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Abstract 

Comparing and Linking Organic Carbon and Iron in Soil and Headwater Stream in a 

Pasture and a Forest Catchment in a Central Appalachian Region, West Virginia 

Lili Lei 

Continued global warming and surface water brownification are two main environmental 

issues which have attracted attention and are related to soil organic carbon (SOC) cycling. Iron 

oxides differ in reducibility and thus have essential roles in regulating SOC preservation and 

remineralization in soil and transport of dissolved organic carbon (DOC) from soil to surface water. 

In the central Appalachian region, anthropogenic disturbances are increasing, which leads to major 

issues of soil degradation and depletion of SOC concentrations. Cropland and pasture soils are 

subject to intense disturbances compared to the forest soil, which may lead to differences in SOC 

fractions and Fe oxides, their interactions, and the export of DOC to surface water. Variable 

geology and climate have confounding effects on SOC fractions and dynamics. Thus, the use of 

pseudo-replicated studies may be informative. Thus, a single fine-scale watershed was chosen in 

this study, which was derived from the same parent materials and had similar climate conditions. 

These perspectives will provide a theoretical basis for a better understanding of SOC cycling in 

watersheds of differing scales. They will also aid the development of agricultural best management 

practices to increase soil ecological functions in mitigating global warming and surface water 

brownification. 

SOC fractions have various stabilization mechanisms and turnover times, which change with 

depth and are highly influenced by land use. In this study, we used total organic carbon (TOC), 

particulate organic carbon (POC), mineral-associated organic carbon (MOC), and carbon 

management index (CMI) as indicators to compare cropland with manure application (CM) and 

continuous pasture (CP) to a hardwood forest (HF) at soil depths of 0-10 and 10-25cm. Land use, 

depth, and the interactions between them all had significant influences on TOC, POC, MOC, 

MOC/TOC ratio, and CMI except for the main effect of land use on TOC. CM showed significantly 

larger POC (12.4 g kg-1) and smaller MOC (8.36 g kg-1) at 10-25cm compared to HF and CP soils. 

CM soil at 10-25cm had improved soil quality and SOC lability as indicated by a significantly 

larger CMI value (419.2) while CP soil had decreased soil quality and SOC lability at both 0-10cm 

(83.7) and 10-25cm (73.6) compared to HF soil. This study implied high sensitivity of the SOC in 

cropland and pasture surface soils to degrade under disturbance, which implies that better 

management strategies are still needed to improve soil carbon quality for these agricultural systems. 

The essential roles of Fe oxides in stabilizing long-term soil SOC, especially aromatic 

dissolved organic carbon (DOCaro), are well-established in forest soils and sediments. We chose 

to focus on these processes in agricultural soils in which the input and translocation of native DOC 

to deeper soils is impacted by management practices. We quantified SOC, Fe oxide bound SOC 

(Fe-bound OC), and the DOCaro sorption in a forest, a cropland, and a pasture soil at 0-10 and 10-

25 cm. Significantly larger amounts of Fe oxides in the cropland soil was observed compared to 

the forest and pasture soils at both depths (p < 0.05). Land management practices and depth both 

significantly influenced proportion of the Fe-bound OC (p < 0.05). Larger maximum sorption of 

DOC in the cropland (315.0 mg kg-1) and pasture (395.0 mg kg-1) soils than the forest soil (96.6 

mg kg-1) at 10-25 cm was found. DOCaro sorption decreased in the three soils at 0-10 cm (slope of 

-0.002 to -0.014 L2 mg-2 m-1) as well as the forest soil at 10-25 cm (-0.016 L2 mg-2 m-1) with

increasing equilibrium DOC concentration. Conversely, the cropland and pasture soils at 10-25



cm increased (0.012 to 0.014 L2 mg-2 m-1). These results indicate that the forest, cropland, and 

pasture managed soils may have more complex sorption behaviors in stabilizing DOCaro and non- 

DOCaro than previously known. 

DOC and iron (Fe) have been observed to be important contributors to surface water 

brownification. Additionally, the DOC quality influences water color by forming Fe-DOC 

complexes that provide additive effects and is influenced by dominant land use type within 

watersheds. However, the influence of quantity and quality of DOC on Fe and water color is poorly 

understood in headwater streams. The aim of this study was to investigate the effects of DOC and 

Fe on water color in forest (FC) and pasture (GFC) fine-scale watersheds to remove the 

confounding effects of climate and soil parent materials. Significant differences of DOC, Fe, and 

water absorbance at 420 nm (a420) between FC and GFC were found (p < 0.05). A dominant 

contribution to water color was from DOC (95.5 - 63.7%) with a decreasing trend when Fe 

increased from 0.011 to 0.258 mg L-1. There were no significant interactions between FC and GFC 

and Fe on either a420/DOC (p = 0.06) or specific ultraviolet absorbance at 254 nm (SUVA254) (p = 

0.30). Increasing a420/DOC and SUVA254 were significantly associated with increasing Fe 

concentration (p < 0.01). Significant interactions were found between FC and GFC and Fe on 

spectral slope ratio (S ratio) (p < 0.01). The response rate of S ratio with increasing Fe per unit 

was 0.235 for GFC while it was -11.043 for FC. These differences indicate that land use may 

change the quality of DOC, influence Fe-DOC interactions, and thus affect water color.  

DOC and Fe concentrations cause surface water brownification. Land-use effects on the 

quantity and quality of DOC are well-established in large-scale watersheds. However, there is 

more to understand about how soil Fe oxides are involved in DOC and Fe processes in soil and 

stream, especially in fine-scale catchments. We investigated DOC, SUVA254, exchangeable Fe 

(Feex), and amorphous Fe concentrations (Feamor) in soils as well as DOC, SUVA254, and dissolved 

Fe in stream water within a fine-scale forest and pasture catchment. Forest soil had a significantly 

larger average DOC concentration (71.7 ± 33.8 mg kg-1) and lower average SUVA254 (2.8 ± 1.0 L 

m-1 mg-1) than the pasture soil at 0-10 cm (DOC: 71.7 ± 33.8 mg kg-1; SUVA254: 4.2 ± 1.4 L m-1

mg-1). The pasture soil at 0-10cm had significantly larger average Feex (132.8 ± 57.6 mg kg-1) and

Feamor (813.9 ± 461.2 mg kg-1) concentrations than the forest soil (Feex:120.3 ± 55.4 mg kg-1;

Feamor: 303.2 ± 213.5 mg kg-1). Negative correlations between Feex and DOC in the forest soil and

positive correlations between Feex, Feamor and SUVA254 in both forest and pasture soils were found

(p < 0.05). The pasture headwater stream had significantly larger DOC, SUVA254, and Fe than the

forest headwater stream (p<0.05). This study indicated Fe oxides may have different interactions

with DOC, which leads to differences in the quantity and quality of DOC and dissolved Fe in

watersheds of differing scales.

Collectively, the results indicated land use and season were important factors altering the SOC 

and Fe dynamics in agricultural and forest catchments. Additionally, this study indicated Fe oxides 

may interact with DOC differently in watersheds differing in scale, which leads to differences in 

the quantity and quality of DOC and dissolved Fe in these watersheds. Therefore, studies 

combining the effects of Fe-reducing processes are helpful in explaining the changes of DOC and 

Fe and thus surface water brownification at local scale. To better understand Fe-oxyhydroxides 

and DOC interactive processes at fine-scale local environments, the next step should be to establish 

the effects of hydrologic processes and DOC sources. This may help explain DOC stabilization 

and destabilization as well as surface water brownification. 



iv 

Acknowledgements 

It is a long journey to pursue a Ph.D. and I am thankful to all individuals and organizations 

who supported throughout the entire span of my doctoral study at WVU. 

First, I would like to give special thanks to my advisor Dr. Louis McDonald. I definitely could 

not have done this without his belief in me. His expertise, encouragement, and guidance have 

helped me immensely. I want to thank all my other committee members (Dr. Thompson, Dr. 

Vesper, and Dr. Peterjohn) for their guidence and support. This dissertation combined all the 

knowledge I have learned from all of them, and I cannot imagine completing the study without 

their help.  

Second, I would like to express my gratitude toward Division of Plant and Soil Sciences, Davis 

College of Agriculture, Natural Resource and Design at West Virginia University for providing 

this opportunity. I would like to thank Dr. Eugenia M. Pena-Yewtukhiw, Dr. Sven Verlinden, Dr. 

Zachary Freedman, and Dr. Yong-Lak Park. Their career advices made the final stage less 

stressful. In addition, I would like to thank Dr. Kang Mo Ku, Joan Wright, Lanjun Deng, and 

Robert Rockis for their assistance in lab analysis. I would like to thank Dr. Katrina Stewart, Dr. 

Nikki Byrne-Hoffman, Dr. Amy Kuhn, Dr. Vagner Benedito, and Dr. John Oughton for all their 

support of improving my teaching ability. I also want to thank both my past and present colleagues 

for their friendship and support along the way (Yu-Chun Chiu, Fumin Wang, Rebecca McGrail, 

Bethani Chambers, Yadav Sapkota, Kelly Morgano, Kara Dallaire, Justin Brackenrich, Katie 

Stutler, Chris Skinner, James Leonard, Christopher Burney, and Jarrett Fowler). 

