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1 Introduction

1.1 Background and overview

Let J be the Jacobian variety of the modular curve X := X0(p) over ℚ of prime level p. In the celebrated
paper [9], Mazur proved that the group of ℚ-rational torsion points J(ℚ)Tor on J is a cyclic group of order(p − 1)/(p − 1, 12). (Here and henceforth we denote by (a, b) the greatest common divisor of a and b.) This
result has been generalized to prime power level by Lorenzini [7] and Ling [6], as well as to square free level
by Ohta [11]. The latter result will be recalled in Theorem 1.2 below.

A research toward a different direction was started in [18]. Let C be the set of all cusps on X, which
we regard as a reduced effective divisor on X. We consider the generalized Jacobian J̃ of X with respect to
modulus C, in the sense of Rosenlicht–Serre [15]. Since C consists of two ℚ-rational points in this case, J̃ is
an extension of J by𝔾m so that we have an exact sequence (cf. (3.2))

1→ {±1} i󳨀→ J̃(ℚ)Tor → J(ℚ)Tor.
In [18], it is shown that i is an isomorphism. It is also proved in loc. cit. that a similar bijectivity result holds
when the level is a power of a prime ≥ 5, conditional to a folklore conjecture “the cupsidal divisor classes
cover all torsion rational points”(cf. [10, Conjecture 2]). On the contrary, it is observed that i is far from being
an isomorphism when the level is a product of two different primes of certain type [18, Proposition 1.3.2].
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The purpose of the present article is twofold. One is to clarify what happens in the case of square free
level. The other is to develop a parallel story for the rank two Drinfeld modular curves, again for square free
level. Our main result, explained in the next subsection, pinpoints where i fails to be an isomorphism (see
Remark 1.4). Our proof relies on the study of classical Jacobians due to Ohta [11] and to Papikian–Wei [14].
We also discuss the action of Hecke operators on J̃(F)Tor and study its Eisenstein property, see Section 1.3.
1.2 Main results

We work in either of the following setting:
(NF) Set F = ℚ and A = ℤ. Let p1, . . . , ps be distinct primes, and put N = p1 ⋅ ⋅ ⋅ ps ∈ A. Let X := X0(N) be the

modular curve with respect to

Γ0(N) = {(a b
c d
) ∈ SL2(A) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 c ≡ 0 mod N}.

(FF) Let 𝔽q be a finite field with q elements. Set F = 𝔽q(t) and A = 𝔽q[t]. Let p1, . . . , ps ∈ A be distinct irre-
ducible monic polynomials, and put N = p1 ⋅ ⋅ ⋅ ps ∈ A. Let X := X0(N) be the rank two Drinfeld modular
curve with respect to

Γ0(N) = {(a b
c d
) ∈ GL2(A) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 c ≡ 0 mod N}.

We regard X as a smooth projective absolutely integral curve over F. Let C ⊂ X be the reduced closed
subscheme consisting of all cusps on X. All points of C are F-rational and |C| = 2s. As before, we denote by J
and J̃ the Jacobian variety of X and the generalized Jacobian of X with modulus C, respectively. Then J̃ is an
extension of J by the product of 2s − 1 copies of𝔾m so that we have an exact sequence (cf. (3.2))

1→ μ⊕(2
s−1)

F
i󳨀→ J̃(F)Tor → J(F)Tor, (1.1)

where μF consists of the roots of unity in F. Our result can be stated easily when s = 1 (that is, N = p1 ∈ A is
a prime element).

Theorem 1.1. If s = 1, then the map i is an isomorphism.

As explained above, the case (NF) has been proved in [18]. Note also that in the case (FF), Pál showed that
J(F)Tor is a cyclic group of order qd/(q2 − 1, qd − 1) with d = deg(p) in [12].

For general s, we need to introduce notations. For j ∈ ℤ≥0, we define𝔼j := {e : {1, . . . , s} → {±1} | |e−1(−1)| ≥ j}, (1.2)

Mj :=⨁
e∈𝔼j
(ℤ/d(e)ℤ), d(e) := s∏

i=1
(|pi| + e(i)). (1.3)

Here |e−1(−1)| denotes the cardinality of {c ∈ {1, . . . , s} | e(c) = −1}, and in the case (FF), we write |pi| :=
qdeg(pi). We set

a = {{{6 in the case (NF),
q(q2 − 1) in the case (FF).

The group of F-rational torsion points on J is studied by Ohta and Papikian–Wei (see Theorem 2.3 below for
more detailed results).

Theorem 1.2 ([11, Theorem (3.6.2)] and [14, Theorem 4.3]). There is an isomorphism

J(F)Tor ⊗ ℤ[1a ] ≅M1 ⊗ ℤ[1a ].
Our main result for general s is the following.
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Theorem 1.3. There is an isomorphism

J̃(F)Tor ⊗ ℤ[1a ] ≅M2 ⊗ ℤ[1a ].
Remark 1.4. Both J and J̃ admit an action of 𝕎 := (ℤ/2ℤ)s through the Atkin–Lehner involutions. We
identify 𝔼0 with the character group of 𝕎. Theorems 1.2 and 1.3 actually describe the decomposition of
M := J(F)Tor ⊗ ℤ[1/a] and M̃ := J̃(F)Tor ⊗ ℤ[1/a] according to characters of𝕎. If we write M̃e and Me for the
e-part of M̃ and M for e ∈ 𝔼0, then they say∙ M̃e = Me = 0 if e = 1𝔼0 ,∙ M̃e = 0 and Me ≅ (ℤ/d(e)ℤ) ⊗ ℤ[1/a] if |e−1(−1)| = 1,∙ M̃e ≅ Me ≅ (ℤ/d(e)ℤ) ⊗ ℤ[1/a] if |e−1(−1)| ≥ 2.
The referee pointed out that, in view of [14, Remark 4.4], M̃e admits an interpretation as the kernel of the
specialization map Me →∏s

i=1 Φpi , where Φpi is the group of components of the reduction of J0(N) at pi.
A direct proof of this statement would possibly lead to a more geometric proof of Theorem 1.3.

