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Plastic deformation and fatigue damage, as the typical micro-damage caused by external loads such as earthquake and long-term 

process of liquid flow/stress, may seriously affect the material electromagnetic properties and shorten the structural lifespan. In this 
study, firstly, the correlation between the material electromagnetic properties and the plastic deformation is investigated for 304 
austenitic stainless steel, and the mechanism is discussed based on microstructure analysis. It is indicated that the increasing of plastic 
deformation leads to the material conductivity decrease which is considered to relate to the micro-defects including slip and twins, 
while the increasing of plastic deformation leads to the material magnetic property increase that has a close relationship with the 
martensitic transformation. Moreover, the influence of fatigue damage on the material electromagnetic properties and the 
microstructure analysis (slips, twins, martensitic transformation) are also confirmed. Finally, the combined effect of plastic 
deformation and fatigue damage is also investigated through experiment. Besides, the difference of microstructures of three kinds of 
damage specimens is observed and analyzed. 
 

Index Terms—304 Austenitic stainless steel, Fatigue damage, Plastic deformation, Nondestructive evaluation, Conductivity, Magnetic 
permeability, Microstructure  
 

I. INTRODUCTION 
Nuclear power is one of the ultimate ways to solve the 

energy crisis. As the increasing number of nuclear power 
plants (NPP), to guarantee the safety of NPP is more and more 
important. Pipes and vessels are major structures in NPP. Due 
to earthquake, tsunami and long-term process of liquid 
flow/stress, the NPP structures may suffer plastic deformation 
and fatigue damage, which will seriously shorten the lifespan 
of NPP and affect the material electromagnetic properties as 
well [1-6]. Therefore, to investigate the influence of plastic 
deformation and fatigue damage on material electromagnetic 
properties is rather important. 

Austenitic stainless steel 304 (SUS304) is one of the typical 
material widely used in the NPP structures. For mechanical 
damage, the macroscopic damage (crack, wall thinning defect) 
has been studied by many researchers [7-11, 33-34, 40-43], 
and the microscopic damage (mainly for plastic deformation) 
recently also obtained fruitful research results [12-19, 35-39]. 
Moreover, some researchers have confirmed that the plastic 
deformation increases the magnetic property of SUS304 
material due to martensitic phase transformation [20-26]. 
However, the influence of fatigue damage on 304 austenitic 
stainless steel is not clear yet. In addition, the combined effect 
of the plastic deformation and fatigue damage on material 
electromagnetic properties also has not been reported yet. 
These are the basis of nondestructive testing to the 
microscopic damage (plastic deformation/fatigue damage), 
and also rather important to explain the nondestructive 
evaluation mechanism. 

Based on the backgrounds above, the objective of this study 
is to establish the relationship between plastic 
deformation/fatigue damage and material electromagnetic 
properties for the 304 austenitic stainless steel. First, the 
influence of plastic deformation on material electromagnetic 
properties is investigated, and the mechanism is studied 
through microstructure analysis. Second, the effect of fatigue 
damage to material electromagnetic properties and the 
corresponding microscopic mechanism analysis are confirmed. 
Finally, the combined effect of plastic deformation and fatigue 
damage is also investigated through experiment, and the 
difference of microstructures of three kinds of damage 
specimens is observed and analyzed as well. 

II. SPECIMEN PREPARATION AND EXPERIMENTAL 
SETUP 

A. Specimen preparation 
In order to investigate the influence of plastic deformation 

and fatigue damage on the electromagnetic properties of 
SUS304 material, a series of specimens with various plastic 
deformations and fatigue damages are fabricated. Figure 1 
shows the MTS biaxial testing machine which is employed to 
fabricate specimens with different plastic deformations and 
fatigue damages. Figure 2 shows the fabricated specimens, 
where the residual plastic deformation in tensile specimens is 
0%, 2%, 5%, 7%, 10%. Strain gauges were used to measure 
the strain in the centre part of the specimen during the tensile 
experiment. The fatigue cycles of the several fatigue 
specimens are 0, 40000, 100000 and 200000 respectively. The 
maximum value, stress ratio and frequency of the fatigue load 
are 10 kN, 0 and 10 Hz respectively. Furthermore, the 
different fatigue cycles of above fatigue load are added to the 
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above different plastic deformation specimens to fabricate the 
composite damage specimens.  

