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Abstract 

 

Modulation of Semiconductor Photoconversion with Surface Modification and 

Plasmon 

 

Joeseph Bright 

 

 Semiconductor devices are the basis of modern technology. Semiconductor-based 

photoconversion devices that convert light into electrical signals have shown potential for light 

energy harvesting and conversion, environmental remediation, and sensors for detection of light, 

chemicals, and biological substances. Despite this potential for use in many applications, 

semiconductor photoconversion devices need further improvement in the photoconversion 

performance. This photoconversion improvement may be manifested as increased 

photoconversion efficiencies for light harvesting devices for power generation such as 

photovoltaics and photoelectrochemical (PEC) cells or improved photoconversion modulation to 

increase the sensitivity of semiconductor photoconversion-based sensors. In addition, alternative 

semiconductor materials to semiconductors that utilize toxic heavy metals such as cadmium and 

lead must be found for use in certain semiconductor photoconversion devices. 

 In this dissertation, three separate projects related to improving the performance of 

semiconductor photoconversion devices are presented. In the first project presented, a rutile 

titanium dioxide (TiO2) nanorod array photoanrode is coated with an ultra-thin porphyrin-based 

metal-organic framework (MOF) layer to improve the overall photoconversion of the 

photoelectrode for solar water splitting. The porphyrin-based MOF coated TiO2 nanorod array 

showed a 2.7x increase in photocurrent versus bare TiO2 nanorod arrays. The porphyrin-based 

MOF layer suppressed surface states on the rutile TiO2 nanorod array and increased charge 

separation and extraction from the rutile TiO2 due to the built-in electric field formed by a depleted 

p-n junction between the porphyrin-based MOF layer and the rutile TiO2 nanorods. 

 In the second project presented, different plasmonic (hot electron injection and plasmon-

induced resonant energy transfer (PIRET)) and non-plasmonic photoconversion enhancement 

mechanisms were tested for modulating photocurrent in PEC-based sensors using Bi3FeMo2O12 

(BFMO) thin film semiconductor photoelectrodes and Hg2+ as a proof-of-concept analyte for 

detection. The possible plasmonic and non-plasmonic photoconversion enhancement mechanisms 

were controlled by choice of conjugated plasmonic nanoprobe between Au and Au@SiO2 core-

shell nanoparticles with the BFMO. The conjugated Au NPs enhanced the BFMO thin film’s PEC 

performance through a combination of plasmonic hot electron injection, PIRET, Fermi-level 

equilibration, and a non-plasmonic internal reflection within the BFMO caused by the conjugated 

Au NPs. The conjugated Au@SiO2 NPs enhanced the BFMO thin film’s PEC performance via 

PIRET and the non-plasmonic internal reflection within the BFMO caused by the Au@SiO2 NPs. 



 

A PEC sensor using the Au NPs as nanoprobes showed sensitivity and selectivity towards Hg2+ 

showing this PEC sensor design’s potential. 

 In the third project presented, based on the comparison study of plasmonic and non-

plasmonic photoconversion enhancement mechanisms with BFMO thin-film photoanodes, a PEC-

based immunosensor utilizing PIRET from Au NP-based nanoprobes conjugated to BFMO thin- 

film photoanodes to modulate photoconversion of the BFMO is synthesized and studied using 

human immunoglobulin G (IGG) as a proof-of-concept analyte. The plasmonic Au NPs are 

conjugated in the presence of human IGG via antibody-antigen reactions. The resulting PIRET-

based PEC immunosensor shows some sensitivity towards IGG detection. However, the sensitivity 

of the PIRET-based PEC immunosensor is limited due to the large separation distance (~10 nm) 

between the plasmonic Au NPs the BFMO thin films from the antibody-antigen sandwich used for 

Au NP conjugation. As such, further work must focus on improving PIRET between the Au NP 

based nanoprobes and the BFMO thin film photoanodes. 
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Chapter 1: Introduction 

1.1 Research Motivations 

Semiconductor devices are the basis of modern technology such as computers, cell phones, 

solid-state lighting, lasers, etc.[1] One type of semiconductor device of interest is semiconductor-

based photoconversion devices where incident light is converted into useful electrical signals. The 

useful electrical signals can be photoinduced changes to baseline currents, voltage, and resistance 

through the semiconductor. Semiconductor-based photoconversion devices can be used for several 

applications including light energy harvesting and conversion into more useful forms of energy 

such as heat, electricity or chemical energy, environmental remediation, and sensing of light, 

chemicals, biological substances. 

Despite the usefulness of semiconductor photoconversion devices, these devices need 

further improvement to their photoconversion performance. Specific examples of the need for 

improved photoconversion performance are improved light energy harvesting and conversion 

efficiencies to electrical energy or chemical energy in photovoltaics and photoelectrochemical 

(PEC) cells respectively and improved photoconversion modulation response in the presence of 

analytes to increase the sensitivity of photoconversion-based sensors. While certain photovoltaic 

devices such as those based on silicon have become commercially viable, thin-film photovoltaics 

with commercially viable efficiencies are currently based on semiconductors composed of 

compounds containing toxic heavy metals such as cadmium (Cd), lead (Pb), tellurium (Te), and 

selenium (Se) or extremely rare metals such as indium (In).[2, 3] As such, development of 

replacement semiconductors to replace heavy metal containing semiconductors is needed for these 

photoconversion devices.  

In the case of PEC cells, commercial viability for solar energy harvesting applications has 

not been achieved due to materials challenges for finding semiconductors with sufficient light 

absorption, charge transport, and long-term chemical stability under operation to be efficient and 

stable enough for commercial application.[4, 5] As such, new semiconductor materials and materials 

combinations must be designed and tested to make PEC cells commercially viable for solar energy 

harvesting applications. However, applications that do not require high photoconversion device 

efficiencies but rather emphasize the ability to modulate the photoconversion performance of 

devices in response to the presence of some stimulus such as photoconversion-based sensors can 

utilize the PEC cell as a device architecture. In order for photoconversion-based sensors utilizing 

PEC cells as the device architecture to be commercially viable, new mechanisms for modulating 

photoconversion processes within semiconductor photoelectrodes in PEC cells must be developed. 
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1.2 Objectives 

The research presented in this dissertation shows three projects that focus on enhancing 

and/or controllably modulation photoconversion processes of semiconductor photoelectrodes 

within PEC cells. The objectives of the research presented within this dissertation are as follows: 

• Design and test an ultra-thin porphyrin-based metal-organic framework overlayer onto

metal-oxide based rutile titanium dioxide nanorod array photoelectrodes in order to

enhance the performance towards solar water-splitting reactions.

• Compare the effectiveness of different photoconversion enhancement mechanisms from

plasmonic metal-based nanoparticles evaluating mechanisms of both plasmonic and non-

plasmonic origin for modulating photoconversion of semiconductor photoelectrodes for

use as photoelectrochemical sensors.

• Practically apply plasmon-induced resonant energy transfer (PIRET) from plasmonic metal

nanoparticles conjugated with semiconductor photoelectrodes for use in

photoelectrochemical immunosensors for protein biomarker detection.

1.3 Innovation and Significance 

In the first research presented, a porphyrin-based metal organic framework overlayer was 

coated onto a rutile titanium dioxide nanorod array for photoelectrochemical water-splitting. While 

metal-organic framework overlayers have been coated onto metal-oxide photoelectrodes including 

specifically rutile titanium dioxide nanorod arrays, there are no examples in literature of porphyrin-

based metal-organic framework overlayers on metal oxide photoelectrodes.[6,7] The research 

presented here demonstrates the potential utility of such porphyrin-based metal-organic 

frameworks as overlayers for improving the PEC water-splitting performance of metal-oxide 

photoelectrodes. 

The second research project that evaluates different plasmonic and non-plasmonic 

photoconversion enhancement mechanisms from plasmonic metal nanoparticles for their use in 

modulating photoconversion within semiconductors. Most PEC sensors that utilize plasmonic 

energy transfer from plasmonic metals to modulate semiconductor photoconversion utilize almost 

exclusively the injection of hot electrons from plasmonic metal to semiconductor[8-10] and Förster 

resonant energy transfer (FRET) to plasmonic metal nanoparticles from a semiconductor to 

modulate the photocurrent of semiconductor photoelectrodes.[11-13] Few examples of PIRET-based 

photoconversion modulation in PEC sensors exist in literature and have no physics-based 

explanations of the resulting photoconversion modulation. As a result, no studies comparing 

different plasmonic and non-plasmonic photoconversion enhancement mechanisms for use in PEC 

sensors has not performed.  The presented research remedies this lack of comparative studies while 

also providing a physics-based evaluation of the viability of different plasmonic and non-

plasmonic photoconversion modulation mechanisms for use in PEC sensors. 
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 The last research project introduces a new concept for PEC sensors – the “turn-on” PIRET-

based PEC immunosensor for protein biomarker detection. The non-radiative energy transfer 

nature of PIRET allows for it to occur over small separation distances between the plasmonic metal 

nanoparticle and semiconductor acceptor unlike hot electron injection processes that need direct 

contact between plasmonic metal nanoparticles and semiconductor.[14,15] This ability to operate 

over short separation distances is necessary to overcome the separation distances induced by the 

antibody-antigen sandwich used for capturing analytes and secondary signal probes. While the 

ability to occur over small separation distances is also possible with FRET-based PEC sensors, 

FRET-based PEC sensors are typically “turn-off” devices that utilize quantum dots with long 

carrier dephasing times that are made of toxic heavy metals such as Cd, Pb, Se, and Te.[11-13] PIRET 

does not require quantum dots to function effectively, allowing for non-toxic metal-oxide based 

semiconductors to be used as the semiconductor photoelectrode materials. In addition, the overall 

energy transfer efficiencies of PIRET are higher than hot electron injection, enabling more 

sensitivity with PIRET-based PEC sensors.[14, 15] As such, the presented research lays a foundation 

for designing PEC-based sensors utilizing PIRET to modulate photoconversion within 

semiconductor photoelectrodes. 
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Chapter 2: Technical Background 
 

2.1 Solar Energy Harvesting 
 

 The amount of incident sunlight reaching the Earth’s surface each year is enough to provide 

7500 times the world’s current yearly energy demands.[1] There are various methods to harvest the 

energy from solar radiation and convert it into other forms of energy that are useful within society 

such as heat and electricity. Such methods include photovoltaics, solar-thermal technology, 

photosynthetic microbe-based biofuels, and photoelectrochemical (PEC) cells or photocatalysis. 

Of the listed techniques, photovoltaics is the most commonly used solar energy harvesting 

technology. However, thin-film photovoltaics that generate electricity from photoexcited charge 

carriers are not efficient or cheap enough to manufacture to be currently economically competitive 

with fossil fuels on a widescale.  

 For the purposes of this dissertation, research focus will be spent on solar energy harvesting 

using semiconductor photoconversion from photoelectrochemical (PEC) cells and photocatalysis 

only. The basic physics of semiconductors and semiconductor materials in general must be 

discussed before discussing PEC cells and photocatalysis. In addition, discussion on the concept 

of the semiconductor p-n junction is necessary for context on the research within Chapter 3 of this 

dissertation. 

 

2.2 Semiconductors 
 

 Semiconductors are a class of materials that is the basis of most electronics technology 

since the 1950’s due to the advent of single crystal silicon manufacturing.[2] The main property 

that distinguishes semiconductors from metals and insulator materials is the small finite energy 

gap, known as a bandgap, between the valence band and conduction band of the material.[3-4] The 

valence band and conduction bands may also be called the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) respectively particularly within the 

chemistry community. Metals have overlapping valence and conduction bands while insulators 

have extremely large bandgaps that significantly limit charge carrier movement through the 

material. There is some conflict as to the range of bandgap energies that constitute a semiconductor 

versus an insulator. Traditional definitions state semiconductors have bandgaps between 1 – 2 

eV.[3] This definition has been relaxed somewhat in recent years to accommodate wider bandgap 

materials that are used for optical devices. For the purposes of this dissertation, semiconductors 

will be treated as materials with bandgaps within the energy range of the solar spectrum (1.0 – 4.0 

eV). 

 For solar or light energy harvesting applications, the optical and charge transport properties 

of semiconductors are of the most interest. Semiconductors have several unique properties due to 
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their small bandgaps. Starting with optical properties, a semiconductor can absorb light photons 

with energy greater than or equal than its bandgap (hν ≥ Eg).
[9,10] The incident light energy results 

in excitation of an electron from the ground state in the valence band to an excited state within the 

conduction band. The resulting electron vacancy in the valence band, typically considered a 

quasiparticle called a “hole”, is also a charge carrier that can move through the semiconductor.[9-

11] There are two different types of semiconductor bandgap types as depicted in Figure 2.1.  

 

Figure 2.1: Band diagrams (E-k diagrams) illustrating the types of semiconductor bandgaps. 

 

 The first type of semiconductor bandgap is a “direct” bandgap. A direct bandgap has 

valence and conduction bands with matching crystal momenta (k).[3,5] The second type of 

semiconductor bandgap is an “indirect” bandgap where the valence and conduction bands have 

mismatching crystal momenta with a momenta difference of Δk. The mismatched valence band 

and conduction band momenta of an indirect bandgap requires an additional source or sink of 

momentum such as a phonon to facilitate an electron transition between valence and conduction 

bands.[3,5] As such, absorption coefficients are significantly lower for indirect bandgap 

semiconductors than direct bandgap semiconductors that do not require an additional momentum 

source or sink to facilitate an electronic transition.[3,6]  

Electrons can have two competing possibilities happen after they are photoexcited from 

the valence band to the conduction band in a semiconductor. The excited electron can return its 

ground state by recombining with a hole with the excess energy released through either radiative, 

non-radiative or Auger recombination.[5-7] The other possibility is that the electron or hole can be 

extracted from the semiconductor through different ways (e.g. transfer to an external circuit, 

transfer to a chemical species, etc.) before recombination takes place. Determining whether excited 

electrons and holes recombine or are extracted from a semiconductor depends on a variety of 

semiconductor material properties such as excited carrier lifetimes, electron and hole 
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conductivities, electron and hole mobilities, etc. in addition to the interface or surrounding media 

around the semiconductor.[5-7]  

One of the most important properties of a semiconductor is whether negatively charged 

electrons or positively charged holes are the majority or dominant charge carrier population within 

the semiconductor. A n-type semiconductor with electrons as the dominant carrier has a significant 

non-negligible population of electrons within the conduction band at equilibrium conditions. This 

results in a Fermi level (EF), defined as the energy at which the probability of finding a free electron 

is 50 percent, that is close to the conduction band.[3-5] Similarly, a p-type semiconductor with holes 

as the dominant carrier has a negligible free electron population within the conduction band at 

equilibrium.[3-5] The lack of free electrons within the conduction band results in a Fermi level close 

to valence band. Figure 2.2 illustrates this difference. To alter the type of dominant charge carrier 

or other electrical or optical properties of a semiconductor, introduction of dopant ions into the 

semiconductor may be performed. A classic example of this is phosphorous or aluminum doping 

of silicon to form n-type or p-type silicon with high free carrier densities respectively.[8]   

 

Figure 2.1: Types of semiconductors on basis of majority charge carrier. 

 

Additionally, the electrical conductivity of a semiconductor increases with temperature and 

light illumination (known as photoconductivity).[4] The increase in a semiconductor’s electrical 

conductivity results from charge carrier excitation from valence band or defect states to conduction 

band either thermally or by light absorption respectively. These excited charges in the conduction 

band are more easily transported through the semiconductor than unexcited charge carriers in the 

valence band due to the delocalized nature of electrons within a semiconductor’s conduction band. 

However, conductivity is compromised at elevated temperatures due free carrier scattering from 

collisions with phonons and ion impurities. As such, temperature control is a necessity for 

semiconductor devices.[4] 
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 The “p-n junction” is a layered combination of n-type and p-type semiconductors in direct 

contact with each other. Figure 2.3 illustrates the electronic structure of the semiconductors before 

and after formation of a p-n homojunction. The resulting contact between n-type and p-type 

semiconductors causes equilibrium electron and hole populations to form within the 

semiconductors, as denoted by a constant Fermi level (EF) across both semiconductors).[7, 9, 10] To 

reach this equilibrium, a significant migration of free electrons from n-type semiconductor to p-

type semiconductor within part of the n-type semiconductor near the contact with the p-type 

semiconductor. A similar migration of free holes from the p-type semiconductor to the n-type 

semiconductor near the contact between semiconductors also occurs. The migration of free 

electrons and holes from the n-type and p-type semiconductors and introduction of those migrated 

electrons and holes into the p-type and n-type semiconductors respectively results in the region 

immediately surrounding the p-n junction having negligible free charge carriers. This region is 

colloquially referred to as a “depletion zone”.[7, 9, 10] The width of this depletion zone depends on 

the charge carrier densities of the n-type and p-type semiconductors with higher carrier densities 

resulting in a shorter depletion zone width. The formation of the depletion region within the p-n 

junction also results in the formation of a built-in electric field (
𝐸
→

𝑏𝑖
) and built-in voltage (Vbi) with 

magnitude related to the difference in Fermi levels in the p-type and n-type semiconductor. 

 

Figure 2.2: Equilibrium energy band diagram of a p-n homojunction as a function of depth (x) 

within semiconductors. 

 Once a semiconductor p-n junction is illuminated, electrons are excited from valence band 

to conduction band. This results in a new non-equilibrium carrier distribution throughout the p-n 
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junction.[6, 7, 11] The traditional approach to evaluate this non-equilibrium is treat electrons and 

holes separately by giving both electrons and holes their own Fermi levels (called a quasi-Fermi 

level) that reflect the non-equilibrium carrier distributions within the p-n junction. The non-

equilibrium carrier distribution results in charge carriers moving throughout the p-n junction to 

reach a new equilibrium condition. [6, 7, 11] The flow of charge carriers is a photocurrent that can be 

used to generate electricity in the case of photovoltaics or produce chemical products in the case 

of PEC cells or photocatalysts.[11] The amount of current produced by a photovoltaic device is 

related to the balance of photoexcited electron and photoexcited hole generation with photoexcited 

electron recombination with photoexcited holes. Several factors affect the both photogeneration 

rates and recombination rates. These include but are not limited to the absorption coefficient of the 

semiconductor, the intensity of light-illumination with the semiconductor device, and charge 

transport properties (i.e. electron/hole mobilities, electron/hole diffusion lengths). The separation 

between quasi-Fermi levels for electrons and holes results in a photovoltage being generated. In 

the case of p-n junction, the upper limit for this photovoltage is ultimately the original built-in 

voltage from the formation of the semiconductor p-n junction. Thus, the upper limit to 

photovoltage which occurs at an open-circuit condition with no flowing current, is directly tied to 

selection of materials used to create the semiconductor p-n junction device.[11]  

 

2.3 Photoelectrochemical (PEC) Cells and Photocatalysis  

 

 The main solar energy harvesting research topic that utilizes semiconductor 

photoconversion devices discussed in this dissertation is utilization of photocatalysis or 

photoelectrochemical (PEC) cells.[12-32] Unlike photovoltaics that directly generate electricity 

using photoexcited charge carriers from semiconductors, semiconductor-based photocatalysts and 

photoelectrochemical cells directly use photoexcited charge carriers to drive reduction-oxidation 

(redox) reactions on the surface of a semiconductor immersed in an electrolyte solution. The main 

advantage to photocatalysis and PEC cells in comparison to photovoltaic devices for solar energy 

harvesting is that solar energy is directly stored in the form of chemical bonds of photocatalytic 

reaction products. The reaction products could be used for either chemical feedstock for 

manufacturing or for power generation. Figure 2.4 shows the basic operating principles for 

photocatalysts and photoelectrochemical cells. The working principle illustrated applies regardless 

of the chemical reaction that is being performed on the photocatalyst/photoelectrode. Common 

photocatalytic reactions that are heavily researched are solar water-splitting into H2 and O2 gas[12-

28], CO2 reduction in the presence of protons into hydrocarbons[29-31], and fixation of atmospheric 

nitrogen (N2) into nitrogen containing compounds such as ammonia (NH3)
[32]. 

 As can be seen from Figure 2.4 below, sunlight illumination and subsequent photoexcited 

charge generation occurs within the bulk of the semiconductor photocatalyst (Figure 2.4a). Both 

electrons and holes can migrate to the surface of the photocatalyst with a barrier for transport to 

the semiconductor/electrolyte interface for the photocatalyst’s majority charge carriers due to band 

bending that occurs due to Fermi level equilibration between the semiconductor photocatalyst and 

the redox potential of the electrolyte solution used that favors minority charge transport to the 
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semiconductor/electrolyte interface. (Figure 2.4b). Once the photoexcited electrons and holes 

reach the surface, they can be consumed in redox reactions that produce potentially useful 

products. 

 

 

Figure 2.3: Basic operating principles for particle-based photocatalysts; (a) excited electron-hole 

(e-h) pair generated upon light excitation; (b) Photoexcited electrons (e-) and holes (h+) separate 

and migrate to photocatalyst surface; (c) Photoexcited electrons and holes drive reduction and 

oxidation reactions at photocatalyst surface using reduced (RED) and oxidized (OX) forms of 

chemicals as reaction reactants and products. 

 

 In the case of photoelectrodes in a PEC cell (Figure 2.5), majority carriers travel towards 

back contact of the photoelectrode to be transported to the counter electrode used to complete the 

circuit in the PEC cell. At the semiconductor/electrolyte interface, accumulated charge carriers, 

holes and electrons for n-type photoanodes (Figure 2.5a) and p-type photocathodes (Figure 2.5b) 

respectively, either are injected into chemical species in the electrolyte or recombine with 

accumulated charge carrier of opposite charge. In both the case of particulate photocatalysts or 

semiconductor photoelectrodes, both electrons and holes must be extracted from the photocatalyst 

material for efficient operation or significant recombination due to an excess of the unextracted 

carrier will limit the efficiency of the process. 
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Figure 2.5: Basic operating principles for (A) photocatalysts and (B) n-type photoanodes in 

electrolytes; Blue circles: electrons; Gray circles: holes; Red circles or rectangles: photocatalyst or 

photoanode material; Tan circle: potentiostat; Gray line: counter electrode. 

 

 The performance of semiconductor-based photoconversion devices such as photovoltaics, 

photocatalysts, photoelectrochemical cells is tied directly to three processes – (1) light absorption 

by the device, (2) photoexcited charge transport within the device, and (3) injection of photoexcited 

charge to chemical species (like in photocatalysts and PEC cells) or an external circuit (in the case 

of photovoltaics). Photocurrent from light harvesting devices can be expressed as in Equation 2.1: 

[19] 

𝐽𝑝ℎ = 𝐽𝐴𝑏𝑠 ∙ 𝑃𝑆𝑒𝑝 ∙ 𝑃𝐼𝑛𝑗𝑒𝑐𝑡,     (2.1) 
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where Jph is the measured photocurrent of a device, JAbs is the theoretical photocurrent a device 

should have based on its light absorption spectrum assuming all photoexcited charge is harvested, 

PSep is the efficiency for photoexcited charge separation and transport within a device without 

recombination, and PInject is the efficiency for photoexcited charge injection to surface adsorbed 

chemical species as in the case of photocatalysts and photoelectrodes in PEC cells or an external 

circuit as in the case of photovoltaics. As such, improving photoconversion efficiencies in 

semiconductor-based light harvesting devices can only be done by improving these three basic 

processes. 

 Based on the processes just described in Figure 2.4, Figure 2.5, and Equation 2.1, there are 

several properties that ideal photocatalyst and photoelectrode materials must have. First, the 

photocatalyst/photoelectrode material should have a bandgap well matched to the solar spectrum 

to increase Jabs while still having sufficient energy to overcome overpotentials associated with 

driving the desired chemical reaction. To use a photocatalyst/photoelectrode based on a single 

material designed for driving solar water-splitting as an example, the ideal bandgap for a single 

photocatalyst/photoelectrode system is 1.9 – 2.2 eV due to reaction energetics and overpotentials 

associated with water-splitting[13] with recent studies placing realistic efficiencies for single 

material junction photoelectrodes at 15.6% for 2.05 eV bandgap material[22].  

 Second, the photocatalyst/photoelectrode should have sufficient charge transport 

properties (i.e. electron and hole mobilities and diffusion lengths) to enable minority carriers to 

diffuse from the bulk to the semiconductor/electrolyte interface while the material is still optically 

thick enough to absorb most incoming sunlight. This balance between charge transport and optical 

absorption lengths is one of the major challenges in photocatalysis/PEC cell materials research and 

highlights that the three underlying processes in semiconductor-based photoconversion are 

linked.[13-19]  

 Third, the photocatalyst/photoelectrode material must have good catalytic ability (i.e. fast 

charge transfer kinetics) for driving the desired photocatalytic/photoelectrochemical reaction. If 

the photocatalyst/photoelectrode has low catalytic activity for driving a certain reaction, excited 

charge carriers at the semiconductor/electrolyte interface are more likely to recombine than react 

with chemical species - resulting in a low PInject and overall poor photocurrent for the 

photocatalyst/photoelectrochemical device.[16-19]  

 Lastly, the photocatalyst/photoelectrode material should be photostable (i.e stable during 

light-illumination) while in the electrolyte solution used for photocatalytic/photoelectrochemical 

reactions. The main causes of photodegradation are possible redox reactions resulting in 

irreversible changes to the photocatalyst/photoelectrode material being more thermodynamically 

and kinetically favorable to the desired photocatalytic/photoelectrochemical reaction.[13-16, 18, 19] A 

classic example of this tungsten (VI) oxide (WO3) being stable in electrolytes with pH ≤ 4.[23] This 

is due to WO3 conversion to WO4
2- in the presence of OH- ions being a more favorable redox 

reaction than solar water-splitting to O2 gas and protons. By keeping the pH ≤ 4, water-oxidation 

becomes more kinetically favorable due to a lack of OH- needed for WO4
2- ion formation with 

WO3 – thus keeping WO3 photostable for solar water-splitting. As such, photostability of 

photocatalyst/photoelectrode materials and good catalytic activity towards a given reaction can be 
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directly related. This is an additional design consideration with photocatalyst/PEC cell systems. In 

the case of photoelectrodes in a PEC cell, excess majority carriers can be extracted into an external 

circuit and routed to a counter electrode carrying out a complementary half-reaction to complete 

the circuit. In the case of particulate photocatalysts or photoelectrodes with poor majority carrier 

transport, the photocatalyst or photoelectrode must be able to drive two separate reactions using 

both electrons and holes to prevent performance-limiting recombination or even photodegradation 

of the photocatalyst/photoelectrode system. To solve this issue, different approaches have been 

used.  

 The first approach to reduce charge carrier recombination and is to use a very easily 

oxidized or reduced chemical (commonly referred to as a sacrificial reagent) with redox potential 

well matched to the energy of the charge carrier that needs to be extracted. Common examples of 

this are hole scavengers such as hydrogen peroxide (H2O2), triethanolamine (TEA), and sodium 

sulfite (Na2SO3)
[33] or electron scavengers like Ag+ and Fe3+.[34] However, since the sacrificial 

reagent is irreversibly consumed during the reaction, a steady supply of sacrificial reagent is 

needed for continuous operation. This can add to the cost of a photocatalyst system unless the 

products from sacrificial reagent consumption are more economically valuable than the original 

sacrificial reagent.[23, 36, 37] A good example of this case is the use of 5-hydroxymethlfurfural 

(HMF) as a hole scavenger to produce valuable 2,5-furandicarboxylic acid (FDCA).[36, 45] An 

additional problem with this approach is so called “current-doubling” that can result from 

consumed sacrificial reagent products undergoing further chemical reactions that result in charge 

carrier injection from chemical to photocatalyst/photoelectrode.[34] The additionally injected 

majority charge carrier artificially increases the measured current without a change in the overall 

number of minority carriers being consumed. A good example of this is methanol oxidation 

(CH3OH) to formaldehyde (HCHO) without the presence of O2 in photocatalyst/PEC systems. To 

further oxidize the first reaction intermediate (CH2OH•) to HCHO without O2 as an oxidizer, the 

CH2OH• injects an electron into the photoelectrode and releases a proton to complete HCHO 

formation. This subsequently obfuscates how effectively a photocatalyst/photoelectrode system is 

performing since an additional charge carrier from an outside source is injected into the system. 

As such, sacrificial reagents are not a preferred way to improve photocatalyst/PEC cell 

performance if other alternatives are available.  