Remark 1.5. In Theorems 1.2 and 1.3, it is sometimes possible to describe the 3-part (resp. (q + 1)-part) in
the case (NF) (resp. (FF)), see Theorem 2.3 and Corollary 3.3.

1.3 Eisenstein property

Let 𝕋 be the ℤ-algebra generated by the Hecke correspondences τp on X for all p ∤ N. Then J and J̃ admit𝕋-module structures, and the natural homomorphism J̃ → J is actually 𝕋-equivariant. Let E be the ideal of𝕋 generated by τp − |p| − 1 for all p ∤ N. In the case of (NF), we also use a little smaller ideal E󸀠 generated by
τp − |p| − 1 for all p ∤ 2N. We have the following results in the literature (cf. Lemma 5.1).∙ If s = 1, then J(F)Tor is annihilated by E.∙ In (NF), J(F)Tor is annihilated by E󸀠.∙ In (FF), J(F)Tor ⊗ ℤ[1/q] is annihilated by E.
They played a fundamental role in the works of Mazur [9, Proposition 11.1], Pál [12, Lemma 7.16], Ohta [11,
p. 316] and Papikian–Wei [13, Lemma 7.1]. We now ask an analogous question for J̃(F)Tor. In Section 5, we
will study this problem and prove the following results in Proposition 5.4 (see also Corollary 5.7).

Proposition. (1) If s = 1, then J̃(F)Tor is annihilated by E.
(2) In (NF), J̃(F)Tor is annihilated by E󸀠2.
(3) In (FF), J̃(F)Tor ⊗ ℤ[1/q] is annihilated by E2.
1.4 Organization of the paper

We recall known facts and prove easy lemmas on Jacobian varieties (resp. generalized Jacobians) of (Drinfeld)
modular curves in Section 2 (resp. Section 3). The proofs of Theorems 1.1 and 1.3 are reduced to a key tech-
nical result, Theorem 3.2, whose proof occupies Section 4. We discuss the Hecke action and the Eisenstein
property of J̃(F)Tor in Section 5.
2 Jacobian varieties

2.1 Structure of cusps

We continue to use the notation introduced in Section 1.2. Put A+ = ℤ>0 in the case (NF), and let A+ ⊂ A be
the set of all monic polynomials in the case (FF). Recall that C ⊂ X = X0(N) denotes the set of all cusps, which
admits a standard description

C ≅ Γ0(N) \ ℙ1(F). (2.1)
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For x ∈ ℙ1(F), we denote by [x] ∈ C the point corresponding to the Γ0(N)-orbit of x. We shall constantly use
two bijections 𝕎 := (ℤ/2ℤ)s m󳨀→ {m ∈ A+ : m|N} [(−)−1]󳨀󳨀󳨀󳨀󳨀→ C. (2.2)

Here the first map is given by m(w) = ∏s
i=1 p

w̃i
i for w = (wi)si=1 ∈ 𝕎, where for x ∈ ℤ/2ℤ, we write x̃ = 0 ∈ ℤ

if x = 0 and x̃ = 1 ∈ ℤ if x = 1. Note that m becomes an isomorphism of groups if we equip a group structure
on {m ∈ A+ : m|N} by m ∗ m󸀠 = mm󸀠/(m,m󸀠)2. The second map is given by sending m to [1/m]. We shall
abbreviate [w] := [1/m(w)] for w ∈ 𝕎.

We identify 𝔼 := {±1}s with 𝔼0 from (1.2). Let⟨ , ⟩ : 𝔼 ×𝕎 → {±1}
be the following canonical biadditive pairing:⟨e, w⟩ = s∏

i=1
ewi
i ∈ {±1} for e = (ei)si=1 ∈ 𝔼, w = (wi)si=1 ∈ 𝕎.

Given e = (ei)si=1 ∈ 𝔼, we define
De := ∑

w∈𝕎
⟨e, w⟩[w] ∈ Div(X). (2.3)

The degree of De is zero if e ̸= 1𝔼 and 2s if e = 1𝔼.
2.2 Atkin–Lehner involution

For each m ∈ A+ with m|N, we let Wm : X → X be the Atkin–Lehner involution associated to m (cf. [11,
equation (1.1.5)] in the case (NF) and [14, Definition 2.11] in the case (FF)). To ease the notation, we write
Ww = Wm(w) for w ∈ 𝕎. Recall thatWm restricts to an F-automorphism of C.

Lemma 2.1. (1) For w, w󸀠 ∈ 𝕎 and e ∈ 𝔼 \ {1𝔼}, we have
Ww([w󸀠]) = [w + w󸀠], Ww(De) = ⟨e, w⟩De .

