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In a noncentrosymmetric crystalline material, the propagation of particles or quasiparticles

can be nonreciprocal, i.e., the left-moving and right-moving (quasi)particles become inequiv-

alent. In a noncentrosymmetric magnet, such nonreciprocity is expected for magnons, the

quantized collective spin fluctuations that propagate as a wave in a magnetically ordered

phase. Even though the nonreciprocal propagation of the magnons was theoretically pro-

posed decades ago, experimentally, little attention has been given to the phenomenon, partly

because of its putative subtleness originating from the weak relativistic spin-orbit coupling.

The situation has markedly changed recently, as the possibility of measuring and controlling

a magnon spin current in noncentrosymmetric magnets begins to gain wider recognition. In

this article, we will review recent progress in the detection of the nonreciprocal magnons in

noncentrosymmetric magnets. Particular emphasis will be placed on the neutron scattering

studies where the magnon dispersion is directly measured in a microscopic length scale.

1. Introduction

Dispersion relations of particles or quasiparticles in solids are crucially related to the sym-

metry of the underlying crystal structure and have been well classified using group-theory

techniques.1 One of the most celebrated examples of the symmetry effect on the dispersion

relation is the Rashba spin splitting of the electronic band structure, which was originally pre-

dicted in a noncentrosymmetric bulk semiconductor,2–5 but was later first confirmed in surface

or interfacial two-dimensional electron systems.6, 7 Inevitable symmetry breaking due to the

spatial disruption of the surface or interface evokes the Rashba type relativistic spin-orbit

coupling, (σ⃗ × k⃗) · z⃗, where k⃗, σ⃗, and z⃗ are the momentum, spin, and surface-normal vectors,
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respectively. Owing to this Rashba term, electrons with the up- and down-spin states acquire

different energies at finite |⃗k|, resulting in the spin-splitting of the originally degenerated elec-

tronic bands. Furthermore, the Rashba coupling locks the spin direction to be perpendicular

to its momentum (⃗k-) direction; this phenomenon is called “spin-momentum” locking.

While the symmetry effect on the electronic band structure is well understood, the subject

has recently attracted renewed interest because of its connection to an anomalous transport

property. This anomalous transport behavior results from the fictitious magnetic field due to

the finite Berry curvature around band crossing points, such as the Dirac and Weyl points,

which are expected for crystalline materials with specific symmetry at some particular k⃗

points.8, 9 An opposite-chirality pair of Weyl nodes act like a monopole and antimonopole

in momentum space, which serve as a source and sink for the fictitious magnetic field (Berry

curvature flux). The presence of the Weyl nodes could result in the anomalous Hall effect in

the electronic transport.10 The Berry curvature around the Weyl points can also affect mag-

netic fluctuations. Recent progress in the neutron scattering technique enables the detection of

the nonmonotonic temperature dependence of the ferromagnetic spin-wave gap that provides

evidence for the effect of the Weyl points on spin dynamics.11

The linear crossing of the dispersion relation is ubiquitous for other quasiparticles, in-

cluding magnons, as it is indeed symmetry-protected. A typical example is the presence of

Weyl points in the magnon dispersion that was theoretically proposed in the breathing py-

rochlore12, 13 and antiferromagnetic kagome lattices.14 Experimental observation of the linear

crossing and topological magnons, which were measured using neutron inelastic scattering,

has been reported for a kagome lattice ferromagnet15 and recently for a three-dimensional

antiferromagnet.16 A type of anomalous transport behavior that may originate from the

magnonic Dirac/Weyl points is of current and growing interest. Noncentrosymmetry is be-

lieved to be one of the key ingredients giving rise to the linear crossing in the magnon disper-

sion, as exemplified by several theoretical studies.17–19

Another reason for the growing interest in the particle/quasiparticle dynamics under the

noncentrosymmetric environment is the potential for controlling the propagation direction

of particles/quasiparticles.20 One of the most well-known examples is an electronic rectifier.

Owing to broken spatial-inversion symmetry at a semiconductor p−n junction, the electronic

rectifier allows the unidirectional transport of electrons, making the device a fundamental

key component of modern electronics. Such nonreciprocal (unidirectional) propagation can

be expected for any particle/quasiparticle in crystalline materials, and is indeed observed for

phonons,21 photons,22, 23 and magnons24–26 to name a few.
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For centrosymmetric crystals, the dispersion relation of spinless particles/quasiparticles

in one dimension obeys the symmetry relation E(k) = E(−k). On the other hand, for the

noncentrosymmetric crystalline materials, the left- and right-moving particles/quasiparticles

can acquire different energies, i.e., E(k) , E(−k), and hence the dispersion relation can be

asymmetric around the origin k = 0. The lowest-order term that brings about such asymmetry

is the k-linear term, and the dispersion relation may be rewritten as

E(k) = E0 + Ds(k − k0)2, (1)

where the bottom of the dispersion relation shifts from the origin to k = k0. The asymmetric

dispersion relation is schematically shown in Fig. 1(a). The mechanism for the nonrecipro-

cal propagation of quasiparticles can readily be inferred from the dispersion relation; if we

create a quasiparticle (or inject a particle into a bulk noncentrosymmetric material) with a

specific energy E and momentum k, then it can only propagate unidirectionally, since at the

same energy, the mode that propagates in the opposite direction with momentum −k is absent

and hence cannot be excited. This unidirectional propagation was indeed observed using a

modern microwave spectroscopy technique as briefly summarized in Sect. 3 of this review.

For particles/quasiparticles with a finite spin such as S = 1/2, owing to the lack of inversion

operation in the SU(2) spin space, the effect of noncentrosymmetry gives rise to the spin-

dependent band splitting described by the relations E(k, ↑) = E(−k, ↓) and E(k, ↓) = E(−k, ↑),
assuming time-reversal symmetry [note that E(k, ↑) , E(−k, ↑) and E(k, ↓) , E(−k, ↓)]. This

spin-dependent band splitting results in very intriguing nonreciprocal transport in the non-

centrosymmetric crystals, in which the propagation is not only unidirectional but also spin-

dependent.

