmost tetracene molecules are rotated by 15◦ with respect to the bulk. In contrast,

no significant surface relaxation was observed for the rubrene surface. For the study of the

surface structure of organic materials, COBRA is advantageous because it does not give

ghosts in the resulting electron density, unlike the hologram function χ given in eq. (5).

COBRA requires a model structure sufficiently close to the real surface structure. In the

case of the organic semiconductor surfaces studied so far, rigid molecular models have been

effective in providing the initial model for COBRA.

Based on the experimental results, the band dispersion was examined. In the case

of rubrene, which has no surface relaxation, various reports based on the bulk crystal

structure96,97 are valid. For tetracene, the band structure is calculated for the bulk struc-

ture and the surface structure95. The result shows that the amount of surface relaxation
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is sufficiently large to affect the band structure and, therefore, the transport properties

at the surface. The result reasonably explains the results of angle-resolved photoelectron

spectroscopy on rubrene and tetracene98; the former reproduces the theoretical prediction96,

whereas the latter shows severe signal broadening. Very recently, photoelectron spectroscopy

results on pentacene were reported99, and the interpretation of the band structure takes the

possible surface relaxation into account.

B. Si(111)-5x2-Au

One-dimensional chained structures on Si surfaces attract interest because of their elec-

tronic properties, such as collective excitation and spin-charge separation100. For example,

for Si(111) vicinal surfaces, the structures of the Si(557)-Au and Si(553)-Au surfaces have

been solved by SXD: a single row of Au is formed on the Si(557) surface101, while a row of Au

dimers is formed on the Si(553) surface40. The structure of the Si(111)-5× 2-Au surface has

long been controversial since the discovery of the surface102, however, because of the com-

plexities arising from the one-dimensional structure in a large unit cell. At the early stage,

the coverage of Au was believed to be 0.4 monolayers (ML) and various structural models

were proposed on the basis of experimental and theoretical studies103–105. Recently, Barke et

al. revised the coverage to 0.6 ML by STM studies106. Then Erwin et al.107 proposed a triple

Au chain model (EBH model) with a coverage of 0.6 ML by first-principles calculations, re-

vising the previous double chain model104, while Abukawa and Nishigaya proposed a quite

different structural model (AN model) based on Weissenberg reflection high-energy electron

diffraction (RHEED) experiments108. More recently, Kwon and Kang109 used first-principles

calculations to propose a new model (KK model), shown in Fig. 4(a), with a coverage of

0.7 ML, revising the EBH model by adding another Au atom [marked by a in Fig. 4(a)].

The AN model was shown to be inconsistent with optical reflection anisotropy spectroscopy

results110.

Shirasawa et al.111 have clarified that the KK model agrees best with the SXD experi-

ments. The two-dimensional Patterson map, calculated from 74 fractional-order spot inten-

sities observed in in-plane diffraction measurements, exhibited strong peaks marked by A

to F in Fig. 4(b). In general, the interpretation of the Patterson map is not straightforward

because of the overlap of interatomic vectors. In the present case, it is natural to consider
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that the strong peaks correspond to Au-Au and/or Au-Si interatomic vectors. It was shown

by careful analysis that the KK model is favored over the EBH model: for instance, the

peak marked by D becomes much weaker in the EBH model. The least-squares fitting anal-

ysis performed for the two models, considering only Au atoms, also favored the KK model.

The interatomic vectors corresponding to peaks A to F in Fig. 4(b) were finally assigned as

shown in Fig. 4(a), where the vectors between Au-Au and Au-Si are illustrated by solid and

broken arrows, respectively.