(2) Let us define subgroups of Div(X) by
D1 := ⨁

e∈𝔼\{1𝔼}
ℤDe ⊂ D2 := D ∩ Div0(X) ⊂ D := ⨁

w∈𝕎
ℤ[w],

which are all stable under the action of𝕎. Then the index [D2 : D1] is given by 2(2s−1−1)s.
Proof. The first statement of (1) follows from the definition (cf. loc. cit.), and the second follows from [14,
Proposition 4.2]. To show (2), we consider a commutative diagram with exact rows

0 // D1 //
� _

α

��

⨁
e∈𝔼
ℤDe //

� _
β

��

ℤD1𝔼 //� _

γ

��

0

0 // D2 // D aug
// ℤ // 0,

where α and β are the inclusions, aug is the augmentation, and γ is induced by aug ∘β. Since γ is injective and
its cokernel is cyclic of order 2s, we are reduced to showing |Coker(β)| = 22s−1s. Define a matrix As ∈ M2s (ℤ)
by As := (⟨e, w⟩)e∈𝔼,w∈𝕎 so that we have |Coker(β)| = |det As|. Then we have As = ( As−1 As−1

As−1 −As−1
) for any s ≥ 1.

Now the claim follows by induction.

Remark 2.2. The composition of canonical homomorphisms

D2 󳨅→ ℤ[w] 󴀀󴀤 D3 := D/⟨ ∑
w∈𝕎
[w]⟩
ℤ

(2.4)
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is injective and its cokernel is of order 2s. Hence, we have

D1 ⊗ ℤ[12] = D2 ⊗ ℤ[12] = D3 ⊗ ℤ[12].
For aℤ[𝕎]-module M and e ∈ 𝔼, we write

Me = {x ∈ M | wx = ⟨e, w⟩x for all w ∈ 𝕎}. (2.5)

Then, for anyℤ[1/2]-module B and i = 1, 2, 3, we have
Di ⊗ B ≅ ⨁

e∈𝔼\{1}
(Di ⊗ B)e

and, moreover, (D1 ⊗ B)e = (D2 ⊗ B)e = (D3 ⊗ B)e = De ⊗ B. (2.6)

2.3 Jacobian variety

Let J be the Jacobian variety of X. We define C to be the cuspidal divisor subgroup, i.e.,

C := Im(D2 → J(F)) ⊂ J(F) (2.7)

whereD2 is from Lemma 2.1. It is known that C is contained in J(F)Tor by [3, 8]. Since J(F)Tor is finite, we can
decompose

J(F)Tor =⨁
ℓ

J(F){ℓ}, C =⨁
ℓ

C{ℓ},
where ℓ runs throughall primes and {ℓ}denotes the ℓ-primary torsionpart. If ℓ ̸= 2,wemay further decompose
(see (2.5))

J(F){ℓ} ≅⨁
e∈𝔼

J(F){ℓ}e , C{ℓ} ≅⨁
e∈𝔼

C{ℓ}e .
Suppose either that we are in the case (NF) and (3, N) = 1, or that we are in the case (FF). We define

eH ∈ 𝔼 by
eH := {{{(( p13 ), . . . , ( ps3 )) in (NF), (3, N) = 1,((−1)deg p1 , . . . , (−1)deg ps ) in (FF).

(2.8)

Note that, for e ∈ 𝔼, we have (3, d(e)) = 3 if and only if e ̸= eH in the case (NF) (see (1.3) for the definition
of d(e)). In the case (FF), we have (q + 1, d(e)) = q + 1 for any e ̸= eH , and (q + 1, d(eH)) is a power of two
[14, Remark 3.6]. We also put

k := {{{12 in (NF),
q2 − 1 in (FF),

b := {{{3 in (NF),
q + 1 in (FF).

(2.9)

In the case (FF), we write |a| = qdeg a for a ∈ A \ {0}.
Theorem 2.3. (1) ([9, Theorem 1] and [12, Theorems 1.2, 1.4]) Suppose s = 1. Then we have C = J(F)Tor and

it is a cyclic group of order (|N| − 1)/(k, |N| − 1).
(2) ([11, Theorem (3.6.2)] and [14, Theorem4.3]) Let ℓ be an odd prime. In (NF) and ℓ = 3,we further assume(N, 3) = 1. If we are in (FF), assume (ℓ, q(q − 1)) = 1. Then, for any e ∈ 𝔼, we have C{ℓ}e = J(F){ℓ}e and it

is a cyclic group whose order is the ℓ-part of{{{{{{{
1 if e = 1𝔼,
d(e) if e = eH ̸= 1𝔼,
d(e)/b if e ̸= 1𝔼, eH .

