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ABSTRACT 

Grainyhead-like 2 Sensitizes Cells to Natural Killer Cell Cytotoxicity and Promotes the Interferon 
Response 

Ian Philip MacFawn 

Our research determined that the epithelial master transcription factor Grainyhead-like 
2 (GRHL2) promotes sensitivity to Natural Killer (NK) cell-mediated killing, and modulates the 
interferon I (IFN-I) response of epithelial cells. Immune surveillance by NK cells constitutes a 
major selective pressure for circulating tumor cells. Epithelial (GRHL2-expressing) cells exhibited 
significantly higher rates of NK conjugation, a crucial step in direct cell-mediated cytotoxicity. 
Mechanistically, GRHL2 upregulates expression of intercellular adhesion molecule 1 (ICAM-1), a 
cell surface molecule critical for NK to target cell synaptogenesis. GRHL2 epigenetically 
regulates gene expression, and we found that GRHL2 mutant proteins unable to interact with 
the epigenetic modifiers p300 or KMT2C/D exhibited altered NK sensitivity, and ICAM-1 
expression was lost. In summary, the epithelial state, enforced by GRHL2, kept these cells 
susceptible to NK-mediated cytolysis. Further, our data suggest GRHL2 critically promotes IFN I 
production in response to a double strand RNA mimetic. The results from these experiments 
identify novel roles for GRHL2 in maintaining the relationship between epithelial cells and the 
innate and adaptive arms of the immune system. 
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Chapter I: GRHL2 sensitizes cell to Natural Killer cell cytotoxicity through epigenetic 
mechanisms. 

 

 
Chapter I: Introduction 

Perturbation of genetic homeostasis in epithelial cells is a significant driver of 

tumorigenesis; over 90% of cancers are classified as “carcinoma”, which arise from epithelial 

origin. Epithelial cells are one of many final products of a long and tightly regulated process of 

differentiation that begins in embryonic stem cells during early mammalian development. In 

order to limit the self-renewing, pluripotent characteristics of embryonic stem cells, master 

transcription factors must be turned on, or off, in a concerted manner in order to gradually 

narrow the potential lineage-specific gene expression programs of different subsets of the 

rapidly proliferating embryo. Thus, the “terminally” differentiated epithelial cell which 

comprises various tissue across the body is locked into its identity by the concerted influence of 

epithelial master transcription factors which promote the expression of epithelial genes (A. F. 

Chen et al., 2018; Soares & Zhou, 2018), and antagonize the expression and activity of various 

stemness or mesenchymal master transcription factors. A great body of scientific literature has 

illustrated the oncogenic characteristics that arise from imbalance of epithelial-mesenchymal 

transcriptional control (Nieto, Huang, Jackson, & Thiery, 2016; Ribatti, Tamma, & Annese, 

2020). These include resistance to chemotherapeutics, increased invasion and motility, anoikis- 

resistance, phenotypic plasticity, aberrant immune response, metabolic reprogramming, and 

more. Hence, promoting the epithelial “default” state discourages some types of oncogenic 

progression and represents a lynchpin for understanding tumor biology (Frisch, 1997). 
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Grainyhead-like 2 (GRHL2) is considered an epithelial master transcription factor. Acting 

as a pioneer transcription factor, GRHL2 localizes to genomic loci and binds closed chromatin 

regions, subsequently recruiting chromatin remodeling enzymes in order to alter histone 

modifications, thereby loosening repressive chromatin and providing topography permissive for 

transcription factor binding (Jacobs et al., 2018; Reese, Harrison, & Alarid, 2019). Many 

canonical epithelial genes contain GRHL2 binding sites in their regulatory regions including 

CDH1, ELF3, OVOL2, RAB25, p63, CLDN4 (Frisch, Farris, & Pifer, 2017) . Pertaining to epigenetic 

regulation, GRHL2 has, at least, a DNA-binding region, a region which inhibits the histone 

acetyltransferase p300 (AA’s 425-437) and a direct interaction with the lysine 

methyltransferases KMT2C and KMT2D (AA’s 32-33) (Diagram 1) (MacFawn et al., 2019; Pifer et 

al., 2016). GRHL2 plays an indispensable role in early development by overseeing the human 

embryonic stem cell (hESC) to epiblast-like cell transition. During this time, GRHL2 becomes 

active, assumes control of target enhancers, and potentiates epithelial gene expression as the 

hESC transitions away from pluripotency towards a more differentiated “epiblast-like cell”: an 

early cell state that gives rise to subsequent epithelial cell lineages (A. F. Chen et al., 2018). 

The gene was originally described in Drosophila melanogaster: descriptively termed 

“Grainyhead’ following observations of a granular, sclerotic head phenotype in Grainyhead 

mutant flies. These flies also exhibited altered epidermal barrier formation and wound 

response, as well as an inability to properly control developmental genes normally manifested 

through promoter binding of ultrabithorax (ubx), engrailed, dopa carboxylase (Ddc) and the D. 

melanogaster E-cadherin homologue shotgun (Dynlacht, Attardi, Admon, Freeman, & Tjian, 

1989). D. melanogaster Grainyhead protein expression is temporally- and spatially-restricted to 
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ectoderm lineages during development, with detectable expression in epidermis, central 

nervous system (CNS), and gut (Bray, Burke, Brown, & Hirsh, 1989). Subsequent identification 

of the mammalian homologues revealed a family of “Grainyhead-like” genes: GRHL1, GRHL2 

and GRHL3. These three genes code for structurally similar proteins with a conserved N- 

terminal transactivation domain, a p53-like DNA-binding domain, and a C-terminal dimerization 

domain, however the functional roles of these proteins are diverse and mostly non-redundant 

(Frisch et al., 2017). 

 

 
 

Diagram 1. GRHL2 Protein Domain Map: 

TAD: Transactivation domain 

DBD: DNA-binding domain 

DD: Dimerization domain 

PID: p300 inhibiting region (Pifer et al., 2016) 

EDAA KMT2C/KMT2D interaction region (MacFawn et al., 2019) 
 
 

Owing to its prolific and widespread support of epithelial gene expression, 

downregulation or knockout of GRHL2 by various endogenous or ectopic methods is 

consequential for a wide variety of cellular characteristics and functions. In mice, GRHL2-/- mice 
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exhibit insufficient neural tube closure, epidermal defects and epithelial migration problems 

causing embryonic lethality at day E11.5 (Boglev et al., 2011; Ray & Niswander, 2016). GRHL2 

also regulates epithelial cells of the lungs, with expression in luminal and basal p63+/KRT5+ 

epithelium, while also forming a positive feedback loop with Nkx2-1 in alveolar type II cells, 

disruption of which leads to flattening and loss of cuboidal cell shape (Varma et al., 2012). 

GRHL2 was subsequently shown to orchestrate epithelial morphogenesis, polarity, and 

differentiation of basal stem cells in models of airway mucociliary epithelium (Gao, Bali, 

Randell, & Hogan, 2015). Kidney development and tubulogenesis are also impacted by loss of 

GRHL2, causing reduced collecting duct luminal expansion, reduced epithelial barrier integrity 

and rescue of tubulogenesis, respectively (Aue et al., 2015; Pifer et al., 2016). 

In addition to its integral role in specific tissue and organ development, GRHL2 

modulation has implications in cancer. The specific roles of Grainyhead-like proteins in cancer 

have been reviewed extensively (Frisch et al., 2017; He et al., 2020; Kotarba, Taracha- 

Wisniewska, & Wilanowski, 2020; Reese et al., 2019). Low GRHL2 expression, according to IHC, 

in a subset of breast cancer cells correlates with worse prognosis and lymph node metastasis, 

however, GRHL2 can also increase proliferation in breast cancer cell lines (Werner et al., 2013). 

Further, it was found that GRHL2 expression is absent in metastatic, “basal B” type breast 

cancer cell lines MDA-MB-231 and BT-549 cells, while in other breast cancer cell lines GRHL2 

was found to positively regulate erbb3 expression: a family member of erbb2 linked with poor 

outcomes in breast cancer (Werner et al., 2013). In colorectal cancer, GRHL2 knockdown 

increased metastasis in mouse models, via induction of EMT, but high expression was also 

positively associated with clinical stage and tumor size (Quan et al., 2015; Z. Yang, Wu, Chen, 
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Min, & Quan, 2019). In NSCLC, while high expression of GRHL2 correlates with worse prognosis, 

in vitro investigation found that while GRHL2 promotes proliferation and colony formation, it 

also inhibits metastatic attributes (Pan et al., 2017). GRHL2’s role in suppressing oncogenic EMT 

would point to a widespread function as a tumor suppressor, however, analysis of patient data 

accumulated by TCGA and other repositories, as well as in vitro and in vivo experiments 

exploring GRHL2’s effect on tumor progression reveals a highly context-dependent role for 

GRHL2. 

Tumor recurrence and metastasis remain the prevalent causes of death for cancer 

patients. Multiple mechanisms can lead to selection of resistant cells, including tumor immune- 

editing, persistence of drug-resistant subclones/cancer stem cells, phenotypic heterogeneity, 

and EMT (Dudas, Ladanyi, Ingruber, Steinbichler, & Riechelmann, 2020; F. Li, Tiede, Massagué, 

& Kang, 2007; Smith & Bhowmick, 2016). These can contribute to the selective process of 

tumor evolution, which winnows the composition of a tumor and can promote recurrence and 

metastatic spread to secondary sites in the body. Lately, much research emphasis has been 

directed towards understanding mechanisms that allow carcinoma cells to evade tumor 

immune surveillance and/or promote immunological tolerance. Incisive studies conducted by 

the Weinberg lab explored the spatial and cellular composition of the tumor immune 

microenvironment in a mouse adenocarcinoma MMTV-PyMT model (Dongre et al., 2017). 

Tumors from this model were isolated; their cells characterized and sorted based upon 

epithelial or mesenchymal features. Compared with epithelial (E-cadherin/EpCAMhi) cells, 

orthotopically re-introduction of mesenchymal cells (Vimentin/EpCAMlo) produced tumors 

containing more immunosuppressive CD25+ FOXP3+ Tregs and M2 polarized macrophages, 



6  

particularly in instances where the EMT TF Snail expression was high. The tumors arising from 

re-implanted epithelial cells contained more CD8+ T cells associated with effector function 

(GrzB, perf, IFN-γ) compared with the mesenchymal tumors which had numerically reduced 

CD8+ T cells that also exhibited higher PD-1. Interestingly, spatial analysis of co-injected 

epithelial and mesenchymal cells showed that the two cell types segregated in the resulting 

tumor, and that Arginase+ M2 macrophages preferentially associated with mesenchymal 

regions, while CD8+ T cells were found in proximity to epithelial regions (Dongre et al., 2017). 

These observations support the idea that tumor cells undergoing EMT may be more refractory 

to anti-tumor immunity, and may also create a sheltering immunosuppressive environment. 

Because of its ability to reinforce the epithelial state, thereby discouraging EMT, 

GRHL2’s ability to act in the capacity of a tumor suppressor has been previously investigated. 

GRHL2 antagonizes TGF-β-mediated signaling, reducing mammosphere formation and invasive 

capacity, while increasing BMP2 in HMLE cells. Further, Zeb1 has well-documented oncogenic 

effects in breast cancer and promotes plasticity and metastasis in pancreatic cancer; GRHL2 has 

been shown to repress Zeb1 in vitro (Cieply et al., 2012; Krebs et al., 2017; H.-T. Wu et al., 

2020). GRHL2 is also able to inhibit the metabolic switch towards oxidative phosphorylation 

often exhibited by cancer cells. Related to this, GRHL2 expression, in contrast to cells that have 

undergone EMT, suppresses the metabolic enzyme GLUD1, thereby maintaining intracellular 

ROS levels, helping cells to maintain sensitivity to anoikis (Farris et al., 2016). 

Regarding epigenetic regulation, GRHL2 inhibits the histone acetyltransferase (HAT) 

activity of p300, contextually, at mesenchymal gene regulatory regions. Re-expression of GRHL2 

in a mesenchymal subpopulation (MSP) (CD44hi/CD24lo) of HMLE cells causes repression of 
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various matrix metalloproteinase (MMPs), likely attributable to reduced p300-deposited 

H3K27ac at promoters, as experimentally observed with MMP1, MMP2 and MMP14 (Pifer et 

al., 2016). The inhibition of p300 HAT activity is notable; while this capability is also shared by 

adenoviral E1A protein, the vast majority of transcription factors (>400) associating with p300 

are thought to mainly use it as a coactivator, rather than inhibiting it. GRHL2 joins E1A-like 

inhibitor of differentiation (EID) proteins as unique inhibitors of p300 function (Pifer et al., 

2016). Expanding the mechanism of GRHL2’s transcriptional control, preliminary yeast two 

hybrid interaction data produced previously in our lab, and experiments conducted by other 

researchers, suggest that the two paralogous lysine methyltransferases 2C and D (KMT2C, 

KMT2D), also known as MLL3 and MLL2, could interact with GRHL2. KMT2C and KMT2D are 

members of the MLR subgroup of the KMT2 protein family. They are high molecular weight 

proteins (4915aa, 5537aa) and contain a catalytic SET domain for lysine methylation, their 

namesake, among other domains. KMT2C and KMT2D join a conglomeration of epigenetic 

regulatory proteins as part of the COMPASS complex (Complex of Proteins Associated with 

Set1) (Fagan & Dingwall, 2019). SET domain mutation is frequently observed in KMT2A and 

KMT2C, suggesting that stability of their lysine methyltransferase activity is consequential in 

tumor development (Weirich, Kudithipudi, Kycia, & Jeltsch, 2015). Indeed, KMT2C and KMT2D 

are two of the most commonly occurring mutated genes across all cancer types; to illustrate, 

KMT2C is found to be mutated in 8%-11% of breast cancer patients (Ellis et al., 2012; Fagan & 

Dingwall, 2019; Wang et al., 2011), with a reduction in mRNA levels in 43% of patients (Wang et 

al., 2011). In estrogen receptor positive (ER+) breast cancer KMT2C is specifically implicated in 

supporting the ER-collaborating pioneer transcription factor FOXA1. FOXA1 utilizes KMT2C’s 
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H3K4me1 (monomethylation) function to modify enhancer regions of target genes, permitting 

transcription. In this study, rapid immunoprecipitation mass spectroscopy of endogenous 

proteins (RIME) also revealed GRHL2 as a top predicted associator with KMT2C (Jozwik, 

Chernukhin, Serandour, Nagarajan, & Carroll, 2016). A direct interaction between KMT2C/D and 

GRHL2 was tested and well supported by data produced previously in our lab. Understanding 

the interplay between GRHL2 and these epigenetic interactors is important in understanding 

how it influences epithelial identity, as well as repressing or reversing EMT. By reinforcing 

epithelial gene expression programs, GRHL2 preserves particular functions and responses 

across multiple cellular systems with demonstrable in vitro tumor suppressive effects. 

The process of EMT is thought to be intertwined with the metastatic potential of many 

cancer types. Many barriers exist to reduce the likelihood of a cell’s breaking away from its 

primary tissue site which may lead to metastasis, however, induction of various degrees of 

mesenchymal transition can equip a cell with tools to overcome these barriers (Pastushenko & 

Blanpain, 2019). EMT can cause cells to become more motile and invasive, dissolve surrounding 

matrix and resist anoikis (Pearson, 2019) (Cieply et al., 2012). Entering the circulatory system 

constitutes another major selective pressure on newly departed circulating tumor cells (CTCs). 

The number of circulating tumor cells shed from a primary site vastly exceeds the number of 

metastatic lesions, underscoring the tremendous negative selective pressures levied on 

disseminating tumor cells (Massagué & Obenauf, 2016). 