Last, I want to thank my parents, Xinsehng Lei and Xueli Wang, for their unconditional love, 

support, and scarifies so that I may pursue my education here at West Virginia University. I thank 

my husband (Zhanxiao Ma) and my daughter (Jessie Ma) for all their unconditional love, support, 

and joy they bring to my life. I would like to thank other family members and friends for their 

help and encouragement. 



v 

Contents 

Abstract ........................................................................................................................................... ii 

Acknowledgements ........................................................................................................................ iv 

List of Tables ............................................................................................................................... viii 

List of Figures ................................................................................................................................. x 

Chapter 1 Introduction and Literature Review ............................................................................... 1 

1.1 Introduction ............................................................................................................................... 1 

1.2 Literature Review...................................................................................................................... 3 

1.2.1 Effects of land management practices on SOC fractions................................................... 4 

1.2.2 Role of Fe minerals on preservation of SOC ..................................................................... 6 

1.2.3 Contribution of DOC to SOC ............................................................................................ 7 

1.2.4 Quantity and quality of DOC under different land management practices ....................... 8 

1.2.5 Interactions between Fe, DOC, and SOC preservation.................................................... 10 

1.2.6 Role of DOC and Fe on surface water color .................................................................... 11 

1.2.7 Research questions ........................................................................................................... 13 

1.3 Hypothesis and Objectives ...................................................................................................... 16 

Chapter 2 Soil Organic Carbon Fractions and Carbon Management Index in the Surface Soil: 

Comparing a Forest,  a Cropland, and a Pasture Soil in a Central Appalachian Region, West 

Virginia ......................................................................................................................................... 18 

2.1 Abstract ................................................................................................................................... 18 

2.1 Introduction ............................................................................................................................. 19 

2.2 Materials and Methods ............................................................................................................ 21 

2.2.1 Study site description ....................................................................................................... 21 

2.2.2 Soil sampling ................................................................................................................... 22 

2.2.3 Soil physical and chemical analysis ................................................................................. 23 

2.2.4 Carbon management index .............................................................................................. 24 

2.2.5 Statistical analysis ............................................................................................................ 25 

2.3 Results ..................................................................................................................................... 25 

2.3.1 Total organic carbon ........................................................................................................ 25 

2.3.2 Particulate organic carbon................................................................................................ 25 

2.3.3 Mineral-associated organic carbon .................................................................................. 26 

2.3.4 Carbon management index (CMI) ................................................................................... 26 

2.4 Discussion ............................................................................................................................... 26 

2.4.1 Soil carbon fractions ........................................................................................................ 26 

2.4.2 Implication for long-term land use and management practices under climate change .... 28 

2.5 Conclusions ............................................................................................................................. 29 



vi 

Chapter 3 Fe-bound Organic Carbon and Sorption of Aromatic Dissolved Organic Carbon in 

Surface Soil: Comparing a Forest, a Cropland, and a Pasture Soil in a Central Appalachian Region, 

West Virginia ................................................................................................................................ 36 

3.1 Abstract ................................................................................................................................... 36 

3.2 Introduction ............................................................................................................................. 37 

3.3 Materials and Methods ............................................................................................................ 41 

3.3.1 Study site description ....................................................................................................... 41 

3.3.2 Soil sampling ................................................................................................................... 42 

3.3.3 Soil physical and chemical analysis ................................................................................. 43 

3.3.4 Adsorption experiments ................................................................................................... 44 

3.3.5 Isotherms .......................................................................................................................... 45 

3.3.6 Statistical analysis ............................................................................................................ 45 

3.4 Results and Discussion ........................................................................................................... 46 

3.4.1 Effects of soil texture on TOC, Fe-bound OC in proportion, and reactive Fe ................. 46 

3.4.2 TOC and Fe-bound OC in forest, cropland, and pasture managed soils.......................... 47 

3.4.3 Reactive Fe and OC: Fe molar ratio among three land use management practices ......... 48 

3.4.4 Association between OC and amorphous and exchangeable Fe ...................................... 49 

3.4.5 Sorption of DOC to three land use management practices soils ...................................... 50 

3.4.6 Changes of aromaticity of DOC during sorption ............................................................. 51 

3.4.7 Implications for land use and stabilization of DOC for long-term SOC accumulation ... 53 

3.5 Conclusions ............................................................................................................................. 55 

Chapter 4 Assessment of Dissolved Organic Carbon and Iron Effects on Water Color Between a 

Forest and Pasture Dominated Fine-scale Catchment in a Central Appalachia Region, West 

Virginia ......................................................................................................................................... 66 

4.1 Abstract ................................................................................................................................... 66 

4.2 Introduction ............................................................................................................................. 67 

4.3 Materials and Methods ............................................................................................................ 70 

4.3.1 Study area and sampling .................................................................................................. 70 

4.3.2 Laboratory analysis .......................................................................................................... 71 

4.3.3 Data analysis .................................................................................................................... 73 

4.4 Results ..................................................................................................................................... 73 

4.4.1 DOC and Fe trends and their relative contribution to a420 ............................................... 73 

4.4.2 Estimating variations of interaction between DOC and Fe ............................................. 74 

4.4.3 Principle component analyses .......................................................................................... 75 

4.5 Discussion ............................................................................................................................... 75 

4.5.1 DOC and Fe contributions to water color ........................................................................ 75 

4.5.2 DOC quality influence DOC-Fe interaction in water ...................................................... 77 

4.5.3 Implication for land use management to mitigate water color increase .......................... 80 

4.6 Conclusion .............................................................................................................................. 81 



vii 

Chapter 5 Comparing Dissolved Organic Carbon and Fe in the Soil and Headwater Streams in a 

Forest and a Pasture Catchment in a Central Appalachian Region, West Virginia ...................... 92 

5.1 Abstract ................................................................................................................................... 92 

5.2 Introduction ............................................................................................................................. 93 

5.3 Materials and Methods ............................................................................................................ 96 

5.3.1 Study area and sampling .................................................................................................. 96 

5.3.2 Laboratory analysis .......................................................................................................... 98 

5.3.3 Statistical analysis ............................................................................................................ 99 

5.4 Results ................................................................................................................................... 100 

5.4.1 Average and seasonal changes of DOC, SUVA254 and Fe concentrations in the soils at the 

forest and pasture catchments ................................................................................................. 100 

5.4.2 Seasonal changes of DOC and Fe concentrations in the forest and pasture headwater 

streams .................................................................................................................................... 102 

5.5 Discussion ............................................................................................................................. 103 

5.5.1 Effects of land-use management practices on the average DOC and SUVA254 in the soil

................................................................................................................................................. 103 

5.5.2 Seasonal changes of DOC and SUVA254 in the forest and pasture soils........................ 104 

5.5.3 Comparison of average of DOC and SUVA between two catchments ......................... 105 

5.5.4 Linking DOC and Fe between soil and stream .............................................................. 107 

5.5.6 Iron role in regulating the quantity and quality of DOC in soils ................................... 109 

5.6 Conclusions ........................................................................................................................... 111 

Chapter 6 Summary and Conclusions ......................................................................................... 121 

Appendix S1................................................................................................................................ 125 

Appendix S2 Predictors for variations of DOC and Fe concentrations in forest and pasture 

headwater streams ....................................................................................................................... 128 

S2.1 Statistical analysis ........................................................................................................... 128 

S2.2 Results............................................................................................................................. 128 

S2.3 Discussion ....................................................................................................................... 130 

S2.3.1 Significant explaining factors of DOC variation in headwater stream ........................ 130 

S2.3.2 Iron role in regulating the quantity and quality of DOC in soils ................................. 131 

References ................................................................................................................................... 136 



viii 

List of Tables 

Table 2. 1 Soil physical and chemical properties at 0-10 cm and 10-25 cm depths under hardwood 

forest (HF), cropland with manure (CM), and continuous pasture (CP) soils. ............................. 30 

Table 2. 2 Impact of land management practice and depth on carbon pool index (CPI), lability 

index (LI), and carbon management index (CMI) ........................................................................ 31 

Table 3. 1 The properties of DOC stock solution, extracted from hardwood forest (HF), cropland 

with manure application (CM), and continuous pasture (CP) soils at 0-5 cm depth, used in sorption 

experiment..................................................................................................................................... 57 

Table 3. 2 Correlation matrix of Spearman correlation coefficients (r) of the investigated 

parameters ..................................................................................................................................... 58 

Table 3. 3 Linear regressions between ΔSUVA254 of DOC solution and equilibrium DOC 

concentration for three land type soils at 0-10 cm and 10-25 cm depths. .................................... 59 