B. Experimental setup 
The four-terminal direct current potential drop (DCPD) [27-

28] method is employed to measure the conductivity with the 
help of the established DCPD experiment setup. In addition, 
the magnetic property is investigated by using the soft 
magnetic hysteresisgraph method. 

1. Experimental setup for conductivity measurement 
The four-terminal DCPD experimental system is shown in 

Fig. 3. (a). The location of four-terminal probes is shown in 

 
Fig. 1.  MTS biaxial testing machine 

 
Fig. 2.  Plastic deformation/fatigue damage specimens and specimen 

dimensions in initial state 
(Thickness: 2.85mm, unit: mm) 

 

 
(a) Experimental system of DCPD   (b) Location of four-terminal electrodes  
Fig. 3.  Experimental system of DCPD and the distribution of four terminal 

probes 
Fig. 3(b), where the direct current is applied through electrode 
1 and 4, and the potential drop voltage is measured through 
electrode 2 and 3. The global conductivity can be calculated 
by using the following formula. 

 1 I l
U W H

σ ρ
×

= =
× ×

  (1) 

where, σ  is the conductivity, ρ the resistivity, I  the direct 

current injected into the specimen, l the distance between 
electrodes 2 and 3, U the potential drop voltage between 
electrodes 2 and 3, and W , H are the width and thickness of 
the specimen. 

2. Experimental setup for magnetic property measurement 
The AC/DC hysteresisgraph for soft magnetic materials and 

feebly magnetic materials is employed to investigate the 
correlation of plastic deformation/fatigue damage and the 
material magnetic property [29-31]. The experimental system 
is shown in Fig. 4(a). Figure 4(b) shows the typical 
characteristic parameters which include the correlation 
between magnetic polarization and magnetic field, the 
correlation between relative permeability and magnetic field, 
and the maximum relative permeability. During the process of 
this study, the experimental parameters are set as: flux meter 
range 5 μWb, maximum magnetic field 50000 A/m, maximum 
current 13.89 A, voltage step 0.5 V, delay 0.5 second. 

 
 
 

    Fig. 4.  Experimental system of magnetic property and the typical 
characteristic parameters 

III. RESULTS AND DISCUSSION 

A. The relationship between plastic deformation and material 
electromagnetic properties 

The relationship between plastic deformation and material 
electromagnetic properties is investigated by using the above 

(a) Experimental system of magnetic 
property measurement 

(b) Typical characteristic parameters 



 

experiment setup. The results are shown in Fig. 5. From Fig. 
5(a), it can be seen that as the increase of plastic deformation, 
the material conductivity decreases. From Fig. 5(b), it can be 
seen that as the increase of plastic deformation, the material 
magnetic polarization increases. 

It has been reported that the plastic deformation will increase 
the magnetic property of SUS304 material, and the 
measurement images of scanning probe microscopy (SPM) 
can explain the reasons through microstructure analysis [20-
26]. The researchers have found that the plastic deformation 
will lead to the phase transformation from nonmagnetic 
austenitic phase to magnetic martensitic phase qualitatively. In 
addition, the conductivity of SUS304 may have a relationship 
with the micro-defects caused by the plastic deformation [32]. 
Therefore, in order to clarify and explain the above 
phenomenon from microstructure viewpoint, in this study, the 
investigation of scanning electron microscopy (SEM) and 
atomic force microscopy (AFM) and magnetic force 
microscope (MFM) are conducted and the results are analysed. 

