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We construct the stably stratified magnetized stars within the framework of general relativity. The effects
of magnetic fields on the structure of the star and spacetime are treated as perturbations of nonmagnetized
stars. By assuming ideal magnetohydrodynamics and employing one-parameter equations of state, we
derive basic equations for describing stationary and axisymmetric stably stratified stars containing
magnetic fields whose toroidal components are much larger than the poloidal ones. A number of the
polytropic models are numerically calculated to investigate basic properties of the effects of magnetic fields
on the stellar structure. According to the stability result obtained by Braithwaite, which remains a matter of
conjecture for general magnetized stars, certain of the magnetized stars constructed in this study are
possibly stable.
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I. INTRODUCTION

It has been well accepted that soft-gamma repeaters
(SGRs) and anomalous x-ray pulsars (AXPs) are magnet-
ars, highly magnetized neutron stars whose strength of the
surface field is as large as ∼1014–1015 G [1–5]. The
existence of the magnetar has reactivated studies on
equilibrium configurations of magnetized stars.
In order to elucidate basic properties of equilibrium

configurations of magnetized stars, a large number of
studies have been performed so far since the pioneering
work of Chandrasekhar and Fermi [6]. A large fraction of
those studies have been done within the framework of
Newtonian magnetohydrodynamics and Newton’s theory
of gravity (cf., e.g., Refs. [7–24]). Since neutron stars are
very compact in the sense that their compactness M=R is
as large as ∼0.1–0.2 with M and R being their mass and
radius in geometrical units, general relativity is required to
describe the gravitational field of neutron stars. Therefore,
general relativistic models of magnetized stars have been
investigated as well. Bocquet et al. [25] and Cardall et al.
[26] obtained relativistic neutron star models with purely
poloidal magnetic fields. Using a perturbative technique,
Konno et al. [27] calculated similar models to those
obtained in Refs. [25,26]. Kiuchi and Yoshida [28] com-
puted magnetized stars with purely toroidal fields (cf., also,
Ref. [29]). Ioka and Sasaki [30], Colaiuda et al. [31], and
Ciolfi et al. [32,33] derived relativistic stellar models
having both toroidal and poloidal magnetic fields with
perturbative techniques (cf., also, Ref. [34]). Yoshida et al.

[35] included the effects of the stable stratification in the
magnetized star model obtained in Ref. [30]. Uryu et al.
[36,37] obtained magnetized stars with mixed poloidal-
toroidal magnetic fields by solving a full set of Einstein
equations, magnetohydrodynamics equations, and coordi-
nate conditions numerically. By assuming simpler con-
formally flat spacetime, Pili et al. [38–41] calculated many
models of magnetized stars. Although great progress has
been achieved in this field, as mentioned before, further
studies are required because all the magnetized star models
are constructed by some particular magnetic-field configu-
rations that are not necessarily realistic. In particular, it is
still not clear at all whether stable models exist.
The stability of magnetized stars with a relatively simple

magnetic-field structure have been examined with analyti-
cal approaches. The pioneering work was done by Tayler
[42], who showed that stars with purely toroidal magnetic
fields are unstable. Wright [43] subsequently showed that
the same instability mechanism, the pinch-type instability
mechanism, operates in stars with purely poloidal magnetic
fields. He also suggested the possibility that stars having
mixed poloidal-toroidal magnetic fields may be stable if
the strength of both components is comparable (cf., also,
Refs. [44–46]). Flowers and Ruderman [47] found that
another type of instability occurs in purely poloidal
magnetic-field configurations. All those classical stability
analyses were based on a method of an energy principle
in the framework of Newtonian dynamics (cf., also,
Refs. [48,49]). Another approach is a local analysis, with
which Acheson [50] investigated the stability of rotating
magnetized stars containing purely toroidal fields in detail*yoshida@astr.tohoku.ac.jp
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within the framework of Newtonian dynamics (cf., also,
Refs. [51,52]) and derived detailed stability conditions
for purely toroidal magnetic fields buried inside rotating
stars with dissipation. Bonanno and Urpin analyzed the
axisymmetric stability [53] and the nonaxisymmetric sta-
bility [54] of cylindrical equilibrium configurations pos-
sessing mixed poloidal-toroidal fields, while ignoring the
compressibility and stratification of the fluid.
Recently the stability problem of the magnetized star has

been approached from another direction, dynamical sim-
ulation approaches, and some significant progress has been
made. By following the time evolution of small random
initial magnetic fields around a spherical star in the
framework of Newtonian resistive magnetohydrodynamics,
Braithwaite and Spruit [55,56] obtained stable equilibria of
magnetized stars that are formed as a self-organization
phenomenon. The resulting stable magnetic fields have
both poloidal and toroidal components with comparable
strength and support the conjecture for stability conditions
of the magnetized star given by the classical studies
mentioned before (cf., also, Ref. [57]). By using the
numerical magnetohydrodynamic simulation, Braithwaite
[58] studied stability conditions for the magnetized stars
and obtained a stability condition for his models given in
terms of the ratio of the poloidal magnetic energy to the
total magnetic energy. The stability condition is given by

ã
EEM

jWj <
EðpÞ
EM

EEM
≲ 0.8; ð1:1Þ

where EEM, E
ðpÞ
EM, and W are the total magnetic energy, the

poloidal magnetic energy, and the gravitational energy,
respectively, and ã is a dimensionless factor related to the
buoyancy properties of the star. For neutron stars and main-
sequence stars, the dimensionless factor ã is of order 103

and 10, respectively. Lander and Jones examined the
stability of magnetized stars by numerically solving the
time evolution of linear perturbations of the stars in their
series of papers [59–61]. For the stars with purely toroidal
and purely poloidal magnetic fields, their results are
consistent with those of the classical stability analysis;
i.e., the pinch-type instability occurs near the symmetry and
the magnetic axes for the cases of the purely toroidal and
the purely poloidal magnetic fields, respectively (cf., also,
Refs. [62–67]). They also assessed the stability of various
magnetized stars with mixed poloidal-toroidal fields and
found that all their models considered suffer from the
pinch-type instability even for the cases in which the
poloidal and toroidal components have comparable
strength [61]. At first glance, it seems that the results by
Lander and Jones are incompatible with those by
Braithwaite and his collaborators [57,58]. Mitchell et al.
[68] made numerical simulations similar to those of
Braithwaite and his collaborators [55,56] but for the case
of the nonstratified star. They then obtained no stable

equilibrium for the nonstratified case and showed that
stable stratification of the fluid will be a key ingredient,
which is taken into account in the analyses of Refs. [57,58]
but not in the analyses of Ref. [61]. In other words, the
results obtained by Mitchell et al. [68] suggest that stable
stratification is required to avoid instability for some
magnetic-field configurations inside the star. Note that in
the simulations by Braithwaite and his collaborators
[55,56], resistive dissipation will also play a crucial role.
Therefore, effects of the resistive dissipation on dynamical
stability of the magnetized star need to be closely
examined.
Despite the fact that a large number of studies on

equilibria and stabilities of magnetized stars have been
made so far, as mentioned before, the magnetic-field
structure of the neutron star has not yet been elucidated
not only theoretically but also observationally. The for-
mation process of the neutron star would, however,
provide us with some clues. During the core collapse
events that produce neutron stars, the poloidal magnetic-
field lines would get wrapped around the rotation axis
because of the differential rotation of the core (cf., e.g.,
Ref. [69]). As a result, the toroidal field would be
significantly amplified. It is therefore likely to expect
that the toroidal component of the magnetic field is much
larger than the poloidal one inside the neutron star at least
soon after its birth.
To investigate properties of the magnetized star whose

toroidal fields are much larger than the poloidal ones,
Kiuchi and Yoshida [28] constructed the magnetized stars
completely neglecting the poloidal component of the
magnetic field. Although studies on stars with purely
toroidal magnetic fields can elucidate approximate proper-
ties of magnetized stars whose toroidal fields are much
larger than the poloidal ones, purely toroidal magnetic
fields inside the star are unstable as mentioned before. To
stabilize the toroidal magnetic field inside the star, the
inclusion of the poloidal magnetic field is necessary. To our
knowledge, however, equilibrium states of the magnetized
star whose toroidal fields are much larger than the poloidal
ones, which are plausible neutron star models, have not
been constructed so far, except the case of purely toroidal
magnetic fields. As mentioned before, another important
stabilizing agent for magnetic fields inside the star is a
stable stratification of the fluid. In order to construct
neutron star models with a more realistic interior mag-
netic-field structure, in this study, we investigate stably
stratified stars having magnetic fields characterized by the
condition of EðpÞ

EM=EEM ≪ 1; i.e., the toroidal field is much
larger than the poloidal one, within the framework of
general relativity.
The strength of the effects of magnetic fields on the

stellar structure can be roughly estimated by an approxi-
mate ratio of the magnetic-field energy, EEM, to the
gravitational energy, W, given by
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EEM

jWj ≈ 10−6
�

B0

1015 G

�
2
�

R
10 km

�
4
�

M
1.4 M⊙

�
−2
; ð1:2Þ

where B0, R, and M are the strengths of the magnetic
field, the radius, and the mass of the star, respectively.
This ratio is very small even if a magnetar characterized
by B0 ∼ 1015 G is considered. In order to investigate
effects of magnetic fields on the neutron star structure,
therefore, perturbation approaches are generally quite
efficient in the sense that they are tractable and give
sufficiently accurate results. We therefore make use of a
perturbation approach to study the structure of the
magnetized star in this work.
The present paper is organized as follows. In Sec. II,

we introduce the general formalism for general relativistic
ideal magnetohydrodynamics. Section III presents the
formalism used to construct the stably stratified magne-
tized star whose toroidal fields are much larger than the
poloidal ones. In Sec. IV, we exhibit examples of the stably
stratified magnetized stars calculated numerically. Finally,
we give the discussion and summary in Secs. V and VI,
respectively. In the Appendix, we give a Newtonian
analysis of the same magnetized star as that discussed in
this paper. In the following, we choose the signature
ð−;þ;þ;þÞ for the spacetime metric and, unless otherwise
stated, we adopt geometrical units with c ¼ G ¼ 1, where
c and G are the speed of light and Newton’s gravitational
constant, respectively.

