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ABSTRACT 

Oxygen reduction reaction (ORR) properties are investigated for the Pt/Zr/Pt(111) surfaces 

prepared through arc-plasma-depositions of Zr and Pt on Pt(111) substrate. The synthesized 

Pt(111)-shell surfaces on Pt-Zr(111) alloy layers exhibited 3 to 5-fold higher ORR activities than 

the clean Pt(111): the ligand effect is deduced for the enhanced activities through charge-transfers 

between the surface Pt and Zr atoms, though tensile strains relieved by the stacking faults worked 
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on the Pt(111)-shells. Furthermore, the alloy surfaces are durable against an electrochemical 

potential cycling. The results demonstrate that Zr should be considered for alloying elements of Pt 

for developments of effective ORR catalysts. 

 

INTRODUCTION 

Proton-exchange membrane fuel cells (PEMFCs) are vital energy-conversion devices in a 

hydrogen-fueled society.1 A number of papers for the Pt and Pt-based alloys have been published 

subjected to synthesize highly-active electrode materials to promote the rather slow kinetics of the 

electrochemical oxygen reduction reaction (ORR).2-4 The near-surface nano-structures of Pt-based 

alloy nano-particles with a Pt-shell and a noble or noble-less metal-element core are one of the 

keys for developing superior cathode catalysts for PEMFCs.5 The fore-mentioned studies clearly 

exhibit that strain (geometric) and ligand (electronic) effects on the Pt shells, which are essential 

for enhancing the mass-activity of Pt.6-7 In other words, the ORR activity enhancement depends 

on the atomic arrangements of the topmost surface of the Pt shells, and on the alloy compositions 

of the underlying alloy cores.8 Because the compressively strained Pt-shell is known to be a key 

factor for the activity enhancements, exploring of alloying core-metals are focused on smaller 

atomic radius of group 9 to 11 late transition metals, e.g., Ni, Co, Pd, Ir, Cu, etc, relative to Pt9 . 

Indeed, Čolić et al. summarized the published ORR activity trends of various Pt-based alloys as a 

function of atomic radius of alloying metals,10 in which the highest ORR activities of the Pt-Cu 

and Pt-Y showed “double volcano” and the activities of the alloys for early transition metals, e.g. 

Ti, Hf, Zr etc. were much lower. On the other hand, the group 4 early transition metal elements 

such as Zr are corrosion-resistant in the operating environments of PEMFCs (e.g., pH = 1)11 and, 
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thereby, alloying element of Ze should improve the durability of the alloy catalyst. However, to 

date, the ORR performances of Pt–Zr alloys have been rarely studied12. Larger atomic radii of such 

the early transition metals generally induce a not compressive- but tensile-strain of the surface Pt-

shell layers. As a result, correlations of the tensile-strain-induced Pt shells and the ORR 

performances (activity and durability) remained to be investigated experimentally. 

By engineering the strain on well-defined Pt-based single-crystal alloy surfaces, we can discuss 

the ORR activity and durability enhancement mechanisms of catalysts synthesized with precisely-

controlled nano-architectures.13-14 Previously, we published the electrochemical properties of arc-

plasma deposited (APD) Pt-based alloy model catalysts, and related their ORR activities to their 

nano-structures.15-17 In this study, we synthesize hetero-layered Pt and Zr nano-structures on 

surface-cleaned Pt(111) substrate as a model of PEMFC cathode catalysts. The Pt and Zr were 

alternately deposited by the APD method in ultra-high vacuum (UHV; ~10−8 Pa). The ORR 

activities of the synthesized Pt(111)-shell layers with tensile strains (less than 0.8 %) on the face 

centered cubic (fcc) Pt–Zr(111) alloy layers were 3- to 5-fold higher than those of clean Pt(111). 

Furthermore, the resulting Pt(111)-shell surfaces were electrochemically stable under potential 

cycling of 0.6 and 1.0 V vs RHE. The results demonstrate that alongside the Group 9–11 late 

transition metal elements (such as Ni, Co, and Pd), alloy systems of Pt and early transition metals, 

e.g.,  Zr are potentially suitable materials for cathode electrodes. 