FIG. 4. (a) Structure model of the Si(111)-5×2-Au surface. Large balls indicate Au atoms and small

balls indicate Si atoms. (b) Two-dimensional Patterson map calculated from 74 (37 inequivalent)

in-plane reflections. Inequivalent peaks A-F are indicated. The corresponding interatomic vectors

A-F are indicated in (a) by the solid and broken arrows for Au-Au and Au-Si, respectively. (c)

Two-dimensional holographic reconstruction of the reconstructed Si layer. The structure model is

overlaid. Figure reproduced from Ref. 111. (c) [2014] American Physical Society

Next, the holographic method was used to obtain the reconstructed Si atoms, using the

scattering wave of the known Au atoms as the reference wave. The heavily reconstructed Si

atoms, shown as the electron density in Fig. 4(c), were imaged at the Si positions predicted

by the theory and were confirmed to form a honeycomb chain structure, as observed in

the Si(553)-Au surface40. Finally, the three-dimensional structure was determined using

the CTR scattering data in addition to the in-plane data, and the result reproduced the

KK model well. The reconstructed Si atoms might also be imaged using the well-established
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difference Fourier method60,112. The present work demonstrates that the holographic method

is applicable to in-plane data as well as rod profile data37–39.

IV. DYNAMICAL STRUCTURE ANALYSES

According to diffraction theory, the real space structural information is distributed over

the whole of the reciprocal space. Thus, to verify the real-space structure model, one needs

to have information over a wide range of the reciprocal space. In ordinary diffractometers,

however, the intensities are measured sequentially point by point in the reciprocal space. To

measure a different point along a rod requires a mechanical movement of the diffractometer.

Therefore, the traditional method for time-resolved surface diffraction measurements is to

measure the intensity at one specific point in the reciprocal space as a function of time. In

this way, the appearance of surface periodicity or roughening of the surface can be monitored.

Time-resolved measurements monitoring a single point in reciprocal space have been

performed to investigate crystal growth mechanisms in MBE or CVD processes from the

early stage of the SXD113. Oscillations in the X-ray intensity during crystal growth, similar

to those in RHEED, were observed in the MBE experiments114 at the anti-Bragg point,

where the CTR scattering intensity becomes sensitive to the surface morphology. A review

of the recent progress of SXD measurements in MBE systems is given in Ref. 115.

For a further understanding of the dynamic processes at surfaces, it is necessary to

simultaneously observe a wide range of the reciprocal space. For the reversible phenomena,

the time evolution can be investigated by repeating the experiment many times, each time

measuring a different reciprocal space point (this method has a large similarity with the

pump-probe method). Recent examples of this kind of measurement are the investigation

of electrocrystallization in the underpotential deposition of metals on a Au(111) surface116

and the observation of the dynamics of the electric double layer of an electrode-ionic liquid

interface117 (see Sect. IVA).

For the irreversible phenomena, the time resolution using standard experimental setups

is limited by the time required to scan the angle of the sample and to obtain sufficient

statistics. For example, a time resolution of a few minutes was achieved for X-ray reflec-

tivity measurements of liquid surfaces using a high-intensity synchrotron source118. Time

resolutions below 1 s can be achieved for X-ray reflectivity measurements by performing the
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angle scan of the sample as fast as possible119. By using high-energy X-rays, Gustafson et

al. have recorded several rod profiles at once as the intersections between the rods and a

large Ewald sphere in a manner similar to RHEED120.

A different approach for time-resolved measurements is to use a white X-ray beam at a

fixed incident angle in combination with an energy-resolving detector121–125. In this way, the

momentum transfer range corresponding to the energy range of the incident beam can be

observed simultaneously. This method has mainly been applied to X-ray reflectivity mea-

surements, for example, an in operando study of an organic solar cell126 and an investigation

of the growth of organic thin films127. A review of the energy-dispersive method has also

been published128.

Simultaneous measurement of the scattering profile in a momentum range is also pos-

sible by using a monochromatic X-ray beam that has a range of incident angles onto the

sample and measuring the scattered X-rays with a one-dimensional or two-dimensional de-

tector. This has been used for measuring the X-ray reflectivity by Naudon et al.129 and

other authors130–132. The same idea can also be applied to CTR scattering from multilayer

structures133–135. These methods are best suited to laboratory X-ray sources but provide

too weak an intensity for measurements with atomic resolution.

Recently developed photon-counting two-dimensional detectors136 combined with state-

of-the-art X-ray optics and synchrotron sources have made it possible to implement a method

with improved accuracy and time resolution and to extend the measurement to atomic res-

olution. This simultaneous multiwavelength dispersive diffractometer uses a curved crystal

polychromator to create a fan-shaped convergent beam, for which the wavelength changes

along the cross section of the beam (Fig. 5). The sample is placed at the focus of the beam.