Circulating immune cells, particularly Natural Killer (NK) cells, surveille cells and can 

effectively destroy most virally infected or transformed cells (Lopez-Soto, Gonzalez, Smyth, & 

Galluzzi, 2017). NK cells share a common precursor with, and are the most populous members 



9  

of, the Innate Lymphoid Cells (ILCs). This clade is defined by a lack of lineage markers (lin-) and 

absence of antigen receptor expression; nonetheless, NK cells develop cytotoxic effector 

function while the other phylogenetic branches of this group: ILC1, ILC2 and ILC3, do not, and 

are specialized cytokine producing cells (Artis & Spits, 2015). No exclusively definitive marker of 

NK cell identity has been discovered; they share an amalgamation of markers overlapping with 

other immune cell subsets of the innate and adaptive arms. Nonetheless, they can be divided 

into two general populations: a CD16+ CD56dim cytotoxic subset, and a CD16- CD56bright 
 

cytokine secreting subset (Poli et al., 2009). These two subsets represent the prevalent 

functions of NK cells: to rapidly engage and kill target cells (Granzyme B, Perforin.; FasLigand, 

Trail; Antibody Dependent Cell-Mediated Cytotoxicity), and to secrete various cytokines 

including IFN-γ, GM-CSF, TNF and other growth factors. NK cells are uniquely tailored to 

surveille cells that are under the insidious influence of viral infection or malignant 

transformation (Mancini & Vidal, 2020; M. G. Morvan & L. L. Lanier, 2016). To this end they 

express a variety of activating and inhibitory receptors; the prevailing net signal will dictate the 

NK cell’s response upon recognition of a possible target cell. In contrast to CD8+ T cell 

dependence upon target cell MHC Class I expression for their cell-mediated cytotoxicity, NK 

recognition of an MHC Class I molecule through Killer immunoglobulin receptor (KIR) or CD94- 

NKG2C receptors will inhibit killing; they are not antigen-restricted (Mancini & Vidal, 2020). This 

“missing self” strategy allows innate immunity to thresh out cells that have attempted to 

downregulate MHC Class I expression; a strategy exploited by malignant or virally infected cells. 

NK cells also critically require stimulation of activating receptors to engage their effector 

functions. These receptors (and their ligands) include: DNAM1 (CD155), NKG2D/C (MICA,MICB, 
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RAET1E), NKp46 and FCγRIIIA (IgG/ADCC) (M. G. Morvan & L. L. Lanier, 2016). If an NK cell is 

triggered through receptor ligand binding, a formidable armament can be brought to bear 

against the offending cell including perforin and granzymes (perforin creates pores in the 

membrane through which the serine protease granzymes enter), FAS ligand and TRAIL. (Maelig 

G. Morvan & Lewis L. Lanier, 2016) 
 

Mechanistically, upon conjugation, NK cells form an immunological synapse with the 

target cell. NK integrins, namely lymphocyte functional antigen-1 (LFA-1) stabilize this physical 

association. Recognition of activating ligands displayed on the target cell induces receptor 

signaling in the NK cell that results in a high affinity conformation change in LFA-1 (Osman, 

Burshtyn, & Kane, 2007). LFA-1 binds to the intercellular adhesion molecule 1 (ICAM-1) 

displayed on target cells. LFA-1:ICAM-1 ligation initiates an NK signaling cascade that promotes 

synapse maturation and increased recruitment of LFA-1, talin-1 and F-actin to the conjugation 

region, also known as the cSMAC (central supra-molecular activating cluster) (Culley et al., 

2009; Vyas et al., 2001). The immunological synapse is tightly regulated, and, illustrating the 

specific sensitivity to NK ligands, in vitro co-culture of NK cells with both autologous and 

susceptible target cell lines revealed that instances where a coincident triple conjugation 

occurred (one NK conjugated to both an autologous and a susceptible cell) a cytolytic synapse 

was strongly favored towards the susceptible cell, while the autologous cell was largely left 

alone (Vyas et al., 2001). Successful initiation of a cytolytic immune synapse results in 

localization of cytotoxic vesicles containing perforin and Granzyme B that are maintained in a 

neutralized state by electrostatic interactions with the heparin sulfate proteoglycan Serglycin 

(S. M. Raja, Metkar, S. S., Honing, S., Wang, B., Russin, W.A., Pipalia, N.H., Menaa, C., Beling, M., 
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Cao, X., Dressel, R., Froelich, C.J., 2005; S. M. Raja et al., 2002). Serglycin has been implicated in 

other non-immune cells as well, with documented tumorigenic roles pertaining to inflammation 

and EMT (Bouris et al., 2018; Manou, Karamanos, & Theocharis, 2020). The cytotoxic vesicles 

arrive at the immune synapse and are thought to exit the NK cell through permissible regions of 

f-actin meshwork and are exchanged into the target cells (Vyas et al., 2001). 

Thus, ICAM-1 expression is a critical surface molecule mediating NK cytotoxicity. Its 

regulation can dictate the extent to which NK cells can effectively conduct immunosurveillance. 

In acute myeloid leukemia (AML), GSK3β activation in NK cells can render them less potent. Ex 

vivo treatment of human donor NK cells with a GSK3β inhibitor rescued cytotoxic activity in an 

LFA-1:ICAM-1 dependent manner. GSK3β inhibition not only upregulated LFA-1 expression on 

NK cells, but also lead to increased ICAM-1 expression on target cells in response to increased 

TNFα secretion by the NK cells. In this model, perforin and granzyme B levels only changed 

modestly, underscoring the significance of ICAM-1 expression in facilitating NK killing 

(Parameswaran et al., 2016). ICAM-1 is also upregulated in response to radiation in numerous 

cancer cell lines, facilitating NK killing relative to unirradiated controls. Of note, NK cells also 

secreted significantly higher levels of IFN-γ when co-cultured with irradiated HL60 and T47D 

compared with unirradiated co-culture. (Jeong et al., 2018) 

Natural Killer cells are major contributors to “natural cytotoxicity”, an appreciated 

predictor of antitumor immunity. A large cohort study conducted over 11 years found that 

healthy donors whose peripheral blood lymphocytes measured higher, baseline cytotoxic 

activity had lower cancer incidence over time (K. Imai, Matsuyama, Miyake, Suga, & Nakachi, 

2000). Older studies conducted on patients with familial melanoma and familial breast cancer 
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indicated that these patients were more likely to have lower peripheral blood cytotoxic activity 

against cultured target cells, implicating cytotoxic activity in cancer incidence (Hersey, Edwards, 

Honeyman, & McCarthy, 1979; Strayer, Carter, & Brodsky, 1986). Further evidence in mouse 

models suggest that NK cells likely influence the dynamics of primary tumor establishment. Rag- 

/- (lacking T and B cell lineage) deficient mice were additionally depleted of NK cells via 

knockout of Il2-receptor gamma. Rag-/- mice lacking NKs exhibited increased occurrence of 

methylcholanthrene initiated sarcomas: an effect attributed to lack of NK-derived IFN-γ 

stimulation of M1 macrophages, demonstrating a role for innate immunity during primary 
 

tumor development (O'Sullivan et al., 2012). Ablation of NK activating receptors DNAM1-/- or 

NKp46-/- causes development of tumors enriched for the respective ligands in sarcoma models 

(Elboim et al., 2010; Iguchi-Manaka et al., 2008). Further, voluntary exercise has been shown to 

increase NK infiltration and reduce tumor burden in mice through β-adrenergic activation of IL- 
 

6 responsive NK cells (Pedersen et al., 2016). 
 

NK-specific alterations in mouse tumor models have been especially informative in 

linking NK cells with metastasis. Deletion of Mcl2 in murine NK cell lineages removes NK cells 

from the circulation, resulting in dramatically enhanced metastases when challenged with low 

levels of B16-F10 melanoma cells (Sathe et al., 2014). In a colorectal carcinoma model, adoptive 

transfer of CD27lowKLRG1+ NK cells rescued T-bet deficient mice from lung metastasis (Malaisé 

et al., 2014). NKs engineered to express a constitutively active TGFBR1 (inhibiting NK function in 

part by downregulation of receptors and loss of cytotoxicity) exhibited reduced degranulation 

in the presence of target cells, while NK-specific ablation of TGFBR2 led to decreased lung 
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metastasis after injection of B16-F10 or RM-1 cancer cells (Viel et al., 2016). NK-mediated 

intravenous clearance of circulating mammary tumor cells was demonstrated in D2A1 

intravenously injected BALB/C mice which had been treated with anti-asialo-GM-1 antibody, 

these NK ablated mice exhibited 5.5x increased lung-localized D2A1 cells. Intriguingly, this 

model also showed that mice with a concurrent 4T1 subcutaneously implanted mammary 

tumor (which substantially increases systemic neutrophil numbers) mimicked the increased 

metastatic parameter seen in NK-depleted mice, suggesting that tumor-influenced neutrophil 

dynamics modulated NK activity (Spiegel et al., 2016). Similarly, utilizing NK1.1 antibody in a 

C56BL/6 mouse model lead to a 7x increase in lung-localized B16-F10 intravenously injected 

melanoma cells (Spiegel et al., 2016). The literature supports the ability of Natural Killer cells to 

inhibit metastasis, and influence primary tumor development through cytolytic effector 

functions, but also through interaction or synergy with other immune cells. 

EMT has been investigated as a possible mechanism conferring resistance to immune 

effector-mediated cytotoxicity. Due to the gradient, non-binary nature of EMT, as well as the 

multiple mechanisms of immune effector cell killing, numerous avenues of EMT-derived 

resistance and sensitivity have been reported (Lopez-Soto et al., 2013; Terry, Buart, et al., 

2017). A NSCLC primary cell line model found that that subpopulations of cells that underwent 

EMT in response to hypoxia were more resistant to both cytotoxic T lymphocyte (CTL)- and 

NK92-mediated killing relative to cells that remained epithelial under hypoxia. Although 

conjugation remained similar between the epi./mes. subsets, the mesenchymal cells exhibited 

marks of reduced immunological synapse function. Sensitivity was rescued by siRNA’s targeting 

EMT transcription factors Zeb1, Zeb2, Snai1 and Snai2, or pharmacologic inhibition of 
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mesenchymal cell TGF-β production (Terry, Buart, et al., 2017). Mcf7 breast carcinoma cells 

induced to an EMT state via TNF-α exposure (Mcf7-2101) or ectopic Snail (Mcf7-SNAI1) cells 

exhibited increased resistance to CTL lysis. This resistance was linked with EMT-induced 

autophagy, as knockdown of beclin1 restored CTL lysis. (Akalay et al., 2013). Supporting a role 

for autophagy in NK sensitivity, NSCLC models, independent of EMT, demonstrated that 

inhibiting autophagy using RocA (inhibiting ULK1 expression among other things) caused a 

synergistic effect to promote NK killing in an in vivo mouse tumor model. Autophagy inhibition 

led to increased Granzyme B concentration in target cells (Yao et al., 2018). EMT’d derivatives 

of MCF7, as well as MDA-MB-231 cells exhibited significantly upregulated immunosuppressive 

programmed death-ligand 1 (PD-L1) expression, attributed to the EMT transcription factor 

Zeb1. Increased resistance to CTL lysis was attributed to PD-L1 expression, an effect that was 

independent of TGF-β expression in this model (Noman et al., 2017). As described above, NK- 

target conjugation and synaptogenesis requires concerted and sequential cytoskeletal 

arrangement and interaction. It is likely that the resultant altered cytoskeletal arrangement 

after EMT would augment NK conjugation and synapse formation to greater or lesser degrees 

(Terry, Savagner, et al., 2017). The ability of resistant breast cancer cell lines to effectively 

remodel actin at specific focal points enabled resistance to NK-mediated cytotoxicity in a CDC42 

or N-WASP dependent manner (Al Absi et al., 2018) 

Based upon these observations, it seemed plausible that Grainyhead-like 2 could play a 

role in maintaining proper sensitivity to anti-cancer immunity by inhibiting EMT. The central 

hypothesis of this chapter is as follows; through promotion of an epithelial default state, 

Grainyhead-like 2 will promote sensitivity to Natural Killer cell cytotoxicity. We employed 
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various cell culture models to test this hypothesis. We chose multiple cell lines that could be 

induced to exhibit either a mesenchymal or epithelial state through various means, including 

knockout or overexpression of GRHL2 (See Cell Lines Diagram in Material and Methods). The 

stable ectopic expression of GRHL2 in Ras-transformed human breast epithelial cells 

(Mcf10aneoT) that had been induced to undergo stable EMT after transient addition of TGF-β, 

the mesenchymal human fibrosarcoma cells (HT1080), and human mammary epithelial cells 

(HMLE) that can be selected for a CD44hi/CD24lo mesenchymal subpopulation (MSP). We also 

utilized cell lines induced to undergo an MET by alternative means; expression of adenoviral 

protein E1a, which inhibits p300 and induces MET (Frisch, 1994, 2001), and activation of the 

microRNA miR200C, which has also been noted to induce MET and repress immunosuppression 

(Howe, Cochrane, & Richer; Rogers et al., 2018). We explore sensitization of these cell lines to 

NK92mi cytotoxic attack, identify candidate molecules dictating sensitivity/resistance, and 

investigate GRHL2’s epigenetic influence on NK sensitivity. This research opens up exciting 

prospects implicating GRHL2 as an important mediator of the epithelial immune setpoint. 

Upcoming data in Chapter II will explore the breadth of GRHL2’s control of interferon signaling. 

These experiments could help to elucidate fundamental principles pertinent to the epithelial 

versus mesenchymal state as it impacts innate immunity and interferon signaling in anti-viral 

and anti-tumor immunity. To conclude, our data supports the hypothesis that Grainyhead-like 

2 safeguards the subordinate relationship of epithelial cells to anti-tumor immunity: a 

relationship that is frequently manipulated and deranged during tumor progression. 
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Diagram 2: The Significance of GRHL2 for Tumor Biology. Idea for figure adapted from 

(Sulaiman, Ab Mutalib, & Jamal, 2016), words and drawing inserted by I. MacFawn. 

 
 
 

Chapter I:  Results 
 

I.a. GRHL2 sensitizes cells to NK92 cytotoxicity 
 

In order to test the effect of the epithelial state on sensitivity to NK attack, we reverted 

mesenchymal cell lines to an epithelial state through induction of GRHL2, miR200C, or E1a 

protein. We retrovirally expressed GRHL2 in a CD44hiCD24lo -sorted mesenchymal 

subpopulation (MSP) of human mammary epithelial (HMLE) cells, as well as Mcf10aneoT cells 

that had undergone EMT in response to TGF-β, and HT1080 fibrosarcoma cells (Cieply et al., 
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2012; Farris et al., 2016; Pifer et al., 2016). Additionally, we expressed an inducible miR200C 

microRNA in BT549 breast cancer cells (Howe et al.; Rogers et al., 2018), and adenovirus E1a 

protein in HT1080 cells (Frisch, 1994, 2001; Pifer et al., 2016) to induce MET. The isogenic 

epithelial and mesenchymal variants of each cell line served as target cells, while the 

immortalized human NK92-MI cells were used as the immune effector cell. Using NK cells as our 

immune effector cell was appropriate because of their documented, efficient anti-metastatic 

function, and, in contrast to CD8+ T-cells, specifically target cells that lack MHC Class I surface 

expression. Additionally, NK-92 MI cells, in contrast to endogenous NKs, are no longer inhibited 

by MHC Class I expression due to deletion of Killer cell immunoglobulin receptor (KIR), and have 

an IL-2 transgene (Klingemann, Boissel, & Toneguzzo, 2016). Because of these subtleties, the 

NK92-MI cell line allow us to use one broadly applicable effector population to test sensitivity 

to cytotoxic killing across a variety of non-syngeneic target cells. 

Our preferred method of assessing viability during NK assays was through stable ectopic 

expression of a “Nano-luciferase” construct in target cells, which allows for quantification of 

cell death as a luminescence signal (Rossignol, Bonnaudet, Clemenceau, Vie, & Bretaudeau, 

2017). Some assays were also conducted using a dual staining method, or using PrestoBlue 

viability reagent. We observed markedly increased sensitivity to NK attack in our epithelial 

derivatives compared to mesenchymal cells when adherent cells were co-cultured with NK cells 

over a time course ranging from 4-24hrs (Fig 1.a) . Normalized luminescence was used as a 

measure of Nano-luc released into supernatant resulting from membrane degradation in dying 

target cells. NK assays conducted in suspension, with non-adherent target cells, perhaps better 

mimicking cellular interactions during metastatic dissemination, also yielded similar results (Fig 
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1.b). To expand upon this finding, we also tested HT1080 fibrosarcoma and BT549 breast cancer 

cells induced to undergo MET by alternative pathways and found that they, too, exhibited 

increased sensitivity to NK attack when we expressed adenoviral E1a (inhibits HAT p300) and 

miR200C (MET inducer), respectively (Frisch, 2001; Howe et al.). These data support our 

hypothesis that sensitivity to Natural Killer cells is a feature of the epithelial state, and is 

consequentially altered by EMT. 
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Fig 1. GRHL2 sensitizes cells to NK92 cytotoxicity. A.) Mcf10aneoT+GRHL2/sgGRHL2, 

Mcf10aneoT+TGF-β+GRHL2/mxs (“NTM”), HT1080+GRHL2/mxs, and HMLE/HMLE-MSP cells 

were plated at equal density in at least biological duplicate. When cells were ~70% confluent, 

NK92mi cells were added at 2:1-5:1 ratios and incubated until significant death was observed. 