The specimens for microstructure investigation are 
fabricated as bellows. Figure 6(a) shows the cutting pieces 
(size: 10mm×12mm) of SEM and AFM and MFM specimens 
with various plastic deformation. Figure 6(b) shows the 
electrolytic etching solution for SUS304 material which is 
10% of the chromium trioxide solution, the electrolytic current 
is set as 0.12A and the electrolytic time is 12~15 minutes. The 
role of electrolytic process is to do electrochemical dissolution 
to the sample in order to achieve the observation of grain 
boundary and grain from microstructure point of view. Figure 
6(c) shows a microscopy image which is used to validate the 
electrolytic effect and is also the basis for SEM/AFM/MFM 
observation. Figure 7 is the adopted   SEM experiment system 
(FEI-Quanta400), and Fig. 8 is the adopted multimode SPM 
system where the AFM and MFM mode are employed. 

1. Results of SEM 
The equipment for SEM investigation is FEI-Quanta400. 

The magnification of 2000 times is applied to the images in 
this experiment. 

  
         (a) Conductivity                         (b) Magnetic polarization 

Fig. 5.  The relationship between plastic deformation and material 
electromagnetic properties 

 

 
(a) AFM and MFM specimens (unit: mm)        (b) Electrolytic solution 
 

 
(c) Microscopy result 

Fig. 6.  Fabrication of microstructure investigation specimens 
 

Fig. 7.  SEM experiment system (FEI-Quanta400) 
 



 

 
Fig. 8.  Multimode SPM experiment system 

 
(a) 0% 

  
(b) 2%                                                     (c) 5% 

 
(d) 7%                                                  (e) 10% 

Fig. 9.  The SEM microstructure results of plastic deformation specimens 

Figure 9 shows the results of SEM for specimens with 
various plastic deformations of 0%、2%、5%、7%、10%. 
From the results of Fig. 9, we can find the following 
statements. 
① Micro-defects including slips and twins are both 

investigated in the specimens of plastic deformation. Slips and 
twins are considered to have correlation with the decreasing of 
the conductivity of SUS304 material after plastic deformation. 
② In plastic deformation specimens, the volume fraction of 

the slip defect is more than that of the twins defect. And the 
slips mostly happen in-grain as shown in SEM results. 
Additionally, the volume fraction of slip increases with the 
plastic deformation. 
③ Figure 9(a) shows that, there is a little slip defect even for 

0% plastic deformation specimen, which is possibly due to the 
influence of machining in original material. 

2. Results of AFM/MFM  
Figure 10 shows the results of AFM/MFM for specimens 

with various plastic deformations. The volume fraction of 
austenite and martensite phases as a function of plastic 
deformation is calculated using the grayscale map of MFM 
results. From the results, we can find the following statements. 
① The mechanism of SUS304 material magnetic 

polarization increasing after plastic deformation is due to 
phase transformation of nonmagnetic austenitic phase to 
magnetic martensitic phase. 
② The phase transformation mostly happens around grain 

boundaries as shown in AFM results. And the martensitic 
phase increases with the plastic deformation shown in Fig. 
10(n). 
③ Figure 10(b) shows that, there is a little martensitic phase 

even for 0% plastic deformation specimen, which is possibly 
due to the original ferrite phase in material. 

 

 
 
 
 
 
 
 
 
 
 
 



 

 
 

 
 

 
 

 
 

 

 
 
 

Fig. 10 The AFM and MFM microstructure results of plastic specimens, as well as the volume fraction of two phases 
  

(d) AFM of plastic deformation 5% (e) MFM of plastic deformation 5% (f) Grayscale map of (e) 

(g) AFM of plastic deformation 7% (h) MFM of plastic deformation 7% (i) Grayscale map of (h) 

(j) AFM of plastic deformation 10% (k) MFM of plastic deformation 10% (l) Grayscale map of (k) 

(n) Volume fraction of martensite phase 
as a function of plastic deformation 

(m) Volume fraction of austenite phase 
as a function of plastic deformation 

(a) AFM of plastic deformation 0% (b) MFM of plastic deformation 0% (c) Grayscale map of (b) 



 

B. The influence of fatigue damage on material 
electromagnetic properties 

The relationship between fatigue damage and material 
electromagnetic properties is also investigated using the 
experiment setup shown in section 2.2. 