In this review, we will not try to cover the broad subject of nonreciprocal responses,

which has been comprehensively reviewed in Ref. 27, but instead will focus on the nontrivial

dispersion of magnons in both ferromagnets and antiferromagnets, and its consequences on

nonreciprocal transport. In Sect. 2, we will summarize the expected symmetry effects on the

magnon dispersion in a simple collinear one-dimensional ferromagnet and antiferromagnet.

The detection of the nonreciprocal magnons with microwave technology is overviewed in

Sect. 3, whereas the recent results and complete characterization of the dispersion relation in a

noncentrosymmetric ferromagnet and antiferromagnet will be given in Sect. 4. In Sect. 5, the

future prospects of nonreciprocal magnons are discussed, and Sect. 6 concludes this article.
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Fig. 1. (Color online) Schematical illustrations of magnon dispersion relations in (a) noncentrosymmetric fer-

romagnet and (b) noncentrosymmetric antiferromagnet. The Hamiltonian parameters S = 1/2, J = −1,Dz
DM =

0.2, and D = −0.1 are used for (a). The same parameter set except for J = 1 and D = −0.03 was used for (b).

The lattice constant is set to d = 1.

2. Noncentrosymmery and Dispersion Relation of Magnons

In this section, we will give a brief summary of the magnon dispersion relations in non-

centrosymmetric magnets by considering simple models of a collinear one-dimensional ferro-

magnet and antiferromagnet in the large-spin-size (S ) limit. Noted that elaborate treatments

of magnons in various noncentrosymmetric magnets have been given in a number of pub-

lications to date.17, 28–31 When the inversion symmetry is absent around the midpoint of a

bond connecting two interacting spins in a magnetic material, the antisymmetric spin-spin

interaction of the relativistic spin-orbit-coupling origin or Dzyaloshinskii–Moriya (DM) in-

teraction becomes activated. As a result, a simple spin Hamiltonian for a one-dimensional
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noncentrosymmetric Heisenberg magnet shown in Fig. 2 may be given as

H =
∑
<i, j>

[
Ji jS⃗ i · S⃗ j + D⃗DMi j(S⃗ i × S⃗ j)

]
+
∑

i

D(S z
i )

2, (2)

where S⃗ i(S⃗ j) is the spin operator at the i( j)-site and Ji j(D⃗DMi j) is the isotropic (antisymmet-

ric) interaction parameter. J, which is negative for a ferromagnet and positive for an anti-

ferromagnet, and D⃗DM (denoted by green arrows in Fig. 2) are assumed to be uniform, so

that their suffixes are neglected. The summation is to be performed for the nearest-neighbor

pairs along a one-dimensional chain. The single-site anisotropy term D(S z
i )

2 aligns the spins

along the quantization axis (the z-axis) and induces the collinear ordered structure. It may be

noted here that in an S = 1/2 system, such as α-Cu2V2O7 discussed later, the single-ion-type

anisotropy vanishes, and exchange interaction anisotropy becomes effective instead. For the

dominant ferromagnetic spin-spin interaction with a sufficiently weak easy axis anisotropy

and DM interaction (|J| >> |D| and |D⃗DM| with sufficiently large and negative D), the ground

state becomes a fully polarized ferromagnetic state with ⟨S⃗ i⟩ = (0, 0,+S ), independent of the

site i as shown in Fig. 2(a). Similarly, for the antiferromagnet, the classical ground state is the

two-spin-sublattice collinear Néel state with ⟨S⃗ i⟩ = (0, 0,±S ) as shown in Fig. 2(b).

For the ferromagnet, the low-energy spin excitations from the ground state may be

obtained by linearizing the above Hamiltonian [Eq. (2)] using the well-known Holstein–

Primakoff transformation and taking the lowest order of the boson operators; the result can

be written as

H = E0 +
∑

k

X⃗†k H(k)X⃗k, (3)

where X⃗†k = (a†k , a−k), and the k-dependent quadratic Hamiltonian matrix is given by

H(k) =

ωk 0

0 ω−k

 , (4)

where ωk = 2S (ck − J + sk − D), ck = J cos(kd), sk = Dz
DM sin(kd), and d denotes the lattice

constant. It is assumed for clarity that D⃗DM = (0, 0,Dz
DM) since the x- and y-components

of the DM vector do not contribute to the shift of the dispersion. The dispersion relation

is illustrated in Fig. 1(a). Owing to the finite DM interaction, the bottom of the magnon

dispersion shifts away from the origin. In the long-wavelength limit, it is apparent that the

magnons propagating in the +k and −k directions have different group velocities, which are

defined by the slope of E(k); therefore, the magnon propagation is nonreciprocal.
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Fig. 2. (Color online) Spin models for the one-dimensional (a) ferromagnetic and (b) antiferromagnetic chain

with uniform DM interactions. The red (longer) arrows indicate directions of spin ordering, whereas the green

(shorter) ones denote the DM vectors.