It is generated by the class of De unless e = 1𝔼.
Note that we do not need e±H appearing in [11], because we assume ℓ ̸= 2 and (3, N) = 1 if ℓ = 3.
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3 Generalized Jacobian

3.1 An exact sequence

Let J̃ be the generalized Jacobian variety of X with modulus C (see (2.1) for C). Here we quickly recall some
basic results from [15] and [18, Section 2], with which the readers may consult for details. We have (almost
by definition)

J̃(F) = Div0(X \ C)/{div(f ) | f ∈ F(X)×, f ≡ 1 mod C}. (3.1)

Here by f ≡ 1 mod C, we mean ordx(f − 1) > 0 for all x ∈ C. It follows that there is an exact sequence
0→ D3 ⊗ (F×)Tor → J̃(F)Tor → J(F)Tor δ󳨀→ D3 ⊗ F× ⊗ ℚ/ℤ, (3.2)

whereD3 is from (2.4). Allmaps in this sequence are compatiblewith the action of Atkin–Lehner involutions.
In particular, we can decompose the map δ, up to 2-primary torsion, into the direct sum of

δeℓ : J(F){ℓ}e → De ⊗ F× ⊗ ℚℓ/ℤℓ,
where ℓ and e ranges over all odd primes and elements of 𝔼, respectively, see (2.6).
3.2 Connecting map

We recall a description of the map δ. Let D2 and D3 be groups defined in Lemma 2.1 and Remark 2.2,
respectively. We shall identifyD3 ⊗ F× ⊗ ℚ/ℤ with the quotient of⨁

w∈𝕎
ℤ[w] ⊗ F× ⊗ ℚ/ℤ

by ⟨∑w∈𝕎[w]⟩ℤ ⊗ F× ⊗ ℚ/ℤ.
Lemma 3.1 ([18, Lemma 2.3.1]). Suppose that the class [D] ∈ J(F) of D = ∑w∈𝕎 aw[w] ∈ D2 is killed by
m ∈ ℤ>0 so that there is an f ∈ F(X)× such that div(f ) = mD. Then δ([D]) is givenby the image inD3⊗F×⊗ℚ/ℤ
of ∑

w∈𝕎
[w] ⊗ f

tmaw
[w]
([w]) ⊗ 1

m
∈ ⨁

w∈𝕎
ℤ[w] ⊗ F× ⊗ ℚ/ℤ, (3.3)

where t[w] is a uniformizer at [w] ∈ C. (Note that the image of (3.3) in D3 ⊗ F× ⊗ ℚ/ℤ depends only on[D] ∈ J(F) and is independent of the choices of m, f and t[w].)
3.3 Main result

For i = 1, . . . , s, define e(i) = (e(i)j )j ∈ 𝔼 by
e(i)j = {{{−1 if i = j,

1 otherwise.
(3.4)

We now arrive at our main result (see (2.9) and (1.3) for the definitions of k and d(e)).
Theorem 3.2. Let e ∈ 𝔼 \ {1𝔼}. The order of δ([De]) is given by{{{d(e(i))/(d(e(i)), 2s−1k) if e = e(i) for some i,

1 otherwise.
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The proof of this theorem is given in the next section. Combined with Theorem 2.3, it implies Theorems 1.1
and 1.3. For the latter, we can also deduce the following supplementary results. We define

M󸀠2 :=⨁
e
(ℤ/(d(e)/b)ℤ).

where e ranges over 𝔼 \ {1𝔼, eH , e(1), . . . , e(s)} (see (2.9) and (2.8) for b and eH).
Corollary 3.3. If we are in the case (NF), we assume (3, N) = 1 and put ℓ = 3. If we are in the case (FF), we
assume ℓ is an odd prime divisor of q + 1. Then there is an isomorphism

J̃(F){ℓ} ≅M󸀠2 ⊗ ℤ(ℓ).
Proof. Using the remarks after (2.8) and ordℓ(k) = ordℓ(b), this follows by comparing Theorem 2.3 with The-
orem 3.2.

4 Proof of Theorem 3.2

4.1 Discriminant functions

Let F∞ be the completion of F with respect to the absolute value | ⋅ | on F (which means ℚ∞ = ℝ and𝔽q(t)∞ = 𝔽q((t−1))). Let ℂ∞ be the completion of a chosen algebraic closure of F∞. Let

H := {{{{z ∈ ℂ∞ | Im(z) > 0} in the case (NF),ℂ∞ − F∞ in the case (FF).

Let ∆(z) be the modular discriminant function [17, Example 3.4.3] (resp. Drinfeld discriminant function [3,
equation (1.2)]) on H, which satisfies

∆(az + bcz + d ) = (cz + d)k ⋅ ∆(z) for all (a b
c d
) ∈ G,

where k is from (2.9) and G = SL2(A) (resp. G = GL2(A)) in the case (NF) (resp. (FF)). Given e = (ei)si=1 ∈ 𝔼,
we define

∆e(z) := ∏
w∈𝕎

∆(m(w)z)⟨e,w⟩. (4.1)

For w ∈ 𝕎 and e ∈ 𝔼 \ {1𝔼}, we define
c(e, w) = {{{p−2s−1ki if e = e(i) and wi = 1,

1 otherwise,
(4.2)

where k is from (2.9) and e(i) is from (3.4).

Lemma 4.1. Given w ∈ 𝕎 and e ∈ 𝔼 \ {1𝔼}, we have
∆e(Wwz) = c(e, w)∆e(z)⟨e,w⟩. (4.3)

Proof. From the transformation law of ∆, it is straightforward that

∆e(Wwz) = ∆e(z)⟨e,w⟩ ⋅ ∏
w󸀠∈𝕎

(m(w󸀠),m(w))−⟨e,w󸀠⟩⋅k .