II. BASIC EQUATIONS DESCRIBING DYNAMICS
OF PERFECTLY CONDUCTIVE FLUIDS

The dynamics of perfect fluids coupled with electro-
magnetic fields may be described by the magnetohydro-
dynamics equations summarized as follows. The baryon
mass conservation equation:

∇μðρuμÞ ¼ 0; ð2:1Þ

where ρ and uμ are the rest-mass density and the fluid four-
velocity, respectively. Here, ∇μ denotes the covariant
derivative associated with the metric gμν, and the spacetime
indices are denoted by lowercase Greek letters (α; β; γ;…).
The Maxwell equations:

∇αFμν þ∇μFνα þ∇νFαμ ¼ 0; ð2:2Þ

∇νFμν ¼ 4πJμ; ð2:3Þ

where Fμν and Jμ are the Faraday tensor and the current
four-vector, respectively. The conservation law of the
energy-momentum tensor:

∇νTμν ¼ 0; ð2:4Þ

where Tμν is the energy-momentum tensor, defined by

Tμν ¼ ρhuμuν þ Pgμν

þ 1

4π

�
FμαFν

α −
1

4
gμνFαβFαβ

�
; ð2:5Þ

where h and P are the specific enthalpy and the pressure,
respectively. Here, the specific enthalpy may, in terms of
the specific internal energy ε, the pressure P, and the rest-
mass density ρ, be defined by

h ¼ 1þ εþ P
ρ
: ð2:6Þ

As for the equations of state, we supply one-parameter
equations of state, given by

P ¼ PðρÞ; ε ¼ εðρÞ: ð2:7Þ

The electric field Eμ and the magnetic field Bμ observed by
an observer associated with the fluid four-velocity uμ are
defined by

Eμ ¼ Fμνuν; ð2:8Þ

Bμ ¼
1

2
ϵνμαβuνFαβ; ð2:9Þ

where ϵμναβ is the Levi-Civita tensor with ϵ0123 ¼ ffiffiffiffiffiffi−gp
.

Here, g denotes the determinant of the metric gμν. Since the
neutron-star matter may be approximately assumed as a
perfect conductor, in this study, we may further impose the
condition of perfect conductivity, given by

Eμ ¼ Fμνuν ¼ 0: ð2:10Þ

Equation (2.4) may be divided into two equations, the
energy equation and the momentum equation, respectively,
given by

−uμ∇νTμν ¼ uμ∇νfρð1þ εÞg þ ρh∇νuν

¼ ρuν∇νεþ P∇νuν ¼ 0; ð2:11Þ

qμα∇νTαν ¼ ρhuν∇νuμ þ qνμ∇νP − FμνJν

¼ 0; ð2:12Þ

where qμν ¼ gμν þ uμuν. Note that the perfect conduc-
tivity condition (2.10) has been used in the derivation
of Eq. (2.11).
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III. MASTER EQUATIONS FOR EQUILIBRIUM
SOLUTIONS OF THE MAGNETIZED STAR

In order to obtain equilibrium solutions of the relativistic
stars containing the mixed poloidal-toroidal magnetic
fields, in this study, we make the following assumptions:
(i) Equilibrium models are stationary and axisymmetric;
i.e., the spacetime has the time Killing vector tμ and the
rotational Killing vector φμ, and Lie derivatives of the
equilibrium quantities along the Killing vectors tμ and φμ

vanish. (ii) There is no fluid flow. (iii) The magnetic fields
are sufficiently weak in the sense that the magnetic effects
on the equilibrium structures may be treated as perturba-
tions of stars including no electromagnetic field. (iv) The
toroidal component of magnetic fields is much larger than
the poloidal one. Under these assumptions, we may derive
the master equations for describing equilibrium states of the
relativistic stars containing the mixed poloidal-toroidal
magnetic fields using the magnetohydrodynamic equations
summarized in the previous section.
In order to give a clear and definite description of the

assumptions (iii) and (iv), we introduce two dimensionless
smallness parameters εt and εp representing the amplitudes
of the toroidal and the poloidal components of magnetic
fields, respectively. We may then write that ðtÞFμν

ðtÞFμνP−1 ¼
Oðε2t Þ and ðpÞFμν

ðpÞFμνP−1 ¼ Oðε2pÞ where ðtÞFμν and ðpÞFμν
stand for the toroidal and poloidal components of the
Faraday tensor Fμν, respectively. Note that Fμν can be
divided into the two parts, ðtÞFμν and ðpÞFμν, because of
the assumptions of the stationary and axially symmetric
magnetic fields and the perfectly conducting fluid without
flow. By the assumption (iii) we have εt ≪ 1 and εp ≪ 1.
By the assumption (iv) we further impose that εp ≪ εt ≪ 1.
In this study, as mentioned before, the unperturbed state

is assumed to be a static and spherically symmetric star
without magnetic fields. Around the spherically symmetric
star, we may impose as perturbations the magnetic fields,
given by

Fμν ¼ εt
ðtÞFμν þ εp

ðpÞFμν: ð3:1Þ
By this magnetic field, the matter distribution deviates from
spherical symmetry. In this study, we are primarily interested
in the lowest-order effects of the poloidal magnetic field on
the structure of the star including purely toroidal magnetic
fields. We therefore consider perturbations of order ε2t and
εtεp on the structure of the spherically symmetric star but
neglect perturbations of order higher than ε2p. Note that
because of assumption (iv), i.e., εp ≪ εt ≪ 1, we have the
inequality ε0t ε

0
p ≫ ε2t ε

0
p ≫ ε1t ε

1
p ≫ ε0t ε

2
p.

A. Static and spherically symmetric stars without
magnetic fields: The ε0t ε

0
p-order equations

The line element of static and spherically symmetric
spacetime may be given by

ds2 ¼ ð0Þgμνdxμdxν ð3:2Þ

¼ −e2νdt2 þ e2λdr2

þ r2ðdθ2 þ sin2 θdφ2Þ; ð3:3Þ

where ð0Þgμν denotes the unperturbed metric, and ν and λ
are functions of r only. The equilibrium state of the
unperturbed star is described by the following equations
(cf., e.g., Ref. [70]):

dMr

dr
¼ 4πr2ð0Þρð1þ ð0ÞεÞ; ð3:4Þ

dð0ÞP
dr

¼ −e2λð0Þρð0Þh
Mr þ 4πð0ÞPr3

r2
; ð3:5Þ

dν
dr

¼ −
1

ð0Þρð0Þh
dð0ÞP
dr

; ð3:6Þ

where Mr is defined in terms of the metric function by

Mr ¼
r
2
ð1 − e−2λÞ; ð3:7Þ

and ð0Þρ, ð0Þε, ð0ÞP, and ð0Þh are, respectively, the rest-mass
density, specific internal energy, pressure, and specific
enthalpy for the unperturbed star.

B. Magnetic fields around a spherical star:
The ε1t ε

0
p and ε0t ε

1
p order equations

Because of the assumption of no fluid flow, assumption
(ii), the fluid four-velocity is given by

uμ ¼ γtμ; ð3:8Þ

where γ is the function determined by the normalization
condition uμuμ ¼ −1. The perfect-conductivity condition
(2.10) then becomes

Fμνtν ¼ Fμt ¼ 0: ð3:9Þ

As argued by Kiuchi and Yoshida [28], the toroidal
component of the magnetic field may be characterized
by the conditions, given by

ðtÞFμνφ
ν ¼ 0: ð3:10Þ

Thus, we see that the nonzero component of the toroidal
magnetic field ðtÞFμν is ðtÞFrθð¼ −ðtÞFθrÞ only. The poloidal
component of the magnetic field may be given in term of
the poloidal flux function Ψ, which is actually the φ
component of the vector potential Aμ, i.e., Ψ ¼ Aφ (cf.,
e.g., Ref. [25]). Under the present assumptions, therefore,
the Faraday tensor may be given by
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Fμν ¼ εt
ðtÞFμν þ εp

ðpÞFμν

¼ εt
ðtÞFrθ

0BBB@
0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

1CCCA

þ εp

0BBB@
0 0 0 0

0 0 0 ∂rΨ
0 0 0 ∂θΨ
0 −∂rΨ −∂θΨ 0

1CCCA; ð3:11Þ

where ðtÞFrθ and Ψ are functions of r and θ only. Thanks to
the introduction of the poloidal flux function Ψ, we see that
the Faraday tenser (3.11) automatically satisfies one of the
Maxwell equations (2.2). The other Maxwell equation (2.3)
is used to determine the current four-vector Jμ in ideal
magnetohydrodynamic theory. The explicit form of the
current four-vector Jμ is, from Eqs. (2.3), (3.3), and (3.11),
given by

Jt ¼ 0; Jφ ¼ OðεpÞ; ð3:12Þ

Jr ¼ εt
1

4πeνþλr2 sin θ
∂θðeν−λ sin θðtÞFrθÞ þOðε3t Þ;

ð3:13Þ

Jθ ¼ εt
−1

4πeνþλr2 sin θ
∂rðeν−λ sin θðtÞFrθÞ þOðε3t Þ:

ð3:14Þ

This current four-vector Jμ is used to write the momentum
equation (2.12) explicitly, which becomes, in the present
situation,

−∂μ ln γ þ
1

ρh
∂μP −

1

ρh
FμνJν ¼ 0: ð3:15Þ

Because of Eq. (3.9), we see that the time component of
Eq. (3.15) is automatically satisfied. The toroidal compo-
nent (φ component) and the poloidal components (r and θ
components) of Eq. (3.15), respectively, lead to

εtεp∂θðeν−λ sin θðtÞFrθÞ∂rΨ

− εtεp∂rðeν−λ sin θðtÞFrθÞ∂θΨ

þOðε3t εpÞ ¼ 0; ð3:16Þ

− ∂C ln γ þ
1

ρh
∂CP

þ ε2t
ðtÞFrθ

4πð0Þρð0Þheνþλr2 sin θ
∂Cðeν−λ sin θðtÞFrθÞ

þOðε2pÞ ¼ 0; ð3:17Þ

where the index C is used to denote poloidal indices and
runs from 1ðrÞ to 2ðθÞ. Note that Eqs. (3.16) and (3.17)
are the εtεp-order accurate expression of the momentum
equation (3.15). The integrability conditions for Eqs. (3.16)
and (3.17) require that

Ψ ¼ Ψ½eν−λ sin θðtÞFrθ�; ð3:18Þ

eν−λ sin θðtÞFrθ ¼ K½ð0Þρð0Þhe2νr2sin2θ�; ð3:19Þ

where K is an arbitrary function of ð0Þρð0Þhe2νr2sin2θ.
Equations (3.18) and (3.19) are the only conditions that
the magnetic fields have to satisfy. Therefore, the magnetic-
field distribution can be specified by the two arbitrary
functions Ψ ¼ Ψ½w� and K ¼ K½w� with w being w ¼
ð0Þρð0Þhe2νr2sin2θ as far as the corresponding magnetic field
satisfies the physically reasonable boundary conditions.

