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Abstract—Various support systems have been developed to
support elderly people, and the demand for indoor support sys-
tem has increased. It is important to support not only walking
but also to support sit-to-stand and stand-to-sit motions. We
develop a support system for indoor use that depends on the
user’s state such as sitting or standing. Although it is useful
for assistive devices to be able to select how to support users
based on sensor data, it is difficult to utilize many expensive
and sophisticated sensors for accurate estimation of the user’s
state. In this study, we propose an estimation method of the
user’s state utilizing a few inexpensive and simple sensors.
Firstly, we propose the method to calculate the CoG candidates
using a human link model. The CoG candidates are then used
to develop a state estimation method for sit-to-stand motion;
this motion consists of three contiguous states: sitting, rising,
and standing. A Support Vector Machine (SVM) is used to
estimate the user state and the methods were experimentally
validated using the developed assistive robot. The experimental
results show that the estimations are correct except in the
vicinities of state transitions. The average state transition time
errors are 0.175 s and 0.145 s for sit-to-rise and rise-to-stand,
respectively. Since sit-to-stand motion is contiguous, the user’s
state is ambiguous and can be both states at the boundaries.
Therefore, the accuracy of the state estimation is reasonable.

I. INTRODUCTION
Due to population aging, the demand for assistive indoor

support systems has increased and various systems have been
developed. It is important to support not only walking but
also sit-to-stand and stand-to-sit motions. Although many
people need simpler support systems such as canes, walkers,
and handrails, more advanced systems using robot technol-
ogy could offer better support and prevent falling accidents.
There are several types of assistive robots, such as lift

type [1], [2], cane type [3] or walker type [4]. Cane type
systems are useful for indoors environment owing to their
size, but they can’t sustain the user’s weight during sit-to-
stand motion. Lift type support systems can make up for a
user’s lack of strength and keep the user’s posture during sit-
to-stand motion [1]. Since this motion is important, systems
which can not only support but also analyze the motion
have been developed [2]. However, since these assistive
robots are focused on sit-to-stand motion, they can’t support
walking. By contrast, although walker type support systems
are steadier than canes and can support walking, they are
a little larger. Some researchers are developing walker type
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support systems which can support both walking and sit-to-
stand and stand-to-sit motions [5], [6]. Walker type support
systems which have an armrest can sustain the user’s state
with a larger area than push cart types.
It is important to provide appropriate support depending on

the situation, and real-time user’s state estimation is needed.
However, it is difficult to obtain the user’s precise state. Thus
several types of user information have studied extensively.
There has been interest on ground reaction forces to make

wearable sensors such as shoe-type [7]. Such sensors can be
used anywhere unlike force plates. Moreover, accelerometers
have been added to wearable sensors, followed by combining
the data [7], [8].
Muscle information such as muscle potential is also used

to analyze human motion [9]. Some researchers also study
vision based estimation [10], [11].
The center of gravity (CoG) is also useful. Wearable

accelerometers are frequently used to measure or estimate
the CoG. For example, inertial measurement units (IMUs)
are set on the human body where influence the acceleration
of CoG [12], [13], [14]. Human link models are also used to
estimate human motion. We can calculate the CoG position
from the link positions of the model. Some researchers use
position sensors or distance sensors such as motion capture
systems, laser range finders (LRFs) or position sensitive
detector sensors to measure the information of the links [5],
[15]. IMUs or force sensors are also used to obtain the link
parameters [14], [16].
These methods need many sophisticated sensors, or sen-

sors which must be set on users. Therefore, it’s difficult
for such systems to be implemented in general households
or institutions. Thus, we aim to use a few simple sensors
for estimating users’ state. The objective of this study is
the development of a robot with a few sensors which can
support not only walking, but also sit-to-stand and stand-
to-sit motion; we also propose a support system based on
the user’s state estimation using the robot. Firstly, for state
estimation, we focused on the CoG. Since it is physically
meaningful about the human body, it can be implemented to
various systems. Since human posture directly influences the
CoG, it can be used to estimate the user’s state and it could
be used for detection of anomalies and intents.
In [17], we proposed a method to calculate candidates of