For the antiferromagnetic Néel state, the two sublattices give rise to two kinds of

magnon operators, a0,k and a1,k. Consequently, the basis vector can be represented by X⃗†k =

(a†0,k, a
†
1,k, a0,−k, a1,−k), and the quadratic Hamiltonian matrix now reads

H(k) = 2S


J − D 0 0 −(ck + sk)

0 J − D −(ck − sk) 0

0 −(ck − sk) J − D 0

−(ck + sk) 0 0 J − D


. (5)

In contrast to the trivial ferromagnetic order, off-diagonal terms appear, e.g., a†0,ka
†
1,−k, through

which the DM interaction gives rise to the antisymmetric contribution in terms of sin(kd). To

acquire a diagonal form of the Hamiltonian matrix with bosonic quasiparticles, the Bogoli-

ubov transformation may be performed by introducing a matrix Tk, which transforms X⃗k to

new boson operators Y⃗k with Y⃗k = TkX⃗k. Tk should satisfy the boson condition TkΓT
†
k = Γ,

where

Γ =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


, (6)

and the diagonalization condition

T−1
k ΓH(k)Tk =

1
2
ΓΩk. (7)
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Using Tk given above, the Hamiltonian is diagonalized as X⃗†k H(k)X⃗k = Y⃗†k
1
2ΓΩkY⃗k, where

Ωk =


ω+,k 0 0 0

0 ω−,k 0 0

0 0 ω+,−k 0

0 0 0 ω−,−k


. (8)

The obtained eigenenergies are given by

ω±,k = 2S
√

(J − D)2 − (ck ± sk)2. (9)

This dispersion relation is schematically illustrated in Fig. 1(b). Owing to the finite DM in-

teraction, the two originally degenerated magnon bands shift in the −k and +k directions,

giving rise to a linear crossing at k = 0. Noted that owing to the linear dispersion of the

antiferromagnetic magnons in the small-k region and the symmetric appearance of the two

branches of the dispersion around the origin, the group velocities of the ±k modes are iden-

tical. Nonetheless, since the two modes, which are split by the DM interactions, correspond

to different spin dynamics with opposite rotations (i.e., clockwise and counterclockwise), by

selectively exciting a single mode, the nonreciprocity of the phase velocity can be achieved.

Note further that at the crossing, the spin dynamics change the spin rotation from clockwise

to counterclockwise or vice versa. The counter-rotating spin dynamics may be regarded as a

spin variable with opposite signs (i.e., positive for counterclockwise and negative for clock-

wise), and hence at k = 0 where the linear crossing occurs, this spin variable changes its

sign. This spin-dependent dispersion relation illustrates one of the simplest examples of the

“spin-momentum locking” in a magnonic system, the general treatments of which may be

found in recent theoretical studies.18, 19

3. Microwave Detection of Nonreciprocal Propagation of Magnons

In ferromagnetic thin films, long-wavelength spin waves predominantly propagate via the

long-range dipolar interaction. In such a long-wavelength region, nonreciprocal propagation

was proposed for surface magnetostatic modes decades ago, which is now called the Damon–

Eshbach mode.32 The Damon–Eshbach mode on one surface propagates unidirectionally, as

experimentally confirmed in an Y3Fe5O12 film using microwave spectroscopy,33 indicating

the nonreciprocal flow of the magnon spin current. However, counter-propagating modes exist

on the opposite surface of the film, and consequently, the spin currents cancel each other out;

therefore, the net magnon spin current vanishes. In order to realize a non-zero bulk magnon

spin current, it is necessary to inhomogeneously (or selectively) excite the two surface modes,
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Fig. 3. (Color online) (a) Configuration of microwave spectroscopy for the detection of nonreciprocal

magnons in the noncentrosymmetric ferromagnet LiFe5O8. Meander antennae are placed under a rectangu-

larly cut LiFe5O8 sample. (b) Spatially oscillating magnetic fields induced by the meander antenna. Reprinted

with permission from Ref. 24. Copyright (2015) by the American Physical Society.

so that the magnon spin currents on the opposite sides of the film do not completely negate

each other. The generation of thermal gradient due to the bulk magnon spin current induced

by inhomogeneous Damon–Eshbach modes has recently been confirmed.34

The nonreciprocal Damon–Eshbach mode originates from a purely macroscopic shape

effect, and is explained using the Maxwell equations and equation of motion for macroscopic

magnetization. On the other hand, trivial inversion-symmetry breaking at the surfaces or in-

terfaces will induce microscopic DM interactions between spins in the surface or interface

region. Hence, nonreciprocity due to the finite DM interaction should appear, in addition

to that originating from the Damon–Eshbach mechanism. Indeed, the asymmetric magnon

dispersion due to the surface/interface DM interaction has been directly observed in an Fe

double layer grown on a W(110) substrate using spin-polarized electron energy loss (SPEEL)

spectroscopy,35 and in Pt/Co/Ni multilayers using Brillouin light scattering spectroscopy,36

to name a few.

Similar to a surface and interface, bulk noncentrosymmetry may induce the nonrecip-

rocal propagation of magnons. Advantageously, bulk nonreciprocal magnons may generate
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Fig. 4. (Color online) (a-d) Transmittance of microwave owing to the magnon propagation from left to right

(∆S 12) and right to left (∆S 21). To show the magnon transmittance, the difference from the 1.0 T data is shown

as ∆S . (e) and (f) Difference of transmittance between the two magnetization directions. The samples are (a, b,

e) the noncentrosymmetric ferromagnet LiFe5O8 and (c, d, f) centrosymmetric Y3Fe5O12. Reprinted permission

from Ref. 24. Copyright (2015) by the American Physical Society.

nonzero net magnon spin current in a ferromagnet with the uniform DM interaction since the

nonreciprocity of the magnon dispersion in this system is uniform throughout the sample,

giving rise to a unidirectional magnon spin current. In order to investigate these bulk nonre-

ciprocal magnons, quite a few microwave spectroscopy measurements have been performed

on the noncentrosymmetric magnets recently. Iguchi et al. first observed bulk nonreciprocal

magnon propagation using the archetypal noncentrosymmetric ferromagnet LiFe5O8,24 which

crystallizes in the cubic space group P4132.37 This compound shows collinear ferrimagnetic

order below 900 K.38 In order to measure the magnon propagation at a finite k-vector, they

fabricated meander microwave antennae on the left and right sides of the sample front surface

(Fig. 3) and measured the transmittance of the magnon signals in both directions. The data

[Figs. 4(a), 4(b), and 4(e)] show the difference in the transmittance, which indeed depends on

the direction of the net magnetization controlled by the external magnetic field. In contrast,

the dependence of the transmittance on the magnetization direction was not observed in the

centrosymmetric Y3Fe5O12 [Figs. 4(c), 4(b), and 4(f)]. The authors thus conclude that in a

noncentrosymmetric ferromagnet, the magnon propagation is nonreciprocal and controllable

by the external magnetic field.