Table 3. 4 Estimated linear regression using a standard square least approach between total organic 

carbon (TOC), Fe-bound OC, and reactive Fe and the combined silt and clay content in in 

hardwood forest (HF), cropland with manure application (CM), and continuous pasture (CP) soils 

at 0-10 cm and 10-25 cm depth..................................................................................................... 60 

Table 3. 5 Sorption characteristics of three land type soils at 0-10 cm and 10-25 cm depths. ..... 61 

Table 4. 1 Means of a420, dissolved organic carbon (DOC), and iron (Fe) at FC and GFC headwater 

streams (n=3) ................................................................................................................................ 88 

Table 4. 2 The estimated single and multiple linear regression for a420 explained by dissolved 

organic carbon (DOC) and iron (Fe) ............................................................................................. 89 

Table 4. 3 Mixed model analyses of variance of the effects of stream type (FC and GFC; fixed 

effects), Fe (random effects) and interaction between Fe and stream type on carbon specific 

absorbance (a420/DOC), spectral slope ratio (S ratio), and specific ultra-violet absorption at 254 

nm (SUVA254) with location nested within stream types as fixed effect ...................................... 90 

Table 4. 4 Pearson's correlation coefficients among DOC quantity and quality, Fe and a420 

parameters at FC and GFC headwaters ......................................................................................... 91 

Table 5. 1 Correlation matrix of Spearman correlation coefficients (r) of the investigated 

parameters in hardwood forest (HF) and continuous pasture (CP) soils .................................... 118 

Table 5. 2 The average and standard deviation of DOC, Fe, and SUVA254 of six months (October, 

November, January, February, June, and July) in the two locations (C and F) at the forest headwater 

stream and four locations (GH, GG, GF, and GC) at the pasture headwater stream. ................. 119 

Table 5. 3 Non-parametric Wilcoxon signed-rank test of DOC, Fe, and SUVA254 among the six 

locations (F and C at the forest headwater stream; GH, GG, GF, and GC at the pasture headwater 

stream (first column) and non-parametric comparisons for each pair using Wilcoxon methods 

(fourth to ninth columns) ............................................................................................................ 120 



ix 

Table S1- 1 The two-ways repeated measures of variance analysis (repeated depth and month)

..................................................................................................................................................... 125 

Table S1- 2 The average and standard deviation of TOC, DOC, SUVA254, Feex, and Feamor of six 

months (October, November, January, February, June, and July) in hardwood forest (HF) and 

continuous pasture (CP) soils at 0-10 and 10-25 depths. ............................................................ 126 

Table S2- 1 Significant final predictor variables for dissolved organic carbon (DOC) and dissolved 

iron (Fe) in both forest and pasture headwater streams at different locations (F, C, GH, GG, GF, 

and GC) which represented different influences from different land management practices. ... 134 

Table S2- 2 Significant final predictor variables for dissolved organic carbon (DOC) and dissolved 

iron (Fe) in both forest and pasture headwater streams at different locations (F, C, GH, GG, GF, 

and GC) using forward stepwise regression analysis ................................................................. 135 



x 

List of Figures 

Figure 2. 1 The location of study site. The rectangles represented 10 × 10 m sampling plots (not to 

scale). ............................................................................................................................................ 32 

Figure 2. 2 Total organic carbon (TOC) at 0-10 cm and 10-25 cm depths under hardwood forest 

(HF, gray filled bar), cropland with manure (CM, black filled bar), and continuous pasture (CP, 

white filled bar) soils. ................................................................................................................... 33 

Figure 2. 3 Particulate organic carbon (POC) at 0-10 cm and 10-25 cm depths under hardwood 

forest (HF, gray filled bar), cropland with manure (CM, black filled bar), and continuous pasture 

(CP, white filled bar) soils. ........................................................................................................... 34 

Figure 2. 4 Mineral associated organic carbon (MOC) (A) and MOC/TOC (total organic carbon) 

(B) at 0-10 cm and 10-25 cm depths under hardwood forest (HF, gray filled bar), cropland with

manure (CM, black filled bar), and continuous pasture (CP, white filled bar) soils. ................... 35 

Figure 3. 1 Total organic carbon (TOC) (A), Fe-bound OC (B), reactive Fe (C), and organic carbon 

Fe molar ratio (D) in forest (HF), cropland (CM), and pasture (CP) soils at 0-10 cm and 10-25 cm 

depth. ............................................................................................................................................. 62 

Figure 3. 2 Regression relationship between the amount of released DOC (A) and SUVA254 of 

DOC released (B) from soils after 0.5 M HCl at 0-10 cm (diamonds) and 10-25 cm (squares), 0.25 

M HCl and 0.25 M NH2OH·HCl extraction at 0-10 cm (circles) and 10-25 cm (triangles) in forest 

(black fill), cropland (gray fill), and pasture (no fill). .................................................................. 63 

Figure 3. 3 Dissolved organic carbon (DOC) sorption to the forest (HF-a), cropland (CM-a), and 

pasture (CP-a) soils and the change of SUVA254 (Δ SUVA254) of the DOC solution after sorption 

to the forest (HF-b), cropland (CM-b), and pasture (CP-b) soils at 0-10 cm and 10-25 cm depth.

....................................................................................................................................................... 64 

Figure 3. 4 Fe-bound OC in hardwood forest (HF), cropland with manure application (CM), and 

continuous pasture (CP) soils at 0-10 cm and 10-25 cm depth..................................................... 65 

Figure 4. 1 Sampling sites and water sampling locations ............................................................. 82 

Figure 4. 2 The relative contributions of Fe and DOC to a420 at forest dominant and pasture 

dominant headwaters (n=30)......................................................................................................... 83 

Figure 4. 3 Regression of a420/DOC on Fe (n=30). ....................................................................... 84 

Figure 4. 4 Regression of specific ultra-violet absorption at 254 nm (SUVA254) on Fe at GFC and 

FC (n=30). ..................................................................................................................................... 85 

Figure 4. 5 Regression of spectral slope ratio (S ratio) on Fe at GFC and FC (n=30). ................ 86 

Figure 4. 6 Loading plots for component 1 and 2 at FC (left) and GFC (right) headwaters ........ 87 

Figure 5. 1. The location of study site. The rectangles represented 10 m × 10 m soil sampling plots 

(not to scale) while the black filled circles represented stream water sampling locations. ........ 113 

Figure 5. 2 Precipitation during the sampling period ................................................................. 114 

Figure 5. 3 Dissolved organic carbon (DOC) (a) concentration and the specific ultraviolet 

absorbance at 254 nm of DOC (SUVA254) (b) of six months (October, November, January, 



xi 

February, June, and July) in hardwood forest (HF) and continuous pasture (CP) soils at 0-10 and 

10-25 depths. The asterisk represented the average of the six months. ...................................... 115 

Figure 5. 4 Exchangeable Fe extracting using 0.5 M HCl extraction (Feex) and microbially 

reducible Fe extracting using 0.25 M HCl and 0.25 M NH2OH·HCl (Feamor) of six months (October, 

November, January, February, June, and July) in hardwood forest (HF) and continuous pasture 

(CP) soils at 0-10 and 10-25 depths. The asterisk represented the average of the six months. .. 116 

Figure 5. 5 Dissolved organic carbon (DOC) (a) and dissolved iron (Fe) (b) in the forest headwater 

stream at F and C location and in the pasture headwater stream at GH, GG, GF, and GC location 

in October, November, January, February, June, and July. ........................................................ 117 

Figure 5. 6 Specific ultraviolet absorbance at 254 nm of DOC (SUVA254) in the forest headwater 

stream at F and C location and in the pasture headwater stream at GH, GG, GF, and GC location 

in October, November, January, February, June, and July. ........................................................ 117 

Figure S1- 1 Total organic carbon of six months (October, November, January, February, June, 

and July) in hardwood forest (HF) and continuous pasture (CP) soils at 0-10 and 10-25 depths.

..................................................................................................................................................... 127 

Figure S2- 1 The significant explanatory variables selected using stepwise regression models for 

dissolved organic carbon (DOC) (dashed lines) and dissolved iron (solid lines) in forest (non-bold 

lines) and pasture (bold lines) headwater streams. ..................................................................... 133 



1 

Chapter 1 Introduction and Literature Review 

1.1 Introduction 

Soil organic carbon (SOC) influences soil productivity, terrestrial vegetation production, and 

aquatic water quality by facilitating the transport of nutrients and pollutants (Lehmann and Kleber, 

2015; Schmidt et al., 2011). Soil contains 2400 Pg C in a 2 m depth and is the largest terrestrial 

organic carbon (OC) pool, which is 3.2 times larger compared to the atmospheric CO2 pool 

(Sparks, 2003). A small change in SOC concentration leads to a substantial change in the 

atmospheric CO2 concentration and in dissolved organic carbon (DOC) concentration in surface 

water (Baldock, 2007). Global warming and surface water brownification are two current 

environmental issues, which have attracted attention and are related to SOC cycling (Han et al., 

2017; Kritzberg and Ekström, 2012).  