 The second approach to reduce charge carrier recombination and photostability is to use a 

redox mediator in conjunction with two photoelectrodes or a photoelectrode and electrocatalyst 

designed to drive separate but complementary reduction or oxidation reactions. An increasingly 

popular example of this approach is the use of electron-coupled proton buffers (ECPBs) such as 

phosphomolybdic acid (H3PMo12O40)
[37, 38], silicotungstic acid (H4[SiW12O40)

[39], or quinones[40], 

that can be reversible oxidized and reduced using the majority carrier from the photoelectrode on 

a third electrocatalyst. This approach does not require a constant supply of available sacrificial 

reagent for consumption and do not suffer from current-doubling. However, current ECPBs are 

expensive chemicals that would significant increase the cost of a photoelectrochemical systems. 

Nonetheless, this approach may be more economically viable if current ECPBs manufacturing 

costs decrease or more commonly available chemicals are discovered to be viable ECPBs. 
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 The third and most commonly utilized approach to reduce charge carrier recombination 

and is the use of co-catalyst materials for driving the desired redox reaction. These co-catalyst 

materials on the surface of the photocatalyst/photoelectrode rapidly extract the minority charge 

carrier to be used in driving the desired redox reaction out of the photocatalyst/photoelectrode and 

then inject the minority charge carriers into chemical species in the electrolyte. By rapidly 

extracting the minority carriers out of the semiconductor photocatalyst/photoelectrode, 

recombination with majority carriers at the surface is prevented. In the case of water-oxidation, 

examples of common co-catalyst materials are cobalt phosphate (Co-Pi)[16, 18, 41], nickel and iron 

oxyhydroxides (NiOOH and FeOOH)[18, 42], and amorphous cobalt-iron oxides and nickel-iron 

oxides (CoFeOx and NiFeOx)
[17, 41]. For H2 evolution, platinum (Pt) nanoparticles are still the 

dominant co-catalyst material[13, 14, 27]. There are several design characteristics that must be 

considered for designing and adding co-catalysts to photocatalyst/photoelectrode systems. First, 

the electronic interface between semiconductor and co-catalyst must be favorable for minority 

carrier extraction from the semiconductor. Fast extraction is needed to prevent minority carrier 

recombination within the semiconductor.  Second, the co-catalyst must have high catalytic activity 

towards the desired redox reaction to be driven to prevent recombination of the charge carriers 

within the co-catalyst material. Lastly, the co-catalyst must have optical properties such that it does 

not block or compete with light absorption by the photocatalyst/photoelectrode. If the co-catalyst 

blocks or absorbs light that would otherwise be absorbed by the photocatalyst/photoelectrode, 

overall performance of the photocatalyst/PEC cell system decreases due to a smaller amount of 

photoexcited charge carriers being generated.  

 Significant problems exist with current photocatalyst/PEC cell that limit their performance 

below where they are economically viable to use commercially. First, photocatalyst/PEC systems 

are not efficient enough to be cost-effective currently. The U.S. Department of Energy placed the 

benchmark solar-to-hydrogen (STH) efficiency of 10% for economic viability.[43] While some 

PEC systems have been demonstrated efficiencies exceeding 10%, they have not proven stable for 

extended operation or are based on rare materials that are not economically viable for widescale 

production.[20, 21]  

 One of the major causes for efficiency problems of photocatalyst/PEC cell systems is a 

lack of available photocatalyst/photoelectrode materials that are photostable while still able to 

absorb a significant part of the solar spectrum. Two examples that illustrate this dichotomy are 

titanium (IV) dioxide (TiO2) and copper (I) oxide (Cu2O). Both rutile and anatase phase TiO2 are 

photostable with good catalytic activity towards water-oxidation.[44, 45] However, rutile and anatase 

TiO2 have bandgaps of 3.0 eV and 3.2 eV respectively – limiting light absorption to near visible 

and UV light and smaller wavelengths respectively that compose less than 5% of the solar 

spectrum. On the opposite case, Cu2O is a p-type semiconductor with a 2.1 eV bandgap that can 

lead to a theoretical maximum STH efficiency of 18% based on light absorption only.[13, 46, 47] 

However, Cu2O is not photostable due to extremely favorable kinetics for Cu+ oxidation to Cu2+ 

using photoexcited holes. While combinations of co-catalysts have been employed to improve 

Cu2O stability, the added cost to the manufacturing process required to make the Cu2O stable are 

not economically viable currently. Without discovery of new photocatalyst/photoelectrode 
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materials with narrow bandgaps that are photostable during operation, photocatalyst and 

photoelectrochemical cell systems will not be economically viable for production. 

 An additional problem with most photocatalyst/photoelectrode materials with sufficiently 

narrow bandgaps to absorb sunlight and photostability is poor charge transport properties. Most 

photocatalyst/photoelectrode materials are metal oxide semiconductors with low charge 

conductivity and mobility.[15-18] With photocatalyst/photoelectrode materials with narrow 

bandgaps but poor charge transport, a significant amount of charge that has been photoexcited 

recombines before reaching the semiconductor/electrolyte interface or an external contact for 

extraction from the semiconductor.[17] This premature recombination results in decreased 

performance of the photocatalyst/PEC cell system. While doping with various metal ions has been 

demonstrated to improve charge transport and performance of some photocatalyst/photoelectrode 

materials (i.e. Mo6+ doping of BiVO4)
[15, 16, 18], effective dopants to improve charge transport have 

not been found for all narrow bandgap photocatalyst/photoelectrode materials that are stable. 

 With the underlying performance considerations for semiconductor photoelectrode 

materials for the PEC cells discussed, the current state-of-the-art for photoelectrodes can put into 

context. For this, focus will be placed separately on traditional (Si or III-V) semiconductor and 

metal-oxide based semiconductor photoelectrodes. Peak STH efficiencies for traditional 

semiconductor based photoelectrodes for PEC water-splitting based on traditional semiconductors 

as the photoelectrode materials currently exceed the efficiencies obtained from metal-oxide based 

semiconductor photoelectrode materials. In 1998, John Turner’s group at NREL in the United 

States developed a monolithic photovoltaic/photoelectrode composed of a GaAs photovoltaic cell 

connected to a p-type GaInP2 photoelectrode to provide the needed photovoltage to drive solar 

water splitting.[21] Under 11 suns illumination, a peak STH efficiency of 12.4% was obtained. 

While this solar-to-hydrogen efficiency meets the U.S. DOE’s target 10% STH efficiency, the 

materials and manufacturing costs of the GaAs and GaInP2 used and stability of the overall cell 

are not sufficient to meet the DOE’s other requirements. In 2000, Stuart Licht’s group at George 

Washington University in the United States developed a multiple junction photoelectrolysis cell 

utilizing AlGaAs/Si multijunction photovoltaic cell where photoexcited electrons and holes were 

routed to Pt supported on carbon black and RuO2 co-catalysts respectively.[20] This design resulted 

in a 18.3% STH efficiency under 1.35 suns illumination. As with the research performed by John 

Turner’s group, the cost of AlGaAs and RuO2 are cost prohibitive towards widespread use despite 

meeting the U.S. DOE’s target. Another extremely promising photoelectrode composed of 

traditional semiconductors for PEC water splitting developed at the Eindhoven University of 

Technology in the Netherlands in 2016.[48] This photocathode is composed of 1 µm long p-type 

InP (Eg = 1.34 eV) nanopillar arrays with overlayers of n-type doped InP (100 nm) and n-type 

TiO2 to form a buried p-n junction and passivate the photoelectrode against photocorrosion, 

respectively. Pt nanoparticles were also decorated onto the InP nanopillars to act as a co-catalyst 

for H2 evolution. The resulting electric field from the buried p-n junction extracts photoexcited 

electrons out of the p-type InP nanopillars, drives them towards the photoelectrode surface, and 

changes the band bending at the surface of the photoelectrode to increase the photovoltage from 

the photoelectrode. The resulting p-type InP/n-type InP/TiO2/Pt nanopillars had a 15.8% applied 

bias photoconversion efficiency (ABPE), a metric used for measuring an equivalent STH 
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efficiency for three-electrode PEC cell configurations where bias between working and reference 

electrodes is the measured bias instead of between working and counter electrodes, under 1 sun 

illumination. This value is currently the highest recorded ABPE on any single junction device. In 

addition, the p-InP/n-InP/TiO2/Pt photoelectrode exhibited stability during six hours of continuous 

operation at peak efficiency conditions. However, as with the other discussed photoelectrodes 

using traditional semiconductors, cost and scarcity of indium (In) needed for InP prevent the InP 

based photoelectrode from being commercially viable for widespread use.   

 The most promising metal-oxide semiconductor based photoelectrodes are typically 

comprised of either BiVO4, hematite (α-Fe2O3), or Cu2O. As such, the state-of-the-art for each 

material will be discussed. BiVO4 is a promising n-type semiconductor with a direct bandgap of 

2.4 eV. Based on semiconductor bandgap, BiVO4 has a theoretical maximum STH efficiency of 

9.1%.[13] While this does not meet U.S. DOE STH target efficiency on its own, BiVO4 does have 

potential in a multi-junction photoelectrode as a wider bandgap component. BiVO4 has some 

advantages for solar water splitting such as its bandgap and favorable valence band energetics for 

driving water oxidation. However, BiVO4 suffers from poor charge transport resulting from small 

polaron trapping within the bulk of BiVO4 and severe surface charge recombination.[15, 16, 18] 

BiVO4’s charge transport can be improved by cationic doping particularly Mo6+ and/or use of 1D 

heterostructuring with semiconductors that have favorable band energetic alignments with BiVO4. 

BiVO4’s surface charge recombination can be mitigated by rapid extraction of accumulated 

photoexcited charge carriers into a surface co-catalyst layer. In addition, BiVO4 is not photostable 

except in neutral electrolyte solutions such as phosphate buffered saline (PBS) or by coating with 

passivation layers that act as co-catalysts such as Co-Pi or NiFeOx.
[16, 18] The current state-of-the 

art for BiVO4-based photoelectrodes is a BiVO4-based photoanode developed in China in 2019.[49] 

This BiVO4-based photoanode is a heterostructure composed of a highly porous Mo6+ doped 

BiVO4 photoanode coated with thin layers of boron-doped C3N4 and NiFeOx to extract 

photoexcited holes out of the Mo-doped BiVO4 and act as a co-catalyst for water oxidation 

respectively. The Mo6+ doping content within the BiVO4 was optimized to be 0.1% mol to improve 

charge carrier transport within the bulk BiO4 without excess Mo to act as charge recombination 

centers. B-doped C3N4 was chosen as a heterostructuring semiconductor due to minimal band 

offsets between the 0.1% Mo-doped BiVO4 and B-doped C3N4 that enabled for effective extraction 

of photoexcited holes with minimal overpotential losses. The use of NiFeOx as a co-catalyst limits 

recombination of the photoexcited holes within the outer B-doped C3N4 layers while being mostly 

transparent to incident light. The 0.1% Mo-doped BiVO4/B-doped C3N4/NiFeOx photoanode has 

shown a 2.67% ABPE in a neutral electrolyte with an 8% loss in photocurrent after 10 hours of 

operation at 1.23 V vs. RHE. The 2.67% ABPE is significantly below the target 10% STH 

efficiency. In addition, this 0.1% Mo-doped BiVO4/B-doped C3N4/NiFeOx photoanode has not 

been tested in a two-electrode PEC cell configuration consistent with a realistic commercial 

system. The main source for the relatively low ABPE versus the STH efficiency limit for BiVO4-

based photoanodes is the slow rise in photocurrent at low potentials despite the use of 

heterostructures and co-catalysts. As such, there is significant room for performance improvement 

with BiVO4 photoelectrodes. 
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 α-Fe2O3 is another promising n-type semiconductor with an indirect bandgap of 2.0 eV and 

direct bandgap of 2.2 eV. Based on these bandgaps, α-Fe2O3 has a maximum theoretical STH 

efficiency of 12.9%, high enough to meet the U.S. DOE efficiency target.[13] The main advantages 

of α-Fe2O3 as a photoelectrode are its narrow bandgap, photostability, sufficient valence band 

energetics to drive water oxidation, and its composition being made from one of the most abundant 

metals available in iron. However, α-Fe2O3 also has several problems that have limited its potential 

for PEC water splitting. α-Fe2O3 has extremely poor transport due to small polaron trapping.[50, 51] 

While BiVO4 has been able to overcome small polaron trapping through doping with Mo6+, small 

polaron trapping within α-Fe2O3 has not been overcome despite widespread testing of various 

cationic dopants for α-Fe2O3. In addition, surface trap states that form in response to adsorbed 

intermediate products during solar water-splitting trap photoexcited charge carriers and result in 

Fermi level pinning.[50] The consequences of the surface trap state formation and Fermi level 

pinning are increased surface charge carrier recombination and a significantly lower generated 

photovoltage versus what should be expected based on α-Fe2O3’s bandgap. The lower generated 

photovoltage when coupled with poor catalytic activity of α-Fe2O3 towards water-splitting results 

in a high onset potential for photocurrent that compromises α-Fe2O3
’s STH efficiency. Despite 

these problems, significant research focus has been spent on overcoming the charge transport 

issues, low photovoltage, and catalytic activity. The current state-of-the-art for α-Fe2O3 

photoelectrodes is the α-Fe2O3 photoanode developed at POSTECH in South Korea in 2017.[52] 

With this α-Fe2O3 photoanode, 1-D α-Fe2O3 nanorod arrays (~730 nm long and 20-30 nm in 

diameter) were grown on FTO glass by hydrothermal methods and then subsequently heated under 

H2 at 350 °C to induce oxygen vacancies and Fe2+ formation within the α-Fe2O3 nanorods. The 

induced Fe2+ states within the α-Fe2O3 nanorods act as additional small polaron hopping sites for 

improved charge transport. In addition, a 3.5 nm thick amorphous TiO2 layer and Co-Pi layer to 

act as passivation and co-catalyst layers respectively. The amorphous TiO2 layer was also treated 

under H2 at 200-250 °C to boost the conductivity of the layer to further allow for photoexcited 

holes from the α-Fe2O3 nanorods to reach the photoanode surface. The α-Fe2O3/TiO2/Co-Pi 

photoanode was ultimately able to generate photocurrents of 6 mA/cm2 under 1 sun illumination 

at an applied bias of 1.23 V vs. RHE (the thermodynamic potential for solar water-splitting). This 

photocurrent is comparable to the state-of-the-art BiVO4 photoelectrode previously discussed. 

While the ABPE was not calculated in this paper, the relatively high photocurrent onset potential 

(~0.65 V vs. RHE) and potential where photocurrent saturation begins (~0.8 V vs. RHE) for this 

photoanode results in a lower ABPE in comparison to the state-of-the-art BiVO4 photoelectrode. 

The α-Fe2O3/TiO2/Co-Pi photoanode does exhibit photostability with a negligible decrease in 

performance after 100 hours of continuous operation. The main bottleneck for improving the 

performance of the α-Fe2O3/TiO2/Co-Pi photoanode still remains charge transport and separation 

within the α-Fe2O3 nanorods even after the H2 treatment as ηsep does not exceed 50%. 

 Cu2O is a promising p-type semiconductor with a direct bandgap of 2.1 eV. As stated 

previously, based on bandgap, Cu2O has a theoretical STH efficiency of 18%, far beyond the U.S. 

DOE efficiency target efficiency. Cu2O has additional advantages for solar water-splitting due to 

it being composed of earth abundant Cu and sufficient conduction band energy to drive the 

hydrogen evolution reaction.[46, 47] However, Cu2O has several disadvantages for solar water-

splitting as well. As previously mentioned, Cu2O has poor photostability in aqueous electrolytes. 
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The poor photostability has been the most difficult problem to overcome historically for Cu2O. 

However, recent breakthroughs with protective overlayer materials and manufacturing have 

significantly improved the photostability of Cu2O-based photocathodes.[46, 47] Cu2O has low 

absorption coefficients at wavelengths above 500 nm despite its bandgap and poor electron 

transport properties.[53] The low absorption coefficients and poor electron transport can be 

overcome using nanostructuring the Cu2O such as creating 1-D nanorod arrays to trap light and 

limit required electron diffusion lengths within the Cu2O photocathodes. In addition, doping Cu2O 

with Na+ can significantly improve electron transport within Cu2O.[54] Cu2O also has poor catalytic 

activity towards the hydrogen evolution reaction which can be overcome with the use of co-

catalysts. The current state-of-the-art for Cu2O-based photocathodes was created by Michael 

Grätzel’s research group in 2018.[55] With this Cu2O-based photocathode, a Cu2O nanorod array 

(3-5 µm long, 200-400 nm in diameter) is grown on a copper coated FTO glass substrate. Thin n-

type Ga2O3 and amorphous TiO2 overlayers are grown on the Cu2O nanorod array to aid in 

extraction of photoexcited photoelectrons from the Cu2O and passivate the Cu2O nanorods against 

photocorrosion respectively. The use of Ga2O3 as the n-type charge extraction material was chosen 

due to its minimal conduction band energy difference with Cu2O, maximizing the photovoltage 

generated within the photocathode. The Cu2O/Ga2O3/TiO2 nanorod arrays were also coated with 

either a RuOx or a NiMo co-catalyst layer to improve the catalytic activity of the photocathode for 

hydrogen evolution. The resulting Cu2O/Ga2O3/TiO2/RuOx photocathode showed photocurrent 

onset for hydrogen evolution at +1.0 V vs. RHE with photocurrents of 10 mA/cm2 at 0 V vs. RHE 

(the thermodynamic potential for hydrogen evolution) under 1 sun illumination in an aqueous 

electrolyte at pH 5. In addition, the Cu2O/Ga2O3/TiO2/RuOx photocathode showed stability for 

over 100 hours of continuous testing. However, Ru is too scarce to be used on wide scale. After 

switching the RuOx for the NiMo composed of earth-abundant metals, the resulting 

Cu2O/Ga2O3/TiO2/NiMo nanorod array photocathode shows slightly lower photocurrent (~7.5 

mA/cm2 at 0 V vs. RHE under 1 sun illumination in an aqueous electrolyte at pH 9) due to the 

lower catalytic activity of the NiMo co-catalyst versus the RuOx co-catalyst. Stability testing 

showed only a 10% decrease in photocurrent after 8 hours. Further, a planar (i.e. not a nanorod 

array) version of the Cu2O/Ga2O3/TiO2/NiMo photocathode was placed in tandem with a n-type 

BiVO4 photoanode tested for performance. The tandem Cu2O / BiVO4 PEC system had a STH in 

excess of 3% and significantly improved versus other tandem photoelectrodes that utilized 

traditional semiconductor photoelectrodes as one of the photoelectrodes in the PEC cell. As such, 

Cu2O-based photocathodes are currently the closest metal-oxide photoelectrode materials capable 

of meeting efficiency and cost requirements. 

 

2.4 Metal-Organic Frameworks 
 

 Metal-organic frameworks (MOFs) are a class of materials built around nanometer scale 

metal-based inorganic nodes interconnected by organic linker ligands.[56, 57] Metal-organic 

frameworks have significantly tunable chemical, electronic, and optical properties due to the large 

variety of combinations of metal-based nodes and organic linkers available. MOFs are highly 
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crystalline due to ordered nature of the inorganic-organic network. This crystallinity tends to give 

MOFs high thermal and chemical stability depending on the choice of constituent nodes and 

linkers in comparison to purely organic compounds. In addition, MOFs are highly porous due to 

the frame-like structure formed by the node-ligand networks. Due to the combination of porosity 

and tunable properties, MOFs are researched for use as batteries, electrocatalysts, photocatalysts, 

gas storage, etc. This section will primarily be focused on MOFs as candidates for electrocatalyst 

and photocatalyst materials.[56-58] 

 Photocatalysts based on MOFs can be classified based on the nature of their photoabsorber 

component and catalytic centers. Three different cases summarize the possible classes of MOF 

photocatalysts. With the first case, the photoabsorber material are inorganic semiconductor 

quantum dots forming the nodes of the MOF (Figure 2.6).[57-60] The organic linker network serves 

to separate the quantum dots from each other to create a porous network of isolated photocatalysts 

in the MOF. The porous nature of the MOF allows for mass transfer of reaction products and 

reactants away from the quantum dots provided that the pores of the MOF are sufficiently large 

enough for transport.  

 

Figure 2.6: MOF-based photocatalyst with photoactive semiconductor quantum dot nodes as 

photoexcited charge generation sites.  

 The second case is the organic linker ligands that connect the nodes in the MOF are organic 

semiconductor materials (i.e. dye molecules) that serve as the photoabsorber material (Figure 

2.7).[31, 57 ,61] The metal-based nodes can serve as connectors between organic semiconductor 

ligands and as potential catalyst sites for photocatalytic reactions. Due to the nature of the linker 

ligands as organic semiconductors, charge separation and transport, excitons (bound electron-hole 

pairs) rather than free electrons and holes are formed. As such, MOFs utilizing organic 

semiconductor ligands must be designed to facilitate easy transport of excitons and its subsequent 

separation into free electrons and holes. 
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Figure 2.7: MOF-based photocatalyst with organic semiconductor linkers as photoexcited exciton 

generation sites with subsequent charge carrier separation, transport and catalysis at MOF’s metal-

based nodes. 

 

 The last case is that a separate photoabsorber (inorganic or organic) is introduced into the 

porous structure of the MOF (Figure 2.8). In this case, the MOF serves as a high surface area 

scaffold to serve a complementary role to the introduced photoabsorber such as acting as a catalyst 

or conductive material for charge extraction purposes. In this case, the MOF’s pore structure must 

be sufficiently large to allow for photoabsorber uptake. In addition, the MOF must facilitate charge 

extraction from the introduce photoabsorber.[57] 
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Figure 2.8: MOF-based photocatalyst with photoactive semiconductor quantum dots introduced 

into the MOF’s pore network acting as photoexcited charge generation sites with charge carrier 

hopping and catalysis at MOF’s metal-based nodes. 

 

 MOF synthesis is done primarily by two different methods. In the first method, MOF 

particles can be synthesized through solvothermal methods where node and linker precursors are 

dissolved in a solvent and heated to elevated temperatures.[59-61] The synthesized MOF particles 

are typically hundreds of nanometers in size. While MOF particles of that size are suitable for 

particle-based photocatalysts, they are difficult to form into dense films needed to form 

photoelectrodes for use as in a PEC cell. The second method for MOF synthesis is a layer-by-layer 

deposition approach where ligands and metal-based nodes are deposited in repeatedly alternating 

steps.[62] This approach can yield conformal MOF thin films on a variety of substrates – including 

nanostructured substrates. However, the need for repeated, time-consuming deposition steps for 

layer-by-layer MOF deposition steps makes thick films greater than 50-100 nm impractical to 

synthesize. While physically thin films have advantages for charge transport and charge collection, 

physically thin films are very rarely optically thick. To compensate for the lack of optical thickness 

with thin MOF films, light trapping techniques may be employed. 

 There are candidate MOFs (UiO-66, ZIF-8, NTU-9, MIL-125, and the PCN-22x family) 

that have shown the most promise for photocatalytic/PEC applications for driving various 

chemical reactions. Of these MOFs, UiO-66 is the most explored MOFs for photocatalysis. UiO-

66 is a MOF with Zr-based nodes with 1,4-benzodicarboxylic acid linker ligands.[63-68] UiO-66 is 

mostly chemically stable. Pristine UiO-66 has a wide bandgap of 3.5 eV, thus limiting its light 

absorption to the UV spectrum. However, a few modifications to the UiO-66 MOF can extend its 

absorption to the visible spectrum. Functionalizing the 1,4-benzodicarboxylic acid linker ligands 
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with groups such as -NO2 and -NH2 results in new electronic states within the bandgap that enables 

visible light absorption up to 450 nm.[63, 64] Additionally, partial substitution of the 1,4-

benzodicarboxylic acid linker ligands with other ligands such as 2-aminoterepthalic acid can also 

introduce additional electronic states within UiO-66’s bandgap to further enable visible light 

absorption.[63] Lastly, partial substitution of the Zr from within the UiO-66 nodes with other 

elements such as Ti can also introduce new electronic states to redshift the absorption of the UiO-

66.[65] It is important to note that these general approaches to modifying UiO-66 to redshift its 

absorption to visible wavelengths are applicable to other MOFs as well. UiO-66 has been used as 

a photocatalyst for dye degradation[65, 67], reduction of heavy metal ions such as Cr6+[67], hydrogen 

evolution[68], CO2 reduction to HCOO-[63], and organic transformation reactions such as conversion 

of benzyl alcohol to benzaldehyde.[66] The relative chemical stability, tunability of the electronic 

structure, and large variety of catalytic reactions that can be driven highlight the potential of UiO-

66 as a photocatalyst material.  

 ZIF-8 is a MOF with Zn-based nodes and 2-methylimidazole ligand linkers.[69-74] ZIF-8 

has a wide bandgap of 5.0 eV, limiting its light absorption and photocatalytic activity to the UV 

spectrum only. ZIF-8 has shown some photocatalytic activity towards dye degradation and 

reduction of Cr(VI).[71-74] However, part of ZIF-8’s main appeal as a MOF photocatalyst is its 

similarity to zeolite materials that are commonly used for adsorption and capture of gases such as 

CO2. As such, ZIF-8 is commonly used in heterostructures as an overlayer with other 

semiconductors such as ZnO[69, 70], Zn2GeO4
[71], and TiO2

[73, 74] as a gas capture and cocatalyst 

material whose photocatalytic activity supplements the photocatalytic activity of the underlying 

semiconductor in the heterostructure.  

 NTU-9 is a MOF with Ti-based nodes and 2,5-dihydroxyterephthalic acid ligand linkers.[60, 

75] The main advantages of NTU-9 as a photocatalyst or photoelectrode material for PEC cells are 

its p-type semiconducting behavior, narrow bandgap (1.74 eV), and conduction band sufficiently 

negative enough to drive the solar water-splitting reaction among other reactions. In addition, 

NTU-9 has shown activity towards driving photocatalytic reactions under visible light by itself 

and when used in heterostructures with CdTe nanorods.[60, 75] However, as with several other MOF 

materials, low carrier concentrations (~1015 cm-3) and poor charge separation and transport 

currently limit the performance of this MOF for photocatalytic applications.[60] 

 MIL-125 is a MOF with Ti-based nodes and 1,4-benzodicarboxylic acid ligand linkers.[59, 

76-78] Pristine MIL-125 has a wide bandgap of 3.6 eV that limits its photocatalytic activity to the 

UV spectrum only. However, like in the case of UIO-66, -NH2 functionalization of the 1,4-

benzodicarboxylic acid linkers introduces new electronic states within the bandgap that extends 

light absorption to the visible spectrum up to wavelengths of 550 nm.[59, 76-78] The -NH2 

functionalized MIL-125 has been used for photocatalytic CO2 reduction to hydrocarbons [59, 77, 78], 

dye degradation[78], and solar water-splitting.[76] As with most MOFs, poor charge transport and 

separation limit  the photocatalytic performance of (pristine and -NH2 functionalized) MIL-125 

MOF. However, some research on utilizing heterostructures composed of thin -NH2 functionalized 

MIL-125 layers on 1-D TiO2 nanorod arrays show the promise of -NH2 functionalized MIL-125 

MOF as a photocatalyst material with visible light activity.[76]  



23 
 

 PCN-22x (x = 2 – 5) is a family of MOFs with Zr-based nodes and tetrakis(4-

carboxyphenyl) porphyrin ligand linkers.[79-83]. One of the major disadvantages of porphyrinic 

MOFs is the degradation of the MOFs due to photobleaching of the porphyrin linkers. However, 

the Zr-based nodes, similar to those used in UiO-66, provide some chemical stability to the PCN-

22x family while the porphyrinic linkers are strong light absorption within the visible spectrum up 

to wavelengths of 750 nm. In addition, the structure of porphyrin molecules enables incorporation 

of different transition metal cations such as Fe3+ that can be used to enhance the catalytic activity 

of PCN-22x MOFs.[79, 81, 82] The PCN-22x family of MOFs have been demonstrated as visible light 

active photocatalysts for CO2 reduction to HCOO- [80] and ordinary catalysts for organic 

transformation reactions such as transformation of benzaldehydes.[79, 81, 82] Research presented 

within this dissertation focuses on using PCN-225 in heterostructures for solar water-splitting. 

However, the charge carriers generated within the porphyrin linker ligands are excitonic in nature 

resulting in extremely poor charge separation within PCN 22x MOFs. Nonetheless, the wide 

spectrum of light absorption by the PCN-22x MOF is appealing for future research. 

