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ABSTRACT 

Production Allocation of Reservoir Layers Using Data-Driven Reservoir 

Modeling  

SEMAA ALESSA 

The pros of having a commingled layer scheme would be considered high with successful reservoir 

management. If not, the cons will impact the production drastically as unfortunate consequences may result in 

reservoir fluids communication, well integrity issues, and production termination. Although the plane requires 

optimizing production with minimal capital investments and operating expenses, it is an enormous challenge 

considering commingled layers frequent surveillance and workover requirements. 

As the value of information is a decision tool for the surveillance frequency, the oil industry often uses static 

assumptions as an economical replacement of dynamic measurements such as KH static modeling. However, the last 

is misleading for not considering the effect of dynamic attributes such as reservoir pressure and fluid properties. 

Simultaneously, the evolution of Artificial Intelligence (AI) and Machine Learning (ML) made the challenge of 

allocating commingled layers allocation possible since AI does not build assumptions based on static properties but 

rather pick the static and dynamic patterns associated with rock and fluid properties. Accordingly, AI and ML 

application was used in this research as a new approach for commingled layers allocation estimation, which is known 

technically as Top-Down Modeling (TDM). TDM features the entire acquired static and dynamic field measurements 

through Artificial Intelligence and Data Science that utilizes Machine Learning, Fuzzy and crisp Logic via Neural 

Networks to develop a reservoir model. 

TDM was tested on a synthetic heterogeneous reservoir model with three commingled layers across 63 wells 

in conjunction with multi-random comingling schemes throughout wells' lifespan. As the static KH modeling proven 

ambiguous in picking the effect of reservoir pressure on production profile per layer, a high certainty TDM modeling 

was successfully achieved both horizontally and vertically on a layer basis which confirms the capability of TDM in 

allocating commingled layers production in terms of certainty, and operational cost. 
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CHAPTER I 

INTRODUCTION 

1.1 ALLOCATION OPTIMIZATION OVERVIEW 

Having a comingled scheme is challenging in term of allocation certainty among layers, and as obviously, 

the permeability derived from cores is considered the most representative, but it is rather expensive to run through 

the entire reservoir. Hence, oil industries prefer the least reservoir development cost approaches, which are 

associated with calibrating permeability models with different techniques and tools. 

After calibrating permeability models, another risk factor associated with portion estimation per layer. 

While the typical method involves using the permeability thickness static modeling (KH), this allocation approach 

can be misleading as it is unable to adjust for deferential pressure, skin build, multi-phase flow, and PVT 

properties. The static KH modeling assumes that the percentage of fluid distribution among layers is a function 

of permeability and thickness only; however, even well logs calibrated mobility model is debatable since core 

mobility is upscaled for a complex reservoir structure. 

In this case, the most known successful technique to acquire an accurate allocation per layer is achieved 

with flow tests. For example, (Blekhman, Diaz, Carrica, Corbett, & Coca, 2001) integrated well logs permeability 

with the Pressure Transient Analysis test (PTA), and as a result, PTA provided data within well drainage area 

with extended scale, counting for the dynamic layer effect.  

On the other hand, other testing tools were used to calibrate the mobility models, such as production 

logging. (Sullivan, Belanger, Dunn, Jenkins, & Skalinski, 2006) proven a mismatch between permeabilities 

derived from well logs and production logging, primarily in carbonate reservoirs and commingled layers because 

of the misleading upscaled core permeability in heterogeneous reservoirs.  

While the latest studies have shown that permeability derived from production logging tools and cores 

are highly alike, driving the conclusion that production logging is the most efficient in increasing allocation 
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certainty (Davarpanah, Mirshekari, Behbahani, & Hemmati, 2018). However, due to budget constraints, it is less 

likely to achieve frequent testing. Hence, scientists started developing other economic approaches.  

One of these approaches that might decrease the field development budget is shifting the industry forward 

more data investments and a higher understanding of the value of information (VOI). Multi-Phase Allocation 

method (MPA) is one of these investments. The last was developed by (Kechut, et al., 2017) which involved 

combining mathematically-described derived relative permeability water-cut trends per layer with a stochastic 

search engine to produce multiple allocation solutions, as an accurate allocation per layer is defined based on the 

minimal error between the total measured rates, and the total computed rates. MPA technique was later tested 

successfully by (Chia, et al., 2019). 

In the past decade, the world was shifting towards data science and (Widarsono, et al., 2005), was the 

first to use data rather than empirical formulated models in commingled layers allocation through fuzzy logic. 

Later consequently, Artificial Intelligence (AI), a fuzzy logic application, has evolved to solve higher complexities 

through Neural Networks (NN). Machine Learning (ML) is one of AI tools that is used for pattern recognition, 

such as robotic systems applications that challenged humans’ capabilities. 

 

1.2 TOP-DOWN MODELING OVERVIEW 

With VOI challenges, AI proved successfully with economic improvements in different industries such 

as finance, medicine, and security, and it became necessary to test this technology for some possibilities to 

overcome VOI restrictions to decrease uncertainties associated with modeling commingled layers allocation.  

There are many Machine Learning tools used in reservoir modeling, the one that is involved in this thesis 

known as Top-Down Modeling (TDM). TDM is a machine learning tool invented by Intelligence Solutions Inc. 

as a new reservoir modeling tool; it can feature the entire static and dynamic field measurements as an alternative 

of empirical formulated methods in complex reservoir systems (Mohaghegh, 2017). Instead, TDM uses Artificial 

Intelligence and data mining by incorporating Fuzzy Logic and Neural Networks to understand the complexity of 

the reservoir model. Hence, modeling reservoir pressure, saturation, and rate profile at each grid block.  

In 2009, TDM was successful in predicting the production profile of new wells by utilizing information 

from offset wells, as well as, TDM successfully identified the presence of gas cap and remaining reserve using 

well logs and the production data (Mohaghegh, 2009). This technology tested on different oil fields such as 

Niobrara Field (Haghighat, Mohaghegh, Gholami, & Moreno, 2014); as a result, the authors were capable of 

generating acceptable accuracy TDM for the unconventional shale reservoir for production forecast and sensitivity 

analysis. 

Besides, TDM used in modeling the Powder River Basin Field to identify the depletion distributions over 

time and sweet spots for infill drill with limited surveillance that challenged the traditional modeling techniques 
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(Maysami, Gaskari, & Mohaghegh, 2013). TDM technology was also tested successfully in modeling reservoir 

production profiles with low computational cost in the Scurry Area Canyon Reef Operators Committee 

(SACROC) (Alenezi & Mohaghegh, 2017). 

In conclusion, TDM has proven to be a reliable reservoir modeling tool for mature fields, and it is 

essential to test it on commingled layer allocation since the technology has proven successful in many publications 

in solving VOI challenges in terms of economy and time. 

 

1.3 PROBLEM STATEMENT 

The objective of this thesis is to test the capability of TDM in successfully allocating commingled layers 

production rate using Intelligence Solutions Incorporation tool IMagine® with a perplexing model scenario 

generated by the numerical reservoir simulation tool CMG: the scenario involved generating heterogeneous 

reservoir model with three permeable layers, three impermeable layers throughout 63 wells in conjunction with 

multi-random completions schemes through each well lifespan. 

