
Loewner Theory for Quasiconformal Extensions: Old and New

Ikkei HOTTA�

Department of Applied Science, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan

This survey article gives an account of quasiconformal extensions of univalent functions with its motivational
background from Teichmüller theory and classical and modern approaches based on Loewner theory.

KEYWORDS: Loewner theory, quasiconformal mapping, evolution family, universal Teichmüller space,
univalent function

1. Introduction

The Loewner differential equation is an ordinary/partial differential equation introduced by Löwner in 1923 for the
study of conformal mappings in geometric function theory. Originally, a slit mapping, namely, a conformal map on the
open unit disk onto the complex plane minus a Jordan arc whose one end point is1, is dealt with. His work was later
developed by Kufarev and Pommerenke to a conformal map whose image is a simply-connected domain on the
complex plane.

Löwner’s theory has been successfully used to various problems in geometric function theory. In particular the
Bieberbach conjecture, an extremal problem of the Taylor coefficients of the normalized univalent functions on the unit
disk, was solved with the help of the Loewner’s method. Recently, the Schramm–Loewner Evolution (SLE), a
stochastic variant of the Loewner differential equation discovered by Oded Schramm in 2000, has attracted substantial
attention in probability theory and conformal field theory.

In this survey article we discuss one of applications of the Loewner differential equation, quasiconformal extensions
of univalent functions. It is structured as follows: In Sect. 2, a motivational background behind the quasiconformal
extension problem is explained. The key is the construction of the equivalent models of the universal Teichmüller
spaces. Before entering the main topic of this article, in Sect. 3 we summarize classical results on the theory of
univalent functions and quasiconformal extensions. In Sect. 4, we present a short introduction of the classical theory of
the Loewner differential equation and its connection to quasiconformal extensions. In Sect. 5, a modern approach to
Loewner theory introduced and developed in the last decade is reviewed. It gives a unified treatment of the known types
of the classical Loewner equations. The paper is closed with a brief consideration of quasiconformal extension
problems in the modern framework of the Loewner theory.

2. Universal Teichmüller Spaces

The notion of the universal Teichmüller spaces was illuminated in the theory of quasiconformal mappings as an
embedding of the Teichmüller spaces of compact Riemann surfaces of finite genus. Several equivalent models of
universal Teichmüller spaces are known (see e.g., [Sug07]). In this article we will focus on the connection with a space
of the Schwarzian derivatives of conformal extensions of quasiconformal mappings defined on the upper half-plane
H
þ :¼ fz 2 C : Im z > 0g.

2.1 Quasiconformal mappings

A homeomorphism f of a domain G � C is called k-quasiconformal if fz and f�z, the partial derivatives in z and �z in
the distributional sense, are locally integrable on G and satisfy

j f�zðzÞj � kj fzðzÞj ð2:1Þ

almost everywhere in G, where k 2 ½0; 1Þ. The above definition implies that a quasiconformal map f is sense-
preserving, namely, the Jacobian Jf :¼ j fzj2 � j f�zj2 is always positive.

In order to observe the geometric interpretation of the inequality ð2:1Þ, assume for a while f 2 C1ðGÞ. Then the
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differential is

d f ¼
@ f

@z
dzþ

@ f

@�z
d �z:

We shall consider the R-linear transformation TðzÞ :¼ fzzþ f�z �z. Denote � :¼ arg fz and � :¼ arg f�z. Then we have

Tðrei�Þ ¼ j fzjei�rei� þ j f�zjei�re�i�

¼ rei ðj fzjeið���Þ þ j f�zje�ið���ÞÞ
where � :¼ ð�� �Þ=2 and  :¼ ð�þ �Þ=2. Consequently, f maps each infinitesimal circle in G onto an infinitesimal
ellipse with axis ratio bounded by ð1þ kÞ=ð1� kÞ (Fig. 1).

Suppose that f is conformal (i.e., holomorphic injective) on G. Recall that fz ¼ ð fx � i fyÞ=2 and f�z ¼ ð fx þ i fyÞ=2.
Thus f�zðzÞ ¼ 0 for all z 2 G which is exactly the Cauchy-Riemann equations. Hence f is 0-quasiconformal. In this case
L ¼ ‘ in Fig. 1. Conversely, if f is 0-quasiconformal, then by ð2:1Þ f�zðzÞ ¼ 0 for almost all z 2 G. By virtue of the
following Weyl’s lemma, we conclude that f is conformal on G.

Lemma 2.1 (Weyl’s lemma (see e.g., [IT92, p. 84]). Let f be a continuous function on G whose distributional
derivative f�z is locally integrable on G. If f�z ¼ 0 in the sense of distributions on G, then f is holomorphic on G.

Let BðGÞ be the open unit ball f� 2 L1ðGÞ : k�k1 < 1g of L1ðGÞ, where L1ðGÞ is the complex Banach space of all
bounded measurable functions on G, and k�k1 :¼ ess supz2G j�ðzÞj for a � 2 L1ðGÞ. An element � 2 BðGÞ is called
the Beltrami coefficient. If f is a k-quasiconformal mapping on G, then it is verified that fzðzÞ 6¼ 0 for almost all z 2 G

(e.g., [LV73, Theorem IV-1.4 in p. 166]). Hence �f :¼ f�z= fz defines a function belongs to BðGÞ. �f is called the
complex dilatation of f , and the quantity k :¼ kð f Þ :¼ k�f k1 is called the maximal dilatation of f . Conversely, the
following fundamental existence and uniqueness theorem is known.

Theorem 2.2 (The measurable Riemann mapping theorem). For a given measurable function � 2 BðCÞ, there
exists a unique solution f of the equation

f�z ¼ � fz ð2:2Þ

for which f : C! C is a quasiconformal mapping fixing the points 0 and 1.

The Eq. ð2:2Þ is called the Beltrami equation.
Here we give some fundamental properties of quasiconformal mappings we will use later. For the general theory of

quasiconformal mappings in the plane, the reader is referred to [Ahl06], [LV73], [AIM09], [Hub06] and [IT92].
f is 0-quasiconformal if and only if f is conformal, as discussed above. If f is k-quasiconformal, then so is its inverse

f�1 as well. A composition of a k1- and k2-quasiconformal map is ðk1 þ k2Þ=ð1þ k1k2Þ-quasiconformal. The
composition property of the complex dilatation is the following; Let f and g be quasiconformal maps on G. Then the
complex dilatation �g�f�1 of the map g � f�1 is given by

�g�f�1ð f Þ ¼
fz

fz
�
�g � �f

1� �g�f

: ð2:3Þ

Since a 0-quasiconformal map is conformal, the above formula concludes that if �f ¼ �g almost everywhere in G then
g � f�1 is conformal on f ðGÞ.

As the case of conformal mappings, isolated boundary points of a domain G are removable singularities of every
quasiconformal mapping of G. It follows from this property that quasiconformal and conformal mappings divide
simply connected domains into the same equivalence classes.

2.2 Schwarzian derivatives

Let f be a non-constant meromorphic function with f 0 6¼ 0. Then we define the Schwarzian derivative by means of

Fig. 1. An infinitesimal circle is mapped to an infinitesimal ellipse.
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Sf :¼
f 00

f 0

� �0
�

1

2

f 00

f 0

� �2

¼
f 000

f 0
�

3

2

f 00

f 0

� �2

:

It is known that f is a Möbius transformation if and only if Sf � 0. Further, a direct calculation shows that

Sf�g ¼ ðSf � gÞg02 þ Sg:

Hence it follows the invariance property of Sf that if f is a Möbius transformation then Sf�g ¼ Sg. One can interpret that
the Schwarzian derivative measures the deviation of f from Möbius transformations. In order to describe it precisely,
we introduce the norm of the Schwarzian derivative kSf kG of a function f on G by

kSf kG :¼ sup
z2G
jSf ðzÞj�GðzÞ�2;

where �G is a Poincaré density of G. One of the important properties of kSf k is the following; Let f be meromorphic
on G and g and h Möbius transformations, then kSf kG ¼ kSh�f�gkg�1ðGÞ. It shows that kSf k is completely invariant
under compositions of Möbius transformations. We note that if G ¼ D :¼ fz 2 C : jzj < 1g, then kSf kD ¼
supz2Dð1� jzjÞ2jSf ðzÞj. For later use, we denote kSf kD by simply kSf k.

2.3 Bers embedding of Teichmüller spaces

Let us consider the family F of all quasiconformal automorphisms of the upper half-plane Hþ. Since all mappings in
F can be extended to homeomorphic self-mappings of the closure of Hþ, all elements of F are recognized as self-
homeomorphisms of Hþ. We define an equivalence relation 	 on F according to which f 	 g for f ; g 2 F if and only
if there exists a holomorphic automorphism M of Hþ, a Möbius transformation having the form MðzÞ ¼
ðazþ bÞ=ðczþ dÞ; a; b; c; d 2 R, such that f �M ¼ g on Hþ. The equivalence relation on F induces the quotient
space F =	, which is called the universal Teichmüller space and denoted by T . Theorem 2.2 with ð2:3Þ tells us that
there is a one-to-one correspondence between T and BðHþÞ. If f 	 g, then the corresponding complex dilatations �f

and �g are also said to be equivalent.
Another equivalent class of T is given by the following profound observation due to Bers [Ber60]. Let � 2 BðHþÞ.

We extend � to the lower half-plane H� :¼ fz 2 C : Im z < 0g by putting 0 everywhere. By Theorem 2.2, there exists a
quasiconformal mapping f � fixing 0; 1;1 associated with such an extended �. Then f �jH� is conformal.