 

2.5 Plasmonics for Light Energy Harvesting Applications 
 

 Plasmonics is a field of research focused on utilizing surface plasmon resonance (SPR), a 

phenomenon where light illumination photoexcites the surface electrons of certain metals and 

degenerate semiconductors to coherently oscillate, for various applications. For the purposes of 

this dissertation, focus will be on plasmonic metals only despite recent growth in research on 

plasmonic semiconductors. Typical plasmonic metals of interest include gold (Au), silver (Ag), 

copper (Cu), aluminum (Al) since their plasmonic resonance occur within the UV-Visible-NIR 

spectrum that can be utilized for energy and technological applications such as 

telecommunications. SPR can occur in two forms – surface plasmon polaritons (SPP) (Figure 2.9a) 

and localized surface plasmon resonance (LSPR) (Figure 2.9b). Both forms of SPR can have 

applications in light and solar energy harvesting.  
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Figure 2.9: Types of surface plasmon resonance (SPR); (a) surface plasmon polaritons; (b) 

localized surface plasmon resonance (LSPR). 

 

 In the case of surface plasmon polaritons (SPP), the excited electron oscillations propagate 

along the interface of the plasmonic metal and the surrounding dielectric medium.[84, 85] This 

propagating wave of oscillating electrons can be utilized for light-trapping within semiconductors 

for solar energy harvesting applications due to the considerable generated electromagnetic fields 

along the plasmonic metal / dielectric interface. However, excitation of SPPs requires an additional 

source of momentum or employing grating to make up for a difference in dispersion between a 

photon and SPP. The need for additional momentum is a design consideration before utilizing SPP 

for optoelectronic devices.[85]  

 In the case of localized surface plasmon resonance (LSPR), the plasmonic material has a 

characteristic dimension much smaller than the wavelength of light (i.e. nanoparticles (NPs)) used 

to excite the LSPR.[84-86] Due to the confinement of the plasmon to the surface of the plasmonic 

NP, the dispersion relation of the LSPR does not have a momentum mismatch with the light used 

to excite it.[85] As a result, plasmonic metal NPs have extremely large absorption and/or scattering 

cross-sections relative to their physical size. This gives plasmonic metal nanoparticles and 

nanostructures great potential as photosensitizers for solar energy. In addition, the confined but 

coherent oscillation of electrons with LSPR results in extremely high localized electromagnetic 
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(EM) fields around the plasmonic metal nanoparticles. This is useful in both solar energy 

harvesting[85-96] and for sensors based on surface enhanced Raman scattering (SERS).[84] The 

research within this dissertation uses LSPR and not SPP as the SPR type of interest. As such, all 

further discussion will be focused on LSPR from plasmonic NPs and its applications towards 

enhancing the PEC performance of semiconductor photoelectrodes. In addition, additional effects 

of plasmonic NPs that are non-plasmonic in nature that can enhance the PEC performance of 

semiconductor photoelectrodes will be discussed as to highlight how to distinguish between 

plasmonic and non-plasmonic effects of plasmonic metal NPs. 

 

2.5.1 Plasmonic Effects for Modulating Semiconductor Photoconversion 
 

 The LSPR from plasmonic nanoparticles has many appeals for use in light harvesting and 

sensing applications. One of the most appealing traits of plasmonic nanoparticles and 

nanostructures is the high tunability of their optical properties by varying different properties such 

as shape, size, and material of the plasmonic nanoparticles and nanostructures. To illustrate the 

effect of changing plasmonic material, 15 nm diameter silver (Ag) nanospheres have LSPR at 

wavelengths of ~400 nm while gold (Au) nanospheres of comparable size have a LSPR at 

wavelengths of ~520 nm.[97] To illustrate the effects of size on the LSPR of plasmonic 

nanoparticles, the LSPR of 15 nm diameter Au nanospheres is ~520 nm while the LSPR of 50 nm 

diameter Au nanospheres red-shifts to ~535 nm.[98] Furthermore, increasing the size of plasmonic 

nanoparticles also increases the relative contribution of scattering versus absorption towards the 

overall extinction spectrum of the plasmonic nanoparticle. To illustrate the effects of shape, ~60 

nm Au nanospheres have LSPR at wavelengths around 550 nm. By changing the shape from 

nanospheres to nanostars with multiple sharp tips, the LSPR can be red-shifted into the NIR part 

of the spectrum with LSPR between 750 – 800 nm for Au nanostars of similar size.[99] In addition, 

sharp corners and edges serve as focal points for LSPR – resulting in further amplified local EM 

fields around the sharp features of the Au nanostars and similar plasmonic nanoparticles and 

nanostructures with sharp features. 

 To effectively utilize LSPR for light energy harvesting, an understanding of how the LSPR 

and constituent electrons behave from excitation to complete relaxation. First, incident light is 

absorbed and the LSPR is excited. The electrons that compose the LSPR continue to oscillate 

coherently for between 20 fs and 30 fs after initial LSPR excitation. After the first 20-30 fs, the 

electron oscillations begin to lose coherence due to Landau damping.[86 ,87, 90, 67] After 100 fs from 

initial excitation, the LSPR ceases completely. The LSPR’s energy may be relaxed either through 

radiative scattering (typical of larger plasmonic nanoparticles) or released non-radiatively (typical 

of smaller plasmonic nanoparticles). In the case of non-radiative relaxation, there still exists a 

population of “hot” electrons and “hot” holes with energies above the Fermi level and below the 

Fermi level of the metal nanoparticle with a distribution that can be described as thermal 

distribution at an elevated temperature relative to the bulk plasmonic nanoparticle immediately 

after the LSPR has fully decayed. These hot electrons and holes will relax back to the Fermi level 

of the metal over the course of 10 ns due to electron-phonon scattering (100 fs – 1 ps after LSPR 
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excitation) and electron-electron scattering (1 ps – 10 ns after LSPR excitation). There are multiple 

energy transfer processes that can occur at different timescales during the LSPR’s lifetime when 

the plasmonic metal is placed in contact or near a semiconductor.  

  The first LSPR energy transfer process that is possible is plasmon-induced resonant energy 

transfer (PIRET) (Figure 2.10).[86, 90, 91, 93-96] plasmonic NPs with diameters or characteristic 

dimensions with less than 50 nm can absorb light and then directly transfer the energy from the 

plasmonic NPs’ LSPR into nearby semiconductor acceptors. PIRET is a non-radiative resonant 

energy transfer process, discovered by Nianqiang Wu’s research group in 2012, where energy 

stored in the LSPR of a plasmonic NPs such as Au NPs is transferred via dipole-dipole interactions 

similar to Förster resonant energy transfer (FRET) to form new excited electron-hole pairs within 

a nearby semiconductor acceptor.[89-91, 93, 100] This process occurs while the plasmon is still 

coherent (t ≤ 30 fs after plasmon excitation).  As with scattering by Au NPs, there are pre-requisites 

for PIRET to occur between Au NPs and semiconductors. For PIRET to occur, there must be a 

spectral overlap between the Au NPs’ LSPR and the absorption spectrum of the semiconductor 

acceptor with the Au NPs’ LSPR red-shifted with respect to the semiconductor acceptor’s 

absorption edge. PIRET’s energy transfer will follow the spectral overlap integral between the 

plasmonic Au NP donor and semiconductor acceptor. As in the case of FRET, PIRET has a 1/r6 

distance dependence on the energy transfer efficiency. Therefore, the Au NPs and semiconductor 

must be near to (i.e. within 10 nm with less separation being better) but not necessarily in contact 

with each other to enable PIRET. In addition, interface effects between the Au NPs and the 

semiconductor must be accounted for as well since electron transfer between the Au NPs and 

semiconductor can result in early dephasing of the Au NPs LSPR and decreased PIRET efficiency. 

Since PIRET is a coherent resonant energy transfer process, the dephasing times of both the Au 

NPs’ LSPR and the semiconductor are significant factors on the efficiency of PIRET. In general, 

it is preferable to have a smaller dephasing time with the semiconductor versus the Au NPs to 

prevent back-transfer of energy to the Au NPs from the semiconductor via FRET. While dephasing 

times for Au NPs or plasmonic nanoparticles can be determined from the LSPR spectrum line-

shape, semiconductor dephasing times are difficult to measure and not readily available in 

literature.[101] This lack of known dephasing times for semiconductors hinders designing devices 

that utilize PIRET from Au NPs to semiconductors. PIRET is still a promising method for 

transferring the energy stored in plasmons into nearby acceptors with over 30% of the plasmon’s 

energy being transferred into the semiconductor acceptor. [90, 95]  
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Figure 2.10: Schematic for plasmon-induced resonant energy transfer between plasmonic 

nanoparticles and a n-type semiconductor. 

 

 The second LSPR energy transfer process that is possible is radiative scattering of the 

LSPR’s energy as light (Figure 2.11).[85, 86] Scattering occurs as the immediately after the plasmon 

decays (~100 fs after light excitation Since the plasmon’s energy released during scattering takes 

the form of light photons, the semiconductor coupled  does not need to be in direct contact with 

plasmonic NPs. In addition, large scattering cross-sections are typical of plasmonic nanostructures 

only if they are above a certain size. For example, scattering for plasmonic nanospheres only begin 

to dominate absorption when the nanosphere is greater than 50 nm in dimension.[85] Depending on 

the size and distribution of the plasmonic NPs with respect to the coupled semiconductor, light 

may be scattered multiple times within the semiconductor before total absorption, resulting in 

light-trapping within semiconductor. [85, 102, 103] The resulting increased effective optical 

pathlengths from scattering and light trapping are useful especially when dealing with 

semiconductor thin films with low absorption coefficients. However, since the coupled 

semiconductor within the heterostructure must absorb wavelengths matching the scattered light 

from the plasmonic NPs for the light to be harvested and converted into useful current, scattering 

from plasmonic NPs cannot extend the spectrum of useful wavelengths for a light harvesting 

device. 
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Figure 2.11: Schematic for radiative scattering of light by plasmonic nanoparticles resulting in 

increased light absorption and charge carrier generation within a n-type semiconductor. 

 

 The third LSPR energy transfer process that can occur is injection of energetic hot carriers 

from plasmonic metal to semiconductor (Figure 2.12).[94-96,99-100, 102,104-106] Hot carrier injection 

(also known as plasmon-induced charge separation (PICS)) was discovered by Dr. Tetsu 

Tatsuma’s group studying Au NPs on TiO2 in 2004. [104-109] The energetic hot charge carriers are a 

remnant of the plasmonic NPs LSPR after the LSPR has lost coherence and have energy 

distributions that follow the plasmonic NPs’ LSPR. Like with radiative scattering, hot carrier 

injection starts to occur after the LSPR loses coherence since hot carriers are only generated in the 

plasmonic metal after Landau damping has occurred. As such, subsequent hot carrier transfer 

processes occur between 100 fs to 1 ns after LSPR excitation during which hot carriers are also 

losing energy through electron-phonon and electron-electron collisions.  

 Since the energetic hot carriers are generated within the plasmonic NPs and then transferred 

to the semiconductor, hot carrier injection can occur regardless of the spectral overlap between the 

Au NPs’ LSPR and the contacting semiconductor’s absorption spectrum. However, the nature of 

hot carrier injection as a charge transfer process necessitates contact or a very small tunneling 

barrier between the plasmonic NPs and semiconductor to which the carriers are being transferred. 

The hot electrons with sufficient energy to overcome the energetic barrier between plasmonic 

metal nanoparticle and a contacting semiconductor can be injected into the conduction band of the 

semiconductor (Figure 2.12a). Similarly, hot holes may also be injected into the valence band of a 

contacting semiconductor if the hot holes have sufficient energy to overcome the energetic barrier 

between plasmonic metal and semiconductor (Figure 2.12b). However, since the direction and 

magnitude of band bending at the interface between the plasmonic metal nanoparticle and 

contacting semiconductor depends on the difference in Fermi level energies of the plasmonic 

metals and the contacting semiconductor,  As such, hot electrons and hot holes are more effectively 
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injected into n-type and p-type semiconductors respectively. Since the hot carriers originate from 

the LSPR in the plasmonic material and not the semiconductor, hot carrier injection can occur 

regardless of whether the semiconductor can absorb at the LSPR’s excitation wavelengths. 

However, momentum considerations of the hot electrons and hot holes relative to the 

semiconductor limit the maximum efficiency of the hot carrier injection process to under 10% 

under ideal conditions without special measures to overcome this momentum barrier with current 

practical transfer efficiencies currently at 1-2%..[95, 96, 109] Nonetheless, the simple requirements for 

hot carrier injection results in hot carrier injection being a widely used plasmonic enhancement 

mechanism for improved light harvesting device performance. 

 

 

Figure 2.12: Schematic for plasmonic hot carrier injection between plasmonic nanoparticles and 

semiconductors; (a) hot electron injection into the conduction band of a n-type semiconductor; (b) 

hot hole injection into the valence band of a p-type semiconductor. 

 

2.5.2 Non-Plasmonic Effects for Enhancing Photoelectrochemical Cell 

Performance 
 

 As stated previously, there are non-plasmonic effects that can occur when plasmonic NPs 

are coupled to semiconductor photoelectrodes. Small plasmonic NPs with diameters or 

characteristic dimension less than or equal to 10 nm can be used as electron sinks when deposited 

on the surface of semiconductor photocatalysts and photoelectrodes. plasmonic NPs’ potential to 

act as electron sinks in due to a phenomenon known as Fermi level equilibration (Figure 2.13) 

discovered by Dr. Prashant Kamat’s group also studying Au NPs on TiO2 in the early 2000’s. [110-

112] With Fermi level equilibration, electrons are transferred from the semiconductor into vacant 

conduction band states within the Au NPs due to quantum mechanics related effects of small Au 

NPs. The electron transfer into the surface Au NPs results in a depletion of surface electrons and 

a corresponding shift in the Fermi level and an increased photovoltage from the semiconductor. 

The shift in Fermi level can be detected as from a shift in the flat-band potential measured from 
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Mott-Schottky (M-S) plots or from illuminated open-circuit voltage measurements.[113] Fermi level 

equilibration can result in reduced surface charge carrier recombination that can be measured in 

general from chronoamperometry experiments (J-t)[114] and an onset potential shift for 

photocurrent that can lead to improved device efficiencies.   

 

Figure 2.13: Schematic for Fermi level equilibration within a n-type semiconductor as a result of 

small plasmonic nanoparticles acting as charge carrier sinks upon light illumination. 

 

 In addition, plasmonic NPs can be used as electron relays between layers within 

semiconductor heterostructures.[115] Photoexcited electrons are transferred from one 

semiconductor to the plasmonic NPs and then transferred from the plasmonic NPs to another 

semiconductor. By using Au NPs as electron relays, interfacial charge recombination between 

layers of the semiconductor heterostructure may be suppressed, leading to improved charge 

transport and overall device conversion efficiencies. Determining whether plasmonic NPs are 

acting as electron relays is more difficult than testing for Fermi level equilibration. Since the 

plasmonic NPs are buried and make no contact with the electrolyte, other techniques that can 

measure charge carrier dynamics are needed to determine whether the Au NPs are acting as 

electron relays. Ultra-fast transient absorption spectroscopy (TAS) is a useful technique for 

probing charge carrier dynamics that can be used to determine whether plasmonic NPs are acting 

as electron relays. In TAS experiments, an ultra-fast laser of fixed wavelength is used to “pump” 

or excite an initial population of photoexcited charge carriers while a second continuous low 

intensity light is used to “probe” changes in absorption by the sample across a wide spectrum of 

wavelengths over femtosecond (fs) to microsecond (µs) timescales. Depending on the pump and 

probe wavelengths and the materials being studied (i.e. semiconductors with or without plasmonic 

NPs), charge carrier recombination lifetimes and mechanisms and charge carrier transfer processes 

can be determined. However, the complex experimental equipment (lasers and optics to generate 

laser pulses on a fs timescale and physics knowledge required for data analysis unfortunately limits 

the widespread use of TAS experiments. Since the electron sink and electron relay behaviors do 
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not require excitation of the plasmonic NPs’ LSPR, the PEC performance enhancement from these 

mechanisms does not have an illumination wavelength dependence. 

 

Figure 2.14: Schematic for plasmonic NPs acting as electron relays at the interface of two n-type 

semiconductors.  

 

 In addition, plasmonic NPs in contact with the electrolyte within a PEC cell may also 

exhibit catalytic activity towards reactions. Small Au NPs can be used as catalysts for driving 

chemical reactions as shown by Dr. Masatake Haruta’s group in the 1985. Ultra-small Au NPs (2-

5 nm) and Au atomic clusters on metal oxide and metal hydroxide supports have shown significant 

catalytic activity towards CO oxidation, propylene epoxidation, hydrogen dissociation at elevated 

temperatures. [116, 117] Furthermore, Au atomic clusters with significant amounts of exposed high 

energy edge sites show increased activity show versus larger Au NPs with less edge sites. While 

Au NPs are useful for catalyzing some reactions, Au NPs are typically limited as thermally driven 

catalysts since they typically require elevated temperatures to be effective catalysts. Ultra-small 

Au NPs and Au nanowires with ultra-small cross-sections have been previously used as 

electrocatalysts for CO2 reduction to CO.[107, 118, 119] However, these Au NPs still have issues with 

morphology stability (i.e. avoiding agglomeration) and reaction selectivity between CO and H2 

generation. In addition, Cu NPs have shown electrocatalytic activity towards CO2 reduction[120, 121] 

and Ag NPs have shown electrocatalytic activity towards CO2 and NO3
- reduction [122].  Au NPs 

can act as weak co-catalysts for water oxidation in highly alkaline electrolytes. [123] However, this 

catalytic activity is from a thin catalytically active Au(OH)3 layer on the Au NPs formed during 

operation rather than from the Au NPs themselves. There are more effective co-catalyst options 

for driving water oxidation such as Co-Pi, FeOOH, and NiOOH.[16, 18, 41, 42] As such, catalysis by 

Au NPs is typically a secondary benefit rather than a explicitly sought after design consideration. 
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The necessary potential and current required to drive electrochemical reactions can be provided 

by light energy harvesting devices.  

 

Figure 2.15: Schematic of plasmonic NPs acting as co-catalysts for a n-type semiconductor 

photoelectrode. 

 

2.6 Photoelectrochemical (PEC) Biosensors 
 

 Sensors are a device used for detection and quantification of a physical phenomena within 

an environment. For the purposes of this dissertation, focus will be on sensors that utilize 

photoelectrochemical (PEC) cells for detection of analytes using biological components. The 

analyte itself may be a biological or organic in nature or components used to bind the analyte to 

the photoelectrode may be biological or organic in nature. With PEC biosensors, the measured 

PEC-based signal such as photovoltage and photocurrent of a photoelectrode is modulated in 

response to the presence of an analyte. [124-125] The analyte may be contained within the electrolyte 

of the PEC cell or functionalized onto the surface of the photoelectrode outside of the PEC cell 

used for testing. The main advantages of PEC sensors are the simple and inexpensive equipment 

requirements (light source, potentiostat, computer, counter and reference electrodes, and a 

designed photoelectrode for analyte detection) and simple operation versus other techniques such 

as SERS.[124-125] 

 In the case of PEC biosensors where the analyte is contained within the electrolyte, the 

photoelectrode used as the sensing device may directly reduce or oxidize the analyte or may 

indirectly reduce or oxidize the analyte using a redox mediator that the photoelectrode may reduce 

or oxidize to then subsequently oxidize or reduce the analyte respectively. However, these two 

approaches rely on analytes that are electrochemically active species to enable successful 

detection. In addition, the photoelectrode used in the PEC biosensor must be catalytically active 
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towards redox reactions involving the analyte or redox mediator. Selectivity for detection of the 

analyte is typically achieved by tuning the electrochemical bias used during operation along with 

tuning the catalytic activity of the photoelectrode to favor redox reactions with the analyte only 

Examples of PEC biosensors are the ZnO/Cu2O p-n junction photoelectrode used for direct 

detection of glutathione [126] . The projects presented within this dissertation do not deal with 

analytes that are readily electrochemically active. As such, this type of bi all further discussion 

will focus on PEC sensors that utilize an analyte functionalization step that occurs outside of the 

PEC cell used for testing. 

 In the case of PEC biosensors that have the analyte functionalized onto the photoelectrode, 

the analyte of choice is selectively bound to the photoelectrode. Common methods for binding of 

analytes include analyte binding to DNA strands[127-131], aptamer-analyte reactions[132-134], and 

antibody-antigen reactions[135-137]. The bound analyte itself may alter the PEC performance of the 

photoelectrode[132-135, 136, 138] or a secondary probe may be bound selectively to the photoelectrode 

at sites where the analyte is already bound[127-131, 137, 139] to modulate the PEC performance of the 

photoelectrode. The photoelectrochemical performance of the PEC biosensor’s photoelectrode 

may be modulated utilizing different mechanisms. The following mechanisms are some commonly 

employed mechanisms for modulating the PEC performance of photoelectrodes in PEC 

biosensors. It should be noted that more than one of these mechanisms may be combined with each 

other on a single PEC biosensor. 

 A commonly employed technique for modulating the PEC performance of photoelectrodes 

in PEC biosensors is increased charge transfer resistance at the photoelectrode surface due to the 

presence of bound analyte and bound secondary probes.[132-136, 140-143] The presence of biological 

analytes such as proteins or large probes conjugated to the analyte can impede the diffusion of 

reactants through steric hinderance to the photoelectrode surface. In addition, the presence of the 

bound analyte (and bound probes) blocks electrochemically active sites on the photoelectrode 

surface. The amount of steric hinderance and blocked electrochemically active sites is directly 

proportional to the concentration of bound analyte. As such, the photocurrent also decreases in a 

manner that is also proportional to the concentration of bound analyte making this mechanism 

useful for sensing applications.    

 Another commonly employed technique for modulating the PEC performance of 

photoelectrodes in PEC biosensors is the modulation of different energy transfer processes 

between plasmonic NPs and a semiconductor photoelectrodes. Three different mechanisms, hot 

electron injection[132-136], PIRET[139], and FRET[127 –131, 137, 144], have been utilized as energy transfer 

mechanisms. PEC biosensors that utilize hot electron injection have plasmonic nanoparticles 

already bound to the surface of the semiconductor photoelectrode with analyte binding modulates 

the magnitude of hot electron injection between the plasmonic nanoparticle and semiconductor 

photoelectrode. As discussed previously in Section 2.5.1, PIRET and FRET are similar in that they 

are resonant energy transfer processes that rely on dipole-dipole interactions between plasmonic 

nanoparticles and semiconductors. However, the direction of energy transfer differs between 

PIRET and FRET. In PIRET, energy from the LSPR of bound plasmonic nanoparticles is 

transferred to the semiconductor photoelectrode. The transfer of energy from the plasmonic NPs 
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to the semiconductor photoelectrode via PIRET results in increased charge carrier generation and 

corresponding photocurrent from the semiconductor photoelectrode. To date, there have been few 

sensors that utilize PIRET from plasmonic NPs in PEC sensors. These PIRET-based PEC sensors 

utilize selective binding of plasmonic NP probes to semiconductor photoelectrodes in the presence 

of analyte to initiate PIRET and increase the photocurrent of the photoelectrode. The resulting 

photocurrent increase is proportional to the amount of bound plasmonic NPs and thus the 

concentration of analyte used to bind the plasmonic NPs.  

 In FRET, energy is transferred from the semiconductor to the plasmonic nanoparticle. As 

such, the loss of energy from the semiconductor photoelectrode results in decreased charge carrier 

generation and corresponding photocurrent. In the case of FRET-based PEC sensors, the 

photocurrent of the photoelectrode system may be decreased by selective binding of plasmonic NP 

probes in the presence of analyte to the photoelectrode surface to initiate FRET[127-131, 135] or 

increased by selectively increasing the separation distance between the plasmonic nanoparticles 

and semiconductor photoelectrode to decrease the magnitude of FRET.[144]   

 

2.7 References 
 

[1] World Energy Council. Solar. World Energy Resources: 2013 Survey, World Energy 

 Council: London, 2013; pp 8.1-8.28. 

[2] Jenkins, T. A brief history of ... semiconductors. Phys. Edu., 2005, 40, 430-439. 

[3] Ashcroft, N. W.; Mermin, N. D.  Homogeneous Semicondcutors. Solid State Physics, 

 Harcourt College Publishers: New York, 1976; pp 561-587. 

[4] Muller, R. S.; Kamins, T. I.; Chan, M. Semiconductor Electronics. Device Electronics for 

 Integrated Circuits, John Wiley & Sons: New York, 2003; pp 2-55. 

[5] Bhattacharya, P. Electronic Properties of Semiconductors. Semiconductor Optoelectronic 

 Devices, Prentice Hall: Englewood Cliffs, 1994; pp 59-111. 

[6] Bhattacharya, P. Optical Processes in Semiconductors. Semiconductor Optoelectronic 

 Devices, Prentice Hall: Englewood Cliffs, 1994; pp 112-155. 

[7] Muller, R. S.; Kamins, T. I.; Chan, M. Currents in pn Junctions. Device Electronics for 

 Integrated Electronics, John Wiley & Sons: New York, 2003; pp 226-277. 

[8] Muller, R. S.; Kamins, T. I.; Chan, M. Silicon Technology. Device Electronics for 

 Integrated Electronics, John Wiley & Sons: New York, 2003; pp 56-138. 

[9] Ashcroft, N. W.; Mermin, N. D. Inhomogeneous Semiconductors. Solid-State Physics 

 Harcourt College Publishers: New York, pp 589-614. 

[10] Muller, R. S.; Kamins, T. I.; Chan, M. pn Junctions. Device Electronics for Integrated 

 Circuits, John Wiley & Sons: New York, 2003; pp. 174-225 



35 
 

[11] Bhattacharya, P. Solar Cells. Semiconductor Optoelectronic Devices, Prentice Hall: 

 Englewood Cliffs, 1994; pp 413-431. 

[12] Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. 

 Nature, 1972, 238, 37-38. 

[13] Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar 

 fuel generation: a review. Catal. Sci. Technol., 2015, 5, 1360-1384. 

[14] Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy 

 conversion. Nat. Rev. Mater., 2016, 1, 15010. 

[15] Seabold, J. A.; Zhu, K.; Neale, N. R. Efficient solar photoelectrolysis by nanoporous 

 Mo:BiVO4 through controlled electron transport. Phys. Chem. Chem. Phys., 2014, 16, 

 1121-1131. 

[16] Pilli, S. K.; Furtak, T. E.; Brown, L. D.; Deutsch, T. G.; Turner, J. A.; Herring, A. M. 

 Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar 

 water oxidation. Energy Environ. Sci., 2011, 4, 5028-5034. 

[17] Du, C.; Yang, X.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, 

 D. Hematite-based water splitting with low turn-on voltages. Angew. Chem. Intl.  Ed., 

 2013, 52, 12692-12695. 

[18] Abdi, F. F.; van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-

 catalyzed BiVO4 photoanodes. J. Phys. Chem. C, 2012, 116, 9398-9404. 

[19] Kim, T. W.; Choi, K.-S. Nanoporous BiVO4 photoanode with dual-layer oxygen evolution 

 catalysts for solar water splitting. Science, 2014, 343, 990-994. 

[20] Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H. Efficient solar water 

 splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B, 

 2000, 104, 8920-8924. 

[21] Khaselev, O.; Turner, J. A. A monolithic photovoltaic-photoelectrochemical device for 

 hydrogen production via water splitting. Science, 1998, 280, 425-427. 

[22] Fountaine, K. T.; Lewerenz, H. J.; Atwater, H. A. Efficiency limits for photoelectrochemical 

 water-splitting. Nat. Commun., 2016, 7, 13706. 

[23] Cha, H. G.; Choi, K.-S. Combined biomass valorization and hydrogen production in a 

 photoelectrochemical cell. Nat. Chem., 2015, 7, 328-333. 

[24] Wang, G.; Ling, Y.; Wang, H.; Yang, X.;Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated 

 WO3 nanoflakes show enhanced photostability. Energy Environ. Sci., 2012, 5, 6180-

 6187. 

[25] Zhong, X.; Zhu, Y.; Yang, X.; Wang, S.; Shen, J.; Lin, B.; Li, C. Enhanced visible light 

 photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell 

 nanoparticles. Nanoscale, 2013, 5, 3359-3366. 



36 
 

[26] Li, Y.; Cheng, X.; Ruan, X.; Song, H.; Lou, Z.; Ye, Z.; Zhu, L. Enhancing photocatalytic 

 activity for visible-light-driven H2 generation with the surface reconstructed LaTiO2N 

 nanostructures. Nano Energy, 2015, 12, 775-784. 