 

EXPERIMENTAL 

The experimental apparatus used in this study is described elsewhere.13, 15-16 The Pt(111) (< 0.1° 

miscut) crystal surface was cleaned by repeated Ar+ sputtering and annealing at 1153 K under 

UHV conditions. The Zr and Pt layers were alternately deposited onto the clean Pt(111) substrate 
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by two APD sources (ULVAC-RIKO ARL-300), also under UHV conditions. The deposition 

sequences and conditions are summarized in Figure S2 and Table S1 of the Supporting Information 

(SI). The total thicknesses of the Pt, first-layer Zr, and fourth-layer Pt (shell) were fixed at 6.0 nm, 

0.4 nm, and 1.6 nm, respectively, and the combined thickness of the second-layer Pt and third-

layer Zr (beneath the shell) was 4.0 nm. The thickness of the third-layer Zr was varied as 0.4, 0.8, 

1.6, and 3.2 nm, and the resulting Pt/Zr/Pt(111) alloy surfaces were denoted as U_Zr0.4nm, 

U_Zr0.8nm, U_Zr1.6nm, and U_Zr3.2nm, respectively. The surface nano-structures of the APD-

synthesized Pt/Zr/Pt(111) surfaces were investigated by in-plane XRD (Rigaku, Smart Lab) in air, 

and by cross-sectional high-angle annular dark-field scanning transmission electron microscopy 

(HAADF-STEM) combined with energy-dispersive X-ray spectrometry (EDS) (JEOL, JEM-

ARM200F). For the electrochemical measurements, the Pt/Zr/Pt(111) surfaces were transferred to 

a N2-purged glove-box (1 atm) in a transfer vessel18 to avoid possible surface oxidation. The cyclic 

voltammograms (CV; scan rate = 50 mV s−1 without disk rotation) and linear sweep 

voltammograms (LSV; scan rate = 10 mV s−1) were recorded in N2-purged and O2-saturated 0.1M 

HClO4 (Ultrapure, Kanto Chemical) in the glove-box. All potentials described have been presented 

with respect to RHE. 
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Figure 1. in-plane XRD patterns of the Pt/Zr/Pt(111) surfaces in the region of (220) of the Pt(111) 

substrate (67.52°). The X-ray incident angle is 0.1°. 

 

RESULTS AND DISCUSSIONS 

The in-plane XRD patterns of the Pt/Zr/Pt(111) surfaces were obtained under Cu Kα radiation 

(λ = 0.1542 nm) at 2θχ angles ranging from 62° to 72°. The results are presented in Figure 1. The 

detection layout of the diffracted X-rays, and a zoom-in of the XRD patterns in the 65–69° range, 

are schematized in Figure S3 of SI. Because the in-plane XRD patterns provide the distances of 

the lattice planes oriented normal to the Pt(111) substrate, the lattice distance in the (220) 

diffraction plane of the Pt(111) substrate should provide the surface strain of the Pt(111) shells on 

the substrate. The in-plane XRD peaks of Pt(220) clearly shifted to lower diffraction angles with 

increasing deposition thickness of the third-layer Zr. The surface strains (Pt(111)-shell (%)) in the 
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Pt(111) shells were estimated from the difference between the lattice parameter d in the <220> 

direction of the surface Pt(111) shell and the d of the substrate Pt(111): 

𝜖௉௧(ଵଵଵ)ି௦௛௘௟  (%) =
𝑑௉௧(ଵଵଵ)ି௦௛௘௟ −  𝑑௉௧(ଵଵଵ)௦௨௕௦௧௥௔௧௘

 𝑑௉௧(ଵଵଵ)௦௨௕௦௧௥௔௧௘
× 100 (1) 

where dPt(111)-shell and dPt(111)substrate were estimated from the measured diffraction angles of Pt(220) 

under the Bragg condition 2dsinq = n. 