The preservation and remineralization of SOC are significantly influenced by iron (Fe), DOC 

and their interactions (Ouellet et al., 2012). DOC is the reactive SOC pool by acting as the fresh 

carbon supply for microbial energy, electron shuttle for Fe and OC cycling, or forming Fe-DOC 

complexes through sorption to soil minerals to preserve DOC (Anesio et al., 2005; Lovley et al., 

1998; Singh et al., 2016). Land use is an important factor contributing to the variations in the 

quantity and quality of SOC fractions (Chantigny, 2003; Martens et al., 2004; Poeplau and Don, 

2013; Sainepo et al., 2018; Takata et al., 2011; Wilson and Xenopoulos, 2009). The stability of 

SOC is driven by fresh C supply from topsoil to the subsoil (Hobley et al., 2017). The most stable 

components contributing to SOC stabilization are likely from aromatic compounds, which are 

preferentially retained by reactive Fe minerals in the soil and thus increase SOC retention time 

(Kalbitz and Kaiser, 2008; Kramer et al., 2012; Riedel et al., 2013). Thus, Fe-bound OC plays an 
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important role in sequestering SOC in the long run to mitigate SOC-related environmental issues 

(Kalbitz et al., 2005).  

Current studies focus mostly on Fe-bound OC in sediment and forest soil (Mu et al., 2016; 

Zhao et al., 2016). It has been estimated that (19-45)×1015g of OC in sediments is preserved by 

reactive Fe on a global scale (Lalonde et al., 2012). Pasture and cropland soils are expected to 

have a larger potential to preserve SOC compared to forest soils (Wiesmeier et al., 2014). 

However, limited research about Fe-bound OC has been done in agricultural ecosystems. In the 

central Appalachian region, temperate hardwood forest, pasture, and cropland are the top three 

dominant land-use types. Due to increasing anthropogenic disturbances, soil degradation and 

depletion of SOC are major issues. Thus, assessing the soil carbon quality is paramount to develop 

best management practices for restoration and sustainable agriculture in this region. Most of the 

previous studies focus on SOC sequestration of soils disturbed by surface mining (Chaudhuri et 

al., 2011; Chaudhuri et al., 2012) and dissolved organic C fluxes in peatland soils (Yavitt, 1994). 

However, there are few studies on the effects of cropland and pasture on SOC fraction pools and 

thus SOC dynamics, especially by incorporating effects of aromatic DOC and Fe oxides.  

DOC is the mobile and active SOC pool, which can be easily leached to stream water and 

deteriorate surface water quality. Increased surface water brownification in the Northern 

Hemisphere has been observed due to increased DOC and Fe concentrations (Maloney et al., 2005; 

Pace and Cole, 2002; Roulet and Moore, 2006; Weyhenmeyer et al., 2014). Stream water DOC 

concentration is strongly correlated with the quality and quantity of SOC pools since the catchment 

soil is the main source, especially in upstream water (Aitkenhead et al., 1999; Battin et al., 2008; 

Dillon and Molot, 1997; Graeber et al., 2012; Tank et al., 2010). It has been shown that changes 

in land uses lead to changes in the amount and composition of DOC in streams (Graeber et al., 



 

3  

2012; Petrone et al., 2011; Wilson and Xenopoulos, 2009; Yang et al., 2012), which may influence 

the presence of Fe, the complexes of DOC with Fe, and thus water color.  

Recent studies have quantified the contribution of DOC and Fe to water color according to the 

concentration of DOC and Fe in large-scale watersheds based on dominant land covers within 

whole watersheds (Ekström et al., 2016; Köhler et al., 2013a; Kritzberg et al., 2014; Kutser et al., 

2015; Sarkkola et al., 2013; Weyhenmeyer et al., 2014; Williamson et al., 2015). However, little 

information is available in terms of combining both the quality and quantity of DOC and Fe to 

explain water color in fine-scale agricultural and forestry headwater streams.  

Thus, inspired by these gaps, SOC fractions and Fe minerals were determined among a forest, 

a cropland, and a pasture soil in the central Appalachian region and associated seasonal changes. 

Laboratory-controlled adsorption experiments were also performed to investigate aromatic DOC 

adsorption behavior and estimated soil maximum adsorption capacity. Additionally, the 

correlation between DOC and Fe mineral contents in the soil to headwater DOC and dissolved Fe 

concentrations was determined. It could provide valuable information in developing best 

management practices to increase SOC sequestration to mitigate SOC degradation and depletions 

as well as reducing soluble DOC and Fe leaching to mitigate surface water brownification. It may 

also be helpful to reduce uncertainty in C models for a better prediction of C dynamics in soil, 

atmosphere, and surface water, especially in fine-scale watersheds. 

1.2 Literature Review 

Land management practices are one of the main factors leading to the variations in SOC 

fractions and in the quantity and quality of DOC in headwater ecosystems (Chantigny, 2003; 

Fellman et al., 2008; Neff et al., 2006; Poeplau et al., 2011; Sainepo et al., 2018; Takata et al., 

2011). Fe oxides play an important role in the processes of SOC dynamics in ecosystems (Coward 
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et al., 2018; Coward et al., 2017; Mu et al., 2016; Shields et al., 2016; Zhao et al., 2016). 

Therefore, the influence of land management practices on SOC fractions and Fe minerals in 

different ecosystems are reviewed, especially interactions between DOC and Fe oxides. In 

addition, the role of DOC and Fe in contributing to surface water brownification are reviewed.  

1.2.1 Effects of land management practices on SOC fractions 

Sequestering more SOC has been considered as a strategy to improve soil quality and mitigate 

global climate change (Schmidt et al., 2011). Land use and management practices influence SOC 

stocks and dynamics by altering the quantity and quality of plant inputs, microbial inputs, and the 

decomposition rate of the inputs (Martens et al., 2004).  

Forested land tends to have a larger SOC stock and a larger level of SOC saturation than 

cropland and pasture (Murty et al., 2002; Wiesmeier et al., 2014). Thus, cropland and pasture 

soils are predicted to have a higher potential to sequester SOC compared to forest soils 

(Wiesmeier et al., 2014). Therefore, management practices are widely adopted aiming to increase 

SOC at pasture and cropland agricultural systems (Gomiero et al., 2011). 

SOC is reactive to land-use change, especially labile SOC in subsurface soils (Hobley et al., 

2017; Poeplau and Don, 2013; Sheng et al., 2015). Particulate organic carbon (POC), mineral 

associated organic carbon (MOC), and labile organic carbon (LOC) fractions differ in 

stabilization mechanisms and thus vary in turnover times (Buyanovsky et al., 1994; Six et al., 

2000). LOC and POC have faster turnover times and are sensitive to changes compared to MOC 

(Budge et al., 2011; Du et al., 2015; Duval et al., 2013). Thus, SOC fractions are considered more 

sensitive indicators than SOC and are increasingly used to assess land management effects (Gong 

et al., 2009; Jamala, 2013; Purakayastha et al., 2008).  
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SOC fractions are significantly influenced by land management practices. POC is reported to 

be the most sensitive SOC fraction to the alternation of management practices (Duval et al., 2013; 

Duval et al., 2016). Fertilization and no-tillage are two ways of increasing agricultural SOC 

concentration and altering the SOC fractions (Gong et al., 2009; Lopez-Bellido et al., 2017). No-

tillage or conservation practices increase SOC stock associated with microaggregates and thus 

contribute to long-term stable OC sequestration in microaggregates (Ghosh et al., 2016; Lopez-

Bellido et al., 2017). Organic manure is commonly applied for enhancing crop productivity and 

improving soil quality (Lopez-Bellido et al., 2017; Lou et al., 2011; Manna et al., 2005; Verma 

and Sharma, 2007). The accumulation of macroaggregate protected SOC or POC is enhanced 

with manure application, which increases the protection of soil labile SOC (Aoyama et al., 1999; 

Bhattacharyya et al., 2010). 

The carbon management index (CMI) was proposed by Blair et al. (1995) to relate SOC pools 

and OC lability. CMI is reported to be highly correlated with soil physical, chemical and 

biological properties (Vieira et al., 2007). It reflects the effects of human activities and external 

factors on SOC fractions (Sainepo et al., 2018; Xu et al., 2006). Thus, it is proposed as a more 

sensitive indicator and has been used to assess the effects of management practices on SOC 

sequestration and soil health (Ghosh et al., 2016; Lou et al., 2011; Sainepo et al., 2018). Since a 

higher CMI correlates with larger soil C pool and increased C lability; a larger CMI indicates 

carbon rehabilitation while a smaller CMI implies C degradation compared with a reference soil 

(Blair et al., 1995). A soil with better soil quality is expected to have a larger CMI index and crop 

productivity (Vieira et al., 2007). 
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1.2.2 Role of Fe minerals on preservation of SOC 

Iron has profound influences on biogeochemical processes by modulating the preservation and 

remineralization of OC. Iron oxides have smaller particle sizes and a larger surface area than other 

metal oxides, so they have larger sorption capacity for OC compared to other metal oxides 

(Burdige and Lerman, 2006; Kaiser and Guggenberger, 2007). The important roles of Fe minerals 

in preserving OC in soil and sediment have been identified by many researchers (Coward et al., 

2017; Kaiser and Guggenberger, 2007; Lalonde et al., 2012; Zhao et al., 2016). It has been 

estimated that (19-45) ×1015g OC in sediments and 266-809 ×1015g OC in forest soils are 

preserved by Fe oxides on the global scale (Lalonde et al., 2012; Zhao et al., 2016).  