Chapter two enlightened brief InSite to the Top-Down Modeling, while chapter three elaborated the 

methodology used in setting the commingled model milestones through the numerical reservoir simulation, as 

well as the TDM approach. Later, chapter four conversed the comparison of KH and TDM modeling versus 

numerical reservoir simulation. And lastly, chapter five summarized the TDM approach findings and upcoming 

future work possibilities. 
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CHAPTER II 

LITERATURE REVIEW 

It is impossible to forecasts production if the model fails to history matches. Hence, this thesis is testing 

the capabilities of the Top-Down Modeling in history matching commingled layers production, and this chapter 

covers an introduction to the Top-Down Modeling technology, along with its pros and cons.  

 

2.1 AN INTRODUCTION TO TOP DOWN MODELING 

Unlike numerical simulation, TDM is a data-driven reservoir modeling tool that depends on field 

measurements rather than mathematical formulations. It utilizes well static and dynamic data to construct a full 

field reservoir model using data mining, artificial intelligence, and machine learning. 

 Another factor that makes TDM different than numerical simulation is that it defines physics based on 

the complexity of the reservoir by assigning weights to data, then patterns recognize the most influential using 

Artificial Intelligence. This approach may give the impression that what might be considered necessary in 

numerical reservoir simulation, which might be consumption for time and money, might not be the case for TDM. 

On the contrary, both models are alike in term of representing fluid flow in the porous media, since TDM uses the 

Spatio-temporal database, while numerical simulation uses the diffusivity equation. 

Despite the advantages of using TDM, the common question that keeps raising is “how many wells are 

required to have successful TDM?”, to answer whether enough data is available for a successful TDM, some 

aspects must be considered such as reservoir complexity, the number of wells, and time resolution. For example, 

the number of wells is a function of age and frequency of the production, 20 wells with days’ time resolution 

producing for 2 to 3 years may result in a successful TDM (Mohaghegh, 2017).  

The TDM structure used in this thesis is divided into three significant foundations: Spatio-Temporal 

Database, Feature Selection, and Data-Driven Reservoir Modeling. 
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2.1.1 SPATIO-TEMPORAL DATABASE 

Since it is data-driven reservoir modeling technology, the way data is assembled and affiliated has a 

crucial impact on the model, here though it affiliated in a manner that represents fluid flow in porous media both 

in space and time. It represents sophisticated aspects that are essential in reservoir modeling and production history 

matching. These aspects that affect production represented by wells communication with offset wells, well 

operation constraints, reservoir characteristics among wells, and multi-completion among field lifespan. 

The Spatio-temporal database includes two significant data types: Static data that doesn’t change with 

time (such as formation thickness, and well location), and dynamic data that are time-dependent (such as reservoir 

pressure, and flow rate). These data are provided for both focal wells and offset wells, as the nearby offset wells 

impact production. 

 The Spatio-temporal database is advantageous in term of eliminating time steps required to be solved in 

the partial differential equation because of the ultimate size of the Spatio-temporal database that is a direct 

outcome of the decisions made in time and space. 

 

2.1.1.1 STATIC DATA 

Static data are time-independent and represent the role of the complex and isotropic geology on 

production by defining the drainage area and well impaction on other offset wells based on reservoir 

characteristics. These characteristics are summarized by the factors that control hydrocarbon storage and transport 

such as water saturation, porosity, permeability, top, and thickness of the formation. 

It is important to notate that TDM also have the capabilities of determining the distributions of reservoir 

characteristics and populate the geological model using geostatistical and interpolative algorithms in the Spatio-

temporal database stage, while it is up to the modeler whether to use them in data-driven modeling since it might 

help TDM learning and correlating wells with the reservoir characteristics. 

 

2.1.1.2 DYNAMIC DATA 

Dynamic data consisted of two categories: dynamic data and dynamically modified static data. While 

production and injection data configure the dynamic data, dynamically modified static data may get represented 

by wellhead pressure, the number of days of production, chock size, change in completion length. Statically 

dynamic data represents human intervention with the well. Another factor that shows that the Spatio-temporal 

database is not merely a data entry tool.  
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TDM can distinguish between the different impacts related to reservoir characteristics and operational 

constraints implicitly during the training process as well as, in case of having production fluctuation related 

operational issues that are not related to the reservoir characteristics, TDM is capable of deconvoluting the training 

process to better history match this operation constraint. 

 

2.1.1.3 RESOLUTION IN TIME AND SPACE 

Resolution in time and space is a function of the total number of wells and the length of their production; 

it signifies that TDM is appropriate for mature fields only with a reasonable amount of production history to learn.  

TDM accounts for field development phases since not all wells drilled in the same time; therefore data 

is presented into different fashions: static data, dynamically modified static data, and dynamic data, hence drainage 

area in TDM changes with these bases using two interconnected grid systems; Cartesian and polygon-based; the 

Cartesian used for well-based static characteristics and the polygon-based grid system used for dynamically 

modified that represent the average static characteristics of the drainage volume. 

The first grid system divides the field into fine squares approximately 1 acre. The grid at the well location 

includes the static properties of that well, and then data is populated using geostatistics entirely. Alternatively, the 

second grid system represents an ultimate drainage area accessible to a well during the different development 

phases of the field. 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

Figure 1: Example of Cartesian and polygon-based grid systems during filed lifespan (Mohaghegh, 2017) 
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2.1.1.4 SPATIO-TEMPORAL DATABASE STRUCTURE 

Having offsets for each well increases the understanding of the fluid flow as all wells get involved 

multiple times as offset to their surroundings. What makes TDM advantageous over numerical streamline 

simulation is that it doesn’t use specific formulation that is constant among all simulations; instead, TDM learns 

the communication between wells in each reservoir differently based on reservoir characteristics, including 

geological nuances such as faults. Not limited to geology, TDM understands well trajectories and completions, as 

well as the operational constraints. 

The number of offset wells for TDM is selected based on reservoir engineering commonsense; a reservoir 

with a higher permeability expects more offsets as compared to a tight reservoir. The same applies to the field 

age, wells spacing, and formation thickness. The Spatio-temporal database generates sectors based on focal wells 

number. Each sector includes the focal well and the offset wells, generating two sets of records; the first classified 

as time-independent such as: well construction and trajectory characteristics, static parameters, polygon-based 

static parameters for focal wells, and offsets, and completion characteristics. While the other is time-dependent, 

generated as a series of records at a time (t) for the first sets of records such as the operational constraints for focal 

and offset wells, production and injection rates, completion changes, and the number of days of production. Figure 

2 shows multiple examples of sectors for a developed field in the Middle East. The green and grey shades represent 

the focal and offsets, respectively. 
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Figure 2: Example of Spatio-temporal database sectors for a developed field in the Middle East (Mohaghegh, 2017) 

 

2.1.2 FEATURE SELECTION  

Once data generated using the Spatio-temporal database, an option in TDM allows for feature selection 

to exclude the parameters that have the least impact on the time-dependent variables because as robustness 

increases, TDM validity decreases, which are known for TDM as the curse of dimensionality (Mohaghegh, 2017). 

The technology used to accomplish feature reduction in TDM is fuzzy cluster analysis. To better 

understand this approach, we understand that porosity, oil saturation, pay thickness together accounts for 

hydrocarbon pore volume (HPV), TDM uses feature selection algorithm to decide the most influential parameter 

among the four variables. 
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2.1.2.1 FUZZY LOGIC 

Inspired by the human brain, Fuzzy logic approximate reasoning by defining the degree of membership 

in vague data instead of the crisp bivalent manner. Approximating reasoning is held through fuzzy rule; using 

operators and (“If,” “Then”) to assign membership to fuzzy linguistics (“High,” “Low,” “Good”), while the engine 

that assists in defining relations based on fuzzy rules sets is called Fuzzy Inference (Mohaghegh, 2017) 

Given the following example: using Mamdani’s inference method (Jamshidi, Vadiee, & Ross, 1993) to 

find the relationship between reservoir development cost and total reserve to estimate the likelihood of reservoir 

development. Based on fuzzy membership, reservoir development costs defined as (“Low,” “Moderate,” and 

“High”). On the other hand, the total reserve is represented by its membership “Low,” “Moderate,” and “High”. 