C. Deformation of the star and spacetime due to the
magnetic field: The ε2t ε

0
p and ε1t ε

1
p order equations

In this subsection, we derive the master equations for the
deformation of the star and spacetime due to the magnetic
field discussed in the previous subsection. Since the fluid
four-velocity is proportional to the time Killing vector tμ, as
given in Eq. (3.8), the baryon mass conservation equa-
tion (2.1) and the energy equation (2.11) are automatically
satisfied. We do not therefore need to consider them further.
The only fluid equation that we have to consider is
Eq. (3.17). Because of Eqs. (2.7) and (3.19), the momentum
equation (3.17) has the first integral, given by

− ln γ þ
Z

dP
ρh

þ ε2t
1

4π

Z
KðwÞ
w

dK
dw

dw

¼ CþOðε2pÞ; ð3:20Þ
where C is a constant of integration. This equation is
sometimes called the equation of hydrostatic equilibrium.
From Eq. (3.20), it is seen that the poloidal magnetic field
does not affect the fluid distribution within the εtεp order
accuracy. As shown later, the poloidal magnetic field does
affect the spacetime geometry, which is determined by the
Einstein equations.
The functions γ and

R
dP
ρh and the constant of integration

C may be expanded as follows:

γ ¼ e−ν þ ε2t
ð2Þγðr; θÞ þOðε2pÞ; ð3:21ÞZ

dP
ρh

¼
Z

dð0ÞP
ð0Þρð0Þh

þ ε2t
ð2ÞPðr; θÞ
ð0Þρð0Þh

þOðε2pÞ; ð3:22Þ

C ¼ ð0ÞCþ ε2t
ð2ÞCþOðε2pÞ; ð3:23Þ

where ð2Þγ, ð2ÞP, and ð2ÞC are perturbations of order ε2t .
Substituting Eqs. (3.21)–(3.23) into Eq. (3.20), we obtain
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Z
dð0ÞP
ð0Þρð0Þh

þ ν ¼ ð0ÞC; ð3:24Þ

ð2ÞPðr; θÞ
ð0Þρð0Þh

− eνð2Þγðr; θÞ þ 1

4π

Z
KðwÞ
w

dK
dw

dw ¼ ð2ÞC:

ð3:25Þ

Note that the derivative of Eq. (3.24) with respect to r
yields Eq. (3.6).
The stress-energy tensor given in Eq. (2.5) is divided into

the fluid part ðFÞTμ
ν and the electromagnetic part ðEMÞTμ

ν,
defined, respectively, by

ðFÞTμ
ν ¼ ρhuμuν þ Pδμν; ð3:26Þ

ðEMÞTμ
ν ¼

1

4π

�
FμαFνα −

1

4
δμνFαβFαβ

�
: ð3:27Þ

For the Faraday tensor given in Eq. (3.11), the electro-
magnetic part of the stress-energy tensor is given by

ðEMÞTμ
ν

¼ ε2t
e−2λ

8πr2
ððtÞFrθÞ2

0BBB@
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

1CCCA

þ εtεp
e−2λðtÞFrθ

4πr2

0BBBBB@
0 0 0 0

0 0 0 −∂θΨ
0 0 0 ∂rΨ

0 −r−2e2λ ∂θΨ
sin2θ

∂rΨ
sin2θ 0

1CCCCCA
þOðε2pÞ: ð3:28Þ

From the expression (3.28), we may confirm that whereas
the circularity conditions for the spacetime, given by

tαTα
½βtγφδ� ¼ 0; φαTα

½βtγφδ� ¼ 0; ð3:29Þ

(cf., e.g., Ref. [71]) are fulfilled up to the ε2t order, they are
violated at the εtεp order. This implies that up to the ε2t
order, the spacetime around the magnetized stars consid-
ered may be described by a simpler form of the metric used
for stationary and axisymmetric rotating stars without
magnetic fields (cf., e.g., Ref. [72]). Note that the solutions
within accuracy up to the ε2t order correspond to a
perturbation version of the star containing purely toroidal
magnetic fields constructed by Kiuchi and Yoshida [28].
To calculate particular models of the magnetized star, we

need to specify completely the arbitrary functions K andΨ,
given in Eqs. (3.18) and (3.19). In the present study, the two
arbitrary functions are assumed to be given by

K ¼ bw ¼ bð0Þρð0Þhe2νr2sin2θ; ð3:30Þ

Ψ ¼ aw ¼ að0Þρð0Þhe2νr2sin2θ; ð3:31Þ

where b and a are constants. Note that this choice of the
function K is the same as that of the k ¼ 1 case considered
in Ref. [28]. For these arbitrary functions, the regularity of
the magnetic field on the symmetry axis is satisfied. In this
study, we assume that there is no magnetic field outside the
star and that there is no surface current. Thus, the magnetic
field has to vanish on the surface of the star. For the
arbitrary functions given in Eqs. (3.30) and (3.31), the
magnetic field Bμ becomes

Bμ ¼ εtbð0; 0; 0; eνð0Þρð0ÞhÞ þ εpae2ν−λ
�
0; 2ð0Þρð0Þh cos θ;

−
sin θ
r

�
r
d
dr

ðð0Þρð0ÞhÞ þ 2ðð0Þρð0ÞhÞ
�
r
dν
dr

þ 1

��
; 0

�
þOðε3t Þ: ð3:32Þ

This magnetic field vanishes if the two conditions
ð0Þρð0Þh ¼ 0 and d

dr ðð0Þρð0ÞhÞ ¼ 0 are fulfilled. On the
surface of the star, therefore, we require the conditions,
given by

ð0Þρð0Þh ¼ 0;
d
dr

ðð0Þρð0ÞhÞ ¼ 0; ð3:33Þ

which are, as a matter of fact, conditions for the equation
of state.
The explicit expression for nonzero components of

ðEMÞTμ
ν is summarized as follows:

ðEMÞTt
t ¼ ðEMÞTφ

φ ¼ −ðEMÞTr
r ¼ −ðEMÞTθ

θ

¼ −ε2t
b2

8π
r2e2νðð0Þρð0ÞhÞ2sin2θ þOðε2pÞ; ð3:34Þ

ðEMÞTr
φ ¼ r2sin2θe−2λðEMÞTφ

r

¼ −εtεp
ab
2π

r2e3ν−λðð0Þρð0ÞhÞ2sin2θ cos θ þOðε3t Þ;
ð3:35Þ

ðEMÞTθ
φ ¼ sin2θðEMÞTφ

θ

¼ εtεp
ab
4π

re3ν−λðð0Þρð0ÞhÞ

×

�
r
d
dr

ðð0Þρð0ÞhÞ þ 2ðð0Þρð0ÞhÞ
�
r
dν
dr

þ 1

��
× sin3θ þOðε3t Þ: ð3:36Þ

From this stress-energy tensor for the electromagnetic field,
we may expect that the line element of the spacetime
around the magnetized star is given by
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ds2 ¼ −e2ν½1þ 2ϵ2t fh0ðrÞ þ h2ðrÞP2ðcos θÞg�dt2

þ e2λ
�
1þ 2ϵ2t e2λ

r
fm0ðrÞ þm2ðrÞP2ðcos θÞg

�
dr2

þ r2½1þ 2ϵ2t fv2ðrÞ − h2ðrÞgP2ðcos θÞ�
× ðdθ2 þ sin2θdφ2Þ

− 2ϵtϵpd2ðrÞ sin θ
∂
∂θP2ðcos θÞdrdφþOðε2pÞ;

ð3:37Þ

where Pl is the Legendre polynomial of degree l. The
normalization factor of the fluid four-velocity γ defined by
Eq. (3.8) [cf., also, Eq. (3.21)] is then given by

γ ¼ e−ν þ ε2t
ð2Þγðr; θÞ þOðε2pÞ ð3:38Þ

¼ e−ν½1 − ϵ2t fh0ðrÞ þ h2ðrÞP2ðcos θÞg� þOðϵ2pÞ: ð3:39Þ

The ϵ2t -order pressure perturbation given in Eq. (3.25) is
written by

ð2ÞPðr; θÞ
ð0Þρð0Þh

¼ δP0ðrÞ
ð0Þρð0Þh

þ δP2ðrÞ
ð0Þρð0Þh

P2ðcos θÞ

¼ ð2ÞCþ eνðrÞð2Þγðr; θÞ − 1

4π

Z
KðwÞ
w

dK
dw

dw

¼ ð2ÞC − h0ðrÞ −
1

6π
b2ð0Þρð0Þhe2νr2

−
�
h2ðrÞ −

1

6π
b2ð0Þρð0Þhe2νr2

�
P2ðcos θÞ;

ð3:40Þ

where δP0 and δP2 are coefficients in the Legendre
expansion of ð2ÞPðr; θÞ. Thus, we have