CoG and the appropriate combination of sensors to reduce
the range of CoG candidates which was obtained from the
experimental results. It is expected that the user’s state can
be estimated by using narrow CoG candidates. In [18], we



developed the armrest type assistive robot. Supporting both
hands and elbows is effective during especially sit-to-stand
motion in the context of safety. The user’s sit-to-stand motion
can be assisted by moving the armrest when the user leans
to the armrest. If we can estimate whether the user is only
sitting or the user intends to stand, we can start to move the
armrest at the timing of start standing.
In this study, we set the sensors to the developed robot

based on the knowledge of sensor arrangement, which is
obtained from [17]. Then, we propose a new calculation
method of CoG candidates, which requires less sensors than
[17]. The user’s feet are considered not to move largely
during the sit-to-stand motion. Thus, by using the range of
the ankle joint position, some groups of the CoG candidates
can be calculated per frame. We also propose a method
to estimate the user’s state using the CoG candidates. We
focus on sit-to-stand motion, and consider that the motion
is consist of three contiguous states: sitting, rising, and
standing. A Support Vector Machine (SVM) is used for the
state estimation. Finally, we validate the proposed method
by experiments using the assistive robot.

II. DEVELOPMENT OF THE SUPPORT SYSTEM
The sensor arrangement, which we adopted from the

results of [17] is discussed in section II-A. The previous cal-
culation method of the CoG candidates of [17] is explained
in section II-B. The developed assistive robot is explained in
section II-C.

A. Sensor Arrangement of Developed Assistive Robot for
Estimating User State
Firstly, we consider the human link model as shown in

Fig. 1, same as [17]. We can calculate the CoG position by
positions and mass ratios of the links [19], [20] as shown in
Fig. 2. If we start to use an assistive robot, we can measure
the user’s height or limbs length before using. Therefore, we
assume that the lengths of human link model are known.
Some parameters remain unknown when we use lesser

sensors than required to calculate the model and the CoG
position becomes underspecified. Using the unknown pa-
rameters’ ranges, we can calculate the candidates of CoG
position. By properly selecting and placing sensors, we can
make the CoG candidates’ range narrow enough for state
estimation.
In [17], various patterns of measurement sets as shown in

Fig. 3 were proposed, and the calculation method was vali-
dated. Sensors that are generally used on assistive machines
are selected. Black lines of Fig. 3 represent the human link
model. Black squares represent the links’ angles which are
measurable by using sensors. Black points are the measured
points’ positions such as joints. These positions are defined
as relative positions to the assistive robot as shown as
the coordinate system in Fig. 1. The coordinate system is
attached to the back of the robot. The sets of a number
and an alphabet are the names of measurements sets. The
numbers denote the quantities of the unknown parameters
of the measurements sets. For example, measurements set
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Fig. 1. Human Link Model and Assistive Robot with Coordinate Frame
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Fig. 2. Human Link Model and
the CoG (Center of Gravity)
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Fig. 3. Measurements Sets

1a needs one more parameter to calculate the human link
model and the accurate CoG position.
The experiments were conducted to validate the CoG

candidates calculation method in [17]. The maximum errors
of the CoG candidates relative to the actual CoG were
discussed. When the user is standing or close to standing
phase, the maximum errors of 1a, 1c, and 2b are about 100
mm, which are considerably small. On the other hand, in the
case of 1b, 2a, and 2c, the maximum errors are 200 - 300
mm, which seems large. These results suggest that the body
link position is especially important. In the case of 1a, the
maximum errors are also about 100 mm when the user is
rising. And the maximum errors are smaller than 200 mm
except when the user is fully sitting. These CoG candidates
errors are small enough to consider the movement of the CoG
position since the CoG path is longer than the errors. The
experimental results show that the CoG candidates’ range is
especially narrow for measurements set 1a. It is expected that
the narrow CoG candidates are better for state estimation.
The measurements set 1a consists of:

• Positions of wrists: touch sensors of grippers
• Positions of elbows: touch sensors of armrests
• Positions of ankles: distance sensors
• A Position of one point of body link: a distance sensor

B. Fundamental CoG Candidates Calculation Method

In this section, we will discuss the CoG candidates cal-
culation method, which was proposed in [17]. When using
the measurements sets 1a, positions of wrist, elbow, ankle
joint, and one point of body link can be measured. Thus, the