With having 9 memberships, 9 rules fires in parallel. The output is a result of the intersection between the two 

input variables using the operator “And” at every 2 memberships rule. 

In Figure 3, crisp values for reservoir development cost and total revenue were used as an input, fuzzified 

later to a membership between 0 and 1 followed by firing parallel rules using fuzzy operators for approximating 

reasoning. Results are combined and defuzzied Later to produce crisp results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Example of fuzzy rule for approximation Reasoning  
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2.1.3 DATA-DRIVEN RESERVOIR MODELING 

Having observed that most of the reservoir engineers may question field measurement certainty rather 

than the numerical simulation approach during modeling if the results don’t match the reality. TDM takes a 

different approach in a manner that doesn’t assign deterministic nonflexible functional relationships among field 

static and dynamic measurements; instead, TDM finds relationships between inputs and outputs that explained in 

the Spatio-temporal database. This approach accomplished using machine learning artificial neural networks, and 

the output is a matrix of coefficients that are used later for deploying the TDM. After feature and input selection, 

TDM requires toning: dataset partitioning, neural network topology, and the structure. And lastly, TDM is trained 

and deployed. Yet, it is imperative to understand the basics of artificial neural networks first (Mohaghegh, 2017). 

 

2.1.3.1 ARTIFICIAL NEURAL NETWORK TRAINING  

Understanding Neural Networks requires Neuroscience understanding. Neuroscience explains how the 

brain learns at the molecular level; the human brain consists of a dense network of fibers pathways with more than 

1010 neurons. Information gathered by different senses is carried through the synapses within the network 

pathway to short-term memory. After processing the short-term memory, the human brain compares the inputs 

with the previously stored in the long-term memory; however, degradation of memory can occur due to the billions 

of neurons that race in the same time with different information from the axons through the synapses to the other 

axon which is the reasoning why our memories are fake or not complete. The last may overcome by strengthening 

the connections. Scientists believe that strengthened connection between brain cells improves learning, this is 

easily understood while comparing the fact of our daily basis practices, since the neurons communicated so often, 

they formed a tight bond connection, and they comprehend their path so that they can be retrieved when needed 

(Donald J. Ford, 2011).  

Artificial neural networks mimic the human brain; it consists of collections of neurons that organized in 

a multi-layer network: the input layer, hidden layer, and output layer. The input layer consists of neurons that 

correspond to the input variables, and the same applies to the output layer. While the neurons in the hidden layer 

are responsible for featuring and pattern recognition, while the strength of connections between neurons defines 

the learning. 

One of the most popular Neural Networks used in the oil industry is the Supervised Learning  after 

feeding inputs and outputs, using a specific topology and algorithm, the neural network trained until the network 

output converges to actual output (Schuld & Petruccione, 2016). Supervised learning divided into 3 portions: 

training, calibration, and verification. In the training process, weights between neurons are adjusted until 

convergence is achieved through backpropagations iterative process (Haykin, 2009); however, If the model over 

trained, memorization occurs, and generalization is difficult to achieve. Nevertheless, Since the calibration data 
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absent in training, it can help to verify training generalization capabilities (Hernandez, 2016). Once calibration is 

done, validation can take place to verify the entire model.  

Figure 4 show several interconnected layers with different sets of neurons. The neuron works as a 

processing element that analyzes inputs and assigns weight (wi) to them, weights represented by the strength of 

the connection between the neuron and the next layer. Once the weight is assigned, the total input signal at neuron 

level summed, comparing them with other hidden neurons threshold levels through an activation function to 

decide what neuron to fire to the next level (Haykin, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3.2 DATASET PARTITIONING 

When inputs for the neural network are selected, the next step is to assign portions of the dataset for 

training, calibration, and validation. The role of the training is to define the strength of the connection between 

neurons, represented by weight in each connection, and the optimal value of weights used to calculate the output. 

Partitioning dataset for training could fall in range (40-80) %. 

On the other hand, calibration could fall between 10 and 30%, and it play a role in checking training 

generalization capabilities that are represented by the metric correlation coefficient R2 or the mean square error 

MSE; however, calibration play no role in defining weights between neurons, it only decides when to stop the 

training.  

The third relevant category that defines the success of the predictive models in history matching is called 

verification. The verification data set is set aside during the entire training process; therefore, it validates the 
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Figure 4: Schematic of multi-Layer neural network operations  
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predictive model capabilities in history matching an utterly new dataset. Verification partitioning in history 

matching divided into 3 categories: Sequential history matching, random history matching, and mixed history 

matching. 

Sequential history matching is done through dividing training, calibration, and verification dataset 

sequentially, while random history matching selects training, calibration, and verification in a completely random 

manner. On the contrary, mixed history matching is a combination of the 2 methods that have the same assets for 

the verification; however, training and calibration randomly selected (Mohaghegh, 2017).  

 

2.1.3.3 TOPOLOGY AND STRUCTURE  

Generally, within neural networks, the structure and topology are a function of different factors, including 

the number of hidden layers, number of hidden neurons, the combination of the activation functions, the structure, 

and the nature of the connection between neurons which result in an infinite number of approaches. 

TDM uses fully connected neural networks, and it consists of 3 layers: an input layer, hidden layer, output 

layer. The structure of neural networks in TDM considered a simple structure, so a significant part of the success 

is related to the assimilation and the affiliation of the Spatio-temporal database (Mohaghegh, 2017), and that why 

data-driven reservoir modeling require reservoir engineer rather than a computer engineer.  

The parameters that adjusted in TDM neural networks: the learning rate, momentum, number of hidden 

neurons, and the activation functions. The learning algorithm used by TDM is known as “backpropagation” 

(Haykin, 2009) which involve calculating outputs based on the strength of the connections between the synapses, 

comparing the calculated output to the actual ones, then backpropagate to enhance the strength of the connection 

till convergence occur. 

 

2.1.3.4 TDM DESIGN AND DEPLOYMENT 

Once predictive models generated, crisp and fuzzy rules known as the intelligent agent in TDM evaluates 

and initiates the execution and implementation of the generated predictive models to fulfill the multiple constraints 

for the entire field as well as honoring the effect of physics and geology, reservoir management and surface 

facilities (Mohaghegh, 2017). 

The predictive model's key output depends on the project objective, and it is a function of cause and 

effect; for example, when oil produce at time t, reservoir pressure decreases at time t-1, as well as, water saturation 

increases at time t-1. So, when we generate predictive models, oil at time t doesn't have water saturation at a time 
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t; instead, it has it at time t-1. Then when predictive models generated, an intelligent agent controls data trafficking 

among the generated models and implies the constraints stated previously. Another example explained if the 

objective of the model is to model reservoir pressure, reservoir engineer understands that deferential pressure 

allows well to flow, hence, oil and water rate can choose at time t and t-n for focal wells; however, offset wells 

production affects the focal well at time t-1 because of their drainage area.   