Three mechanisms of SOC accumulation have been proposed (Lützow et al., 2006). The first 

one is that the recalcitrant OC is selected preserved, for example, plant litter and microbial 

products (Kallenbach et al., 2016; Kramer and Gleixner, 2008; Lorenz et al., 2007). However, 

the decomposition of the recalcitrant SOC is enhanced due to more available degradable low 

molecular weight DOC (Fontaine et al., 2007; Hamer and Marschner, 2005). Thus, another 

mechanism is that SOC can be stabilized if it is not accessible spatially to decomposers (Baldock 

et al., 1992; Chabbi et al., 2009). For example, occlusion of SOC by aggregation (Lützow et al., 

2006). Lastly, DOC can be sorbed by interacting with Fe, Al, Mn-oxides on soil mineral surfaces 

through sorption and thus preserved (Coward et al., 2017; Kalbitz and Kaiser, 2008; Kothawala 

et al., 2008; Wagai and Mayer, 2007). Fe-bound OC is resistant to degradation and mineralization 

by microbes (Kalbitz et al., 2005). For example, a significant relationship is found between poorly 

crystalline Fe minerals and slow turnover times of SOC (Porras et al., 2017).  

The amount of Fe-bound OC in soil and sediment is various in different ecosystems and has a 

wide range. In forest soils, the Fe-bound OC contributes up to 57% of the total SOC (Wagai and 
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Mayer, 2007; Zhao et al., 2016). In permafrost soils, Fe-bound OC accounts for 19.5 ± 12.3% of 

total SOC (Mu et al., 2016). In sediments, Lalonde et al. (2012) reported 21.5 ± 8.6% OC is bound 

by reactive Fe phases and this amount probably increases with more OC coprecipitating with 

reactive Fe during the post-depositional stage (Shields et al., 2016). 

Agricultural management practices alter the concentrations of Fe oxides in soil solution, which 

influences the preservation of DOC by Fe oxides (Huang et al., 2016a). Poorly crystalline iron 

oxides in agricultural soils are significantly increased due to manure application (Huang et al., 

2016b; Wen et al., 2019; Zhang et al., 2013). Since soil Fe occurs in various forms differing in 

reducibility, it is important to have a better understanding of Fe oxides with different reducibility 

in stabilizing SOC, for example, exchangeable Fe and microbially reducible Fe (Lovley and 

Phillips, 1987; Van Bodegom et al., 2003). However, multiple forms of Fe oxides with different 

reducibility in stabilizing SOC is still understudied, especially in both intensive and less-intensive 

agricultural soils.  

1.2.3 Contribution of DOC to SOC 

DOC accounts for the most labile OC pool in soil and contributes significantly to the 

preservation of SOC. Up to 55 Mg ha-1 SOC is derived from DOC, which represents 19-50% OC 

of total SOC in mineral soils (Kalbitz and Kaiser, 2008). DOC constitutes 22% of annual OC 

inputs below 40cm in a coniferous forest while 2% in a prairie soil (Sanderman and Amundson, 

2008). The residence time of DOC transported from topsoil increases to 90-150 years when 

sorbed onto subsoil (Sanderman and Amundson, 2008). 

Differences in DOC amount and composition influence its interaction with the soil matrix and 

thus the preservation of labile DOC. A larger SOM turnover time has been found in soil matrix 

with larger fresh carbon supplies because this fresh carbon provides an energy source for soil 
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microorganisms, which stimulates mineralization of buried OC (Chabbi et al., 2009; Fontaine et 

al., 2007). Thus, a larger SOC preservation potential is expected for soil systems that have a fast 

depletion of SOC, such as cropland soils with disturbances (Smith, 2004; Wiesmeier et al., 2014).  

The most stable components contributing to SOC preservation are likely from aromatic 

compounds that are preferentially retained by soil short-range ordered minerals (Kramer et al., 

2012). Aromatic compounds were rapidly and primarily adsorbed to goethite surface or 

bacteriogenic Fe oxides, which is followed by lignin-like and then aliphatic compounds (Coward 

et al., 2018; Sowers et al., 2019). Riedel et al. (2013) reported similar results that rapid adsorption 

and removal of aromatic compounds from solution while carboxyl-rich aliphatic acids are largely 

retained in solution without stabilization. The retention time of aromatic compounds increases 

from 30 years to larger than 90 years once they sorb to soil minerals (Kalbitz and Kaiser, 2008; 

Kramer et al., 2012; Riedel et al., 2013).  

1.2.4 Quantity and quality of DOC under different land management practices 

Land management practices change both the quantity and quality of DOC in soil  and differ 

among landscape types (Chantigny, 2003; Kalbitz, 2001; Lee et al., 2018). DOC chemistry differs 

among landscape types due to different plant litter input, hydrologic connectivity, and microbial 

processing (Lee et al., 2018).  

Agriculture land management practices lead to decreasing DOC concentration and reduced 

SOC stocks (Berhongaray et al., 2013; Boyer and Groffman, 1996; Petrone et al., 2009). Long 

term agriculture inputs increase aromatic structure and dissolved fulvic acid content, which leads 

to lower C/N ratio, high absorption in the UV-vis spectra, and low molecule weight (LMW) DOC 

(Delprat et al., 1997; Kalbitz et al., 1999). For example, manure and crop residue application 

decreases LMW DOC in arable soils compared to forest soils (Takata et al., 2011). The structural 
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complexity of DOC increases with an increasing ratio of continuous croplands to wetlands 

(Wilson and Xenopoulos, 2009).  

Chromophoric DOC (CDOC) absorbs UV-vis light and some fractions of CDOC have 

fluorescent properties (Coble et al., 2014). Strong relationships have been observed among 

humic-like fluorescence intensity, fluorescence index, DOC concentration, and DOC molecular 

size (Wu et al., 2007). Land use influences the quantity and quality of DOC and thus spectroscopic 

properties of DOC (Kalbitz et al., 1999; Yang et al., 2012). Conventionally tilled soils had less 

absorbance at 254 nm and a larger humidification index (Zhang et al., 2011). DOC concentration 

correlates positively with humic-like fluorescence but negatively with protein-like fluorescence 

in the surface water of agricultural catchments (Petrone et al., 2011).  

The quantity and quality of DOC leaching from soil affect the quantity and quality of DOC in 

aquatic ecosystems (Fellman et al., 2008; Neff et al., 2006). Land management practices are one 

of the main reasons for the variations of DOC input and output to ecosystems (Chantigny, 2003). 

Urban land cover significantly contributed to surface water pollution while increasing ratio of 

wetlands within a landscape significantly contribute to decreasing DOC concentrations in surface 

water (Wang et al., 2014; Williams et al., 2005). Both intensive and less-intensive agricultural 

land use had significant effects on terrestrial-aquatic carbon processes (Glendell and Brazier, 

2014; Lee et al., 2018). Intensively cultivated soils lead to the redistribution of catchment-scale 

SOC to sediment through water erosion, which accelerates the export of DOC to stream and alters 

DOC quality (Glendell and Brazier, 2014; Graeber et al., 2015; Wang et al., 2010). Similarly, 

DOC processes and fluorescent properties are significantly influenced by non-intensive 

agricultural management practices through different plant litter input and degree of microbial 

processing within a mixed landscape (Lee et al., 2018).  



 

10  

Temperature and rainfall are the other potential drivers of seasonal DOC trends due to changes 

in hydrologic connectivity and microbial processing across a landscape (Lee et al., 2018). DOC 

concentration is larger during summer and smaller in winter (Koehler et al., 2009). The 

composition of DOC is variable across seasons. For example, the more hydrophilic fractions are 

present during winter and spring while the more hydrophobic fractions are present during summer 

and autumn in forest soils (Kaiser et al., 2002). Day-to-day and seasonal patterns of precipitation 

are important factors when explaining DOC fluxes (Howarth et al., 1991). 

1.2.5 Interactions between Fe, DOC, and SOC preservation 

The interactions between Fe and OC shape the chemistry of Fe. The preservation and retention 

of OC are affected by Fe minerals. Dissolved Fe interacts with organic ligands, which alter Fe 

solubility and thus Fe bioavailability (Raiswell and Canfield, 2012). Organometallic complexes 

tend to produce a more actively cycling SOC pool because of its more soluble property (Porras et 

al., 2017). 

The oxic and anoxic interface is the redox transition environment where Fe and OC chemical 

interactions occur (Aller et al., 1996). When Fe oxides are reduced in anoxic microsites, there is 

no preservative effect of Fe on OC. Ferric Fe and DOC are likely interacting with each other and 

forming complexes in the oxic microsites where availability of DOC decreases (Lalonde, 2014). 