First, one point which needs to be noticed is that we find the 
magnetic property is not stable just after the fatigue testing, 
but becomes steady after days of time (e.g., 3 days in this 
study) as shown in Fig. 11 (a) and (b). Therefore, the material 
properties are tested around 3 days later after the fatigue 
testing, and the results are shown bellows. 

Figure 12 shows the material electromagnetic properties of 
fatigue damage specimens. We can see that similar as plastic 
deformation, the fatigue damage also decrease the material 
conductivity (Fig. 12(a)) and increase the material magnetic 
polarization (Fig. 12(b)). It is supposed that the influence of 
magnetic property is correlated to the fatigue condition (such 
as load, cycle), but the material magnetic property of fatigue 
100000 cycles is similar as that of 200000 cycles (Fig. 12(b)) 
in this study. 

Also, the microstructure is investigated to clarify and explain 
the influence of fatigue damage on the material 
electromagnetic properties. The observation of SEM and 
AFM/MFM is conducted and the results are analysed. 

  
    

 (b) Feature of µr  

Fig. 11.  Stability investigation of magnetic property 

   
(a) Conductivity                             (b) Magnetic property 

Fig. 12.  The electromagnetic properties of fatigue damage specimens 

1. Results of SEM 
The magnification of 2000 times is also applied here. Figure 

13 (a) and (b) show the results of SEM for specimens with 
100000 and 200000 fatigue cycles, respectively. From the 
results, we can find the following statements. 
① Both slips and twins defects can be investigated in the 

material after fatigue damage. Slips and twins are considered 
to have correlation with the decreasing of the conductivity of 
SUS304 material after fatigue damage. 
② Slips happen to plastic materials, while twins happen to 

the material after fatigue damage. And the twins mostly occur 
around grain boundaries as shown in SEM results. 
Additionally, the volume fraction of twins increases with the 
fatigue damage. 

In addition, to furthermore verify the influence of fatigue 
damage on the microstructure of SUS304 material, a special 
specimen is fabricated. This specimen suffers from fatigue 
loading of more than 2000000 cycles and finally breaks. This 
specimen is shown in Fig. 13 (c). Figure 13 (d) is the 
corresponding SEM results. It can be clearly seen that the 
number of twins is dramatically increased in the frature 
specimen. 

 

 
(a) 100000 cycles                              (b) 200000 cycles 

 

 
(c) Fracture specimen after more than 2000000 fatigue cycles 

 

 
(d) SEM result of fracture specimen after more than 2000000 cycles 

Fig. 13.  The SEM microstructure results of fatigue specimens 

2. Results of AFM/MFM  
Figure 14 (a) to (d) show the results of AFM/MFM for 

specimens with fatigue damage of 100000 and 200000 cycles, 
respectively. From the results, we can find the following 
statements. 
①  The phase transformation of nonmagnetic austenitic 

phase to magnetic martensitic phase is also observed, and this 

(a) Magnetic property changing 
along with time after fatigue testing 



 

causes the magnetic polarization increasing of SUS304 
material after fatigue damage. 
② The martensitic phase increases with the fatigue cycle. 

In addition, the AFM/MFM investigation is also conducted 
for the above fracture specimen, and the results are shown in 
Fig. 14 (g) to (h). We can see that the martensitic phase is of 

wide distribution and becomes a chain distribution in this 
specimen. The volume fraction of austenite and martensite 
phases as a function of the number of cycles is also calculated 
using the grayscale map of MFM results. The results are 
shown in Fig. 14 (j) and (k). 

 

    
(a) AFM of 100000 cycles               (b) MFM of 100000 cycles                           (c) Grayscale map of (b) 

 

     
(d) AFM of 200000 cycles             (e) MFM of 200000 cycles                             (f) Grayscale map of (e) 

 

     
(g) AFM of fracture specimen         (h) MFM of fracture specimen                       (i) Grayscale map of (e) 

 

  
 
 
 

 
Fig. 14  The AFM and MFM microstructure results of specimens after fatigue damage, as well as the volume fraction of two phases

(j) Volume fraction of austenite phase as 
a function of plastic deformation 

(k) Volume fraction of martensite phase as 
a function of plastic deformation 



 

C. Combined effect of plastic deformation and fatigue 
damage on electromagnetic properties 

The relationships between composite damage (plastic 
deformation and fatigue damage) and material electromagnetic 
properties are also investigated using the experiment setup 
shown in section 2.2. 