In conclusion, the author's impression on TDM is that it is a tool that is far away from statistics; it is a 

form of evolution of numerical reservoir simulation using data. Since empirical formulations built-in laboratories 

based on tests and statistics, they were then followed by upscaling on field level that is way more complex, 

especially in unconventional reservoirs. Instead, data-driven reservoir modeling is considered a reservoir 

modeling tool on the actual scale. 
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CHAPTER III 

METHODOLOGY 

Testing TDM capabilities in history matching commingled layers allocation achieved in three stages, the 

first involved developing numerical reservoir model that satisfies the objectives. Secondly, developing the TDM, 

and lastly comparing both TDM and Numerical reservoir simulation results to test if TDM was successful in 

matching the numerical reservoir simulation model. 

 

3.1 NUMERICAL SIMULATION MODELING 

A black oil model developed with a heterogenous anticline structure consisted of 67,600 * 6 grid blocks 

with 55.25ft * 50.05ft grid size. The model encompasses three permeable layers sealed with three impermeable 

layers with both aquifer and injector support, as shown in Figures 5 and 6. 

 

 

Figure 5: 2D Layer 1 top map 
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As layers were 100% sealed, there is no pressure communication window across; however, pressure 

variation across layers was created through the anticline structure. Moreover, immense pressure variation was 

created as a function of the multi-depletion plan per well in terms of production and injection as the first objective 

is to test the static KH modeling in picking production patterns per comingled layers as well as testing TDM 

capabilities in picking these pattern with a simplistic reservoir simulation model of one rock type single porosity 

model. 

 

  

 
 
 
 
 
 
 

 

  
 

Figure 6: 3D reservoir top map 

 
 
 
 
 



 

16  
  

3.1.1 RESERVOIR CHARACTERISTICS 

For mimicking reality, heterogeneity was added among porosity, permeability, and thickness. The 

reservoir model used a single porosity and permeability model across the grid cell. The model included one rock 

type across all the layers, Figure 7 shows relative permeability throughout the reservoir layers, while Figure 8 

shows porosity and permeability distributions in J direction. 

.  

Figure 7: relative permeability versus water saturation 

 
It is essential to understand that the current model is way simplistic as compared to the reality that 

different layers possess different fluids properties resulting in different mobility across layers as a function of 

pressure and temperature; however, this model assumes similar fluids properties across the reservoir. On the other 

hand, heterogeneity added more complexity by limiting pressure communication through channeling, especially 

in layers 1 and 3, while Layer 6 classified as an amalgamated formation with more pressure communication. 

These earlier complexities meant to test the effect of reservoir pressure on the production profile in 

commingled layers as the depletion surge and swap effect is crucial on commingled layers allocation estimation 

on the reservoir level individually, adding high uncertainties to the static allocation modeling. 
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Figure 8: Layers 1, 3, and 6 porosity (left) and permeability (right) respectively 
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3.1.2 DEPLETION PLAN 

The depletion plan mainly objective is to create as much turbulence in the reservoir pressure by adding 

multi random completion schemes for wells individually. The design was to drill 53 wells on different phases, as 

shown in Figure 9, furthermore changing completions among layers yearly to create comingled and non-

comingled completions. 

 

1995 

 

1998 

 

2002 

 

2007 

 

2009 

 

2010 

Figure 9: Reservoir development phases 

Since aquifer support was not enough, ten injectors added for pressure support and better sweep 

efficiency. Injector completions divided into two stages; Injector-001-Injector-005 will inject for a longer time in 

particular layers more than the others to mimic the reality that some wells are not injecting enough in specific 

segments due to integrity or skin build issues. The other phases of injection through Injector-006-Injector-010 

will inject in different layers for shorted time steps. Figures 10 and 11 show yearly production and injection 

distributions among layers, respectively. 
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Figure 10: Producers yearly completion schemes 
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Figure 11: Yearly injection plan 

 

3.1.3 WELLS CONSTRAINTS  

The modeled constraints involved the following operations: 

• Shut-off the layer with higher water break through if total layers water cut > 90%          

• Shut-in the well if the total oil rate < 50 bbl/d                     

• Shut-in the well if the bottom hole flowing pressure (BHFP) < = 1500 psi (bubble point pressure) 

Figure 12 shows the total months of production after applying the constraints. It is vital to make sure that 

data achieve the requirements of data availability in time and space for the next stage in TDM once operation 

constraints added while polygons highlight the lack of particular completion pattern, which might be useful to 

study in case of cross-flow between layers was an option. 
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Figure 12: Bubble map of the monthly open layer’s distributions among completion schemes 
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3.1.4 DYNAMIC DATA 

As planned to challenge TDM; depletion, and completion schemes were set to simulate the complexity 

of the reservoir system, and one of these scenarios was the sweep efficiency. Since injection through layers 

operated with multiple frequencies, a considerable impact exhibited. Figures 13, 14, and 15 show residual oil as 

a result of the depletion plan and the heterogeneous reservoir characteristics such as permeability. The Figures 

also show the pressure window of the injectors detected by the high-pressure zones along with the observed water 

production.  

Table 1 gives some information regarding the total production and injection per layer; showing that oil 

is being depleted in different portions as Layer 6 contributes to 54.6% of the total oil production, while Layer 1 

and 3 contribute to 21.4% and 23.9% respectively. On the other hand, the recovery factor (RF) was higher in 

Layer 6 considering the amalgamated homogeneous structure. 

Table 1: Cumulative Production and Injection Rates Per Reservoir Layer 

 

Significant vertical pressure variation among the three layers detected in Figure 16 as Layer 6 depleted 

at a higher rate as compared to Layer 3 and Layer 1. It helps test the efficiency of the static KH modeling in 

allocating commingled layers with different differential pressures as well as testing TDM capabilities in picking 

these intricate pressure patterns for history matching. 

Layer Cumulative 
Oil  

(bbl) 

Cumulative Gas  

(ft³) 

Cumulative 
Water  

(bbl) 

Cumulative 
Injection  

(bbl) 

RF 

(%) 

1 27,493,966 11,476,723,179 13,257,933 45,638,452 55 

3 30,668,525 12,801,869,114 18,236,068 55,285,248 56 

6 70,140,044 29,278,345,381 31,345,138 114,403,437 59 
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.  

 

 Water Injection  Water Production  Oil Production 

Figure 13: Layer 1 Cumulative Bubble Map across water saturation and reservoir pressure 
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 Water Injection  Water Production  Oil Production 

Figure 14: Layer 3 Cumulative Bubble Map across water saturation and reservoir pressure 
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 Water Injection  Water Production  Oil Production 

Figure 15: Layer 6 Cumulative Bubble Map across water saturation and reservoir pressure 
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Figure 16: Pressure map in I and J direction showing vertical pressure variation across layers 
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3.1.5 STATIC KH MODELING 

For the purpose of comparing numerical reservoir modeling with the KH static modeling, KH derived 

rates were calculated using the following technique: 

qi = qt
kihi

∑ kihin
i=1

 

Where: 

ki = horizontal permeability per layer i 

hi = thickness per layer i 

qt = total flow rate of oil and water 

While oil and water rates were calculated using the following equations: 

qoil, i = qi (100 −𝑊𝑊𝑊𝑊𝑖𝑖%)/100 

qwater, i = qi (𝑊𝑊𝑊𝑊𝑖𝑖%)/100 

Where: 

𝑊𝑊𝑊𝑊𝑖𝑖% = Water cut percentage per layer 

 

Figure 17: Numerical Reservoir Simulation (Actual Rates) versus KH Modeling (KH Rates) 
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3.2 TOP DOWN MODELING 

TDM is consisted of three main processes: data preparation, static modeling, and top-down modeling.   