In another work, Seki et al. implemented almost the same experimental configuration to

measure the nonreciprocal magnons in the chiral insulating compound Cu2OSeO3,25 which

belongs to the cubic space group P213.39, 40 This compound has a helically ordered state below
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Fig. 5. (Color online) Inductance spectrum ∆Lnm for Cu2OSeO3. Spinwave contribution at H = 740 Oe

(polarized ferromagnetic state), estimated as the difference from the high-field inductance measured at H =

2650 Oe. (a) and (b) Real and imaginary parts of self-inductance and mutual inductance. (c) and (d) magnitude

and phase of mutual inductance, respectively. (e-h) Comparison between D- and L-crystals. (i-l) Experimental

setups used in the measurement. Reprinted with permission from Ref. 25. Copyright (2016) by the American

Physical Society.

Tc ∼ 59 K, and also hosts an intriguing magnetic skyrmion phase under a weak external

magnetic field.41 For the observation of the nonreciprocal magnons, they applied an external

magnetic field of H = 740 Oe parallel/antiparallel to the magnon propagation direction to

induce a uniformly magnetized state. The microwave excitation was provided by coplanar

waveguides fabricated on an oxidized silicon substrate, and a Cu2OSeO3 film was placed on

top of the waveguides. The measured self-inductance L11 [Fig. 5(a)] represents the efficiency

of the magnon excitations, and the mutual inductance L12 or L21 [Fig. 5(b)] provides valuable

information about the magnon propagation direction between two ports labeled by 1 and 2

shown in Figs. 5(i-l). The difference between L12 and L21 shown in Fig. 5(c) indicates the

magnon contribution to the mutual inductance and more importantly provides evidence for

nonreciprocal magnons in Cu2OSeO3. The advantage of this experiment is that the chirality

of the crystal used in the measurements can be controlled. It can be seen from the results

[Fig. 5(e-h)] that the magnon contribution has the opposite effect on the mutual inductance of

the right-handed (D) and left-handed (L) crystals, which have opposite chiralities, confirming

that the chirality is a dominant deterministic factor of the magnon propagation direction.

As seen from the above two examples, spinwave spectroscopy provides a novel method to

characterize the DM interaction and nonreciprocal magnons in chiral or noncentrosymmetric

magnets, and research activities along this line continue to date.26 The recent work of Seki

et al. has been extended to the detection of nonreciprocal magnons in the skyrmion phase.

This work leads to an interesting observation on the interconnecting nature of the topolog-
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ical spin texture and magnon propagation, the details of which can be found in the original

manuscript.42

4. Direct Observation of Asymmetric Dispersion Relations of Magnons by Inelastic

Neutron Scattering

It is clear from modern microwave spectroscopy measurements that magnons in the bulk

noncentrosymmetric magnets propagate nonreciprocally. Nonetheless, these microwave spec-

troscopy measurements have a few drawbacks that require further experimental investiga-

tions. First, these experiments are carried out in a low-energy (GHz) region where the dipolar

interaction is dominant.43 In such an energy range, the magnon group velocity is negative,

and the effect of the bulk DM interaction is indeed supplemental. Secondly, the wavelength

of the magnons excited in the microwave spectroscopy experiments is fixed by the antenna

design. Hence, it is difficult to measure the wavelength (or k-) dependence of the magnon dis-

persion. Since the precise measurement of the magnon dispersion is a key to confirming its

asymmetric shift due to the noncentrosymmetry and to quantitatively estimate the exchange

and DM parameters in the bulk, it is strongly desirable to directly measure the dispersion re-

lation. In addition, such microwave spectroscopy has only been performed in noncentrosym-

metric ferromagnets to date. Investigation on the noncentrosymmetric antiferromagnets has

been largely unexplored, since for long-wavelength (k ∼ 0) microwaves, antiferromagnetic

magnons cannot be excited in the experimentally reachable energy range using microwave

network analyzers. A high-frequency (sub-THz) electron-spin resonance experiment may be

one possibility, but the k dependence measurement seems to be difficult. Hence, for anti-

ferromagnetic magnons, neutron inelastic scattering is the only practical tool that can be

used to obtain the dispersion relations. In this section, we will review recent studies of the

asymmetric dispersion relations in noncentrosymmetric magnets using the inelastic neutron

scattering technique. Focus will be given to the two archetypal noncentrosymmetric mag-

nets: the celebrated itinerant chiral magnet MnSi and the relatively new noncentrosymmetric

antiferromagnet α-Cu2V2O7.