(a) All Candidates of
Shoulder Joint

(b) Corresponding Hip
Joint Candidate

(c) Corresponding Knee
Joint Candidate

(d) Corresponding CoG
Candidate

(e) All CoG Candidates of
Whole Human Body

Fig. 4. Calculation of CoG Candidates (1a) [17]

forearm and foot links positions can be identified however,
the others cannot be identified.
Since the upper arm link’s length is known, the candidates

of the shoulder joint can be calculated by considering the
elbow joint’s rotation range, as shown in Fig. 4(a). The
shoulder joint candidates are calculated discretely. Focusing
on one shoulder joint candidate, the corresponding candidate
of hip joint can be calculated as shown in Fig. 4(b). Black
dash lines are the focused candidates of links. From the
rotation ranges of hip, knee, and ankle, the corresponding
knee joint candidate can be determined uniquely, as shown
in Fig. 4(c). One set of candidates of all links and joints
positions is calculated from the above-mentioned procedure.
Thus, the corresponding CoG candidate can be calculate as
shown in Fig. 4(d). All candidates of the CoG position can
be calculated by repeating the procedure above as shown in
Fig. 4(e).

C. Developed Assistive Robot

We developed an assistive robot in [18]. The robot is
shown in Fig. 5. The robot was designed based on the general
activities of daily living such as sit-to-stand motion. The
specifications of the robot are shown in TABLE I. The robot
is designed to be able to pass a typical toilet door of general
households in Japan. Supporting sit-to-stand and stand-to-
sit motion is important especially for indoor support. In
the context of safety, supporting not only hands but also
elbows is effective during walking, and especially sit-to-stand
motion. Therefore, the developed robot is armrest type, and
the armrest can move up-and-down by a linear actuator. It can
support the user’s sit-to-stand motion by moving the armrest
when the user leans on the armrest. This armrest can lift
a weight of 40 kg, and it’s enough to assist elderly people
to stand. From the simulation results of joints’ load, it is
designed to be able to lift 75% of the user’s upper body
weight. The armrest can move lowest to highest about 4 s.
It is suitable for elderly people to standing, and the speed of
the linear actuator is adjustable for each person. The way of

Fig. 5. Developed Assistive Robot (Left: Lowest Armrest, Right: Highest
Armrest)

TABLE I
SPECIFICATIONS OF DEVELOPED ASSISTIVE ROBOT

Value Unit
Height 77 - 103 cm

Armrest Height 71 - 97 cm
Length 50 cm

Width of Armrest 46 cm
Width of Robot Body 54 cm
Armrest Moving Time 4 s
Armrest Weight Capacity 40 kg

TABLE II
SPECIFICATIONS OF DISTANCE SENSOR

Value Unit
Measuring Distance Range 4 - 50 cm

Response Time 40 ms
Price <10 US$

support is designed on the basis of the analyses of physical
therapists’ sit-to-stand assist motions.
The measurements sets named 1a, 1b, and 2a can be used

for the developed assistive robot since the robot is armrest
type. From the results of [17], the measurements set 1a is
adopted because the CoG candidates range is narrow. It is
expected that the narrow CoG candidates are better for state
estimation.
It is known whether the user’s wrists and elbows are on

the grippers and armrests, respectively, because the robot
has touch sensors on these parts. The height of armrest can
determine from the displacement of the linear actuator. The
wrist and elbow positions are defined as the center of each
joint. The positions are determined by using the height of
armrest and the thickness of the forearm link.
We set a GP2Y0E03 distance sensor made by SHARP

CORPORATION on the back of the armrest. The specifi-
cations of the sensor are shown in TABLE II. The armrest
moves during sit-to-stand motion, and the sensor can measure
the distance between the body link and armrest. The position
is determined by using the thickness of the body link as same
as the wrist and elbow joints. Thus, using only a few simple
sensors, all required data of measurements set 1a, except for
the ankle joints positions, was obtained. The ankle positions



can be measured if we use expensive sensors such as LRFs.
However, it is too expensive and difficult to use in general
households. We now propose a new calculation method of
the CoG candidates that does not need ankles positions.