B.) Target cells were suspended and mixed with NK92mi cells and resuspended periodically 

throughout the Suspension NK assay. C.) Additional methods of MET were utilized: i.) 

doxycycline inducible miR200C induced MET, dox was withdrawn prior to NK assay, ii.) a stable 

E1a adenoviral construct induces MET in HT1080, and iii.) an EMT’d derivative of Mcf7. 

%Viability was measured as [sample (X) lum. Signal] / [avg NO NK replicates lum. signal]. P- 

values calculated using Student’s Two-tailed T test.B.) Suspension NK assays involved 

trypsinizing, counting and suspending target cells at equal densities in microfuge tubes. NK92mi 

cells were added at 3:1 ratio. At timepoints, an aliquot was taken from the microfuge tube, 

mixed with Nano-glo complete reagent and luminescence value was read on platereader. These 

samples were blanked against a NO NK anoikis value, then normalized to a lysed NO NK sample 
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to calculate % Death. Assay Details: A1: Duplicate, 12/24hr time points. A2: Duplicate A3: 

Duplicate, 24hr timepoint. A4: Quadruplicate. B1: Triplicate. B2: Duplicate. C1: Quadruplicate. 

C3: Duplicate. 

I.b. The effect of Inhibitory/Activating NK Ligand 

Expression and Fadd knockdown on NK Killing 

We examined multiple hypotheses that could 

account for the increased sensitivity of epithelial cells to 

NK attack. We checked a previously generated RNAseq 

dataset comparing HMLE derivaties (Farris et al., 2016) for 

classical activating or inhibiting NK cell ligands, as well as 

adhesion molecules. We did not find any dramatic 

differential expression of NK ligands or receptors between 

mesenchymal and epithelial cells, though some were 

altered over 2-fold (Table 1). NK cells kill target cells via 

two direct mechanisms: delivery of perforin/granzyme B 

through an immune synapse, and/or cell surface 

expression of death ligands Fas and TRAIL. To distinguish 

between the method of killing in our system, we used an 

siRNA against Fadd; a critical adaptor protein that relays 

the death receptor ligand-binding signal to pro-caspases 8 

and 10, thereby initiating apoptosis. We knocked down Fadd in Mcf7, and Mcf10a cells, verified 

knockdown via western blot (Fig 2a), then conducted NK assays on these cell lines. Knockdown 
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of Fadd did not rescue cells from NK-mediated death (Fig 2b), suggesting that in our system, the 

NK cells were killing through a different mechanism, likely perforin/granzyme B delivery 

through the immune synapse. This insight allowed us to target a narrower range of possible 

molecules and mechanisms involved in epithelial sensitization to NK attack in our system. 

 

 
Figure 2. GRHL2’s promotion of NK sensitivity is independent of death receptor signaling. Fadd 

was knocked out by siRNA in Mcf10a and Mcf7 cells. A.) Western blot indicates siRNA mediated 

knockdown of Fadd. B.-D.) siFadd Mcf7 and Mcf10a cell lines did not exhibit increased resistance 

to NK92mi killing in NK assays. NK assays conducted in duplicate. 
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I.c. The effect of epithelial versus mesenchymal ECM on NK92 killing. 
 

One major difference between epithelial and EMT’d cells is the amount and type of 

factors they secrete to develop extracellular matrix (ECM). Cells have a close relationship with 

underlying matrix and attach to these deposited factors through integrins, influencing 

intracellular signaling. Matrix composition or stiffness can change cytoskeletal dynamics and 

even induce EMT (Wei et al., 2015). We tested the effects of the specific matrix the cells were 

plated on by conducting matrix switch Granzyme B and NK assays. We separately plated 

epithelial and mesenchymal derivatives of a cell line and allowed the cells to grow to 

confluence. Using ammonium hydroxide (NH3O3), we lysed the cells but retained their secreted 

matrix. We then plated sub-confluent numbers of epithelial cells on the mesenchymal matrix 

and vice versa. Interestingly, we found that in some cases, the epithelial matrix sensitized the 

mesenchymal cell line to Natural killer cell cytotoxicity (Fig 3 a,b,c). This could imply that matrix 

components may regulate cell morphology and architecture, thereby effecting conjugation of 

immune effector cells to target cells. Despite numerous experiments and repeats, this effect 

was too often variable, despite reaching statistical significance in multiple experiments. This 

phenomenon warrants further investigation, but we decided to prioritize other, more tractable 

explanations for NK sensitization. 
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Figure 3. Matrix effects on NK sensitivity. A.) Mcf10aneoT+TGF-b+GRHL2/mxs were 

plated at equal density in duplicate or B.) triplicate. Cells were grown to confluence, lysed in 
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ammonium hydroxide, then wells were stringently washed and the opposite state cell 

(mes./epi.) was plated at equal densities onto the opposing matrix type. After attachment, 

NK92mi cells or C.) HT1080 (+GRHL2) or (+control vec) were plated in duplicate, as above. NK 

cells were added and viability was calculated after significant death was apparent. 

1.c. GRHL2 suppresses expression of the proteoglycan Serglycin 
 

We also explored the role of the chondroitin sulfate proteoglycan Serglycin (SRGN). 
 

Serglycin has been implicated in tumor malignancy and the establishment of a pro- 

inflammatory microenvironment (Bouris et al., 2018; Korpetinou et al., 2014). Interestingly, 

SRGN also contains a protease resistant core structure which is utilized by immune cells, 

notably NKs, to neutralize proteolytic enzymes within secretory vesicles containing perforin and 

Granzyme B (S. M. Raja, Metkar, S. S., Honing, S., Wang, B., Russin, W.A., Pipalia, N.H., Menaa, 

C., Beling, M., Cao, X., Dressel, R., Froelich, C.J., 2005). In Mcf10aneoT and HT1080, mRNA 

measured by qRT-PCR indicated SRGN is strongly repressed by GRHL2 (Fig. 4 a,b). RNAseq 

datasets agreed with these findings; Serglycin is upregulated 205-fold upon GRHL2 knockout in 

a Mcf10aneoT (Fig. 4, c). We thought that Serglycin expression may be a means for EMT’d cells 

to neutralize the cytotoxic molecules of immune effector cells (perforin, granzyme B). We 

packaged a secreted serglycin construct into pMXS-ires-Blast vector and retrovirally 

overexpressed it in epithelial Mcf10aneoT+GRHL2, Mcf10a and HT1080+GRHL2 cells. We also 

harvested conditioned media from mesenchymal cells and conducted NK assays in the presence 

of secreted media, after verifying the presence of SRGN by Western Blot. Despite the high 

expression levels of this protective proteoglycan, we did not see significant protective effect of 

SRGN overexpression or conditioned media as measured by cell viability during NK attack or 
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treatment with recombinant Granzyme B and streptolysin (a pore-forming enzyme that 

functions analogously to perforin). Mcf10aneoT+TGF-b+GRHL2 epithelial cells exhibited a non- 

statistically significant effect upon SRGN overexpression, while HT1080+GRHL2 cells showed a 

large, but not statistically significant protective effect of +SRGN C.M. when measured for 

sensitivity to Granzyme B (Fig 4. c). It is possible that the disproportionate expression of 

Serglycin between epithelial and mesenchymal cells in our models contributes to other pro- 

tumorigenic processes, but it appears to have a modest or negligible impact on direct immune 

cell-mediated killing in our models. 
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Figure 4. GRHL2 represses Serglycin expression. A.) qPCR analysis of Serglycin mRNA levels in 

Mcf10aneoT+TGF-β +GRHL2, Mcf10aneoT+TGF-β+sgGRHL2 and HT1080, HT1080+GRHL2 

normalized to GAPDH. B.) RNAseq mRNA expression levels of Serglycin in Mcf10aneoT, 

Mcf10aneoT+sgGRHL2. C.) NK killing assays were conducted on Mcf10aneoT+GRHL2 cells with 

or without stable overexpression of SRGN, assays conducted in duplicate. Similarly, Granzyme B 

sensitivity was measured on HT1080 cells (+/-GRHL2) in the presence or absence of +SRGN 

conditioned media, assays conducted in triplicate. Statistical analysis was conducted using a 

Student’s Two Tailed T test. 

 
 
 

I.d. GRHL2 suppresses autophagy in HT1080 cells 
 

Reports suggest that upregulation of autophagy can modulate target cell sensitivity to 

immune attack (Akalay et al., 2013). Breast cancer cells that upregulate autophagy become 

more sensitive to NK-mediated killing through sequestration of anti-apoptotic proteins in the 

lysosome (Akalay et al., 2013) (Yao et al., 2018) . Conversely, Renal cell carcinoma cells that 

upregulated autophagy upon interaction with NK cells displayed better survival and lower 

intracellular Granzyme B levels (Messai et al., 2014). We hypothesized that differential 

autophagy could be a mechanism for resistance to NK attack. We expressed a tandem GFP/RFP- 

LCIII (tfLCIII-GFP) vector in our HT1080/HT1080+GRHL2 cells. Cells were first Glucose-starved in 

HBSS for 2hrs, then incubated in 100nM Bafilomycin for 2hrs. Cells were fixed and autophagic 

flux was calculated by subtracting the LCIII punctae in (-Baf) cells from the average LCIII punctae 

in (+Baf) cells. Because Bafilomycin halts fusion of the autophagosome and lysosome, the 
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difference between +/- Bafilomycin represents autophagic flux. We found that expression of 

GRHL2 significantly reduced autophagic flux in HT1080 cells (Fig 5. a,b). However, successful 

knockdown of Beclin, a key autophagy protein, by siRNA in HT1080 (HTM2) and Mcf10aneoT 

(NTM2) cells, caused statistically non-significant changes to NK-sensitivity (Fig 5. c,d,e,f). Our 

data suggests that EMT modulation can have effects on autophagy rates, but in our models, this 

did not seem to contribute significantly to NK sensitivity. 
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Figure 5. GRHL2 regulates autophagy. A.) After expression of a fluorescent LCIII plasmid (tcfLCIII- 

GFP), HT1080+vec (“HTM2”) or HT1080+GRHL2 (“HTG2”) cells or Mcf10aneoT+TGF-β+vec 

(“NTM”) or Mcf10aneoT+TGF-β+GRHL2 (“NTG2”) were glucose starved in HBSS for 2hrs, then 

incubated in 100nM Bafilomycin for 2hrs. Cells were fixed, then number of punctae in (-) Bafilo 

was subtracted from punctae in (+) bafilo. to calculate autophagic flux on a fluorescence 

microscope. B.) Quantification of images. C.) To inhibit autophagy, we transfected Beclin siRNA 

to knockdown protein levels in NTM and HTM cells. D-F.) NK assays were conducted on Beclin 

knockdown cells as described previously. Cells were plated in a minimum of biological duplicate. 

Statistical analysis was conducted using Student’s Two Tailed T test. Assay details: 5D: 

Triplicate. 5E: duplicate. 5F: Triplicate. 

 
 
 

I.e GRHL2 promotes NK92/target cell conjugation through upregulation of ICAM-1 
 

Differences in NK assay dynamics, visually apparent under low power magnification, 

suggested that immune cell synaptogenesis could be augmented by epithelial state. The 

immune synapse is an essential part of direct NK cell-mediated cytotoxicity. NK cells approach, 

and physically conjugate with target cells. If the balance of activating versus inhibitory ligands 

is permissive, they initiate a complex polarization and rearrangement of the cell membrane, 

termed the “immune synapse”, towards the target cell, through which they release the 

contents of granular cytotoxic vesicles. These granules include Perforin, which creates small 

pores in the target cell membrane allowing other granules, like Granzyme A and B: serine 

proteases involved in initiator and executioner caspase activation and mitochondrial ROS 
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deregulation and DNA damage induction, respectively, to pass into the target cell (Lieberman, 

2010) (Afonina, Cullen, & Martin, 2010). Upon incubation with NK cells, we noticed that 

epithelial cells seemed to attract more NK cells, causing them to cluster and stick to the target 

cells. These NK cells remained bound to epithelial cells through multiple washings of the cells, 

suggesting strong and stable physical connection. 

To quantify the conjugation of NK92 to target cells we separately stained target cells 

with CMFDA and NK92mi cells with CMPTX allowing fluorescent detection of different cell 

populations. We washed the populations of cells numerous times, then conducted NK assays 

using the stained cells. At timepoints, we gently washed the wells with sPBS to removed 

unconjugated NK cells, then fixed the cells with paraformaldehyde and imaged on an 

epifluorescence microscope. The ratio of NK to target cell (NK conjugation) was elevated in cells 

expressing GRHL2 compared with the mesenchymal derivative in both Mcf10aneoT+TGF- 

b+GRHL2 versus Mcf10aneoT+TGF-b and HMLE versus HMLE-MSP (Fig 6. a-c) 

The conjugation efficiency prompted us to re-assess the expression of adhesion 

molecules on target cells. Intercellular adhesion molecule 1 (ICAM-1) mRNA was upregulated by 

GRHL2 in HMLE, HT1080 and Mcf10aneoT (Fig 6. d). ICAM-1 is an interferon stimulated gene 

(ISG), and is strongly upregulated by the NK- and T cell-secreted cytokine interferon gamma 

(IFN-γ) (M. L. Dustin, Rothlein, Bhan, Dinarello, & Springer, 2011) (M. G. Morvan & L. L. Lanier, 

2016). ICAM-1 expression is an important mediator of the antiviral and anti-tumor immune 

response; its cell surface expression facilitates adhesion and conjugation of immune effector 

cells via formation of the immunological synapse through interaction with LFA-1 on immune 

cells (Michael L. Dustin, 2014). Western blot analysis supported the preferential expression of 
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ICAM-1 in cells expressing GRHL2 (Fig. 6 e,f). Further, we found that cells lacking GRHL2 

exhibited severely limited ICAM-1 protein expression in response to IFN-γ stimulation in vitro 

(Fig. 6 e,f). To test the dependence of NK sensitivity on ICAM-1 expression, we used an ICAM1 

monoclonal antibody to block ICAM-1 on the surface of target cells. HMLE and HT1080+GRHL2 

epithelial cells were pre-incubated with the α-ICAM-1 antibody, washed thoroughly to remove 

excess antibody, then subjected to NK92mi cells. Pre-blocking epithelial cells with ICAM-1 

antibody dramatically reduced NK92mi-mediated killing (Fig 6. g). We propose that ICAM-1 is 

maintained in epithelial cells by GRHL2 under basal conditions, and that GRHL2 could be an 

important regulator of the interferon response because treatment with IFN-γ for up to 16hrs 

had a comparatively limited effect on ICAM-1 mRNA and protein in the absence of GRHL2. 
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Figure 6. GRHL2 promotes NK-target conjugation via ICAM1 upregulation. A.) Mcf10aneoT+TGF- 

β+vec (“NTM”) or Mcf10aneoT+TGF-β+GRHL2 (“NTG2”) and HMLE or HMLE-MSP cells were 

evaluated for NK92mi conjugation occurrence. Target and NK cells were separately, transiently 

stained with either CMFDA or CMPTX. After washing, NK assays were conducted. At timepoints, 

wells were gently washed using HBSS to remove unattached NK cells and floating target cells. 