δP0ðrÞ
ð0Þρð0Þh

¼ −h0ðrÞ −
1

6π
b2ð0Þρð0Þhe2νr2 þ ð2ÞC; ð3:41Þ

δP2ðrÞ
ð0Þρð0Þh

¼ −h2ðrÞ þ
1

6π
b2ð0Þρð0Þhe2νr2: ð3:42Þ

From the relations obtained so far and the perturbed
Einstein equations, following standard procedures (cf.,
e.g., Refs. [30,35]), we obtain the master equations for
the deformation of the magnetized star with mixed poloi-
dal-toroidal fields as follows.
The ε2t order equations:

dm0

dr
¼ r2ðð0Þρð0ÞhÞ

�
4π

�
dðð0Þρþ ð0Þρð0ÞϵÞ

dð0ÞP

�
δP0ðrÞ
ð0Þρð0Þh

þ 1

3
b2e2νr2ðð0Þρð0ÞhÞ

�
; ð3:43Þ

d
dr

�
δP0ðrÞ
ð0Þρð0Þh

�
¼ −

e4λ

r2
ð1þ 8πr2ð0ÞPÞm0

− 4πe2λrðð0Þρð0ÞhÞ
�
δP0ðrÞ
ð0Þρð0Þh

�
− b2e2ν

�
r2

6π

d
dr

ðð0Þρð0ÞhÞ

þ r3

3
e2λðð0Þρð0ÞhÞðð0Þρð0Þhþ 4ð0ÞPÞ

þ r
6π

ð1þ e2λÞðð0Þρð0ÞhÞ
�
; ð3:44Þ

h0 ¼ −
δP0ðrÞ
ð0Þρð0Þh

−
1

6π
b2e2νr2ðð0Þρð0ÞhÞ þð2Þ C; ð3:45Þ

dh2
dr

¼ −
2e2λ

r2 dν
dr

v2 −
�
2
dν
dr

−
e2λ

r3 dν
dr

f4πr3ðð0Þρð0ÞhÞ − 2Mg
�
h2

−
b2e2ν

3 dν
dr

r2
�
2

�
r
dν
dr

�
2

þ e2λ
�
ðð0Þρð0ÞhÞ2; ð3:46Þ

dv2
dr

¼ −2
dν
dr

h2 −
2

3
b2e2νr3

�
1þ r

dν
dr

�
ðð0Þρð0ÞhÞ2; ð3:47Þ

δP2ðrÞ
ð0Þρð0Þh

¼ −h2 þ
1

6π
b2e2νr2ðð0Þρð0ÞhÞ; ð3:48Þ

m2 ¼ −e−2λrh2 −
2

3
b2e2ðν−λÞr5ðð0Þρð0ÞhÞ2: ð3:49Þ

The εtεp order equation:

d2 ¼ −
2

3
abeλþ3νr4ðð0Þρð0ÞhÞ2: ð3:50Þ

Regular solutions of the master equations (3.43),
(3.44), (3.46), and (3.47) near the center of the star may
be written as

m0 ¼ r3ðm00 þm02r2 � � �Þ; ð3:51Þ

δP0ðrÞ
ð0Þρð0Þh

¼ h00 þ h02r2 þ � � � ; ð3:52Þ

h2 ¼ r2ðh20 þ h22r2 þ � � �Þ; ð3:53Þ

v2 ¼ r4ðv20 þ v22r2 þ � � �Þ; ð3:54Þ

where m00, m02, h00, h02, h20, h22, v20, and v22 are
expansion coefficients. In this expansion solution, we
may obtain a unique regular solution if values of h00
and h20 are given. In the present situation, a value of h20 is
determined by the boundary condition at infinity, which
will be argued in the next paragraph. In order to determine a
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value of h00, on the other hand, an extra condition is
required. To determine the extra condition, in this study, we
consider the following two distinct situations: (1) the
baryon rest-mass density at the center of the star keeps
constant when magnetic fields are imposed. (2) The total
baryon rest mass of the star keeps constant when magnetic
fields are imposed. Situation (1) is realized by the condition
of h00 ¼ 0 [cf., Eq. (3.67)]. As for Situation (2), we will
explain in the next subsection.
The solutions of the ε2t -order vacuum Einstein equations

suitable for the exterior spacetime of the isolated star are
analytically given by

m0 ¼ m0ðRÞ ¼ const; h0 ¼ −
m0ðRÞ
r − 2M

; ð3:55Þ

h2 ¼ DQ2
2ðyÞ; v2 ¼ −

2Dffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − 1

p Q1
2ðyÞ; ð3:56Þ

where y ¼ r
M − 1 and Qm

l and D are the associated
Legendre function of the second kind and a constant,
respectively (cf., e.g., Refs. [30,35,72]). At the surface of
the star, the external solutions, given by Eqs. (3.55) and
(3.56), are matched to the internal solutions obtained by
integrating Eqs. (3.43), (3.44), (3.47), and (3.46) from the
center of the star outwards with the boundary conditions
given in Eqs. (3.51)–(3.54). The physically acceptable
solutions for the whole spacetime may then be obtained.

D. Global quantities characterizing the magnetized star

In order to investigate properties of equilibrium solutions
of the magnetized star, global quantities are used in the
following discussion. For equilibrium states of the mag-
netized star, the total baryon rest-mass eM�, the internal
thermal energy Ẽint, and the electromagnetic energy ẼEM
may be defined as

eM� ¼
Z

ργ
ffiffiffiffiffiffi
−g

p
d3x; ð3:57Þ

Ẽint ¼
Z

ρεγ
ffiffiffiffiffiffi
−g

p
d3x; ð3:58Þ

ẼEM ¼ 1

8π

Z
BμBμγ

ffiffiffiffiffiffi
−g

p
d3x ð3:59Þ

(cf., e.g., Ref. [28]).
For the unperturbed spherical star, the gravitational mass

M, the total baryon rest-mass M�, and the internal thermal
energy Eint may be given by

M ¼ MrðRÞ; ð3:60Þ

M� ¼ 4π

Z
R

0

ð0Þρeλr2dr; ð3:61Þ

Eint ¼ 4π

Z
R

0

ð0Þρð0Þεeλr2dr; ð3:62Þ

where R denotes the circumferential radius of the star
determined by the condition ð0ÞPðRÞ ¼ 0. The gravita-
tional potential energy W for the unperturbed star may
be defined by

jWj ¼ M� þ Eint −M: ð3:63Þ

The Oðϵ2t Þ magnetic effects on the gravitational mass eM,
the total baryon rest-mass eM�, and the internal thermal
energy Ẽint may, respectively, be given by

ΔM ¼ ϵ2t m0ðRÞ; ð3:64Þ

ΔM� ¼ 4πϵ2t

Z
R

0

ð0Þρeλr2
�
d ln ð0Þρ
dð0ÞP

δP0 þ
e2λm0

r

�
dr;

ð3:65Þ

ΔEint ¼ 4πϵ2t

Z
R

0

ð0Þρð0Þεeλr2

×

�
d ln ðð0Þρð0ÞεÞ

dð0ÞP
δP0 þ

e2λm0

r

�
dr: ð3:66Þ

As mentioned in the previous subsection, we study the
sequences of equilibrium states of the magnetized star
characterized by the fixed total baryon rest mass. Thus, the
condition of ΔM� ¼ 0 is used to determine values of h00 in
Eq. (3.52), which are related toOðϵ2t Þ changes in the central
density of the star Δρc, given by

Δρc ¼ ϵ2t
dð0Þρ
dð0ÞP

				
r¼0

ð0Þρð0Þð0Þhð0Þh00: ð3:67Þ

The electromagnetic energy EEM is decomposed as

EEM ¼ EðpÞ
EM þ EðtÞ

EM; ð3:68Þ

where EðpÞ
EM and EðtÞ

EM are the poloidal and toroidal magnetic-
field energies, respectively, given by

EðpÞ
EM ¼ ϵ2p

1

3
a2

Z
R

0

r2e4ν−λ

×

��
r
d
dr

ðð0Þρð0ÞhÞ þ 2ðð0Þρð0ÞhÞ
�
r
dν
dr

þ 1

��
2

þ 2e2λðð0Þρð0ÞhÞ2
�
drþOðε4pÞ; ð3:69Þ

EðtÞ
EM ¼ ϵ2t

1

3
b2

Z
R

0

eλþ2νr4ðð0Þρð0ÞhÞ2drþOðε4t Þ: ð3:70Þ
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Multipole moments of the star may characterize the
equilibrium star globally. The constant of integration D
appearing in the exterior solution given in Eq. (3.56) is
related to the mass quadrupole moment ΔQ, given by

ΔQ ¼ ϵ2t
8

5
M3D; ð3:71Þ

(cf., e.g., Refs. [30,72]).
Deformation of the surface of the star due to the

magnetic stress also characterizes equilibrium solutions
of the magnetized star. The surface of the star is defined
by the algebraic equation PðrÞ ¼ ð0ÞPðrÞ þ ϵ2t δP0ðrÞ þ
ϵ2t δP2ðrÞP2ðθÞ þOðε2pÞ ¼ 0. Thus, the Oðϵ2t Þ radial dis-
placement of the fluid elements on the stellar surface,Δr, is
given by

Δr ¼ ðΔrÞ0 þ ðΔrÞ2P2

¼ −ϵ2t ðδP0ðRÞ þ δP2ðRÞP2Þ
dr

dð0ÞP
ðRÞ: ð3:72Þ

ðΔrÞ0 may be interpreted as an average change in the
radius of the star induced by the magnetic effects. The
degree of the quadrupole surface deformation due to
the magnetic stress is well described by the ellipticity e�,
given by

e� ¼ −ϵ2t
3

2

�ðΔrÞ2
R

þ v2ðRÞ − h2ðRÞ
�
; ð3:73Þ

where e� is defined as a relative difference between the
equatorial and polar circumference radii of the star (cf., e.g.,
Refs. [30,72]). Thus, e� < 0 (e� > 0) means that the star is
prolate (oblate).
An important quantity of magnetized objects is the total

magnetic helicity H, which is a conserved quantity in ideal
magnetohydrodynamics defined by

H ¼
Z

H0 ffiffiffiffiffiffi
−g

p
d3x; ð3:74Þ

where H0 is the time component of the magnetic helicity
four-current Hμ, defined by

Hμ ¼ −
1

2
ϵμναβAνFαβ: ð3:75Þ

Wemay confirm that the magnetic helicityH is a conserved
quantity in ideal magnetohydrodynamics as follows.
Taking the divergence of Eq. (3.75) yields

∇μHμ ¼ −
1

2
� FμνFμν; ð3:76Þ

where �Fμν is the Hodge dual of the Faraday tensor Fμν. We
then have ∇μHμ ¼ 0 if the perfect conductivity condition

Fμνuν ¼ 0 is satisfied. For the present model, the total
magnetic helicity is explicitly written as

H ¼ 16π

3
ϵtϵpab

Z
R

0

eλþ3νr4ðð0Þρð0ÞhÞ2dr; ð3:77Þ

where we use the vector potential Aμ, given by

Aμ ¼ ð0; ϵtbeλþνr2ð0Þρð0Þh cos θ; 0; ϵpψÞ: ð3:78Þ

The dimensionless magnetic helicity, defined by HM ¼
H=M2, is used when its numerical value is shown. The
magnetic helicity is a measure of the net twist of a
magnetic-field configuration. Thus, the magnetic helicity
vanishes for purely poloidal fields and for purely toroidal
fields. Some experiments and numerical computations
show an interesting fact that the total magnetic helicity
is likely to be conserved even when the resistivity cannot be
ignored [55,73]. If this fact is retained for the neutron star
formation process, the total magnetic helicity has to be
approximately conserved during the formation process.