For i = 1, . . . , s, one has (see the sentence after (2.2) for the notation ̃)
ordpi( ∏

w󸀠∈𝕎

(m(w󸀠),m(w))⟨e,w󸀠⟩) = w̃i ⋅ ∑
w󸀠∈𝕎
w󸀠
i=1

⟨e, w󸀠⟩ = {{{2s−1 if e = e(i) and wi = 1,
0 otherwise,

proving the lemma.
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Lemma 4.2. Let e ∈ 𝔼 \ {1𝔼}.
(1) The function ∆e(z) from (4.1) is a rational function on X defined over F.
(2) We have div(∆e) = d(e)De (see (1.3) and (2.3)).

Proof. (1) The transformation law of ∆ implies that ∆e lies in ℂ∞(X). Note that the “q-expansion of ∆ at∞”
has F-rational coefficients (cf. [2] in the case (FF)). Regardingℂ∞(X) as a subfield ofℂ∞((q)), the result follows
from the fact that F(X) = ℂ∞(X) ∩ F((q)).

(2) Let w∞ := (−1, . . . , −1) ∈ 𝕎. Then [w∞] = [1/N] ∈ C, corresponding to the “cusp at∞”. Considering
the q-expansion of ∆, it is observed that

ord[w∞](∆e) = d(e) ⋅ ⟨e, w∞⟩ = d(e) ⋅ ord[w∞] De .

Thus, the result follows from Lemma 2.1 (1) and Lemma 4.1.

4.2 Evaluation of the connecting map

Theorem 3.2 immediately follows from the following result.

Proposition 4.3. Let e ∈ 𝔼 \ {1𝔼}. If e = e(i) for some i = 1, . . . , s (see (3.4)), then we have
δ(De(i) ) = ∑

w∈𝕎
wi=0

[w] ⊗ pi ⊗ −2s−1kd(e(i)) = De(i) ⊗ pi ⊗ −2s−2kd(e(i)) inD3 ⊗ F× ⊗ ℚ/ℤ.
Otherwise, we have δ(De) = 0.
Proof. The second equality follows from

De(i) = ∑
w∈𝕎
wi=0

[w] − ∑
w∈𝕎
wi=1

[w] = 2 ∑
w∈𝕎
wi=0

[w] − ∑
w∈𝕎
[w] in ⨁

w∈𝕎
ℤ[w].

To show the first equality, by Lemma 3.1, it suffices to take suitable uniformizers t[w] ∈ F(X) forw ∈ 𝕎 so that
∆e

t⟨e,w⟩⋅d(e)[w]

([w]) = c(e, w̄) for all e ∈ 𝔼 \ {1𝔼}, w ∈ 𝕎, (4.4)

where c(e, w̄) is from (4.2) and we put w̄ := w∞ − w(= w∞ + w) ∈ 𝕎, with w∞ := (1, . . . , 1) ∈ 𝕎. We first
take t[w∞] ∈ F(X)× to be any uniformizer at w∞ which has 1 as the leading term of its q-expansion. (For
instance, we may take the pull-back of the reciprocal of the j-function X0(1) ≅󳨀→ ℙ1 along the morphism
π : X = X0(N) → X0(1) given by forgetting the level structure.) Then we have( ∆e

t⟨e,w∞⟩⋅d(e)
[w∞]

)([w∞]) = 1
for any e ∈ 𝔼 \ {1𝔼}. For general w ∈ 𝕎, let

t[w] := t[w∞] ∘Ww̄ ∈ F(X).
Then we have ( (∆e)⟨e,w̄⟩

t⟨e,w⟩⋅d(e)[w∞]

)([w∞]) = ( ∆e

t⟨e,w∞⟩⋅d(e)
[w∞]

)⟨e,w̄⟩([w∞]) = 1.
Therefore, for any e ∈ 𝔼 \ {1𝔼} and w ∈ 𝕎, applying (4.3), we obtain( ∆e

t⟨e,w⟩⋅d(e)[w]

)([w]) = ( ∆e ∘Ww̄

t⟨e,w⟩⋅d(e)[w∞]

)([w∞])
= c(e, w̄) ⋅ ( (∆e)⟨e,w̄⟩

t⟨e,w⟩⋅d(e)[w∞]

)([w∞])= c(e, w̄),
and (4.4) holds.
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4.3 Generators of C ∩ ker δ
For i = 1, . . . , s, we have

2s−1 ⋅ ([1] − [1/pi]) = ∑
e∈𝔼
ei=−1

De .

Let d(𝔼, i) := ∏e∈𝔼,ei=−1 d(e). Then
d(𝔼, i)2s−1 ⋅ ([1] − [1/pi]) = div( ∏

e∈𝔼
ei=−1

(∆e) d(𝔼,i)d(e) ) in Div0(X).
Thus, (3.3) and (4.4) imply

δ([1] − [1/pi]) = ∑
w∈𝕎
wi=0

[w] ⊗ p−2s−1k⋅ d(𝔼,i)d(e(i))
i ⊗ 1

2s−1d(𝔼, i)= ∑
w∈𝕎
wi=0

[w] ⊗ pi ⊗ −kd(e(i))= De(i) ⊗ pi ⊗ −k2d(e(i)) inD3 ⊗ F× ⊗ ℚ/ℤ, (4.5)

which is of order d(e(i))/(d(e(i)), k). In particular, for m | (N/pi), we get
δ([1/m] − [1/(mpi)]) = δ(Wm([1] − [1/pi]))= Wm(De(i) ) ⊗ pi ⊗ −k2d(e(i))= De(i) ⊗ pi ⊗ −k2d(e(i)) = δ([1] − [1/pi]). (4.6)

Observe that {[1/m] − [1/(mpi)] : i = 1, . . . , s and m | (N/p1 ⋅ ⋅ ⋅ pi)}
is aℤ-basis ofD2. Therefore, equalities (4.5) and (4.6) lead us to following result.