The results are shown in Fig. 15. We find that with the 
combined effect of plastic deformation and fatigue damage, 
the material conductivity decreases (Fig. 15(a)) and the 
material magnetic polarization increases (Fig. 15(b)). 
Comparing to the results of only plastic deformation or only 
fatigue damage, the combined effect strengthens the influence 
of mechanical damage on the material electromagnetic 
properties. 

Two typical specimens with composite damage of 2% 
plastic deformation plus 100000 fatigue cycles and 2% plastic 
deformation plus 200000 fatigue cycles, are cut into small 
pieces to investigate the microstructure to explain the 
mechanism of the above phenomenon. The observation of 
SEM and AFM/MFM is conducted and the results are 
analyzed. 

  
(a) Conductivity                               (b) Magnetic property 

Fig. 15.  The electromagnetic properties of combined effect specimens 

1. Results of SEM  
The magnification of 2000 times is also applied here. Figure 

16 (a) and (b) show the corresponding SEM results of the 
above two typical specimens, respectively. We find that slips 
happen to plastic materials, twins happen to the material after 
fatigue damage, while both slips (occur in-grain) and twins 
(occur around grain boundaries) happen to the material 
suffering from composite damage. And this causes the 
strengthening of the decreasing of the material conductivity. 

 

  
(a) 2% vs. 100000 fatigue cycles       (b) 2% vs. 200000 fatigue cycles 

Fig. 16  SEM microstructure results of specimens after composite damage  
 

   
(a) AFM of location 1                   (b) MFM of location 1 

 

   
(c) AFM of location 2                          (d) MFM of location 2 

Fig. 17  AFM/MFM results of specimens after composite damage (2% plus 
100000 cycles) 

 

   
(a) AFM of location 1                         (b) MFM of location 1 

 

 
(c) AFM of location 2                     (d) MFM of location 2 

Fig. 18  AFM/MFM results of specimens after composite damage (2% plus 
200000 cycles) 

2. Results of AFM/MFM 
Figure 17 (a) to (d) show the results of AFM/MFM for 

specimens after composite damage of 2% plastic deformation 
plus 100000 fatigue cycles. Figure 18 (a) to (d) show the 
results of AFM/MFM for specimens after composite damage 
of 2% plastic deformation plus 200000 fatigue cycles. We can 
see that, the phase transformation of nonmagnetic austenitic 
phase to magnetic martensitic phase is observed as well, that 
will lead to the significant increasing of magnetic properties in 
SUS304 material after composite damage. Moreover, the 



 

volume fraction of martensitic phase is obviously improved in 
specimens after composite damage. The martensitic phase is 
even of a chain distribution in the specimen of 2% plastic 
deformation plus 200000 fatigue cycles. 

IV. CONCLUSIONS 
In this study, the relationship between the plastic 

deformation/fatigue damage and the material electromagnetic 
properties for 304 austenitic stainless steel is investigated.  

(1) As the increasing of plastic deformation, the conductivity 
of the material decreases, possibly relates to micro-defects 
including slips and twins. As the increasing of plastic 
deformation, the magnetic polarization of the material 
increases, due to phase transformation of nonmagnetic 
austenitic phase to magnetic martensitic phase. 

(2) The fatigue damages also decrease the conductivity of 
the material and increase the magnetic polarization of the 
material. Slips happen to plastic materials, while twins happen 
to the material after fatigue damage. Slips and twins are 
considered to have correlation with the decreasing of the 
conductivity of SUS304 material. The increasing of the 
material magnetic polarization is closely connected with the 
increasing of the martensitic phase. 