IV. NUMERICAL RESULTS

In this section, we give some numerical examples of the
star including mixed poloidal-toroidal magnetic fields to
examine the magnetic effects on the stellar structure. For
the one-parameter equations of state (2.7), we use the
polytrope and the gamma-law equation of state, respec-
tively, given by

P ¼ κρ1þ1
n; ð4:1Þ

ε ¼ 1

Γ − 1

P
ρ
; ð4:2Þ

where κ, n, and Γ are constants. The constant n is called the
polytrope index. The constant Γ stands for the adiabatic
index, defined by

Γ ¼
�∂ lnP
∂ ln ρ

�
ad
; ð4:3Þ

where “ad” means that the derivative is evaluated along an
adiabatic process curve. A general relativistic version of the
Schwarzschild discriminant A for the background star may
be defined by

A ¼ 1
ð0Þρð0Þh

dðð0Þρþ ð0Þρð0ÞεÞ
dr

−
1

Γð0ÞP
dð0ÞP
dr

: ð4:4Þ

Following Ipser and Lindblom [74], we employ a defini-
tion of the general relativistic Brunt-Väisälä frequency N,
given by
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N2 ¼ −gA; ð4:5Þ

where g is an effective gravitational acceleration,
defined by

g ¼ −e2ν−2λ
1

ð0Þρð0Þh
dð0ÞP
dr

: ð4:6Þ

The sign of the discriminant A therefore determines
whether a stellar medium is stable against convection. A
stellar medium, where dð0Þρ=dr ≤ 0 and dð0ÞP=dr ≤ 0 are
fulfilled, is convectively unstable if A > 0. If we assume
that Γ is given by

1

Γ
¼ n

nþ 1
þ δ̃; ð4:7Þ

where δ̃ is a constant, then the Schwarzschild discriminant
can be written by

A ¼ −
δ̃

ð0Þh
d ln ð0ÞP

dr
: ð4:8Þ

For a star characterized by the equations of state given in
Eqs. (4.1) and (4.2), thus, a stable stratification of the fluid
density is realized if the following condition is fulfilled:

δ̃ < 0; or Γ >
nþ 1

n
: ð4:9Þ

For the isentropic case, we have Γ ¼ ðnþ 1Þ=n (or δ̃ ¼ 0)
and the stellar medium is marginally stable against
convection.
As argued in the last section, the conditions (3.33) have

to be satisfied at the surface of the star in order for the
magnetic field to vanish there. These conditions are
automatically fulfilled if n > 1. In this study, we consider
the case of n ¼ 1.05 only as an example of equations of
state for “neutron starlike” models. Note that the n ¼ 1
polytrope is frequently used to study neutron stars. For the
models with n ¼ 1, however, the conditions (3.33) cannot
be satisfied at the surface of the star as long as Eq. (3.31) is
assumed.
As for the adiabatic index, we choose two cases, Γ ¼

ðnþ 1Þ=n ≈ 1.95238 and Γ ¼ 2.05. The former is a non-
stratified case and the latter a stably stratified case
[cf. Eq. (4.9)]. As discussed in, e.g., Refs. [35,75], mag-
netic buoyancy instability can be weakened in a stably
stratified stellar medium. As shown numerically by
Mitchell et al. [68], the stable stratification will play a
crucial role in order for large-scale magnetic fields inside
the star to survive for a sufficiently long time (cf., also,
Ref. [75]). In fact, the neutron star core is expected to be
strongly stably stratified due to a smooth composition

gradient [76]. Note that equations of state similar to those
of the present study are employed in Ref. [35].
For the background stars considered in this study, we

plot in Fig. 1 the gravitational mass M and the baryon rest-
mass M� as functions of the central density ð0Þρð0Þ.
Throughout this paper, units of κ ¼ 1 are used when
numerical results are shown. The maximum gravitational
mass is M ≈ 0.17028 and 0.17307 for the stars with Γ ¼
ðnþ 1Þ=n and 2.05, respectively. When the magnetized
stars associated with the condition of Δρc ¼ 0 are consid-
ered, the effects of the magnetic field on the stellar structure
are examined for the background stars given in Fig. 1.
When the magnetized stars associated with the condition of
ΔM� ¼ 0 are considered, we focus on the particular
background stars with M=R ¼ 0.1 and 0.2. The compact-
ness of M=R ¼ 0.2 is typical for neutron stars. In Table I,
some global and physical quantities for these background
stars are tabulated. Note that all the background stars given
in Table I are dynamically stable against radial collapse
because values of their gravitational mass are less than
those of the maximum one.
The distribution of magnetic fields is completely deter-

mined by the two arbitrary functions, ΨðwÞ and KðwÞ, with
w being the function of the background quantities. For the
two arbitrary functions, we have assumed Eqs. (3.30) and
(3.31) in this paper. In Fig. 2, we give the profiles of
magnetic fields: the toroidal magnetic field Frθ and the

 0
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FIG. 1. Gravitational mass M and baryon mass M�, given as
functions of the central density ð0Þρð0Þ. All the quantities are given
in units of κ ¼ 1.

TABLE I. Global and physical quantities for the background
stars in units of κ ¼ 1.

Γ M=R ð0Þρð0Þ M M� Eint=jWj
1.952 38 0.100 000 0.062 5033 0.116 229 0.122 150 0.429 344

0.200 000 0.252 634 0.170 052 0.185 529 0.601 263
2.050 00 0.100 000 0.062 0501 0.116 627 0.122 976 0.389 322

0.200 000 0.244 169 0.172 482 0.190 336 0.543 018
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poloidal flux function Ψ for the background star with
Γ ¼ 2.05 and M=R ¼ 0.2. The right of Fig. 2 shows how
lines of the magnetic force on the meridional cross section
behave because an equi-Ψ line corresponds to a line of the
magnetic force. Note that there is no magnetic field outside
the star in the model constructed in this study as mentioned
before.
For investigating the effects of magnetic fields on the

structure of the star, it is helpful to introduce the quantities
that represent the typical strength of the magnetic field of
the star. The norms of the toroidal and poloidal magnetic
fields are, respectively, given by

jðtÞBj2 ¼ ε2t b2r2sin2θe2νðð0Þρð0ÞhÞ2; ð4:10Þ

jðpÞBj2 ¼ ε2pa24e4νðð0Þρð0Þh cos θÞ2 þ e4ν−2λsin2θ

×

�
r
d
dr

ðð0Þρð0ÞhÞþ2ðð0Þρð0ÞhÞ
�
r
dν
dr

þ 1

��
2

:

ð4:11Þ
The maximum value of the norm of the toroidal magnetic
field is then given by

jðtÞBmaxj2 ¼ ε2t b2max ½r2e2νðð0Þρð0ÞhÞ2�; ð4:12Þ

where max ½fðrÞ� means the maximum value of the
function fðrÞ. The maximum value of the norm of the
poloidal magnetic field is mostly attained at the center of
the star. Thus, the norm of the poloidal magnetic field at the
center of the star, given by

jðpÞBcj2 ¼ ε2pa24e4νð0Þðð0Þρð0Þð0Þhð0ÞÞ2; ð4:13Þ

may be used as a representative value of the strength of the
poloidal magnetic field. By using these values of the norms,
we may obtain the two dimensionless quantities represent-
ing magnetic-field strength, given by

ðtÞRM ¼ jðtÞBmaxj2R4

4M2
; ðpÞRM ¼ jðpÞBcj2R4

4M2
; ð4:14Þ

which are as large as the ratios of the toroidal and the
poloidal magnetic energies to the gravitational energy,
respectively. The perturbations due to the magnetic field
given in Eq. (3.11) basically depend on the dimensionless
smallness parameters εt and εp, which can be arbitrarily
set depending on the desired magnetic-field strength as
long as 1 ≫ εt ≫ εp. This arbitrariness in perturbation
quantities is then removed by using the two dimensionless
quantities ðtÞRM and ðpÞRM when numerical results are
shown in this paper.