To measure CTR profiles, the diffracted X-rays for a fixed angle between the incident beam

and the diffracting plane of the sample are observed with a position-sensitive detector, giv-

ing the CTR profile in the momentum range corresponding to the wavelength range of the

incident beam137. Reflected intensities corresponding to one atomic layer can be observed

in 1 s.

To measurie a wide part of the reflectivity profile, it is advantageous to use not only

a range of wavelengths but also a range of incident angles onto the sample. This can be

achieved by inclining the sample with respect to the X-ray beam. It has been shown that an

X-ray reflectivity curve can be measured in 10 ms with this approach138. By using a bent-
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FIG. 5. (Color online) X-ray optical layout of the simultaneous multiwavelength dispersive diffrac-

tometer for time-resolved CTR measurements. An example of research using this method is pre-

sented in Sect. IVB. Figure reproduced from Ref. 137. (c) [2011] AIP Publishing.

twisted crystal polychromator, it is possible to keep the sample horizontal and incline the

X-ray beam with respect to the sample139,140. This has been used to observe the adsorption

of proteins on a liquid surface141.

Here, we present two recent time-resolved SXD studies. One is the time evolution of

an electric double layer (EDL) measured with the ordinary method. The other is the

photoinduced water wettability transition of TiO2 measured with the novel simultaneous

multiwavelength dispersive diffractometer.

A. Electric double layer at an ionic liquid/Au interface

The liquid structure around solid-liquid interfaces is one of the less-understood frontiers,

although it is the entity of EDLs, the scene of chemical reactions, and the origin of the elec-

tricity provided by batteries. Ionic liquids (ILs), which are salts whose melting point is lower

than 100 ◦C, are the concentrated limit of the electrolyte in a naive description. According

to the Gouy–Chapman model of the EDL, the thickness of the EDL is proportional to n−1/2,

where n is the ion density. Therefore, ionic liquids should have an extremely thin EDL, which

produces a huge electric field at the interface that leads to various applications142–147. How-

ever, theoretical models of EDLs were developed for simple dilute solutions, which is a very

different situation from ionic liquids. Experimental observation of the detailed structure of
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IL-EDLs is therefore necessary to understand ionic liquids148,149.

Highly charged EDLs are often understood on the basis of the Gouy–Chapman–Stern

model, which is a combination of the Helmholtz model (∼1 nm from the interface) and the

Gouy–Chapman model (∼1 µm from the interface). In the Helmholtz layers, “liquid ions”

strongly adsorbed on the solid surface have only small positional fluctuations and can be

understood as a part of the solid side150–152.

In the case of IL-EDLs, layered structures were observed by X-ray reflectivity measure-

ments on an IL-sapphire interface153 and by AFM on an IL-gold interface154. The first

non-contact measurement of the IL-EDL structure with controlled electric potential was re-

ported in Ref. 155 for a Au (111) and N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium-

bis(trifluoromethanesulfonyl)imide (DEME-TFSI) interface. The time evolution of the same

interface was recently reported in Ref. 156, and the EDL structures of some other ILs have

been reported in recent years117,157,158.

The reflectivity profiles measured at a positively charged Au (111) surface immersed in

an IL were found to be modulated from those at a negatively charged surface. The change in

intensity caused by the applied voltage (I+− I−)/(I++ I−), where I± denotes the intensity

measured at the positively/negatively charged Au surface, is presented in Fig. 6(a). The

structural model for the EDL was chosen to reproduce the (I+− I−)/(I++ I−) profile. The

real space structure of the IL-EDL is presented in Fig. 6(b). As can be seen, the layered

liquid structure is very different for the positive and negative electric potentials.

The time evolution of the IL-EDL has been studied through electrochemical measurements159–162.

It is well known that the time evolution has fast and slow components, whose time con-

stants are ∼1 ms and ∼10 s, respectively. The microscopic origin of the time evolution is

often studied through molecular dynamics (MD) calculations, and several MD calculation

works on the IL-EDL have been published163–165. However, such calculations can cover a

timescale of only up to ∼50 ns. There is a huge gap between the computationally accessible

and experimentally observed timescales. SXD can provide microscopic information of the

IL-EDL as a function of time with an appropriate timescale.