(3) Furthermore, the composite damage strengthens the 
above influence effect of points (1) and (2) on the material 
electromagnetic properties compared to the single type 
damage. Both slips and twins happen to the material suffering 
from composite damage, and this causes the strengthening of 
the decreasing of the material conductivity. The volume 
fraction of martensitic phase is obviously improved in 
specimens after composite damage. The martensitic phase is 
even of a chain distribution in the specimen of 2% plastic 
deformation plus 200000 fatigue cycles. 

ACKNOWLEDGMENT 
The authors would like to thank the Natural Science 

Foundation of China (No. 51407132, 51577139) and National 
Key R&D Program of China (2017YFF0209703) for funding. 
This work was partly supported by the JSPS Core-to-Core 
Program, A. Advanced Research Networks, “International 
research core on smart layered materials and structures for 
energy saving”. 

REFERENCES 
[1] Withers P J, Turski M, Edwards L, et al. Recent advances in residual 

stress measurement[J]. International Journal of Pressure Vessels and 
Piping, 2008, 85(3): 118-127. 

[2] Xie S, Chen Z, Chen H E, et al. Evaluation of plastic deformation and 
characterization of electromagnetic properties using pulsed eddy current 
testing method[J]. International Journal of Applied Electromagnetics & 
Mechanics, 2014, 45(1): 755-761. 

[3] Morozov M, Tian G Y, Withers P J. Noncontact evaluation of the 
dependency of electrical conductivity on stress for various Al alloys as a 
function of plastic deformation and annealing[J]. Journal of Applied 
Physics, 2010, 108(2): 2211-8142. 

[4] Li H, Chen Z, Li Y, et al. Dependence of deformation-induced magnetic 
field on plastic deformation for SUS304 stainless steel[J]. International 
Journal of Applied Electromagnetics and Mechanics, 2012, 38(1): 17-26. 

[5] Staal H U, Elen J D. Crack closure and influence of cycle ratio R, on 
fatigue crack growth in type 304 stainless steel at room temperature[J]. 
Engineering Fracture Mechanics, 1979, 11(2): 275-283. 

[6] Zhang J, Xuan F Z. Fatigue damage evaluation of austenitic stainless 
steel using nonlinear ultrasonic waves in low cycle regime[J]. Journal of 
Applied Physics, 2014, 115(20): 204906-204906-7. 

[7] Xie S, Chen Z, Takagi T, et al. Quantitative non-destructive evaluation 
of wall thinning defect in double-layer pipe of nuclear power plants 
using pulsed ECT method[J]. NDT and E International, 2015, 75: 87-95. 

[8] Takahashi K, Ando K, Hisatsune M, et al. Failure behavior of carbon 
steel pipe with local wall thinning near orifice[J]. Nuclear Engineering 
& Design, 2007, 237(4): 335-341. 

[9] Park D G, Angani C S, Kim G D, et al. Evaluation of Pulsed Eddy 
Current Response and Detection of the Thickness Variation in the 
Stainless Steel[J]. IEEE Transactions on Magnetics, 2009, 45(10): 3893-
3896. 

[10] Xie S, Chen Z, Takagi T, et al. Efficient Numerical Solver for 
Simulation of Pulsed Eddy-Current Testing Signals[J]. IEEE 
Transactions on Magnetics, 2011, 47(11): 4582-4591. 

[11] Xie S, Chen Z, Chen H, et al. Sizing of Wall Thinning Defects Using 
Pulsed Eddy Current Testing Signals Based on a Hybrid Inverse 
Analysis Method[J]. IEEE Transactions on Magnetics, 2013, 49(5): 
1653-1656. 

[12] Sato S, Urayama R, Sato T, et al. Quantitative evaluation of residual 
strain in austenitic stainless steels using electromagnetic nondestructive 
evaluation[J]. ISEM, 2013, 77-78. 

[13] Xie S, Chen H, Cai W, et al. Feasibility investigation of NDE for plastic 
deformation in biaxial specimen using PECT method[J]. Studies in 
Applied Electromagnetics & Mechanics, 2015, 40: 43-50. 

[14] Li H, Chen Z, Li Y, et al. Dependence of deformation-induced magnetic 
field on plastic deformation for SUS304 stainless steel[J]. International 
Journal of Applied Electromagnetics  and Mechanics, 2012, 38(1): 17-26.  