III. THE COG CANDIDATES CALCULATION AND STATE
ESTIMATION

The new method to calculate the CoG candidates without
using ankles positions is presented here, along with the state
estimation method using the CoG candidates.
Firstly, we propose the new CoG candidates calculation

method using a small number of sensors in section III-A. The
range of the ankle position is used to calculate the groups of
CoG candidates. We validate the method by the experiment
in section III-B.
In section III-C, we propose a method to estimate the

user’s state using the CoG candidates. We consider that
the sit-to-stand motion consists of three contiguous states;
sitting, rising, and standing. If sitting and rising states can
be discerned, the height of the armrest can be controlled. The
robot should not move during sitting and rising for safety.
However, when the user intends to walk, it should be able
to move. We can control these if we can estimate the states
of the sit-to-stand motion.

A. CoG Candidates Calculation Method Using the Ranges
of Ankles Positions
When people undergo sit-to-stand motion, the ankle posi-

tions don’t change since their feet sustain their whole body
weight. When using the developed robot, the users’ arms
sustain some weight because of the armrest. However, most
of whole body weight is also sustained by their feet.
We set the ranges of ankle positions as 0−350 mm from

the assistive robot. The range is set by considering the
relative position of a user and the assistive robot, size of
the assistive robot, and parameters of the human link model.
Feet don’t move from the ground during sit-to-stand motion,
so the z-coordinate of ankle joint doesn’t change during the
motion. We set the origin on the ground just below the edge
of the assistive robot as shown in Fig. 1, and the ankle range
is represented as y = 0−350 mm. We consider eight groups
of ankle candidates as y = 0, −50, −100, −150, −200,
−250, −300, and −350 mm. Then we can calculate users’
data which is represented in Fig. 6 by using the assumption
and the sensors noted above. Black points are the measured
points’ positions. Black lines mean that the positions of the
links are determined uniquely. Grey dash lines and circles
are the candidate positions of links and joints, respectively.
Only three representative foot links are shown in Fig. 6 due
to the visibility.
We can calculate eight groups of CoG candidates per

frame from the data represented in Fig. 6 by using measure-
ments set 1a. Firstly, we focus on one ankle joint candidate
and then consider the range of elbow joint. The candidates
of the shoulder joint can be calculated as shown in Fig. 7(a)
since the length of the upper arm link is known. Black
dash lines and joints are the focused ones of the candidate

Fig. 6. Users’ Data Which Can Be Calculated by Using the Developed
Assistive Robot (Black Points: Position Measured Points, Black Lines:
Position Determined Links, and Grey Dash Circles: Candidate Positions
of Joints, Grey Dash Lines: Representative Candidate Links)

(a) All Candidates of
Shoulder Joint

(b) Corresponding Hip
Joint Candidate

(c) Corresponding Knee
Joint Candidate

(d) CoG Candidates
Corresponding to the
Focused Candidates Set

(e) All CoG Candidates
Corresponding to the

Focused Ankle Candidate

(f) All Groups of CoG
Candidates Corresponding
to the Ankle Candidates

Fig. 7. Calculation Procedure of CoG Candidates

links and joints, respectively. Since the body link’s length is
also known, the position of each hip joint candidate which
corresponds to shoulder joint candidate. We focus on one
candidate set of shoulder and hip joint as shown Fig. 7(b).
The corresponding knee joint candidate is calculated as
shown in Fig. 7(c). Candidate positions of all links can
be calculated from the positions of joints, links, and their
candidates. Thus we can calculate the corresponding CoG
candidate position as shown in Fig. 7(d). By repeating this
procedure, all the candidates of CoG position corresponding
to the ankle candidate can be calculated as shown in Fig. 7(e).
Therefore, we can calculate eight groups of CoG candidates
by repeating the procedure above for all ankle candidates, as
shown in Fig. 7(f).