4.1 Itinerant noncentrosymmetric ferromagnet MnSi

The first direct observation of an asymmetric magnon dispersion using inelastic neutron

scattering was carried out on the prototypical itinerant chiral magnet MnSi. This compound

has been of considerable interest for almost half a century and is now attracting renewed

interest because of the discovery of an intriguing skyrmion-lattice phase under finite magnetic
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Fig. 6. (Color online) (a) and (b) Polarized-neutron small-angle scattering results for MnSi under magnetic

field (a) H = 0.4 T (conical) and (b) H = 0.7 T (fully polarized) observed at T = 15 K. (c) Intensity difference

between the +P⃗0 and −P⃗0 polarization directions of the incident neutrons. Reprinted with permission from

Ref. 50. Copyright (2015) by the American Physical Society.

field and temperature.44 MnSi crystallizes in the space group P213; the crystal structure is

noncentrosymmetric and chiral. Under zero external magnetic field, MnSi exhibits long-range

helical magnetic order at Tc ∼ 29.5 K, with the long-wavelength modulation characterized

by the modulation vector q⃗ ∼ (0.016, 0.016, 0.016) (r.l.u.).45, 46 The single-q⃗ helical structure

transforms into a conical structure under a finite magnetic field. Then, with a sufficiently large

external field (H > 6000 Oe at base temperature), the field-induced ferromagnetic phase (or

fully polarized state) is stabilized.47

The asymmetric magnon dispersion was predicted theoretically for this compound based

on its microscopic model Hamiltonian,29 as well as more generally on the symmetry ar-

gument.28 Experimentally, there have been two pioneering works on the detection of the

magnon-dispersion asymmetry in this compound. Both of them used the polarization anal-

ysis of inelastic thermal-neutron scattering. One reported that the ferromagnetic magnon ex-

citation spectrum becomes asymmetric for ±k⃗ when the magnons with clockwise and coun-

terclockwise rotations were separately observed using the polarization analysis,48 whereas

the other observed the change in the magnon peak position by reversing the external mag-

netic field direction (i.e., magnetization direction).49 Although these observations suggest the

asymmetric dispersion relation of the ferromagnetic magnons in MnSi, the limited Q and

ℏω resolutions of the available spectrometers at the time of the experiments prohibited them

from directly observing the whole dispersion relation curve. This situation has changed with

current state-of-the-art neutron spectrometers.

Recently, the asymmetry of the magnon dispersion has been further investigated using

polarized neutron small-angle scattering (SANS).50 As a result of the small gap energy Eg
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Fig. 7. (Color online) Experimental setup for the detection of the ferromagnetic magnon dispersion shift in

the vicinity of Q⃗ ∼ 0 using the cold-neutron triple-axis spectrometer CTAX. The momentum transfer Q⃗ was

set along the crystallographic [111] axis. The external magnetic field was fixed either antiparallel (H > 0) or

parallel (H < 0) to Q⃗. From Ref. 51.

of the ferromagnetic magnons in MnSi, the magnon dispersion bottom is close to the elastic

channel, hindering the direct detection, and hence polarized neutrons were utilized. At a suf-

ficiently high temperature compared with the gap energy (kBT ≫ Eg), both neutron-energy-

loss and neutron-energy-gain scattering processes are almost equally likely, resulting in two

similar-intensity peaks at positive (ℏω > 0) and negative (ℏω < 0) energy transfer. For the

asymmetric magnon dispersion [Fig. 1(a)], the magnon dispersion bottom is located at finite

k⃗, and hence the positive-energy magnons (shifted to −k⃗) have the opposite rotation direction

from the negative-energy magnons that are shifted to +k⃗ (not shown). Using polarized neu-

trons to distinguish the rotation direction of the spin precession, Grigoriev et al.50 succeeded

in separately observing the positive-energy and negative-energy branches of the asymmet-

ric magnons in MnSi without energy analysis. Figures. 6(a) and 6(b) show the results of the

polarized neutron small-angle scattering measurements in the conical (µ0H = 0.4 T) and

fully polarized (µ0H = 0.7 T) states in MnSi. By reversing the incident neutron polarization

P0, they showed that the maximum of the scattering intensity moves from the right (−P⃗0)

to the left (P⃗0) side of the origin. The difference in the scattering intensity between the two

polarization states is shown in Fig. 6(c). For a given polarization state of the incident neu-

trons, one side of the origin shows a higher scattering intensity than the other side, indicating

that the positive- and negative-energy branches with the bottoms at −k⃗ and +k⃗, respectively,

correspond to the spin dynamics with the opposite rotation. This result, although indirectly,

confirms the asymmetric shift of the magnon dispersion in the noncentrosymmetric chiral

MnSi.

Direct measurements of the magnon dispersion in MnSi in the low-energy region have

been recently performed by one of us using small-angle inelastic neutron scattering.51 In
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Fig. 8. (Color online) Representative constant-Q⃗ scans measured at T = 27 K. (a) and (b) h = 0.04 (r.l.u.);

(c) and (d) h = 0.05 (r.l.u.); (e) and (f) h = 0.06 (r.l.u.). The external field was H = 5 kOe for (a, c, e), and

H = −5 kOe for (b, d, f). The background was removed using the base temperature data. The solid lines are the

results of a resolution-convoluted fitting to the intrinsic Lorentzian type peak function. From Ref. 51.

this experiment, to realize sufficiently high Q and ℏω resolutions, a tight collimation setup

with a cold-neutron triple-axis spectrometer was employed. The combination of the long-

wavelength cold neutrons and tight collimations before and after the sample shown in Fig. 7

enabled us to achieve high Q and ℏω resolutions, ∆Q ≃ 0.01 Å−1 and ∆ℏω ≃ 0.1 meV.

The inelastic scattering spectra obtained at T = 27 K under the external magnetic field

H = 5 kOe parallel and antiparallel to the momentum transfer are shown in Fig. 8. Exem-

plified by the spectrum at Q⃗ = (0.05, 0.05, 0.05) (r.l.u.) under H = 5 kOe, one observes the

inelastic magnon peak only in the negative-energy region (ℏω < 0), where neutrons gain en-

ergy from the system. If one reverses the external magnetic field direction to H = −5 kOe,

then the inelastic peak appears only in the positive-energy region (ℏω > 0). The spectra ob-

served at different Q⃗ positions exhibit qualitatively identical behavior, confirming that this

asymmetric spin-dynamics is common to all k⃗-vectors.