Theorem 2.3 (see e.g., [Leh87, Theorem III-1.2]). The complex dilatations � and � are equivalent if and only if
f �jH� � f �jH� .

By the above theorem, the universal Teichmüller space T can be understood as the set of the normalized conformal
mappings f �jH� which can be extended quasiconformally to the upper half-plane Hþ. Recall that for a Möbius
transformation f we have Sf�g ¼ Sg. Therefore, it is natural to consider the mapping

T 3 ½ f 
 7! Sf�jH� 2 Q; ð2:4Þ

between T and Q, where Q is the space of functions � holomorphic in H� for which the hyperbolic sup norm
k�kH� ¼ supz2H� 4ðIm zÞ2j�ðzÞj is finite.

In order to investigate a detailed property of the mapping ð2:4Þ, we define a metric on T by

dtðp; qÞ :¼
1

2
inf
p;q2T
flogKðg � f�1Þ : f 2 p; g 2 qg;

where Kð f Þ :¼ ð1þ kð f ÞÞ=ð1� kð f ÞÞ, and on Q by

dqð’1; ’2Þ :¼ k’1 � ’2k1:

dt is called the Teichmüller distance. As a consequence of the fact that dt and dq are topologically equivalent, we
obtain the following theorem which provides a new model of the universal Teichmüller space.

Theorem 2.4. The mapping ð2:4Þ is a homeomorphism of the universal Teichmüller space T onto its image in Q.

The mapping ð2:4Þ is called the Bers embedding of Teichmüller space. We denote the image of T under ð2:4Þ by T 1. It
is known that T 1 is a bounded, connected and open subset of Q ([Ahl63]).

From the viewpoint of the theory of univalent functions, T 1 is characterized as follows. Let A be the family of
functions f holomorphic in D with f ð0Þ ¼ 0 and f 0ð0Þ ¼ 1 and S be the subfamily of A whose components are
univalent on D. We define SðkÞ and S�ðkÞ as the families of functions in S which can be extended to k-quasiconformal
mappings of C and bC. Set Sð1Þ :¼ [k2½0;1ÞSðkÞ. Then T 1 is written by

T 1 ¼ fSf : f 2 Sð1Þg:

We give a short account of the relation to the Teichmüller spaces. Let S1 and S2 be Riemann surfaces and G1 and G2

the covering groups of H over S1 and S2, respectively. For the Riemann surfaces S1 and S2, the Teichmüller spaces T S1

and T S2
are defined. If G1 is a subgroup of G2, then the relation T S2

� T S1
holds. In particular, if G1 is trivial, then TS1
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is the universal Teichmüller space which includes all the other Teichmüller spaces as subspaces. For this reason the
name ‘‘universal’’ is used to T 1.

3. Quasiconformal Extensions of Univalent Functions

In Sect. 1 we have introduced SðkÞ to characterize the universal Teichmüller space T 1. Before entering the main part
concerning with Loewner theory, we present some results of the general study of univalent functions and
quasiconformal extensions.

3.1 Univalent functions

First of all, we review some results for the class S. A number of properties for this class have been investigated by
elementary methods.

�, the family of univalent holomorphic maps gð	Þ ¼ 	 þ
P1

n¼0 bn	
�n mapping D� :¼ bCnD into bCnf0g, also plays a

key role in the theory of univalent functions. For f ðzÞ ¼ zþ
P1

n¼2 anz
n 2 S, define

gð	Þ :¼
1

f ð1=	Þ
¼ 	 � a2 þ

a2
2 � a3

	
þ � � � ð	 2 D�Þ:

Then g 2 �. On the other hand it is not always true that for a given g 2 �, f ðzÞ :¼ 1=gð1=zÞ 2 S because g may take 0.
Hence �0 :¼ fg 2 � : gð	Þ 6¼ 0 on 	 2 D�g and S have a one-to-one correspondence.

Theorem 3.1 (Gronwall’s area theorem). For a g 2 �, we have

mðC� gðD�ÞÞ ¼ 
 1�
X1
n¼1

njbnj2
 !

;

where m stands for the Lebesgue measure.

In particular
P1

n¼1 njbnj
2 � 1. In particular jb1j � 1. Here the equality jb1j ¼ 1 holds if and only if gð	Þ ¼ 	 þ b0 þ

ei�=	. Since ð f ðznÞÞ1=n 2 S for all f 2 S and all n 2 N, we have

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð1=	2Þ

p ¼ 	 �
1

2
a2 �

1

	
þ � � � 2 � ð	 2 D�Þ:

Hence by the estimate for jb1j, we obtain the following.

Theorem 3.2 ([Bie16]). If f 2 S, then ja2j � 2. Equality holds if and only if f ðzÞ is a rotation of the Koebe function
defined by

KðzÞ :¼
z

ð1� zÞ2
¼

1

4

1þ z

1� z

� �2

� 1

 !
¼ zþ

X1
n¼2

nzn: ð3:1Þ

Then, in a footnote of the paper [Bie16] Bieberbach wrote ‘‘Vielleicht ist überhaupt kn ¼ n’’ (where kn :¼
maxf2S janj) which means that probably kn ¼ n in general. This statement is called the Bieberbach conjecture. In
1923 Löwner [Löw23] proved ja3j � 3, in 1955 Garabedian and Schiffer [GS55b] proved ja4j � 4, in 1969 Ozawa
[Oza69a, Oza69b] and in 1968 Pederson [Ped68] proved ja6j � 6 independently and in 1972 Pederson and Schiffer
[PS72] proved ja5j � 5. Finally, in 1985 de Branges [dB85] proved janj � n for all n. For the historical development of
the conjecture, see e.g., [Zor86] and [Koe07]. The coefficient problem for � appears to be even more difficult than for
S. One reason is that there can be no single extremal function for all coefficients as the Koebe function. In 1914,
Gronwall [Gro15] proved jb1j � 1 as above, in 1938 Schiffer [Sch38] proved jb2j � 2=3 and in 1955 Garabedian and
Schiffer [GS55a] proved jb3j � 1=2þ expð�6Þ. We do not even have a general coefficient conjecture for �. For this
problem, see e.g., [NN57], [SW84] and [CJ92].

We get back to the main story. The next is an important application of Theorem 3.2.

Theorem 3.3 (The Koebe 1/4-theorem). If f 2 S, then f ðDÞ contains the disk centered at the origin with radius
1/4.

Since the class S is closed with respect to the Koebe transform

fKðzÞ :¼
f ð zþ	

1þ �	z
Þ � f ð	Þ

ð1� j	j2Þ f 0ð	Þ
¼ zþ

1

2
ð1� j	j2Þ

f 00ð	Þ
f 0ð	Þ
� �	

� �
z2 þ � � � ; ð3:2Þ

applying Theorem 3.2 to ð3:2Þ we have the inequality
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ð1� jzj2Þ
f 00ðzÞ
f 0ðzÞ
� 2�z

���� ���� � 4:

It derives the distortion theorems for the class S.

Theorem 3.4. If f 2 S, then

z f 00ðzÞ
f 0ðzÞ

�
2jzj2

1� jzj2

�����
����� � 4jzj

1� jzj2
;

1� jzj
ð1þ jzjÞ3

� j f 0ðzÞj �
1þ jzj
ð1� jzjÞ3

;

jzj
ð1þ jzjÞ2

� j f ðzÞj �
jzj

ð1� jzjÞ2
;

1� jzj
1þ jzj

�
z f 0ðzÞ
f ðzÞ

���� ���� � 1þ jzj
1� jzj

;

for all z 2 D. In each case, equality holds if and only if f is a rotation of the Koebe function ð3:1Þ.

In particular, the third estimate implies that f is locally uniformly bounded. Hence S forms a normal family. Further,
Hurwitz’s theorem states that if a sequence of univalent functions on D converges to a holomorphic function locally
uniformly on D, then the limit function is univalent or constant. Since constant functions do not belong to S by the
normalization, we conclude that S is compact in the topology of locally uniform convergence.

3.2 Examples of quasiconformal extensions

For a given conformal mapping f of a domain D, we say that f has a quasiconformal extension to C if there exists a
k-quasiconformal mapping F such that its restriction FjD is equal to f . For some fundamental conformal mappings, we
can construct quasiconformal extensions explicitly. Below we summarize such examples which are sometimes useful.
Some more examples can be found in [IT92, p. 78]. We remark that ð2:1Þ is written by the polar coordinates as

ir@r f ðrei�Þ � @� f ðrei�Þ
ir@r f ðrei�Þ þ @� f ðrei�Þ

���� ���� � k;

where @r :¼ @=@r and @� :¼ @=@�.

Example 3.5. A very simple but important example is

f ðzÞ ¼ zþ
k

z
; jzj > 1,

zþ k �z; jzj � 1,

8<:
where k 2 ½0; 1Þ. Then j f�z= fzj ¼ k on jzj � 1. The case k ¼ 1 reflects the Joukowsky transform in jzj > 1, though in this
case f is not a quasiconformal mapping any more.

Example 3.6. An identity mapping of D has trivially a quasiconformal extension. In fact, the following extension,

f ðzÞ ¼ rei�; r < 1,

�ðrÞei�; r � 1,

�
is given, where � : ½1;1Þ ! ½1;1Þ is bi-Lipschitz continuous and injective with �ð1Þ ¼ 1 and �ð1Þ ¼ 1. The
maximal dilatation is given by

j�f j ¼
�ðrÞ � r�0ðrÞ
�ðrÞ þ r�0ðrÞ

���� ����:
Let M > 1 be a Lipschitz constant. Then 1=M � �0ðrÞ � M and 1=M � �ðrÞ=r � M and therefore 1 �
r�0ðrÞ=�ðrÞ � M2. We conclude that the extension is j�f j � jM2 � 1j=jM2 þ 1j-quasiconformal.