FIG. 2. Equi-Frθ contours (left) and equi-Ψ contours (right) on
the meridional cross section for the model with Γ ¼ 2.05 and
M=R ¼ 0.2. Here, z and ϖ are defined by z ¼ r cos θ and
ϖ ¼ r sin θ, respectively. The thick quarter circle shows the
surface of the star, on which Frθ ¼ 0 and Ψ ¼ 0 are required by
the boundary condition.
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given as functions of the central density of the background star
ð0Þρð0Þ. The solid circle indicates the result obtained within
the framework of Newton’s dynamics and theory of gravity
(cf. Appendix).
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First, we examine properties of the magnetized stars
obtained under the condition of Δρc ¼ 0; i.e., their central
densities are kept constant when the magnetic fields are
imposed. In Fig. 3, normalized nondimensional changes in
the gravitational mass ΔM=MðtÞRM and the baryon rest-
mass ΔM�=M�ðtÞRM are plotted as functions of the central
density of the background star ð0Þρð0Þ. In Figs. 4–10, we
plot, as functions of the central density of the background
star ð0Þρð0Þ, normalized nondimensional changes in the
internal thermal energy ΔEint=Eint

ðtÞRM, the mean
radius ðΔrÞ0=RðtÞRM, the mass quadrupole moment
ΔQ=MR2ðtÞRM, the ellipticity e�=ðtÞRM, the toroidal

magnetic energy EðtÞ
EM=jWjðtÞRM, and the poloidal magnetic

energy EðpÞ
EM=jWjðpÞRM, the magnetic helicity HM=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtÞRM

ðpÞRM

p
, respectively. In Figs. 3–10, the solid

circles on the vertical axis indicate the results obtained
by the calculation based on Newtonian magnetohydrody-
namics and Newton’s theory of gravity (cf. Appendix). In
these figures, we see that the present general relativistic
results in the Newtonian limit [the limit of ð0Þρð0Þ → 0] are
nicely in agreement with those obtained by the Newtonian
calculations. This fact serves as a useful consistency check
of our numerical code.
Properties of the magnetized stars with Δρc ¼ 0

observed in Figs. 3–10 are summarized as follows: The
results for the models with Γ ¼ 2.05 are little different from
those for the models with Γ ¼ ðnþ 1Þ=n ≈ 1.95238
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(cf. Figs. 3–10). This implies that a small stratification has
little effect on the equilibrium structure of the magnetized
stars. The imposition of the toroidal magnetic fields results
in a decrease in the total baryon rest mass, i.e., ΔM� < 0.
Because of the imposition of the toroidal magnetic fields,

values of the gravitational mass decrease, i.e., ΔM < 0, for
the background stars with ð0Þρð0Þ ⪅ 0.255 while they
increase, i.e., ΔM > 0, for the background stars with
ð0Þρð0Þ⪆ 0.255 (cf. Fig. 3). The mean radius of the star
ðΔrÞ0 increases when the toroidal magnetic field is
imposed (cf. Fig. 5). The values of the mass quadrupole
moment ΔQ and the ellipticity e� are negative, which
reflects the fact that the star is prolate (cf. Figs. 6 and 7).
The prolate deformation is typical for stars containing
dominant toroidal magnetic fields (cf., e.g., Refs. [28,29]).
Next, we examine properties of the magnetized stars

obtained under the condition of ΔM� ¼ 0; i.e., their total
baryon rest masses are kept constant when the magnetic
fields are imposed. Table II lists global and physical
quantities characterizing the magnetized stars with
ΔM� ¼ 0; the changes in the central density Δρc, the
gravitational mass ΔM, the internal thermal energy ΔEint,
the mean radius ðΔrÞ0, the mass quadrupole moment ΔQ,

the ellipticity e�, the toroidal magnetic energy EðtÞ
EM, the

poloidal magnetic energy EðpÞ
EM, and the magnetic helicityH.

In this table, all the quantities are normalized to be
nondimensional, as given in the first row.
Properties of the magnetized star with ΔM� ¼ 0

observed in Table II are summarized as follows: The
imposition of the toroidal magnetic fields results in an
increase in the central density, i.e., Δρc > 0. The values of
the mass quadrupole moment ΔQ and the ellipticity e� are
negative, which reflects the fact that the star is prolate.
These properties concerning Δρc and ΔQ are attributed to
the magnetic hoop stress around the symmetry axis due to
the toroidal magnetic field, which tends to make the star
prolate like a rubber belt fastening around the waist of a
star. The gravitational mass increases due to the imposition
of the toroidal magnetic fields, i.e., ΔM > 0.
Since the deformation of the star considered in this study

is caused by toroidal magnetic fields only, even though
poloidal magnetic fields make the deformation of the
spacetime, the results obtained in this study can be
compared with those obtained by Kiuchi and Yoshida
[28], who derived general relativistic stars having purely
toroidal magnetic fields with a nonperturbative approach.
Although weakly magnetized stars cannot be calculated
with the method of Kiuchi and Yoshida because of their
nonperturbative approach, it is found that the present results
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TABLE II. Global and physical quantities.

(Γ, M=R) Δρc
ð0Þρð0ÞðtÞRM

ΔM
MðtÞRM

ΔEint

Eint
ðtÞRM

ðΔrÞ0
RðtÞRM

ΔQ
MR2ðtÞRM

e�
ðtÞRM

EðtÞ
EM

jWjðtÞRM

EðpÞ
EM

jWjðpÞRM

HMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtÞRM

ðpÞRM

p

(1.952 38, 0.1) 0.2424 1.565 × 10−2 −0.2413 0.3048 −0.1105 −0.2294 0.2097 9.747 × 10−2 1.512
(1.952 38, 0.2) 0.8077 2.338 × 10−2 0.4077 −1.607 × 10−2 −3.946 × 10−2 −0.1213 0.1626 7.349 × 10−2 1.596
(2.05, 0.1) 0.2457 1.646 × 10−2 −0.2397 0.3056 −0.1116 −0.2316 0.2110 9.904 × 10−2 1.527
(2.05, 0.2) 0.5677 2.257 × 10−2 0.2043 8.193 × 10−2 −4.134 × 10−2 −0.1271 0.1672 7.792 × 10−2 1.654

STABLY STRATIFIED STARS CONTAINING MAGNETIC … PHYS. REV. D 99, 084034 (2019)

084034-13



are consistent with those obtained by Kiuchi and Yoshida
[28] (compare, e.g., Table II with Fig. 6 of Ref. [28]).

V. DISCUSSION

In this study, as mentioned before, the general relativistic
magnetized stars are constructed under the condition of
εp ≪ εt ≪ 1, and the effects of magnetic fields are inves-
tigated within the accuracy of OðεtεpÞ. The terms higher
than Oðε2pÞ in the equations are then discarded. The
deformation of the star and spacetime occurs in the ε2t
order, which is attributed to the magnetic effects due to the
toroidal field. This deformation due to the toroidal mag-
netic field is the same as that of the weakly magnetized star
with purely toroidal fields within accuracyOðε2t Þ. Thus, the
present results include those for the weakly magnetized star
with purely toroidal fields. To our knowledge, such general
relativistic magnetized stars having purely toroidal fields
have been constructed with a perturbative approach for the
first time. The εtεp-order effects appear in the deformation
of the spacetime only. Therefore, the εtεp-order effects are
general relativistic ones and disappear in Newton’s dynam-
ics and theory of gravity. Within the framework of
Newtonian magnetohydrodynamics, in other words, the
poloidal magnetic field does not affect the deformation of
the star within the accuracy of OðεtεpÞ (cf. Appendix).
From a general relativistic point of view, an interesting fact
is that the εtεp-order effects violate the circularity con-
ditions [cf. Eq. (3.29)]. As a result, the rφ component of the
metric grφ appears inside the star [cf. Eq. (3.50)].
In this paper, we have shown that stationary and

axisymmetric solutions of the magnetized star with
mixed poloidal-toroidal fields may indeed be constructed
within accuracy OðεtεpÞ. However, such stationary and
axisymmetric solutions cannot be constructed if the ε2p-
order effects on the structure of the star are included. The
reason for this is the following: The ε2p-order equations are
the same as those for the weakly magnetized star with
purely poloidal fields within accuracy Oðε2pÞ. For the
weakly magnetized star with purely poloidal fields, the
poloidal flux function Ψ has to satisfy the general relativ-
istic version of the so-called Grad-Shafranov equation
(cf., e.g., Ref. [27]). In the present approximation, however,
the flux function Ψ has to be given by the arbitrary func-
tion of the background quantity w ¼ ð0Þρð0Þhe2νr2sin2θ
[cf. Eqs. (3.16) and (3.17)]. The flux function Ψ given
by the arbitrary function of w does not, in general, fulfill the
Grad-Shafranov equation. Therefore, the ε2p-order equa-
tions cannot be solved consistently with the lower-order
equations. This implies that the weakly magnetized stars
constructed in this study cannot be stationary and axisym-
metric when the condition of εp ≪ εt is violated.
After obtaining equilibrium models of stars, a check

of their stability is an important issue because unstable

solutions lose their physical meaning in the sense that they
are not realized in nature. Since magnetized stars with
purely toroidal fields are unstable, the present magnetized
star models are indeed unstable when we set εp ¼ 0, which
corresponds to the case of purely toroidal fields. As
mentioned in the Introduction, both a stable stratification
of the fluid and poloidal magnetic fields act as stabilizing
agents of the toroidal magnetic fields inside the star. The
stably stratified stars with 1 ≫ εt ≫ εp ≠ 0 constructed in
this study are therefore possibly stable. As mentioned
before, unfortunately, reliable and useful procedures for
the diagnosis of the stability for the magnetized star have
not yet been established. (For the moment, numerical
simulations will be the most reliable way to check the
stability, but they are tough work.) Although we are not
sure that it is adaptive for the present magnetized star
models, Braithwaite’s stability condition, given in Eq. (1.1),
is available to assess their stability. If a magnetized star
characterized by Γ ¼ 2.05, R ≈ 10 km, M ≈ 1.4 M⊙, and
ðtÞBmax ≈ 1015 G is considered, we have ðtÞRM ≈ 5 × 10−7

and EðtÞ
EM=jWj ≈ 8 × 10−8. We then obtain Braithwaite’s

stability condition for the model, given by

8 × 10−5 ≲ EðpÞ
EM

EðtÞ
EM

≲ 0.8; ð5:1Þ

where EðpÞ
EM=EEM ≈ EðpÞ

EM=E
ðtÞ
EM is used, and ã ≈ 103 is

assumed because the star is a stably stratified neutron star

model. For the model considered, we have EðpÞ
EM=E

ðtÞ
EM ≈

0.5RðpÞ
M =RðtÞ

M . Braithwaite’s stability condition for the model
then becomes

1.6 × 10−4 ≲RðpÞ
M

RðtÞ
M

≲ 1.6: ð5:2Þ

Under the condition of εp ≪ εt ≪ 1, which is the basic
assumption in this study, we can appropriately choose values

ofRðpÞ
M =RðtÞ

M so as to satisfy the inequality given in Eq. (5.2),
Braithwaite’s stability condition for the model. Therefore,
the present magnetized star models satisfying the inequality
(5.2) are stable if Braithwaite’s stability condition is properly
adaptive for them. In order to examine stability properly,
however, we have to make stability analyses by using
dynamical simulations or solving linear eigenvalue prob-
lems, which exceed the scope of this work and remain as
future challenges.