3.2.1 DATA PREPARATION 

Data preparation must follow a specific manner and format. In this thesis, the following data was fed into 

the TDM tool (IMagine®) for the 63 wells:  

Table 2: Summary of Layer input variables to IMagine® 

 

3.2.1.1 STATIC DATA  

An Example of static data is shown for Layer 1 in Figure 18. 

 

Figure 18: A view of Layer 1 static data 

Static Data

•Latitude
•Longitude
•Top
•Pay Thickness
•Porosity
•Permeability

Dynamically Modified Static Data

•Reservoir Pressure
•Bottom-Hole Flowing Pressure
•Water Saturation
•Water Injection

Dynamic Data

•Oil Rate
•Water Rate
•Gas Rate

Well Name Type X (ft) Y (ft) Top (ft) Bottom (ft) Thickness (ft) Phi (%) Swi (%) K (md)
Well-001{153,47,1} P 17790.5 19169.15 4145.21 4170.38 25.1646 3% 8% 1.11167
Well-002{81,214,1} P 13812.5 10810.8 4023.62 4076.34 52.7234 2% 5% 1.0207
Well-003{155,142,1} P 17901 14414.4 3919.62 3967.22 47.5914 11% 4% 19.1276

Well-004{74,98,1} P 13425.75 16616.6 4148.82 4219.86 71.038 4% 0% 3.89959
Well-005{207,79,1} P 20774 17567.55 4095.68 4114.95 19.2732 7% 5% 1.90208
Well-006{57,81,1} P 12486.5 17467.45 4209.26 4263.4 54.1387 18% 0% 1078.25

Well-007{64,185,1} P 12873.25 12262.25 4112.6 4202.13 89.5265 7% 0% 20.107
Well-008{215,101,1} P 21216 16466.45 4075.41 4095.51 20.0932 5% 4% 1.48777

Well-009{76,62,1} P 13536.25 18418.4 4229.45 4253.33 23.8899 8% 0% 2.27293
Well-010{212,145,1} P 21050.25 14264.25 4098.49 4144.02 45.5259 11% 5% 53.073
Well-011{75,167,1} P 13481 13163.15 4104.83 4197.13 92.296 7% 0% 2.22795
Well-012{109,70,1} P 15359.5 18018 4158.16 4213.49 55.3276 4% 0% 1.42399
Well-013{81,126,1} P 13812.5 15215.2 4109.36 4206.1 96.7375 8% 0% 14.8659
Well-014{212,123,1} P 21050.25 15365.35 4053.01 4083.78 30.7683 8% 4% 1.71129
Well-015{59,206,1} P 12597 11211.2 4096.94 4176.86 79.9229 7% 4% 8.69757
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3.2.1.2 DYNAMIC DATA 

Dynamic data and statically modified dynamic data are arranged in a similar format for the 66 wells 

through 22 years (265 months), as explained in Figures 10 and 11. The following Figure shows an example of the 

oil rate production data preparation format: 

 

Figure 19: Example of dynamic data (Oil Rate SC - Monthly (bbl/day)) 

 

3.2.2 STATIC MODELING 

Within this stage, the Spatio-temporal database generates the Cartesian grid system with a grid size of ≈ 

40 acres. The next step is to determine the distributions of reservoir characteristics and populate the geological 

model using the geostatistical method “Inverse Distance Weighting”. 

The last step in static modeling involves assigning the polygon-based grid systems using the Voronoi 

method (Aurenhammer, 1991) (refer to Figure 20) and calculate the polygon-based volumetrically and the 

geostatistical properties for the entire reservoir. 

Well Name\Date 1/1/1995 2/1/1995 3/1/1995 4/1/1995 5/1/1995 6/1/1995 7/1/1995 8/1/1995 9/1/1995 10/1/1995 11/1/1995 12/1/1995 1/1/1996 2/1/1996
Well-001{153,47,1} 0 54.82589 47.20112 52.08947 53.66534 54.73097 55.58607 56.46095 57.14637 57.709446 57.808804 57.677082 57.70692 57.9481
Well-002{81,214,1} 0 102.1748 90.22081 101.8311 108.8191 113.3939 115.9549 118.4325 120.2247 121.56387 122.74226 122.79047 122.9145 123.0239
Well-003{155,142,1} 0 1390.329 915.1402 941.852 978.8712 1023.613 1058.872 1092.628 1124.063 1153.0333 1172.8734 1187.9187 1215.232 1230.927
Well-004{74,98,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-005{207,79,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-006{57,81,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-007{64,185,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-008{215,101,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-009{76,62,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-010{212,145,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-011{75,167,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-012{109,70,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-013{81,126,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-014{212,123,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-015{59,206,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-016{157,83,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-017{136,97,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-018{89,81,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Well-019{112,129,1} 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 20: Cartesian and polygon-based grid systems across the reservoir at the final phase 

 

3.2.3 TOP-DOWN MODELING 

As explained in chapter 2, static and dynamic data must be selected initially for the focal producers and 

the offset injectors and producers. Once data are prepared for each model, the next stage is to use the IMagine® 

feature selection option to pick the most influential parameter and training the predictive model, the last step 

achieved within the build and history match section in IMagine®. 

The next step is TDM Design that requires designing the TDM model based on the required output 

sequence, while the sequence decision predetermined in the Build and history match section in IMagine®. 

The final step is TDM deployment, where TDM evaluates and initiates the execution and implementation 

of the generated predictive models as well as implying the operational constraints. 

 



 

31  
  

3.2.3.1 BUILD AND HISTORY MATCH 

Since we are history matching 3 layers, 3 separate TDMs are required. Each TDM consist of 5 models 

in the following sequence: 

 

Figure 21: TDM model attributes sequence selections among 5 models 

 

For more information regarding the selection sequence per model, please refer to the TDM design and 

deployment section in chapter 2. It is also up to the modeler whether to use time step (t-2) in the initial data 

selection. 

The offset wells for each TDM is a function of well communication, so in amalgamated formation such 

as Layer 6, 3 offsets were excellent but as Layer 1 is more heterogenous, 2 offset achieved better results than 3 

offsets. 

Table 3 shows the initial attributes selection for Layer 6 q(t)-Oil model with 3 offset producers and 1 

offset injector, knowing that only attributes located in Figure 21 changes across the five models. 
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Table 3: The Initial variable input selection for Layer 6 oil q(t)-Oil model 

Focal Well 

Static Data Dynamic Data Dynamically Static data 

X/Longitude FBH Pressure (psi)(t) q(t-1)-Gas 

Y/Latitude FBH Pressure (psi)(t-1) q(t-2)-Gas 

Pay thickness (ft) FBH Pressure (psi)(t-2) q(t-1)-Oil 

Permeability (md) Reservoir Pressure (psi)(t-1) q(t-2)-Oil 

Porosity (%) Reservoir Pressure (psi)(t-2) q(t-1)-Water 

Top (ft) Water Saturation (%)(t-1) q(t-2)-Water 
 Water Saturation (%)(t-2)  
   

Offset Well 1, 2, and 3 

Static Data Dynamic Data Dynamically Static data 

X/Longitude(1P) FBH Pressure (psi)(t)(1P) q(t-1)-Gas(1P) 