Example 3.7. Let KðzÞ :¼ ð1þ zÞ=ð1� zÞ be the Cayley map and P�ðzÞ :¼ z�. For a fixed � 2 ð0; 2Þ, the function

f ðzÞ :¼ ðP� � KÞðzÞ

maps D onto the sector domain �ð��; �Þ :¼ fz : �
�=2 < arg z < 
�=2g. We shall construct a quasiconformal
extension of f . The function gðzÞ :¼ ð�P2�� � �KÞðzÞ maps CnD onto �ð�; 4� �Þ. But in this case f ðei�Þ 6¼ gðei�Þ for
each � 2 ð0; 2
Þ. In order to sew these two functions on their boundaries, define hðrei�Þ :¼ r�=ð2��Þei�. Then ð�P2�� �
h � �KÞðzÞ takes the same value as f on @D. Hence it gives a quasiconformal extension of f . A calculation shows that
its maximal dilatation is j1� �j.

Loewner Theory for Quasiconformal Extensions: Old and New 5



Example 3.8. For a given � 2 ð�
=2; 
=2Þ, a function defined by

f ðrei�Þ ¼ ei� expðei� log rÞ

is a tanð�=2Þ-quasiconformal mapping of C onto C. On the other hand, since the above f maps a radial segment ½0;1Þ
to a logarithmic spiral, it is not differentiable at the origin. By calculation we have j f j ¼ expðcos � log rÞ and
arg f ¼ � þ sin � log r. Therefore f with a proper rotation gives a tanð�=2Þ-quasiconformal extension for a function
f ðzÞ ¼ cz on D or D� :¼ bCnD, where c is some constant.

Example 3.9. The functions KðzÞ ¼ z=ð1� zÞ2 and f ðzÞ ¼ z� z2=2 are typical examples in S which do not have any
quasiconformal extensions. The first one is the Koebe function ð3:1Þ which maps D onto Cnð�1;�1=4
. There does
not exist a homeomorphism which maps D� onto ð�1;�1=4
. As for the second function, @D is mapped to a cardioid
which has a cusp at z ¼ 1.

3.3 Extremal problems on SðkÞ

In order to investigate the structure of the family of functions, the extremal problems sometimes provide us quite
beneficial information. The Bieberbach conjecture is one of the most known such problems. A similar problem for SðkÞ
and �ðkÞ, a subclass of � such that all elements have k-quasiconformal extensions to bC, were proposed, and many
mathematicians have worked on this problem. We note that in spite of such a circumstance, there are many open
problems in this field including the coefficient problem.

Our argument is built on the following fact.

Theorem 3.10. SðkÞ;S�ðkÞ and �ðkÞ are compact families.

Kühnau gave a fundamental contribution to the coefficient problem with the variational method.

Theorem 3.11 ([Küh69]). Let f ðzÞ ¼ zþ
P1

n¼2 anz
n 2 SðkÞ and gð	Þ ¼ 	 þ

P1
n¼0 bnz

�n 2 �ðkÞ. Then the followings
hold; jb0j � 2k, jb1j � k and ja3 � a2

2j � k, in particular ja2j � 2k.

We note that in the case when k ¼ 1 we obtain estimates for the classes S and �.
As more general approach to this problem, the distortion theorem for bounded functional was studied. We basically

follow the description of the survey paper by Krushkal [Kru05b, Chapter 3]. The reader is also referred to [KK83].
Let E � bC be a measurable set whose complement E� :¼ bCnE has positive measure, and set

B�ðEÞ :¼ f� 2 BðbCÞ : �jE� ¼ 0g:

Denote by QðEÞ the family of normalized quasiconformal mappings f� : bC! bC where � 2 BðEÞ, and QkðEÞ :¼ f f 2
QðEÞ : k�f k � kg for a k 2 ½0; 1Þ. Now let F : QðEÞ ! C be a non-trivial holomorphic functional, where holomorphic
means that it is complex Gateaux differentiable. Lastly, set kFk1 :¼ supf2QðEÞ jFð f Þj and kFkk :¼ maxf2QkðEÞ jFð f Þj.

Theorem 3.12. Let F : QðEÞ ! C be bounded. Then we have kFkk � kkFk1.

Some applications of the theorem are demonstrated in [Kru05b, Chapter 3.4]. One of them is the distortion theorem for
the class SðkÞ (see also [Gut73, Corollary 7]);

1� jzj
1þ jzj

� �k

�
z f 0ðzÞ
f ðzÞ

���� ���� � 1þ jzj
1� jzj

� �k

:

For more results and proofs, see [Sch75], [Kru05b], [Kru05a].
The estimate of ja2j for the class S�ðkÞ is obtained by Schiffer and Schober.

Theorem 3.13 ([SS76]). For all f 2 S�ðkÞ, we have the sharp estimate

ja2j � 2� 4
arccos k




� �2

:

For the sharp function, see [SS76, Eq. (4.2)]

Since the class S�ðkÞ is closed with respect to the Koebe transform ð3:2Þ, we have the fundamental estimate for S�ðkÞ

z f 00ðzÞ
f 0ðzÞ

�
2jzj2

1� jzj2

�����
����� � 2� 4

arccos k




� �2
 !

2jzj
1� jzj2

:

Following the standard argument for the class S (see Sect. 2.1, or [Pom75, pp. 21–22]), we have distortions of f and
f 0 for S�ðkÞ. We note that the same method as this is not valid for the class SðkÞ because the Koebe transform ð3:2Þ does
not fix 1 except the case 	 ¼ 0.

As is written before, while the coefficient problem has been completely solved in the class S, the question remains
open for the class SðkÞ. However, if we restrict ourselves to that k is sufficiently small, then the sharp result is
established by Krushkal.
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Theorem 3.14 ([Kru88, Kru95]). For a function f ðzÞ ¼ zþ a2z
2 þ � � � 2 SðkÞ, we have the sharp estimate

janj �
2k

n� 1
ð3:3Þ

for k � 1=ðn2 þ 1Þ.

The extremal function of the estimate ð3:3Þ is given by

f2ðzÞ :¼
z

ð1� kzÞ2
ðk 2 ½0; 1ÞÞ;

fnðzÞ :¼ ð f2ðzn�1ÞÞ1=ðn�1Þ ¼ zþ
2k

n� 1
zn þ � � � n ¼ 3; 4; . . . :

To see fn 2 SðkÞ, calculate z f 0nðzÞ= fnðzÞ and apply the quasiconformal extension criterion for starlike functions in
Sect. 3.4.

3.4 Sufficient conditions for SðkÞ

Since Bers introduced a new model of the universal Teichmüller space, numerous sufficient conditions for the class
SðkÞ have been obtained. In this subsection we introduce only a few remarkable results.

In 1962, the first sufficient condition for SðkÞ was provided by Ahlfors and Weill.

Theorem 3.15 ([AW62]). Let f be a non-constant meromorphic function defined on D and k 2 ½0; 1Þ be a constant. If
f satisfies kSf k � 2k, then f can be extended to a quasiconformal mapping F to bC. In this case the dilatation �F is
given by

�FðzÞ :¼
�

1

2
ðjzj2 � 1Þ2SF

1

�z

� �
1

�z4
; jzj > 1

0; jzj < 1.

8<:
1972, Becker gave a sufficient condition in connection with the pre-Schwarzian derivative. Later it was generalized

by Ahlfors.

Theorem 3.16 ([Ahl74]). Let f 2 A. If there exists a k 2 ½0; 1Þ such that for a constant c 2 C the inequality

cjzj2 þ ð1� jzj2Þ
f 00ðzÞ
f 0ðzÞ

���� ���� � k ð3:4Þ

holds for all z 2 D, then f 2 SðkÞ.

The case when c ¼ 0 is due to Becker [Bec72]. Remark that the condition jcj � k which was stated in the original form
is embedded in the inequality ð3:4Þ (see [Hot10]).

It is known that many univalence criteria are refined to quasiconformal extension criteria. For instance, Fait, Krzyż
and Zygmunt proved the following theorem which is the refinement of the definition of strongly starlike functions
(for the definition, see Sect. 3.3).

Theorem 3.17 ([FKZ76]). Every strongly starlike functions of order � has a sinð
�=2Þ-quasiconformal extension
to C.

This is generalized to strongly spiral-like functions [Sug12]. Some more results are obtained in [Bro84, Hot09] with
explicit quasiconformal extensions which correspond to each subclass of S. In particular, in [Hot09] the research relies
on the (classical) Loewner theory, which will be mentioned in the next section.

Sugawa approached this problem by means of the holomorphic motions with extended �-Lemma ([MSS83],
[Slo91]).

Theorem 3.18 ([Sug99]). Let k 2 ½0; 1Þ be a constant. For a given f 2 A, let p denote one of the quantities
z f 0ðzÞ= f ðzÞ; 1þ z f 00ðzÞ= f 0ðzÞ and f 0ðzÞ. If

1� pðzÞ
1þ pðzÞ

���� ���� � k

for all z 2 D, then f 2 SðkÞ.

We note that in most of the sufficient conditions of quasiconformal extensions including the above theorems the case
k ¼ 1 reflects univalence criteria.