Remaining cells were visualized and quantified by fluorescence microscopy to produce NK:target 

cell ratio for all wells. B.) Quantification of images. NK92mi cells were stained red in the HMLE 

experiment, while NK92mi cells were stained red in the Mcf10aneot+TGF-β experiment. 
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Quantification: NTM= fields:4, target cells: 307; NTG2=fields:5, target cells:446; HMLE- 

MSP=fields:4, target cells: 1,874; HMLE=fields:4, target cells:2,108. Quantification of 

conjugation was calculated using a Student’s Two Tailed T test. C. Representative images from 

NK conjugation assays. D.) qRT-PCR quantification of ICAM-1 mRNA expression in NTM vs. 

NTG2, HT1080+mxs vs. HT1080+GRHL2, and HMLE-MSP vs. HMLE-MSP+GRHL2. E,F..) ICAM1 
 

mRNA and protein before and after stimulation with IFN-γ was measured in HT1080, 

HT1080+GRHL2 and Mcf10aneoT+TGF-β, Mcf10aneoT+TGF-β+GRHL2 by qPCR normalized to 

GAPDH. For western blots, cell lysates were made before and after treatment with recombinant 

IFN-γ and western blotted, probed using indicated antibody, and quantified after normalization 

to GAPDH. D.) HT1080+GRHL2 and HMLE cells were pre-coated with ICAM1 blocking antibody, 

washed, then subjected to NK assays. Statistical significance calculated using Student’s Two 

Tailed T test. Assay Details: G1: Duplicate. G2: Duplicate 

1.f. GRHL2 regulates NK sensitivity through epigenetic interactions. 
 

GRHL2 exerts influence over its target genes through interactions with epigenetic 

modifiers (Pifer et al., 2016). The lab had previously demonstrated that GRHL2 inhibits the 

histone acetyltransferase p300 as indicated by targeted loss of Histone 3 Lysine 27 acetylation 

(H3K27ac) at GRHL2-repressed genes, but not global H3K27ac loss (Pifer et al., 2016). Results 

from a Yeast 2 Hybrid screen previously conducted in the lab revealed that GRHL2 also likely 

interacted with the Histone 3 Lysine 4 mono-methylating enzymes KMT2C and KMT2D, whose 

interactions were previously thought to be most strongly implicated in nuclear receptor 

function (Gala et al., 2018). Abundance of H3K4me1 is a hallmark of active enhancer regions. 

Development of a GRHL2 non-interacting mutant termed “EDAA” (indicating loss of 



36  

interaction upon mutation of AA’s 32 and 33 from glutamine and aspartic acid to alanine and 

alanine) had previously been generated and validated in the lab (MacFawn et al., 2019). We 

also used the previously generated and validated p300-non inhibiting GRHL2 mutant termed 

Δ425-437 (Pifer et al., 2016). We separately expressed both mutants in the mesenchymal cell 

lines HT1080, HMLE-MSP and Mcf10aneoT+TGF-β. After validating mRNA expression and 

equivalent protein expression by western blot, we characterized the EDAA and Δ425-437 cell 

lines in 5 ways. 

[1.] Morphological analysis: both EDAA and Δ425-437 GRHL2 mutants showed 

reduced adoption of epithelial cell morphology compared with GRHL2 WT overexpression, 

which typically show a visible MET phenotype (Fig. 7, a). [2.] qRT-PCR of classic GRHL2- 

regulated epithelial target genes indicated the inability of either EDAA or Δ425-437 to induce 

mRNA expression above control in Mcf10aneoT+TGF-β cells (RAB25, CDH1, ESRP1, OVOL2, 

TP63, CLDN4). (Fig. 7, b) [3.] Both mutants showed altered sensitivity to anoikis compared with 

GRHL2 WT (Fig. 7,c) The EDAA mutant seemed to show an intermediate phenotype between 

GRHL2 WT and GRHL2 (-) [4.] Analysis of genes with overlapping GRHL2/KMT2C binding sites 

(according to UCSC Genome Browser) by CHIP-qPCR using a CHIP validated KMT2C antibody 

revealed that EDAA GRHL2 cells were not able to recruit KMT2C to these select promoters 

without a GRHL2 interaction in Mcf10aneoT+TGF-β cells. This shows that GRHL2 is essential for 

KMT2C recruitment at particular genes that have binding sites for both GRHL2 and KMT2C 

(TP63, CLDN4, RAB25, CDH1, OVOL2). (Fig 7, d) [5.] Functional assays to determine 

characteristics of the EDAA and Δ425-437 GRHL2 mutants revealed that both mutants were 

resistant to anoikis (Mcf10aneoT+TGF-b) and NK attack (Mcf10aneoT+TGF-b, HMLE-MSP) in a 
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manner similar to empty vector control cells, in contrast to strong sensitization observed with 

GRHL2 WT overexpression. (Fig. 7 e,f). 

We also explored the effects of KMT2C/D knockout using an Mcf10a series that had 

KMT2C/D homozygous or heterozygous knockouts, previously generated by others in the lab. 

Messenger RNA expression levels of classical epithelial and mesenchymal genes were mostly 

unchanged by homozygous knockout of KMT2C, however, when this was combined with a 

heterozygous knockout of KMT2D, we noticed an inversion of gene expression signature, with 

epithelial genes no longer expressed (CDH1, GRHL2, OVOL, ESRP, RAB25 ICAM-1), and 

mesenchymal genes concurrently turned on (ZEB1, Collagen 8a, SRGN, DCN, MMP2) (Fig. 7, 

g,h). KMT2C-/-/KMT2D+/- cells also exhibited a profoundly altered morphology, with an 

elongated, spindly appearance, further evoking an EMT phenotype (Fig. 7, i). This suggests that 

the histone methyltransferases KMT2C and KMT2D are utilized by lineage defining machinery, 

perhaps most notably GRHL2, whose downregulation upon KMT2C/D knockout suggests a self- 
 

reinforcing positive feedback loop. We were curious to see if this EMT induced by KMT2C-/- 
 

/KMT2D+/- would also confer resistance to NK attack. Curiously, we found that the KMT2C-/- 
 

/KMT2D+/+ cells were sensitized, while the KMT2C-/-/KMT2D+/- cells were comparatively much 

more resistant, but at a level similar to control (Fig. 7, j). This experiment warrants further 

investigation. 
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Figure 7. KMT2C/D interaction is important for GRHL2-mediated NK sensitization. A.) 

Morphological brightfield images of Mcf10aneoT+TGF-β (+GRHL2 WT/ EDAA / Δ425) with 

ectopically expressed GRHL2 mutants plated at subconfluent densities. B.) qPCR measure of 

mRNA transcripts of various GRHL2-induced genes in cells containing GRHL2 WT versus 

mutants. C.) Anoikis assay conducted on Mcf10aneoT+TGF-β stably expressing GRHL2 WT or 

mutants were suspended in Mcf10a medium + 10% methylcellulose, then assayed using Caspase 

3/7 glo signal at timepoints. D.) CHIP-qPCR measure of KMT2C occupancy of select promoters 

containing binding sites for both GRHL2 and KMT2C in cells with WT, unexpressed, or EDAA 
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mutants indicates loss of KMT2C recruitment in the absence of GRHL2 or GRHL2 interaction. D.) 

Anoikis assay on Mcf10aneoT+TGF-β+vec (“NTM”) with GRHL2 WT or mutants ectopically 

expressed. Assay conducted with a minimum of 2 technical duplicates per cell line. E,F.) NK 

assay on Mcf10aneoT+TGF-β or HMLE-MSP with ectopically expressed GRHL2 WT or mutants. 

NK assays were conducted in triplicate, statistical analysis was conducted using a Student’s 

Two-tailed T test. G,H.) qPCR mRNA expression in Mcf10aP KMT2C/D Crispr-Cas9 K.O. cells 

reveals that epithelial/mesenchymal gene expression patterns are de-stabilized when KMT2C 

and KMT2D are altered. I.) Brightfield phase-contrast microscopy at 20X magnification. J.) NK 

assay conducted on KMT2C (MLL3) and KMT2D (MLL4) versus WT Mcf10aP cells. Cells were 

plated at 4.5x104 cell per well in duplicate. NK92mi cells were added at a 3:1 ratio and assayed 

for 7hrs. Student’s Two-tailed T test was used for statistical analysis. 

Taken together, this data reveals that GRHL2’s direct interaction with KMT2C/D is 

required for activation of epithelial gene expression and adoption of functional characteristics 

typical of the epithelial state (epithelial morphology, anoikis sensitivity, NK sensitivity). We 

proposed that GRHL2 is an important mediator of immune sensitivity, and that this vulnerability 

is mediated, at least in part, through maintenance of ICAM-1 expression. qPCR and western blot 

analysis indicated that neither EDAA nor Δ425-437 induced ICAM-1 expression to the levels 

that WT GRHL2 does in Mcf10aneoT+TGF-β cells (Fig. 8, a,b). KMT2C-/-/KMT2D+/- mutant cells, 

in the presence of WT GRHL2, also exhibited reduced ICAM-1 mRNA expression (Fig 7. g). 

Further, UCSC Genome Browser KMT2C and GRHL2 tracks suggested overlapping binding in the 
 

ICAM-1 promoter. Similar to other promoters containing GRHL2/KMT2C overlap, KMT2C 
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occupancy on this promoter was reduced in EDAA GRHL2 mutant cells as assayed by CHIP- 

qPCR using a KMT2C CHIP-validated antibody (Fig 8. d,e). 

To conclude, utilization of a GRHL2 KMT2C/D non-interacting mutant previously 

generated in our lab, emphasizes the importance of KMT2C/D in GRHL2’s regulation of gene 

expression. Not only does GRHL2 depend on KMT2C/D to activate epithelial gene expression, 

but KMT2C is dependent upon GRHL2 in order to be recruited to a subset of genes that contain 

GRHL2 and KMT2C binding sites, as demonstrated by loss of KMT2C binding in CHIP-qPCR 

experiments. These results also determine that NK-sensitizing gene expression in some 

epithelial lineages is under positive regulation from GRHL2/KMT2C/D because GRHL2 EDAA 

mutant, which induced an EMT gene expression program, exhibited altered resistance to NK 

attack. 
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Figure 8. GRHL2 and KMT2C interaction is necessary for ICAM1 mRNA and protein expression. 

A.) qPCR expression of ICAM1 mRNA indicates inability of GRHL2 mutants to activate gene 

expression significantly above control when stably expressed in Mcf10aneoT+TGF-β cells. B.) 

Western blot on Mcf10aneoT+TGF-β cells stimulated with IFN-γ demonstrates reduced capacity 

for ectopic GRHL2 mutants to activate ICAM1 protein expression. C.) Quantification normalized 

to GAPDH signal. D.) UCSC Genome Browser tracks indicate overlap of GRHL2 and KMT2C 

predicted binding sites from curated CHIP-seq data near promoter region of ICAM1. E.) qPCR 

product from CHIP-qPCR in Mcf10aneoT+TGF-β using Chip-validated KMT2C antibody 

demonstrates lack of KMT2C localization to ICAM1 genomic region in cells stably expressing 

GRHL2 non-interacting mutant (EDAA). 

I.g. EMT signature anti-correlates with Interferon signature in Lung Adenocarcinoma patient 

samples (TCGA). 

The preliminary data involving ICAM1 and interferon response prompted us to check The 

Cancer Genome Atlas (TCGA) for correlations between epithelial state and interferon response 

in the context of clinical patient samples. We selected Lung adenocarcinoma patients because it 

is known to be an immune-infiltrated cancer type. Patient samples were stratified into quartiles 

based upon their expression of an 18-gene EMT signature (Gibbons & Creighton, 2018). EMT 

score was then correlated with a panel of 47 Interferon-related genes, after their expression 

was normalized to IFN-γ transcript levels within each patient sample. This normalization should 

correct for differences in immune infiltrate and cytokine stimulation. GRHL2 was used as a 

positive control for a low EMT score. Correlation was calculated as deviation from a random 

distribution (0.5:0.5) after normalization. Intriguingly, our analysis showed that low EMT score 



45  

(Q1) correlated with high IFN-pathway gene 

expression (Q4) for the majority of the genes analyzed 

(Table 2). Patients with tumors that have a high EMT 

score (Q1) correlated with lower IFN-pathway gene 

expression. Although correlative, this data supports 

the notion that the epithelial state is better suited to 

amplify interferon response. This could be a result of 

tumor microenvironmental modulation, such as 

chemokine production and promotion of immune cell 

recruitment, and/or could reflect tumor cell intrinsic 

maintenance of interferon response upon stimulation 

by immune cell-secreted cytokines. 

 
 
 

Table 2: EMT anti-correlates with IFN-related genes in 

lung cancer. After quartile grouping according to EMT 

score, IFN-γ-normalized expression of IFN-related 

genes was found to anti-correlate with EMT score. 

Random distribution = (0.5:0.5). 
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1.h. GRHL2 protein expression correlates with time to relapse in Breast cancer 

Analysis of patient data across cancer types reveals a context-dependent role for GRHL2 

in predicting clinical outcomes. “KMplot.com” houses a free, online Kaplan-Meyer 

plotting software that can be used to query mRNA expression across multiple databases 

(TCGA, GEO, etc.),correlating expression with clinical characteristics (Nagy, Lanczky, 

Menyhart, & Gyorffy, 2018). We utilized this database to produce KM plots for GRHL2 

using the “pan-Cancer” setting. Lung SCC (HR: 0.7), stomach adenocarcinoma (HR:0.6) 

and bladder carcinoma (HR: 0.7) exhibit statistically significant better overall survival in 

patients with GRHL2 mRNA above median. Conversely, Kidney (HR:1.9), Breast cancer 

(HR:1.7), and Pancreatic ductal adenocarcinoma (HR: 2.4) correlate high GRHL2 mRNA 

with worse overall survival (Fig.9 a,b). The dichotomous role of GRHL2 clearly requires 

in vivo experiments to better understand the context-dependent nature of its function. 

The Frisch lab had previously devised and initiated a transgenic GRHL2 murine 

recurrent mammary tumor model. The model was developed by Josh Farris MD,PhD, 

Philip Pifer MD, PhD and Steven Frisch PhD. Later stages of the project were maintained 

by Hannah Wilson PhD and the author. Final data analysis was conducted by Steven 

Frisch PhD and the author (unpublished data: Pifer P., Farris J., Wilson H., Frisch S.M.). 

Mice expressing a mammary gland-specific MMTV-GRHL2 transgene were crossed with 

tetO-neuNT;MMTV-tTA (MTB/TAN) mice. Upon administration of doxycycline, mice 

develop neu oncogene-driven mammary tumors. GRHL2(+) and control mice exhibit 

analogous tumor formation. Removal of doxycycline causes efficient regression of 

primary tumors in this model. Mammary glands with MMTV driven GRHL2 expression 
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showed almost a complete lack of recurrent tumors (0-7%), compared with control mice 

(29.4%). Unfortunately, this experiment did not reach statistical significance which likely 

stemmed from two problems; 1.) The p-value if comparing MMTV-GRHL2 (0/13) versus 

control (5/17) recurrence was 0.052. A larger number of mice would be advisable for 

repeating this experiment. 2.) One of the mice in the MMTV-GRHL2 tumor did have a 

recurrence, although the recurrence, unexpectedly, did not express GRHL2, although it 

was anatomically located in the mammary gland. Including this mouse in the recurrence 

data would mean that 1/13 (7%) of MMTV-GRHL2 mice had recurrence compared to 

5/17 (29.4%) in control (Fig 9.d). This is not a statistically significant result. Because the 

experiment did not reach significance in a reliable way, we cannot publish the results 

and the data must be interpreted with caution, however the results show a trend 

towards GRHL2 suppressing recurrence and warrants further investigation of this 

phenomenon. Future studies should use a higher (n) of mice because although the 

number of mice developing a primary tumor was high, the recurrence rates in both 

groups was low, making statistical analysis challenging within the sample sizes. 
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Figure 9. GRHL2 mRNA correlations in patient databases. Using the “pan-cancer” 

RNAseq option, we plotted Overall Survival against GRHL2 mRNA expression for various 

cancer types. A.) GRHL2 mRNA correlates with better OS in Lung Squamous Cell 

Carcinoma (HR=0.7 p=0.012), Stomach adenocarcinoma (HR=0.6, p=0.0037), and 

bladder carcinoma (HR=0.67, p=0.0067). B.) GRHL2 mRNA correlates with worse OS in 

Kidney renal clear cell carcinoma (HR=1.9, p=0.0004), Kidney renal papillary cell 

carcinoma (HR=1.89, p=0.035), and Pancreatic ductal adenocarcinoma (HR=2.4, 

p=0.0026). C.). A mouse MMTV-GRHL2 recurrent tumor model produced a trend towards 
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lower rates of recurrence in mice expressing mammary-gland specific GRHL2, although 

the results did not reach statistical significance ( GRHL2- 7% recurrence rate / control- 

24.9% recurrence rate). The mouse tumor model was initiated by Philip Pifer MD,PhD, 

Josh Farris MD, PhD, and Steven Frisch PhD, latter stages of the project were maintained 

by Hannah Wilson, PhD. 
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Chapter I: Conclusion 
 
 

 
Diagram 3: The significance of GRHL2 in tumor biology. Novel proposed roles of GRHL2 

boxed in purple. 