Reference 157 reports the time evolution of the reflectivity from an IL-EDL at q =0.3 Å−1

just after potential switching. Figure 7(a) presents the results. As can be seen, both −0.4

to 1.0 V and 1.0 to −0.4 V switchings cause structural changes with very fast and slow

components, whose time constants are less than 1 and ≃10 s, respectively. The slow time
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FIG. 6. (Color online) (a) Change in scattering intensity caused by the external voltage. (b)

Real-space electron density profile of the IL-EDL. Figure reproduced from Ref. 155. (c) [2012] AIP

Publishing.

constant is much slower than the time constant of the circuit, and, therefore, the slow

dynamics is intrinsic.

Reference 117 reports the time dependence of the reflectivity in a finite range of the

scattering vector q as shown in Fig. 7(b). The measurements were performed during potential

cycling between −0.4 and +1.0 V at 100 mVs−1. The reflectivity R as a function of q at

potential V is reproduced well by the function

R(q, V ) = n(V )RN(q) + [1− n(V )]RP(q), (6)

where RN and RP denote the reflectivity at extreme negative (−0.4 V) and positive (+1.0 V)

potentials, respectively. The results of the fitting are presented in Fig. 7(c) with the value

of n(V ) plotted in Fig. 7(d). This successful fitting to Eq. (6) was interpreted as a sign of

a bistable interfacial structure, that is, the electron density of the IL at potential V can be

expressed as

ρ(V, z) = n(V )ρN(z) + [1− n(V )]ρP(z), (7)

where z is the distance from the electrode surface, and ρN(z) and ρP(z) denote the electron

density at extreme negative (−0.4 V) and positive (+1.0 V) potentials, respectively.
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(a)

(b)

(c)

(d)

FIG. 7. (Color online) (a) Time dependence of the X-ray reflectivity at q =0.3 Å−1 with potential

switching from −0.4 to 1.0 V (red) and 1.0 to −0.4 V (blue), whose time constants are 11 and

12 s, respectively. Reprinted with permission from Ref. 157. Copyright 2014 American Chemical

Society. (b) Reflectivity R(q, t) multiplied by q4 as a function of q and time during potential

cycling at 100 mVs−1. (c) Potential-dependent intensity (symbols) as a function of q. The lines

show the best fits to Eq. (6). (d) Potential-dependent weighting factor n obtained by fitting to Eq.

(6) (black circles) and MD simulations (red squares). Reprinted with permission from Ref. 117.

Copyright 2015 IOP Publishing.

The electron density described by Eq. (7) is well reproduced by MD simulations117, while

the time evolution derived in MD is much quicker than the experimental results. A total

understanding of the IL-EDL requires a breakthrough in the theoretical modeling.

B. Photoinduced water wettability transition of rutile-TiO2(110) surface

A hydrophobic TiO2 surface can be converted to a hydrophilic surface by irradiation with

UV light with an energy greater than the bandgap of 3 eV [Fig. 8(a)]. The water wettability

transition was discovered in the late 1990s166,167. This photochemical property extends the

range of applications of the representative photocatalytic material to, for instance, anti-fog,

self-cleaning, and heat-dissipation coatings168,169. Despite a number of studies devoted to

understanding the underlying atomic-scale processes, controversy remains with regards to

the mechanism. In particular, it is still not clear whether and how the surface structure is

involved. Several groups have claimed that the photocatalytic decomposition of hydrophobic

surface impurities results in the hydrophilicity170–175. Other groups have claimed that a
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FIG. 8. (Color online) (a) Photoinduced hydrophobic-hydrophilic transition of the rutile-TiO2(110)

surface. (b) Time evolution of the CTR scattering intensity in the (01L) rod during UV light

(λ = 365 nm, 87 mW/cm2) irradiation. (c) Measured (symbols) and calculated (solid and dashed

lines) CTR scattering profiles of the (10L) rod of the hydrophobic and hydrophilic rutile-TiO2(110)

surfaces. Figure reproduced from Ref. 185. (c) [2016] ACS Publications.