Corollary 4.4. For i = 1, . . . , s and m | (N/pi), we have
δ([1] − [1/pi] − [1/m] + [1/(mpi)]) = 0.

Moreover, the intersection of C ∩ ker δ is generated by{[1] − [1/pi] − [1/m] + [1/(mpi)] : i = 1, . . . , s and m | (N/p1 ⋅ ⋅ ⋅ pi)}
and { d(e(i))(d(e(i)), k) ⋅ ([1] − [1/pi]) : i = 1, . . . , s}.
5 Eisenstein property

5.1 Jacobian variety

Let𝕋 be the polynomial ringℤ[τp : p ∤ N] generated by variables τp for all prime elements p ∈ A+ such that
p ∤ N. Let E be the ideal generated by τp − |p| − 1 for all p ∤ N, which is called the Eisenstein ideal. We say
that a𝕋-module is Eisenstein if it is annihilated by E. In the case (NF), we define E󸀠 to be the ideal generated
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by τp − p − 1 for all p ∤ 2N, and we say a 𝕋-module is Eisenstein away from 2 if it is annihilated by E󸀠. When
N is even, this is the same as saying Eisenstein.

Given p ∤ N, theHecke correspondence on X associated to p induces an endomorphism Tp of J.We obtain
aℤ-algebra homomorphism𝕋 → End(J) sending τp to Tp. Thenwemay ask if J(F)Tor is Eisenstein.We collect
known results in the literature.

Lemma 5.1. (1) In (NF), J(F)Tor is Eisenstein away from 2, and J(F)Tor ⊗ ℤ[1/2] is Eisenstein.
(2) In the case (FF), J(F)Tor ⊗ ℤ[1/q] is Eisenstein.
(3) In general, C is Eisenstein (see (2.7)). Consequently, J(F)Tor is Eisenstein if s = 1, by Theorem 2.3 (1).

Proof. (1) is shown in the proof of [11, Theorem 3.6.2, p. 316]. For the completeness sake, we sketch its
proof. If ℓ is an odd prime (resp. ℓ = 2), then the reduction map J(F) → J/𝔽ℓ (𝔽ℓ) restricted to J(F)Tor (resp.
J(F)Tor ⊗ ℤ[1/2]) is injective by [4, Appendix] (resp. [16, Chapter IV, Proposition 3.1 (b)]), where J/𝔽ℓ is the
reduction of J over 𝔽ℓ. On the other hand, the Eichler–Shimura congruence relation shows that the Hecke
correspondence Tℓ acts on J/𝔽ℓ (𝔽ℓ) by the multiplication by ℓ + 1, whence the statement.

(2) is shown in [13, Lemma 7.1].
(3) is well known, and it also follows from Proposition 5.6 (3) below.

5.2 Generalized Jacobian

We can play a similar game for J̃. Given p ∤ N, the Hecke correspondence on X associated to p again induces
an endomorphism T̃p of J̃ as follows. Let f, g : X0(pN) → X0(N) = X be the maps that send a pair (E, Q) of an
elliptic curve (or a Drinfeld module) E and its pN-torsion subgroup (submodule) Q to the pair (E, Q[N]) and(E/Q[p], Q/Q[p]), respectively. (We write Q[N] for the N-torsion subgroup (submodule) of Q, and similarly
for Q[p].) Over ℂ∞, they are induced by the identity map and the multiplication by p on ℙ1(ℂ∞) ⊔ ℙ1(F),
passing through the quotients by Γ0(N) and Γ0(pN). Recall that C is the set of all cusps on X = X0(N). Let
C󸀠 be the set of all cusps on X0(pN) and J̃󸀠 the generalized Jacobian of X0(pN) with modulus C󸀠. Since we
have f−1(C) = g−1(C) = C󸀠, there are the pull-back map f∗ : J̃ → J̃󸀠 and the push-forward map g∗ : J̃󸀠 → J̃. The
action of the Hecke correspondence is given by

T̃p := g∗ ∘ f∗ : J̃ → J̃.

We omit the proof of the following lemma, which is well known (and it is seen in the same way as J).

Lemma 5.2. We have T̃p1 T̃p2 = T̃p2 T̃p1 for any p1, p2 ∤ N.
Hence, we obtain aℤ-algebra homomorphism𝕋 → End(J̃) sending τp to T̃p, and the canonical map J̃ → J is𝕋-equivariant. Then wemay ask if J̃(F)Tor is Eisenstein. We provide a partial answer to this problem. The first
result is the following.