[27] Meng, F.; Cushing, S. K.; Li, J.; Hao, S.; Wu, N. Enhancement of solar hydrogen generation 

 by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles 

 and reduced graphene oxide nanosheets. ACS Catal., 2015, 5, 1949-1955. 

[28] Meng, F.; Li, J.; Cushing, S. K.; Zhi, M.; Wu, N. Solar hydrogen generation by nanoscale p-

 n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene 

 oxide. J. Am. Chem. Soc., 2013, 135, 10286-10289. 

[29] Matsumoto, Y.; Obata, M.;Hombo, J. Photocatalytic reduction of carbon dioxide on p-type 

 CaFe2O4 powder. J. Phys. Chem., 1994, 98, 2950-2951. 

[30] Wang, S.; Hou, Y.; Wang, X. Development of a stable MnCo2O4 cocatalyst for 

 photocatalytic CO2 reduction with visible light. ACS Appl. Mater. Interfaces, 2015, 7, 

 4327-4335. 

[31] Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. Visible-

 light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole 

 separation via electron trap states. J. Am. Chem. Soc., 2015, 137, 13440-13443. 

[32] Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, 

 thermodynamic considerations, and future outlook. ACS Catal., 2017, 7, 2624-2643. 

[33] Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Feldmann, 

 J. Hole scavenger redox potentials determine quantum efficiency and stability of Pt-

 decorated CdS nanorods for photocatalytic hydrogen generation. Appl. Phys. Lett., 2012, 

 100, 223903. 

[34] Schneider, J.; Bahnemann, D. W. Undesired role of sacrificial reagents in photocatalysis. J. 

 Phys. Chem. Lett., 2013, 4, 3479-3483. 

[35] Jiang, N.; You, B.; Boonstra, R.; Terrero Rodriguez, I. M.; Sun, Y. Integrating 

 electrocatalytic 5-Hydroxymethylfurfural oxidation and hydrogen production via Co-P 

 derived electrocatalysts. ACS Energy Lett., 2016, 1, 386-390. 

[36] You, B.; Liu, X.; Jiang, N.; Sun, Y. A general strategy for decoupled hydrogen production 

 from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc., 

 2016, 138, 13639-13646. 

[37] Bloor, L. G.; Solarska, R.; Bienkowski, K.; Kulesza, P. J.; Augustynski, J.; Symes, M. D.; 

 Cronin, L. Solar-driven water oxidation and decoupled hydrogen production mediated by 

 an electron-coupled-proton buffer. J. Am. Chem. Soc., 2016, 138,  6707-6710. 

[38] Rausch, B.; Symes, M. D.; Chisholm, G.; Cronin, L. Decoupled catalytic hydrogen 

 evolution from a molecular metal oxide redox mediator in water splitting. Science, 2014, 

 345, 1326-1330. 



37 
 

[39] Symes, M. D.;  Cronin, L. Decoupling hydrogen and oxygen evolution during 

 electrocatalytic water splitting using an electron-coupled-proton buffer. Nat. Chem., 

 2013, 5, 403-409. 

[40] Rausch, B.; Symes, M. D.; Cronin, L. A bio-inspired, small molecule electron-coupled-

 proton buffer for decoupling the half reactions of electrolytic water splitting. J. Am. 

 Chem. Soc., 2013, 135, 13656-13659. 

[41] McCrory, C. C.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous 

 electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc., 2013, 135, 16977-

 16987. 

[42] Cai, L.; Zhao, J.; Li, H.; Park, J.; Cho, I. S.; Han, H. S.; Zheng, X. One-step hydrothermal 

 deposition of Ni:FeOOH onto photoanodes for enhanced water oxidation. ACS Energy 

 Lett., 2016, 1, 624-632. 

[43] Miller, E. L. Photoelectrochemical Hydrogen Production: DOE PEC Working Group 

 Overview FY 2010. U.S. Department of Energy: Washington D.C., 2011.  

[44] Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. 

 Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water 

 splitting. Nano Lett., 2011, 11, 3026-3033. 

[45] Wu, N.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J.-G.; Lewis, J. P.; Liu, X.; Leonard, S. 

 S.; Manivannan, A. Shape-enhanced photocatalytic activity of single-crystalline anatase 

 TiO2 (101) nanobelts. J. Am. Chem. Soc., 2010, 132, 6679-6685. 

[46] Paracchino, A.; Laporte, V.; Sivula, K.; Gratzel, M.; Thimsen, E. Highly active oxide 

 photocathode for photoelectrochemical water reduction. Nat. Mater, 2011, 10, 456-461. 

[47] Luo, J.; Steier, L.; Son, M.-K.; Schreier, M.; Mayer, M. T.; Gratzel, M. (2016). Cu2O 

 nanowire photocathodes for efficient and durable solar water splitting. Nano Lett., 2016, 

 16, 1848-1857. 

[48] Gao, L.; Cui, Y.; Vervuurt, R. H. J.; van Dam, D.; van Veldhoven, R. P. J.; Hofmann, J. 

 P.; Bol, A. A.; Haverkort, J. E. M.; Notten, P. H. L.; Bakkers, E. P. A. M.; Hensen, E. J. 

 M. High-efficiency InP-based photocathode for hydrogen production by interface 

 energetics design and photon management. Adv. Funct. Mater., 2016, 26, 679-686. 

[49] Ye, K.-H.; Li, H.; Huang, D.; Xiao, S.; Qui, W.; Li, M.; Hu, Y.; Mai, W.; Ji, H.; Yang, S. 

 Enhancing photoelectrochemical water splitting by combining work function tuning and 

 heterojunction engineering. Nat. Commun., 2019, 19, 3687. 

[50] Dotan, H.; Sivula, K.; Grätzel, M.; Rothschild, A.; Warren, S. C. Probing the 

 photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen 

 peroxide as a hole scavenger. Energy Environ. Sci., 2011, 4, 958-964. 



38 
 

[51] Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y.; Yang, P.; Alivisatos, A. P.; Leone, S. 

 R. Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-

 Fe2O3. Nat. Mater., 2017, 16, 819-826. 

[52] Jeon, T. H.; Moon, G.-H.; Park, H.; Choi, W. Ultra-efficient and durable 

 photoelectrochemical water oxidation using elaborately designed hematite nanorod 

 arrays. Nano Energy, 2017, 39, 211-218. 

[53] Marin, A. T.; Muñoz-Rojas, D.; Iza, D. C.; Gershon, T.; Musselman, K. P.; Macmanus-

 Driscoll, J. L. Novel atmospheric growth technique to improve both light absorption and 

 charge collection in ZnO/Cu2O thin film solar cells. Adv. Funct. Mater., 2013, 23, 3413-

 3419. 

[54] Minami, T.; Nishi, Y.; Miyata, T. Impact of incorporating sodium into polycrystalline 

 p-type Cu2O for heterojunction solar cell applications. Appl. Phys. Lett., 2014, 105, 

 212104. 

[55] Pan, L.; Kim, J. H.; Mayer, M. T.; Son, M.-K.; Ummadisingu, A.; Lee, J. S.; Hagfeldt, 

 A.; Luo, J.; Grätzel, M. Boosting the performance of Cu2O photocathodes for unassisted 

 solar water splitting devices. Nat. Catal., 2018, 1, 412-420. 

[56] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications 

of metal-organic-frameworks. Science, 2013, 341, 1230444. 

[57] Zeng, L.; Guo, X.; He, C.; Duan, C. Metal-organic frameworks: Versatile materials for 

heterogeneous photocatalysis. ACS Catal., 2016, 6, 7935-7947. 

[58] Nguyen, H. L. The chemistry of titanium-based metal-organic frameworks. New J. Chem., 

2017, 41, 14030-14043. 

[59] Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An amine-functionalized 

titanium metal-organic framework photocatalyst with visible-light-induced activity for 

CO2 reduction. Angew. Chem., 2012, 124, 3420-3423. 

[60] Gao, J.; Miao, J.; Li, P.-Z.; Teng, W. Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type 

Ti(IV)-based metal-organic framework with visible-light photoresponse. Chem. Commun. 

2014, 50, 3786-3788. 

[61] Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.; Khimyak, Y. Z.; Wiper, P. V.; 

Rosseinsky, M. J. A water-stable porphyrin-based metal-organic framework active for 

visible light photocatalysis. Angew. Chem., 2012, 124, 7558-7562. 

[62] Park, H. J.; So, M. C.; Gosztola, D.; Wiederrecht, G. P.; Emery, J. D.; Martinson, A. B.; Er, 

S.; Wilmer, C. E.; Vermeulen, N. A.; Aspuru-Guzik, A.; Stoddart, J. F.; Farha, O. K.; 

Hupp, J. T. Layer-by-layer assembled films of perylene diimide- and squaraine 

containing metal-organic framework-like materials: Solar energy capture and directional 

energy transfer. ACS Appl. Mater. Inter., 2016, 8, 24983-24988. 



39 
 

[63] Sun, D.; Fu, Y.; Liu, W.; Ye, L.; Wang, D.; Yang, L.; Fu, X.; Li, Z. Studies on 

 photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: Towards a better 

 understanding of photocatalysis on metal-organic frameworks. Chem. Eur. J., 2013, 19, 

 14279-14285. 

[64] Shen, L.; Liang, R.; Luo, M.; Jing, F.; Wu, L. Electronic effects of ligand substitution on 

 metal-organic framework photocatalysts: the case study of UiO-66. Phys. Chem. Chem. 

 Phys., 2015, 16, 117-121. 

[65] Wang, A.; Zhou, Y.; Wang, Z.; Chen, M.; Sun, L.; Liu, X. Titanium incorporated with 

 UiO-66(Zr)-type metal-organic framework (MOF) for photocatalytic application. RSC 

 Adv., 2016, 6, 3671-3679. 

[66] Li, J.; Musho, T.; Bright, J.; Wu, N. Functionalization of a metal-organic framework 

 semiconductor for tuned band structure and catalytic activity. J. Electrochem. Soc., 2019, 

 166, H3029-H3034. 

[67] Shen, L.; Wu, W.; Liang, R.; Lin, R.; Wu, L. Highly dispersed palladium nanoparticles 

 anchored on UiO-66(NH2) metal-organic framework as a reusable and dual functional 

 visible-light-driven photocatalyst. Nanoscale, 2013, 5, 9374-9382. 

[68] Wang, R.; Gu, L.; Zhou, J.; Liu, X.; Teng, F.; Li, C.; Shen, Y.; Yuan, Y. Quasi-

 polymeric metal-organic framework UiO-66/g-C3N4 heterojunctions for enhanced 

 photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces, 

 2015, 2, 1500037. 

[69] Zhan, W.; Kuang, Q.; Zhou, J.; Kong, X. Xie, Z.; Zheng, L. Semiconductor@metal-organic 

 framework core-shell heterostructures: A case of ZnO@ZIF-8 nanorods with selective 

 photoelectrochemical response. J. Am. Chem. Soc., 2013, 135, 1926-1933. 

[70] Liu, Q.; Low, Z.-X.; Li, L.; Razmjou, A.; Wang, K.; Yao, J.; Wang, H. ZIF-8/Zn2GeO4 

 nanorods with an enhanced CO2 adsorption property in an aqueous medium for 

 photocatalytic synthesis of liquid fuel. J. Mater. Chem. A, 2013, 1, 11563-11569. 

[71] Wang, X.; Liu, J.; Leong, S.; Lin, X.; Wei, J.; Kong, B.; Xu, Y.; Low, Z.-X.; Yao, J.; 

 Wang, H. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective 

 photocatalysis properties. ACS Appl. Mater. Interfaces, 2016, 8, 9080-9087. 

[72] Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. Photocatalytic degradation of 

 methylene blue in ZIF-8. RSC Adv., 2014, 4, 54454-54462. 

[73] Zeng, X.; Huang, L.; Wang, C.; Wang, J.; Li, J.; Luo, X. Sonocrystallization of ZIF-8 on 

 electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property 

 through synergistic effect. ACS Appl. Mater. Interfaces, 2016, 8, 20274-20282. 

[74] Isimjan, T. T.; Kazemian, H.; Rohani, S.; Ray, A. K. Photocatalytic activities of Pt/ZIF-8 

 loaded highly ordered TiO2 nanotubes. J. Mater. Chem., 2010, 20, 10241-10245. 



40 
 

[75] Kaur, R.; Rana, A.; Singh, R. K.; Chhabra, V. A.; Kim, K.-H.; Deep, A. Efficient 

 photocatalytic and photovoltaic applications with nanocomposites between CdTe QDs 

 and an NTU-9 MOF. RSC Adv., 2017, 7, 29015-29024. 

[76] Zhang, L.; Cui, P.; Yang, H.; Chen, J.; Xiao, F.; Guo, Y.; Liu, Y.; Zhang, W.; Huo, F.; 

 Liu, B. Metal-organic frameworks as promising photosensitizers for 

 photoelectrochemical water splitting. Adv. Sci., 2016, 3, 1500243. 

[77] Sun, D.; Liu, W.; Fu, Y.; Fang, Z.; Sun, F.; Fu, X.; Zhang, Y.; Li, Z. Noble metals can 

 have different effects on photocatalysis over metal-organic frameworks (MOFs): A case 

 study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chem. Eur. J., 2014, 20, 4780-4788. 

[78] Chambers, M. B.; Wang, X.; Ellezam, L.; Ersen, O.; Fontecave, M.; Sanchez, C.; Rozes, 

 L.; Mellot-Draznieks, C. Maximizing the photocatalytic activity of metal-organic 

 frameworks with aminated-functionalized linkers: Substoichiometric effects in MIL-125-

 NH2.  

[79] Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C. Zirconium-

 metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh 

 stability as biomimetic catalysts. Angew. Chem. Int. Ed., 2012, 51, 10307-10310. 

[80] Xu, H.-Q.; Hu, J.; Wang, D.; Li, Z.; Zhang, Q.; Luo, Y.; Yu, S.-H.; Jiang, H.-L. Visible-

 light photoreduction of CO2 in a metal-organic framework: Boosting electron-hole 

 separation via electron trap states. J. Am. Chem. Soc., 2015, 137, 13440-13443. 

[81] Feng, D.; Gu, Z.-Y.; Chen, Y.-P.; Park, J.; Wei, Z.; Sun, Y.; Bosch, M.; Yuan, S.; Zhou, 

 H.-C. A highly stable porphyrinic zirconium metal-organic framework with shp-a 

 topology. J. Am. Chem. Soc., 2014, 136, 17714-17717.  

[82] Feng, D.; Chung, W.-C.; Wei, Z.; Gu, Z.-Y.; Jiang, H.-L.; Chen, Y.-P.; Darensbourg, D. 

 J.; Zhou, H.-C. Construction of ultrastable porphyrin Zr metal-organic frameworks 

 through linker elimination. J. Am. Chem. Soc., 2013, 135, 17105-17110. 

[83] Jiang, H.-L.; Feng, D.; Wang, K.; Gu, Z.-Y.; Wei, Z.; Chen, Y.-P.; Zhou, H.-C. An 

 exceptionally stably, porphyrinic Zr metal-organic framework exhibiting pH-dependent 

 fluorescence. J. Am. Chem. Soc., 2013, 135, 13934-13938. 

[84] Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and 

sensing. Annu. Rev. Phys. Chem., 2007, 58, 267-297. 

[85] Maier, S. A.; Atwater, H. A. Plasmonics: Localization and guiding of electromagnetic 

energy in metal/dielectric structures. J. Appl. Phys., 2005, 98, 011101. 

[86] Wu, N. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a 

review. Nanoscale, 2018, 10, 2679-2696. 

[87] Clavero, C. Plasmon-induced hot electron generation at nanoparticle/metal-oxide interfaces 

for photovoltaic and photocatalytic devices. Nat. Photon., 2014, 8, 95-103. 



41 
 

[88] Cushing, S. K.; Wu, N. Plasmon-enhanced solar energy harvesting. Interface, 2013,  63-67. 

[89] Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, 

N. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to 

semiconductor. J. Am. Chem. Soc., 2012, 134, 15033-15041. 

[90] Li, J.; Cushing, S. K.; Meng, F.; Senty, T. R.; Bristow, A. D.; Wu, N. Plasmon-induced 

resonance energy transfer for solar energy conversion. Nat. Photon., 2015, 9, 601-607. 

[91] Meng, F.; Cushing, S. K.; Li, J.; Hao, S.; Wu, N. Enhancement of solar hydrogen generation 

by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles 

and reduced graphene oxide nanosheets. ACS Catal., 2015, 5, 1949-1955. 

[92] Zhong, X.; Zhu, Y.; Yang, X.; Wang, S.; Shen, J.; Lin, B.; Li, C. Enhanced visible light 

photocatalytic activity of interlayer-isolated triplex Ag@SiO2@TiO2 core-shell 

nanoparticles. Nanoscale, 2013, 5, 3359-3366. 

[93] Li, J., Cushing, S. K., Bright, J., Meng, F., Senty, T. R., Zheng, P., Bristow, A. D.; Wu, N. 

Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catal., 

2013, 3, 47-51. 

[94] Li, J.; Cushing, S. K.; Zheng, P.; Meng, F.; Chu, D.; Wu, N. Plasmon-induced photonic and 

energy-transfer enhancement of solar water splitting by a nanorod array. Nat. Commun., 

2013, 4, 2651. 

[95] Cushing, S. K.; Bristow, A. D.; Wu, N. Theoretical maximum efficiency of solar energy 

conversion in plasmonic metal-semiconductor heterojunctions. Phys. Chem. Chem. Phys., 

2015, 17, 30013-30022. 

[96] Cushing, S. K.; Wu, N. Progress and perspectives of plasmon-enhanced solar energy 

conversion. J. Phys. Chem. Lett., 2016, 7, 666-675. 

[97] Cushing, S. K.; Li, J.; Bright, J.; Yost, B. T.; Zheng, P.; Bristow, A. D.; Wu, N. Controlling 

plasmon-induced resonance energy transfer and hot electron injection processes in 

metal@TiO2 core-shell nanoparticles. J. Phys. Chem. C, 2015, 119, 16239-16244. 

[98] Link, S.; El-Sayed, M. A. Size and temperature dependence of the plasmon absorption of 

colloidal gold nanoparticles. J. Phys. Chem. B, 1999, 103, 4212-4217. 

[99] Li, M.; Cushing, S. K.; Zhang, J.; Lankford, J.; Aguilar, Z. P.; Ma, D.; Wu, N. Shape-

dependent surface-enhanced Raman scattering in gold-Raman-probe-silica sandwiched 

nanoparticles for biocompatible applications. Nanotechnology, 2012, 23, 115501. 

[100] DuChene, J. S.; Williams, B. P.; Johnston-Peck, A. C.; Qiu, J.; Gomes, M.; Amilhau, M.; 

 Bejleri, D.; Weng, J.; Su, D.; Huo, F.; Stach, E. A.; Wei, W. D. Elucidating the sole 

 contribution from electromagnetic near-fields in plasmon-enhanced Cu2O photocathodes. 

 Adv. Energy Mater., 2016, 6, 1501250. 



42 
 

[101] Klar, T.; Perner, M.; Grosse, S.; von Plessen, G.; Spirkl, W.; Feldmann, J. Surface-

 plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett., 1998, 80, 4249-

 4252. 

[102] Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface 

 plasmon excitation in metal nanoparticles. Appl. Phys. Lett., 2005, 86, 063106. 

[103] Derkacs, D.; Lim, S. H.; Matheu, P.; Mar, W.; Yu, E. T. Improved performance of 

 amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby 

 metallic nanoparticles. Appl. Phys. Lett., 2006, 89, 093103. 

[104] Tian, Y.; Tatsuma, T. Plasmon-induced photoelectrochemistry at metal nanoparticles 

 supported on nanoporous TiO2. Chem. Commun., 2004, 1810-1811. 

[105] Yu, K.; Tian, Y.; Tatsuma, T. Size effects of gold nanaoparticles on plasmon-induced 

 photocurrents of gold-TiO2 nanocomposites. Phys. Chem. Chem. Phys., 2006, 8, 5417-

 5420. 

[106] Nishi, H.; Sakamoto, M.; Tatsuma, T. Local trapping of energetic holes at gold 

 nanoparticles on TiO2. Chem. Commun., 2018, 54, 11741-11744. 

[107] DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W.-H.; Atwater, H. A. Hot hole 

 collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN 

 photocathodes. Nano Lett., 2018, 18, 2545-2550. 

[108] Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits, M. Plasmonic 

 photosensitization of a wide band gap semiconductor: Converting plasmons to charge 

 carriers. Nano Lett., 2011, 11, 5548-5552. 

[109] Leenheer, A. J.; Narang, P.; Lewis, N. S.; Atwater, H. A. Solar energy conversion via hot 

 electron internal photoemission in metallic nanostructures: Efficiency estimates.  J. Appl. 

 Phys., 2014, 115, 134301. 

[110] Subramanian, V.; Wolf, E. E.; Kamat, P. V. Catalysis with TiO2/gold nanocomposites. 

 Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc., 2004, 

 126, 4943-4950. 

[111] Chandrasekharan, N.; Kamat, P. V. Improving the photoelectrochemical performance of 

 nanostructured TiO2 films by adsorption of gold nanoparticles. J. Phys. Chem. B, 2000, 

 104, 10851-10857. 

[112] Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor-metal composite nanostructures. 

 To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? 

 J. Phys. Chem. B, 2001, 105, 11439-11446. 

[113] Chen, Z.; Dinh, H. N.; Miller, E. Flat-band potential techniques. Photoelectrochemical 

 Water Splitting: Standards, Experimental Methods, and Protocols, Springer Briefs in 

 Energy; Springer: New York, 2013; pp 63-84. 



43 
 

[114] Tafalla, D.; Salvador, P.; Benito, R. M. Kinetic approach to the photocurrent transients in 

 water photoelectrolysis at n-TiO2 electrodes II. Analysis of the photocurrent-time 

 dependence. J. Electrochem. Soc., 1990, 137, 1810-1815. 

[115] Li, J.; Cushing, S. K.; Zheng, P.; Senty, T.; Meng, F.; Bristow, A. D.; Manivannan, A.; 

 Wu, N. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced 

 with Au nanoparticle as electron relay and plasmonic photosensitizer.  J. Am. Chem. Soc., 

 2014, 136, 8438-8449. 

[116] Haruta, M., When gold is not noble: Catalysis by nanoparticles. Chem. Rec., 2003, 3, 75-

 87 

[117] Haruta, M., Role of perimeter interfaces in catalysis by gold nanoparticles. Faraday 

 Discuss., 2011, 152, 11-32. 

[118] Trindell, J. A.; Clausmeyer, J.; Crooks, R. M. Size stability and H2/CO selectivity for Au 

 nanoparticles during electrocatalytic CO2 reduction. J. Am. Chem. Soc., 2017, 139, 

 16161-16167. 

[119] Zhu, W.; Zhang, Y.-J.; Zhang, H.; Lv, H.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. 

 Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. 

 Soc., 2014, 136, 16132-16135. 

[120] Gao, D.; Zegkinoglou, I.; Divins, N. J.; Scholten, F.; Sinev, I.; Grosse, P.; Roldan Cuenya, 

 B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide 

 electroreduction to hydrocarbons and alcohols. ACS Nano, 2017, 11, 4825-4831. 

[121] Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in 

 the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc., 2014, 136, 

 6978-6986. 

[122] Kim, Y.; Creel, E. B.; Corson, E. R.; McCloskey, B. D.; Urban, J. J.; Kostecki, R. Surface-

 plasmon assisted photoelectrochemical reduction of CO2 and NO3
- on nanostructured 

 silver electrodes. Adv. Energy Mater., 2018, 8, 1800363. 

[123] Koren, M. G.; Dotan, H.; Rothschild, A. Nano gold rush: On the origin of the photocurrent 

 enhancement in hematite photoanodes decorated with gold nanoparticles. J. Phys. Chem. 

 C, 2016, 120, 15042-15051. 

[124] Zhao, W.-W., Xu, J.-J., & Chen, H.-Y. Photoelectrochemical bioanalysis: The state of the 

art. Chem. Soc. Rev., 2015, 44, 729-741. 

[125] Zhang, X., Guo, Y., Liu, M., & Zhang, S. Photoelectrocehmically active species and 

photoelectrochemical biosensors. RSC Adv., 2013, 3, 2846-2857. 

[126] Kang, Z.; Yan, X.; Wang, Y.; Bai, Z.; Liu, Y.; Zhang, Z.; Lin, P.; Zhang, X.; Yuan, H.; 

 Zhang, X.; Zhang, Y. Electronic structure engineering of Cu2O/ZnO nanorods array all-

 oxide p-n heterostructure for enhanced photoelectrochemical property and self-powered 

 biosensing application. Sci. Rep., 2015, 5, 7882. 



44 
 

[127] Zhao, W.-W.; Yu, P.-P.; Shan, Y.; Wang, J.; Xu, J.-J.; Chen, H.-Y. Exciton-plasmon  

 interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical 

 system and its biosensing application. Anal. Chem., 2012, 84, 5892-5897. 

[128] Han, D.-M.; Jiang, L.-Y.; Tang, W.-Y.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical 

 determination of inorganic mercury ions based on energy transfer between CdS quantum 

 dots and Au nanoparticles. Electrochem. Commun., 2015, 51, 72-75. 

[129] Dong, Y.-X.; Cao, J.-T.; Wang, B.; Ma, S.-H.; Liu, Y.-M. Exciton-plasmon interactions 

 between CdS@g-C3N4 heterojunction and Au@Ag nanoparticles coupled with DNAase-

 triggered signal amplification: Toward highly sensitive photoelectrochemical bioanalysis 

 of microRNA. ACS Sustainable Chem. Eng., 2017, 5, 10840-10848. 

[130] Shi, X.-M.; Mei, L.-P.; Wang, Q.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Energy transfer 

 between semiconducting polymer dots and gold nanoparticles in a photoelectrochemical 

 system: A case application for cathodic bioanalysis. Anal. Chem., 2018, 90, 4277-4281. 

[131] Dong, Y.-X.; Cao, J.-T.; Liu, Y.-M.; Ma, S.-H. A novel immunosensing platform for 

 highly sensitive prostate specific antigen detection based on dual-quenching of 

 photocurrent from CdSe sensitized TiO2 electrode by gold nanoparticles decorated 

 polydopamine nanospheres. Biosens. Bioelectron., 2017, 91, 246-252.  

[132] Da, P.; Li, W.; Lin, X.; Wang, Y.; Tang, J.; Zheng, G. Surface plasmon resonance  

 enhanced real time photoelectrochemical protein sensing by gold nanoparticle-decorated 

 TiO2 nanowires. Anal. Chem., 2014, 86, 6633-6639. 

[133] Xin, Y.; Li, Z.; Zhang, Z. Photoelectrochemical aptasensor for the sensitive and selective 

 detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 

 nanotube arrays. Chem. Commun., 2015, 51, 15498-15501. 

[134] Qiao, Y.; Li, J.; Li, H.; Fang, H.; Fan, D.; Wang, W. A label-free photoelectrochemical 

 aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-

 sensitized ZnO nanopencils. Biosens. Bioelectron., 2016, 86, 315-320. 

[135] Zhu, Y.-C.; Zhang, N.; Ruan, Y.-F.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Alkaline 

 phosphatase tagged antibodies on gold nanoparticles/TiO2 nanotubes electrode: A 

 plasmonic strategy for label-fee and amplified photoelectrochemical immunoassay. Anal. 

 Chem., 2016, 88, 5626-5630. 

[136] Shi, Y.; Zhang, Q.; Zhai, T.-T.; Zhou, Y.; Yang, D.-R.; Wang, F.-B.; Xia, X.-H. Localized 

 surface plasmon resonance enhanced label-free photoelectrochemical immunoassay by 

 Au-MoS2 nanohybrid. Electrochim. Acta, 2018, 271, 361-369. 

[137] Wang, Y.; Yu, X.; Ye, X.; Wu, K.; Wu, T.; Li, C. Resonance energy transfer between 

 ZnCdHgSe quantum dots and gold nanorods enhancing photoelectrochemical 

 immunosensing of prostate specific antigen. Anal. Chim. Acta, 2016, 943, 106-113. 



45 
 

[138] Wang, S.-S.; Zhao, X.-P.; Liu, F.-F.; Younis, M. R.; Xia, X.-H.; Wang, C. Direct 

 plasmon-enhanced electrochemistry for enabling ultrasensitive and label-free detection of 

 circulating tumor cells in blood. Anal. Chem., 2019, 91, 4413-4420. 