The detailed balance law for the neutron inelastic scattering function is given by

S (Q⃗, ℏω) = eℏω/kBT S (−Q⃗,−ℏω), (10)

where kB is the Boltzmann constant. At T = 27 K and for the low-energy range of the present

observation (ℏω < 0.4 meV ∼ 5 K), the temperature factor is almost unity as eℏω/kBT ≃
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Fig. 9. (Color online) Experimentally obtained magnon dispersion in the low-Q⃗ region in the induced ferro-

magnetic state of MnSi. The open circles are for H = −5 kOe, whereas filled ones for H = 5 kOe. The solid

lines are expected quadratic dispersion relations, whereas the dashed lines are counterparts to the solid lines that

was not observed in the experiment. From Ref. 51.

1. For the centrosymmetric case where Q⃗ and −Q⃗ are equivalent S (Q⃗, ℏω) ≃ S (Q⃗,−ℏω).

Hence, in centrosymmetric magnets, a constant-Q scan will show two inelastic peaks that are

symmetrically located around ℏω = 0 at positive and negative energies. On the other hand, for

the noncentrosymmetric case, where Q⃗ and −Q⃗ become inequivalent, this is not necessarily

the case, that is, the positive-energy and negative-energy peaks may not appear symmetrically

around ℏω = 0. The latter is consistent with our observation of the magnon dispersion in

MnSi, where one observes only a single peak appearing at either positive or negative energy

depending on the external magnetic field direction. More specifically, for the shifted magnon

dispersion expected for a noncentrosymmetric ferromagnet shown in Fig. 1(a), according to

Eq. (10), the spinwave excitation energies for ℏω > 0 and ℏω < 0 differ, since they correspond

to the −k⃗ and +k⃗ modes, respectively; for the magnon excitation at a given energy ℏω0 and

momentum k⃗, its counterpart on the negative-energy side −ℏω0 is not observed at k⃗ but instead

at −k⃗. In other words, the asymmetric appearance of the magnon excitation spectrum is direct

confirmation of the asymmetric magnon dispersion shift in MnSi.

The experimentally deduced dispersion relation using the estimated magnon energies

measured at several Q⃗ positions is shown in Fig. 9. For the negative magnetic field H =

−5 kOe, which is parallel to the momentum transfer direction, the magnon dispersion is

clearly shifted to a positive momentum transfer. Owing to the limitation of the experiment,
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a sufficiently low-Q⃗ region for the complete measurement of the dispersion is not reachable.

Therefore, only the magnon dispersion on the +Q⃗-side, which shows the expected quadratic

behavior for a ferromagnet, was observed. Nevertheless, it is clear that the observed magnon

peak positions are in perfect agreement with the shifted magnon dispersion given in Eq. (1)

as shown by the purple line in Fig. 9. When the magnetic field is reversed to H = +5 kOe, the

dispersion shift appears in the opposite direction, and thus the positive-energy magnon, which

would appear at an energy beyond the range of the measurements, was not observed. In con-

trast, its counterpart on the negative-energy side, which appears within the measuring range,

can be observed and shows the same quadratic behavior (the green line in Fig. 9). Taking

into account the detailed balance law for noncentrosymmetric magnets, Eq. (10), this result

is consistent with the shifted asymmetric dispersion relation, with which the shift direction

is determined by the relationship between the DM interaction and magnetization direction.

Since the magnetization direction for the fully polarized ferromagnetic state can be controlled

by the external field, this result indicates that the magnon propagation direction can be con-

trolled by the external magnetic field. Further neutron-scattering studies on nonreciprocal

magnon dispersions in a wider external field range have been recently reported.52, 53

4.2 Insulating noncentrosymmetric antiferromagnet α-Cu2V2O7

Noncentrosymmetric antiferromagnets have been less explored in terms of the nonre-

ciprocity of the magnon propagation to date, probably because microwave spectroscopy,

which has been widely and successfully used for ferromagnetic materials, cannot be eas-

ily applied to antiferromagnets, as noted earlier. Neutron inelastic scattering, on the other

hand, has no fundamental restriction on exciting finite-Q⃗ magnons, and hence is an ideal tool

capable of observing magnons in noncentrosymmetric antiferromagnets. The first confirma-

tion of the magnon dispersion shift in the noncentrosymmetric antiferromagnets has been

recently reported for the noncentrosymmetric antiferromagnet α-Cu2V2O7.54 This compound

belongs to the orthorhombic space group Fdd2,55, 56 and only the Cu2+ ions are magnetically

active with S = 1/2, whereas V5+ is nonmagnetic. Below TN = 33.4 K, the S = 1/2 Cu2+

spins form a nearly collinear antiferromagnetically ordered state with the dominant magnetic-

moment component along the crystallographic a-axis as a result of the anisotropic exchange

interaction.57, 58 In addition, the DM interaction gives rise to the field-induced canting of the

ordered moment and weak ferromagnetism below TN when an external magnetic field is ap-

plied along the c-axis. However, since the field-induced spin canting is small, estimated to

be as small as 4.0◦ in the small-field limit,59 the ordered magnetic structure at zero field is
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-q +q

Fig. 10. (Color online) (a) Magnetic scattering intensity map for α-Cu2V2O7. For the BT7 data, the scattering

intensity was obtained by subtracting the paramagnetic data at T = 50 K from the base temperature T =

2 K data. (b) Scattering intensity calculated using the linear spinwave theory with the 16-sublattice model

described in the text. Only two branches can be seen due to the negligible structure factor for the other branches.

(c) Experimentally determined dispersion relations with the calculated ones. The gray lines denote the almost

invisible spinwave branches. (d) Spin network of α-Cu2V2O7 with the dominant exchange interactions J1, J2,

and J3. The red and blue spheres stand for the two sublattices with opposite spin directions. From Ref. 54.

assumed to be collinear, ignoring the weak ferromagnetic component.