Dissolved reduced Fe in the anoxic layer can precipitate as Fe oxides in the oxic layer by 

coagulation, which removes a large fraction of DOC (Burdige, 1993; Riedel et al., 2013). This 

Fe-OM complexes may be buried and then survive in the anoxic environments where OM 

degradation rates are low. 

Plant-derived aromatic and lignin-like high molecular weight compounds are preferentially 

retained by reactive amorphous Fe oxides by forming irreversible inner-sphere bonds, which 
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resist the desorption of adsorbed DOC and thus contributes to long-term SOC preservation 

(Coward et al., 2018; Kramer et al., 2012; Oren and Chefetz, 2012; Zimmerman et al., 2004). It 

has been shown that more than 90% dissolved Fe and about 27% of DOC (mainly plant-derived 

aromatic compounds) were rapidly removed within 24 hours in anoxic fen pore water through 

coagulation (Riedel et al., 2013). When soil solutions rich in oxidized lignin and carboxyl 

compounds is translocated through the soil profile, these compounds are preferentially sorbed 

onto short-range ordered Fe minerals and thus increase the retention time of these compounds 

(Kramer et al., 2012).  

1.2.6 Role of DOC and Fe on surface water color 

Surface water brownification is frequently reported in many large-scale watersheds of the 

northern hemisphere (Haaland et al., 2010; Weyhenmeyer et al., 2016). It is a current 

environmental concern with wide-reaching ecological and societal impact, e.g. on functions of 

aquatic ecosystems (Williamson et al., 2015) and potentially increasing pretreatment cost of 

drinking water due to the formation of toxic byproducts (Richardson et al., 2007).  

It is known that DOC contributes to water darkening due to the presence of colored DOC (Pace 

and Cole, 2002; Roulet and Moore, 2006). Given the interaction of Fe with DOC, Fe has received 

more attention recently and it has been reported that Fe can provide additive effects to water color 

by forming complexes with DOC (Maloney et al., 2005; Weyhenmeyer et al., 2014). The 

complexes between Fe and DOC can extend the residence time of both Fe and DOC in water 

(Maloney et al., 2005) and thus increase water brownification (Sarkkola et al., 2013).  

Many studies have reported that land use is an important driver of surface water brownification 

(Kritzberg et al., 2019; Worrall et al., 2004). SOC pools are the stream water DOC sources and 

thus land use/land cover is an important factor influencing the transport of DOC and Fe in the soil 
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to adjacent water bodies, especially in upstream water (Aitkenhead et al., 1999; Dillon and Molot, 

1997; McDowell, 1984). It has been shown that changes in land use lead to changes in the amount 

and composition of DOC in streams (Graeber et al., 2012; Petrone et al., 2011; Wilson and 

Xenopoulos, 2009; Yang et al., 2012). The changes in amount and composition of DOC may 

influence the presence of Fe, Fe-DOC complexes, and thus water color. To counteract surface 

water brownification, Kritzberg et al. (2019) reported the most feasible way may be through 

managing the land use in the hydrologically connected parts of the landscape.  

In addition to land cover, other biotic and abiotic factors govern the DOC input and output 

processes, such as temperature, discharge, vegetation, hydrology, and soil mineralogy (Armstrong 

et al., 2012; Camino‐Serrano et al., 2014; Erlandsson et al., 2008; Lambert et al., 2013; Maurice 

et al., 2002; Sanderman and Amundson, 2008). Most studies have quantified the contributions of 

DOC and Fe to water color according to concentration of DOC and Fe in large-scale watersheds 

based on dominant land cover of the catchment sampling locations (Ekström et al., 2016; Köhler 

et al., 2013a; Kritzberg et al., 2014; Kutser et al., 2015; Sarkkola et al., 2013; Weyhenmeyer et 

al., 2014; Williamson et al., 2015). However, multiple locations within a watershed bring more 

factors beyond the land cover, especially for high order streams, which are weakly addressed and 

thus a limitation of these studies. Additionally, the quantity and quality of DOC and Fe change 

with passage through watersheds (Fellman et al., 2009; Neubauer et al., 2013). Thus, there is still 

uncertainty regarding the role of land cover on water color in these large-scale watershed studies. 

Recent studies have been directed to fine-scale headwater streams with similar influencing factors 

(De Paula et al., 2016; Kellner et al., 2018). In addition, the quality of OM alters the interactions 

between DOC and Fe, which may impact water color (Xiao et al., 2013). However, studies 



 

13  

combining quality of OM to explain water color are rarely conducted, especially in fine-scale 

headwater watersheds with different land uses.  

1.2.7 Research questions 

In natural environments, Fe oxides have a larger affinity for OC than other metal oxides (Kaiser 

and Guggenberger, 2007). The Fe-bound OC inhibits the degradation and mineralization by 

microbes (Kalbitz et al., 2005) and has a longer residence time. Thus, a better understanding of 

the role of Fe oxides in regulating SOC dynamics is helpful for developing best management 

practices to mitigate C related environmental issues.  

It has been reported that pasture and cropland soils have a larger potential to preserve OC 

compared to forest soils (Wiesmeier et al., 2014). Current research focuses on quantifying the Fe-

bound OC in natural ecosystems, such as forest soils and sediment. In forest soils, up to 57% of 

total OC is bound to Fe oxides (Wagai and Mayer, 2007). The amount of Fe-bound OC was 

significantly different among meadow, steppe and desert steppe in a permafrost region (Mu et al., 

2016). 

Long-term agricultural practices reshape the quantity and quality of SOC factions present in 

soil, such as physical distribution, aromatic structure, structural complexity, and molecule weight 

(Cotrufo et al., 2019; Kalbitz et al., 1999; Takata et al., 2011; Wilson and Xenopoulos, 2009). 

This impacts the interactions between SOC and Fe oxides due to the alteration of quantity and 

quality of SOC fractions accessible to soil Fe minerals, which is largely different from sediment 

and forest ecosystems. Cropland and pasture soils are predicted to have a larger ability to 

sequester C than forest soils (Wiesmeier et al., 2014). However, there are few studies 

investigating the potential differences of these soils in sequestering SOC. 
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In the central Appalachian region, anthropogenic disturbances are increasing, which leads to 

the degradation of SOC and deterioration of surface water quality (Bryce et al., 1999). In this 

region, forest, pasture, and cropland soils account for 62, 18, and 8% of land use, respectively. 

Thus, assessing the soil carbon quality is paramount to develop best management practices for 

restoration and sustainable agriculture. Most of the previous studies focus on SOC sequestration 

in soils disturbed by surface mining (Chaudhuri et al., 2011; Chaudhuri et al., 2012) and dissolved 

organic C fluxes in peatland soils (Yavitt, 1994).  However, there are few studies on the effects 

of cropland and pasture soils on SOC fraction pools and the capacity of cropland and pasture soils 

to sequester OC, especially considering different soil depth increments in this region. This 

information would be helpful for developing management strategies to improve soil quality in the 

Appalachian region and similar mountain ecosystems. 

Iron minerals complex with aromatic DOC compounds; the DOC and iron complexes are more 

stable due to much longer retention time once they sorb to soil minerals (Kalbitz and Kaiser, 2008; 

Kramer et al., 2012; Riedel et al., 2013). Short-range ordered minerals complexing with aromatic 

DOC compounds via chemical retention are a potential mechanism of transport and accumulation 

of Fe-bound OC in deeper volcanic and forest soils (Kramer et al., 2012; Porras et al., 2017). 

However, there is still a research gap regarding the adsorption behavior of aromatic DOC in 

agricultural soils at different depths with different management practices.  

The interactions between DOC and reactive Fe are surface-controlled sorption and desorption 

processes. Batch experiments have been used to establish sorption isotherms, whereby the soil is 

incubated with a range of initial DOC concentrations and allowed to come to an steady state 

(Coward et al., 2018; Guggenberger and Kaiser, 2003; Kaiser and Guggenberger, 2000; Kaiser et 

al., 1996; Kothawala et al., 2008). This is a reliable approach for estimating DOC adsorption 
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capacity. The sorption isotherm can be used to predict potential sorption capacity of DOC in soil. 

This would also provide valuable information for developing more precise C models and 

assessing SOC dynamics. 

Current studies on the contribution of DOC and Fe to water color in large-scale watersheds are 

conducted based on the dominant land cover of the catchments (Ekström et al., 2016; Köhler et 

al., 2013a; Kritzberg et al., 2014; Kutser et al., 2015; Sarkkola et al., 2013; Weyhenmeyer et al., 

2014; Williamson et al., 2015), which brings more factors beyond the land cover, for example, 

parent materials and geological processes. To address the uncertainties and limitations of these 

studies, fine-scale catchments with similar parent materials, geological processes, and topography, 

and climate were chosen. Additionally, the quantity and quality of DOC and Fe change with 

passage through watersheds (Fellman et al., 2009; Neubauer et al., 2013), which may alter the 

interactions between DOC and Fe and thus impact water color (Xiao et al., 2013). However, 

studies combining quality of OM to explain water color are rarely conducted, especially in fine-

scale headwater watersheds with different land use.  