Y/Latitude(1P) FBH Pressure (psi)(t-1)(1P) q(t-2)-Gas(1P) 

Distance(t)(1P) FBH Pressure (psi)(t-2)(1P) q(t-1)-Oil(1P) 

Pay thickness (ft)(1P) Reservoir Pressure (psi)(t-1)(1P) q(t-2)-Oil(1P) 

Permeability (md)(1P) Reservoir Pressure (psi)(t-2)(1P) q(t-1)-Water(1P) 

Porosity (%)(1P) Water Saturation (%)(t-1)(1P) q(t-2)-Water(1P) 

Top (ft)(1P) Water Saturation (%)(t-2)(1P)  
   

Offset Injector 1 

Static Data Dynamic Data Dynamically Static data 

X/Longitude(1I) FBH Pressure (psi)(t)(1I) Injection Rate Layer 6(t)(1I) 

Y/Latitude(1I) FBH Pressure (psi)(t-1)(1I) Injection Rate Layer 6(t-1)(1I) 

Distance(t)(1I) FBH Pressure (psi)(t-2)(1I) Injection Rate Layer 6(t-2)(1I) 

Pay thickness (ft)(1I) Reservoir Pressure (psi)(t-1)(1I)  

Permeability (md)(1I) Reservoir Pressure (psi)(t-2)(1I)  

Porosity (%)(1I) Water Saturation (%)(t-1)(1I)  

Top (ft)(1I) Water Saturation (%)(t-2)(1I)  

 

After the initial selection of the attributes, TDM allow determining the most influential parameters to be 

included in the training process, since it is not preferred to use all the first selected attributes. The key performance 

indicator per attribute presented for Layer 6 q(t)-Oil model, shows that FBHP and Pr have a high impact on oil 

production for the focal well. 
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Table 4: Key Performance Indicator for Layer 6 q(t)-Oil model 

 Attribute KPI(%) 

1 q(t-1)-Gas 100 

2 q(t-1)-Oil 100 

3 q(t-2)-Gas 82 

4 q(t-2)-Oil 82 

5 Permeability (md) 79 

6 FBH Pressure (psi)(t-2) 73 

7 Reservoir Pressure (psi)(t-2) 63 

8 FBH Pressure (psi)(t-1) 54 

9 Time 45 

10 Reservoir Pressure (psi)(t-1) 43 

11 FBH Pressure (psi)(t-2)(2P) 41 

12 FBH Pressure (psi)(t-2)(1P) 39 

13 Reservoir Pressure (psi)(t-2)(3P) 39 

14 Reservoir Pressure (psi)(t-2)(1P) 38 

15 Water Saturation (%)(t-2) 38 

16 Pay thickness (ft)(3P) 37 

17 Water Saturation (%)(t-1) 37 

18 Pay thickness (ft)(2P) 34 

19 Porosity (%) 34 

20 Reservoir Pressure (psi)(t-2)(2P) 33 

21 Top (ft)(3P) 27 

22 FBH Pressure (psi)(t-2)(3P) 27 

23 Reservoir Pressure (psi)(t-1)(3P) 27 

24 FBH Pressure (psi)(t-1)(1P) 26 

25 Pay thickness (ft) 26 

26 Pay thickness (ft)(1P) 26 

27 Water Saturation (%)(t-1)(2P) 26 

28 FBH Pressure (psi)(t-1)(2P) 26 

29 Top (ft) 26 

30 Water Saturation (%)(t-2)(2P) 25 

31 Reservoir Pressure (psi)(t-1)(1P) 25 

32 Reservoir Pressure (psi)(t-1)(2P) 25 

33 Top (ft)(2P) 25 

34 Permeability (md)(2P) 25 

35 X/Longitude 25 

36 X/Longitude(3P) 24 

 Attribute KPI(%) 

47 Injection Rate Layer 6(t-1)(1I) 21 

48 FBH Pressure (psi)(t-1)(3P) 21 

49 Y/Latitude(1P) 21 

50 Porosity (%)(2P) 20 

51 Porosity (%)(1P) 20 

52 q(t-2)-Gas(1P) 20 

53 q(t-2)-Oil(1P) 20 

54 Porosity (%)(3P) 19 

55 Water Saturation (%)(t-1)(3P) 19 

56 Top (ft)(1I) 19 

57 Water Saturation (%)(t-1)(1P) 19 

58 q(t-1)-Gas(1P) 19 

59 q(t-1)-Oil(1P) 19 

60 Y/Latitude(2P) 19 

61 q(t-1)-Water(3P) 19 

62 Permeability (md)(3P) 19 

63 q(t-2)-Water(3P) 19 

64 FBH Pressure (psi)(t)(2P) 18 

65 FBH Pressure (psi)(t) 18 

66 X/Longitude(2P) 18 

67 q(t-2)-Water(2P) 18 

68 FBH Pressure (psi)(t-2)(1I) 18 

69 q(t-1)-Water(2P) 18 

70 Y/Latitude(1I) 18 

71 FBH Pressure (psi)(t)(3P) 18 

72 Distance(t)(1P) 17 

73 q(t-2)-Oil(3P) 17 

74 q(t-2)-Gas(3P) 17 

75 q(t-2)-Water(1P) 17 

76 q(t-1)-Water(1P) 17 

77 FBH Pressure (psi)(t-1)(1I) 17 

78 q(t-1)-Oil(3P) 17 

79 q(t-1)-Gas(3P) 17 

80 Permeability (md)(1P) 16 

81 Injection Rate Layer 6(t)(1I) 16 

82 FBH Pressure (psi)(t)(1P) 15 
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37 Pay thickness (ft)(1I) 24 

38 FBH Pressure (psi)(t)(1I) 23 

39 Reservoir Pressure (psi)(t-2)(1I) 23 

40 Water Saturation (%)(t-2)(3P) 22 

41 Distance(t)(1I) 22 

42 Water Saturation (%)(t-2)(1P) 22 

43 Reservoir Pressure (psi)(t-1)(1I) 22 

44 Injection Rate Layer 6(t-2)(1I) 21 

45 Distance(t)(3P) 21 

46 Top (ft)(1P) 21 
 

83 q(t-1)-Gas(2P) 15 

84 q(t-1)-Oil(2P) 15 

85 Y/Latitude(3P) 14 

86 q(t-2)-Gas(2P) 14 

87 q(t-2)-Oil(2P) 14 

88 X/Longitude(1P) 13 

89 Y/Latitude 13 

90 Distance(t)(2P) 12 

91 X/Longitude(1I) 12 

92 q(t-1)-Water 1 

93 q(t-2)-Water 1 
 

 

 

Once the feature selection accomplished, data partitioning is next. As explained in the chapter 2 data 

partitioning section, a partitioning sequence must be identified. Among the three partitioning methods, random 

partitioning selected for Layer 6 q(t)-Oil model with 20% Calibration, 8% verification, and 72% training. 

Models are trained for as many numbers of epochs till the best convergence occurs. Figure 22 shows an 

example of a good convergence for Layer 6 q(t)-Oil model at epoch number 3812, where R2 is 0.98, 0.91, 0.94 

for training, calibration, and verification, respectively. 

 

  

Figure 22: Layer 6 q(t)-Oil model training, verification and calibration 
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3.2.3.2 DESIGN AND DEPLOY TDM 

Same for q(t)-Oil predictive model, all the other 4 predictive models presented in Figure 16 are generated 

and set in the same sequence. IMagine® offers the options for history matching and forecasting; however, the 

objectives of the thesis is to test TDM capabilities in history matching commingled layers. 