[15] Cai W, Chen H E, Xie S, et al. A study on influence of plastic 
deformation on the global conductivity and permeability of carbon 
steel[J]. International Journal of Applied Electromagnetics and 
Mechanics, 2014, 45(1): 371-378. 

[16] Peng Y, Gong J, Jiang Y, et al. The effect of plastic pre-strain on low-
temperature surface carburization of AISI304 austenitic stainless 
steel[J].Surface and Coatings Technology,2016, 304:16-22. 

[17] Mumtaz K, Takahashi S, Echigoya J, et al. Magnetic measurements of 
martensitic transformation in austenitic stainless steel after room 
temperature rolling[J]. Journal of Materials Science, 2004, 39(1): 85-97. 

[18] Li H, Chen Z, Li Y. Characterization of damage-induced magnetization 
for 304 austenitic stainless steel[J]. Journal of Applied Physics, 2011, 
110(11): 114907. 

[19] Zhang L, Takahashi S, Kamada Y, et al. Magnetic properties of SUS 
304 austenitic stainless steel after tensile deformation at elevated 
temperatures[J]. Journal of Materials Science, 2005, 40(9): 2709-2711. 

[20] Kobayashi S, Saito A, Takahashi S, et al. Characterization of strain-
induced martensite phase in austenitic stainless steel using a magnetic 
minor-loop scaling relation[J]. Applied Physics Letters, 2008, 92(18): 
1577. 

[21] Rodríguez-Martínez J A, Rusinek A, Pesci R, et al. Experimental and 
numerical analysis on the martensitic transformation in AISI 304 steel 
sheets subjected to perforation by conical and hemispherical 
projectiles[J]. International Journal of Solids and Structures, 2013, 
50(2): 339-351. 

[22] Nakajima M, Uematsu Y, Kakiuchi T, et al. Effect of quantity of 
martensitic transformation on fatigue behavior in type 304 stainless 
steel[J]. Procedia Engineering, 2011, 10(7): 299-304. 

[23] Ishimaru E, Hamasaki H, Yoshida F. Deformation-induced martensitic 
transformation and workhardening of type 304 stainless steel sheet 
during draw-bending[J]. Procedia Engineering, 2014, 81: 921-926. 

[24] Li H, Chen H E, Yuan Z, et al. Comparisons of damage-induced 
magnetizations between austenitic stainless and carbon steel[J]. 
International Journal of Applied Electromagnetics and Mechanics, 2014, 
46(4): 991-996. 

[25] Mumtaz K, Takahashi S, Echigoya J, et al. Detection of martensite 
transformation in high temperature compressively deformed austenitic 
stainless steel by magnetic NDE technique[J]. Journal of Materials 
Science, 2003, 38(14): 3037-3050. 

[26] Manjanna J, Kamada Y, Kobayashi S, et al. Ferromagnetic fraction and 
exchange anisotropy in SUS 316LN austenitic stainless steel due to 
strain-induced deformation[J]. Journal of Applied Physics, 2008, 103(7): 
2385. 



 

[27] Nicola Bowler. Theory of four-point direct-current potential drop 
measurements on a metal plate[J]. Research in Nondestructive 
Evaluation, 2006, 17(1): 29-48. 

[28] Wang X, Xie S, Li Y, et al. Efficient numerical simulation of DC 
potential drop signals for application to NDT of metallic foam[J]. 
COMPEL, 2013, 33(1/2): 147-156. 

[29] Chernyshov A, Treves D, Le T, et al. Measurement of Magnetic 
Properties Relevant to Heat-Assisted-Magnetic-Recording[J]. IEEE 
Transactions on Magnetics, 2013, 49(7): 3572-3575. 

[30] Higuchi S, Nakao T, Takahashi Y, et al. Modeling of Two-Dimensional 
Magnetic Properties Based on One-Dimensional Magnetic 
Measurements[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3486-
3489. 