4. Classical Loewner Theory

The idea of the parametric representation method of conformal maps was introduced by Löwner [Löw23], and later
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developed by Kufarev [Kuf43] and Pommerenke [Pom65]. It describes a time-parametrized conformal map on D whose
image is a continuously increasing simply connected domain. The key point is that such a family can be represented by
a partial differential equation. Loewner’s approach also made a significant contribution to quasiconformal extensions of
univalent functions. This method was discovered by Becker.

Since our focus in this note is on univalent functions with quasiconformal extensions, we will deal with Loewner
chains in the sense of Pommerenke (see [Pom75]). For one-slit maps as Löwner originally considered, see e.g.,
[DMG16] which also contains a list of references. For the classical theory, the reader is also referred to
[Gol69, Chapter III-2], [Tsu75, Chapter IX-9], [Dur83, Chapter 3], [Hen86, Chapter 19], [RR94, Chapter 7-8],
[Hay94, Chapter 7-8], [Con95, Chapter 17], [GK03, Chapter 3].

4.1 Classical Loewner chains

Let ftðzÞ ¼ etzþ
P1

n¼2 anðtÞzn be a function defined on D� ½0;1Þ. ft is said to be a (classical) Loewner chain if ft
satisfies the conditions (Fig. 2);

1. ft is holomorphic and univalent in D for each t 2 ½0;1Þ;
2. fsðDÞ � ftðDÞ for all 0 � s < t <1.

One can also characterize it in the geometrical sense. Let fDtgt�0 be a family of simply connected domains having the
following properties;

10. 0 2 D0;
20. Ds ( Dt for all 0 � s < t <1;
30. Dtn ! Dt if tn! t <1 and Dtn ! C if tn !1 (n!1), in the sense of the kernel convergence.

Then by the Riemann mapping theorem there exists a family of conformal mappings f ftgt�0 such that ftð0Þ ¼ 0 and
f 0t ð0Þ > 0 for all t � 0. We note that ft is continuous on t 2 ½0;1Þ, and f 0s ð0Þ < f 0t ð0Þ for all s < t (for otherwise by the
Schwarz Lemma f�1

t � fs is an identity, which contradicts Ds ( Dt). So after rescaling as f0 2 S and reparametrizing as
f 0t ð0Þ ¼ et, we obtain a Loewner chain.

ft has a time derivative almost everywhere on ½0;1Þ for each fixed z 2 D. In fact, applying the distortion theorem for
S (Theorem 3.4), the next estimate follows.

Lemma 4.1. For each fixed z 2 D, a Loewner chain ft satisfies

j ftðzÞ � fsðzÞj �
8jzj

ð1� jzjÞ4
jet � esj

for all 0 � s � t <1.

Hence ft is absolutely continuous on t 2 ½0;1Þ for all fixed z 2 D.
A necessary and sufficient condition for a Loewner chain is shown by Pommerenke.

Theorem 4.2 ([Pom65, Pom75]). Let 0 < r0 � 1. Let ftðzÞ ¼ etzþ
P1

n¼2 anðtÞzn be a function defined on
D� ½0;1Þ. Then ft is a Loewner chain if and only if the following two conditions are satisfied;

(i) ft is holomorphic in z 2 Dr0 for each t 2 ½0;1Þ, absolutely continuous in t 2 ½0;1Þ for each z 2 Dr0 and satisfies

j ftj � K0e
t ðz 2 Dr0 ; t 2 ½0;1ÞÞ ð4:1Þ

for some positive constant K0.
(ii) There exists a function pðz; tÞ analytic in z 2 D for each t 2 ½0;1Þ and measurable in t 2 ½0;1Þ for each z 2 D

satisfying

Re pðz; tÞ > 0 ðz 2 D; t 2 ½0;1ÞÞ
such that

Fig. 2. The image of the unit disk D under ft expands continuously as t increases.
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_f tðzÞ ¼ z f 0t ðzÞpðz; tÞ ðz 2 Dr0 ; a.e. t 2 ½0;1ÞÞ ð4:2Þ

where _f ¼ @ f =@t and f 0 ¼ @ f =@z.

The partial differential equation ð4:2Þ is called the Loewner–Kufarev PDE, and the function p in ð4:2Þ is called a
Herglotz function.

Remark 4.3. Inequality ð4:1Þ and the following classical result due to Dieudonné [Die31] (for the proof, see e.g.,
[Tsu75, p. 259]) ensure the existence of the uniform radius of univalence of f ftgt�0; Let f be holomorphic on D
satisfying f ð0Þ ¼ 0, f 0ð0Þ ¼ a > 0 and j f ðzÞj < M for all z 2 D. Then f is univalent on the disk fjzj < � < 1g, where

� :¼
a

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2
p :

Hence, although it is not written on the sufficient conditions of Theorem 4.2, ft is implicitly assumed to be univalent on
a certain disk whose radius is determined independently from t 2 ½0;1Þ.

Remark 4.4. ð4:2Þ describes an expanding flow of the image domain ftðDÞ of a Loewner chain. Indeed, ð4:2Þ can be
written as

jarg _f tðzÞ � arg z f 0t ðzÞj ¼ jarg pðz; tÞj <



2
:

It implies that the velocity vector _f t at a boundary point of the domain ftðDrÞ points out of this set and therefore all
points on @ ftðDrÞ moves to outside of ftðDrÞ when t increases (Fig. 3).

The next property is also important.

Theorem 4.5. For any f 2 S, there exists a Loewner chain ft such that f0 ¼ f .

4.2 Evolution families

In Loewner theory, a two-parameter family of holomorphic self-maps of the unit disk (’s;t), 0 � s � t <1, called
an evolution family, plays a key role. To be precise, (’s;t) satisfies the followings;

1. ’s;sðzÞ ¼ z;
2. ’s;tð0Þ ¼ 0 and ’0s;tð0Þ ¼ es�t;
3. ’s;t ¼ ’u;t � ’s;u for all 0 � s � u � t <1.

We note that ’s;t is not assumed to be univalent on D. By means of the same idea as Lemma 4.1, we have the estimate
for 0 � s � u � t <1,

j’s;tðzÞ � ’u;tðzÞj �
2jzj

ð1� jzjÞ2
ð1� es�uÞ;

j’s;uðzÞ � ’s;tðzÞj � 2jzj
1þ jzj
1� jzj

ð1� eu�tÞ;

for all z 2 D.
For a Loewner chain ft, the function ’s;tðzÞ :¼ ð f�1

t � fsÞðzÞ defines an evolution family. Since ftð’s;tðzÞÞ ¼ fs,
differentiating both sides of the equation with respect to t we have _f tð’s;tÞ þ f 0t ð’s;tÞ _’s;t ¼ 0. Hence one can obtain by
ð4:2Þ

_’s;tðzÞ ¼ �’s;tðzÞpð’s;tðzÞ; tÞ: ð4:3Þ

This is called the Loewner–Kufarev ODE. The following is the basic result on existence and uniqueness of a solution
of the ODE.

Fig. 3. The angle � between the normal vector z f 0t of the tangent line and the velocity vector _f t satisfies j�j < 
=2.
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Theorem 4.6. Suppose that a function pðz; tÞ is holomorphic in z 2 D and measurable in t 2 ½0;1Þ satisfying
Re pðz; tÞ > 0 for all z 2 D and t 2 ½0;1Þ. Then, for each fixed z 2 D and s 2 ½0;1Þ, the initial value problem

dw

dt
¼ �wpðw; tÞ

for almost all t 2 ½s;1Þ has a unique absolutely continuous solution wðtÞ with the initial condition wðsÞ ¼ z. If we write
’s;tðzÞ :¼ wðtÞ, then ’s;t is an evolution family and univalent on D. Further, the function fsðzÞ defined by

fsðzÞ :¼ lim
t!1

et’s;tðzÞ ð4:4Þ

exists locally uniformly in z 2 D and is a Loewner chain.
Conversely, if ft is a Loewner chain and ’s;t is an evolution family associated with ft by ’s;t :¼ f�1

t � fs. Then for
almost all t 2 ½s;1Þ, ’s;t satisfies

d’s;t

dt
¼ �’s;t pð’s;t; tÞ

for all z 2 D, and ð4:4Þ is satisfied.

In the first assertion of Theorem 4.6, it may happen that two different Herglotz functions p1 and p2 generate the same
evolution family ’s;t. Then p1ðz; tÞ ¼ p2ðz; tÞ for almost all t � 0. Hence Theorem 4.6 says that there is a one-to-one
correspondence between an evolution family and a Herglotz function in such a sense.

4.3 Loewner chains and quasiconformal extensions

An interesting method connecting Loewner theory and quasiconformal extensions was obtained by Becker.

Theorem 4.7 ([Bec72], [Bec80]). Suppose that ft is a Loewner chain for which pðz; tÞ in ð4:2Þ satisfying the
condition

pðz; tÞ 2 UðkÞ :¼ w 2 C :
1�w

1þw

���� ���� � k

� �
ð4:5Þ

i.e., pðz; tÞ lies in the closed hyperbolic disk UðkÞ in the right half-plane centered at 1 with radius arctanh k, for all
z 2 D and almost all t � 0. Then ft admits a continuous extension to D for each t � 0 and the map F defined by

Fðrei�Þ ¼
f0ðrei�Þ; if r < 1,

flog rðei�Þ; if r � 1,

(
ð4:6Þ

is a k-quasiconformal extension of f0 to C.

The idea of the theorem is the following. By Koebe’s 1/4-Theorem (Theorem 3.3), ftðDÞ must contain the disk
whose center is 0 with radius et=4. Thus ftðDÞ tends to C as t!1. This fact implies that the boundary @ ftðDÞ
runs throughout on Cn f0ðDÞ. Therefore the mapping F : D� ! Cn f0ðDÞ is constructed by ð4:6Þ which gives a
correspondence between the circle fjzj ¼ etg and the boundary @ ftðDÞ. Its quasiconformality follows from the condition
ð4:5Þ.