Lemma 5.3. (1) In (NF), J̃(F)Tor ⊗ ℤ[1/2] is Eisenstein.
(2) In (FF), J̃(F)Tor ⊗ ℤ[1/q(q − 1)] is Eisenstein.
Proof. TheHecke algebra𝕋 acts onDiv(X) as algebraic correspondences,which induces𝕋-module structures
on the subgroupD2 ⊂ Div(X) from Lemma 2.1 (2), and, in turn, on the quotientD3 ofD2 from (2.4). Under
the identification μ⊕(2

s−1)
F = D3 ⊗ μF, themaps in the exact sequence (1.1) are𝕋-equivariant. Now the lemma

immediately follows from Lemma 5.1.

We say a 𝕋-module has Eisenstein exponent two (resp. Eisenstein exponent two away from 2 in the case (NF))
if it is annihilated by E2 (resp. E󸀠2). As before, the two notions are identical when N is even.

Proposition 5.4. (1) If s = 1, then J̃(F)Tor is Eisenstein.
(2) In (NF), J̃(F)Tor has Eisenstein exponent two away from 2.
(3) In (FF), J̃(F)Tor ⊗ ℤ[1/q] has Eisenstein exponent two.
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Proof. In general, if 0→ M󸀠 → M → M󸀠󸀠 is an exact sequence of 𝕋-modules and if M󸀠,M󸀠󸀠 are Eisenstein
(away from 2), then M has Eisenstein exponent two (away from 2). Hence, by Lemma 5.1, the proposition
is reduced to the following lemma that shows μ⊕(2

s−1)
F = D3 ⊗ μF is Eisenstein in (1.1), where D3 is from

(2.4).

Lemma 5.5. The groupD3 is Eisenstein.

We will prove this lemma as a part of Proposition 5.6 (3) below (although it can also be shown directly). To
state the result, we need some preparation. We define

L := ⨁
w∈𝕎

F(X)×[w]/U(1)[w], U(1)[w] := {f ∈ F(X)×[w] | ord[w](f − 1) > 0},
L0 := ker(d : L → ℤ), d((fw)w) = ∑

w
ord[w](fw),

where F(X)[w] is the completion of F(X) at [w] ∈ X and ord[w] : F(X)×[w] → ℤ is the normalized discrete valua-
tion. By definition, we have an exact sequence (see Lemma 2.1 (2) forD andD2)

0→ D ⊗ F× → L0 → D2 → 0.

Using the approximation lemma, (3.1) can be rewritten as

J̃(F) = ker[(deg, d) : Div(X \ C) ⊕ L → ℤ]{(divX\C(f ), ∆(f )) | f ∈ F(X)×} ,

where ∆ : F(X)× → L is induced by the diagonal embedding (see [18, Section 2.2] for more details). We define
C̃ ⊂ J̃(F) to be the image of the composition of the canonical maps L0 󳨅→ L → J̃(F). This is related to the
cuspidal divisor class C from (2.7) by an exact sequence

0→ D3 ⊗ F× → C̃→ C→ 0.

Proposition 5.6. (1) In (NF), C̃ is Eisensetein away from 2 and has Eisenstein exponent two. It is Eisenstein
if s = 1 (or if N is even).

(2) In (FF), C̃ is Eisensetein.
(3) In any case,D2,D3 and C are Eisentein.

We obtain the following because C = J(F)Tor implies J̃(F)Tor ⊂ C̃.
Corollary 5.7. Suppose C = J(F)Tor.
(1) In (NF), J̃(F)Tor is Eisensetein away from 2 and has Eisenstein exponent two.
(2) In (FF), J̃(F)Tor is Eisensetein.
It remains to prove Proposition 5.6. Take p ∤ N. We use the notations introduced in the beginning of Sec-
tion 5.2. For any w ∈ 𝕎, we define two cusps [w]󸀠, [w∗]󸀠 ∈ C󸀠 on X󸀠 = X0(pN) to be the Γ0(pN)-orbits of
1/m(w)and1/(pm(w)) ∈ ℙ1(F), respectively (see (2.2) form(w)).Wehave f−1([w]) = g−1([w]) = {[w]󸀠, [w∗]󸀠}.
The action of τp on L is induced by the direct sum of

ϕw :
F(X)×[w]
U(1)[w]

f∗󳨀󳨀→ F(X󸀠)×[w]󸀠
U(1)[w]󸀠

⊕ F(X󸀠)×[w∗]󸀠

U(1)[w∗]󸀠

g∗󳨀󳨀→ F(X)×[w]
U(1)[w]

over all w ∈ 𝕎. We remark that both of f and g are of degree |p| + 1 and their ramification indexes are given
by ef ([w]󸀠) = |p|, ef ([w∗]󸀠) = 1 and eg([w]󸀠) = 1, eg([w∗]󸀠) = |p|. The following is the key step in the proof of
Proposition 5.6.

Lemma 5.8. For any α ∈ F(X)×[w], we have
ϕw(α mod U(1)[w]) = (−1)(|p|+1) ord[w](α)α(|p|+1) mod U(1)[w]. (5.1)

In particular, we have

ord[w](ϕw(α mod U(1)[w])) = (|p| + 1) ord[w](α mod U(1)[w]).
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Proof. Note first that F(X)×[w]/U(1)[w] is generated by the classes of non-zero constants F× and a single element
α ∈ F(X)× such that ord[w](α) = ±1, and hence it suffices to verify (5.1) for such elements. We consider the
map

Φw : F(X)× f∗󳨀󳨀→ F(X󸀠)× g∗󳨀󳨀→ F(X)×,
which induces ϕw in view of

F(X󸀠)[w]󸀠 × F(X󸀠)[w∗]󸀠 = F(X󸀠) ⊗F(X) F(X)[w].
Since f and g are of degree |p| + 1, one has Φw(α) = α|p|+1 for a constant α ∈ F×, showing (5.1) in this case.