[31] Strnat R M, Hall M J, Masteller M S. Precision and Accuracy Study on 
Measurement of Soft Magnetic Properties Using DC Hysteresigraphs[J]. 
IEEE Transactions on Magnetics, 2007, 43(5): 1884-1887. 

[32] Khandelwal M, Venkatasubramanian A, Prasanna T R S, et al. 
Correlation between microstructure and electrical conductivity in 
composite electrolytes containing Gd-doped ceria and Gd-doped barium 
cerate[J]. Journal of the European Ceramic Society, 2011, 31(4): 559-
568. 

[33] Kim J, Yang G, Udpa L, et al. Classification of pulsed eddy current 
GMR data on aircraft structures[J]. Ndt & E International, 2010, 43(2): 
141-144. 

[34] Liu B, He L, Zhang H, et al. The axial crack testing model for long 
distance oil - gas pipeline based on magnetic flux leakage internal 
inspection method[J]. Measurement, 2017, 103(1): 275-282. 

[35] Wang T, Lou Z. A continuum damage model for weld heat affected zone 
under low cycle fatigue loading[J]. Engineering Fracture Mechanics, 
1990, 37(4): 825-829. 

[36] Liu B, He Y, Zhang H, et al. Study on characteristics of magnetic 
memory testing signal based on the stress concentration field[J]. Iet 
Science Measurement & Technology, 2017, 11(1): 2-8. 

[37] Wang T. A continuum damage model for ductile fracture of weld heat 
affected zone[J]. Engineering Fracture Mechanics, 1991, 40(6): 1075-
1082. 

[38] Wang T. Unified CDM model and local criterion for ductile fracture—I. 
Unified CDM model for ductile fracture[J]. Engineering Fracture 
Mechanics, 1992, 42(1): 177-183. 

[39] Li H, Chen Z. Quantitative analysis of the relationship between non-
uniform stresses and residual magnetizations under geomagnetic 
fields[J]. AIP Advances, 2016, 6(7): 401. 

[40] Xie S, Tian M, Xiao P, Pei C, Chen Z, Takagi T, A hybrid 
nondestructive testing method of pulsed eddy current testing and 
electromagnetic acoustic transducer techniques for simultaneous surface 
and volumetric defects inspection[J], NDT&E International, 2017, 86: 
153–163. 

[41] Li Y, Yan B, Li W, Jing H, Chen Z, Li D, Pulse-modulation Eddy 
Current Probes for Imaging of External Corrosion in Nonmagnetic 
Pipes[J], NDT&E International, 2017, 88: 51-58. 

[42] Fan M, Cao B, Sunny A I, et al. Pulsed eddy current thickness 
measurement using phase features immune to liftoff effect[J]. NDT&E 
International, 2017, 86: 123-131. 

[43] Yang B, Xu J, Wu H, He Y. Magnetic field shielding technique for 
pulsed remote field eddy current inspection of planar conductors[J]. 
NDT&E International, 2017, 90: 48-54. 

 
 
 
Shejuan Xie (1983- ), Associate Professor in Xi`an Jiaotong 
University, China. 
Lei Wu (1990- ), Master in Xi`an Jiaotong University, China. 
Zongfei Tong (1993- ), Master candidate in Xi`an Jiaotong 
University, China. 
Hong-En Chen (1983- ), PhD in Xi`an Jiaotong University, 
China. 
Zhenmao Chen (1964- ), Professor in Xi`an Jiaotong 
University, China. 
Tetsuya Uchimoto (1970- ), Professor in Tohoku University, 
Japan. 

Toshiyuki Takagi (1954- ), Professor in Tohoku University, 
Japan. 
 


	I. Introduction
	II. SPECIMEN PREPARATION AND EXPERIMENTAL SETUP
	A. Specimen preparation
	B. Experimental setup

	III. RESULTS AND DISCUSSION
	A. The relationship between plastic deformation and material electromagnetic properties
	B. The influence of fatigue damage on material electromagnetic properties
	C. Combined effect of plastic deformation and fatigue damage on electromagnetic properties

	IV. CONCLUSIONS
	Acknowledgment
	References