Betker generalized Theorem 4.7 by introducing an inverse version of Loewner chains. Let !tðzÞ ¼
P1

n¼1 bnðtÞzn,
b1ðtÞ 6¼ 0, be a function defined on D� ½0;1Þ, where b1ðtÞ is a complex-valued, locally absolutely continuous function
on ½0;1Þ. Then !t is said to be an inverse Loewner chain if;

1. !t is univalent in D for each t � 0;
2. jb1ðtÞj decreases strictly monotonically as t increases, and limt!1 jb1ðtÞj ! 0;
3. !sðDÞ  !tðDÞ for 0 � s < t <1;
4. !0ðzÞ ¼ z and !sð0Þ ¼ !tð0Þ for 0 � s � t <1.

!t also satisfies the partial differential equation

_!tðzÞ ¼ �z!0tðzÞqðz; tÞ ðz 2 D; a.e. t � 0Þ; ð4:7Þ
where q is a Herglotz function. Conversely, we can construct an inverse Loewner chain by means of ð4:7Þ according to
the following lemma:

Lemma 4.8. Let qðz; tÞ be a Herglotz function. Suppose that qð0; tÞ be locally integrable in ½0;1Þ withR1
0

Re qð0; tÞdt ¼ 1. Then there exists an inverse Loewner chain wt with ð4:7Þ.

By applying the notion of an inverse Loewner chain, we obtain a generalization of Becker’s result.

Theorem 4.9 ([Bet92]). Let k 2 ½0; 1Þ. Let ft be a Loewner chain for which pðz; tÞ in ð4:2Þ satisfying the condition

10 HOTTA



pðz; tÞ � qðz; tÞ
pðz; tÞ þ qðz; tÞ

�����
����� � k ðz 2 D; a.e. t � 0Þ;

where qðz; tÞ is a Herglotz function. Let !t be the inverse Loewner chain which is generated with q by Lemma 4.8. Then
ft and !t are continuous and injective on D for each t � 0, and f0 has a k-quasiconformal extension F : C! C which
is defined by

F
1

!tðei�Þ

� �
¼ ftðei�Þ ð� 2 ½0; 2
Þ; t � 0Þ:

We obtain Becker’s result for qðz; tÞ ¼ 1. In this case an inverse Loewner chain is given by !tðzÞ ¼ e�tz. Further,
choosing ! as p ¼ q, we have the following corollary:

Corollary 4.10 ([Bet92]). Let � 2 ½0; 1Þ. Suppose that ft is a Loewner chain for which pðz; tÞ in ð4:2Þ satisfies

pðz; tÞ 2 �ð��; �Þ ¼ z : �
�


2
� arg z �

�


2

� �
for all z 2 D and almost all t 2 ½0;1Þ. Then ft admits a continuous extension to D for each t � 0 and f0 has a
sin�
=2-quasiconformal extension to C.

Corollary 4.10 does not include Theorem 4.7 in view of the dilatation of the extended quasiconformal map. In fact,
the following relation holds;

UðkÞ � �ð�k0; k0Þ where k0 :¼
2



arcsin

2k

1þ k2

� �
� k:

Remark that k0 ¼ k if and only if k ¼ 0.
In contrast to Becker’s quasiconformal extension theorem, the theorem due to Betker does not always provide an

explicit quasiconformal extension. The reason is based on the fact that it is difficult to express an inverse Loewner chain
!t which has the same Herglotz function as a given Loewner chain ft in an explicit form. For details, see
[HW17, Sect. 5].

4.4 Applications to the theory of univalent functions

Here we will see some applications of Theorem 4.2 and Theorem 4.7. In order to find out explicit Loewner chains
which corresponds to the typical subclasses of S, we need to observe their geometric features. Some Loewner chains
are not normalized as f 0ð0Þ ¼ et. In [Hot11], it is discussed that Theorem 4.2 and Theorem 4.7 work well without such
a normalization. In fact, a Loewner chain is generalized for a function ftðzÞ ¼

P1
n¼1 atðzÞzt where a1ðtÞ 6¼ 0 is a

complex-valued, locally absolutely continuous function on t 2 ½0;1Þ with limn!1 ja1ðtÞj ¼ 1. Further, either the
condition that ja1ðtÞj is strictly increasing with respect to t 2 ½0;1Þ, or fsðDÞ ( ftðDÞ for all 0 � s < t <1 should be
assumed.

I Convex functions

A function f 2 S is said to be convex and belongs to K if f ðDÞ is a convex domain. It is known that f 2K if and
only if

Re 1þ
z f 00ðzÞ
f 0ðzÞ

� 	
> 0

for all z 2 D. A flow of the expansion for a convex function is considered as following. If a boundary point 	 2 @ f ðDÞ
moves to the direction of their normal vector 	 f 0ð	Þ according to the parameter t increases, then 	 always runs on the
complement of f ðDÞ and their trajectories do not cross each other. In view of this, it is natural to set a Loewner chain as

ftðzÞ ¼ f ðzÞ þ t � z f 0ðzÞ ð4:8Þ

Then we have 1=pðz; tÞ ¼ 1þ t � ½1þ ðz f 00ðzÞ= f 0ðzÞÞ
 and hence ft is a Loewner chain if f 2K.

II Starlike functions

Next, consider a starlike function (with respect to 0), i.e., a function f 2 S such that for every z 2 D the segment
connecting f ðzÞ and 0 lies in f ðDÞ. Denote by S� the family of starlike functions. An analytic characterization for
starlike functions is

Re
z f 0ðzÞ
f ðzÞ

� 	
> 0

for all z 2 D. It follows from the definition that for a boundary point 	 2 @ f ðDÞ, the ray ft	 : t � 1g always lies in the
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exterior of f ðDÞ. Hence the possible chain for S� is

ftðzÞ :¼ et f ðzÞ: ð4:9Þ

A simple calculation shows that 1=pðz; tÞ ¼ z f 0ðzÞ= f ðzÞ and therefore ft is a Loewner chain if f 2 S�. In the case of
spiral-like functions, i.e., functions f 2 S defined by the condition

Re e�i�
z f 0ðzÞ
f ðzÞ

� 	
> 0

for some � 2 ð�
=2; 
=2Þ, a Loewner chain is given by

ftðzÞ :¼ ect f ðzÞ ð4:10Þ

with c :¼ ei� whose trajectories draw logarithmic spirals. The case � ¼ 0 corresponds to starlike functions.

III Close-to-convex functions

For a given f 2 S, if there exists a g 2 S� such that

Re e�i�
z f 0ðzÞ
gðzÞ

� 	
> 0

for some � 2 ð�
=2; 
=2Þ and all z 2 D, then f is said to be close-to-convex and we denote by f 2 C. The image f ðDÞ
by a close-to-convex function is known to be a linearly accessible domain, namely, Cn f ðDÞ is a union of closed half-
lines which are mutually disjoint except their end points. f is said to be linearly accessible if f ðDÞ is a linearly
accessible domain.

A Loewner chain corresponding to the class C is given by

ftðzÞ :¼ f ðzÞ þ t � ei�gðzÞ: ð4:11Þ

Then 1=pðz; tÞ ¼ e�i� ðz f 0ðzÞ=gðzÞÞ þ tðzg0ðzÞ=gðzÞÞ and hence Re pðz; tÞ > 0 for all z 2 D and t � 0. The validity of the
chain ð4:11Þ is given by the following consideration.

Below we consider the case � ¼ 0. Take a fixed � 2 ð0; 1Þ and set f�ðzÞ :¼ f ð�zÞ=� and g�ðzÞ :¼ gð�zÞ=�. Then
f
�
t :¼ f� þ tg� is well-defined on D. For each boundary point 	0 2 @D,

	0 :¼ f f �t ð	0Þ : t 2 ½0;1Þg

defines a half-line with an inclination of arg g�ð	0Þ. Let 	1 2 @D be another boundary point with 	1 6¼ 	0. Since f
�
t is a

Loewner chain, 	0 and 	1 do not have any intersection. Further, by the property f
�
t ðDÞ ! C as t!1, 	 runs

throughout Cn f�ðDÞ if arg 	 is taken from 0 to 2
. Therefore
S
	2@D 	 ¼ Cn f�ðDÞ which proves that every f� 2 C is

linearly accessible. It is known that the family of linearly accessible functions f 2 S is compact in the topology of
locally uniform convergence ([Bie36]). Hence we conclude that f ¼ lim�!1 f

�
0 2 C is linearly accessible.

One can prove it without compactness of the family of linearly accessible functions. Let p	½ f 
 be the prime end
defined on a domain f ðDÞ corresponding to a boundary point 	 2 @D and I	½ f 
 be the impression of the prime end p	½ f 
.
It is known that there is a one-to-one correspondence among 	, p	½ f 
 and I	½ f 
 (see [Pom92, Chapter 2]). Since g is
starlike, for all wg 2 I	0½g
nf1g, argwg reflects one real value. Then redefine 	0 as a family of rays (may consist of
only one ray) by

	0 :¼ fwf þ t expði argwgÞ : wf 2 I	0 ½ f 
nf1g;wg 2 I	0 ½g
nf1g; t 2 ½0;1Þg:

Then
S
	2@D 	 ¼ Cn f ðDÞ, for otherwise there exists a point z 2 Cn f ðDÞ such that z 62 	 for any 	 2 @D which

contradicts the fact that ft is a Loewner chain. By choosing proper components of
S
	2@D 	, a union of closed half-lines

for that f ðDÞ is a linearly accessible domain is given.
The Noshiro–Warschawski class is known as the special case of close-to-convex functions. Noshiro [Nos35] and

Warschawski [War35] independently proved that if a function f 2 A satisfies

Re f 0ðzÞ > 0

for all z 2 D, then f 2 S (see e.g., [HW17]). We denote the family of such functions by R. Choosing gðzÞ ¼ z and
� ¼ 0 in ð4:11Þ, we have the chain

ftðzÞ :¼ f ðzÞ þ tz ð4:12Þ

which proves R � C � S. By this consideration, the following property is derived.