Table 1 lists the estimated Pt(111)-shell (%) of the synthesized Pt/Zr/Pt(111) surfaces. The 

alternate depositions of Zr and Pt on the Pt(111) substrate induced tensile strains in the Pt(111)-

shell lattices, probably because the atomic radius of Zr is approximately 15 % larger than that of 

Pt. One might notice that the estimated strains are smaller than the compressive strains in APD-

synthesized Pt/Co/Pt(111) (up to 3.2% vs. Pt(111)).13 The XPS spectra of the as-synthesized, 

pristine U_Zr3.2nm (Figure S7 in SI) showed the deconvoluted Pt4f7/2 band centered at 71.35 eV 

that ascribable to the metallic state of Pt (Pt0). The binding energy of Pt0 band was positively 

shifted by ca. 0.15 eV from the clean Pt(111), suggesting that electronic charge transfer between 

Pt and Zr. 

 

 

Table 1. Tensile strains on the Pt(111)-shell surfaces, estimated from the in-plane XRD results 

 
U_Zr0.4nm U_Zr0.8nm U_Zr1.6nm U_Zr3.2nm 

εPt(111)-shell (%) <+0.04 +0.05 +0.20 +0.75 
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Figure 2 shows the cross-sectional HAADF-STEM images of U_Zr3.2nm collected from the 

<110> direction (the (110) cross-section). The regions enclosed within the white squares of the 

left-hand image are magnified in the corresponding panels on the right. Typical EDS line profiles 

of the Pt (black) and Zr (orange) in U_Zr3.2nm are also shown. Judging from the broad Z-contrast 

at approximately 2 nm from the top surface of U_Zr3.2nm, the atomic near-surface structure was 

composed not of abrupt alternating layers of Pt and Zr (super lattice), but of Pt–Zr surface alloys. 

Furthermore, in both samples, the stacking sequence of the (111) planes was A, B, C, revealing an 

fcc-dominated lattice structure. From the Pt–Zr phase diagram (Figure S1 in SI), the solid-solution 

limit of Zr and Pt (which also has an fcc structure) was estimated as ca. 20 at%, and the substrate 

temperature of APD (873 K; see SI) was too low to generate intermetallic alloy compounds such 

as ZrPt3, ZrPt, and Zr5Pt3. Indeed, the Zr composition in the 2 nm-thick regions under the Pt(111)-

shell was estimated to be 17 at%, which is lower than the solid-solution limit (Figure S4 in SI). 

Furthermore, in the EDS line profiles of Pt and Zr in Fig. 2, the Pt signal increased from the 

topmost surface and the Zr signal becomes obvious at ca. 0.5–5.0 nm from the top surface. These 

results are consistent with the formation of a ca. 0.5 nm-thick Pt(111) shell on the ca. 4 nm-thick 

Pt–Zr(111) surface alloy with an fcc structure, confirming that such a structure can be synthesized 

by the APD sequence. Several stacking faults are visible in the STEM images. For example, in 

region (i) of Fig. 2, the (111) stacking sequence changes from A, B, C to C, B, A at ca. 10 stacking 

layers from the top-surface, forming a twin boundary (vertical dashed line). Furthermore, as shown 

in the magnified image of region (iii), twin boundaries were generated at 7 and 10 stacking layers 

from the top-surface, accompanying the coherent A, B, C stacking in region (ii). As mentioned 

above, the estimated tensile strains in the Pt(111)-shells were smaller than the compressive strains 

in the Pt(111)-shells coherently grown on Pt-Co(111) alloy layers.13 The stacking faults shown in 
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Figure 2 are known to relieve the elastic strain in epitaxial systems,19 so the rather small tensile 

strains on the Pt/Zr/Pt(111) surfaces (less than 1% that of clean Pt(111)) can be explained by the 

generated stacking faults (twinning). 
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Figure 2. (a) Cross-sectional STEM image of U_Zr3.2nm. The right-side panels are 

magnifications of the corresponding regions enclosed in the white squares ((i)–(iii)) at the left 
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Typical EDS line profiles of Pt (black) and Zr (orange) are shown on the central-left image. (b) 

Atomic model of the twin boundary in the (110) cross-section. 