B. Validation Experiments of the Proposed CoG Candidates
Calculation Method
We conducted an experiment to validate the proposed

CoG candidates calculation method. Firstly, the participant
is sitting on a chair with his forearms on the armrest of the
robot. When the participant finishes leaning his body, the
armrest moves up from lowest to highest. The participant
raises his body according to the rise of the armrest. Finally
the participant stands. The robot doesn’t move except for
the armrest during the sit-to-stand motion for safety. We
measured the user’s sit-to-stand motion by using a motion



capture system. The actual CoG position can be calculated
by adding the value of the unknown parameters of the
measurement set from the motion capture data. The CoG
candidate can be compared with the actual CoG. We used
six Kestrel Digital Cameras and two Osprey Digital Cameras,
made by Motional Analysis Corporation. We used dedicated
software, Cortex, for data processing.
The calculation results of CoG candidates are shown in

Fig. 8 - Fig. 10. In Fig. 8, the calculated eight groups of
CoG candidates are represented as pink points. And the
black lines represent the human link model measured by
using the motion capture system. The black rhombus point
is the actual CoG. Fig. 9 shows enlarged views of the CoG
candidates. Each group of CoG candidates are drawn with
different color in Fig. 9. Pink, cyan, green, red, brown, grey,
blue, and orange points represent the CoG candidates which
are calculated by assuming that the position of the ankle
joints are 0, −50, −100, −150, −200, −250, −300, −350
mm, respectively. Enlarged views of the parts of the CoG
candidates are shown in Fig. 10. Large circles, triangles, and
squares are the representative candidates in the cases of 0,
−200, and −350 mm, respectively. They are calculated by
using larger intervals of discrete values of the elbow joint’s
rotation angle.
As shown in Fig. 8 - Fig. 10, the CoG candidates are

calculated; their accuracies are also similar to the previous
work. We confirmed that the method is effective for the
calculation of CoG candidates when the positions of the
ankles are unknown; this is largely unchanged from the case
using the ankle positions.

C. State Estimation Method
It is important to use the CoG candidates for state estima-

tion since they have physical significance. For example, we
can estimate whether the user is likely to fall by the location
of the projected point of the CoG against the base of support;
this is likely to be implemented in various systems.
We focus on sit-to-stand motion, and consider that the

motion consists of three contiguous states; sitting, rising,
and standing. The users of the assistive robot basically
conduct the sit-to-stand motion in the same way as described
in section III-B. When the user is only sitting or leaning on
the robot and the armrest is lowest, the user is sitting. When
the armrest of the assistive robot is moving upward, the user
is rising. When the armrest is highest and user is leaning or
straight, the user is standing.
SVM is adopted to estimate the user’s state since it allows

us to set features manually. It can be trained for each user
since the training time is not so long. We set geometric
features of the CoG candidates as the features of SVM, which
are,

• Average value of y-coordinate of the CoG candidates
• Average value of z-coordinate of the CoG candidates
• Value of integral of the group of the CoG candidates
• Maximum value of y-coordinate of the CoG candidates
• Maximum value of z-coordinate of the CoG candidates
• Minimum value of y-coordinate of the CoG candidates
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• Minimum value of z-coordinate of the CoG candidates
as shown in Fig. 11. The values of integral are calculated by
considering pixels as shown in Fig. 12. The size of one pixel
is 5×5 mm2. The absolute value of the integral means little
since the group of CoG candidates draw a curve line with no
thickness. However, the relative value of the integral which
is calculated using same definition is effective for comparing
the size of each group of the CoG candidates. Therefore, the
integral value of the CoG candidates group can be used for
state estimation as one of the features of SVM. The position
and the form of the group of the CoG candidates can be
figured out from the features described above. Normalized
values of features are inputted to SVM. The RBF kernel
is used for SVM. We confirmed that the all features are
significant on the classification.
As we described in section III-A, eight groups of CoG

candidates can be calculated per frame. Thus, eight estimated
states were obtained per frame. If the all estimates are the
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Fig. 13. Sit-to-Stand Motion (Participant B)

same in a frame, the estimate of the frame is the same.
However, if estimates are different in a frame, the majority
is adopted. If more than one state is dominant, we adopt one
which is same as the previous frame.