Proposition 4.11. For a function f 2 R, if the boundary of f ðDÞ is locally connected, then ei� 7! f ðei�Þ 2 C is one-
to-one.

Further, we can make use of ð4:12Þ to observe the shape of f ðDÞ for an f 2 R. We assume that the boundary of f ðDÞ
is locally connected. Then the half-line ei� :¼ ff ðei�Þ þ tei� : t 2 ½0;1Þg is well-defined. Since the inclination of ei� is
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exactly �, we obtain the following property for R;

Proposition 4.12. Let f 2 S. If f ðDÞ contains some sector domain in C, then f does not belong to R.

For example, f ðzÞ ¼ ðð1þ zÞ=ð1� zÞ � 1Þ=2 maps D onto the half-plane. Hence we immediately conclude that f =2 R

(of course in this case it is easy to see that f does not satisfy Re f 0 > 0 by calculation).

IV Bazilevič functions

For real constants � > 0 and � 2 R, set  ¼ �þ i�. In 1955, Bazilevič [Baz55] showed that the function defined by

f ðzÞ ¼ ð�þ i�Þ
Z z

0

hðuÞgðuÞ�ui��1du

� 	1=ð�þi�Þ

where g is a starlike univalent function and h is an analytic function with hð0Þ ¼ 1 satisfying Reðei�hÞ > 0 in D for
some � 2 R belongs to the class S. It is called a Bazilevič function of type ð�; �Þ and we denote by Bð�; �Þ the family
of Bazilevič functions of type ð�; �Þ. A simple observation shows that f 2 Bð�; �Þ if and only if

Re ei�
zf 0ðzÞ
f ðzÞ

f ðzÞ
gðzÞ

� �� f ðzÞ
z

� �i�
( )

> 0 ðz 2 DÞ

for some g 2 S�. A Loewner chain for the class Bð�; �Þ is known ([Pom65, p. 166]) as

ftðzÞ ¼ ð f ðzÞ þ t � gðzÞ�zi�Þ1=: ð4:13Þ
By using the previous argument for close-to-convex functions, we can derive some geometric features for the class

Bð�; �Þ. We consider the simple case that the boundaries of f ðDÞ and gðDÞ are locally connected. Then for each point
	0 2 @D, the curve f�	0 ðtÞ :¼ ð f ð	0Þ þ t � gð	0Þ�	0i�Þ1= : t 2 ½0;1Þg is defined. Hence f ðDÞ is described as the
complement of a union of such curves.

Observe the behavior of the curve. If � > 0 (or � < 0), then it draws an asymptotically similar curve as a logarithmic
spiral which evolves counterclockwise (or clockwise). On the other hand, in the case when � ¼ 0, firstly it draws a
spiral, then tends to a straight line as t gets large. In both cases, the curvature dt arg �

0
	0
ðtÞ ¼ Im½�00	0 ðtÞ=�

0
	0
ðtÞ
 is always

positive or negative. From this fact one can construct functions which do not belong to any Bð�; �Þ easily. Consider a
slit domain Cn. If the curvature of the slit  takes both positive and negative values (ex.  ¼ fxþ iy : y ¼
sin x and x > 0g), or  is not smooth (ex.  ¼ fx � 0g [ fiy : y 2 ð0; 1Þg), then such slit domains cannot be images of D
under any f 2 Bð�; �Þ.

4.5 Applications to quasiconformal extensions

Applying Theorem 4.7 to the chains ð4:8Þ, ð4:9Þ, ð4:10Þ, ð4:11Þ, ð4:12Þ and ð4:13Þ we obtain quasiconformal extension
criteria for each subclass of S with explicit extensions. In this case the chains ð4:8Þ, ð4:11Þ, ð4:12Þ and ð4:13Þ should be
reparametrized by et � 1. The theorems can be found in [Hot09, Hot11, HW11, Hot13]. Further, by Theorem 4.10 with
the chains ð4:9Þ and ð4:10Þ we obtain quasiconformal extension criteria given by [FKZ76] and [Sug12]. For an explicit
extension of these cases, see [HW17].

The other typical example is Theorem 3.16, Ahlfors’s quasiconformal extension criterion. It can be obtained by
Theorem 4.7 with the chain

ftðzÞ :¼ f ðe�tzÞ þ
1

1þ c
ðet � e�tÞz f 0ðe�tzÞ;

for then

1� pðz; tÞ
1þ pðz; tÞ

¼
z f 0t ðzÞ � _f tðzÞ
z f 0t ðzÞ þ _f tðzÞ

¼ c
1

e2t
þ 1�

1

e2t

� �
e�tz f 0ðe�tzÞ
f 00ðe�tzÞ

:

5. Modern Loewner Theory

Recently a new approach to treat evolution families and Loewner chains in a general framework has been suggested
by Bracci, Contreras, Dı́az-Madrigal and Gumenyuk ([BCDM12], [BCDM09], [CDMG10b]). It enables us to describe
a variety of the dynamics of one-parameter family of conformal mappings. In this section we outline the theory of
generalized evolution families and Loewner chains. The key fact is that there is an (essentially) one-to-one
correspondence among evolution families and Herglotz vector fields. We also present some results about generalized
Loewner chains with quasiconformal extensions.

5.1 Semigroups of holomorphic mappings

Let D be a simply connected domain in the complex plane C. We denote the family of all holomorphic functions on
D by HolðD;CÞ. If f 2 HolðD;CÞ is a self-mapping of D, then we will denote the family of such functions by HolðDÞ.
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An easy consequence of the well-known Schwarz-Pick Lemma, f 2 HolðDÞnfidg may have at most one fixed point in
D. If such a point exists, then it is called the Denjoy–Wolff point of f . On the other hand, if f does not have a fixed
point in D, then the Denjoy–Wolff theorem (see e.g., [ES10]) claims that there exists a unique boundary fixed point
=�limz!� f ðzÞ ¼ � 2 @D such that the sequence of iterates f f ngn2N converges to � locally uniformly, where =�lim denotes
an angular (or non-tangential) limit, and f n an n-th iterate of f , namely, f 1 :¼ f and f n :¼ f � f n�1. In this case the
boundary point � is also called the Denjoy–Wolff point. Remark that a boundary fixed point is not always the Denjoy–
Wolff point. A simple example is observed with a holomorphic automorphism of D, f ðzÞ ¼ ðzþ aÞ=ð1þ �azÞ with
a 2 Dnf0g. f has two boundary fixed points �a=jaj, but only one a=jaj can be the Denjoy–Wolff point.

A family ð�tÞt�0 of holomorphic self-mappings of D is called a one-parameter semigroup if;
1. �0 ¼ idD;
2. �t � �s ¼ �sþt for all s; t 2 ½0;1Þ;
3. limt!0þ �tðzÞ ¼ z locally uniformly on D;

In the definition, only right continuity at 0 is required.
The following theorem is fundamental in the theory of one-parameter semigroups.

Theorem 5.1. Let ð�tÞt�0 be a one-parameter semigroup of holomorphic self-mappings of D. Then for each z 2 D
there exists the limit

lim
t!0þ

�tðzÞ � z

t
¼: GðzÞ ð5:1Þ

such that G 2 HolðD;CÞ. The convergence in ð5:1Þ is uniform on each compact subset of D. Moreover, the semigroup
ð�tÞt�0 can be defined as a unique solution of the Cauchy problem

d�tðzÞ
dt
¼ Gð�tðzÞÞ ðt � 0Þ

with the initial condition �0ðzÞ ¼ z.

The above function G 2 HolðD;CÞ is called the infinitesimal generator of the semigroup. Various criteria which
guarantee that a homeomorphic function G 2 HolðD;CÞ is the infinitesimal generator are known. As one of them, in
1978 Berkson and Porta gave the following fundamental characterization.

Theorem 5.2 ([BP78]). A holomorphic function G 2 HolðD;CÞ is an infinitesimal generator if and only if there
exists a � 2 D and a function p 2 HolðD;CÞ with Re pðzÞ � 0 for all z 2 D such that

GðzÞ ¼ ð� � zÞð1� ��zÞpðzÞ ð5:2Þ
for all z 2 D.

The Eq. ð5:2Þ is called the Berkson–Porta representation. In fact, the point � in ð5:2Þ is the Denjoy–Wolff point of
the one-parameter semigroup generated with G.

5.2 Generalized evolution families in the unit disk

We have discussed in Sect. 3.1 that a Loewner chain ft (in the classical sense) defines a function ’s;t :¼ f�1
t � fs :

D! D which is called an evolution family. Recently, this notion and one-parameter semigroups are unified and
generalized as following.