[139] Shu, J.; Qiu, Z.; Lv, S.; Zhang, K.; Tang, D. Plasmonic enhancement coupling with defect-

 engineered TiO2-x: A mode for sensitive photoelectrochemical biosensing. Anal. Chem., 

 2018, 90, 2425-2429. 

[140] Liu, Y; Yan, T.; Li, Y.; Cao, W.; Pang, X.; Wu, D.; Wei, Q. A simple label-free 

 photoelectrochemical immunosensor for highly sensitive detection of aflatoxin B1 based 

 on CdS-Fe3O4 magnetic nanocomposites. RSC Adv., 2015, 5, 19581-19586. 

[141] Wang, Y.; Fan, D.; Zhao, G.; Feng, J.; Wei, D.; Zhang, N.; Cao, W.; Du, B.; Wei, Q. 

 Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid β-protein 

 based on SnO2/SnS2/Ag2S nanocomposites. Biosens. Bioelectron., 2018, 120, 1-7. 

[142] Zhang, Y.; Liu, Y.; Li, R.; Khan, M. S.; Gao, P.; Zhang, Y.; Wei, Q. Visible-light driven 

 photoelectrochemical immunosensor based on SnS2@mpg-C3N4 for detection of 

 prostate specific antigen. Sci. Rep., 2017, 7, 4629. 

[143] Fan, D.; Wu, D.; Cui, J.; Chen, Y.; Ma, H.; Liu, Y.; Wei, Q.; Du, B. An ultrasensitive 

 label-free immunosensor based on CdS sensitized Fe-TiO2 with high visible-light 

 photoelectrochemical activity. Biosens. Bioelectron., 2015, 74, 843-848. 

[144] Liu, S.; Cao, H.; Wang, X.; Tu, W.; Dai, Z. Green light excited ultrasensitive 

 photoelectrochemical biosensing for microRNA at a low applied potential based on the 

 dual role of Au NPs in TiO2 nanorods/Au NPs composites. Nanoscale, 2018, 10, 16474-

 16478. 

 



46 
 

Chapter 3: Porphyrin-based Metal-Organic 

Framework Coated Titanium Dioxide Nanorod Array 

for Improved Photoelectrochemical Cell Performance 

 

3.1 Introduction 
 

 Fossil fuels currently provide for most of the world’s energy needs. However, consumption 

of fossil fuels releases pollutants and greenhouse gases that cause global climate change. 

Therefore, new sustainable energy sources are needed to meet the world’s increasing energy 

demand. Solar fuels generated through photoelectrochemical or photocatalytic water-splitting, 

which represents a sustainable energy source[1–8]. Unfortunately, commercialization of 

semiconductor-based photocatalysts and photoelectrochemcial cells (PECs) is still hindered by 

low solar-to-chemical energy conversion efficiency due to the lack of semiconductors with 

sufficient sunlight absorption, charge transport properties and catalytic activity for water-

splitting[9]. Titanium dioxide (TiO2) is a commonly used photocatalyst and photoelectrode material 

due to its low cost, favorable valence band energetics for water oxidation, ease in forming 

nanostructures (i.e. nanorods) and photoelectrochemical stability in aqueous electrolytes[10]. 

However, TiO2 has several problems such as a high density of surface trap-states, poor catalytic 

activity for water oxidation and poor sunlight absorption due to its wide bandgap, which limits its 

efficiency for solar-water splitting. 

 Metal–organic frameworks (MOFs) are a class of porous inorganic–organic hybrid 

materials built with metal–oxo clusters bridged by organic ligands, resulting in a three-dimensional 

(3D) porous structure[11]. MOFs can be constructed with various ligands and metal centers as the 

molecular building blocks, which provides great flexibility for tuning chemical and physical 

properties[12–14]. They have the highest specific surface area and pore volume among all porous 

materials, proved to be a superior platform for immobilization of molecular catalysts on conductive 

substrates; can be tuned to have high selectivity towards a specific chemical reaction. Theoretical 

calculation predicts that the optical band gap of MOF semiconductors can be tuned from 1.0 to 5.5 

eV[14]. Therefore, MOFs are appealing candidates for photocatalysts[15]. The application of MOFs 

in photoelectrochemical cells as photoelectrodes is rare although particulate MOF photocatalysts 

have been reported[11, 12, 16–20]. The photoelectrochemical water splitting behavior of MOFs remains 

poorly understood. 

 In this chapter, a thin, uniform and conformal p-type porphyrin-based MOF, known as 

PCN-225 (Fig. 3.1) is coated on the surface of a n-type TiO2 nanorod array through a layer-by-

layer (LbL)self-assembly method as shown in Fig. 3.2. TCPP (TCPP = tetrakis(4-

carboxyphenyl)porphyrin) was employed as a ligand; and highly stable Zr6 clusters were chosen 

as nodes for the assembly of MOFs. A porphyrinic MOF is selected as the test material because of 
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its high stability in aqueous solutions favorable band gap and relatively high electronic 

conductivity compared to other MOF counterparts[21–27].  

 

 
Figure 3.1: Chemical structure and synthetic route of the PCN-225 MOF. 

 

 
Figure 2. Scheme for the synthesis of TiO2@MOF nanorod array photoanode through layer by 

layer method. 

 

 This TiO2@MOF core–shell nanorod array photoanode, which is vertically aligned on a 

fluorine-doped tin oxide (FTO) electric contact, allowing for a long optical path-length along the 

longitudinal axis of the nanorods while maintaining a short path-length for hole transport to the 

photoanode/electrolyte interface along the radius of the nanorods (the transverse direction), as 

illustrated in Fig. 3.3. The p-type MOF coating provides a porous surface with more reaction active 

sites than rutile TiO2 alone, which is expected to improve the charge injection from the photoanode 

surface to the electrolyte. The formation of a p–n heterojunction is expected to aid in charge 
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extraction from the photoanode. Therefore, coating TiO2 with MOF is expected to improve overall 

photoelectrochemical water-splitting performance. In this study, surface photovoltage 

spectroscopy (SPV) and electrochemical analysis are performed to gain fundamental 

understanding of the roles of MOF in the TiO2@Co-MOF nanorod 

array photoanode. 

 

 
Figure 3.3: Photoelectrochemical water-splitting with TiO2@MOF nanorod array photoanode.  

3.2 Results 
 

 Figure 3.4 shows the single-crystalline rutile TiO2 nanorod array that was grown on the 

FTO substrate through a hydrothermal method. The SEM images reveal that the TiO2 nanorods 

were ~ 2.2 μm long with an edge length of ~ 190 nm[28, 29]. The scanning electron microscopy 

(SEM) (Fig. 3.4(c)) and transmission electron microscopy (TEM) images (Fig. 3.4(d)) display that 

there are MOF thin films covered on the surface of TiO2. Examination of individual nanorods 

through high-resolution TEM (HRTEM) images (Fig. 4(e)) shows that inner core TiO2 is 

completely crystalline along their entire lengths. Lattice fringes with interplanar spacing d110 = 

3.18 A are consistent with rutile phase of TiO2. 
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Figure 3.4: Microstructure of the TiO2@MOF nanorod array. (a) Top-view SEM Images of TiO2 

nanorod array; (b) Cross-section SEM Image of TiO2 NR array; (c) Top-view of TiO2@MOF 

nanorod array; (d) TEM and (e) HRTEM images of a TiO2@MOF nanorod. 

 

 The optimized thickness of MOF layer was ~ 8 nm with 5 repeated coating cycles based 

on the photocurrent density−voltage (J−V) curves for TiO2@MOF samples (Fig. 3.5). All 

subsequent data regarding the TiO2@MOF samples refer to samples with the optimized 5 coating 

cycles for the rest of this manuscript unless otherwise denoted. The MOF structure has an 

interplanar spacings of d062 = 2.75 A, coindicating its ordered structure. After the introducing of 

Co into the MOF, the morphology of the TiO2@Co-MOF doesn’t change (Fig. 3.6). X-ray 

diffraction (XRD) was used to characterize the crystal structure of TiO2 nanoarray and MOF 

coating on TiO2 nanoarray. Fig. 3.7 displays the XRD pattern of the bare TiO2 nanoarray grown 

on the FTO substrate. All the diffraction peaks, which appear upon TiO2 nanorod growth, agree 

well with the tetragonal rutile phase. The TiO2@MOF coating in Fig. 3.8 was prepared in a 

relatively large thickness (30 cycles of coating) to increase the XRD intensity. It can be seen that 

the XRD pattern matched well with the simulated pattern of PCN-225[30], which can be indexed 

as the (011), (013), (112) and (121) planes of PCN-225, demonstrating the presence of an ordered 

and preferentially oriented crystalline PCN-225 on the surface of TiO2. In addition, an XRD 

pattern was acquired from the powder sample of PCN-225, which indicated that the MOF coating 

exhibited the same crystal structure with the bulk counterpart.  
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Figure 3.5: Photoelectrochemical performance of the TiO2 nanorod array and the TiO2@MOF 

nanorod arrays with different numbers of MOF coating layers. 

 

 
Figure 3.6: HRTEM image of a TiO2@Co-MOF nanorod. 
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Figure 3.7: Powder X-ray diffraction profiles for the bare TiO2 nanorods on FTO substrate. 

 

 
Figure 3.8: Powder X-ray diffraction profiles for the TiO2@MOF(PCN-225), the PCN-225 

powder and the simulated PCN-225. The simulated PCN-225 was taken from the literature (Jiang, 

H-L., Feng, D. W., Wang, K. C., Gu, Z-Y., Wei, Z. W., Chen, Y-P., Zhou, H-C., J. Am. Chem. 

Soc. 2013, 135, 13934). 

 

 X-ray photoelectron spectroscopy (XPS) analysis was performed to confirm the growth 

and chemical composition of MOF structure. In the spectra of TiO2@MOF nanorod array in Fig. 

3.9, the peaks corresponding to C 1s (284.8 eV), N 1s (398.2 and 400.3 eV), 
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Zr 3d (182.5 eV) clearly indicate the presence of Zr-based porphyrin MOFs on the TiO2 nanorod 

array surface. The carbon and nitrogen elements were exclusively attributed to the porphyrin 

molecules while the zirconium element came from the metal clusters in the MOF. The C 1s core-

level XPS spectrum can be deconvoluted into three subcomponents at 284.8, 286.6, and 288.8 eV 

(Fig. 3.9(a) in the ESM), corresponding to the C–C, C–O and –COOH bonds, respectively. The N 

1s peak (Fig. 3.9(c)) was fitted to two subcomponents at 398.2 eV (C=N) and 400.3 eV (C−NH)[31]. 

A small signal corresponding to Ti 2p (458.7 eV) was detected, which indicated that the MOF 

coating was slightly thinner than the maximum escape depth for photoelectrons from the sample. 

This was consistent with the MOF layer thickness obtained from the HRTEM image in Fig. 3.4(e). 

After introducing of cobalt into the MOF coating to form the TiO2@Co-MOF nanorod array, a 

new peak corresponding to Co 2p was found at 781.7 eV (Fig. 3.10(f)). Based on the 15.0 eV 

doublet separation energy between Co 2p3/2 and Co 2p1/2, the introduced cobalt ions were 

determined to be in the Co3+ state. In addition, a 0.2 eV shift in binding energy for both N sub-

peaks indicated that the Co(III) was coordinated within the center of the porphyrin ligands[32]. 

FTIR spectra in Fig. 3.11 show significant difference between the TiO2@-MOF and the TiO2@Co-

MOF samples. The N−H bond stretching and bending frequencies of TCPP located at 994 cm−1 

decreased dramatically after cobalt ions were incorporated with porphyrin, which indicates the 

formation of a cobalt porphyrin compound. No changes were observed for the peaks at 1656 cm−1 

(C=N), 1287 cm−1 (C−O), 857 cm−1 (C−H bending) attributed to the porphyrin molecules[33, 34] 

 

Figure 3.9: XPS Spectra for TiO2@MOF samples; (a) C1s, (b) O1s, (c) N1s, (d) Zr3d, (e) Ti2p, 

(f) Co2p. 
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Figure 3.10: XPS Spectra for TiO2@Co-MOF samples; (a) C1s, (b) O1s, (c) N1s, (d) Zr3d, (e) 

Ti2p, (f) Co2p. 

 

Figure 3.11: FTIR Spectra for TiO2@MOF, TiO2@Co-MOF samples. 

 Photoelectrochemical testing was performed on the TiO2 and TiO2@MOF samples (Fig. 

3.12(a)). Dark currents of the TiO2, TiO2@MOF, TiO2@Co-MOF samples indicate that the water 

oxidation reaction only occurred under light illumination. The J−V curves show that there was 
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significant enhancement in photocurrent density after MOF was coated onto the TiO2 nanorod 

array. The bare TiO2 nanorod array displayed a photocurrent density of 1.09 mA/cm2 at 1.23 V 

(vs. RHE). The photocurrent density of the TiO2@MOF core–shell nanorod array increased to 1.99 

mA/cm2 at 1.23 V, which was 1.8 times greater than that of the TiO2 nanorod array. After Co3+ 

was introduced into the porphyrin, the photocurrent density of TiO2@Co-MOF sample exhibited 

2.93 mA/cm2 at 1.23 V, which was approximately 2.7 times greater than that of the TiO2 nanorod 

array alone. It is worth noting that the onset potentials for all the three 

samples were the same (Fig. 3.12(a)). 

 

 

Figure 3.12: Photoelectrochemical performance of nanorod array photoanodes in 0.2 M Na2SO4 

(pH=7). (a) Photocurrent-applied potential (J-V) curves for TiO2, TiO2@MOF and TiO2@Co-

MOF nanorod arrays under irradiation of the full-spectrum unfiltered Xe lamp light; (b) 

Chronoamperometry (J-t) curves at 0 V (vs. Ag|AgCl); (c) ln(D)-t plots for TiO2, TiO2@MOF and 

TiO2@Co-MOF nanorod arrays. 

 

 Mott-Schottky (M-S) experiments were performed to clarify the nature of the junction 

formed between TiO2 and MOF. The negative linear slope on the M-S plot for the porphyrin MOF 

film on FTO glass (Fig. 3.13(a)) indicates that the porphyrin MOF alone showed a p-type 

semiconducting behavior. The p-type nature of this MOF was confirmed by the negative in-phase 

and out-of-phase surface photovoltage (SPV) signals for the MOF alone (Fig. 3.14). The positive 

linear slope on the M-S plot proved the n-type nature of the TiO2 nanorod array (Fig. 3.13(b)). The 

“inverted V” M-S curves suggested the formation of the p–n junction between MOF and TiO2 in 

the TiO2@MOF and TiO2@Co-MOF samples (Figs. 3.13(c) and 

3.13(d))[35]. Given the thin nature (~ 8 nm) of the MOF coating on the TiO2 nanorods, the p-type 

MOF layer is likely fully-depleted. There is insufficient thickness for a barrier to hole-injection to 

electrolyte to form while the built-in electric field can still form between the TiO2 core and MOF 

shell, which will help drive the photogenerated holes from TiO2 into the MOF layer. In addition, 

there was no evident difference in the flat-band potential among the TiO2, TiO2@MOF, and 

TiO2@Co-MOF nanorod arrays according to the M-S plots. 
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Figure 3.13: Mott-Schottky (M-S) plot measurement. (a) MOF film on FTO glass; (b) TiO2 

nanorod array; (c) TiO2@MOF; and (d) TiO2@Co-MOF nanorod array.   

 

 
Figure 3.14: (a) Surface photovoltage (SPV) amplitude and (b) in-phase (X) and out-of-phase (Y) 

components of the SPV signal for MOF film on FTO glass. 

 

  To understand the roles of the MOF coating with and without Co(III) in enhancing the 

overall photocurrent density of PEC, the transient photocurrent (J–t curves) was measured at 0 V 

(vs. Ag/AgCl, 0.61 V vs. RHE) to investigate the charge recombination behavior at a potential 

where photocurrent onset has just started for all samples. The J–t curves in Fig. 3.12(b) were used 

to construct the plots of the natural logarithm of dimensionless parameter (D) to determine the 

apparent charge carrier lifetime (τrec) in each sample (see Equation 3 in Section 3.4.6.2 for 
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calculation). τrec was 0.16 s for the TiO2 nanorod array alone. τrec increased to 0.29 s after coating 

MOF onto TiO2, and further increased to 1.26 s after Co3+ was introduced into the MOF (Fig. 

3.12(c)). An increase in τrec indicated that coating of MOF or Co-MOF on the TiO2 nanorod array 

facilitated the charge extraction inside the photoanode and the charge injection from the 

photoanode to the electrolyte, which in turn resulted in significant enhancement in photocurrent 

density. 

 To determine the relative enhancement of the charge injection and the charge separation 

by the MOF and Co-MOF coatings on the TiO2 nanorod array, J–V curves were acquired in the 

Na2SO4 aqueous solutions in the presence and absence of triethanolamine (TEOA) under 

illumination of a 300 W Xe lamp (Fig. 3.15). The incident light was unfiltered for measuring 

charge injection efficiencies and filtered using a 275–375 nm bandpass filter for measuring relative 

charge separation efficiency enhancement. The total steady-state water oxidation photocurrent 

density (Jphotocurrent/H2O) generated in the aqueous electrolyte is expressed as:[36]  

Jphotocurrent/H2O = Jabsorb × Psep × Pinject,     (3.1) 

where Jabsorb is the theoretical maximum photocurrent determined by the optical band gap and 

optical absorption coefficient of the photoanode; Psep is the charge separation efficiency that 

reflects the fraction of the photogenerated holes reaching the photoanode/ electrolyte interface; 

and Pinject is the charge injection efficiency that reflects the fraction of the photogenerated holes 

injected to the redox pair in the electrolyte. If 10 vol.% TEOA is present in the electrolyte as a hole 

scavenger, Pinject can be considered as approximately 100% due to the fast oxidation kinetics of 

TEOA[36, 37]. Based on this, Pinject can be calculated by taking the ratio of the photocurrent densities 

of the photoanode in electrolyte without and with TEOA. Pinject was estimated to be 58%, 71% and 

88% at 1.23 V (vs. RHE) for the TiO2, TiO2@MOF and TiO2@Co-MOF photoanodes, 

respectively. The low charge injection efficiency indicated the abundant surface trap-states on bare 

TiO2. Coating TiO2 with MOF and Co-MOF passivated the surface trap-states, and the porous 

MOF favored the charge injection into the electrolyte. To determine the relative change in charge 

separation efficiency, the photocurrent density was measured in the TEOA-containing electrolyte 

under 275–375 nm bandpass filtered illumination to minimize the differences in Jabsorb between 

sample types.  
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Figure 3.15: Charge injection efficiency for the PECs with different photoanodes in the Na2SO4 

solution electrolyte in the presence and absence of TEOA. (a) J-V curves obtained from the PEC 

with the TiO2 photoanode; (b) J-V curves obtained from the PEC with the TiO2@MOF 

photoanode; (c) J-V curves obtained from the PEC with the TiO2@Co-MOF photoanode; (d) 

charge injection efficiency for TiO2, TiO2@MOF, TiO2@Co-MOF photoanodes in the Na2SO4 

solution electrolyte. 

 

 The relative enhancement in charge separation efficiency can be found by taking the ratio 

of the photocurrent density in the TEOA-containing electrolyte for the TiO2@MOF or TiO2@Co-

MOF with respect to the bare TiO2 nanorod array. Figure 3.16 reveals the resulting J–V curves in 

TEOA electrolyte and the relative charge separation efficiency enhancement by the MOF and Co-

MOF. The TiO2@Co-MOF sample provided a charge separation efficiency of 2.7 times larger than 

the bare TiO2 photoanode. In short, the overall photocurrent enhancement in the TiO2@MOF or 

TiO2@Co-MOF samples were ascribed to the relative changes in both the charge separation and 

the charge injection efficiencies. 
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Figure 3.16. Charge separation efficiency enhancement in the photoanodes under incident light at 

the window of 275-375 nm. (a) J-V curves obtained from the PEC with the TiO2, TiO2@MOF, 

TiO2@Co-MOF photoanodes in the TEOA-containing Na2SO4 solution electrolyte; (b) 

enhancement factors for the charge separation. 

 

 The incident photon-to-electron conversion efficiency (IPCE) spectrum was measured to 

correlate the quantum efficiency with the wavelength of the incident light (Fig. 3.17). Figure 

3.17(a) displays the ultraviolet–visible (UV–Vis) spectra of the three photoanodes. A significant 

increase in IPCE was observed in the TiO2@MOF and TiO2@Co-MOF samples with reference to 

the bare TiO2 nanorod array (Fig. 3.17(b)). In the wavelength range of 320–420 nm, the IPCE 

enhancement factor was obtained by the IPCE ratio of TiO2@MOF (or TiO2@Co-MOF) to TiO2; 

and its value was 10.8 at 350 nm for the TiO2@Co-MOF, and decreased to a nearly constant of ~ 

1.8 in the range of 420–580 nm (Fig. 3.17(d)). Close examination of the IPCE at λ ≥ 420 nm (Fig. 

3.17(c)), where the TiO2 nanorod array had negligible light absorption, the TiO2@MOF and 

TiO2@Co-MOF showed only a small IPCE (≤ 0.06% at wavelengths between 460 and 580 nm). 

The IPCE was very small for both the TiO2@MOF and TiO2@Co-MOF samples in this spectral 

range. Although coating MOF and Co-MOF onto TiO2 extended the light absorption spectral range 

up to 700 nm (Fig. 3.17(a)), the extension of light absorption range by the MOF coating was not 

responsible for the overall photocurrent enhancement in the PECs with the TiO2@MOF and 

TiO2@Co-MOF photoanodes. In other words, light absorption by the MOF had negligible 

contribution to photo-generation of electrons and holes in the MOF layer. This was not surprising 

because the MOF layer was only 8 nm thick, which led to a limited optical path length in the MOF 

layer. Instead, the photocurrent enhancement by the MOF coating onto TiO2 was mainly attributed 

to the IPCE increase in the spectra range below 420 nm, which came from an improvement in the 

charge separation efficiency and charge injection efficiency. The applied bias photon-to-current 

efficiency (ABPE)[38] was shown in Fig. 3.18. 
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Figure 3.17: Optical absorption and IPCE measurement. (a) UV-Vis absorbance spectra; (b) IPCE 

spectra for TiO2, TiO2@MOF, and TiO2@Co-MOF nanorod arrays; (c) Magnified IPCE spectra 

between 460 nm and 580 nm for all samples; (d) IPCE enhancement for the TiO2@MOF, and 

TiO2@Co-MOF nanorod array. 

 

 

Figure 3.18: The applied bias photon-to-current efficiency (ABPE) of TiO2, TiO2@MOF, and 

TiO2@Co-MOF samples. 
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 It is important to reiterate that an unfiltered 300 W Xe lamp with an output power density 

set to 100 mW/cm2 was used as the illumination source for all measured J–V and J–t curves. The 

resulting power of incident light exceeded the normal incident illumination power of the solar 

AM1.5 spectrum. As such, the photocurrent density obtained for the TiO2@MOF and TiO2@Co-

MOF samples in Fig. 3.12(b) exceeded the theoretical maximum achievable photocurrent density 

for rutile TiO2 under AM1.5 illumination is 1.8 mA/cm2 [39]. The J–V curves under irradiation of 

the simulated AM 1.5G light source are provided for better comparation with the literature (Fig. 

3.19). The bare TiO2 nanorod array displayed a photocurrent density of 0.84 mA/cm2 at 1.23 V 

(vs. RHE), which was comparable with the data in Refs. [40, 41]. 

 

Figure 3.19: Photoelectrochemical performance of the nanorod array photoanodes. (a) 

Photocurrent-applied potential (J-V) curves for the TiO2, TiO2@MOF and TiO2@Co-MOF 

nanorod arrays under irradiation of the simulated AM 1.5G light source. 

 

 Surface photovoltage spectroscopy is a nondestructive surface characterizing technique by 

monitoring change in the surface potential developed under light illumination[42–44]. In this chapter, 

surface photovoltage spectroscopy is used to determine the magnitude of photogenerated surface 

charge in the TiO2 and TiO2@MOF samples as a function of the wavelength of incident light. It 

can be seen from Fig. 3.20(a) that the TiO2 nanorod array exhibited a small, positive in-phase (X) 

surface photovoltage signal, which was consistent with the expected SPV behavior of n-type 

semiconductors. In addition, a large negative out-of-phase (Y) surface photovoltage signal 

indicated the slow electron transport towards the FTO back contact of the TiO2 nanorod array (Fig. 

3.20(a)). Hence, the TiO2 nanorod array exhibited the smallest overall SPV amplitude among all 

three samples (Fig. 3.20(d)). For the TiO2@MOF nanorod array (Fig. 3.20(b)), a significant 

enhancement in the positive in-phase (X) SPV signal was observed along with a decrease in the 

negative out-of-phase (Y) SPV signal. As a result, the overall SPV amplitude of the TiO2@MOF 

sample was greater than that of TiO2 alone (Fig. 3.20(d)). This indicated that the MOF coating 

promoted the charge separation and the charge extraction out of the photoanode. Introduction of 

cobalt into the MOF (TiO2@Co-MOF) further increased the overall SPV amplitude (Fig. 3.20(d)). 
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In addition, the TiO2@MOF and TiO2@Co-MOF samples showed an evident SPV signal in the 

visible-light range (λ ≥ 440 nm). These surface charges must come from the MOF layer because 

only the MOF layer can absorb light in this spectral range, which was concluded from the 

comparison of Fig. 3.20(d) with Fig. 3.17(a). Keeping in mind that the IPCE value in the same 

spectral range (λ ≥ 440 nm) was very small (Figs. 3.17(b) and 3.17(c)), it can be concluded that 

photogenerated charge carriers accounted for a very small portion in the overall photocurrent in 

the PEC because the MOF layer was too thin (8 nm thick). In short, herein MOF did not act as a 

photosensitizer. Instead, it just assisted the extraction of the photogenerated carriers out of TiO2 

and promoted the injection of these carriers into the electrolyte. The internal electric field at the 

p–n junction reduced the charge recombination rate, as confirmed by the extended τrec (Fig. 

3.12(c)) and promoted the charge mobility of the photogenerated charge carriers in the photoanode 

as shown by the SPV spectra. Coating TiO2 with MOF reduced the trapping of photogenerated 

holes at the photoanode/electrolyte interface and favored the charge injection into the electrolyte. 

Incorporation of Co(III) into MOF further improved the charge mobility of the photogenerated 

charge carriers in the photoanode and enhanced the charge injection into the electrolyte. 

 

Figure 3.20: Surface photovoltage (SPV) measurement. (a) in-phase (X) and out-of-phase (Y) 

components of the SPV signal for TiO2 nanorod array on FTO glass;  (b) in-phase (X) and out-of-

phase (Y) components of the SPV signal for TiO2@MOF nanorod array; (c) in-phase (X) and out-

of-phase (Y) components of the SPV signal for TiO2@Co-MOF nanorod array; (d) SPV amplitude 

comparison of TiO2, TiO2@MOF, and TiO2@Co-MOF nanorod arrays. 

 Finally, the stability of the photoanodes during photoelectrochemical operation was tested. 

The TiO2, TiO2@MOF and TiO2@Co-MOF samples were operated continuously at 1.23 V (vs. 

RHE) for 3 h under full spectrum illumination (Fig. 3.21). The test results showed that the 
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TiO2@MOF arrays exhibited excellent stability during operation for photoelectrochemical water-

splitting. It was observed that bubbles were generated and attached on the surface of TiO2@Co-

MOF nanorod photoanode, which caused the noises to the J–t curve. However, a smooth curved 

was obtained under stirring. SEM images were taken from the TiO2@MOF and TiO2@Co-MOF 

samples after the stability tests (Fig. 3.22). The MOF thin films were still covered on the surface 

of TiO2, which indicated that the MOF layer was stable under irradiation and bias. Given all 

experiments were performed in neutral electrolyte solutions, this porphyrin-based MOF may be 

useful for passivation of semiconductor photoanode materials with poor stability in neutral 

electrolytes, such as BiVO4 and CuWO4
[45,46]. 

 

Figure 3.21: Stability tests for different nanorod array photoanodes. (a) TiO2, (b) TiO2@MOF, (c) 

TiO2@Co-MOF. 