Our data supports the hypothesis that GRHL2’s epithelial programming includes 

maintenance of pathways promoting sensitivity to NK-mediated cell death. The epithelial, 

rather than mesenchymal state, in Mcf10aneoT, HMLE, HT1080, and BT549 cells exhibited 

enhanced sensitivity to cell-mediated cytotoxicity by human Natural Killer cells. Numerous 

avenues potentially directing sensitivity were explored, but ICAM-1 expression appeared to be 

the most consequential in cells where the epithelial state was maintained by GRHL2 expression. 

ICAM-1 expression was epigenetically regulated by GRHL2’s recruitment of KMT2C to the 

promoter of this gene, likely orchestrating permissive chromatin architecture for transcription. 



52  

We showed that GRHL2 repressed autophagy in HT1080 fibrosarcoma cells, and repressed the 

chondroitin sulfate proteoglycan Serglycin in HT1080 and Mcf10aneoT+TGF-β cells; though not 

significantly altering NK sensitivity in our model, these attributes may be consequential for 

other realms of tumor biology. We explored the role of epithelial versus mesenchymal matrix 

composition and stiffness, and hypothesize that differences may modulate target cell 

tenseness, influencing killing dynamics by NK cells. 

Our data would predict GRHL2 dependent loss of ICAM-1 expression to be an avenue of 

immune evasion during the oncogenic EMT. Evidence from multiple models clearly 

demonstrate that hybrid or partial EMT can contribute to other tumorigenic properties such as 

plasticity, sphere-formation, tumor establishment, drug resistance, etc. (M. K. Jolly et al., 2019; 

Mohit Kumar Jolly et al., 2016; Strauss et al., 2011). It would be interesting to measure the 

levels of GRHL2 expression during these hybrid states, and consequently, ICAM-1 expression. 

Our data agrees with the well-documented central role of ICAM-1 in immune effector cell- 

mediated cytolysis. Future studies should attempt to replicate these findings in other models of 

EMT/MET, especially in the context of circulating or disseminated tumor cells. Therapies aimed 

at preserving ICAM-1 expression could prove useful in the context of immunotherapies in order 

to ensure that checkpoint blockaded immune cells are still able to form immune synapses with 

their target cells. As mentioned above, irradiation has been shown to upregulate ICAM-1 

expression, and a study conducted in acute myeloid leukemia (AML) showed reinvigorated NK 

cells caused paracrine activation of ICAM-1 on target cells (Parameswaran et al., 2016) (Jeong 

et al., 2018). This underscores the notion that ICAM-1 is responsive to, and reliant on, various 

stimuli, in addition to IFN-γ. Conversely, EMT has been associated with upregulation of the 
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immune checkpoint molecule PD-L1 in various contexts including p53-mutant pancreatic 

cancer, cisplatin-resistant lung cancer, and gastric carcinoma (Shen et al., 2019; Song et al., 

2020; Xu et al., 2019). Future experiments should query if GRHL2 expression, through ICAM-1 

promotion, can boost response to PD-L1 checkpoint blockade in these contexts. 

We demonstrated that GRHL2 enforces sensitivity to NK attack through its interactions 

with epigenetic modifiers, which it uses to promote expression of an NK-sensitizing pathway. To 

be clear, GRHL2 is not a frequently mutated gene according to patient databases (TCGA), 

however it’s functional partners KMT2C and KMT2D are two of the most highly mutated genes 

across all cancers: KMT2D=3rd and KMT2C=7th according to the National Cancer Institute 

Genomic Data Commons (GDC) (Fagan & Dingwall, 2019). KMT2C and KMT2D are generally 

regarded as tumor suppressors, as illustrated by the following evidence. TCGA analysis of 958 

breast cancer patients found that KMT2C and KMT2D were altered in 6.99% and 2.40% of cases, 

respectively, and that KMT2C copy number amplification (CNA) significantly associates with 

survival, though mRNA expression did not (L. Liu, Kimball, Liu, Holowatyj, & Yang, 2015). In 

hormone receptor positive breast cancer (HRPBC) KMT2C mutation is a negative prognostic 

indicator: death HR:3.25 (p<0.0001). In this setting, it’s inactivation may contribute to hormone 

therapy resistance, as HRPBC cell lines containing a specific KMT2C mutation could become 

estrogen independent in vitro (Manso et al., 2016). Both KMT2C (19.7%) and KMT2D (26.0%) 

are highly mutated in muscle-invasive bladder cancer (MIBC) according to TCGA data, and their 

vulnerability is replicated in an aggressive carcinogen-induced mouse model (BBN), although 

how these mutations contribute to tumorigenesis is still speculative (Fantini et al., 2018). Some 

mutations in KMT2D caused it to be excluded from the nucleus, perhaps precluding it’s 
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epigenetic function (Fantini et al., 2018). On a related note, homozygous mutation of the 

KMT2C SET domain in a mouse model caused early onset of ureter epithelial tumors, which 

were further exacerbated by hemizygous deletion of p53. These urothelial cells also showed 

marks of elevated DNA damage prompting the idea that KMT2C and KMT2D, along with their 

associated epigenetic complex, may serve as important coactivators of p53-mediated DNA 

repair (J. Lee et al., 2009). In cutaneous squamous cell carcinomas (cSCC), a study comparing 

exomes of 12 metastatic tumors determined KMT2D mutation was significantly enriched in 

metastatic tumors compared with primary tumors, with mutation rates of 62% compared to 

31%, respectively (Yilmaz et al., 2017). Whole-exome sequencing also revealed KMT2C to be 

highly altered in osteosarcoma, where it appears to play a role in migration and invasion 

(Chiappetta et al., 2017). Examples can also be found in non-solid tumors, with Follicular 

lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) showing somatic alteration 

frequencies in KMT2D of 32% and 89%, respectively, underscoring the widespread conserved 

role of these lysine methyltransferases as apparent tumor suppressors (Morin et al., 2011). In 

lung cancer, KMT2D positively regulates the super-enhancer of the circadian rhythm regulator 

per2. Loss of KMT2D in this context causes a reliance on glycolytic metabolism (Alam et al., 

2020). This data comports well with previous data from our lab indicating that GRHL2 (likely 

collaborating with KMT2D ) represses the oncogenic glycolytic switch (Farris et al., 2016). 

Our data provides another line of evidence for understanding the implications of 

KMT2C/D function in epithelial cells during tumorigenesis. Our data suggests that loss of 

function of KMT2C/D could, in effect, mimic GRHL2 loss of function to a degree, because 

GRHL2’s inability to interact with these modifiers renders it largely non-functional as far as 
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epithelial gene expression is concerned. Is GRHL2 rendered dysfunctional, permitting EMT, in 

carcinomas that exhibit loss of function in KMT2C or KMT2D? Loss of KMT2C and KMT2D surely 

has other major implications depending on the cell type, and independent of GRHL2 

interaction, but it is worth noting that epithelial gene expression may also be dysregulated. 

The process of EMT is challenging to detect in whole tumor sequencing; the minority of 

cells that downregulate or lose GRHL2, concurrent with EMT, though perhaps contributing 

disproportionately to immune evasion and metastasis, would likely be missed by a bulk 

approach to sequencing tumors. Further, data presented in Chapter II suggests that other 

consequential mechanisms of GRHL2 downregulation may be at play in the tumor 

microenvironment. In Chapter II, we investigate the importance of epithelial phenotype, as 

controlled by GRHL2, in reception and transmission of the interferon response: a critical node in 

innate and adaptive immunity. 

 
 
 
 

Chapter II. GRHL2 Promotes Interferon Signaling in Epithelial Cells. 
 

Chapter II: Introduction 
 

Following on data presented in Chapter I describing the ability of GRHL2 to promote 

expression of the interferon stimulated gene (ISG) ICAM-1, we sought to uncover the breadth  

of GRHL2’s regulation of interferon stimulated genes. We explore epithelial response to double- 

strand RNA (dsRNA), and interferon gamma (IFN-γ): probing the importance of GRHL2 in 

relaying these signals, as well as the effect of their signaling on GRHL2 expression, itself. IFN-γ 



56  

has previously been shown to induce EMT in cells, however, GRHL2’s involvement in this 

mechanism was not directly implicated (D. Imai et al., 2019; M. Lee et al., 2019; Lv et al., 2015). 

The interferon pathway is a conserved signaling pathway utilized by most lineages of 

human cells. Interferon signaling can be generally broken down into three categories based 

upon distinct receptors: Type I, II & III. These responses are ignited through activation of 

pattern recognition receptors (PRRs) and include many pathogen associated molecular patterns 

such as double stranded RNA (dsRNA) which signals via toll-like receptor 3 (TLR3) or RIG- 

I/MDA5, as well as many other ligands including single strand RNA (ssRNA), CpG DNA, and 

bacterial components (Abe, Marutani, & Shoji, 2019; Schneider, Chevillotte, & Rice, 2014). 

Although arising from distinct ligands, Type I and Type II signaling exhibits downstream cross- 

talk through signal transduction intermediates: some ligand-specific, others shared and 

overlapping. 

The Type II interferon pathway (IFN-II) is predominantly mediated through IFN-γ. IFN-γ is 

mainly derived from CD4+ T cells, CD8+ T cells, and NK cells in the tumor microenvironment, 

and is not thought to be produced by non-immune lineage cell types. It signals through 

homotypic interaction between ligand-bound IFNGR on the membrane, which initiates 

intracellular JAK1,2/STAT1 signaling. Phosphorylated STAT1 goes to the nucleus and recognizes 

“Gamma Activation Site (GAS)” motifs in interferon stimulated genes (ISGs), inducing their 

activation (Schneider et al., 2014). 

As a core component of innate immunity, Type I interferon (IFN-I) constitutes an 

intrinsic first line of defense against viral infection in cells. Generally, and of initial interest to 
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our research, dsRNA gets internalized into cells and may activate endosomal TLR3 or cytosolic 

MDA5/RIG-I (Sabelo Lukhele, Giselle M. Boukhaled, & David G. Brooks, 2019). Activation of 

stimulator of IFN genes (STING) and mitochondrial antiviral-signaling protein (MAVS) promotes 

phosphorylation and subsequent nuclear localization of IRF3 and IRF7. Nuclear import of these 

IRF proteins allow them to localize to “Interferon Stimulated Response Element” (ISRE) motifs 

in regulatory regions of their target genes. This allows for quick transcription of a limited 

number of ISGs, including the very consequential Type I IFNs ( IFNβ) (Schneider et al., 2014). 

Production of these factors provides a positive feedback autocrine signal to reinforce the 

antiviral state of the cell; slowing protein synthesis, upregulating major histocompatibility 

complex (MHC), and degrading viral RNA, while also signaling in a paracrine fashion, spreading 

an antiviral posture to its neighboring cells. Production of Type I IFN provides a ligand for the 

cell surface receptors IFNAR1 and IFNAR2, which activate associated JAK/STAT kinases, 

subsequently forming complexes of phospho-STAT1&2 and IRF9 termed “ISGF3”. This complex 

goes to the nucleus and further activates a wave of ISGs (Sabelo Lukhele et al., 2019; Snell, 

McGaha, & Brooks, 2017). 

In addition to engendering antiviral responses, Type I IFN production also has a well- 

documented tumoricidal role. Its signaling can implement growth arrest and senescence, but 

also caspase activation and apoptosis (Apelbaum, Yarden, Warszawski, Harari, & Schreiber, 

2012; Besch et al., 2009). In the tumor setting, Type I IFN is likely predominantly triggered by 

DNA sensing PRRs activated by surrounding cell death. Treatment of human mesenchymal stem 

cells with IFN-α initiated a senescent phenotype in a dose dependent manner, in the absence of 

significant apoptosis. This IFN-α induced senescence was reliant upon nuclear accumulation of 
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promyelocytic (PML) protein aggregates in the nucleus, which were subsequently shown to co- 

localized with p53 (Fu et al., 2015). Intriguingly, it has been shown that spontaneously 

immortalizing Li Fraumani fibroblasts downregulate IRF5 and IRF7 (IRF7 through CpG 

methylation), but that senescing fibroblasts reactivate these factors; IRF5 and IRF7 transfection 

was sufficient to slow growth and induce a senescence phenotype in immortalized fibroblasts 

coincident with activation of other ISGs (Q. Li et al., 2008). In support of this association, drug- 

induced senescence upon administration of the genotoxic compounds 5-bromo-2’-deoxyuridin 

(BrdU) or distamycin A (DMA) in HeLa cells caused induction of IFN-β and, by day six, >5-fold 

induction of 22 ISGs (Novakova et al., 2010). A multitude of Type I IFN response pathways 

relevant to tumor biology exist, including inflammation, generation of an antiviral state, 

apoptosis, pyroptosis, growth arrest and senescence. 

Type I IFN is also critical for various stages of the adaptive immune response. CD4(+) 

Treg cells show numerical reduction in colorectal and melanoma models in response to IFNα 

treatment, however Type I IFN signaling has also been shown to increase immunosuppressive 

IDO and PD-1 expression on Tregs (Snell et al., 2017; Yu, Huang, Zong, He, & Mo, 2016). 

Maintaining CD8(+) T cell fitness in both viral infections and tumor scenarios is critical; Type I 

IFN indirectly enhances their function by promoting dendritic cell (DC) cross-presentation and 

directly promotes their survival and cytotoxicity (Diamond et al., 2011). The tumor 

microenvironment actively modulates interferon receptor on CD8 T cells, downregulating its 

expression to quell robust antitumor immunity. Colorectal cancer mouse models in which 

IFNAR1-stabilized T-cells were adoptively transferred showed significantly improved anti-tumor 

effects compared with wildtype T-cell transfer (Katlinski et al., 2017). IFN-I signaling can also 
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skew the population of CD8+ T cells towards a more cytotoxic phenotype, but with decreased 

renewal capacity. IFNR blockade reversed this trend and allows for emergence of a memory, 

TCF-1(+)CXCR5+ phenotype that is thought to be critical for effective, sustained response to a 

chronic viral infection (Snell et al., 2017) (Wiesel et al., 2012). 

Notable cases from other kingdoms of life suggest the untapped potential of innate 

immunity pathways in controlling viral infection or tumorigenesis. The Pacific Oyster, 

Crassostrea gigas, can be induced to enter a prolonged “innate immune primed” state by 

transient treatment with the double-strand RNA mimetic poly(I:C). This artificial viral mimic 

induced an antiviral state that lasted up to 4 months post-priming, and was partly characterized 

by gene expression representing gene ontology (GO) categories such as “regulation of cell 

death”, “regulation of type I interferon production” and “immune response”. Poly(I:C) 

regulated genes sustained their differential expression patterns from day 1 - day 126 

postpriming, though some regression to control was observed. Primed oyster populations 

maintained 100% survival 10 days post-infection with OsHV-1, while sterile filtered seawater 

control oyster populations had 5% survival at 10 days. The survival advantage of primed oysters 

coincided with a 200x lower viral DNA load, indicating ineffective viral replication after innate 

immune priming compared with the non-primed control (Lafont et al., 2020). 