IV. STATE ESTIMATION EXPERIMENTS USING SIMPLE
SENSORS WHICH ARE SET ON THE ASSISTIVE MACHINE

We conducted the experiments to validate the method
which we described in section III. Twenty participants con-
ducted sit-to-stand motions using the developed assistive
robot 11 times such as shown in Fig. 13. They conducted
the same sit-to-stand motion as described in section III-B.
Firstly, the participants sat on a chair and put their hands
and elbows on the grippers and armrests of the assistive
robot. Then they conducted the sit-to-stand motion using the
robot. The participants are both genders, 21 - 31 years old,
164 - 189 cm tall, and weighing 52 - 97 kg. None had any
physical disability. Informed consent was obtained from all
participants before the experiments.
We calculated the candidates of CoG based on the method

described in section III-A. The length of each participant’s
links were measured and used. The thickness of bodies
varied with different clothes. Since body thickness is not
measured before each use, it is difficult to account for this
value accurately. Therefore, the thicknesses of body and
forearm links of participant A are used for all participants.
Training data comprised 10 data of the measured sit-to-stand
motion for each participant. The participants’ states of the
other data were estimated based on the method described
in section III-C. As SVM software, LIBSVM [21] is used.
We shot the videos of the experiments, and determined the
actual participants’ states visually, and compared the results
of estimation.
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State as the Estimation Result
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Fig. 15. Time Variation of Estimated State (Participants A and B)

Participants A and B’s time variations of the quantities of
the groups which show each state as the estimation result
are shown in Fig. 14. Blue, green, and red points are the
quantities of the CoG candidates groups which show sitting,
rising, and standing as the estimation result, respectively.
Blue, green, and pink areas are the phases when user is
sitting, rising, and standing, respectively. For example, from
0 s to 4.4 s of participant A, the quantity of groups which
show sitting as the state estimation result is 8, with rising
and standing are 0. It means that all CoG candidates groups
show the same state as the estimation result in the term. At
vicinities of state transition, some groups show the different
state estimation results such as at 8 s of participant A. By
adopting majority, the estimated state become more accurate
than using only one CoG candidates group.
The participants’ time variations of the estimated state

are shown in Fig. 15, and accuracies of the state estimations
are shown in TABLE III and TABLE IV, respectively. Purple
points in Fig. 15 are the estimated state. Purple point located
at the bottom, center, and top indicates that the estimated
state is sitting, rising, standing, respectively. The results
indicate that the estimation is almost correct. The estimation
errors occur only near the boundaries between states. In other
words, the errors indicate that the estimates of the transitions
start either a little early or a little late. TABLE III shows the
quantities of the frames of the estimated states compared to
actual states of participant A. For example, the participant
A’s rise was estimated as sitting in 4 frames. Since each
frame is 0.1 s, the error is 0.4 s. This error occurs only at a
state transition; thus, the result means that the state transition
estimation at sit-to-rise was delayed by 0.4 s.



TABLE III
STATE ESTIMATION ACCURACY (PARTICIPANT A)

Quantities Estimated State
of Frames Sit Rise Stand

Actual Sit 42 0 0
State Rise 4 34 2

Stand 0 0 34

TABLE IV
STATE ESTIMATION ACCURACY (PARTICIPANT B)

Quantities Estimated State
of Frames Sit Rise Stand

Actual Sit 44 0 0
State Rise 2 36 1

Stand 0 0 25

Estimation errors of state transition time is shown in
TABLEV. The positive numbers mean late errors of the
transition time and negative ones mean early errors.
Since sit-to-stand motion is contiguous, the user’s state

can appear to be simultaneously in two states near the
boundary; the boundaries were visually determined. We can
assist users even if there is a little error of state transition
time by adjusting the timing. Thus it causes no problem
if we estimate the transitions a little early or late. From
TABLEV, we know that the state transition time errors are
considerably short. We confirmed that the proposed state
estimation method is effective when using the sensors, which
are actually set on the assistive robot.
As shown in TABLEV, almost all participants’ results

have same trend. The beginning of the rising, the armrest
height, and user’s posture are little different from sitting. By
the end of rising, they are almost identical to standing. In
the case of the participant I, the state transition time error
of rise-to-stand is late. It may be caused by the difference
of posture. The users often lean forward when rising and
stand straight after standing. So the timing of upper body
movement may affect the result.
Time variation of the estimated state of participants E

and I are shown in Fig. 16. It shows that the state estimates
are correct except in the vicinity of the boundaries between
states. All participants’ results have same trend, which means
that there are no failures except in the vicinity of the state
transitions. In the case of the participant E, time error of
rise-to-stand state transition is a little large in contrast to the
result of participant A. As described above, participant I’s
state transition time error of rise-to-stand is late, unlike the
others’. It is likely that the posture of this participant affected
the result. The user’s state is ambiguous at the boundaries,
and the time error is short enough to allow compensation by
adjusting the support function of the robot.
From these results, it is clear that we can estimate the

assistive robot users’ state by using only a few simple
sensors. The users’ states are estimated using only 10 training
data, and no SVM hyperparameters such as regularization