Figure 10 shows a map of the magnetic scattering intensity a function of energy transfer

and momentum transfer obtained by subtracting the paramagnetic background (T = 50 K)

from the base temperature data at T = 2 K. The data was taken along the b⃗∗-direction around

the Q⃗ = (0, 2, 0) reflection, where the magnetic Bragg peak from the collinear antiferro-

magnetic ordering appears. The result [Fig. 10(a)] clearly shows two magnon branches in

the excitation spectrum and a linear crossing of the two branches at the antiferromagnetic

zone center. This magnon dispersion shift is indeed due to the DM interaction expected in the

two-sublattice antiferromagnetic model described in Sect. 2 [Fig. 1(b)]. As a result of the DM

interaction, two originally degenerate modes with opposite rotation (precession) split into two

nondegenerate modes and symmetrically shift to +q and −q [Fig. 10(b)], where ±q denotes

the momentum transfer along the b⃗∗-direction measured from (0, 2, 0). The small but finite

gap in the excitation spectrum was estimated to be ∆ = 0.75(6) meV using a high-energy-

resolution triple-axis spectrometer. This spinwave gap indicates that sufficiently strong easy-

axis-type anisotropy fixes the magnetic structure to be collinear and overwhelms the effect

of the DM interaction, which prefers a helical magnetic structure. In other words, the static

ordered state due to the anisotropic interaction, which is more dominant than the DM inter-

action, gives rise to commensurate Bragg peaks, whereas incommensurability due to the DM
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Fig. 11. (Color online) (a-b) Magnetic scattering intensity maps for α-Cu2V2O7 in applied external magnetic

field. The external magnetic field along the a-axis was applied with (a) H = +60 kOe and (b) H = −60 kOe.

The dashed lines denote the most intense branches of the calculated spinwaves. From Ref. 54.

interaction only appears in the fluctuating part of the spin dynamics, and hence in the inelastic

response.

The external magnetic field affects and modifies the magnon dispersion in an interesting

manner. The magnetic scattering spectra under an external field of H = ±60 kOe are shown

in Fig. 11. The magnetic field was applied in the vertical direction and along the crystallo-

graphic a-axis, along which the dominant component of magnetic moments aligns. For the

positive magnetic field H = 60 kOe, the branch that has the dispersion minimum on the −q

side decreases in energy, whereas the energy of the other branch increases. In contrast, for

the negative magnetic field H = −60 kOe, the energy of the +q branch decreases, whereas

that of the −q branch increases. This field dependence of the excitation energy clearly indi-

cates the opposite precession of the spin dynamics corresponding to the two branches. It is

noteworthy that this external-field dependence of the magnon dispersion is similar to that of

the Rashba split electron bands, where the Zeeman energy gives rise to the opposite response

for the up- and down-spin bands of electrons. The relationship between this observation for

the antiferromagnetic magnons and the electronic band structure will be further discussed in

Sect. 6.

Although the essence of the magnon dispersion shift is captured by the simple two-

sublattice antiferromagnetic spin model with the uniform DM interactions discussed in

Sect. 2, the reality in α-Cu2V2O7 is far from such a simple model. Indeed, combined den-

sity functional theory (DFT) calculations and quantum Monte Carlo simulations suggest a

complex spin-interaction network, which can be given to the first approximation as

H =
∑

i, j

Ji jS⃗ i · S⃗ j +
∑
k,l

Gkl(S x
kS x

l − S y
kS

y
l − S z

kS
z
l )

+
∑
k,l

D⃗kl · (S⃗ k × S⃗ l) − gµB

∑
i

S⃗ i · H⃗, (11)
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where the summation
∑

i, j

(∑
k,l

)
is taken over the nearest, next-nearest, and third-nearest

neighbors (nearest neighbors), and H⃗ denotes the external magnetic field. The ratio of the

nearest, next-nearest, and third-nearest neighbor isotropic exchange parameters, which we

redefine as J1, J2, and J3, was estimated by the DFT calculations as J1 : J2 : J3 = 1.00 :

1.12 : 2.03.60 For the sake of simplicity, the anisotropic exchange and DM interactions are

assumed for the nearest neighbors. Furthermore, from the crystal symmetry and the observed

shift direction of the magnon dispersion, the DM interaction was assumed to be along the a-

axis as D⃗ = (D1a, 0, 0). With the above assumptions and simplification, the observed magnon

dispersion relations are satisfactorily reproduced using the parameters J1 = 2.67(1) meV,

J2 = 2.99 meV, J3 = 5.42 meV, G1 = 0.282(1) meV, and D1a = 2.79(1) meV. The resulting

calculated magnon dispersion is shown in Fig. 10(c). Note that although there are 16 magnon

modes in total as a result of the 16 sublattices in the magnetic unit cell, owing to the collinear

spin structure, the dynamical structure factors for the modes other than the two low-energy

modes are negligible, as shown in Fig. 10(b).

The appearance of the symmetric shifts in the +q and −q directions for the antiferromag-

netic magnons at first glance may suggest that these magnons are not nonreciprocal. Indeed,

if one excites magnons with selected energy and momentum (or wavelength), two magnons

propagating in the opposite directions will be simultaneously created. However, these two

types of magnons in fact correspond to different spin dynamics, as confirmed by the in-field

inelastic neutron scattering experiment, in which the two split branches of the antiferromag-

netic magnons responded to the external magnetic field in the opposite fashion (Fig. 11),

indicating the clockwise and counterclockwise nature of the two split modes. Hence, by ex-

citing the system with not only a specific energy and momentum, but also a specific rotation

direction, one can selectively create unidirectionally propagating magnons. The nonreciproc-

ity of the antiferromagnetic magnons, thus, appears differently from that of the ferromagnetic

magnons. This novel characteristic and its future prospects will be discussed in the next sec-

tion.