In a marine vertebrate model, Zebrafish danio rerio were depleted of adaptive immunity by 

homozygous deletion of rag, then compared to rag+/+ zebrafish response upon challenge with a 

lethal dose of spring viremia carp virus (SVCV). Rag-/- fish exhibited an “antiviral alert state”, 

with 40-45% survival compared to 0% rag+/+ survival 12 days post-infection. Rag-/- fish 
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exhibited a 100x lower viral load compared to rag+/+. RNAseq analysis showed an increase in 

genesets corresponding to interferon, apoptotic, and multigene signatures comparing 

uninfected rag-/- versus uninfected rag+/+. Rag-/- fish also exhibited increased active Caspase-3 

IHC staining in tissue. This suggests that some species may activate an antiviral primed state 

that can be maintained long-term and represents a robust response to infection in the absence 

of the adaptive arm of the immune system. Intriguingly, these fish are maintained in nonsterile 

conditions, possibly exposed to a microbiome capable of stimulating this low-level innate 

immunity (García-Valtanen et al., 2017) . 

The Blind Mole Rat (genus Spalax) is a subterranean, long-lived rodent perhaps best known 

for its negligible rates of cancer occurrence despite a relatively long lifespan compared to other 

rodent species. Cancer mortality can account for up to 90% of some rat and mouse species, 

however, tumor development has never been documented in captive Blind Mole Rats. In vitro 

studies using fibroblast cell lines from Spalax judaei and Spalax golani demonstrated a novel 

tumoricidal pathway reliant on Type I interferon secretion. Fibroblast cell cultures underwent 7- 

20 population doubling, ceased to grow, then initiated massive necrotic cell death, resulting in 

“concerted cell death” of the entire population. The factor responsible for this cell death was 

demonstrated to be IFN-β on the basis of GFP(+) viral infectivity assay in HT1080 cells, as well as 

a HEK-blue cell β-galactosidase promoter assay containing an IFN-β responsive promoter that 

was sensitive to conditioned media from different population growth stages of Blind Mole Rat 

cells. The necrotic cell death response was dependent upon p53 and Rb pathways, as 

introduction of SV40 large T antigen abrogated cell death and IFN-β. This remarkable example 
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of a species-specific innate immune response underscores the adaptability and tumoricidal 

potential of the innate arm of the immune system (Gorbunova V, Hine C, & X, 2012). 

These examples from across the Animal Kingdoms showcase the importance and 

effectiveness of first-line innate immunity. Functional and responsive interferon pathways, 

particularly the production of Type I IFNs, are equally critical in Homo sapiens; though perhaps 

not possessing identical mechanisms as Danio rerio or Spalax judaei, dissecting factors that 

regulate the timing, sensitivity and magnitude of this response in Homo sapiens is a priority. 

In light of these observations, the epithelial production of Type I IFN emerges as a 

critical node in both innate and adaptive arms of anti-tumor and anti-viral immunity. As 

reviewed above, modulation of IFN production, receptor expression and signaling have 

implications for tumor progression and resolution. Identifying factors that maintain, or are 

necessary for, the IFN response could inform future understanding of the regulation of this 

process and identify predictors of response to immunotherapies. It is important to note that 

IFN signaling is often two-sided, capable of initiating robust immunity, but also 

immunosuppression in chronic settings. For example, expression of checkpoint molecules is a 

normal physiological response to avoid autoimmunity, but in the tumor microenvironment 

setting these molecules are associated with poor outcomes, while also predicting response to 

checkpoint blockade therapies (D. S. Chen & Mellman, 2017). 

The ramifications of epithelial versus mesenchymal state, or EMT, upon normal 

epithelial IFN I response is not well documented. During embryogenesis, the human embryonic 

stem cell (hESC) constitutively expresses a subset of interferon response genes in the absence 
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of stimulation. These “Intrinsic Interferon Genes” are thought to protect the developing 

embryo from viral pathogens during formative development. Upon differentiation, the genes 

lose their constitutive expression, and the ubiquitous, stimulation-dependent interferon 

response pathway becomes accessible (X. Wu et al., 2018). This intrinsic ISG phenomenon and 

GRHL2’s premier role in establishing epithelial enhancers upon hESC differentiation (A. F. Chen 

et al., 2018) converge upon a possible role for GRHL2 in regulating interferon response 

programs in differentiated epithelial lineages. In airway epithelial cells a TGF-β-induced EMT 

phenotype downregulated IFN I and IFN III expression. Zeb1 mediated repression of IRF1 and 

restrictive epigenetic remodeling, in this context, led to silencing of IFN III contributing, 

pathologically, to defective mucosal antiviral immunity (J. Yang, Tian, Sun, Garofalo, & Brasier, 

2017). In triple negative breast cancer (TNBC), an IFN-β metagene signature predicts better 

prognosis and immune response. Treatment of drug resistant tumor cancer stem cell (CSC) 

populations, shown to lack IFN/STAT signature, with IFN-β was able to revert CSC traits and 

induce epithelial traits (Doherty et al., 2017). 

Speculatively, the extent to which EMT or hybrid EMT/MET could modulate the 

interferon response might have important implications for survival of these cells at primary 

tumor sites, as well as during metastatic dissemination, possibly constituting a survival 

advantage for the individual cell, and altering the immune microenvironment at the population 

level. In breast cancer, high expression of an interferon metagene predicts metastasis in 

ESR1+/ERBB2- tumors, however in ERBB2+ subtype it correlates with low metastasis (Callari et 

al., 2014). This suggests that extrinsic or intrinsic factors influencing interferon signaling could 

have a significant role in tumor biology and progression. 
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We hypothesized that GRHL2 would preserve appropriate IFN response. Stated 

differently, loss of GRHL2 would reduce sensitivity to IFN-γ and dsRNA and deregulate the 

cellular interferon response. We conducted whole transcriptome RNAseq on Mcf10a cells 

treated with these ligands in the presence or absence of GRHL2. The results suggest that GRHL2 

regulates a multitude of ISGs, and, particularly, is required for Type I (IFNβ) and Type III 

(IFNL1,2,3) production. These results provide exciting insights regarding the significance of the 

epithelial versus mesenchymal state for Type I IFN regulation, with implications for antiviral and 

antitumor immunity. 

 
 
 

Chapter II: Results 
 

II.a. GRHL2 regulates subset of interferon response genes (ISGs). 
 

We probed a number of interferon stimulated genes basally and after IFN-γ stimulation 
 

in Mcf10aneoT+TGF-b  (+GRHL2) and HT1080  (+GRHL2). The 
 

results indicate that GRHL2 promotes expression of many 

interferon stimulated genes, but may also repress subsets 

(Fig.10,a) (Table 2). Interestingly, GRHL2-expressing cells 

repressed expression of the top “intrinsic interferon genes” 

conserved across multiple hiPSC and hESC cell lines (Rice, et 

al. 2017) , suggesting that GRHL2 may play a role in 

repressing this subset during transition from pluri- and multi- 

potent stem cells into differentiated epithelial lineages (Fig. 

10,b). This seems paradoxical because expression analysis of 

Table 2 

Effect of GRHL2 
on ISGs 

Induced Repressed 
IFNLR ISG15 
IFIH1 OASL 
DDX58 OAS1 
PDL1 BST2 
ICAM1 EIFL3 
CD155 IFITM1 
CXCL10 IFITM3 
CXCL16 
RNL 
p21 
SOCS 
MLT1b 
TRIMM22 
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GRHL2 shows high expression in hESCs (with high intrinsic ISG activity), so our prediction 

of GRHL2 promoting intrinsic ISG expression was not supported. 
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Figure 10. mRNA transcript levels of select ISGs in Mcf10aneoT and HT1080. A.) GRHL2 

expression favors ISG induction at basal and/or after IFN-γ stimulation in Mcf10aneoT+TGF-β 

cells expressing ectopic GRHL2. Similar results were obtained for favorable ISG mRNA levels in 

qPCRs conducted in HT1080 fibrosarcoma cells ectopically expressing GRHL2. C.) A panel of 

“intrinsic” embryonal ISGs are repressed by GRHL2 expression in Mcf10aneoT cells ectopically 

expressing GRHL2 compared with CRISPR-Cas9 GRHL2 knockout cells. All qPCR results represent 

at least biological duplicates and are normalized to GAPDH or CBX housekeeping gene controls. 
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II.b. GRHL2 is required for Type I and III IFN production in Mcf10aneoT cells. 
 

Based upon differential targeted qPCR expression of various ISGs in the presence or 

absence of GRHL2, we wanted to know if GRHL2’s potentiation and promotion of interferon 

response was pervasive across large swaths of interferon stimulated genes. It is estimated that 

around 5% of the human coding genome is responsive to interferon stimulation (Schneider et 

al., 2014), making whole transcriptome RNAseq analysis a more comprehensive method for this 

investigation. In order to explore IFN-I and IFN-II pathways, we separately treated cells with 

either dsRNA mimetic poly(I:C) or recombinant IFN-γ and compared with untreated control 

cells. Mcf10aneoT (GRHL2 WT), Mcf10aneoT+GRHL2 (O/E) , and Mcf10aneoT+gr sg2 (GRHL2 

CRISPRcas9 K.O.) were treated with either [600U/mL] IFN-γ for 12hrs, or [50ug/mL] poly(I:C) for 

3hrs, in triplicate. To explore differences in ISG expression, we first calculated the fold induction 

of the top 100 most highly upregulated genes in our GRHL2 WT cells after poly(I:C) treatment. 

We compared the induction of these genes with the corresponding induction in GRHL2 K.O. 

cells. Analysis revealed that many of the genes upregulated in WT cells were classical ISGs, and 

that these genes exhibited weaker induction, or no expression, in our GRHL2 K.O. cells (Fig. 

11,a). Strikingly, interferon beta (IFNB1) and interferon lambda 1, 2, and 3 (IFNL1, IFNL2, IFNL3), 

definitive members of Type I and Type III Interferons, respectively, were either marginally, or 

not expressed in the GRHL2 knockout cells after poly(I:C) stimulation (Fig. 11,c). 
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Figure 11. GRHL2 broadly promotes poly(I:C) induced antiviral interferon gene 

expression. Cells were treated in triplicate with 50ug/mL poly(I:C) in Mcf10a media for 3hrs, 

before RNA prep.  A.) RNAseq datasets comparing Mcf10aneoT (GRHL2 O/E, WT, K.O.) were 

used to calculate the most strongly induced genes (ranked by fold change between (-)poly(I:C) 

and (+)poly(I:C)) in GRHL2 WT (middle column). B.) Corresponding fold change is compared in 

GRHL2 O/E (left column) and K.O. (right column). Fold induction calculations used the average of 

triplicates per treatment group. C.) Representative classic interferon response genes (Type I and 

III IFN, IFITs, JAK/STAT, CXCLs) FPKM expression values in triplicate, after poly(I:C) treatment 

comparing Mcf10aneoT WT (left) and K.O (right). 

Conversely, we took the top 99 genes most strongly induced in the K.O. cells after 

poly(I:C) and compared their induction to the same genes in WT (Fig. 11,b). This revealed a set 

of genes that were induced by poly(I:C) more strongly in the absence of GRHL2 (an EMT 

phenotype) and may constitute an interferon response signature that GRHL2 represses. 

To find unifying pathways or processes from the most highly expressed genes, we took 

the absolute expression (FPKM) after poly(I:C) treatment of all genes in the RNAseq comparing 

WT and K.O.. (sample exhibited in Fig. 11,c) We used the final expression level after treatment 

to attempt selection for more biologically relevant ISGs based on higher expression, while 

avoiding artifacts arising from selection of genes with large induction fold changes, but 

extremely low expression values before and after treatment. We submitted these lists to Gene 

Set Enrichment Analysis (GSEA, Broad Institute), querying the gene list against a group of Gene 

Sets from Molecular Signature Database (www.gsea-msigdb.org) that were affiliated with the 

term “interferon”. We found that our GRHL2 WT+poly(I:C) samples were disproportionately 

http://www.gsea-msigdb.org/
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enriched for genes contributing to many dsRNA and interferon response gene sets with false 

discovery rates (FDR) <0.25 (Fig. 12, a,c). Conversely, the GRHL2 K.O.+poly(I:C) samples were 

nearly devoid of enrichment in these gene sets (Fig. 12, b). To investigate the genes from our 

GRHL2 WT+poly(I:C) dataset that were most influential on its association with interferon GSEA 

signatures, we conducted Leading Edge Analysis on enriched genesets from our original GSEA 

with an FDR<0.25 and a NES>1.20. This analysis quantifies the number of times that a gene 

appears across multiple gene sets. The top hits and number of appearances in the GRHL2 

WT+poly(I:C) were IRF7, ISG15, TAP1 and IRF1 (Fig. 12, d). Our data suggests that GRHL2 

promotes IFN-I signaling in epithelial cells. Loss of GRHL2 abated IFN-I and IFN-III production, 

indicating a breakdown in the signal transduction process somewhere between ligand 

reception and transcriptional activation of IFN-I and IFN-III. Apart from these specific cytokines, 

GRHL2 also was required for upregulation of numerous other ISGs, which together, contribute 

to enrichment of various GSEA pathways such as “Response to oncocytic virus”, “IFN alpha 

response up”, and “Graft versus host disease 35D up”. 
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Figure 12. Gene Set Enrichment Analysis (GSEA) using Broad Institute Molecular Signature 

Database indicates enriched antiviral and IFN pathways in GRHL2 WT poly(I:C) treated cells. A.) 

RNAseq datasets for poly(I:C) treated Mcf10aneoT GRHL2 WT and GRHL2 K.O. were fed through 

GSEA software to compare enrichment for genes represented in multiple  “Interferon” 

associated Gene Sets from Msigdatabase.org. A.) A list of the top “interferon” gene sets 

enriched in GRHL2 WT cells after poly(I:C) treatment. B.) A list of the top “interferon” gene sets 

enriched in GRHL2 K.O. cells after poly(I:C) treatment. C.) Representative GSEA enrichment plots. 

D.) Leading Edge Analysis conducted through the GSEA software package determined genes 

that most contributed to enrichment of GRHL2 WT in the gene sets from A). 

II.c. GRHL2 sensitizes cells to poly(I:C) and is downregulated by IFN-γ. 
 

Treatment of Mcf10aneoT (GRHL2 WT) cells with IFN-γ downregulated GRHL2 at 48hrs 

(Fig. 13, a) . We chronically treated Mcf10aneoT cells with IFN-γ and observed a transition to a 

mesenchymal morphology. This led us to hypothesize that IFN-γ could downregulate GRHL2, 

thus leading to an epithelial-mesenchymal transition. Western blot analysis of chronic IFN-γ 

treated Mcf10aneoT cells revealed protein expressions consistent with an EMT (loss of GRHL2, 

E-cadherin/gain of N-cadherin, vimentin, and fibronectin.) Interestingly, withdrawal of IFN-γ 

could not rescue this EMT, suggesting that IFN-γ had initiated stable repression of GRHL2 (Fig. 

13, b). In our first experiment we chronically treated the cells with IFN-γ and made lysates when 

changes were observed. To repeat this phenomenon, we treated Mcf10aneoT cells with 

400U/mL IFN-γ and observed convincing EMT morphology in ~7 days. We also conducted an NK 
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assay on Mcf10aneoT versus Mcf10aneoT+ IFN-γ and found that the latter had become 

significantly resistant to cell-mediated NK cytotoxicity. The assay was conducted in the absence 

of exogenous IFN-γ treatment (Fig. 13, c). 