VI. SUMMARY

We have constructed the stably stratified magnetized
stars within the framework of general relativity. The effects
of magnetic fields on the structure of the star and spacetime
are treated as perturbations of nonmagnetized stars. By
assuming ideal magnetohydrodynamics and employing
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one-parameter equations of state, we derive basic equations
for describing stationary and axisymmetric stably stratified
stars containing magnetic fields whose toroidal compo-
nents are much larger than the poloidal ones. A number of
the polytropic models are numerically calculated to inves-
tigate basic properties of the effects of magnetic fields on
the stellar structure. According to the stability result
obtained by Braithwaite, which remains a matter of con-
jecture for general magnetized stars, certain of the mag-
netized stars constructed in this study are possibly stable.
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APPENDIX: NEWTONIAN ANALYSIS

In this Appendix, we present the Newtonian version of
the magnetized star considered in this study. The results of
the Newtonian analysis can be used to compare to those of
the general relativistic analysis in the Newtonian limit. We
may then check consistency between them. Similar analy-
ses to those given in this Appendix are found in, e.g.,
Refs. [13,77].
Within the framework of Newtonian magnetohydrody-

namics, the dynamics of perfectly conductive fluids may be
described by the following equations:

∂tρþ∇aðρvaÞ ¼ 0; ðA1Þ

∇aBa ¼ 0; ðA2Þ

∂tBa ¼ ∇bðvaBb − vbBaÞ; ðA3Þ

ð∂t þ vb∇bÞva ¼ −
1

ρ
∇ap −∇aΦ

þ 1

4πρ
ðBb∇bBa − Bb∇aBbÞ; ðA4Þ

∇b∇bΦ ¼ 4πGρ; ðA5Þ

where ρ, va, Ba, p, and Φ are the mass density, the fluid
velocity, the magnetic field, the pressure, and the gra-
vitational potential, respectively. Here, ∇a denotes the
covariant derivative associated with the metric gab, and
spatial indices are denoted by lowercase Roman letters
(a; b; c;…).
Following the assumptions given in Sec. III, we assume

that there is no fluid flow, i.e.,

va ¼ 0; ðA6Þ

and that the magnetized stars are stationary and axisym-
metric. Therefore, physical quantities associated with the
magnetized star are independent of the time coordinate t

and the azimuthal angle about the symmetry axis φ. Under
the assumption of stationarity and axisymmetry, the mag-
netic fields Ba may, in terms of two functions B and Aφ

independent of t and φ, be written by

Ba ¼ Bφa þ ϵabφ∂bAφ; ðA7Þ

where φa denotes the rotational Killing vector, ϵabc is the
contravariant spatial Levi-Civita tensor, and Aφ is the φ
component of the vector potential Aa or the poloidal flux
function. Because of the assumptions given in Eqs. (A6)
and (A7), Eqs. (A1)–(A3) are satisfied automatically, and
the φ component of Eq. (A4) becomes

1

4πρ
ðBb∇bBφ − Bb∇φBbÞ ¼

1

4πρ
ϵbcφ∂cAφ∂bðBφφÞ ¼ 0:

ðA8Þ

Therefore, the function B has to be given in terms of an
arbitrary function KðAφÞ by

B ¼ KðAφÞ
φφ

: ðA9Þ

By using Eq. (A9), we may rewrite the poloidal compo-
nents of the Lorentz force term in Eq. (A4) as follows:

1

4πρ
ðBb∇bBC − Bb∇CBbÞ

¼ −
K

4πρφφ
∂CK −

1

4πρ
ffiffiffi
g

p ð∂CAφÞð∂2B1 − ∂1B2Þ;

ðA10Þ
where the index C denotes the poloidal indices, i.e., C ¼ 1,
2, and g means the determinant of the metric gab. If we
make the same approximation as that used in Sec. III, the
first and the second terms in the right-hand side of
Eq. (A10) are Oðε2t Þ and Oðε2pÞ, respectively. Under the
assumption of εp ≪ εt ≪ 1, Eq. (A10) becomes

1

4πρ
ðBb∇bBC − Bb∇CBbÞ ¼ −

K
4πρφφ

∂CK þOðεtεpÞ;

ðA11Þ

within accuracy OðεtεpÞ. In other words, similar to the
general relativistic case, poloidal magnetic fields do not
affect the deformation of the star within accuracy OðεtεpÞ.
The Euler equation then becomes

1

ρ
∇Cpþ∇CΦþ 1

8πρφφ
∂CK2 þOðεtεpÞ ¼ 0: ðA12Þ

This equation may be integrable if the following conditions
for the three functions p, K, and Aφ are assumed:
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p ¼ pðρÞ; K ¼ KðρφφÞ; Aφ ¼ AφðρφφÞ: ðA13Þ

After giving the actual forms of the three functions p, K,
and Aφ, we may then obtain the weakly magnetized star
models with mixed poloidal and toroidal fields.
In what follows, the spherical polar coordinates (r, θ, φ)

are used in order to derive the master equations for the
weakly magnetized stars with mixed poloidal-toroidal
fields. The metric is then given by

ds2 ¼ dr2 þ r2dθ2 þ r2sin2θdφ2: ðA14Þ

The rotational Killing vector φa is given by

φa ¼ ð0; 0; r2sin2θÞ: ðA15Þ

Following the assumptions given in Sec. III, we set the two
arbitrary functions K and Aφ as follows:

K ¼ Bcffiffiffi
2

p
ρcα

ρr2sin2θ; ðA16Þ

Aφ ¼ bρr2sin2θ; ðA17Þ

where Bc, ρc, and α are constants that are related to the
magnetic-field strength, density, and radius of the star,
respectively, and b is a constant. The absolute value of the
magnetic-field Ba is then given by

ffiffiffiffiffiffiffiffiffiffiffi
BaBa

p
¼ Bcffiffiffi

2
p ρ̂ξ sin θ þOðε2pÞ; ðA18Þ

where the two dimensionless quantities ρ̂ ¼ ρ=ρc and ξ ¼
r=α are introduced. By using Eq. (A16), we may rewrite
Eq. (A12) as

∇ap ¼ −ρ∇aΨ; ðA19Þ

Ψ ¼ Φþ 1

3
Ω2

Ar
2ρ̂f1 − P2ðcos θÞg −Φ0; ðA20Þ

where ΩA is the Alfvèn frequency, defined by ΩA ¼ffiffiffiffiffiffiffiffiffiffi
B2
c

4πρcα
2

q
, and Φ0 is a constant. Since ΩA ¼ OðεtÞ, within

accuracy OðεtεpÞ, the function Ψ fulfills the equation,
given by

∇a∇aΨ ¼ 4πGρþ 1

3
Ω2

A

�
r2
d2ρ̂0
dr2

þ 6r
dρ̂0
dr

þ 6ρ̂0

−
�
r2
d2ρ̂0
dr2

þ 6r
dρ̂0
dr

�
P2ðcos θÞ

�
þOðε2pÞ;

ðA21Þ

where ρ̂0 is the dimensionless density of the nonmagne-
tized star normalized by its central value. The function Ψ

may be expanded in terms of the parameter ΩA, and then
written by

Ψðr; θÞ ¼ Ψ0ðrÞ − 2α2Ω2
A½ψ0ðrÞ þ ψ2ðrÞP2ðcos θÞ�

þOðε2pÞ; ðA22Þ

whereΨ0 means the functionΨ for the nonmagnetized star.
Since we have p ¼ pðρÞ and Eq. (A19), the density ρ is a
function of Ψ. Therefore, the density ρ may also be
expanded in terms of the parameter ΩA, and then written by

ρðr; θÞ ¼ ρ0ðrÞ − 2α2Ω2
A
dρ0
dΨ0

½ψ0ðrÞ þ ψ2ðrÞP2ðcos θÞ�

þOðε2pÞ; ðA23Þ

where ρ0 means the density ρ for the nonmagnetized star.
Instituting Eqs. (A22) and (A23) into Eq. (A21), we obtain

α2∇a∇aΨ0ðrÞ ¼ 4πGα2ρ0ðrÞ; ðA24Þ

1

ξ2
d
dξ

�
ξ2

dψ0

dξ

�
¼ kðξÞψ0 −

1

6r2
d
dr

�
r2

d
dr

ðr2ρ̂0Þ
�
;

ðA25Þ

1

ξ2
d
dξ

�
ξ2

dψ2

dξ

�
¼

�
kðξÞ þ 6

ξ2

�
ψ2

þ 1

6

�
r2

d2ρ̂0
dr2

þ 6r
dρ̂0
dr

�
; ðA26Þ

where

kðξÞ ¼ 4πGα2
dρ0
dΨ0

: ðA27Þ

In order to solve the three ordinary differential
equations (A24)–(A26), boundary conditions at the center
and surface of the star are necessary. We require that
physical quantities are regular near the center of the star and
that values of the central density are independent of the
magnetic-field strength. At the center of the star, therefore,
we have

dΨ0

dξ
ð0Þ ¼ 0; ψ0ð0Þ ¼ 0;

dψ0

dξ
ð0Þ ¼ 0;

ψ2ð0Þ ¼ 0;
dψ2

dξ
ð0Þ ¼ 0: ðA28Þ

To determine the boundary condition at the surface of
the star, we need the equation of the surface of the star,
given by

r ¼ Rð1þ δζÞ þOðε2pÞ; ðA29Þ
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where R is the radius for the nonmagnetized star. The
dimensionless displacement δζ is given by

δζ ¼ 2α2Ω2
A

R dΨ0

dr ðRÞ ½ψ0ðξ1Þ þ ψ2ðξ1ÞP2ðcos θÞ�; ðA30Þ

where ξ1 ¼ R=α. The displacement δζ is used to evaluate
the ellipticity of the surface of the star e�, defined by

e� ¼ Rð1þ δζðπ=2ÞÞ − Rð1þ δζð0ÞÞ
R

¼ −
3

2
2α2Ω2

A
1

R dΨ0

dr ðRÞψ2ðξ1Þ: ðA31Þ

The gravitational potentials inside and outside the star
within accuracy Oðε2t Þ are, respectively, given by