At the end of the deployment, history match data prepared for oil, water, and gas production, as well as 

history matching of reservoir pressure and water saturation. Figure 23 shows history matching results for Layer 6 

production for the entire reservoir. 

 

 

Figure 23: Entire Reservoir Layer 6 areal oil, gas, and water production (TDM versus Numerical Simulation) 
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While Figure 24 and 25 show an example of the 4 generated TDM’s results for Layer 1, Layer 3, Layer 

6, and total layers for well-030. 

 

 

Figure 24: Well 30 total vertical production (TDM versus Numerical Simulation) 
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Figure 25: Well-030 oil, gas, and water production per Layer (L1, L3, and L6) (TDM versus Numerical Simulation) 
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CHAPTER IV 

RESULTS AND DISCUSSION 

As the KH modeling shown high discrepancies as compared to the numerical reservoir simulation, the 

behavior was investigated based on water cut and formation pressure, since the designed depletion plan anticipated 

high-pressure fluctuation within the reservoir.  

4 TDM models were generated and tested against numerical reservoir simulation and later compared to 

KH allocation modeling. TDM resolution in time and space tested for wells with data shortage as well as, the 

TDM key performance indicator tool was evaluated. 

 

4.1 KH STATIC MODELING DISCREPANCIES 

The KH allocation model generated for the 53 wells with results showing a high mismatch as a function 

of reservoir pressure and water cut per Layer. This behavior makes sense since fluids mobility is also pressure-

dependent; however, the only case KH is applicable is associated with similar deferential pressure across each 

comingled Layer. KH validity might only be presented in layers with a pressure window considering single-phase 

flow. 

Figure 26 represents the effect of reservoir pressure (block pressure) on Layer allocation. While an 

overestimation and underestimation of the flow rate per Layer as a function of block pressure. 
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Figure 26: Well-020 biography showing the effect of block pressure on allocating flow rate 

 

 

Figure 27: Well-013 biography showing the effect of block pressure on allocating flow rate 

Well-013 biography indicates a clear impact of the block pressure at the year 2000 as Layer one witnessed 

pressure increase, the flow rate discrepancies increased, which give the impression that KH can be misleading 

even if the produced fluid was single phase. 
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4.2 TDM MODELING VERSUS KH MODELING 

One of the significant KH modeling challenges is that it fails in predicting layers allocation as water-cut 

increase since it is a single-phase modeling tool. TDM could solve this challenge through the accurate estimation 

of water cut distributions among layers, as presented in Figure 28 TDM modeling and Figure 29 KH modeling: 

 

Figure 28: TDM water and oil rate versus numerical reservoir simulation 
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Figure 29: KH water and oil rate versus numerical reservoir simulation 

 
Results also assessed on the full field level. Discrepancies associated with the static KH modeling shown 

in Table 5 that an underestimation of oil production within layers 1 and 6 observed. The last could be critical in 

term of oil storage design since the field will produce an extra 1.4 MMbbl; moreover, water production 

overestimated, which might impact reservoir pressure response as the depletion plans suggest enough water 

injection. 
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Table 5: Cumulative production per numerical reservoir simulation and static KH modeling 

 

Numerical Reservoir 

Simulation 

(bbl) 

Static KH 

Modeling 

(bbl) 

Gap 

Layer 1 Cumulative Oil Rate 27493966.8 22849289.36 4644678 

Layer 3 Cumulative Oil Rate 30668525.04 34651270.11 -3982740 

Layer 6 Cumulative Oil Rate 70140044.07 69370129.41 769914.6 

Layer 1 Cumulative Water Rate 13257933.67 11850000 1404255.3 

Layer 3 Cumulative Water Rate 18236068.07 20940000 -2701494 

Layer 6 Cumulative Water Rate 31345138.83 31479745.77 -134607 

 

 

Figure 30-35 represents the static KH modeling and TDM modeling versus the numerical reservoir 

simulation. TDM was better in picking reservoir properties' effect on allocation profile, especially in the early 

field life where high-pressure turbulence anticipated. KH failed in modeling layers 1 and 3 because they are more 

heterogeneous than Layer six, having to know that skin was assumed zero across all layers, alongside with single 

rock type. As more the reservoir properties vary among layers, the more uncertainty expected.   

 

Layer 1 Entire Reservoir  

 

Figure 30: Layer 1 areal oil KH modeling (left) versus TDM modeling (Right) 
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Layer 3 Entire Reservoir  

 

Figure 31: Layer 3 areal oil KH modeling (left) versus TDM modeling (Right) 

 

Layer 6 Entire Reservoir  

 

Figure 32: Layer 6 areal oil KH modeling (left) versus TDM modeling (Right) 
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Layer 1 Entire Reservoir  

 

Figure 33: Layer 1 areal water KH modeling (left) versus TDM modeling (Right) 

 

Layer 3 Entire Reservoir  

 

Figure 34: Layer 3 areal water KH modeling (left) versus TDM modeling (Right) 
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Layer 6 Entire Reservoir  

 

Figure 35: Layer 6 areal water KH modeling (left) versus TDM modeling (Right) 

 

4.3 TDM AREAL AND VERTICAL MODELING 

Layers were evaluated individually for history matching which resulted in 4 TDMs. The generated 

synthetic model ignored the hydrostatic friction among layers, resulting in no crossflow; however, as the flow 

gets more complex, the topology and structure of TDM can be adjusted to compensate for that effect. The current 

challenges presented to TDM is only understanding the dynamic block pressure effect on the production profile. 

The list of results shown in Figures 36-45, proven TDM capability in picking pressure effect patterns 

that KH was incapable of. 
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Figure 36: Well-034 production profile per Layer 
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Figure 37: Well-034 vertical production profile  
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Figure 38: Well-013 production profile per Layer 
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Figure 39: Well-013 vertical production profile 
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Figure 40: Well-036 production profile per Layer 
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Figure 41: Well-036 vertical production profile 
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Figure 42: Areal Layer 1 production profile 
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Figure 43: Areal Layer 3 production profile 
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Figure 44: Areal Layer 6 production profile 
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Figure 45: Areal entire reservoir production profile 
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4.4 RESOLUTION IN TIME AND SPACE INVESTIGATION 

As mentioned in chapter 2, the resolution in time and space is a function of the total number of wells, 

and the length of their production is critical in TDM. So, to perform better quality control, it is essential to 

investigate layers' behavior in the lack of offsets production. Figure 46 suggests areal production gaps highlighted 

by the polygons that require a further check for decreasing uncertainties. 

 

 

Figure 46: Layer 1, 3, and 6 cumulative months on production 

So, Layer three behavior investigation held within well-023, well-026, and well-035, yellow dots on on 

Figure 46 respectively, as well as Layer six behavior in well-006 and well-018, yellow dots on Figure 46 

respectively. The results are shown in Figure 47-51, suggesting proper history matching in allocating production. 