 

The CV curves of the Pt/Zr/Pt(111) surfaces are presented in Figure 3. For a reference, a CV of 

the clean Pt(111) (dashed line) is also depicted in each CVs.  The hydrogen adsorption charge (QH) 

decreased at lower shifts of the onset potentials of hydrogen adsorption (negative potential scan), 

consistent with previous reports on well-defined Pt(111)-shell surfaces with high ORR activity.20-

21 Furthermore, the QH and the onset potential shifts on the compressively-strained Pt/Co/Pt(111) 

surfaces decreased with increasing thickness of the underlying Co deposition.13  In contrast, the 

afore-mentioned Pt/Zr/Pt(111) surfaces were insensitive to thickness of the underlying Zr 

deposition. The positive shifts of the onset potentials are attributable to change in adsorption 

behaviors of hydroxyl-related (OH) species (ca. 0.6 V; positive potential scan), while the so-called 

butterfly peak (appearing at 0.8 V in clean Pt(111)) shifted only slightly (Figure S5 in SI). The 

CVs in Figure 3 clearly showed that the electrochemical properties of the Pt(111)-shell surfaces 

were effectively modified by charge transfers between Pt-shells and the underlying Zr (Pt-Zr) 

atoms. 
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Figure 3. CV curves of the Pt/Zr/Pt(111) surfaces recorded in N2-purged 0.1 M HClO4. 
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The LSV curves of Pt/Zr/Pt(111) in the O2-saturated 0.1 M HClO4 and their corresponding Tafel 

plots are summarized in Figure S6 of the SI. The half-wave potentials in each LSV curve were 

positively shifted relative to clean Pt(111), indicating the enhanced ORR activity of Pt/Zr/Pt(111). 

The ORR activity was judged from the limited current density (jk) at 0.9 V, estimated by the 

Koutecky–Levich equation. Figure 4 shows the initial activity enhancement factors and the 

corresponding tensile strains of the Pt/Zr/Pt(111) surfaces (estimated from the in-plane XRD 

patterns), as functions of deposition thicknesses of the third-layer Zr. The enhancement factors for 

the Pt/Zr/Pt(111) surfaces are 3 – 5 times higher than the clean Pt(111): ca. 0.05 % tensile-strained 

U_Zr0.8nm exhibits a maximum enhancement factor of 5.  In compressive-strained Pt(111)-shell 

surfaces, the ORR vs. strain curve exhibits a volcano-type trend, with the maximum activity 

observed in ca. 2% compressively strained surface.13, 22 In contrast, correlation between estimated 

ORR activities and tensile strains were indistinct for the Pt/Zr/Pt(111) surfaces. 
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Figure 4. ORR activity enhancement factors (bottom) and tensile strains vs. deposition thickness 

of the third-layer Zr (underlying Pt-shell). 

 

The  ORR activity enhancement of the Pt-based alloys can be explained by decrease in 

adsorption energy for the oxygen-related species and/or d-band center shifts of Pt by the alloying.23 

The Pt-shell surfaces might be electronically modified by charge transfers between Pt and the 

adjacent alloying elements M (the ligand effect).24 Also, compressive strains worked on the 

Pt(111)-shells lead to decrease in the adsorption energy of the oxygen-related species (strain 

effect).25-26 To our knowledge, tensile strains on the surfaces of the Pt(111) shells are negative for 