5. Future Prospects

The nonreciprocal propagation of magnons in noncentrosymmetric ferromagnets has been

of considerable interest recently because of the possible application for spintronics devices

via the controllable propagation of the magnon spin current. In the past, however, the non-

reciprocal magnon propagation in noncentrosymmetric ferromagnets was investigated using

mostly microwave, optical, or electron scattering spectroscopy, owing to the stringent re-
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quirement for the Q and ℏω resolutions as well as the magnetic field direction. As reviewed

in this article, recent progress in the neutron inelastic scattering technique enables us to ob-

tain the detailed momentum-dependent dispersion of the nonreciprocal magnons. While the

polarized-neutron SANS technique can reveal the overall band shift of the ferromagnetic

magnons in the vicinity of Q⃗ = 0, small-angle inelastic scattering provides microscopic in-

formation of isotropic/anisotropic spin-spin interactions and anisotropies through the deter-

mination of the dispersion relation. Such an observation has only recently become possible.

For the study of noncentrosymmetric ferromagnets, this technique will provide indispens-

able microscopic information, which has not been obtained by other means. Note further

that small-angle inelastic scattering was made possible using a reactor-based cold-neutron

triple-axis spectrometer, owing to its versatile flexibility for several experimental settings.

For noncentrosymmetric antiferromagnets, the present neutron scattering technique was

found to be sufficient for the observation of magnon dispersion shifts, at least in α-Cu2V2O7,

where the extraordinarily large DM interaction brings about sizable splitting. Scientifically,

on the other hand, the observation of magnon dispersion splitting in noncentrosymmetric

antiferromagnets opens up many interesting topics for further research. By taking into ac-

count the nonlinear component originating from the asymmetric deformation of the magnon

dispersion due to the DM interaction, Takashima et al. showed that a perfect nonreciprocal

spin-Seebeck effect, where a spin current is allowed to propagate only in one direction re-

gardless of the temperature gradient, is theoretically possible in α-Cu2V2O7.61 Even though

the spin-Seebeck effect has been observed in α-Cu2V2O7,62 the nonreciprocity of the spin

transport generated by a temperature gradient has not been experimentally confirmed. A fu-

ture study to detect the nonreciprocity is of considerable interest, as this result may lead to a

novel method to convert a temperature gradient to a macroscopic magnon spin current.

The double degeneracy of magnon bands in centrosymmetric antiferromagnets may be

regarded as an internal degree of freedom of magnons in an analogy to the spin degree of

freedom for electrons. On the basis of this analogy, Okuma18 and Kawano et al.19 proposed

a possible “spin” texture around specific k⃗ positions, similar to the electron spin texture ob-

served for the Rashba splitting, where spin-momentum locking gives rise to an intriguing

vortex like texture. The linear crossing point in α-Cu2V2O7 may be the simplest case of such

spin-momentum locking, as the magnons in the upper band with q > 0 carry positive spins,

whereas for q < 0, they carry negative spins. Designing the spin-momentum locking and con-

sequently the “spin” texture for highly elaborate spin systems are at the forefront of research,

and one may expect intriguing transport phenomena originating from such momentum-space
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“spin” textures.

The rotation-direction sensitivity of the nonreciprocal magnon propagation has another

interesting aspect proposed theoretically. The difference in phase velocities for magnons with

different rotation directions (i.e., clockwise and counterclockwise) will result in a sponta-

neous magnon birefringence effect. In contrast to the nonreciprocal magnons in ferromag-

nets, the net magnon spin current for antiferromagnets in thermal equilibrium is canceled

out. However, the phase degree of freedom may propagate nonreciprocally even in thermal

equilibrium in noncentrosymmetric antiferromagnets. It was further proposed that since the

DM interaction, the existence of which is linked to the absence of local inversion symmetry,

can be dependent on the electric polarization, the DM parameter may be controlled or varied

by an external electric field.63 As a result, the shift of the magnon dispersion may be tunable

using an electric field, and hence an electric-field-induced magnonic Faraday effect has been

proposed. The utilization of the phase degree of freedom of magnons, as was proposed in the

above discussion, may lead to an intriguing new application for future devices based on the

noncentrosymmetric antiferromagnetic magnons.

6. Conclusions

In this article, we have reviewed recent progress in the observation of the nonreciprocal

magnons in noncentrosymmetric magnets, with particular attention to the inelastic neutron

scattering results. In the prototypical noncentrosymmetric chiral magnet MnSi, the magnon

dispersion relation was observed in the field-induced fully polarized (ferromagnetic) state.

A unidirectional magnon dispersion shift was clearly observed in the experiment, consistent

with earlier studies. It was further shown that the shift direction can be controlled by adjusting

the bulk magnetization direction; this result opens a way to control the propagation direction

of magnons using an external field. It is further commented that owing to the recent progress

in the neutron scattering technique, it is now possible to obtain complementary information

on the nonreciprocal magnon propagation to that obtained by the microwave or other Q ∼ 0

techniques, which may be of significance for understanding and characterizing nonreciprocal

ferromagnets for future device applications.

For noncentrosymmetric antiferromagnets, we have reviewed the recent observation of a

bidirectional magnon dispersion shift in α-Cu2V2O7. Such a magnon dispersion shift was ex-

pected in a recent theoretical study, and was for the first time confirmed in real materials using

neutron inelastic scattering. It was further confirmed that the two split branches correspond

to the spin dynamics with different directions of rotation; one rotates clockwise, whereas
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the other rotates counterclockwise. This shifted magnon dispersion results in nonreciprocal

propagation of phase degree of freedom even in the thermal equilibrium state, which opens

a new way to realize magnon-based nonreciprocal flow. It was further mentioned that there

are several theoretical proposals to utilize the antiferromagnetic magnons, such as an electric-

field-induced magnonic Faraday effect, and hence it is of growing interest to investigate the

potential of the magnons in noncentrosymmetric antiferromagnets for future applications in

magnonic electronics.
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