 

 

Figure 3.22: SEM images of (a) TiO2@MOF, and (b) TiO2@Co-MOF samples after stability test.  
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3.3 Conclusions 
 

 In summary, a p–n heterojunction photoanode was formed by coating a conformal thin p-

type porphyrin-based MOF or Co-MOF onto the n-type TiO2 nanorod array. The MOF coating 

and subsequent introduction of Co3+ into the MOF resulted in a 2.7 times enhancement in 

photocurrent density at 1.23 V (vs. RHE) with respect to the bare TiO2 nanorod array. The 

photocurrent enhancement for the TiO2@MOF and TiO2@Co-MOF has been attributed to 

multiple factors. Charge separation and hole extraction from TiO2 into the MOF layer was 

improved due to the built-in electric field at the p–n junction between TiO2 and MOF. Also, the 

MOF coating improved remarkably the charge injection into the electrolyte. Incorporation of 

Co(III) into MOF further improved the charge mobility of the photogenerated charge carriers in 

the photoanode, enhanced the charge injection into the electrolyte. This chapter has demonstrated 

MOFs have a great promise in solar water-splitting. 

 

3.4 Methods 
 

3.4.1 Materials 
 

 All chemicals were purchased from without further purification. FTO glass and dimethyl 

sulfoxide (DMSO, 99.5+%) were purchased from Sigma-Millipore. Titanium n-butoxide (99+%), 

hydrochloric acid (36% w/w), ammonium hydroxide (28% w/v NH3), zirconium(IV) chloride 

(ZrCl4, 99.5+%), cobalt(II) chloride hexahydrate (CoCl2・6H2O, ACS, 98%–102%), 

diethylformamide (DEF, anhydrous, 99.8%), and TEOA (98+%) were purchased from Alfa-Aesar. 

Anhydrous sodium sulfate was purchased from Amresco. Tetra-meso(4-carboxyphenyl) 

porphyrine (TCPP) was purchased from Frontier Scientific. 

 

3.4.2 Growth of TiO2 nanorod array on FTO 
 

 Oriented rutile TiO2 nanowire arrays were grown on FTO substrate through a hydrothermal 

method[28]. Typically, 1.5 mL of titanium n-butoxide was dissolved with 60 mL of 6 M 

hydrochloric acid. After stirring for 30 min, the solution was transferred into a 125 mL of Teflon-

lined stainless-steel autoclave (Parr Instruments 4748), four pieces of pre-cleaned FTO glass 

substrates (2.0 cm x 1.25 cm x 2 mm) were placed into the autoclave. The hydrothermal reaction 

was conducted in an electronic oven at 180 °C for 2.5 h. After the reaction, the TiO2 covered FTO 

glass was rinsed with deionized water and ethanol, dried with an air flow, and sintered in a furnace 

at 450 °C for 1 h. After sintering, the TiO2 nanorod arrays were further immersed in a “Base 

Piranha” (H2O2:NH3・H2O:H2O (v:v:v = 1:1:5) solution to improve the their hydrophilicity for 

subsequent MOF coating. 
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3.4.3 Fabrication of p–n TiO2@MOF nanorod arrays 
 

 Thin films of porphyrin-based PCN-225 MOF on TiO2 nanorod arrays were fabricated 

using a LbL approach. The LbL approach provides a direct route to MOFs containing metal-free 

porphyrins. In a typical procedure, the TiO2 nanorod arrays were alternately immersed in a 0.5 

mM TCPP in ethanol solution followed by a 2 mM ZrCl4 in ethanol solution at 40 °C for 10 min 

intervals. The immersion process was subsequently repeated for 5 cycles to form a MOF layer of 

a given thickness denoted as TiO2@MOF 5 Cycles for the rest of this manuscript. TiO2@MOF 

samples were subsequently heated at 150 °C under an N2 gas environment to promote better 

contact between the TiO2 nanorods and PCN-225 MOF coating[26, 27, 30]. 

 

3.4.4 Co3+ functionalization of p–n TiO2@MOF nanorod array on FTO 
 

 Co3+ ions were incorporated into the center of TCPP molecule in the PCN-225 MOF 

structure to form a Co-TCPP complex, synthesized according to the previous literature[47]. Briefly, 

TiO2@MOF nanorod arrays on FTO glass were placed into a 0.24 mM CoCl2・6H2O in DMSO 

solution, followed by refluxing 138 °C for 12 h. The resulting Co-functionalized TiO2@MOF 

samples were referred to as TiO2@Co-MOF. After the solution was cooled to room temperature, 

the TiO2@Co-MOF on FTO glass was removed, washed with ethanol, and dried by an air flow. 

 

3.4.5 Synthesis of porphyrin MOF and Co-MOF powder 
 

 ZrCl4 (70 mg), TCPP (50 mg) and benzoic acid (2,700 mg) were added into 8 mL of DEF, 

ultrasonically dissolved. The mixture was heated in 120 °C oven for 48 h. After the reaction, red 

needle shaped crystals were harvested by filtration (35 mg, 47% yield)[30]. 

 

3.4.6 Characterization 
 

 Field emission scanning electron microscopy (FESEM) images were taken with a JEOL 

JSM-7600 with an accelerating voltage of 15 kV. TEM images were taken with a JEOL JEM 

2100F. The UV–Vis absorption spectra were measured by the diffuse-reflection mode with 

Shimadzu UV-2550 spectrometer equipped with an integrating sphere (UV 2401/2, Shimadzu). 

XPS measurements were performed with Physical Electronics PHI 5000 Versa Probe to analyze 

the chemical state and atomic concentrations of elements. Binding energies (BE) were calibrated 

at adventitious carbon BE of 284.8 eV. 

 

3.4.6.1 Photoelectrochemical measurements 
 

 The performance of the PEC was measured with a three-electrode configuration using a 

Gamry Reference 3000 Potentiostat/Galvanostat/ZRA Instrument. An aqueous electrolyte 
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containing 0.2 M Na2SO4 (pH = 7) was purged with N2 for 30 min prior to measurement. The 

TiO2, TiO2@MOF and TiO2@Co-MOF nanorod arrays were used as the working electrode with a 

Pt wire as the counter electrode and the Ag/AgCl (Sat. KCl, E° = +0.1976 V vs. NHE) as the 

reference electrode. An unfiltered 300 W Xe lamp was used as the light source. The choice to use 

an unfiltered Xe lamp was made to preserve UV light at wavelengths below 370 nm that are cut-

off by a traditional AM1.5 filter in PEC experiments[48]. As the AM1.5G spectrum does contain 

non-negligible amounts of light at wavelengths below 370 nm and the TiO2 nanorod arrays have a 

significant part of their total light absorption confined to the UV part of the spectrum below 370 

nm. The potential vs. RHE was calculated with a reference to Ag/AgCl according to the Nernst 

equation:[43]  

ERHE = EAg/AgCl + 0.05916pH + E0,     (3.2)  

where ERHE is the potential vs. RHE, EAg/AgCl is the measured potential vs. Ag/AgCl, and E0 = 

0.1976 V at 25 °C. 

 

3.4.6.2 Transient photocurrent density measurements 
 

 Transient photocurrent density measurements were performed at 0 V vs. Ag/AgCl for all 

samples. The obtained transient photocurrents were then processed to make plots of the natural 

logarithm of D, a dimensionless parameter calculated by the following equation:[49] 

 

ln(𝐷) =
𝐽(𝑡)−𝐽𝑠𝑠

𝐽𝑖𝑛−𝐽𝑠𝑠
,      (3.3) 

 

where J(t) is the photocurrent density at a given time (t), Jss is the steady-state photocurrent density 

at a given time, and Jin is the initial photocurrent density once light illumination begins. The 

nominal charge recombination lifetime for each sample (τrec) was taken as the time at which ln(D) 

= −1. 

 

3.4.6.3 Wavelength-dependent IPCE 
 

 IPCE was measured with a 300W Xe lamp with an aligned monochromator (Oriel 

Cornerstone 130 1/8m). The IPCE was calculated according to Equation (3.4): [50, 51] 

 

𝐼𝑃𝐶𝐸 =  
1240𝐽

𝜆∙𝐼𝑙𝑖𝑔ℎ𝑡
,      (3.4) 

 

where J is the measured photocurrent density at +0.6 V vs. Ag/AgCl at a certain wavelength (λ), 

and Ilight is the irradiance intensity at the specific wavelength (λ). 
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3.4.6.4 M-S plots 

 

 M-S plots were obtained with a three-electrode cell at an alternating current (AC) 

frequency of 5 kHz using an AC amplitude of 20 mV. The capacitance (C) was calculated from 

the electrochemical impedance spectroscopy (EIS) spectra at a potential according to Equation 

(3.5):[50, 51] 

 

𝑍𝑖𝑚𝑔 =
1

2𝜋𝑓𝐶
,       (3.5) 

 

where Zimg is the imaginary part of the impedance and, f is the frequency, and C is the capacitance. 

The M-S plots were then generated with the capacitance value normalized with the exposed planar 

surface area of the electrode. Flat-band potentials were obtained from the M-S plots (1/C2 vs. 

potential) by linearly interpolating the linear region of the M-S plots to its intercept with the 

potential axis. 

 

3.4.6.5 Surface photovoltage spectroscopy 
 

 Surface photovoltage spectroscopy were performed on samples by placing a transparent 

FTO electrode on the TiO2 and TiO2@MOF nanorod array on FTO glass samples with air/insulator 

as a dielectric medium in between sample and FTO electrode to form a parallel plate capacitor. In 

the case of PCN-225 MOF powder, a small amount of PCN-225 powder was sandwiched between 

two FTO electrodes. The samples were illuminated with chopped monochromatic light (fchop = 35 

Hz) at varying wavelengths. The surface charge is collected through lock-in amplifier (Stanford 

Research SR830) as in phase (X) and out of phase (Y) signals. The in phase (X-signal) and out of 

phase (Y-signal, 90 shift) give information about the instantaneous charge collected on the sample 

surface/quartz + FTO electrode interface and the time response of the charge separation 

respectively[42]. The SPV amplitude is the square root of the sum of the squares of the X and Y 

signals[52, 53].  

SPV amplitude = (X2 +Y2)1/2,      (3.6)  

where X is in-phase signal with respect to modulated input light illumination and Y is out-of-phase 

signal shifted by 90° with respect to modulated input light illumination. 

 

3.4.6.6 Calculation of charge injection efficiency and charge separation efficiency 

 

The charge injection efficiency and charge separation efficiency can be evaluated as follows: 

The total steady-state water oxidation photocurrent density (Jphotocurrent/H2O) generated in the 

aqueous electrolyte is expressed as: 

             Jphotocurrent/H2O=Jabsorb×Psep×Pinject,                                            (3.7)                                                                      

where Jabsorb is the photocurrent density that result from an absorbed photon conversion efficiency 
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(APCE) of 100%. Psep and Pinject are the charge separation efficiency and the charge injection 

efficiency, respectively. 

For oxidation of TEOA, Pinject is considered to be approximately 100% at all potentials, then: 

             Jphotocurrent/TEOA=Jabsorb×Psep.                                                (3.8)                           

The charge injection efficiency Pinject for TiO2, TiO2@MOF, TiO2@Co-MOF photoanodes can be 

expressed as: 

       Pinject= Jphotocurrent/H2O/Jphotocurrent/TEOA.                                   (3.9)                      

The charge separation efficiency enhancement factor in the presence of MOF coating and Co-MOF 

coating can be expressed as: 

         Psep, TiO2@MOF/ Psep, TiO2= Jphotocurrent/TEOA, TiO2@MOF/Jphotocurrent/TEOA, TiO2,               (3.10) 

and 

    Psep, TiO2@Co-MOF/ Psep, TiO2= Jphotocurrent/TEOA, Co-TiO2@MOF/Jphotocurrent/TEOA, TiO2.           (3.11) 

Applied bias photoconversion efficieny (ABPE) represents the photoelectrode performance as a 

function of the applied potential. The ABPE efficiency is calculated by:  

 

ABPE (%) = Jph
(1.23 V −Vapp )

 𝜌
× 100,      (3.12) 

                        

where Jph is the measured photocurrent density under AM1.5G illumination, 1.23 V is the standard 

state reversible potential of H2O oxidation, Vapp is the applied potential during the measurement of 

the photocurrent density versus the reversible hydrogen electrode (RHE) potential, ρ is the total 

integrated optical power input density (100 mW/cm2) using AM1.5G illumination (M. Shaban, M. 

Rabia, A.M.A. El-Sayed, A. Ahmed, S. Sayed, Sci. Rep., 2017, 7, 14100.). J-V curve data under 

AM1.5G illumination (Figure S13) was used for calculating the APBE. 
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Chapter 4: Rational Design for a Photoelectrochemical 

(PEC) Sensor Utilizing Plasmonic Energy Transfer for 

Hg2+ Detection 

 

4.1 Introduction 
 

 With the population of Earth expected to exceed 10 billion by 2100[1], there is an increasing 

need for food, safe drinking water, and improved health care to meet societal demands. To aid in 

dealing with these challenges, accurate detection and quantification of environmental pollutants 

and biological markers for health diagnostics is needed. Sensors are commonly based on 

fluorescence, surface enhanced Raman scattering (SERS), or photoelectrochemistry (PEC) as 

actuation mechanisms. PEC-based sensors where the presence of an analyte modulates 

photocurrent or photovoltage are of interest due to their low instrumentation cost, low background 

signals, and simplicity in operation versus established methods like gas and liquid 

chromatographies.[2-5]  

 One area of research that has applications in sensing is plasmonics. In plasmonics, light 

illumination triggers the coherent oscillation of conduction band electrons (called surface plasmon 

resonance (SPR) of nanoparticles of certain metals (e.g. Ag, Au, and Cu)[6-10] and defective 

semiconductors (e.g. MoO3-x, WO3-x, Cu2-xS, Cu2-xSe, Cu2-xTe).[11-13] Focus is paid to localized 

surface plasmon resonance (LSPR) that occurs when the plasmon is confined to the surface of 

extremely small nanoparticles. The light energy stored in the LSPR of these materials can be 

utilized in multiple ways to increase the photocurrent of a nearby semiconductor. Depending on 

the size and morphology of the plasmonic nanoparticles, the light energy stored in the plasmon 

can be radiatively scattered to improve effective optical pathlengths[10, 14] or concentrated into 

intense local electromagnetic fields within the semiconductor[7, 10, 15]. While the LSPR of the 

plasmonic nanoparticle is coherent (t < 30 fs), energy from the plasmon can also be transferred by 

plasmon-induced resonant energy transfer (PIRET) via dipole-dipole interactions to a 

semiconductor acceptor.[16-19] After the LSPR of a plasmonic nanoparticle loses coherence, a 

population of energetic “hot” carriers (electrons and holes) remains that can be transferred to 

another material and/or directly drive chemical reactions before the hot carriers relax to their 

ground state.[20-24] All of these mechanisms can be utilized to increase the photocurrent of 

semiconductor based PEC cells for applications including sensing[25-30]. Additional mechanisms 

where energy is transferred from a semiconductor into plasmonic nanoparticles such as Förster 

resonance energy transfer (FRET) can also be used to decrease the photocurrent of a nearby 

semiconductor in a manner that can be used for sensing.[31-33] 

 Several PEC-based sensors use plasmonic nanoparticles in their design in order to 

modulate photocurrent. Specifically focusing on PEC-based sensors that increase in photocurrent 
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in the presence of an analyte, insufficient attention is given towards optimizing the energy transfer 

mechanism between the plasmonic nanoparticle. Most PEC-based sensors that utilize plasmonic 

nanoparticles to increase photocurrent are based on hot electron injection.[25-] However, the 

maximum theoretical efficiency for hot electron injection is limited to ~10% due to energetics and 

momentum mismatches between the plasmonic hot carriers and the contacting semiconductor.[34] 

PIRET is rarely used in PEC-based sensors with limited examples[27] available in literature despite 

potential energy transfer efficiencies theoretically being as high as 30%.[35] In addition, to the 

authors’ knowledge, no papers directly attempt to compare and contrast PIRET and hot electron 

transfer as photocurrent enhancement mechanisms in PEC-based sensors using the same 

semiconductor film.  

 In this chapter, we compare hot electron transfer and PIRET from plasmonic Au and 

Au@SiO2 core@shell nanoparticles (NPs) to a thin Bi3FeMo2O12 (BFMO) semiconductor film 

and explore the potential use of BFMO-plasmonic nanoparticle conjugates as PEC-based sensors 

for mercury (II) (Hg2+) ion detection. Plasmonic nanoparticles (NPs) were controllably linked to 

the BFMO thin film by use of mismatched single-strand DNA (ssDNA) that could be linked in the 

presence of Hg2+ as an analyte by formation of double-strand DNA (dsDNA). The nature of the 

energy transfer between the plasmonic nanoparticles and the BFMO film was tuned by the 

presence of a dielectric silica (SiO2) spacer layer.   

 

4.2 Results 
 

 The main purpose of this chapter is to demonstrate and compare different plasmon-based 

energy transfer mechanisms and evaluate their potential for use in PEC sensors. Different pairings 

of plasmonic nanoparticles with Bi3FeMo2O12 (BFMO) films are studied. Plasmonic nanoparticles 

are bound to the BFMO thin films on FTO glass (50-80 nm thick; see Fig. 4.1) By utilizing Hg2+ 

ions affinity for thymine, Hg2+ can be selectively bound to ssDNA strands on the BFMO thin films 

and used to bind to the thymine bases on the complementary ssDNA strands on the plasmonic 

nanoparticles as shown in the schematic in Fig. 4.2. After a washing step to remove non-

specifically bound plasmonic nanoparticles from the BFMO thin film substrate, the remaining 

bound plasmonic nanoparticles must be linked to the BFMO through the newly conjugated double 

stranded DNA (dsDNA). This ensures that plasmonic energy transfer that can increase the overall 

photocurrent of the BFMO based photoelectrode occurs only when Hg2+ is present with the number 

of plasmonic nanoparticles bound being proportional to the amount of Hg2+ present in the test 

sample.  
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Figure 4.1: SEM Images of Bi3FeMo2O12(BFMO) thin film; (a) Top-down SEM; (b) Cross-

Section SEM Image of BFMO thin film. 

 

 

Figure 4.2: Schematic of Plasmonic Nanoparticle Binding to Bi3FeMo2O12 (BFMO) Films for Use 

as a PEC Sensor; (a) Hg2+ conjugation with ssDNA on BFMO film; (b) Conjugation of plasmonic 

nanoparticles with Hg2+ conjugated BFMO film. 
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 Figure 4.3 shows the UV-Visible light absorption spectra for the BFMO films and the 

different types of plasmonic nanoparticles (Au NPs, and Au@SiO2 NPs) studied in this chapter.   

 

Figure 4.3: Normalized UV-Visible Light Absorption Spectra of Bi3FeMo2O12 (BFMO) films, 

Au, and Au@SiO2 NPs. 

 The main overriding requirement for PIRET from a plasmonic metal to a semiconductor 

acceptor is a spectral overlap between the LSPR of the plasmonic metal and the absorption 

spectrum of the semiconductor film with the plasmonic metal’s LSPR red-shifted relative to the 

absorption edge of the semiconductor acceptor[16,17]. As seen from Fig. 4.3, the LSPRs of the Au 

NPs and Au@SiO2 NPs and BFMO absorption spectrum have a spectral overlap. However, the 

spectral overlap between the Au NPs and BFMO is limited to only BFMO’s absorption tail 

between 480 – 550 nm and part of the BFMO absorption edge between 440 – 480 nm based on 

extrapolation of the Au and Au@SiO2 LSPRs. The limited spectral overlap means that the PIRET 

between the Au NPs and BFMO would be weak due to the weak dipole strength of the BFMO at 

the absorption tail wavelengths.  

 

Figure 4.4: Schematic of photocurrent enhancement for the different BFMO – DNA – Plasmonic 

Nanoparticle combinations studied; (a) BFMO-DNA-Au, (b) BFMO-DNA-Au@SiO2. 
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 In the case of Au NPs without a SiO2 spacer layer (Figure 4.4(a)), hot electron transfer 

from the Au NPs to the BFMO is possible in addition to PIRET because of the intimate contact 

between the plasmonic Au and BFMO and the favorable energetics of the BFMO conduction band 

and the hot electrons of the Au NPs.[36,37] The presence of a 5 nm SiO2 spacer layer on the outside 

of the Au@SiO2 NPs (Figure 4.5(b)) limits the plasmonic energy transfer to PIRET with the 

BFMO thin film without any hot electron transfer (Figure 4.4(b)). 

 

Figure 4.5: HRTEM Images of (a) Au NPs and (b) Au@SiO2 NPs. 

 

 To understand the nature of the energy transfer between the plasmonic nanoparticles and 

the BFMO films, photoelectrochemical (PEC) testing of the BFMO-DNA films before and after 

incubation with a solution containing 500 ppb of Hg2+ ions and then plasmonic nanoparticles was 

performed. Figure 4.6 shows J-V curves and M-S plots when Au NPs and Au@SiO2 NPs were the 

conjugated plasmonic nanoparticles.  
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Figure 4.6: (a-b) J-V Curves and (c-d) M-S Plots of BFMO-DNA films before and after incubation 

with 500 ppb of Hg2+ and plasmonic nanoparticle addition; with (a ,c) Au NPs added, and (b, d) 

Au@SiO2 NPs added. 

 

 The addition of Au NPs (Figure 4.6(a)), and Au@SiO2 NPs (Figure 4.6(b)) result in 

enhanced photocurrent of the sample. However, there is a negative shift in the photocurrent onset 

potential +0.05 V shift in flat-band potential on the M-S plot (Figure 4.6(c)) for the BFMO-DNA-

Au sample that indicates a change in the Fermi level of the sample after the Au NPs have been 

added to the sample. The shifts in photocurrent onset and flat-band potentials are consistent with 

Fermi level equilibration between the BFMO and the contacting Au NPs as a contributing 

mechanism towards the photocurrent enhancement by the Au NPs[38, 39].  With Au@SiO2 NPs 

added, there is no change in the photocurrent onset potential or the flat-band potential (Figure 

4.6(d)). The lack of change in photocurrent onset potential and flat-band potential indicates that 

the SiO2 shell does not improve the catalytic activity of the BFMO-DNA-Au@SiO2 samples 

within the potential window tested and that charge transfer between the Au cores has been 

successfully blocked by the SiO2 shell layers. To separate wavelength-independent enhancement 

mechanisms like Fermi level equilibration and wavelength-dependent photocurrent enhancement 

mechanisms, incident photon-to-current efficiency (IPCE) (Figure 4.7) measurements were 

performed at +0.15 V vs. Ag | AgCl using 500 ppb Hg2+ for plasmonic nanoparticle conjugation. 
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Figure 4.7: (a,d) IPCE Spectra measured at +0.15 V vs. Ag | AgCl for BFMO-DNA films before 

and after incubation with 500 ppb of Hg2+ and plasmonic nanoparticle addition, Insets: magnified 

IPCE spectra between 420 nm and 580 nm. (b, e) Ratio of IPCE Spectra (After versus Before Hg2+ 

and plasmonic nanoparticle incubation) and (c,f) normalized UV-Vis absorption spectra for BFMO 

and corresponding plasmonic nanoparticles: (a-c) with Au NPs, (d-f) with Au@SiO2 NPs.  

 

 The overall IPCEs of the BFMO film before incubation with Hg2+ and plasmonic 

nanoparticles (Figs. 4.7(a) and 4.7(d)) show an onset at 470 nm, consistent with the band edge of 

the BFMO thin film shown in Figure 1a. Upon incubation with 500 ppb Hg2+ and Au NPs (Figs. 

4.7(a) and 4.7(b)) or Au@SiO2 NPs (Figs. 4.7(d) and 4.7(e)), there is a noticeable increase in the 

IPCE at wavelengths less than or equal to 550 nm. The 550 nm onset for IPCE enhancement is 

consistent with the overlap between weak absorption tail of the BFMO film and the LSPRs of the 

Au NPs. The IPCE enhancement can be split into two separate spectral regions. The first region 

between   However, while there is an IPCE at the wavelengths between 480 and 550 nm for both 

the BFMO-Au NPs case and BFMO-Au@SiO2 NPs case, the overall IPCEs are still under 0.005%. 

In the case of BFMO-Au films, the enhancement within this spectral region is a combination of 

hot electron injection, PIRET, and Fermi level equilibration from the Au NPs to the BFMO film. 

Between 350 – 450 nm (within the bandgap absorption of the BFMO but below the Au/Au@SiO2 

LSPR wavelengths), there is still wavelength-dependent enhancement in the IPCE spectra. 

However, PIRET between the Au NPs or Au@SiO2 NPs and the BFMO or hot electron injection 

from the bare Au NPs to the BFMO thin film are not possible at these wavelengths since the LSPR 

of the Au/Au@SiO2 NPs is not excited. To determine the source of the IPCE enhancement, UV-

Visible light absorption spectroscopy was performed for the BFMO-DNA-Au (Fig. 4.8) samples 

before and after incubation with 500 ppb Hg2+ and Au NPs. From Figures S4, there is an increase 

in light absorption between 350 – 450 nm for the BFMO-DNA-Au case.  
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Figure 4.8: UV-Visible light absorption spectra of BFMO-DNA films before and after addition of 

Au NPs incubated with 500 ppb Hg2+. 

 

 This means that at least part of the photocurrent enhancement is due to an optical absorption 

enhancement not directly related to the LSPR of the Au and Au@SiO2 NPs. However, the source 

of this optical absorption enhancement has not been fully explored. Given the wide spectral range 

of enhancement, Au NPs were used as the plasmonic nanoparticle for subsequent sensor tests for 

detection of Hg2+ in deionized water (Fig. 4.9). 

 

Figure 4.9: (a) Baseline subtracted photocurrent for BFMO-DNA-Au films as a function of 

incubated Hg2+ concentration; (b) Linear (1.6 – 360 ppb) range of the photocurrent increase curve 

with linear fit. 

 

 From Figure 4.9(a), BFMO incubated with Hg2+ and Au NPs results in a photocurrent 

increase. The change in photocurrent increases linearly with respect to the logarithmically (base 

10) with increasing Hg2+ concentration up to 360 ppb followed by a significantly decrease at Hg2+ 

concentrations higher than 360 ppb. The decrease in photocurrent at higher Hg2+ concentrations is 
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attributed to a combination of the Au NPs blocking light and surface reaction sites. The linear 

range for Hg2+ detection would be sufficient for the typical concentrations of Hg2+ in wastewater 

and starts just below the limit of Hg2+ in drinking water within the United States.[40-41] This 

demonstrates the practical applications of the BFMO-DNA-Au conjugate photoelectrode for 

sensing of Hg2+. To further prove potential application of the BFMO-DNA-Au conjugate 

photoelectrode, the selectivity of the BFMO-DNA-Au photoelectrode for detection of Hg2+ was 

measured with and without the presence of potential interference cations (Fe3+, Zn2+, Cu2+, As3+, 

Cd2+, and Pb2+) and shown in Figure 4.10. 

 

Figure 4.10: Signal intensity change of the photocurrent from the BFMO-DNA-Au towards Hg2+ 

only (100 ppb Hg2+) and the 100 ppb interfering ion mixture (100 ppb Total of Fe3+, Zn2+, Cu2+, 

As3+, Cd2+, and Pb2+) with 100 ppb of added Hg2+in DI water. 

 

 Figure 4.10 shows a 98.1 ± 0.6% increase in photocurrent versus baseline is obtained when 

incubating the BFMO film with 100 ppb Hg2+ and Au NPs. There is a 21.4± 0.2% decrease in 

photocurrent upon incubation with a mixture of 100 ppb combined of interfering ions without any 

added Hg2+. However, the photocurrent again increases by 87.5 ± 3.2% versus the baseline 

photocurrent without Hg2+ and Au incubation, indicating that the interfering ions at low 

concentrations do not interfere significantly with the Hg2+ binding to the BFMO-DNA substrate. 

Overall, the concept of utilizing PIRET between plasmonic nanoparticles and a semiconductor 

film combined with the conjugation of plasmonic nanoparticles to the semiconductor to enhance 

the semiconductor’s photocurrent has been demonstrated as a potential sensor working 

mechanism. 