ORR activity enhancement27. The ORR enhancement mechanism (ligand or strain effect) can be 
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distinguished by the locations of the M atoms. In the former ligand effect, the M atoms are required 

to site neighboring of the top-surface Pt atoms. In this study, the deposition thickness of the fourth-

layer Pt (shell) was fixed at 1.6 nm, and the actual Pt(111)-shell thickness was estimated as ca. 0.5 

nm from the EDS line profiles of U_Zr3.2nm (Figure 2). Actually, the STEM-EDS analysis 

showed that Zr composition in the Pt-Zr alloy layers under the Pt(111)-shell can be estimated to 

be 17 at% (Figure S4 in SI) shows, suggesting the Zr atoms adjacent to the Pt-shell should be 

present. Therefore, we deduce from the fore-mentioned discussions that the charge-transfer 

between surface Pt and neighbouring Zr atoms dominantly contribute to the ORR activity 

enhancements for the synthesized Pt/Zr/Pt(111) surfaces, though in-plane tensile strains relieved 

by the stacking faults worked on the surface Pt(111) lattices. 

Figure 5 shows the ORR activity trends of the Pt/Zr/Pt(111) surfaces under potential cycles 

(PCs) of 0.6 and 1.0 V vs. RHE (inset) in oxygen-saturated 0.1 M HClO4. The ORR was 

substantially deactivated for all the surfaces in the earliest PCs (fewer than 100 PCs), particularly 

for U_Zr0.8nm and U_Zr1.6nm. The results suggest that the Zr atoms located at very near surface 

region could be passivated to ZrOx even at earliest PCs. As a result, the ligand effect for ORR 

enhancement of the Pt(111)-shell that induced by the adjacent Zr atoms seems to be  lowered. At 

any rate, although passivation of the surface Zr atoms by the PCs should determine deactivation 

behaviors, initial Pt/Zr alloy compositions at near surface regions cannot be determined at present 

and, thus, no further discussions have been made in this study. After the 100 PCs, the sample 

surfaces were stabilized by the surface ZrOx and, then, the U_Zr1.6nm sustained its ~3-fold 

activity (relative to pristine clean Pt(111)) even after 5000 PCs. Moreover, the Zr 3d XPS band of 

pristine U_Zr3.2nm remained nearly unchanged after 5000 PCs (Figure S7 in SI), suggesting that 

the passivated Zr in the near-surface regions remained stable during the PCs. Previously, we 
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investigated the structural stabilities of various well-defined Pt–M(111) surfaces (M = Ni, Co, Pd, 

and others) under the same potential cycling protocol.28-30 As a comparative example, the XPS 

band intensities of Ni 2p on the bimetallic surfaces of 4 monolayer-thick Pt(111)/PtxNi100-x(111) 

(x = 75, 50, 25) increased after 1000 PCs for x = 75 and 50, and decreased for x = 25.21 Such 

changes in the Ni band intensity were attributed to the dynamic behaviors of the Ni alloying 

element (i.e., inter-diffusions of Ni atoms in the surface regions). As the PCs continued, the 

dissolved Ni atoms altered the Pt-shell structures. Although the mechanism of durability 

enhancement needs clarifying by atomically-resolved surface observations, the results confirm the 

durability of the Pt–Zr alloy surfaces under the PEMFC operating conditions. 
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Figure 5. ORR activity trends of the Pt–Zr(111) surfaces under potential cycles of 0.6 and 1.0 V 

vs. RHE (inset) in oxygen-saturated 0.1 M HClO4. 
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SUMMARY 

In summary, we synthesized the Pt/Zr/Pt(111) surfaces that comprised of the Pt(111)-shells on 

Pt-Zr(111) alloy layers by alternative APDs of Zr and Pt on the clean Pt(111) in UHV. Judging 

from the in-plane XRD diffraction peaks of Pt(220), small tensile strains (less than 0.8% on 

average) acted on the Pt(111)-shell surfaces, while local microstructures, such as stacking faults 

in fcc(111), were generated in the Pt(111) shells, around the interface region of the shells, and in 

the underlying Pt–Zr(111) alloy layers. The synthesized Pt(111) shell surfaces achieved a 3–5 fold 

higher ORR activity than Pt(111) and high durability against PCs. The results demonstrate that Zr, 

a group 4 early transition metal, should be considered as for the alloying element of Pt to develop 

high-performance cathode catalysts of the PEMFCs. 
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