TABLE V
STATE TRANSITION TIME ERROR

Participant State Transition Time Error (s)
Number Sit-to-Rise Rise-to-Stand
A +0.4 −0.2
B +0.2 −0.1
C ±0 −0.2
D +0.1 −0.2
E +0.2 −0.4
F +0.2 −0.2
G +0.2 −0.2
H +0.2 −0.1
I +0.3 +0.2
J +0.1 −0.2
K +0.1 −0.1
L +0.2 −0.1
M +0.1 −0.2
N +0.2 −0.1
O ±0 −0.2
P +0.2 −0.2
Q +0.3 −0.1
R +0.2 −0.1
S +0.1 −0.1
T +0.2 −0.1

Average +0.175 −0.145

sit

rise

stand

 0  2  4  6  8  10

E
st

im
at

ed
 S

ta
te

time[s]

sit rise stand

estimated state

(a) Participant E

sit

rise

stand

 0  1  2  3  4  5  6  7  8

E
st

im
at

ed
 S

ta
te

time[s]

sit rise stand

estimated state

(b) Participant I

Fig. 16. Time Variation of Estimated State (Participants E and I)

constant C are optimized. It suggests that preparation is little
enough for using the robot. This method can be applied for
anomaly detection and acquisition of useful data since the
CoG position candidates can be obtained. This information
can be used to select the timing of support functions such
as moving the armrest. The CoG is physically meaningful
and the relationship between the user’s CoG and the robot
position is used for the proposed state estimation method.
Therefore, the method can be implemented in other systems
with few changes. In this study, the experiments were con-
ducted with young participants. Similar results are expected
with elderly people who actually need such assistive robots
because there are no fundamental physical differences. We
plan to conduct these experiments with the cooperation of
elderly people to validate our method.

V. CONCLUSION
In this study, we present a developed assistive robot which

can support a user’s movements for indoor support, and we
proposed an estimation method of the user’s state from the
CoG candidates by using a reduced number of sensors.



In order to assist a user with sit-to-stand motion, the
assistive robot needed to be able to sustain the user’s weight
over a large area during sit-to-stand motion. The development
of an armrest type assistive robot followed, which can sustain
some of the user’s weight by the armrest; it can support sit-
to-stand motion by moving the armrest higher. The user’s
state estimation is important to enable variation of the
support methods of the system. The armrest can move at the
beginning of the motion since the state estimation determines
whether the user intends to stand; this decision can be
used to keep the robot’s wheels immobilized during sit-to-
stand motion. We equipped the robot with fewer sensors
than required to calculate the CoG position. Subsequently,
we proposed the CoG candidates calculation method by
considering the ranges of the unknown parameters of the
human model. This was followed by the proposed state
estimation method by using the CoG candidates. Finally, we
experimentally validated the proposed method using a few
simple sensors on the robot.
Though the estimation results were analyzed offline, this

estimation method can be implemented in real-time without
large changes. Although the learning time of the SVM is
a little long, it can be finished before using the assistive
robot and thus it causes no problem. The CoG candidates
calculation is O(8N), and the estimation time of SVM is
less than 0.005 s. In this study, training data comprised 10
data of the measured motion. We intend to explore necessary
amount of data to reduce the preparation before using and
the user’s strain. Training data can be collected while using
the assitive robot. Therefore, by renewing the SVM training
data while using, the state estimation will be able to get
better day by day.
Future work could involve implementation of the proposed

method for other motions, such as stand-to-sit and walking.
The method can also be applied to anomaly detection. The
CoG candidates can also be used to decide the timing of the
changing support function by detection of the user’s intent.
By considering the relationship between the CoG candidates
and the actual CoG, it is expected that the CoG candidates
can become narrower, furthermore, the actual CoG position
can be estimated. Finally, we intend to conduct similar
experiments with elderly people, who actually need assistive
robots.
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