Despite some discrepancies within Layer six at the well-023 oil and well-035 water profile, the difference is less 

than 150 bbl/d suggesting that TDM is capable of approximate reasoning within the current synthetic. 
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Figure 47: Well-023 Layer 3 allocation profile 
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Figure 48: Well-026 Layer 3 allocation profile 
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Figure 49: Well-035 Layer 3 allocation profile 
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Figure 50: Well-006 Layer 6 allocation profile 
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Figure 51: Well-018 Layer 6 allocation profile 

 

4.5 KEY PERFORMANCE INDICATOR 

TDM offers KPI behavior analysis using Fuzzy cluster analysis that provides understanding of reservoir 

behavior through finding patterns within vague data. The KPI behavior patterns can be used as a reference tool 

for completion recommendations such as new completions location, stimulation, and recommended operation 

constraints. 
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Layer 1 

 
Layer 6 

 

Figure 52: Key Performance behavior for X/Longitude of Layer 1 and Layer 6 
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Layer 1 

 
Layer 6 

 

Figure 53: Key Performance for offsets distance of Layer 1 and Layer 6 
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Layer 1 

 
Layer 6 

 

Figure 54: Key Performance for water injection of Layer 1 and Layer 6 
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Figure 52 represents an understanding of reservoir heterogeneity, showing considerable flexibility in 

Layer six as a function of well location production since Layer 6 is homogenous. However, Layer one 

heterogeneity has a significant influence on production since most of the locations have low production as 

compared to Layer 6. This KPI behavior gives an impression regarding the new well’s location. 

Another understanding of the reservoir behavior seen throughout Figure 53; that the distance of offset 

wells has a higher impact on Layer six as compared to Layer one because of the high-pressure communication in 

Layer 6. 

Lastly, Figure 54 represents the injection effect on oil production, and because Layer 1 is heterogeneous, 

the injection effect on production has a lower impact than in Layer 6. 

 

4.6 TDM’S TRAINING, VALIDATION, AND CALIBRATION 

The earlier discussed results passed the TDM training, calibration, and verification briefly explained in 

the literature review section. 4 TDM models were deployed after five levels individually (refer to Figure 21) to 

obtain the results presented above.  The error metric R2 for the entire TDM models was more than 0.95 for training, 

validation, and calibration, as shown in Table 6 suggest which validate and verify TDM capabilities in history 

matching commingled layers. 
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Table 6: TDM error metrics 

Layer Model Training Calibration History 

Matching Epoch 

Layer 1 TDM 

q(t)-Oil 0.99079 0.96201 0.95598 14521 
q(t)-Gas 0.99206 0.95121 0.98779 12549 

q(t)-Water 0.99514 0.99544 0.99662 7166 
Pr(psi)(t) 0.99315 0.98467 0.99032 6236 
Sw(%)(t) 0.99759 0.99501 0.99578 6168 

 
Layer 3 TDM 

q(t)-Oil 0.98528 0.98278 0.9834 5203 
q(t)-Gas 0.99253 0.97743 0.97189 8152 

q(t)-Water 0.99663 0.99471 0.99542 6176 
Pr(psi)(t) 0.98701 0.9764 0.9808 6825 
Sw(%)(t) 0.99842 0.99695 0.99647 9464 

Layer 6 TDM 

q(t)-Oil 0.99115 0.97087 0.98422 6795 
q(t)-Gas 0.99103 0.9549 0.97166 5128 

q(t)-Water 0.99575 0.99117 0.98883 4510 
Pr(psi)(t) 0.99373 0.97164 0.9804 5172 
Sw(%)(t) 0.99767 0.99381 0.9928 5413 

Total Layers 
TDM 

q(t)-Oil 0.96462 0.9584 0.94647 5183 
q(t)-Gas 0.97403 0.96508 0.96612 4840 

q(t)-Water 0.9662 0.96017 0.97133 2312 
Pr(psi)(t) 0.96932 0.95888 0.96816 5129 
Sw(%)(t) 0.99142 0.98698 0.98723 2275 

 

 

On the other hand, it is important to mention that 10% of the wells records was used for history matching 

while at least 70% of the data was used for training the TDM’s with more details within Table 10. 
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Table 7: partitioning across TDM models 

Layer Model 
Training 

% 

Calibration 

% 

History 

 Matching 

 % 

Layer 1 

q(t)-Oil 80 10 10 

q(t)-Water 70 20 10 

q(t)-Gas 80 10 10 

Layer 3 

q(t)-Oil 70 20 10 

q(t)-Water 70 20 10 

q(t)-Gas 70 20 10 

Layer 6 

q(t)-Oil 70 20 10 

q(t)-Water 70 20 10 

q(t)-Gas 70 20 10 

Total 

Layers 

q(t)-Oil 80 10 10 

q(t)-Water 80 10 10 

q(t)-Gas 80 10 10 

 

Figures 55-58 tells more about TDM efficiency in history matching results shown by the green symbol 

approving excellent history matching for 10% of the total data per model. While having more than 0.97 R2 for 

pressure and water saturation predictive models gives certainty that TDM is also a tool for forecasting reservoir 

pressure and water saturation. 
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q(t)-Oil 

 
Pr(psi)(t) 

 
q(t)-Water 

 
Sw(%)(t) 

 
q(t)-Gas  

 

Figure 55: Layer 1 TDM numerical reservoir simulation versus neural networks perdition cross plot 
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q(t)-Oil 

 
Pr(psi)(t) 

 
q(t)-Water 

 
Sw(%)(t) 

 
q(t)-Gas  

 

Figure 56: Layer 3 TDM numerical reservoir simulation versus neural networks perdition cross plot 
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q(t)-Oil 

 
Pr(psi)(t) 

 
q(t)-Water 

 
Sw(%)(t) 

 
q(t)-Gas  

 

Figure 57: Layer 6 TDM numerical reservoir simulation versus neural networks perdition cross plot 
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q(t)-Oil 

 
Pr(psi)(t) 

 
q(t)-Water 

 
Sw(%)(t) 

 
q(t)-Gas  

 

Figure 58: Total layers TDM numerical reservoir simulation versus neural networks perdition cross plot 
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CHAPTER V 

CONCLUSION AND 

RECOMMENDATIONS 

A study held comparing Top-Down modeling (TDM) with the commonly static KH modeling (KH) in 

allocating production from commingled layers. The research performed on a heterogeneous reservoir consisting 

of three producing layers commingled differently with a single rock type. 

KH was not capable of adjusting the effect of reservoir pressure among layers within one rock type 

reservoir, while TDM was excellent in picking pressure/production patterns. This finding drives the conclusion 

that KH expected to have high uncertainty with different rock types as the reservoir pressure affects fluids 

mobility. 

The results have shown that TDM is an excellent history matching tool both vertically and horizontally 

in commingled layers with high certainty. TDM has proven better in allocating water cut since KH is a single-

phase modeling tool and usually associated with high ambiguities as water-cut increases. 

TDM requires domain expert rather than a computer scientist because the use of the software requires 

understandings of the flow dynamics as a function of heterogeneity in order to perform space and time calibrations 

since trial and error practices shown that the more heterogenous the reservoir the less offset wells correlations 

required. 

The key performance indicator can be used as a decision tool for completion recommendation since it 

offers understanding of reservoir behavior and can be considered as a tool for lesson learning since the KPI 

behavior can provide understanding of what can impact the production. 
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TDM can be used as a tool for pressure and saturation forecasting since the history matching of pressure 

and water saturation models recorded more than 0.97 on the error metrics.  

If TDM is capable of picking reservoir rock and fluids patters, it might be a complemental tool in the 

lack of data such as well testing which solves most of the brown oil fields surveillance challenges; however, it is 

recommended to test TDM efficiency in time and space for the lack of field measurements. 

As this synthetic model built on one rock type, it is recommended to test TDM on multi rock types and 

under crossflow scenarios, as well as TDM must be tested on different history matching partitioning. 
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