 

4.3 Conclusions 
 

 In this chapter, a comparison between hot electron injection and PIRET as photocurrent 

enhancement mechanisms is explored using plasmonic Au and Au@SiO2 nanoparticles in 
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conjunction with a BFMO semiconductor photoanode using ssDNA strands with mismatched 

thymine bases and Hg2+ to facilitate DNA conjugation. Au NPs were found to enhance the BFMO’s 

photocurrent through a combination of hot electron injection, PIRET, and Fermi-level 

equilibration, and an optical absorption enhancement mechanism at wavelengths where the Au 

NPs LSPR is not excited. Au@SiO2 NPs were found to enhance the BFMO’s photocurrent through 

PIRET and the previously mentioned optical absorption enhancement mechanism. A PEC sensor 

for detecting Hg2+ in water was demonstrated using the BFMO-DNA-Au conjugate photoanode 

due to the higher magnitude of enhancement across a wide wavelength spectrum versus the 

BFMO-DNA-Au@SiO2 photoanode. The resulting BFMO-DNA-Au sensor has a limit of 

detection (1.3 ppb) and linear range (1.6 – 360 ppb) that is sufficient for detection of Hg2+ in 

common wastewater sources and drinking water. Further research will be focused on optimizing 

the effectiveness of the plasmonic energy transfer from the plasmonic metal to different 

semiconductors. 

 

4.4 Methods 
 

4.4.1 Materials 
 

 All chemicals and materials were used as received without further purification. (3-

aminopropyl)trimethoxysilane (97%), ammonium hydroxide (28% NH3 in H2O), bismuth (III) 

nitrate pentahydrate (ACS, 98%), copper (II) nitrate hemi(pentahydrate), hydrochloric acid (36% 

w/w), hydrogen tetrachloroaurate (III) trihydrate (ACS, 99.99%), iron (III) nitrate nonahydrate 

(98+% metals basis), and trisodium citrate dihydrate (ACS, 99.0% min) were purchased from Alfa-

Aesar. Acetone, citric acid, isopropyl alcohol, mercury (II) chloride, reagent alcohol, and sucrose 

were purchased from VWR International. Triethoxysilylpropyl succinic anhydride (TEPSA) was 

purchased from Gelest, Inc. 1-ethyl-3-(3-(dimethylamino)-propyl) carbodiimide (EDC), arsenic 

ICP/DCP standard solution, bovine serum albumin (BSA), cadmium (II) nitrate tetrahydrate, 

deoxyadenosine triphosphate (dATP), N-hydroxysuccinimide (NHS), lead (II) nitrate, phosphate 

buffered saline (PBS, pH = 7.4) tablets, sodium chloride, sodium dodecyl sulfate (SDS), sodium 

phosphate (Na3PO4·12H2O), sodium silicate solution (reagent grade), and Tween 20  were 

purchased from Sigma-Aldrich. Zinc (II) nitrate hexahydrate was purchased from Strem 

Chemicals. Ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) was purchased from 

Ward’s Science. Fluorine-doped tin oxide (FTO) coated glass (TEC 15) was purchased from MTI 

Corporation.  

DNA probes were purchased from Integrated DNA Technologies, Inc. (Coralville, IA) and have 

the following sequences: 

Detection DNA for SiO2 Coated NPs (amine functionalized): 5’-/NH2/CAGTTTGAC-3’ 

Detection DNA for Au NPs (Thiol Functionalized): 5’-/ThioMC6-D/AAAAAACAGTTTGAC-3’ 
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Capture DNA probe for BFMO (amine functionalized: 5’-/5AmMC6/GTCTTTCTG/NH2/3’ 

 

4.4.2 Characterization 
 

 UV-Visible light absorption spectra were measured using a Shimadzu UV-2550 

spectrometer with an integrating sphere (Shimadzu UV 2401/2) using BaSO4 as the optical “white” 

reference material. Field emission scanning electron microscopy (FESEM) was performed using 

JEOL JSM-7600 and Hitachi S-4700 FESEMs. TEM images were obtained using a JEOL JEM 

2100F TEM. 

 

4.4.3 Gold Nanoparticles (Au NPs) Synthesis 
 

 Gold nanoparticles (Au NPs) were synthesized using a traditional citrate reduction 

method[42, 43]. In a typical synthesis, 0.0197 g of hydrogen tetrachloroaurate (III) trihydrate 

(HAuCl4·3H2O) was dissolved in 100 mL of DI water. This solution was then heated to boiling. 

Once the HAuCl4·3H2O solution was boiling, 3 mL of a 1% (w/v) trisodium citrate dihydrate in 

DI water solution was added to the HAuCl4·3H2O solution where the color changed from light 

yellow to wine-red over a period of a few minutes. The HAuCl4·3H2O/citrate solution was boiled 

continuously for another 30 minutes and then allowed to cool to room temperature naturally. The 

as-prepared Au NPs solution was stored for further use. 

 

4.4.4 Gold@Silicon Dioxide Core@Shell Nanoparticles (Au@SiO2 NPs) 

Synthesis 
 

 Silicon dioxide coating of the Au NPs was performed using a condensation-polymerization 

method[44,45]. In a typical synthesis, 200 µL of a 2 mM (3-aminopropyl)trimethoxysilane aqueous 

solution was added to 20 mL of the as-prepared Au NPs solution and stirred for 30 minutes. Then, 

1 mL of a 0.54 wt% sodium silicate solution was added dropwise under stirring to the Au NPs 

solution. The Au NPs solution was then stirred for another 10 minutes and then allowed to stand 

overnight. 10 mL of reagent alcohol was then added to the Au NPs solution. The Au NPs solution 

was stirred for 10 minutes and then allowed to stand overnight. Another 10 mL of reagent alcohol 

was then added to the Au NPs solution. The solution was again stirred for 10 minutes and then 

allowed to stand overnight. The resulting Au@SiO2 NPs solution was then collected and washed 

using reagent alcohol at least 3 times via centrifugation. The Au@SiO2 NPs were finally 

redispersed in reagent alcohol for further use. 
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4.4.5 Bi3FeMo2O12 (BFMO) Thin Film Synthesis  
 

 Bi3FeMo2O12 (BFMO) thin films were synthesized using a modified “Pechini” complex 

precursor containing Bi(III), Fe(III), and Mo(VI) salts as metal sources. 2.91 g of bismuth (III) 

nitrate pentahydrate and 0.808 g of iron (III) nitrate were dissolved in 10 mL of ethylene glycol. 

Then, 0.706 g of ammonium molybdate tetrahydrate and 4.61 g of citric acid were added and 

dissolved in the precursor solution. The BFMO precursor solution was stirred overnight at room 

temperature before use. 

 FTO glass substrates were cleaned by alternating ultrasonication in reagent alcohol, 9% 

w/w hydrochloric acid, acetone, and isopropyl alcohol for 20 minutes each followed by treatment 

under a radio frequency excited oxygen plasma for 90 seconds to ensure substrate hydrophilicity. 

BFMO deposition onto the cleaned FTO glass substrates was performed via spin coating of the 

BFMO precursor (4000 RPM, 100 seconds) followed by drying the films at 225 °C for 15 minutes. 

The BFMO films were then placed into a muffle furnace and sintered at 650 °C for 1 hour (1 

°C/min ramp from 25 °C to 600 °C with 10 °C/min ramp from 600 °C to 650 °C; cooling to 25 °C 

at 10 °C/min). 

4.4.6 Labeling Ag@SiO2 and Au@SiO2 with Amine Group Linked Detection 

DNA Probe 
 

Labeling of silicon dioxide coated nanoparticles was performed based on procedures in 

literature.[46] 3.0 mL of Ag@SiO2 or Au@SiO2 nanoparticles were mixed with 20 μL of TEPSA. 

The mixture solution was incubated overnight to achieve carboxyl group-terminated Ag@SiO2 

nanoparticles. After washing with ethanol and D.I. water for several times, the resulting 

nanoparticles were re-suspended in 0.5 mL of the solution containing 50 mM NHS and 200 mM 

EDC. After incubation for 2 h, the COOH group was activated. 50 μL of 20 μM ssDNA (amine 

group labeled detection DNA) solution was then added into the mixture. After overnight 

incubation, the solution was washed with a buffer solution (PBS containing 0.1% of BSA) for 

three times. The resulting functionalized Ag@SiO2 and Au@SiO2 NPs were finally suspended in 

200 μL of eluent buffer (20 nM of Na3PO4·12H2O containing 5% BSA, 0.25% Tween 20, and 10% 

sucrose) and stored at 4 °C for future use. 

  

4.4.7 Labeling Au with Thiol-Group Linked Detection DNA Probe 
 

The Au NPs/detection DNA conjugate was prepared according to the reported methods[47]. 

dATP was added into 1 mL of concentrated Au NPs solution (final concentration of dATP is 7.05 

μM). The mixture was incubated at room temperature for 20 minutes. 15 μL of 1% of SDS was 

slowly added into the mixture and incubated using a shaker for 10 minutes. 50 μL of 2 M NaCl 
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aqueous solution was dropped into the mixture at a rate of 2 μL/2 min. Then, 0.25 OD of thiolated 

detection DNA was added and the mixture was incubated for 3 hours in oven at 60°C. After the 

incubation, the mixture was centrifuged at 12000 rpm for 15 minutes. The supernatant was 

discarded. The Au NPs were then washed with 1 mL of PBS for 3 times. The resulting red 

sediments were re-suspended in 500 μL of eluent buffer (20 nM of Na3PO4·12H2O containing 5% 

BSA, 0.25% Tween 20 and 10% sucrose). 

 

4.4.8 Labeling Amine Group Linked Capture DNA Probe on BFMO Films 
 

The BFMO films were labelled with capture DNA according to reported methods[47]. The 

BFMO films on FTO glass were first cleaned by successive immersion in ethanol and DI water 

each for 10 min. The cleaned BFMO films were incubated overnight in an ethanolic solution 

containing 0.5% TEPSA and then washed with ethanol to remove free TEPSA. The resulting 

TEPSA-modified BFMO films were activated by immersion in a PBS solution containing 50 mM 

NHS and 200 mM EDC. After being washed with PBS solution, chips were incubated overnight 

in PBS solution containing 20 μM of ssDNA (amine group labeled capture DNA), followed by 

rigorously washing with PBS solution to remove free capture DNA and kept in a humid chamber 

prior to assay. 

 

4.4.9 Photoelectrochemical (PEC) Testing 
 

 All photoelectrochemical (PEC) testing was performed using a three-electrode cell 

configuration in a 0.1 M phosphate buffered saline (PBS) (pH = 7.4) aqueous electrolyte. BFMO-

DNA thin films with and without plasmonic nanoparticles functionalization were used as the 

working electrodes. An Ag|AgCl electrode (Sat. KCl; Eo = +0.197 V vs. NHE) and a platinum 

mesh were used as the reference and counter electrodes, respectively. All PEC measurements were 

made using a Gamry Reference 3000 potentiostat/galvanostat/ZRA instrument. 

 J-V curves were recorded using simulated sunlight from a 300 W Xe arc lamp with an 

AM1.5G filter calibrated to 100 mW/cm2 using a thermopile sensor (Newport 818P) as the light 

source. Wavelength-dependent incident photon-to-current efficiency (IPCE) measurements were 

performed using light from the 300 W Xe arc lamp channeled through a monochromator (Oriel 

Cornerstone™ 130 1/8m) as the light source. Wavelength-dependent optical power measurements 

were performed using a Newport 71675 silicon photodiode detector. The IPCE for a given light 

wavelength was calculated using Equation 1:[48] 

𝐼𝑃𝐶𝐸 =  
1240 𝐽

𝜆∙𝑃
 ,     (1) 
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where J (in mA/cm2) is the photocurrent measured under a given light wavelength (λ in nm) and 

P is the optical power density (in mW/cm2) of the incident light at a given light wavelength.  

 Mott-Schottky (M-S) plots were obtained at f = 5000 Hz with an applied AC bias of 10 mV 

RMS. The obtained electrochemical impedance spectra were used to calculate the space charge 

capacitance using Equation 2:[49] 

𝑍𝑖𝑚𝑔 =  
1

2𝜋𝑓𝐶
,      (2) 

where Zimg is the imaginary component of the measured electrochemical impedance, f is the 

frequency of the applied AC bias, and C is the space charge capacitance of the sample. 

 

4.4.10 Mercury (II) Ion (Hg2+) PEC Sensor Testing 
 

 Initially, the baseline PEC performance (J-V curves, M-S, and IPCE) of BFMO films 

labeled with only the capture DNA was tested. Then, the BFMO films are conjugated with mercury 

(II) ions (Hg2+) and plasmonic nanoparticles in a two-step process. 50 μL of target solution 

containing various mercury (II) ion concentrations (0-500 ppb) were dropped onto the detection 

area of the BFMO chip. After incubation for 30 min, the BFMO film was vigorously rinsed with 

PBS to remove unbound Hg2+ ions. Then, 50 μL of the synthesized detection DNA probe linked 

plasmonic nanoparticles conjugates were dropped onto the detection area and incubated for 30 

min, followed by rinsing with PBS to remove free conjugates. The resulting BFMO-DNA-

plasmonic nanoparticle sandwich films was subject to the PEC measurements. 

 The sensitivity and selectivity of the BFMO-DNA-Au photoelectrodes towards Hg2+ was 

measured using simulated sunlight from 300 W Xe lamp calibrated to 100 mW/cm2 The limit of 

detection of the BFMO-DNA-Au was determined using Equation 3:[50] 

𝐿𝑂𝐷 =  10
3∙(𝑆𝐷)

𝑆𝑙𝑜𝑝𝑒 ,      (3) 

where LOD is the limit of detection for Hg2+, SD is the standard deviation of the photocurrent 

during measurement of a blank sample (0 ppb of Hg2+), and Slope is the slope of the linear region 

of the photocurrent as a function of added Hg2+ concentration. 
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Chapter 5: Semiconductor Photoelectrochemical 

(PEC) Immunosensor Utilizing Plasmonic Energy 

Transfer for Immunoglobin G (IgG) Detection  
 

5.1 Introduction 
 

 As the human population continues to increase across the world, there is a need for new 

and improved strategies for ensuring the health of the population. One of the major concerns for 

ensuring the health of humanity is the improved detection and diagnosis of human illnesses. As 

rapid detection and diagnosis of illness significantly improves the prognosis for patient recovery, 

new biosensors must be developed to diagnose illness.  

 In recent years, significant focus has been spent on designing immunosensors, a type of 

biosensor that utilize antibody-antigen reactions for detection of proteins biomarkers that may be 

part of the human body’s immune system response to illness.[1-3] These protein biomarkers range 

from biomarkers for infectious disease agents such as bacteria and viruses to other proteins 

released as the result of trauma or non-infectious illness in the human body. The main appeal of 

immunosensors is the specificity and stability of the antibody-antigen binding events used to 

capture and detect desired analytes. As with other types of biosensors, immunosensors can utilize 

a variety of signal transduction mechanisms ranging from colorimetry[4-5], fluorescence[6, 7], 

electrochemistry[1, 2], and surface enhanced Raman scattering (SERS)[8]. 

 Photoelectrochemical (PEC) immunosensors have been previously built using internally 

photoexcited electrical current from within a semiconductor photoelectrode to drive 

electrochemical reactions at the photoelectrode surface. These PEC immunosensors utilize 

different methods for modulating photocurrent, photovoltage, or charge transfer resistance in the 

presence of analytes as the sensing actuation mechanism.[3, 9-23] There are several advantages to 

PEC-based immunosensors versus other immunosensor techniques due to inexpensive equipment 

needed (light source and potentiostat) and relatively simple operation versus other techniques like 

SERS or commercially available colorimetric immunosensors like the enzyme-linked 

immunosorbent assay (ELISA) kits.[24, 25]    

 Some PEC immunosensors incorporate nanoparticles made of plasmonic materials such as 

Au or Ag as an active component of the PEC immunosensor design. The appeal of plasmonic 

nanoparticles is the strong light absorption and intense localized electromagnetic fields around the 

plasmonic nanoparticles from their localized surface plasmon resonance (LSPR). While plasmonic 

nanoparticles are commonly used in colorimetric, fluorescence, or SERS-based biosensors, PEC 

immunosensors utilize plasmonic nanoparticles modulate photocurrent through Förster resonant 

energy transfer (FRET) from semiconductor photoelectrode to conjugated plasmonic 

nanoparticles[22, 23] or changes to hot electron injection processes from already decorated 

plasmonic nanoparticles to the supporting semiconductor photoelectrode[19-21, 26-28]. However, to 



91 
 

the authors’ knowledge, there are currently no immunosensors that utilize plasmon-induced 

resonant energy transfer (PIRET) from conjugated plasmonic nanoparticles to the semiconductor 

photoelectrode. PIRET is a plasmonic energy transfer process that utilizes non-radiative dipole-

dipole interactions to transfer energy stored in the localized surface plasmon resonance (LSPR) 

from plasmonic nanoparticles to nearby semiconductors. PIRET is a more efficient plasmonic 

energy transfer process than hot electron injection with as much as 30% of the harvested light 

energy converted into useful photoexcited carriers within the semiconductor photoelectrode versus 

a theoretical maximum hot carrier injection efficiency of 10%.[29-31] In addition, the nature of 

PIRET allows for plasmonic energy to be transferred across short distances even if the plasmonic 

nanoparticles are not contact with the semiconductor. While FRET and PIRET are both resonant 

energy transfer processes that rely on dipole-dipole interactions over similar distances, there are 

similar advantages between FRET and PIRET.  However, the direction of energy transfer differs 

between those processes. Energy transfer from the semiconductor into the plasmonic nanoparticles 

by FRET decreases the semiconductor’s photocurrent. However, PIRET from plasmonic 

nanoparticles to the semiconductor increases the semiconductor’s photocurrent.  

 In this chapter, a PEC immunosensor utilizing PIRET between plasmonic gold 

nanoparticles (Au NPs) and a Bi3FeMo2O12 (BFMO) semiconductor thin film for detection of 

human immunoglobulin G (IGG) in buffer is demonstrated. Human IGG is chosen as the analyte 

due to it being a well-studied protein biomarker within the human body that allows for comparison 

of sensor performance across literature Au NPs are controllably linked to the BFMO thin film via 

anti-human IGG antibody-IGG antigen reactions. PIRET from the conjugated Au NPs results in 

an increased photocurrent that is proportional to the amount of conjugated Au NPs. While the 

resulting PIRET sensor shows some sensitivity towards IGG detection, the large separation 

distance between the Au NPs and BFMO film and weak dipole strength of the BFMO film 

necessitates further refinement of the PIRET sensor design.  

 

5.2 Results 
 

 For this PIRET based PEC immunosensor requires multiple components in order to 

function. The first component is a semiconductor capable of driving PEC reactions. The 

semiconductor must have an optical absorbance that can overlap with the LSPR of plasmonic 

nanoparticles in order for PIRET to be possible.[30,31] In addition, the semiconductor should also 

be thin enough such that light absorption rather than charge carrier transport within the 

semiconductor is limiting factor for photocurrent generation. For the semiconductor, Bi3FeMo2O12 

(BFMO) was chosen due to its bandgap (2.25 eV) which overlaps with the LSPR of plasmonic Au 

NPs and its relative PEC stability.[32, 33] Figure 5.1 shows SEM images of synthesized BFMO thin 

films. From the cross-section and top-view SEM images in Figures 5.1a and 5.1b respectively, the 

synthesized BFMO thin films are between 150 – 200 nm in thickness and polycrystalline in nature 

with crystallites 50 – 200 nm in dimension. 
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Figure 5.1: (a) Cross-Section and (b) Top view SEM images of Bi3FeMo2O12 (BFMO) thin film 

substrates. 

 

 To verify the successful synthesis of pure phase Bi3FeMo2O12 thin films, an X-ray 

diffraction spectrum (Figure 5.2) was collected of the BFMO thin films on FTO glass.  

 

Figure 5.2: X-ray Diffraction (XRD) spectrum for Bi3FeMo2O12 (BFMO) film on fluorine doped 

tin oxide (FTO) coated glass substrate. 

 From Figure 5.2, there are two distinct sets of peaks detected. The first peak set 

characterized by major peaks at 26.5°, 37.8°, and 51.8° matches reference data for tin oxide (SnO2; 

ICSD 98-003-9177) consistent with the conductive FTO layer on the FTO glass substrate. The 

second peak set characterized by major peaks at 28.0°, 28.4°, 30.6°, 33.2°, and 34.0° are consistent 

with monoclinic BFMO (Bi3FeMo2O12; ICSD 98-000-0045). The lower intensity of the BFMO 

peaks relative to the FTO peaks is reasonable given the differences in thickness between the BFMO 
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and FTO layers. No peaks corresponding to secondary impurity phases were detected within the 

spectrum in Figure 5.2, indicating the BFMO thin films are pure in phase.   

 After synthesizing pure phase BFMO thin films, in order to form an immunoassay, the 

BFMO are labeled with human immunoglobulin G (IGG) capture antibodies in accordance with 

the schematic in Figure 5.3. Liquid sample containing human IGG is deposited onto an anti-human 

IGG capture antibody labeled BFMO film. Human IGG within the deposited sample conjugates 

with the labeled human IGG capture antibodies on the surface with the number of conjugated 

antibodies directly proportional to the amount of human IGG contained within the deposited 

sample (Figure 5.3a). Subsequently, anti-human IGG capture antibody labeled Au NPs are added 

after the human IGG conjugation (Figure 5.3b). The antibody labeled Au NPs should only 

specifically bind to the antibodies on the BFMO that have already conjugated with IGG with 

sufficient washing to remove non-specifically bound Au NPs. To confirm successful labeling of 

the anti-human IGG capture antibodies onto the surface of the synthesized BFMO thin films, 

Fourier transform infrared (FTIR) spectroscopy (Figure 5.4) and X-ray photoelectron spectroscopy 

(XPS) (Figure 5.5) were performed on anti-human IGG antibody labeled BFMO thin films.        
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Figure 5.3: Schematic for conjugation of gold nanoparticles (Au NPs) with Bi3FeMo2O12 (BFMO) 

film for use as photoelectrochemical sensor for human immunoglobulin G (IGG) detection; (a) 

Human IGG containing sample incubated with anti-human IGG antibody (Ab) functionalized 

BFMO film (BFMO-Ab); (b) anti-human IGG antibody functionalized Au NPs added to BFMO-

Ab-IGG film with Au NPs to bind with already conjugated human IGG.  
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Figure 5.4: Fourier Transform Infrared Transmission spectra of Bi3FeMo2O12 (BFMO) film 

before and after labeling with anti-human IGG antibodies. 

 

 From the FTIR spectra in Figure 5.4, several new peaks appear after the human IGG 

labeling. The new peaks at 739, 1520, 1558, and 1635 cm-1 are consistent with the wagging, 

scissoring, and stretching modes of N-H bonds that would be present from amine (-NH2) groups 

on the labeled anti-human IGG antibodies.[24, 34] The peaks at 1105 and 1215 cm-1 are consistent 

with C-N stretching[34] from the linking of the human IGG antibodies to XPS spectra of the BFMO 

film labeled with anti-human IGG antibodies before conjugation with human IGG (Figure 5.5) 

further indicates the presence of carboxylic (-COOH) (Figures 5.5a and 5.5c) and amine (-NH2) 

(Figure 5.5b) functional groups consistent with the NHS-EDC linker used to attach the human IGG 

antibodies to the BFMO and the anti-human IGG antibodies themselves.[35, 36] The results are 

consistent with the FTIR spectra in Figure 5.4.    
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Figure 5.5: XPS Spectra of Bi3FeMo2O12 (BFMO) film functionalized with anti-human IGG 

antibodies before conjugation with IGG and Au NPs; (a) C1s; (b) N1s; (c) O1s; (d) Au4f. 

 

 After confirmation of successful anti-human IGG antibody labeling onto the BFMO film, 

confirmation that the Au NPs could successfully conjugate with the human IGG already 

conjugated with the anti-human IGG antibody labeled BFMO film is needed. To confirm 

successful Au NP conjugation, XPS spectra of the anti-human IGG antibody labeled BFMO were 

collected after Au NPs conjugation (Figure 5.6). 
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Figure 5.6: XPS Spectra of Bi3FeMo2O12 (BFMO) film functionalized with IGG antibodies after 

conjugation with 200 ng/mL IGG and Au NPs; (a) C1s; (b) N1s; (c) O1s; (d) Au4f. 

 

 After anti-human IGG antibody labeled Au NPs have been conjugated, the C1s, N1s, and 

O1s (Figures 5.6a through Figures 5.6c) are similar to the XPS spectra obtained before Au NP 

conjugation, indicating that the surface. However, after Au NP conjugation, a new Au4f signal at 

83.6 eV (Figure 5.6d) that was not present before Au NP conjugation (see Figure 5.5d), indicating 

successful conjugation of the Au NPs.[37] After confirming the ability to conjugate Au NPs to the 

BFMO films utilizes antibody-antigen binding, PEC testing of the BFMO-antibody films and the 

effects of the human IGG and Au NP conjugation on the PEC performance of the BFMO-antibody 

films are tested using sample solutions containing 30 ng/mL of human IGG in PBS buffer. 
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Figure 5.7: (a) Photocurrent-Voltage (J-V) curves and (b) Mott-Schottky (M-S) plots for 

Bi3FeMo2O12 (BFMO) films conjugated with IGG and Au NPs. 

 Conjugation with a sample solution containing 30 ng/mL human IGG and then with the 

antibody labeled Au NPs results in an increase in photocurrent from 4.48 µA/cm2 to 5.65 µA/cm2 

at +0.15 V vs. Ag | AgCl (Figure 5.7a). The change in photocurrent is sufficient in magnitude to 

be detectable, showing the potential of this immunosensor design. In addition, conjugation with 

the human IGG and Au NPs does not result in a change in photocurrent onset potential or flat-band 

potential as measured from Mott-Schottky plots (Figure 5.7b), indicating that there is no Fermi-

level equilibration between the BFMO and Au NPs.[38, 39] The lack of Fermi-level equilibration is 

expected given the lack of contact between the bound Au NPs and the BFMO as the expected 

separation distance due to the antibody-antigen-antibody sandwich is approximately 10-20 nm 

depending on orientation.[40-42] To verify that the mechanism for photocurrent enhancement by the 

Au NPs is PIRET, wavelength-dependent incident-photon-to-current efficiency (IPCE) 

measurements were performed at + 0.15 V vs. Ag | AgCl (Figure 5.8).  

 

Figure 5.8: (a) Incident-Photon-to-Current Efficiency (IPCE) curves for Bi3FeMo2O12 (BFMO) 

films conjugated with IGG and Au NPs measured at +0.15 V vs. Ag | AgCl; (b) Ratio of IPCE 

spectra for BFMO films conjugated with 30 ng/mL IGG versus 0 ng/mL IGG. 
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 From the measured IPCE spectra, there is a decrease in IPCE after conjugation with the 30 

ng/mL human IGG and Au NPs between 350 nm and 470 nm. This decrease in IPCE can be 

attributed primarily to two reasons. First, a slight photoelectrochemical degradation of the BFMO 

film occurs due to prolonged testing under applied electric bias required for IPCE measurements. 

In addition, Au NPs absorb light via photoexcited interband transitions between 350 – 470 nm.[28] 

The light energy harvested through the Au NPs’ interband transitions cannot be transferred to the 

BFMO film, effectively blocking a portion of usable light from reaching the BFMO. Between 480 

nm and 560 nm, there is an increase in IPCE that correlates well with the LSPR of the Au NPs 

used for conjugation and the region of spectral overlap between the BFMO and Au NPs. In theory, 

this enhancement in IPCE between 480 – 560 nm could be due to either hot electron injection or 

PIRET. However, the separation between the conjugated Au NPs and BFMO film due to the 

antibody-antigen-antibody sandwich prevents electrical contract needed for hot electron injection 

to be possible.[26-29] As such, the likely photocurrent enhancement mechanism is PIRET as 

expected. UV-Visible light absorption spectroscopy was performed to see the effects of the 

conjugated Au NPs on the overall light absorption of the BFMO thin films (Figure 5.9). The UV-

Visible light absorption spectra (Figure 5.9a) taken before and after conjugation of 100 ng/mL 

human IGG and Au NPs shows a small but clear increase in light absorption at wavelengths below 

600 nm. Taking the difference in absorption (ΔAbs) spectra taken before and after human IGG and 

Au NPs conjugation (Figure 5.9b), the difference in absorption matches the expected absorption 

spectrum shape of Au NPs with a clear peak centered at 530 nm and rising background consistent 

with the interband transition of Au. The interband transition absorption at wavelengths below 480 

nm acts as a parasitic absorption that blocks light from the BFMO. Since it has been shown that 

the photocurrent can be enhanced by the conjugated Au NPs, a sensitivity curve for the BFMO 

PIRET-based immunosensor is tested (Figure 5.10).  