photoinduced structural change of the TiO2 surface leads to the hydrophilicity
169,176–181. The

controversy at least partly arises from the difficulty in observing the atomic-scale processes

during the wettability transition. Conventional surface science techniques operatable in a

vacuum are often inadequate for studying the phenomenon because the surface processes in

a vacuum are different from those under ambient conditions. Furthermore, it is known that

the hydrophilic state is a metastable state and rapidly recovers to the hydrophobic state in

a vacuum182. Theoretical studies are also challenging because the energy hierarchy for the

water adsorption phases varies according to the calculation conditions183,184. Therefore, in-

situ SXD observations of the interface processes are useful for understanding the atomic-scale

processes occurring during the transition.

Time-resolved CTR scattering measurements in the energy-dispersive mode137 (see Fig. 5)

demonstrated the occurrence of structural change during UV light irradiation on a rutile-

TiO2(110) surface under a humid condition185. Figure 8(b) shows the time evolution of the

CTR scattering intensity at different positions on the (01L) rod during UV light (λ = 365

nm, 87 mW/cm2) irradiation. The changes in intensity are finished within about 300 s. The

time scale is the same as that of the wettability transition176, indicating that a structural

change is associated with the wettability transition. No change in intensity was observed
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FIG. 9. (Color online) (a) Mechanism of the photoinduced wettability transition of a rutile-

TiO2(110) surface, proposed on the basis of a CTR study185. Oxygen, titanium, and hydrogen

atoms are respectively represented as large, medium, and small balls. Hydrogen bonds are repre-

sented as dashed lines in (a) and (c), and the proton transfer is indicated by the bold lines in (b).

Figure reproduced from Ref. 185. (c) [2016] ACS Publications.

when the UV light power was lower than 20 mW/cm2, which is consistent with the power

threshold for the wettability transition176.

The structures of the hydrophobic and hydrophilic surfaces were revealed by quantitative

structural analysis on the static CTR data. The CTRs were drastically changed upon photo-

irradiation, as shown in Fig. 8(c). On the hydrophobic surface, the determined structure

indicates that the five-coordinated Ti atom is terminated with an O atom [denoted as OT

in Fig. 9(a)], likely to be in the form of a water molecule, the surface bridging O atoms

[denoted as OB in Fig. 9(a)] are not hydroxylated, and the surface is covered with a small

amount of O atoms (site occupancy is ∼ 0.3), likely in the form of a water molecule located

at a lattice site [denoted as AW in Fig. 9(a)]185. The results are consistent with the previous

CTR study on the surface in water186 and theoretical studies183,187. On the hydrophilic

surface, large positional fluctuations are found for the OT, OB, and the topmost TiO layer,

and the structured AW layer is no longer seen in the diffraction data.

The structural change can be interpreted, in terms of the water wettability transition, as

being caused by photoinduced proton transfer from the intact water at the OT site to the non-

hydroxylated oxygen at the OB site188 [Fig. 9(b)]. The resulting surface OH group at the OT

and OB sites can be active sites for water adsorption [Fig. 9(c)]. The neighboring OH groups

at the OT and OB sites can form a hydrogen bond with each other, which results in the large

positional displacement189. The displacement is expected to cause a local lattice strain in

the underlying TiO2 layers. These might appear as the large lateral positional fluctuation of

the OT, OB, and the topmost TiO layer as observed in the CTR study. The adsorbed water
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molecules on the surface might be more disordered and invisible in the diffraction data. It

is known that the hydrophilic surface consists of hydrophobic and hydrophilic domains and

that these domains are limited in size to several tens of nanometers166,167. The domain size

limitation might be related to the lattice strain induced by the hydrogen-bond formation.

Note that on the hydrophilic surface, the CTR study provides the average information over

the coexisting hydrophobic and hydrophilic domains since the X-ray beam size on the order

of 0.1 mm is much larger than the domain size. Experiments with an X-ray beam having a

few nm diameter would provide a deeper understanding of the wettability transition.