Type I IFN may activate cell death pathways, inducing apoptosis, in some conditions 

(Apelbaum et al., 2012; Bernardo, Cosgaya, Aranda, & Jiménez-Lara, 2013; Chawla-Sarkar M., 

2001). On top of the widespread IFN gene expression augmentation regulated by GRHL2, we 

tested overall viability after transfection with 2ng/mL poly(I:C). Interestingly, we found that 

GRHL2 WT and GRHL2 K.O. exhibited similar viability, while GRHL2 O/E cells were significantly 

more sensitive (Fig. 13, d). Various mechanisms of cell growth arrest and apoptosis in response 

to Type-I interferon signaling have been published. We could speculate that this sensitivity may 

be mediated through Type-I interferon upregulation of TRAIL (TNFSF10), stimulating death 

receptors on neighboring cells and inducing caspase-8 mediated apoptosis. Our RNAseq data 

hints that cells expressing GRHL2 (WT) start to upregulate TRAIL at 3hrs post poly(I:C) 

treatment, while GRHL2 K.O. cells, in contrast, completely turn off expression after poly(I:C) 

stimulation (Fig 13, e). This hypothesis warrants further investigation. 
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Figure 13. IFN-γ downregulates GRHL2, thereby inducing epithelial to mesenchymal 

transition. A.) Normalized GRHL2 mRNA transcript levels decline within 48hrs of ~400U/mL IFN-γ 

treatment. B.) Mcf10aneoT epithelial cells treated with chronic IFN-γ [400U/mL] undergo 

morphological changes consistent with EMT; western blot of cell lysates indicate loss of GRHL2 

protein expression with accompanying E-cadherin loss and gain of N-cadherin and Fibronectin 

expression. Lane 4 represents lysate from EMT’d cells that had IFN-γ removed, suggesting a 

stable EMT was induced, even after withdrawal of the EMT stimulus. C.) Chronic IFN-γ treated 

EMT cells were subjected to an NK assay (in the absence of IFN-γ). IFN-γ induced EMT 

corresponded to significant resistance to NK attack compared to IFN-γ naïve cells. Cells plated in 

triplicate. D.) Transfection of Mcf10aneoT (GRHL2 WT, O/E, K.O.) cells with 2ug/mL poly(I:C) 

revealed heightened cell death in GRHL2 O/E cells compared with both WT and K.O. using 

PrestoBlue cell viability assay. Untreated assayed in duplicate, treated assayed in quadruplicate. 

E.) mRNA expression levels (FPKM) of TRAIL (TNFSF10) in triplicate generated from an RNAseq 

on Mcf10aneoT (GRHL2 WT or K.O.) before and after poly(I:C) treatment. 

Chapter II: Conclusion 
 

ICAM-1 is an interferon stimulated gene whose expression was upregulated by GRHL2 

basally, and upon IFN-γ stimulation. This provoked the hypothesis that GRHL2 played a role in 

transducing or promoting IFN signaling and subsequent gene expression. qPCR analysis of 

HT1080 and Mcf10aneoT cell lines supported this hypothesis; although our sample size of ISGs 

was too small to be able to make broad generalization. We did find that GRHL2 suppresses the 

prolific “intrinsic interferon genes” expressed in early pluri- and multi- potent murine stem 

cells, although the application of this is questionable since murine and human embryonic stem 
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cells are not completely equitable systems; the timing of GRHL2 expression varies during 

development between species. For whole transcriptome RNAseq, our approach of stimulating 

interferon pathways via two distinct mechanisms (IFN-γ, poly(I:C)) across GRHL2 WT, O/E, K.O. 

cell lines gave us much broader coverage and sample size to explore not only individual genes, 

but also pathways altered by GRHL2 expression, or absence, and their implications for Type I 

and Type II interferon responses. 

RNAseq analysis of Mcf10aneoT +GRHL2 WT, O/E, K.O. cells revealed that GRHL2 does 

regulate the dsRNA response and IFN-γ response. We focused on the dsRNA response, as 

GRHL2 WT and O/E cells exhibited robust induction of dsRNA response genes, while GRHL2 K.O. 

cells showed deficits, most strikingly characterized by inability to produce Type I and Type III 

interferon. Our RNAseq data also provides numerous hypothesis-generating pieces of data to 

inform future experiments aiming to discover the mechanism by which GRHL2 influences 

interferon signaling (Table 3). Intriguingly, GRHL2 WT cells express about 2-fold higher MDA5 

(IFIH1) mRNA under basal conditions compared to GRHL2 K.O. cells. MDA5 is one of the core 

cytosolic dsRNA sensors, implicated in responding to longer dsRNA molecules upon which it 

multimerizes, forming microfilaments. Upon poly(I:C) stimulation, MDA5 expression 

dramatically increases ~18-fold with an induced expression ~10-fold higher than the induced 

expression level in GRHL2 K.O. cells. This suggests that GRHL2 K.O. cells, at baseline, are less 

prepared to mount an antiviral response, at least through this pathway. Concerning the MDA5 

pathway, our RNAseq also revealed that a key MDA5 negative regulator, RIOK3, is induced 

strongly by poly(I:C) in GRHL2 K.O. cells (~9  ~25 FPKM), while in GRHL2 WT cells it remains 

poly(I:C) non-responsive. RIOK3 functions as a Serine/threonine kinase that phosphorylates 
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MDA5’s c-terminal region. This disrupts the ability of MDA5 to multimerize with dsRNA. 

Functionally, this leads to dramatic reduction in IFN-β production, which is rescued in RIOK3 

K.O. cells (Takashima, Oshiumi, Takaki, Matsumoto, & Seya, 2015). 
 

Introduced earlier, the interferon regulatory factor 3 (IRF3) protein represents a critical 

portal for transmission of dsRNA stimulation to nuclear signaling. IRF3 protein is regulated post- 

translationally through multiple modes (J. Liu, Qian, & Cao, 2016). Our RNAseq data suggests 

that GRHL2 would be a positive regulator of IRF3 stability by promoting expression of various 

IRF3 regulators. ISG15 is a ubiquitin-like molecule that can be attached to and stabilizes IRF3. 

This process, termed “ISGylation”, is also mediated by HERC5, which acts as a ubiquitin ligase 

for ISG15 (Wong, Pung, Sze, & Chin, 2006). ISG15 is roughly 2.5x more highly expressed basally 

in GRHL2 WT cells, and upon poly(I:C) treatment, its expression is also strongly favored in 

GRHL2 WT cells. HERC5, although essentially not expressed in either cell line prior to poly(I:C) 

stimulation, is induced roughly 7x in GRHL2 WT cells, while it is essentially not turned on in 

GRHL2 K.O. cells. Another piece of evidence implicating IRF3 as a prime suspect of GRHL2’s IFN 

promotion is TICAM1. Also known as TRIF, TICAM1 is an adaptor molecule that transmits signal 

from toll-like receptors to other downstream proteins. TICAM1 is specific for TLR3, the dsRNA 

receptor, and is shown to be essential for subsequent production of IFN-β (Oshiumi, 

Matsumoto, Funami, Akazawa, & Seya, 2003). Our RNAseq data shows that TICAM1 is >2x more 

highly expressed in GRHL2 WT cells at basal conditions, and also retains slightly higher 

expression after poly(I:C) stimulation than GRHL2 K.O. cells. Conversely, CFLAR (or FLIP) is a 

negative regulator of type I IFN response. Loss of CFLAR has been associated with increased 

poly(I:C) induced apoptosis and increased NF-kB and IRF3 response genes. Interestingly, basal 
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CFLAR levels were equal between GRHL2 WT and K.O. cells, but showed strong, though 

variable, upregulation only in GRHL2 K.O. cells. CFLAR has pro-survival activities through its 

binding to TRADD and FADD, thereby blocking association with Caspase 8 and dulling the 

apoptotic response (Handa, Tupper, Jordan, & Harlan, 2011). The strong upregulation of CFLAR 

in GRHL2 K.O. cells, accompanied by mild deficiency in poly(I:C) mediated TRAIL (TNFSF10) 

upregulation could provide an explanation for the observed survival advantage of GRHL2 K.O. 

cells during transfection of poly(I:C). 

 

 
Table 3. Interferon related genes regulated by GRHL2. Raw RNAseq expression values in 

triplicate from Mcf10aneoT versus Mcf10aneoT +GRHL2 K.O. treated with 50ug/mL poly(I:C) for 

3hrs. RFTN1: Raftlin 1, RFTN2: Raftlin 2, TICAM1: toll-like receptor adaptor molecule 1, MDA5: 

interferon induced with helicase C domain 1, RIOK3: RIO Kinase 3, CFLAR: CASP8 and FADD like 

apoptosis regulator, ISG15: interferon stimulated gene 15, HERC5: HECT and RLD domain 

containing E3 ubiquitin protein ligase 5, TRAIL: TNF superfamily member 10. 
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Production of Type I interferon is an important mediator of antiviral and antitumor 

immunity. Besides communicating a viral distress response to nearby cells, IFN-β can cause cell- 

cycle arrest, senescence and apoptosis in surrounding tumor cells (Snell et al., 2017). Apoptosis 

is mediated through TRAIL upregulation in melanoma and breast cancer, and Caspase-8 

activation in cervical carcinoma (Apelbaum et al., 2012; Bernardo et al., 2013; Chawla-Sarkar 

M., 2001). But this direct cytostatic and apoptotic effect must also be interpreted in light of the 

diverse impact that IFN-I has on the immune microenvironment: effecting dendritic cells, 

macrophages, B cells, CD4+ and CD8+ T cells (Snell et al., 2017) , as well as the timing and 

duration of its signaling. Although inflammatory in nature, chronic IFN-I signaling can also lead 

to upregulation of PD-L1 and immunosuppression: altering the phenotype and activity of cells 

of the innate and adaptive immune system (Snell et al., 2017). It is important that cells counter- 

regulate IFN-I production; demonstrated by dramatic reduction in IFN-I expression after the 

initial acute phase, though many ISGs are still expressed, or are primed for expression in this 

context (Snell et al., 2017). We currently have no evidence to suggest that GRHL2 WT or O/E 

cells have an inability to turn off, or reduce IFN-I production after the initial acute phase 

following stimulation, though it would be interesting to determine if the kinetics of ISG 

expression were altered in GRHL2 WT versus O/E; are ISGs more rapidly produced initially, and 

IFN-I production slower to diminish after the acute phase in cells constitutively overexpressing 

GRHL2? 

In future studies we would like to address this question within the context of a 

proposed role for GRHL2 in epigenetically priming interferon response genes. Intriguingly, 

GRHL2 binding sites are located in regulatory regions of various ISGs, and overlap with some 
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interferon regulatory factor (IRFs) binding sites. The extent to which GRHL2 preferentially, non- 

randomly locates to interferon related genes, above its distribution across the rest of the 

genome, would give us an indication of its potential as an epigenetic regulator of the interferon 

response, perhaps in a manner similar to its regulation of epithelial/mesenchymal genes (via 

KMT2C/D recruitment, p300 inhibition.) This appeared to be GRHL2’s manner of regulating the 

ISG ICAM-1, as demonstrated by our CHIP-qPCR; KMT2C was not recruited to ICAM-1 promoter 

in the absence of a GRHL2 interaction (GRHL2 EDAA cells) effectively silencing this gene. 

GRHL2 is an epithelial master transcription factor, responsible for overseeing a wide range 

of lineage determining genes, however, inclusion of interferon stimulated genes, particularly in 

the presence of dsRNA or IFN-γ was unforeseen. This raises important implications not only for 

cancer related properties and anti-tumor immunity, but also for viral infection of epithelial 

cells. Future experiments should address the infection and replication competence of virus in 

epithelial cells in the presence (WT) or absence (K.O.) of GRHL2. Our data showed that GRHL2 

recruited KMT2C to the ISG ICAM-1 promoter in a GRHL2-dependent manner. Future 

experiments should explore if this mode of epigenetic regulation is conserved in 

promoter/enhancer regions of various other ISGs. This could be quantified by CHIP-seq of 

epithelial cells expressing endogenous GRHL2 before and after poly(I:C) treatment. Does GRHL2 

bind these genes upon stimulation with poly(I:C)? A complementary approach would involve 

ATAC-seq of accessible chromatin regions before and after poly(I:C) in epithelial cells expressing 

endogenous GRHL2 or GRHL2 K.O. This would indicate the importance of GRHL2 in establishing 

open, transcriptionally permissive sites at ISGs upon stimulation with ligand. As suggested 

above, these experiments could also be conducted with GRHL2 O/E epithelial cells to address 
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whether increasing levels, or enforced overexpression, of GRHL2 causes a sustained or non- 

counter-regulated interferon response, specifically implicating sustained GRHL2-mediated 

epigenetic control. This could have implications for the tumor microenvironment and immune 

cells, as chronic type I IFN production has been shown to be immunosuppressive (S. Lukhele, G. 

M. Boukhaled, & D. G. Brooks, 2019). 
 

To conclude, GRHL2 has emerged as an important regulator of immune sensitivity. The 

presence of GRHL2 protein maintains expression of immune sensitizing genes such as ICAM-1 

through epigenetic interactions. Expanding GRHL2’s well documented role as an epithelial 

master transcription factor, our data also brings a multitude of interferon stimulated genes into 

GRHL2’s wheelhouse of regulated genes. This data further solidifies the notion that appropriate 

immunological relationships are a facet of the epithelial state, as mediated by the master 

transcription factor GRHL2. 
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Diagram 3. The significance of GRHL2 in tumor biology. Novel proposed roles boxed in purple 
 
 
 
 

Materials and Methods 
 

Cell lines 
 

MCF10a-derived, HMLE-derived and HT1080-derived cell lines were obtained and cultured as 

described previously. MCF10aneoT cells were induced to undergo EMT by treatment with 

20ng/ml TGF-β for three days, and then outgrowth in the absence of TGF-β. Mesenchymal cell 

lines (MCF10aneoT+ TGF-β, abbreviated as NTM, the Mesenchymal Subpopulation derived 

from HMLE, abbreviated as MSP, HT1080 fibrosarcoma cells and BT549 triple negative breast 

cancer cells) were reverted to an epithelial phenotype by retroviral expression of GRHL2 in the 
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vector pMXS-IRES-puro, as described previously, or by expression of mir200c (see below). 
 

NK92-MI cells (American Type Culture Collection) were cultured in Alpha Minimum Essential 

medium without ribonucleosides and deoxyribonucleosides but with 2 mM L-glutamine and 1.5 

g/L sodium bicarbonate (Life Technologies) containing 0.2 mM myo-inositol, 0.1 mM 2- 

mercaptoethanol, 0.02 mM folic acid, 10% horse serum, 10% fetal bovine serum and 5 ng/ml IL- 

2 (R and D Systems). BT549 cells (grown in RPMI-1640+5% fetal bovine serum+10 µg/ml 

insulin+penicillin-streptomycin-glutamine) with inducible mir200c expression were constructed 

by subcloning the mir200c sequence into pTRIPZ, packaging lentiviruses, infecting BT549 cells 

and selecting for puromycin-resistance. The CRISPR/cas9 lentiviral constructs for knocking out 

human GRHL2 were kindly provided by Dr. B. Hogan, which were packaged in 293T cells and 

infected into target cell lines, as we described previously. GRHL2 knockout (>95%) was verified 

by Western blotting total puromycin-resistant populations; subcloning of knockout cells proved 

unnecessary. The CRISPR/cas9 mediated knockouts of KMT2C and KMT2D were generated by 

subcloning guide sequences (For KMT2C: M3CrE3-F: caccgGCGATCTGTGTCTGAGGAAT 

M3CrE3-R: aaacATTCCTCAGACACAGATCGCc. For KMT2D: M4CrE3-F: 

caccgTCCCGCTGCCCGTGTAGACT 

M4CrE3-R: aaacAGTCTACACGGGCAGCGGGAc) into the BsmBI sites of pLenti-Crispr-v2 or 

pLKO5.sgRNA.EFS.tRFP (Addgene). Lentiviruses were packaged and infected into MCF10a 

(subclone MCF10aP) cells as described, followed by sequential selection for puromycin- 

resistance and flow-sorting for RFP. Indels that caused reading frame shifts were identified by 

generating PCR fragments from genomic DNA, which were subcloned into pTOPOII (Life 

Technologies) and sequenced. MCF7 and MCF7-EMT cell lines were kindly provided by Dr. 
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Bruce White (University of Connecticut). HT1080+E1a cells were described previously. To 

generate target cells expressing nano-luciferase, cell lines were infected with the Nano- 

luciferase expressing lentiviral construct pLenti6.2-Nanoluc-ccdb (Addgene) and selected for 

blasticidin resistance (10 µg/ml). 

 

 
 

Western Blots 
 

Cells were lysed in 1x LDS Sample buffer containing 50mM DTT, then heated at 70C. Lysates were run on 

Novex 4-12% Bis-tris gels at 120V for 2hrs. After transfer, membranes were incubated with indicated 

antibodies, then developed using SuperSignal West Pico Chemiluminescent substrate. 