 

Figure 5.9: (a) UV-Visible light absorbance spectrum of Bi3FeMo2O12 (BFMO) film 

functionalized with IGG antibodies before and after conjugation with 100 ng/mL IGG and Au NPs; 

(b) Change in absorbance after conjugation with 100 ng/mL IGG and Au NPs. 
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Figure 5.10: (a) Baseline subtracted photocurrent for BFMO Films conjugated with IGG and Au 

NPs as a function of IGG concentration; (b) Linear (0.1 – 250 ng/mL) range of the photocurrent 

increase curve with linear fit. 

 

 From Figure 5.10a, there is a sudden and obvious increase in photocurrent even after small 

amounts (100 pg/mL) of human IGG are conjugated to the BFMO-antibody film with the rate of 

photocurrent increase beginning to level off after concentrations on the order of 10 ng/mL human 

IGG. When plotted on a log-linear plot (Figure 5.10b), a mostly linear slope can be seen for the 

photocurrent increase as a logarithm of the conjugated human IGG concentration up to 250 ng/mL, 

the highest concentration tested. On the basis of linear slope and standard deviation of 

measurements in Figure 5.10b (see Section 5.4.8 for the calculation details), a limit of detection of 

47 pg/mL was obtained.  However, the magnitude of the photocurrent increase detected in response 

to conjugated human IGG and Au NPs (~87 nA/cm2 per decade) is low enough that increased noise 

present during measurements may influence the accuracy of results. Figure 5.11 shows the 

selectivity of the photocurrent change of the BFMO-IGG-Au photoelectrodes towards human IGG 

with and without the presence of human anti-mouse antibody and human anti-goat antibody as 

interference biomolecules commonly found in human blood. 
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Figure 5.11: Signal intensity change in measured photocurrent signal of the BFMO-IGG-Au in 

the presence of IGG only, IGG and interference biomolecules (human anti-mouse antibody and 

human anti-goat antibody), versus photocurrent measured using a 0 ng/mL human IGG sample as 

a baseline. 

 As can be seen from Figure 5.11, there are photocurrent increases 7.33 ± 0.19% and 8.10 

± 1.09% increase in photocurrent for the BFMO-IGG-Au photoelectrodes when human IGG and 

human IGG mixed with the interference biomolecules were incubated with the BFMO-antibody 

films before Au NPs respectively.  The positive photocurrent increases on the same magnitude 

when incubating the BFMO-antibody photoelectrodes with either human IGG or the human IGG 

and the interference biomolecules indicates that the tested interference biomolecules do not 

interfere with human IGG conjugation to the BFMO-antibody photoelectrodes. This indicates 

that the BFMO PIRET-based PEC immunosensor is selective towards human IGG as a test 

analyte with very limited interference from the other biomolecules tested.    

 The overall low sensitivity of the as-designed BFMO PIRET-based PEC immunosensor is 

mainly due to the limitations of the materials selected. First, while BFMO has a 2.25 eV bandgap 

that allows for spectral overlap with the LSPR spherical Au NPs between 480 – 560 nm, the overall 

IPCE within this spectral overlap region is low for BFMO in general. The low IPCE is due to a 

combination of a low absorption coefficient at these wavelengths and poor charge transport due to 

the formation of small polarons within this spectral window.[32] The main consequence of the low 

absorption coefficient for BFMO within the spectral overlap region is that it results in a weak 

acceptor dipole strength that limits the strength of the dipole-dipole interactions that enable PIRET 

to happen. The dipole-dipole interaction strength is further weakened by the relatively large 

separation distance (~10-20 nm) between the conjugated Au NPs and BFMO film as the strength 

of PIRET has ro/r
6 dependence with r and ro representing the separation distance between the 

semiconductor acceptor and plasmonic nanoparticle donor and the separation distance between 

semiconductor and plasmonic nanoparticles where the PIRET efficiency is equal to 50%.[30, 31] 

Due to the discussed issues with BFMO for application in this PIRET-based PEC immunosensor, 

a different semiconductor that is more sensitive towards PIRET may be used to replace BFMO 

along with  another plasmonic nanoparticle probe designed such that the separation distance 

between the plasmonic nanoparticle probe and semiconductor photoelectrode is decreased. 
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However, a suitable replacement semiconductor candidate or plasmonic nanoparticle probe design 

have not been tested. Further research will focus on improving the PIRET-based PEC 

immunosensor design.    

5.3 Conclusions 
 

 In this chapter, a PEC immunosensor utilizing PIRET from Au NPs conjugated with a 

BFMO semiconductor thin film. Human IGG was used as a protein biomarker for proof-of-concept 

testing.  BFMO thin films and Au NPs were successfully labeled with anti-human IGG capture 

antibodies. Successful conjugation of the Au NPs and the BFMO through antibody-antigen 

reactions was confirmed using XPS. PEC performance testing shows that conjugation of human 

IGG and the Au NPs to the BFMO thin films enhanced the PEC performance versus BFMO only 

with the photocurrent enhancement mechanism confirmed as PIRET. Sensitivity testing of the 

BFMO PIRET-based PEC immunosensor as a function of human IGG concentration showed a low 

sensitivity (87 nA/cm2 per decade increase in IGG concentration) that was selective to human IGG 

only. The as-designed PIRET-based PEC immunosensor requires further refinement.  

5.4 Methods 
 

5.4.1 Materials 
 

 All chemicals and materials were used as received without further purification. (3-

aminopropyl)trimethoxysilane (97%), ammonium hydroxide (28% NH3 in H2O), bismuth (III) 

nitrate pentahydrate (ACS, 98%), hydrochloric acid (36% w/w), hydrogen tetrachloroaurate (III) 

trihydrate (ACS, 99.99%), iron (III) nitrate nonahydrate (98+% metals basis), and trisodium citrate 

dihydrate (ACS, 99.0% min) were purchased from Alfa-Aesar. Acetone, citric acid, isopropyl 

alcohol, reagent alcohol, and sucrose were purchased from VWR International. 

Triethoxysilylpropyl succinic anhydride (TEPSA) was purchased from Gelest, Inc. 1-ethyl-3-(3-

(dimethylamino)-propyl) carbodiimide (EDC), bovine serum albumin (BSA), deoxyadenosine 

triphosphate (dATP), goat anti-human IgG polyclonal antibody, human anti-mouse antibody, 

human anti-goat antibody, IgG from human serum, N-hydroxysuccinimide (NHS), phosphate 

buffered saline (PBS, pH = 7.4) tablets, sodium chloride, sodium dodecyl sulfate (SDS), sodium 

phosphate (Na3PO4·12H2O), and Tween 20  were purchased from Sigma-Aldrich. Ammonium 

molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) was purchased from Ward’s Science. Fluorine-

doped tin oxide (FTO) coated glass (TEC 15) was purchased from MTI Corporation. 

 

5.4.2 Characterization 
 

 UV-Visible light absorption spectra were measured using a Shimadzu UV-2550 

spectrometer with an integrating sphere (Shimadzu UV 2401/2) using BaSO4 as an optical “white” 
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reference material. Field emission scanning electron microscopy (FESEM) was performed using 

a Hitachi S-4700 FESEM. X-ray diffraction (XRD) spectra were collected using a PANalytical 

X’pert Pro X-ray diffractometer. Fourier transform infrared (FTIR) spectroscopy was performed 

using a Thermo Scientific Nicolet 6700 spectrometer using an attenuated total reflection (ATR) 

accessory. X-ray photoelectron spectroscopy (XPS) was performed using a Physical Electronics 

Versa Probe 5000. Obtained XPS spectra were corrected for charging using the adventitious 

carbon C1s peak at 284.8 eV as a reference. 

 

5.4.3 Gold Nanoparticles (Au NPs Synthesis) 
 

 Gold nanoparticles (Au NPs) were synthesized using a traditional citrate reduction 

method[43, 44]. In a typical synthesis, 0.0197 g of hydrogen tetrachloroaurate (III) trihydrate 

(HAuCl4·3H2O) was dissolved in 100 mL of DI water. This solution was then heated to boiling. 

Once the HAuCl4·3H2O solution was boiling, 3 mL of a 1% (w/v) trisodium citrate dihydrate in 

DI water solution was added to the HAuCl4·3H2O solution where the color changed from light 

yellow to wine-red over a period of a few minutes. The HAuCl4·3H2O/citrate solution was boiled 

continuously for another 30 minutes and then allowed to cool to room temperature naturally. The 

as-prepared Au NPs solution was stored for further use without further purification. 

 

5.4.4 Bi3FeMo2O12 (BFMO) Thin Film Synthesis 
 

 Bi3FeMo2O12 (BFMO) thin films were synthesized using a modified “Pechini” complex 

precursor containing Bi(III), Fe(III), and Mo(VI) salts as metal sources. 2.91 g of bismuth (III) 

nitrate pentahydrate and 0.808 g of iron (III) nitrate were dissolved in 10 mL of ethylene glycol. 

Then, 0.706 g of ammonium molybdate tetrahydrate and 4.61 g of citric acid were added and 

dissolved in the precursor solution. The BFMO precursor solution was stirred overnight at room 

temperature before use. 

 FTO glass substrates were cleaned by alternating ultrasonication in reagent alcohol, 9% 

w/w hydrochloric acid, acetone, and isopropyl alcohol for 20 minutes each followed by treatment 

under a radio frequency excited oxygen plasma for 90 seconds to ensure substrate hydrophilicity. 

BFMO deposition onto the cleaned FTO glass substrates was performed via spin coating of the 

BFMO precursor (4000 RPM, 100 seconds) followed by drying the films at 225 °C for 15 minutes. 

The BFMO films were then placed into a muffle furnace and sintered at 650 °C for 1 hour (1 

°C/min ramp from 25 °C to 600 °C with 10 °C/min ramp from 600 °C to 650 °C; cooling to 25 °C 

at 10 °C/min). 
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5.4.5 Labeling Anti-Human Immunoglobulin G (IGG) Capture Antibody onto 

BFMO Films 
 

Anti-human IGG capture antibodies were labeled onto the BFMO thin films based on 

procedures in literature.[45] The BFMO thin films were first cleaned by successive immersion in 

ethanol and DI water each for 10 min. The cleaned BFMO films were incubated overnight in an 

ethanolic solution containing 0.5% TEPSA and then washed with ethanol to remove free TEPSA. 

The resulting TEPSA-modified chips were activated by immersion in a PBS solution containing 

50 mM NHS and 200 mM EDC. After being washed with PBS solution, chips were incubated 

overnight in PBS solution containing 1 mg/mL of anti-human IgG antibody, followed by 

rigorously washing with PBS solution to remove free anti-human IgG antibody and kept in a humid 

chamber prior to assay. The conjugation of antibody onto the chip surface was confirmed by FT-

IR spectroscopy. 

 

5.4.6 Labeling Anti-Human IGG Capture Antibody onto Au NPs 
 

Five milliliters of Au nanospheres were concentrated into one milliliter. Then 0.01 mg of anti-

human IgG antibody was added to the concentrated nanoparticles (pH 9.0). The mixture was gently 

incubated for 1 h and blocked by 0.1 mL of 10 wt% BSA for 30 min. The resulting solution was 

centrifuged at 12,500 rpm for 15 min, and the nanoparticles were washed with PBS (1% BSA) 3 

times. The resulting nanoparticles were dispensed in 1.0 mL of Eluent buffer containing 20 mM 

Na3PO4•12H2O, 0.25% Tween 20, 10% sucrose, and 5% BSA and stored under 4 °C for future 

use.  

 

5.4.7 Photoelectrochemical (PEC) Testing  
 

 All photoelectrochemical (PEC) testing was performed using a three-electrode cell 

configuration in a 0.1 M phosphate buffered saline (PBS) (pH = 7.4) aqueous electrolyte. BFMO-

Antibody thin films with and without Au NPs functionalization were used as the working 

electrodes. An Ag|AgCl electrode (Sat. KCl; Eo = +0.197 V vs. NHE) and a platinum mesh were 

used as the reference and counter electrodes, respectively. All PEC measurements were made using 

a Gamry Reference 3000 potentiostat/galvanostat/ZRA instrument. 

 J-V curves were recorded using simulated sunlight from a 300 W Xe arc lamp with an 

AM1.5G filter calibrated to 100 mW/cm2 using a thermopile sensor (Newport 818P) as the light 

source. Wavelength-dependent incident photon-to-current efficiency (IPCE) measurements were 

performed using light from the 300 W Xe arc lamp channeled through a monochromator (Oriel 
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Cornerstone™ 130 1/8m) as the light source. Wavelength-dependent optical power measurements 

were performed using a Newport 71675 silicon photodiode detector. The IPCE for a given light 

wavelength was calculated using Equation 1:[46] 

𝐼𝑃𝐶𝐸 =  
1240 𝐽

𝜆∙𝑃
 ,     (1) 

where J (in mA/cm2) is the photocurrent measured under a given light wavelength (λ in nm) and 

P is the optical power density (in mW/cm2) of the incident light at a given light wavelength.  

 Mott-Schottky (M-S) plots were obtained at f = 5000 Hz with an applied AC bias of 10 mV 

RMS. The obtained electrochemical impedance spectra were used to calculate the space charge 

capacitance using Equation 2:[47] 

𝑍𝑖𝑚𝑔 =  
1

2𝜋𝑓𝐶
,      (2) 

where Zimg is the imaginary component of the measured electrochemical impedance, f is the 

frequency of the applied AC bias, and C is the space charge capacitance of the sample. 

5.4.8 Human IGG PEC Sensor Testing 
 

 Initially, the baseline PEC performance (J-V curves, M-S, and IPCE) of BFMO films 

labeled with the anti-human IGG capture antibody. Then, the BFMO films are conjugated with Au 

NPs in a two-step process. 20 μL of target solution containing various human IGG concentrations 

(0-250 ng/mL) were dropped onto the detection area of the BFMO-Ab chip. After incubation for 

20 min, the BFMO-Ab-IGG film was vigorously rinsed with PBS to remove non-specifically 

bound human IGG. Then, 20 μL of the synthesized anti-human IGG antibody labeled Au NPs were 

dropped onto the detection area and incubated for 30 min, followed by rinsing with PBS to remove 

free conjugates. The resulting BFMO-Ab-IGG-Ab-Au film was subjected to the PEC 

measurements outlined in Section 5.4.7. 

 The sensitivity of the BFMO-Ab-IGG-Ab-Au photoelectrodes towards human IGG was 

measured from chronoamperometry (J-t) curves taken at +0.15 V vs. Ag | AgCl using simulated 

sunlight from 300 W Xe lamp calibrated to 100 mW/cm2. The limit of detection of the BFMO-

DNA-Au was determined using Equation 3:[48] 

𝐿𝑂𝐷 =  10
3∙(𝑆𝐷)

𝑆𝑙𝑜𝑝𝑒 ,      (3) 

where LOD is the limit of detection for human IGG, SD is the standard deviation of the 

photocurrent during measurement of a blank sample (0 ng/mL of human IGG), and Slope is the 

slope of the linear region of the photocurrent as a function of added human IGG concentration. 
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Chapter 6: Future Outlook and Conclusions 

 

6.1 Refining the PIRET Immunosensor Design 
 

 As stated in Chapter 5 of this dissertation, the existing plasmon-induced resonant energy 

transfer (PIRET)-based PEC immunosensor design based on antibody labeled Bi3FeMo2O12 

(BFMO) semiconductor thin film coupled to antibody-labeled plasmonic Au nanoparticle (Au 

NPs) probes using the desired antigen analyte to conjugate them does function as a PEC 

immunosensor. However, the existing design has low sensitivity in its current form. The sources 

of the low sensitivity are briefly discussed in Chapter 5, but this discussion will be expanded upon 

further in this chapter.  

 When utilizing PIRET to improve light harvesting of the semiconductor as the working 

mechanism to increase the photocurrent in the PIRET immunosensor design, the semiconductor 

must still have a finite amount of light absorption within the region of spectral overlap to facilitate 

the dipole-dipole interactions for PIRET.[1,2] However, despite the need for finite semiconductor 

light absorption, the balance between light absorption and charge transport within the 

semiconductor photoelectrode must still be maintained. If the semiconductor film is still optically 

thin (i.e. not all light is absorbed by the semiconductor film) but physically too thick for all 

photoexcited charge to be collected, the semiconductor photoelectrode performance will be charge 

transport limited which PIRET cannot overcome. In the case of the BFMO photoelectrodes used, 

the dipole-dipole interactions with Au NPs were weak due in part to the low light absorption within 

the region of spectral overlap with the plasmonic Au nanoparticle probes. 

 Due to the relative ease of synthesis, spherical Au nanospheres make for an ideal plasmonic 

nanoparticle probe.  If the plasmonic nanoparticle probe is kept as spherical Au NPs (λLSPR ≈ 520 

nm), candidate semiconductors to replace BFMO would need to have a bandgap between 2.0 eV 

(λonset = 620 nm) and 2.5 eV (λonset = 496 nm) to ensure at least partial spectral overlap with the 

LSPR of the Au NPs. In addition, candidate semiconductors should be either be 

photoelectrochemically stable in neutral aqueous electrolytes or easily stabilized by charge carrier 

scavengers or ultra-thin passivation overlayers. Use of charge carrier scavengers or redox couples 

such as ascorbic acid or ferrocyanide/ferricyanide is already common with PEC sensors due to 

general photocurrent increases from using readily reduced or oxidized compounds versus difficult 

to reduce or oxidize compounds like protons or water respectively.[3-11] However, the use of 

passivation overlayers is not preferable for the PIRET-based PEC immunosensor since the 

overlayer would be an additional physical barrier that separates the plasmonic nanoprobes and 

semiconductor photoelectrode that lowers the PIRET efficiency. Based on these guidelines, the 

following semiconductors may be potential candidates to replace BFMO as the semiconductor in 

the PIRET-based PEC immunosensor design (Table 6.1): 
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Table 6.1: Candidate Semiconductors to Replace Bi3FeMo2O12 (BFMO) in the PIRET-based 

PEC Immunosensor 

Semiconductor Bandgap (eV) 
Semiconductor 

Type 

Stable in Neutral 

Aqueous 

Electrolyte? 

Copper (I) Oxide 

(Cu2O) [12-14] 
2.1 p-type No 

Bismuth Vanadate 

(BiVO4) 
[15-17] 

2.4 n-type No 

Copper (II) 

Tungstate 

(CuWO4) 
[18-20] 

2.25 n-type Yes 

Cadmium Sulfide 

(CdS) [4, 10, 21] 
2.4 n-type No 

 

 Of the candidate semiconductors in Table 6.1, copper (I) oxide (Cu2O) and cadmium 

sulfide (CdS) are most commonly used in sensors. PIRET between Cu2O and Au NPs has already 

been studied extensively. As such, there are no mechanistic concerns whether PIRET into Cu2O is 

possible. However, under cathodic PEC operating conditions, Cu2O is not stable due to parasitic 

reduction of the Cu2O to metallic Cu discussed in detail in Chapter 2.3.[12] Cu2O can be stabilized 

at least in part using passivation overlayers and using electron scavengers such as methyl viologen 

or hydrogen peroxide.[13, 14] However, the stability of the labeled antibodies in the presence of 

methyl viologen and hydrogen peroxide must be further studied. Cadmium sulfide is commonly 

utilized in PEC sensors including those based on Förster resonant energy transfer (FRET) with 

spherical Au NPs.[4, 10] CdS can also be readily stabilized using hole scavengers such as sodium 

sulfite, sodium sulfide, and ascorbic acid.[21] However, the ease of FRET between CdS and Au 

NPs is also problematic for use a PIRET sensor since the direction of FRET counters any 

photocurrent enhancement that would occur from PIRET.[2, 4] In addition, CdS utilizes cadmium, 

a heavy metal, as a constituent material. The toxicity of cadmium should limit the use of CdS to 

controlled settings where the cadmium can be contained. Bismuth vanadate (BiVO4) and copper 

(II) tungstate (CuWO4) are both oxide semiconductors that have been heavily studied for PEC 

water-splitting for solar energy harvesting with limited use for sensing. BiVO4 is one of the most 

promising material for PEC water-splitting. In addition, PIRET between spherical Au NPs and 

BiVO4 has been previously observed.[16, 17] However, BiVO4 is not stable in neutral aqueous 

electrolytes without either a passivation overlayer or a hole scavenger. CuWO4 is stable in neutral 

aqueous borate buffers but not in neutral aqueous phosphate buffers.[18] However, there is limited 

study on plasmonic energy transfer between plasmonic nanoparticles and CuWO4.
[20] Nonetheless, 

both BiVO4 and CuWO4 are potential replacement photoelectrode materials for consideration. 

 The large separation distance (~10-20) nm) between the BFMO thin film and plasmonic 

Au nanoparticle probes resulting from the antibody-antigen-antibody sandwich that conjugates the 

BFMO and Au NPs together.[22-24] As described previously, PIRET is a resonant energy transfer 

process that utilizes dipole-dipole interactions to transfer energy from a plasmonic nanoparticle 
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donor to a nearby semiconductor acceptor. While PIRET does not require direct contact between 

the semiconductor and plasmonic nanoparticle to occur, the efficiency of PIRET falls off with a 

(ro/r
6) dependence with r and ro representing the separation distance between the semiconductor 

acceptor and plasmonic nanoparticle donor and the separation distance between semiconductor 

and plasmonic nanoparticles where the PIRET efficiency is equal to 50%.[2] While ro is an 

empirically derived semiconductor material dependent constant typically on the order of ~10 nm, 

there is a rapid drop-off in the PIRET efficiency as the separation distance increases. The practical 

separation distance of 10-20 nm from the antibody-antigen-antibody sandwich is too much for 

efficient PIRET to occur between the BFMO and Au NPs in the existing PIRET immunosensor 

design. It should be noted that this is a similar problem for signal “turn-off” PEC immunosensors 

based on signal quenching by Förster resonant energy transfer (FRET) between conjugated 

plasmonic nanoparticles and a semiconductor photoelectrode as a working mechanism. Similar 

approaches for overcoming the separation distance problem in FRET-based PEC immunosensors 

may be applicable to the PIRET immunosensor.  

 A possible solution to reduce the separation distance would be to create a plasmonic 

nanoprobe based on plasmonic nanoparticles conjugated with single-strand DNA-antibody 

(ssDNA-Ab) conjugates rather than only to antibodies (Figure 6.1). Such ssDNA-AB conjugates 

are already studied for their applications for immuno-PCR, a technique used for protein 

detection.[26, 27]  In the proposed plasmonic nanoparticle probes, long single stranded DNA strands 

would act as flexible tethers that allow conjugated Au NPs to rest very near or in contact with the 

semiconductor photoelectrode. This approach is similar in concept to the use of compatible ssDNA 

of mismatched length conjugated to Au NPs utilized for the PEC sensor for Hg2+ detection 

presented in Chapter 4 of this dissertation. The resulting reduced separation distance between the 

plasmonic nanoprobe and semiconductor film should greatly increase the PIRET efficiency while 

hopefully offsetting additional steric hinderance from the additional bulk of the ssDNA-Ab 

conjugates. 
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Figure 6.1: Proposed replacement plasmonic Au NP nanoprobe conjugate system for conjugating 

Au NPs to Bi3FeMo2O12 (BFMO)semiconductor film for PIRET-based PEC immunosensor.  

 

6.2 Conclusions 
 

 In this dissertation, three photoelectochemistry (PEC) based projects utilizing 

semiconductor photoelectrodes are presented for applications related to solar energy harvesting 

and sensing.  In the first presented project, a titanium dioxide (TiO2) nanorod array was coated 

with an ultra-thin zirconium and Co3+ infiltrated porphyrin-based metal-organic framework (MOF) 

known as PCN-225 for use as an improved photoanode for solar water-splitting. The TiO2 nanorod 

array coated with the Co3+ infiltrated PCN-225 MOF (TiO2@Co-MOF) exhibited enhanced PEC 

performance for solar water-splitting. Despite the wide absorption spectrum of the PCN-225 MOF, 

the enhanced solar-water splitting performance of the TiO2@Co-MOF was confined to light 

illumination wavelengths where the TiO2 nanorod array already absorbed rather than extending 

the spectrum of useful light wavelengths. The photocurrent enhancement from the Co3+ infiltrated 

PCN-225 MOF coating is due to improved charge separation from the suppression of surface states 

on the TiO2 and the built-in potential from a depleted p-n junction formed between the PCN-225 

and TiO2. This research further shows the potential of thin surface coatings for improving the PEC 

performance and the difficulties in utilizing metal-organic frameworks for efficient PEC water-

splitting. 
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 In the second and third projects presented, a phenomenon known as localized surface 

plasmon resonance (LSPR) that occurs with nanoparticles of certain metals such as Au and Ag is 

utilized to modulate the PEC response of Bi3FeMo2O12 (BFMO) semiconductor photoelectrodes 

for sensing applications. In the second presented project, the presence of plasmonic energy transfer 

mechanisms such as hot electron injection and plasmon-induced resonant energy transfer (PIRET) 

as signal “turn-on” mechanisms for use in PEC sensing. Single-strand DNA (ss-DNA) and Hg2+ 

ions’ affinity for the thymine bases on DNA were used to conjugate plasmonic Au NPs and 

Au@SiO2 core-shell NPs to BFMO semiconductor thin-film photoelectrodes. When Au NPs were 

conjugated with the BFMO thin-film, a combination of hot electron injection, PIRET, wavelength-

independent Fermi-level equilibration, and a wavelength-dependent internal reflection that 

increased light absorption within the BFMO photoelectrode increased the photocurrent of the 

BFMO photoelectrode. When Au@SiO2 NPs were conjugated to the BFMO thin-film, the thin 

insulating SiO2 layer blocked hot electron injection and prevented Fermi level equilibration while 

PIRET and the wavelength dependent internal reflection still occurred. A PEC sensor for Hg2+ 

detection was created using bare Au NPs as the plasmonic probe and demonstrated a sensitivity 

and selectivity for detection of Hg2+ ions in water sufficient to meet detection requirements for 

safe drinking and waste-water limits on Hg2+ ions. levels. The results from this project highlight 

the promise that plasmonic energy transfer mechanisms have as a method to modulate the PEC 

response of photoelectrodes for sensing applications.  

 In the third project, the proof-of-concept for a PEC immunosensor for human 

immunoglobulin G (IgG) detection utilizing PIRET from plasmonic Au NP nanoparticle-based 

probes to a BFMO semiconductor thin film as the working mechanism for photocurrent 

modulation. The resulting PIRET-based PEC immunosensor did exhibit a wavelength-dependent 

photocurrent enhancement consistent with PIRET between the Au nanoprobes and the BFMO thin 

film. However, while the PEC immunosensor functions, the sensor exhibited low sensitivity 

towards human IgG due to low PIRET efficiency between the conjugated Au NPs and BFMO thin 

film. The low PIRET efficiency is attributed to low light absorption of the BFMO within the 

spectral overlap with the LSPR of the spherical Au NPs leading to low dipole-dipole interaction 

strength and a relatively large separation distance (10-20 nm) between the BFMO and conjugated 

Au NPs resulting from the size of the antibody-antigen-antibody sandwich used for conjugation. 

As such, further optimization of the BFMO semiconductor photoelectrode and the design of the 

plasmonic Au NP probes is needed to improve the PIRET-based PEC immunosensor design. 

 While research on PEC for solar energy harvesting applications has stagnated due to 

insufficient progress towards reaching efficiency and cost requirements to be competitive on the 

energy market, PEC for sensing applications is an alive and growing field. The potential growth 

in the PEC-based sensor field is due to two reasons. The first reason is that light conversion 

efficiency is less important than the ability to modulate the PEC performance of a photoelectrode 

directly or indirectly in response to the presence of an analyte for sensing applications. This allows 

for use of less expensive materials such as metal oxide semiconductors for the photoelectrode that 

may not produce as much photocurrent as more expensive III-V semiconductors. The second 

reason is the low equipment requirements (potentiostat, light source, and a transparent PEC cell) 

and technical expertise required to setup and operate the PEC experiments used for sensing. This 
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dissertation has focused on utilizing plasmonic photocurrent enhancement mechanisms (PIRET 

and hot electron injection) as a photocurrent modulation mechanism for the signal “turn-on” type 

of PEC sensor. While the presented results are promising, further design optimization particularly 

in the case of the PIRET-based PEC immunosensor is necessary for creating a sensor with the 

sensitivity and limit of detection required for current analytes of interest.    
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