Given these research gaps, three specific questions in this study were focused on. 

1. How did SOC fractions differ in a hardwood forest, cropland, and pasture soils at 0-10 

cm and 10-25 cm? 

2. How did Fe oxides and adsorption of aromatic DOC to soils managed under a 

hardwood forest, cropland, and pasture 0-10 cm and 10-25 cm differ? 

3. How did DOC and Fe oxides in soil influence DOC and Fe concentrations in the 

associated fine-scale headwater streams? 
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All this information is valuable for a better understanding of the interaction of DOC and Fe in 

nature forest, cropland, and pasture soil. They can also provide a helpful guide to develop 

appropriate practices to solve environmental problems; For example, decreasing SOC storage in 

soil, and increasing DOC concentration in surface water. 

1.3 Hypothesis and Objectives 

The evidence from previous research suggests that aromatic DOC and reactive Fe are two 

important components contributing to SOC sequestration and that cropland and grassland soils 

have a larger potential to sequester C than forest soils.  

In Chapter 2, we hypothesized that forest, cropland, and pasture soils would show differences 

in SOC fractions and carbon management index. The objectives of this study were to quantify 

TOC, POC, MOC, and carbon management index in cropland, pasture, and forest soils at 0-10 

cm and 10-25 cm. 

In Chapter 3, we hypothesized that if cropland and pasture soils had larger potential to stabilize 

more organic carbon, then cropland and pasture soils would show larger amounts of Fe-bound 

OC, more sorption of aromatic DOC, and larger sorption capacity than the forest soil. The 

objectives of this study were 1) operationally quantify three forms of Fe oxides (exchangeable, 

amorphous Fe, and crystallized Fe oxides), three forms of SOC (total SOC (TOC), Fe-bound OC, 

and DOC released during amorphous Fe extraction), and Fe and TOC molar ratio (OC: Fe), and 

2) quantify the sorption of DOC and changes of aromaticity of DOC after sorption using batch 

experiments from pasture, cropland, and hardwood forest managed soils.  

In Chapter 4, we hypothesized that the pasture headwater streams had larger DOC and Fe 

concentrations and thus water color compared to the forest headwater streams. In addition, the 
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quality of DOC influenced water color by influencing interactions with Fe. The aims were to 

quantify and compare DOC and Fe concentrations and their relative contributions to water color 

between pasture and forest dominated headwater streams, and to determine which were the DOC 

fractions that interacted with Fe indicated by DOC quality indexes and thus contributed to 

watercolor in these two headwater streams. 

In Chapter 5, we hypothesized that, due to long-term effects of agricultural management 

practices in the pasture catchment, the pasture catchment would show higher concentrations and 

a larger seasonal variation of DOC, Fe content, and aromaticity of DOC than the forest catchment. 

The aims of this study were to 1) compare the temporal variations in DOC amount and 

composition in both soil and stream waters, and 2) examine the temporal variations of 

exchangeable Fe and amorphous Fe minerals in the soil as well as the temporal and spatial 

variations in dissolved Fe concentration in an agricultural pasture catchment and forest catchment 

in West Virginia.   
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Chapter 2 Soil Organic Carbon Fractions and Carbon Management Index in the Surface 

Soil: Comparing a Forest,  a Cropland, and a Pasture Soil in a Central Appalachian Region, 

West Virginia 

2.1 Abstract 

Soil organic C (SOC) fractions have various stabilization mechanisms and turnover times, 

which change with depth and are highly influenced by land use. In this study, we used total organic 

carbon (TOC), particulate organic carbon (POC), mineral-associated organic carbon (MOC), and 

carbon management index (CMI) as indicators to compare cropland with manure application (CM) 

and continuous pasture (CP) to a hardwood forest (HF) at soil depths of 0-10 and 10-25cm. Land 

use, depth, and the interactions between them all had significant influences on TOC, POC, MOC, 

MOC/TOC ratio, and CMI except for the main effect of land use on TOC. CM showed significantly 

larger POC (12.4 g kg-1) and smaller MOC (8.36 g kg-1) at 10-25cm compared to HF and CP soils. 

CM soil at 10-25cm had improved soil quality and SOC lability as indicated by a significantly 

larger CMI value (419.2) while CP soil had decreased soil quality and SOC lability at both 0-10cm 

(83.7) and 10-25cm (73.6) compared to HF soil. This study implied high sensitivity of the SOC in 

cropland and pasture surface soils to degrade under disturbance, which implies that better 

management strategies are still needed to improve soil carbon quality for these agricultural systems. 

Key words: Land management practices · Particulate organic carbon · Mineral associated organic 

carbon  
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2.1 Introduction 

Soil organic carbon (SOC) influences soil productivity, terrestrial vegetation production, and 

aquatic water quality by facilitating the transport of nutrients and pollutants (Lehmann and Kleber, 

2015; Schmidt et al., 2011). Land use is active drivers of SOC allocation among soil aggregates, 

which changes SOC fraction distribution and thus alters long-term SOC stabilization mechanisms 

(Aoyama et al., 1999; Arai and Tokuchi, 2010; Chabbi et al., 2009; Cotrufo et al., 2019; Du et 

al., 2015; Leifeld et al., 2009). Anthropogenic disturbances can decrease SOC storage and change 

SOC associated properties (Jones and Falloon, 2009), which leads to decreased soil productivity 

and increased greenhouse gas emissions (Butman et al., 2015; Grosse et al., 2011; Pongratz et al., 

2009; Schlesinger, 1986; Van Miegroet and Olsson, 2011). 

In the central Appalachian region, anthropogenic disturbances are increasing, which leads to 

major issues of soil degradation, depletion of SOC stocks, and deterioration of aquatic ecosystems 

(Bryce et al., 1999). The forest, pasture, and cropland soils account for 62, 18, and 8% of land 

use in this region, respectively. Thus, assessing the soil carbon status is paramount to develop 

best management practices for restoration and sustainable agriculture for this region. Most 

previous studies focused on SOC sequestration in drastically disturbed soils (Chaudhuri et al., 

2011; Chaudhuri et al., 2012) or dissolved organic C fluxes in peatland soils (Yavitt, 1994). There 

are few studies on the effects of cropland and pasture on SOC fraction pools, especially when 

considering different soil depth increments. This information would be useful in developing 

management strategies to improve soil quality in the central Appalachian region and similar 

mountainous ecosystems. 

Changes in SOC are commonly used to assess the effects of management practices (Diekow 

et al., 2005). Particulate organic C (POC) and mineral-associated organic C (MOC) are more 
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sensitive fractions that reflect effects of the external environment and human activities on SOC 

pool dynamics (Cotrufo et al., 2019; Xu et al., 2006). SOC fractions have various stabilization 

mechanisms and turnover times, which change with depth and are highly influenced by land use 

(Cotrufo et al., 2019; Jobbágy and Jackson, 2000; Sainepo et al., 2018). The C management index 

(CMI) is highly correlated with soil physical, chemical, and biological properties (Vieira et al., 

2007). CMI relates to SOC pool and the change of SOC lability (Ghosh et al., 2016; Lou et al., 

2011; Sainepo et al., 2018; Vieira et al., 2007). Thus, these are useful indicators to assess effects 

of land use on SOC fractions and the capacity of management systems to promote soil quality 

(Buyanovsky et al., 1994; Duval et al., 2016; Gong et al., 2009; Lou et al., 2011; Sainepo et al., 

2018). A better understanding of SOC fraction dynamics is essential to evaluate best management 

practices to maximize the sustainability and productivity of agricultural lands (Smith, 2008).  

Current studies assess the effects of land use on SOC fractions at the scale of larger watersheds 

with contrasting differences in climate and variable geology (Duval et al., 2016; Kalambukattu et 

al., 2013; Luo et al., 2017; Nahrawi et al., 2012; Sainepo et al., 2018). Climate and soil properties 

are important factors influencing SOC fraction dynamics (Gosling et al., 2013; Jobbágy and 

Jackson, 2000; Luo et al., 2017). These contrasting differences with a watershed bring uncertainty 

in interpreting the effects of land use on SOC fraction pools due to other local variability (Bird et 

al., 2001; Jones and Falloon, 2009). Thus, a better understanding of influences of land use on 

SOC fraction pools at a finer regional scale may be helpful to address this uncertainty (Bird et al., 

2001). In addition, these SOC fractions are common SOC pools of current SOC models 

(Abramoff et al., 2018). Quantifying SOC pools and concentrations at a finer regional scale is 

essential for constructing robust global C models by considering depth distribution, especially for 
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predicting SOC storage in cropland and pasture soils (Jones and Falloon, 2009; Schmidt et al., 

2011). 