Definition 5.3 ([BCDM12, Definition 3.1]). A family of holomorphic self-maps of the unit disk (’s;t),
0 � s � t <1, is an evolution family if;
EF1. ’s;sðzÞ ¼ z;
EF2. ’s;t ¼ ’u;t � ’s;u for all 0 � s � u � t <1;
EF3. for all z 2 D and for all T > 0 there exists a non-negative locally integrable function kz;T : ½0;T
 ! R�0 such

that

j’s;uðzÞ � ’s;tðzÞj �
Z t

u

kz;T ð�Þd�

for all 0 � s � u � t � T .

We denote the family of evolution families by EF.

Remark 5.4. If ð�tÞ � HolðDÞ is a one-parameter semigroup, then ð’s;tÞ0�s�t<1 :¼ ð�t�sÞ0�s�t<1 forms an evolution
family.

Remark 5.5. In [BCDM12] and [CDMG10b], the definitions of evolution families and some other relevant notions
contain an integrability order d 2 ½1;þ1
. Since this parameter is not important for the discussions in this article, we
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assume that d ¼ 1 which is the most general case of the order.

Some fundamental properties of EF are derived as follows.

Theorem 5.6 ([BCDM12, Proposition 3.7, Corollary 6.3]). Let ð’s;tÞ 2 EF.
(i) ’s;t is univalent in D for all 0 � s � t <1.

(ii) For each z0 2 D and s0 2 ½0;1Þ, ’s0;tðz0Þ is locally absolutely continuous on t 2 ½s0;1Þ.
(iii) For each z0 2 D and t0 2 ð0;1Þ, ’s;t0 ðz0Þ is absolutely continuous on s 2 ½0; t0
.

Next, we extend the notion of infinitesimal generators to the same structure as evolution families.

Definition 5.7 ([BCDM12, Definition 4.1, Definition 4.3]). A Herglotz vector field on the unit disk D is a function
G : D� ½0;1Þ ! C with the following properties;
HV1. for all z 2 D, Gðz; �Þ is measurable on ½0;1Þ;
HV2. for any compact set K � D and for all T > 0, there exists a non-negative locally integrable function

kK;T : ½0;T
 ! R�0 such that

jGðz; tÞj � kK;T ðtÞ

for all z 2 K and for almost every t 2 ½0;T
;
HV3. for almost all t 2 ½0;1Þ, Gð�tÞ is an infinitesimal generator.

We denote by HV the family of all Herglotz vector fields.
The following theorem states the relation between ð’s;tÞ 2 EF and G 2 HV.

Theorem 5.8 ([BCDM12, Theorem 5.2, Theorem 6.2]). For any ð’s;tÞ 2 EF, there exists an essentially unique
G 2 HV such that

d’s;tðzÞ
dt
¼ Gð’s;tðzÞ; tÞ ð5:3Þ

for all z 2 D, all s 2 ½0;1Þ and almost all t 2 ½s;1Þ. Conversely, for any G 2 HV, a family of unique solutions of ð5:3Þ
with the initial condition ’s;sðzÞ ¼ z generates an evolution family.

Here, essentially unique means that if G�ðz; tÞ is another Herglotz vector field which satisfies ð5:3Þ, then Gð�; tÞ ¼
G�ð�; tÞ for almost every t � 0.

The similar mutual characterization holds between a Herglotz vector field and a pair of the generalized Denjoy–
Wolff point � and a generalized Herglotz function.

Definition 5.9 ([BCDM12, Definition 4.5]). A Herglotz function on the unit disk D is a function
p : D� ½0;1Þ ! C with the following properties;
HF1. for all z 2 D, pðz; �Þ is locally integrable on ½0;1Þ;
HF2. for almost all t 2 ½0;1Þ, pð�; tÞ is holomorphic on D;
HF3. Re pðz; tÞ � 0 for all z 2 D and almost all t 2 ½0;1Þ.

We denote HF the family of all Herglotz functions.

Theorem 5.10 ([BCDM12, Theorem 4.8]). Let G 2 HV. Then there exists an essentially unique measurable function
� : ½0;1Þ ! D and p 2 HF such that

Gðz; tÞ ¼ ð�ðtÞ � zÞð1� �ðtÞzÞpðz; tÞ ð5:4Þ

for all z 2 D and almost all t 2 ½0;1Þ. Conversely, for a given measurable function � : ½0;1Þ ! D and p 2 HF, the
Eq. ð5:4Þ forms a Herglotz vector field.

For convenience, we call the above measurable function � : ½0;1Þ ! D the Denjoy–Wolff function and denote by
� 2 DW. A pair ðp; �Þ of p 2 HV and � 2 DW is called the Berkson–Porta data for G 2 HV. We denote the set of all
Berkson–Porta data by BP. If two ðp; �Þ; ð ~p; ~�Þ 2 BP generate the same G 2 HV up to a set of measure zero, then p ¼ ~p

for all z 2 D and almost all t 2 ½0;1Þ and � ¼ ~� for almost all ½t;1Þ such that Gð�; tÞ 6� 0.
Hence, there is a one-to-one correspondence among ð’s;tÞ 2 EF, G 2 HV and ðp; �Þ 2 BP. In particular, the relation of

’s;t and ðp; �Þ is described by the ordinary differential equation

_’s;tðzÞ ¼ ð�ðtÞ � ’s;tðzÞÞð1� �ðtÞ’s;tðzÞÞpð’s;tðzÞ; tÞ ð5:5Þ

which incorporates the Loewner–Kufarev ODE ð4:3Þ and the Berkson–Porta representation ð5:2Þ as special cases.

5.3 Generalized Loewner chains

According to the notion of evolution families, Loewner chains are also generalized as follows.

Definition 5.11 ([CDMG10b, Definition 1.2]). A family of holomorphic functions ð ftÞt�0 on the unit disk D is called
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a Loewner chain if;
LC1. ft : D! C is univalent for each t 2 ½0;1Þ;
LC2. fsðDÞ � ftðDÞ for all 0 � s < t <1;
LC3. for any compact set K � D and all T > 0, there exists a non-negative function kK;T : ½0;T
 ! R�0 such that

j fsðzÞ � ftðzÞj �
Z t

s

kK;T ð�Þd�

for all z 2 K and all 0 � s � t � T .
Further, a Loewner chain will be said to be normalized if f0 2 S.

We denote a family of Loewner chains by LC. Remark that in Definition 5.11, any assumption is not required to ftð0Þ
and f 0t ð0Þ. It implies that a subordination property that fsðDrÞ � ftðDrÞ for all r 2 ð0; 1Þ and 0 � s < t <1 does not
hold any longer in general. Further, we even do not know whether the Loewner range

�½ð ftÞ
 :¼
[
t�0

ftðDÞ

is the whole complex plane or not.
The next theorem gives a relation between Loewner chains and evolution families.

Theorem 5.12 ([CDMG10b, Theorem 1.3]). For any ð ftÞ 2 LC, if we define

’s;tðzÞ :¼ ð f�1
t � fsÞðzÞ ðz 2 D; 0 � s � t <1Þ

then ð’s;tÞ 2 EF. Conversely, for any ð’s;tÞ 2 EF, there exists an ð ftÞ 2 LC such that the following equality holds

ð ft � ’s;tÞðzÞ ¼ fsðzÞ ðz 2 D; 0 � s � t <1Þ: ð5:6Þ

Differentiate both sides of ð5:6Þ with respect to t then f 0t ð’s;tÞ � _’s;t þ _f tð’s;tÞ ¼ 0 and therefore combining to ð5:5Þ we
have the following generalized Loewner–Kufarev PDE

_f tðzÞ ¼ ðz� �ðtÞÞð1� �ðtÞzÞ f 0t ðzÞpðz; tÞ: ð5:7Þ

We shall observe ð5:7Þ. Since the term _f tðzÞ gives a velocity vector at the point ftðzÞ, the right-hand side of the
Eq. ð5:7Þ defines a vector field on ftðDÞ. Assume that p is not identically equal to zero. Then _f tðzÞ ¼ 0 if z ¼ �ðtÞ. It
implies that the point ftð�ðtÞÞ plays a role of an ‘‘eye’’ of the flow described by ftðzÞ. Since the Denjoy–Wolff function �
is assumed to be only measurable w.r.t. t, the origin ftð�ðtÞÞ of the vector field moves measurably. This observation
indicates that Loewner chain describes various flows of expanding simply connected domains. The classical radial
Loewner–Kufarev PDE is given as the special case of ð5:7Þ with � � 0.

In general, for a given evolution family ð’s;tÞ, the Eq. ð5:6Þ does not define a unique Loewner chain. That is, there is
no guarantee that L½ð’s;tÞ
, the family of normalized Loewner chains associated with ð’s;tÞ 2 EF, consists of one
function. However, L½ð’s;tÞ
 always includes one special Loewner chain (in [CDMG10b], such a chain is called
standard) and in this sense ( ft) is determined uniquely. Further, it is sometimes the only member of L½ð’s;tÞ
. The
following theorem states such properties of the uniqueness for Loewner chains.