As for the other type of generators, we first consider the case w = w∞ = (−1, . . . , −1) (i.e., [w] = [∞]).
Let us consider the diagram

X = X(N)
π
��

X󸀠 = X0(pN)g
oo

π󸀠

��

f
// X = X0(N)

π
��

X0(1) X0(p)
g󸀠

oo

f 󸀠
// X0(1),

where f 󸀠 and g󸀠 are defined similarly as above, and π and π󸀠 are given by forgetting level structures (like f ).We
may take α := π∗(j) as the pull-back of the j-function X0(1) ≅󳨀→ ℙ1 so that ord[w∞](α) = −1. Since the squares
in the above diagram are Cartesian, we have

Φw∞ (α) = g∗f∗π∗(j) = g∗π󸀠∗f 󸀠∗(j) = π∗g󸀠∗f 󸀠∗(j).
Therefore, (5.1) is reduced to the case N = 1, which we now assume. LetW󸀠p : X󸀠 = X0(p) → X󸀠 be the Atkin–
Lehner involution with respect to p so that we have g = f ∘W󸀠p, and therefore Φw∞ (j) = g∗f∗(j) is given
by the norm of j󸀠 := W󸀠p(f∗(j)) ∈ F(X󸀠)× with respect to the field extension F(X󸀠)/F(X) = F(j) along f . Let
Fp(X, Y) ∈ A[X, Y] be the modular polynomial attached to p so that we have Fp(f∗(j), j󸀠) = 0 and Fp(f∗(j), Y)
is an irreducible, monic and of degree |p| + 1 in ℂ∞(f∗(j))[Y]. (cf. [5, Chapter 5, Section 2, Theorem 3] and
[1, Theorem 2.4]). Therefore, we have

Φw∞ (j) = (−1)|p|+1Fp(j, 0) ≡ (−1)|p|+1j|p|+1 mod U(1)[w∞]
.

This proves (5.1) in this case.
Finally, let us go back to a general N and consider other w ∈ 𝕎. Then we may take α := Ww(j). Using the

Atkin–Lehner involutionW󸀠w : X󸀠 → X󸀠 acting on X󸀠, we have the commutative diagram

X

Ww

��

X󸀠
g

oo
f
//

W󸀠
w
��

X

Ww

��

X X󸀠
g

oo
f
// X.

Hence, (5.1) follows from the case w = w∞ above.

Proof of Proposition 5.6. The above lemma shows everything except the second statement of (1), which we
now prove. Hence, we suppose that we are in the case (NF) and s = 1, p = 2. Then any element of L0 is rep-
resented by (α, β) ∈ F(X)×[0] ⊕ F(X)×[∞] such that ord[0](α) = − ord[∞](β) =: a. By the lemma, we see that T̃2
sends it to the class of ((−1)aα3, (−1)aβ3), but the image of (−1, −1) in C̃ is trivial because it is in the image of
the diagonal map. This completes the proof.

Remark 5.9. In the case (NF), we actually obtain that J̃(F)Tor is never Eisenstein when N is odd and s > 2. To
prove this, let c ∈ C be the divisor class represented by[1] − [1/p1] − [p1/N] + [1/N] ∈ D2.
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By Corollary 4.4, we have δ(c) = 0. From the exact sequence (3.2), there exists c̃ ∈ J̃(F)Tor whose image in
J̃(F)Tor is c. We shall show that c̃ is not annihilated by T̃2 − 3. Take ξ ∈ L0 so that the surjective map L0 󴀀󴀤 D2
sends ξ to [1] − [1/p1] − [p1/N] + [1/N]. Here we identify𝕎with {m ∈ A+ : m|N} as in (2.2). Let c̃󸀠 ∈ C̃ ⊂ J̃(F)
be the image of ξ under the map L0 󴀀󴀤 C̃. Then the canonical map from J̃(F) to J(F) also sends c̃󸀠 to c. From
the exact sequence

1→ D3 ⊗ F× → J̃(F) → J(F) → 0,

we may identify c̃ − c̃󸀠 with an element in D3 ⊗ F×, which is Eisenstein. However, Lemma 5.8 indicates that
c̃󸀠 cannot be killed by T̃2 − 3 when s > 2. (The action of T̃2 on the components [1], [1/p1], [p1/N], [1/N] is
given by x 󳨃→ −x3, while on other components like [1/p2] it is given by x 󳨃→ x3.) Therefore, neither is c̃.

Remark 5.10. Let 𝕋J̃ (resp. EJ̃) be the image of 𝕋 (resp. E) in End(J̃). Then the Eisenstein property of
D3 ⊗ 𝔾m ⊂ J̃ implies that 𝕋/E ≅ 𝕋J̃/EJ̃ ≅ ℤ,
unless N = 1 (in which case we have J̃ = J = 0). Let 𝕋J (resp. EJ) be the image of 𝕋 (resp. E) in End(J). It is
known that 𝕋J/EJ is always finite. This is a remarkable difference between 𝕋J̃ and 𝕋J .
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