V. SUMMARY

In this review article, we have summarized the 30 years of history of surface X-ray diffrac-

tion. The weak interaction between X-rays and matter has been regarded as a disadvantage

for surface studies. However, the development of intense X-ray sources and efficient X-ray

detectors has overcome this disadvantage. Now, the weak interaction is rather a merit of the

X-rays that allows us to perform quantitative data analysis as well as to study the buried

interfaces. Despite the notorious variety of surface/interface structures, static structures

can be analyzed by model-free phase retrieval analyses. The dynamic structure at the inter-

face is also of importance because the interfaces are where the chemical reactions proceed.

Time-dependent SXD experiments are now developing, and two recent examples have been

discussed.

The recent trend of the upgrade plans of synchrotron facilities aims to provide bright

coherent X-rays. By using coherent X-rays for SXD, one can study the dynamics at a surface

and interface at a time scale of ms to h and a length scale of a few nanometers115,190,191.

Together with the combination of a new analysis method based on informatics, the surface

X-ray diffraction technique provides a better understanding of surfaces, interfaces, and nano-

structures with useful functionality.
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102 H. E. Bishop and J. C. Riviére: Journal of Physics D: Applied Physics 2 (1969) 1635.

103 L. D. Marks and R. Plass: Phys. Rev. Lett. 75 (1995) 2172.

104 S. C. Erwin: Phys. Rev. Lett. 91 (2003) 206101.

105 C.-Y. Ren, S.-F. Tsay, and F.-C. Chuang: Phys. Rev. B 76 (2007) 075414.

106 I. Barke, F. Zheng, S. Bockenhauer, K. Sell, V. v. Oeynhausen, K. H. Meiwes-Broer, S. C.

Erwin, and F. J. Himpsel: Phys. Rev. B 79 (2009) 155301.

107 S. C. Erwin, I. Barke, and F. J. Himpsel: Phys. Rev. B 80 (2009) 155409.

108 T. Abukawa and Y. Nishigaya: Phys. Rev. Lett. 110 (2013) 036102.

109 S. G. Kwon and M. H. Kang: Phys. Rev. Lett. 113 (2014) 086101.

110 C. Hogan, E. Ferraro, N. McAlinden, and J. F. McGilp: Phys. Rev. Lett. 111 (2013) 087401.

111 T. Shirasawa, W. Voegeli, T. Nojima, Y. Iwasawa, Y. Yamaguchi, and T. Takahashi: Phys.

Rev. Lett. 113 (2014) 165501.

112 M. Nakamura and M. Ito: Phys. Rev. Lett. 94 (2005) 035501.

30



113 P. H. Fuoss, D. W. Kisker, G. Renaud, K. L. Tokuda, S. Brennan, and J. L. Kahn: Phys. Rev.

Lett. 63 (1989) 2389.

114 E. Vlieg, A. Van Der Gon, J. Van Der Veen, J. MacDonald, and C. Norris: Physical Review

Letters 61 (1988) 2241.

115 M. Takahasi: Journal of the Physical Society of Japan 82 (2013) 021011.

116 M. Nakamura, T. Banzai, Y. Maehata, O. Endo, H. Tajiri, O. Sakata, and N. Hoshi: Scientific

Reports 7 (2017) 914.

117 A. Uysal, H. Zhou, G. Feng, S. Lee, S. Li, P. Cummings, P. Fulvio, S. Dai, J. McDonough, Y.

Gogotsi, and P. Fenter: Journal of Physics Condensed Matter 27 (2015) 032101.

118 Y. Yano, T. Uruga, H. Tanida, H. Toyokawa, Y. Terada, and H. Yamada: Journal of Syn-

chrotron Radiation 17 (2010) 511.

119 M. Lippmann, A. Buffet, K. Pflaum, A. Ehnes, A. Ciobanu, and O. Seeck: Review of Scientific

Instruments 87 (2016) 113904.

120 J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P.-A.

Carlsson, M. Skoglundh, and E. Lundgren: Science 343 (2014) 758.

121 E. Chason, T. Mayer, A. Payne, and D. Wu: Applied Physics Letters 60 (1992) 2353.

122 T. Metzger, C. Luidl, U. Pietsch, and U. Vierl: Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 350

(1994) 398.

123 F. Neissendorfer, U. Pietsch, G. Brezesinski, and H. Möwald: Measurement Science and Tech-
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