NK cytotoxicity assays 
 

Assay 1: Target cells were plated in 12-well format at 3.5x104 cells per well in triplicate. At 

least one day later, target cells were stained with 1µM CMFDA for 25 min in serum free 

medium, and washed 3x with complete medium. NK92-MI cells were added to wells in the 
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appropriate target cell medium at 3:1 effector to target ratio. At the time points indicated, 

wells were gently washed 3x with complete medium, and cells were lysed in 300uL of 3% SDS 

solution; 100uL of this sample was read in a black opaque 96-well plate (492 excitation/530 

emission) in a BioTek Synergy H1 Hybrid Reader. Signal from (+)NK wells divided by (-) NK wells 

to calculate viability. 

Assay 2: This assay was developed and validated for NK killing previously. Nano-luc expressing 

target cells (see above) were plated at 3.5x104 cells in triplicate in a 12-well plate. The following 

day, NK92-MI cells were added in target cell medium, and, at the indicated time points, 25 µL 

aliquots of the culture supernatant were assayed using the Nano-Luc Assay System (Promega). 

To determine percentage of cells killed by NKs, a non-NK-treated well of target cells was lysed 

in 500 µL of Cell culture lysis buffer (Promega) to measure total nano-luciferase activity. 

FASL cytotoxicity was assayed by plating cells at 4.0x104 per well in triplicate in 12-well plate. 

The next day, Super-FASL (Enzo) was added to 50 ng/mL. At the indicated timepoints, cells were 

washed 2x with 1X PBS and assayed for caspase activation using the Caspase-glo system 

(Promega). 

To assay cells for granzyme B cytotoxicity, target cells plated at 4.0x104 cells per well in 12-well 

plate. The following day , cells were washed in serum-free medium. Cells were permeabilized 

to allow granzyme B entry using streptolysin-O (Sigma) at concentrations that were pre- 

optimized to produce low spontaneous death but promote granzyme B killing (typically, about 

100 ng/ml). Granzyme B, purified as described previously from YT cells, was added to 400 

ng/mL and wells were monitored for cell death. At the indicated time points, 0.1 volumes of 
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Presto Blue Viability Reagent (Life Technologies) was added to wells and incubated 20min at 37° 
 

C. Aliquots (150 µL) were assayed for fluorescence (560nm excitation/ 590nm emission) in 

opaque, black 96-well plates. Presto blue signal from wells treated with streptolysin-O alone 

were used to calculate viability. 

Autophagic Flux Assays 
 

HT1080 +/- GRHL2 cells were retrovirally infected with a tandem GFP/RFP-LC3 vector, then flow sorted 

to select for GFP(+) cells. Following selection, HT1080 +/-GRHL2 tfLC3 cells were plated onto coverslips 

in wells of a 6-well plate at ~50% confluence. 24hrs later cells were Serum Starved in HBSS for 2 hours, 

then either fixed or treated with Bafilomycin (100nM) for 2hrs. Cells were then fixed in 2% 

formaldehyde for10 min then permeabilized in 0.5% TX100 in PBS for 10min. The slides were then 

imaged using a Zeiss Axiovert 200M Fluorescence Microscope. Fields were then quantified for LC3 

punctae using NIS Elements AR software in order to generate the autophagic flux for each cell line. 

Fields quantified: n=4 for all cell lines (except GRHL2+baf. n=5). Cells quantified MXS: n=2507, MXS+baf: 

n=5298, GRHL2: n=2658, GRHL2+Baf: n=8294 

Autophagic Flux= [(Baf. Treated # LC3 punctae) – (Untreated # LC3 punctae)] 

(pcDH1-tflc3.dna was a generous gift from Dr. Wang, Penn State) 

 
 
 

NK Conjugation Assay 
 

Target cells were plated at 3.5x104 cells/well in 12 well plate. 24hrs later, target cells were 

stained with 1 µM CMPTX in Serum Free medium for 25min and NK92-MI cells were stained 

with 1 µM CMFDA in serum Free medium for 25 minutes. Cells were washed 3X, then stained 

NK92-MI cells were resuspended and added to stained target cells in 3:1 effector/target ratio in 
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the presence of 50 µM ZVAD-FMK. At time points, cells were gently washed 3x with complete 

medium to remove unconjugated NK92-MI cells, then fixed in 2% paraformaldehyde for 10 min 

and washed 3xX. The plates were then imaged at 10x and 20x magnification using an 

epifluorescence microscope (Zeiss Axiovert). GFP and Texas Red Channels were used to detect 

CMFDA and CMPTX stain, respectively. Images were then quantified for NK/target ratios using 

Image J software from the WVU Microscope Core Imaging Facility. 

Anoikis Assay 
 

Cells were plated at equal densities into low attachment cell culture plates in Mcf10a media 
 

+0.5% methylcellulose. Cells were incubated at 37C/5% CO2. At time points, cells were re- 

suspended and an aliquot was taken and mixed 1:1 with Caspase 3/7 glo reagent (Promega), 

incubated for 30’, then read on a Wallac Envision Platereader to quantify anoikis. 

qRT-PCR 
 

Duplicate or triplicate total RNAs were prepared from cells in 60mm dishes using the Qiagen 

RNeasy Plus Mini kit. RNA (2.5 µg) were converted to single strand cDNA using the Superscript 

III kit (Life Technologies). One microliter of (3:1 diluted) cDNA was assayed in 20 uL reactions 

using the PowerUp SYBR green master mix (Applied Biosystems) on an Applied Biosystems 7500 

thermocycler. GAPDH was used as the internal control for normalization. 

The following primer sets were used: 
 
 

gene Primer F Primer R 
DCN agaagctctcctacatccgc ccaagtgaagctccctcaga 
SRGN attttcccaccttgacacca ttttatggccatgggaatat 
ZEB1 catacacctactcaactac tttcatcctgatttccatt 
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Col8A1 catttaccgccgagctaacc tgtctgcgggttgtagttct 
Snail gaaaggccttcaactgcaaa tgacatctgagtgggtctgg 
Twist cgggagtccgcagtctta gcttgagggtctgaatcttg 
Rab25- 
2 

cctaaccaagcaccagacct gctgttctgtctctgcttgg 

CDH1- 
2 

tgaagaaggaggcggagaag ctcagactagcagcttcgga 

ESRP1- 
2 

tttgaatccacgagcactgc taagtccatcctcggttgca 

MMP2- 
2 

aggaggagaaggctgtgttc ctccagttaaaggcggcatc 

TP63-2 atgcccagactcaatttagtga ttctgcgcgtggtctgtgt 
OVOL2 tgcaacgtctgcaataaagc acgtgcaggtacaggtcctc 
EPCAM tgcagggtctaaaagctggt ccctatgcatctcacccatc 
ITGB6 tgcgaccatcagtgaagaag gacaaccccgatgagaagaa 
CLDN4 ccggccttatggtgatagtg gcggagtaaggcttgtctgt 
IRF6 gtgaatgccatcttcttccttct cccaggccaaatctccttct 
ICAM1- 
2 

atacaacagcatttggggcc ccacttcccctctcatcagg 

Wnt5a cccgatttagcagtgtcagc tacacagtgccagtctcagg 
RAET1L cttctgttcctgctgttcgg cgggtgtgactgtcttgttg 
S100A4 gagcaacttggacagcaaca tcatttcttcctgggctgct 
CD112- 
2 

ccatgtatgtgtgagctgcc tttctctgggctcatgggtt 

CD155- 
2 

tggggtgaaaatgtctgtgc ggtttactccagcctccact 

GAPDH tgcaccaccaactgcttagc ggcatggactgtggtcatgag 
   

 
 
 
 
 

Antibodies 
 
 

Antibody Application Company Catalogue #/Ref. 
E-Cadherin Western Blot BD Bioscience 610181 
WDR5 Western Blot Cell Signaling D9E1I 
GRHL2 CHIP/Western Blot Sigma AMab91226 
KMT2C CHIP J. Wysocka lab 

(Stanford) 
(Dorighi et al., 2017) 

FLAG Western Blot Sigma F3165-1MG 
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ICAM1 Western Blot Santa Cruz Sc-8439 
AKT (pan) Western Blot Cell Signaling C67E7 

    
 
 
 

Chromatin Immunoprecipitation (CHIP) 
 

CHIP assays were performed as previously described, with the primers listed below. 
 
 

Gene Forward primer Reverse primer 
Rab25 GCTGTCTCTGAAGGTCCTGT AGAGGACGGAAGCTGAGAAC 

CDH1 (5’) CCCCTATCAGTTAGCACCGT AGGTAGGGTAGAGGAGGCTC 

CDH1 (intron 2) GGTTCAAAAGATCCCCTGCG GTCCCCTTTCCTAAGCCACA 

CLDN4 TGGATGGACGGGTTTAGAGG AGGACTCAGAGGGGATCAGT 
OVOL2 TGCCTTAAATCGCGAGTGAG CAGGTAGCGAGCTTGTTGAC 

TP63 GGGGTGGGTGGTAAGGTATT TTGGAAAGAACACTGCCTGC 

ICAM1 ATAAAGGATCACGCGCCCC AGCCCCTCCTTCCCATAAAC 
 
 
 

Bioinformatics and statistics 
 

Retrieval and analysis of the expression levels and EMT scores using publicly available data for 

lung cancer were achieved as follows. Raw expression values (counts) and Z-scores were 

retrieved for LUAD TCGA (provisional, freeze as of June 20,2018) dataset using cBioPortal. EMT 

scores were retrieved from the. For normalization to the IFN-γ transcript levels, raw expression 

data were used (only samples with a detectable (non-zero) counts). Pearson correlation 

coefficients and the corresponding statistical significance values were calculated for the IFN-γ - 

normalized sets of the expression data. For all samples spanning the EMT continuum, the high 

and low subsets were defined as top and bottom quartiles of the scores for each EMT 
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signature. For each gene of interest, the subsets of samples with high and low mRNA expression 

(normalized for IFN-γ transcript levels) were also defined as top and bottom quartiles of the 

corresponding expression range. Statistical significance for the co-occurrence between EMT 

subsets and expression subsets was calculated based on binominal distribution. For NK assays, 

qPCR, and conjugation assaysStudent’s Two Tailed T test was used to compare significance 

 
 
 

Poly(I:C) Viability Assay: 
 

Mcf10aneoT/ +GRHL2/ +gr sg2 were plated at 20,000 cells per well 12 well plates. 48 hrs later, 

2ug of Poly:IC was mixed with 500uL optimem, mixed ,then 3uL Lipofectaime RNAimax was 

added, mixed. Incubated for 15mins. Added to cells that had been washed 1x and refed with 

Optimem. Incubated 37C for 4hrs, washed 2x with normal medium. Incubated 14hrs in normal 

medium, then 50uL of PrestoBlue reagent added to each well. Incubated until good color 

change was observed, then read in a black 96well plate on a platereader using PrestoBlue 

setting. 

RNAseq Experiments 
 

Mcf10aneoT, Mcf10aneoT+GRHL2, Mcf10aneoT+gr sg2 cells were plated in triplicate at equal, 

subconfluent, densities. Cells were treated with 50ug/mL of poly(I:C) for 3hrs, or 400U/mL 

recombinant IFN-γ for 12hrs. Cells were then lysed and processed to make RNA using the 

Qiagen RNeasy Plus Mini kit. RNA was shipped to Genewhiz, where reads were conducted, then 

raw data was shipped to Dr. James Denvir (Marshall) for formatting. Fold induction was 

calculated by averaging triplicate FPKM after poly(I:C) treatment and dividing by triplicate 
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average before ply(I:C) treatment. Genes were then ranked by fold induction. For GSEA 

analysis, GSEA formatted .txt files were created by aligning the absolute expression (FPKM) 

after poly(I:C) stimulation for the triplicate samples from each cell line. This dataset was 

manually cleansed of most genes that were not expressed or had zero reads across all the 

samples. The GSEA formatted .txt file was uploaded to Broad Institute GSEA software and was 

queried against a curated set of “interferon” gene sets downloaded from “msigdatabase.org”. 

These gene sets were curated by downloading all gene sets from msigdatabase.org that were 

found associated with the search term “interferon”. Enrichments with a False Discovery Rate 

FDR<0.25 and a normalized enrichment score NES of >1.2 were considered. 

Extracellular Matrix Switch Experiments 
 

Extracellular matrix was deposited and isolated according to the methods described by (Au - 

Hellewell, Au - Rosini, & Au - Adams, 2017). Generally, cells were plated in multi-well tissue 

culture treated plates until confluent. Cells were washed, then briefly lysed using Ammonium 

hydroxide with agitation. Cellular and medium milieu suspension was then aspirated and wells 

were washed numerous times. This method removes cells, but leaves matrix behind relatively 

intact. Mesenchymal or epithelial derivatives were then plated at subconfluent densities on the 

opposing matrix type. After attachment, these cells were then subjected to an NK assay as 

described above to characterize matrix effects on sensitivity to NK92mi cells. 

 
 
 

Serglycin Overexpression/ Conditioned Media Experiments 
 

The long isoform of Serglycin codes for a cytosolic, non-secreted form. 
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>NM_001321053 (longest isoform, contains signal peptide): 

atgat gcagaagcta 
 

361 ctcaaatgca gtcggcttgt cctggctctt gccctcatcc tggttctgga atcctcagtt 
421 caaggttatc ctacgcggag agccaggtac caatgggtgc gctgcaatcc agacagtaat 
481 tctgcaaact gccttgaaga aaaaggacca atgttcgaac tacttccagg tgaatccaac 
541 aagatccccc gtctgaggac tgaccttttt ccaaagacga gaatccagga cttgaatcgt 
601 atcttcccac tttctgagga ctactctgga tcaggcttcg gctccggctc cggctctgga 
661 tcaggatctg ggagtggctt cctaacggaa atggaacagg attaccaact agtagacgaa 
721 agtgatgctt tccatgacaa ccttaggtct cttgacagga atctgccctc agacagccag 
781 gacttgggtc aacatggatt agaagaggat tttatgttat aa 

457bp 
 

>NP_001307982.1 serglycin isoform 1 precursor [Homo sapiens] 
 

MMQKLLKCSRLVLALALILVLESSVQGYPTRRARYQWVRCNPDSNSANCLEEKGPMFELLPGESNKIPRL 
RTDLFPKTRIQDLNRIFPLSEDYSGSGFGSGSGSGSGSGSGFLTEMEQDYQLVDESDAFHDNLRSLDRNL 
PSDSQDLGQHGLEEDFML 

 
cDNA was generated from HMLE-MSP cells using First Strand Protocol. cDNA was PCR amplified 

using primer sets designed to amplify the Long “L” isoform. 

Primer Sequences: 
 

SRGN-L-F:atgatgcagaagctactcaa 

SRGN-R: ttataacataaaatcctctt 

PCR product was gel extracted and purified, then re-amplified with SRGN primers that 

contained NotI restriction enzyme sites. 

SRGN (w/ NotI sites) Primer sequences: 
 

SRGN-L-F2: tattaaGCGGCCGCCCACC atgatgcagaagctactcaa 

SRGN-R2: tattaaGCGGCCGC ttataacataaaatcctctt 
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After digestion with NotI restriction enzyme, product was PCR purified, then ligated into 

the vector “pMXS-ires-blast-delta-stuffer”. Ligation reaction was transformed into STBL3 

competent E.coli strain. Colonies were selected, midi-prepped and sent for sequencing by 

Sequetech™ (Mountain View, CA) to verify insert. Plasmids were packaged into GP2 cells and 

retrovirus was harvested. Cells were then infected with SRGN retroviral construct and assayed 

for NK killing as described above. 

For Conditioned Media experiments, cell lines expressing high levels of SRGN were 

cultured and allowed to approach confluence. Media was harvested from cells, concentrated, 

and western blotted to verify presence of secreted SRGN. This conditioned media was then 

exchanged for non-SRGN rich media on sensitive cells, and NK assay was conducted to 

determine effects of SRGN conditioned media on sensitive cells. 

GRHL2 Immunohistochemistry Breast Cancer Tissue Microarray 
 

We thank the IU Simon Cancer Center at Indiana University School of Medicine for the 

use of the Tissue Procurement & Distribution Core, which provided Tumor Microarray Service. 

IHC staining was conducted by Dr. Naira Margaryan at WVU. GRHL2 protein staining was scored 

as either 0, +1, +2, or +3. Statistical analysis was conducted using a Student’s Two Tailed T test. 

https://cancer.iu.edu/research-trials/facilities/tissue/policies.php 
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