Φ ¼ Ψ0ðrÞ þ c0 − 2α2Ω2
A½c1;0 þ ψ0ðξÞ þ ψ2ðξÞP2ðcos θÞ�

−
1

3
Ω2

Ar
2ρ̂f1 − P2ðcos θÞg; ðA32Þ

and

Φ ¼ −
κ0
ξ
− 2α2Ω2

A

�
κ1;0
ξ

þ κ1;2
ξ3

P2ðcos θÞ
�
; ðA33Þ

where c0, c1;0, κ0, κ1;0, and κ1;2 are constants. Since the
gravitational potential and its derivative have to be con-
tinuous at the surface of the star, we obtain the following
relations:

κ0 ¼ ξ21∂ξΨ0ðRÞ; c0 ¼ −Ψ0ðRÞ − ξ1∂ξΨ0ðRÞ; ðA34Þ

−c1;0 ¼ −
κ1;0
ξ1

þ ψ0ðξ1Þ;
κ1;2
ξ31

¼ ψ2ðξ1Þ; ðA35Þ

κ1;0
ξ21

¼ −
dψ0

dξ
ðξ1Þ −

1

6
ξ21

dρ̂
dξ

ðξ1Þ;

3
κ1;2
ξ41

¼ −
dψ2

dξ
ðξ1Þ þ

1

6
ξ21

dρ̂
dξ

ðξ1Þ: ðA36Þ

For Eqs. (A24) and (A25), therefore, boundary conditions
are not imposed at the surface of the star, and instead the
constants characterizing the gravitational potential are
determined through Eq. (A34) and

κ1;0 ¼ −ξ21
dψ0

dξ
ðξ1Þ −

1

6
ξ41

dρ̂
dξ

ðξ1Þ;

c1;0 ¼ −ψ0ðξ1Þ − ξ1
dψ0

dξ
ðξ1Þ −

1

6
ξ31

dρ̂
dξ

ðξ1Þ: ðA37Þ

As for Eq. (A26), the boundary condition at the surface of
the star is given by

3ψ2ðξ1Þ þ ξ1
dψ2

dξ
ðξ1Þ ¼

1

6
ξ31

dρ̂
dξ

ðξ1Þ: ðA38Þ

The constant related to the mass quadrupole moment κ1;2 is
determined through

κ1;2 ¼ ξ31ψ2ðξ1Þ: ðA39Þ

Following the assumptions given in Sec. III, we assume
the polytropic equation of state, given by

p ¼ κρ1þ1
n; ðA40Þ

where κ and n are constants. Introducing the Lane-Emden
function Θ, then, we may write ρ and p as

ρ ¼ ρcΘn; p ¼ pcΘnþ1; ðA41Þ

where ρc and pc are values of the density and pressure at
the center of the star, respectively. The central pressure

value pc is given in terms of ρc, κ, and n by pc ¼ κρ
1þ1

n
c .

Equation (A24) is rewritten by

1

ξ2
∂
∂ξ

�
ξ2

∂
∂ξ Ψ̂

�
¼ Θn; ðA42Þ

where Ψ̂ is the dimensionless quantity, defined by

Ψ̂ ¼ Ψ
4πGρcα2

: ðA43Þ

From Eq. (A19), inside the star, we obtain

Ψ̂ ¼ −Θþ C; ðA44Þ

where C is a constant, and we set

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1ÞKρ

1
n
c

4πGρc

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þpc

4πGρ2c

s
: ðA45Þ

Substituting Eq. (A44) into Eq. (A42) yields the Lane-
Emden equation, given by

d2Θ
dξ2

þ 2

ξ

dΘ
dξ

¼ −Θn: ðA46Þ

At the center of the star, the boundary conditions for
Eq. (A46) are, due to Eqs. (A28) and (A41), given by

Θ ¼ 1;
dΘ
dξ

¼ 0; at ξ ¼ 0: ðA47Þ

The function kðξÞ, defined in Eq. (A27), is rewritten by

kðξÞ ¼ −nΘn−1: ðA48Þ
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Now that we obtain the complete set of equations for the
weakly magnetized star with mixed poloidal-toroidal fields
within the framework of Newtonian magnetohydrodynam-
ics, which are composed of Eqs. (A46), (A25), and (A26),
we may construct the magnetized stars.
In order to investigate properties of equilibrium solutions

of the magnetized star, global quantities are frequently
used. The mass of the star M is given by

M ¼ 2π

Z
ρr2 sin θdrdθ;

¼ M0

�
1þ ΔM

M0

�
þOðε2t Þ; ðA49Þ

where M0 is the mass of the nonmagnetized star, given by

M0 ¼ −4πα3ρcξ21
dΘ
dξ

				
ξ¼ξ1

; ðA50Þ

and ΔM
M0

is the normalized dimensionless change in the mass
of the star, given by

ΔM
M0

¼
Ω2

A
2πGρc

fdψ0

dξ jξ¼ξ1
þ 1

6
ξ21

dρ̂0
dξ jξ¼ξ1

g
dΘ
dξ jξ¼ξ1

: ðA51Þ

The internal thermal energy of the star Eint is given by

Eint ¼ 2π

Z
ρεr2 sin θdrdθ;

¼ ðEintÞ0
�
1þ ΔEint

ðEintÞ0

�
þOðε2t Þ; ðA52Þ

where ðEintÞ0 is the internal thermal energy of the non-
magnetized star, given by

ðEintÞ0 ¼
4π

Γ − 1

4πGρ2cα5

nþ 1

Z
ξ1

0

Θnþ1ξ2dξ; ðA53Þ

and ΔEint
ðEintÞ0 is the normalized dimensionless change in the

internal thermal energy of the star, given by

ΔEint

ðEintÞ0
¼

Ω2
A

4πGρc
2ðnþ 1Þ R ξ1

0 Θnψ0ðrÞξ2dξR ξ1
0 Θnþ1ξ2dξ

: ðA54Þ

Here, the gamma-law equation of state, given in Eq. (4.2),
is used. An average change in the radius of the star ðΔrÞ0,
defined in Eq. (3.72), is given by

ðΔrÞ0
R

¼ −2Ω2
A

ψ0ðξ1Þ
4πGρcξ1dΘdξ jξ¼ξ1

: ðA55Þ

The ellipticity associated with the surface shape of the star
e� is explicitly given by

e� ¼ 3Ω2
A

ψ2ðξ1Þ
4πGρcξ1dΘdξ jξ¼ξ1

: ðA56Þ

The mass quadrupole moment of the star ΔQ is, in terms of
κ1;2, given by

ΔQ
M0R2

¼ −
2α2Ω2

Aα
3κ1;2

ακ0α
2ξ21

: ðA57Þ

The toroidal magnetic energy ðtÞEEM and the poloidal
magnetic energy ðpÞEEM are, respectively, defined by

ðtÞEEM ¼ 1

8π

Z
BφBφdV;

ðpÞEEM ¼ 1

8π

Z
BCBCdV: ðA58Þ

Then, the ratios of the toroidal and the poloidal magnetic
energies to the unperturbed gravitational energy of the star
ðtÞEEM
ðjWjÞ0 and

ðpÞEEM
ðjWjÞ0 are, respectively, given by

ðtÞEEM

ðjWjÞ0
¼

Ω2
A

3·4πρcG

R ξ1
0 ρ̂2ξ4dξ

−
R ξ1
0 ρ̂ Φ̂ ξ2dξ

ðA59Þ

and

ðpÞEEM

ðjWjÞ0
¼ b2

3 · 2πα24πG

×

R ξ1
0 fðξ dρ̂

dξ þ 2ρ̂Þ2 þ 2ρ2gξ2dξ
−
R ξ1
0 ρ̂ Φ̂ ξ2dξ

; ðA60Þ

where the unperturbed gravitational energy of the star
ðjWjÞ0 is given by

ðjWjÞ0 ¼ −
1

2

Z
ρ0Φ0dV

¼ −2πα5ρ2c4πG
Z

ξ1

0

ρ̂0Φ̂0ξ
2dξ: ðA61Þ

The dimensionless magnetic helicity of the star HM is
given by

HM ¼ H
GM2

0

¼
bBcffiffi

2
p

3πGα2ρc

R ξ1
0 ρ̂2ξ4dξ


ξ21
dΘ
dξ

			
ξ¼ξ1

�
2

; ðA62Þ

where H is the magnetic helicity of the star, defined
by H ¼ R

AaBadV.
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Since the effects of magnetic fields on the structure of the
star are treated as perturbations of the nonmagnetized star,
the solutions constructed in this study are inherently inde-
pendent of the magnetic-field strength. However, the repre-
sentation for the global and physical quantities defined
before are dependent on the magnetic-field strength. In
order to remove their field-strength dependence, following
the treatment used in Sec. IV, we introduce the two dimen-
sionless quantities representing magnetic-field strength,
given by

ðtÞRM ¼
ðtÞB2

maxR4

4GM2

¼ ðmax ½ρ̂ξ�Þ2
8


dΘ
dξ jξ¼ξ1

�
2

Ω2
A

4πGρc
; ðA63Þ

ðpÞRM ¼
ðpÞB2

cR4

4GM2

¼ b2

Gð4πÞ2α2ðdΘdξ jξ¼ξ1
Þ2 ; ðA64Þ

where ðtÞBmax is the maximum absolute value of the toroidal
magnetic field inside the star, max½f� means the maximum
value of the function f, and ðpÞBc is the absolute value of the
poloidal magnetic field at the center of the star. ðtÞRM and
ðpÞRM are as large as the ratios of the toroidal and the
poloidal magnetic energies to the gravitational energy,
respectively.
In this Appendix, we numerically obtain the magnet-

ized star model assuming that n ¼ 1.05 and Γ ¼ 2.05,
which is the Newtonian version of the weakly magnet-
ized general relativistic star model calculated in this
study. Table III lists global and physical quantities
characterizing the magnetized stars constructed within
the framework of Newtonian magnetohydrodynamics;
the changes in the mass ΔM, the internal energy ΔEint,
the mean radius ðΔrÞ0, the mass quadrupole moment

ΔQ, the ellipticity e�, the toroidal magnetic energy EðtÞ
EM,

the poloidal magnetic energy EðpÞ
EM, and the dimension-

less magnetic helicity HM. In this table, all the quan-
tities are normalized to be nondimensional, as given in
the first row.
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