Theorem 5.13 ([CDMG10b, Theorem 1.6 and Theorem 1.7]). Let ð’s;tÞ 2 EF. Then there exists a unique
normalized ð ftÞ 2 LC such that �½ð ftÞ
 is either C or an Euclidean disk in C whose center is the origin. Furthermore;

. The following 4 statements are equivalent;
(i) �½ð ftÞ
 ¼ C;

(ii) L½ð’s;tÞ
 consists of only one function;
(iii) �ðzÞ ¼ 0 for all z 2 D, where

�ðzÞ :¼ lim
t!þ1

j’00;tðzÞj
1� j’0;tðzÞj2

;

(iv) there exists at least one point z0 2 D such that �ðz0Þ ¼ 0.
. On the other hand, if �½ð ftÞ
 6¼ C, then it is written by

�½ð ftÞ
 ¼ w : jwj <
1

�ð0Þ

� �
;

and for the other normalized Loewner chain gt associated with (’s;t), there exists h 2 S such that

gtðzÞ ¼
hð�ð0Þ ftðzÞÞ

�ð0Þ
:

Here we demonstrate how to construct a normalized Loewner chain ð ftÞ 2 LC from a given evolution family
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ð’s;tÞ 2 EF. Firstly, define ð s;tÞ0�s�t<1 by

 s;t :¼ h�1
t � ’s;t � hs;

where ht is a Möbius transformation given by

htðzÞ :¼
bðtÞzþ aðtÞ
1þ aðtÞbðtÞz

; aðtÞ :¼ ’0;tð0Þ; bðtÞ :¼
’00;tð0Þ
j’00;tð0Þj

:

Then ð s;tÞ 2 EF ([CDMG10b, Proposition 2.9]). Further it is easy to see that  s;tð0Þ ¼ 0 and  0s;tð0Þ > 0 for all
0 � s � t <1. By the ( s;t), define ðgsÞs�0 as

gsðzÞ :¼ lim
t!1

 s;tðzÞ
 00;tð0Þ

: ð5:8Þ

Remark that the limit in ð5:8Þ is attained locally uniformly on D. One can show that ðgtÞ 2 LC associated with
ð s;tÞ 2 EF and g0 2 S ([CDMG10b, Theorem 3.3]). Finally, set

ft :¼ gt � h�1
t :

We conclude that ð ftÞt�0 2 LC associated with ð’s;tÞ 2 EF and f0 2 S. In the classical radial case, ð5:8Þ corresponds to
ð4:4Þ.

5.4 Quasiconformal extensions for Loewner chains of radial type

In view of Theorem 4.7, a natural question is proposed that whether the same assumption for p 2 HF that p 2 UðkÞ
deduces quasiconformal extensibility of the corresponding ð ftÞ 2 LC or not. We give a positive answer to this problem
under the special situation that � 2 DW is constant. According to the case that � 2 D or � 2 @D, the corresponding setting
is called the radial case or chordal case. In the classical Loewner theory, the first is the original case introduced by
Löwner, and the second is investigated firstly by Kufarev and his students [KSS68].

We employ the following definition due to [CDMG10a].

Definition 5.14 ([CDMG10a, Definition 1.2]). Let ð’s;tÞ 2 EF. Suppose that all non-identical elements of (’s;t) share
the same point �0 2 D such that ’s;tð�0Þ ¼ �0 and j’0s;tð�0Þj � 1 for all s � 0 and t � s, where ’s;tð�0Þ and ’0s;tð�0Þ are to
be understood as the corresponding angular limit if �0 2 @D. Then ’s;t is said to be a radial evolution family if �0 2 D,
or a chordal evolution family if �0 2 @D.

Then the radial and chordal version of Loewner chains are defined.

Definition 5.15 ([CDMG10a, Definition 1.5]). Let ð ftÞ 2 LC. If ð’s;tÞ0�s�t<1 :¼ ð f�1
t � fsÞ0�s�t<1 is a radial (or

chordal) evolution family, then we call ( ft) a Loewner chain of radial (or chordal) type.

Now we prove the following quasiconformal extension criterion for a Loewner chain of radial type.

Theorem 5.16. Let k 2 ½0; 1Þ be a constant. Suppose that ( ft) is a Loewner chain of radial type for which p 2 HF
associated with ( ft) by ð5:7Þ, satisfies

pðz; tÞ 2 UðkÞ

for all z 2 D and almost all t � 0 and � 2 DW is equal to 0. Then the following assertions hold;
(i) ft admits a continuous extension to D for each t � 0;

(ii) F defined in ð4:6Þ gives a k-quasiconformal extension of f0 to C;
(iii) �½ð ftÞ
 ¼ C.

Proof. With no loss of generality, we may assume ð ftÞ 2 LC is normalized, i.e. f0 2 S. Let � 2 ðc; 1Þ with some constant
c 2 ð0; 1Þ and define f

�
t ðzÞ :¼ ftð�zÞ=�. Then accordingly F� is defined. Since f

�
t ðzÞ satisfies @t f

�
t ðzÞ :¼ z@z f

�
t ðzÞpð�z; tÞ,

f
�
t satisfies all the assumptions of our theorem. Further, f

�
t is well-defined on D for all t � 0.

Take two distinct points z1; z2 2 C. If either z1 or z2 is in D, then it is clear that F�ðz1Þ 6¼ F�ðz2Þ. Suppose z1 :¼
r1e

i�1 ; z2 :¼ r2e
i�2 2 CnD such that F�ðz1Þ ¼ F�ðz2Þ, namely flog r1 ð�ei�1 Þ ¼ flog r2 ð�ei�2 Þ. Denote t1 :¼ log r1 and

t2 :¼ log r2. Since f
�
t ð@DÞ is a Jordan curve, it follows that t1 6¼ t2. By the equality condition of the Schwarz lemma

we have ’t1;t2 ðzÞ :¼ f�1
t2
� ft1ðzÞ ¼ ei�z for some � 2 R. Hence pðD; tÞ lies on the imaginary axis for all t 2 ½t1; t2
 which

contradicts our assumption. We conclude that F� is a homeomorphism on C.
A simple calculation shows that

@�zF�ðzÞ
@zF�ðzÞ

���� ���� ¼ @t f
�
t ðzÞ � z@z f

�
t ðzÞ

@t f
�
t ðzÞ þ z@z f

�
t ðzÞ

���� ���� � k

Hence F� is k-quasiconformal on C. Since the k does not depend on � 2 ðc; 1Þ, ðF�Þ�2ðc;1Þ forms a family of
k-quasiconformal mappings on C and it is normal. Therefore the limit FðzÞ ¼ lim�!1 F�ðzÞ exists which gives a
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k-quasiconformal extension of f0. In particular, ft is defined on @D for all t � 0. It also follows from quasiconformality
of F that FðCÞ ¼ �½ð ftÞ
 ¼ C. �

If ( ft) is a Loewner chain of radial type and ðp; �Þ 2 BP associated with ( ft) where p 2 UðkÞ and � 2 Dnf0g, ( ft)
satisfies _f tðzÞ ¼ ðz� �Þð1� ��zÞ f 0t ðzÞpðz; tÞ for all z 2 D and almost all t � 0. Let M be a Möbius transformation defined
by

MðzÞ :¼
zþ �
1þ ��z

:

Then ðgtÞt�0 :¼ ð ft �MÞt�0 is a family of univalent maps satisfying _gtðzÞ ¼ zg0tðzÞpðMðzÞ; tÞ for all z 2 D and almost all
t � 0. By [CDMG10b, Theorem 4.1], (gt) is a Loewner chain whose Berkson–Porta data is ðp; 0Þ 2 BP. Applying
Theorem 5.16, g0, and hence f0, has a k-quasiconformal extension to C.

5.5 Quasiconformal extensions for Loewner chains of chordal type

A Loewner chain of chordal type (see Definition 5.15) with a quasiconformal extension is discussed by Gumenyuk
and the author [GH17]. In the chordal case, � 2 DW is a boundary fixed point of D. By some rotation we may assume
that � ¼ 1.

It is sometimes convenient to discuss the chordal case on the not D but rather the half-plane. In fact, by means of the
conjugation with a Cayley map KðzÞ ¼ ð1þ zÞ=ð1� zÞ, everything can be transferred from the unit disk to the right
half-plane. For instance, a family ð�s;tÞ0�s�t<1 of holomorphic self-maps of the right half-plane H is an evolution
family if ðK�1 ��s;t � KÞ0�s�t<1 is an evolution family on the unit disk D. Then the generalized chordal Loewner–
Kufarev PDE and ODE are written by

_�s;tð	Þ ¼ pHð�s;tð	Þ; tÞ and _f tð	Þ ¼ � f 0t ð	ÞpHð	; tÞ ð	 2 HÞ; ð5:9Þ

where pHð	; tÞ :¼ 2pðK�1ð	Þ; tÞ stands for the right half-plane version of the Herglotz function. A special case of ð5:9Þ
that pHð	Þ ¼ 1=ð	 þ i�ðtÞÞ has attracted great attention since the work by Schramm [Sch00] was provided, where
� : ½0;1Þ ! R is a measurable function.

The next theorem states the chordal variant of Becker’s theorem.

Theorem 5.17 ([GH17]). Suppose that a family of holomorphic functions ð ftÞt�0 on the right half-plane H is a
Loewner chain of chordal type. If there exists a uniform constant k 2 ½0; 1Þ such that pH, a Herglotz function associated
with ( ft), satisfies

pHð	; tÞ 2 UðkÞ ð5:10Þ

for all 	 2 H and almost all t � 0, then
(i) ft admits a continuous extension to H [ iR;

(ii) ft has a k-quasiconformal extension to C for each t � 0. In this case the extension F is explicitly given by

Fð	Þ :¼
f0ð	Þ; 	 2 H,

f�Re 	ði Im 	Þ; 	 2 CnH;

�
(iii) �½ð ftÞ
 ¼ C.

If � 2 DW is a boundary point on @Dnf1g, then composing a proper rotation we obtain the same result as
Theorem 5.17. In fact, by setting gtðzÞ :¼ ftð ��zÞ we have gtðzÞ ¼ ðz� �Þð1� ��zÞg0ðzÞpð ��z; tÞ. After transferring gt to the
right half-plane, Theorem 5.17 with the same k as ft is applied.
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