To avoid the confounding effects of variable geology and climate effects on SOC fractions, 

the use of pseudo-replicated studies may be informative. In our study, we chose a single fine-

scale watershed, which was derived from the same parent materials and had similar climate 

conditions (Kellner et al., 2018). We selected a cropland, a pasture, and a forest soil within this 

small catchment which have been maintained in this state for more than 20-years. The objective 

of this study was to quantify TOC, POC, and MOC in a cropland, pasture, and forest soil at 0-10 

cm and 10-25 cm as well as CMI in the cropland and pasture soils by comparing to the forest soil. 

2.2 Materials and Methods 

2.2.1 Study site description 

This study was carried out in Morgantown, West Virginia (39°40' N, 79°56' W) (Fig. 2.1). 

Three representative land-use types were forest, pasture, and cropland. The slope gradient of the 

forest and pasture is from 3% to 35% while the slope of cropland is 0-3%. The elevation ranges 

from 287 m to 381 m above sea level. The mean annual precipitation is 109.6 cm. The mean 

annual temperature is 11.25ºC (Wright, 1982). 

The forest was mixed deciduous hardwood (HF) with trees that were approximately 120 years 

old (Fithian, 1979). The dominant hardwood types included white oak (Quercus alba), northern 

red oak (Quercus rubra), yellow poplar (Liriodendron tulipifera), white ash (Fraxinus 

americana), and hickory (Carya tomentosa) (Witt 1981). The pasture was continuously pasture 

(CP) with 0.5-0.75 dry dairy cows or/and heifers per hectare for 20 years. The pasture was mowed 

once in October every year. The vegetation present included grasses, legumes, and forbs. The 

dominant species included red clover (Trifolium pretense), white clover (Trifolium repens), 
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ironweed (Vernonia baldwinii), smartweed (Polygonum pensylvanica), horsenettle (Solanum 

carolinense), Kentucky bluegrass (Poa pratensis), and timothy (Phleum pretense). The cropland 

was a continuous corn (Zea mays) field with manure application (CM). Composted dairy manure 

had been incorporated at a rate of 2700 to 3600 kg ha-1 dry matter each year for at least 20 years. 

An additional 100 kg ha-1 urea was applied when corn was 0.2-0.5 m tall. Winter wheat (Triticum 

aestivum) was planted as a cover crop after the corn was harvested. 

2.2.2 Soil sampling 

Through a combination of computer mapping and field surveys, four 10 m × 10 m plots were 

selected within the forest, cropland, and pasture (Figure 2.1). The elevation of the four plots at 

forest field was from 303.5 - 338.7 m. The slope was 25 -35%. The soil was mapped as Culleoka-

Westmoreland silt loams (Fine-loamy, mixed, active, mesic Ultic Haplusdalfs) (Soil Survey Staff, 

2017). The four plots from the pasture were located within delineations of the same soil map unit 

as the forest plots and had similar elevation (324.4 -341.8 m) and slope (25 - 35%). The parent 

material of forest and pasture soils was loamy residuum weathered from limestone, sandstone, 

and shale (Soil Survey Staff, 2017). In the cropland, the elevation of the four plots was from 289.0 

- 292.4 m. The soil was mapped as Holly silt loam) (Fine-loamy, mixed, active, nonacid, mesic 

Typic Fluvaquents) and Lobdell silt loam (Fine-loamy, mixed, active, mesic Fluvaquentic 

Eutrudepts). These four plots were on the flood plain adjacent to the slope where the forest and 

pasture plots were located. The parent material was recent loamy alluvium derived from limestone, 

sandstone, and shale. 

Soil samples were collected in May 2018. Four 10 × 10 m plots with similar micro-

environmental conditions like vegetation distribution, were randomly selected in the field for each 

land type. The forest plots had a very thin, minimally decomposed litter layer (< 1cm). When 
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sampling, the litter layer was removed. The pasture plots were not disturbed by feeding and 

watering dry dairy cows and heifers and at least 5 meters away from the edge of the field. One 

plot was on the shoulder slope. Two plots were on the backslope. The other one was on the 

footslope. The cropland plots were at least 10 m away from a riparian grass buffer. Six soil sample 

cores were collected from each plot in an S pattern to a depth of 25 cm using a soil sampling 

probe (3 cm in diameter). The six soil cores from each plot were divided into two layers (0-10 cm 

and 10-25 cm) and composited in pairs to represent three replications at each depth at each plot. 

Four replications from four plots were composited so that there were three replications at each 

depth for each land use. 

2.2.3 Soil physical and chemical analysis 

Soil samples were air-dried at room temperature, ground, and sieved through a 2-mm sieve. 

Soil pH and electrical conductivity (EC) were determined using a 1:1 (m:V) dry soil to distilled 

water ratio using a Mettler Toledo SevenCompact pH and EC meter (Mettler Toledo, Columbus, 

OH, USA). Soil particle size distribution was determined using methods described by Kettler et 

al. (2001). Mehlich 3 extractable P, K, Ca, and Mg were determined by inductively coupled 

plasma-optical emission spectroscopy (ICP-OES) (Optima DV-2100, Perkin Elmer, Waltham, 

MA, USA) (Wolf and Beegle, 2011). 

All soil samples for C fraction determinations were acidified with 1 M HCl with a 1:2 (m:V) 

solid:solution ratio to degas any inorganic carbon in soil and heated at 70ºC for 24 hours. The 

total organic carbon (TOC) was determined from the oven dried samples. Mineral associated 

organic carbon (MOC) and particulate organic carbon (POC) were determined by dispersing dried 

soil samples in 0.5 % sodium hexametaphosphate at a 1:5 (m:V) solid:solution ratio (Cambardella 

and Elliott, 1992; Sherrod et al., 2002). The suspension was shaken for 16 h at 200 cycles per 
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minute and then was washed through 53-μm sieves. The filtered slurry was collected, oven dried 

at 70ºC for 24 h, and ground. The organic carbon in the filtrate (< 53 μm) was referred to as MOC. 

The POC content was calculated by subtracting MOC from TOC (Cambardella and Elliott, 1992), 

which was used as the labile OC for CMI estimation (Sainepo et al., 2018; Vieira et al., 2007). 

All C concentrations were determined by dry combustion (Elementar Vario MAX Cube, Hanau, 

Germany). 

2.2.4 Carbon management index 

It has been suggested that the carbon management index (CMI) is a more sensitive indicator 

of SOC response to management practices than other C measurements (Blair et al., 1995; Ghosh 

et al., 2016). It was calculated following Blair et al. (1995) using Eq 1. 

CMI = CPI × LI × 100                                                                                                         (1) 

Where CPI is the carbon pool index and LI is the lability index and were calculated using Eqs 

2 and 3, respectively. 

CPI =
Total organic C in the treatment soil g kg−1

Total organic C in the reference soil g kg−1
                                                                              (2) 

LI =  
L of the treatment soil

L of the reference soil 
                                                                                                                        (3) 

Where L refers to organic carbon lability and calculated using the Eq 4. 

L =  
Labile organic C g kg−1

non − labile organic C g kg−1
                                                                                                           (4) 

In our study, the forest soil was used as the reference soil. The cropland or pasture soils were 

used as the treatment soil. A CMI of 100 is often used for the reference soil (Blair et al., 1995; 

Ghosh et al., 2016; Li et al., 2015; Sainepo et al., 2018; Vieira et al., 2007). Therefore, the CMI 

of the forest soil at both depths was 100 in our study. The CMI of treatment soils at each depth 
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was compared to the CMI of the forest soil at the same depth. A CMI value larger than 100 

indicated improved soil quality while a CMI value smaller than 100 indicated soil degradation 

and decreased soil quality (Blair et al., 1995; Sainepo et al., 2018; Vieira et al., 2007). 

2.2.5 Statistical analysis 

Repeated measures analysis of variance (rmANOVA) and Tukey tests were performed to test 

the effects of land use type, depth, and their interaction on TOC, POC, MOC, MOC/TOC, LI, 

CPI, and CMI at α < 0.05. All analysis was conducted using the R software package (R 

Development Core Team, 2017). 

2.3 Results  

2.3.1 Total organic carbon 

Land use had no significant influence on TOC (p = 0.289). A significant influence of depth 

and an interaction between TOC and depth were observed (p < 0.01). Soil TOC was significantly 

larger in the soil at 0-10 cm than 10-25 cm (p < 0.01). The TOC was 41.4 g kg-1 in HF and 40.4 

g kg-1 in CP, which was significantly larger than TOC in CM (32.3 g kg-1) at 0-10 cm (Fig. 2). 

However, TOC in HF (12.8 g kg-1) and CP (10.3 g kg-1) was significantly lower than CM (20.8 g 

kg-1) at 10-25 cm (Fig. 2.2).  

2.3.2 Particulate organic carbon 

Land use, depth, and the interaction between them all had significant influences on POC (p < 

0.01). The highest POC (23.8 g kg-1) was found in HF at 0-10 cm, although this was not 

significantly different than the POC of CM (20.5 g kg-1) and CP (21.7 g kg-1) at 0-10 cm (Fig. 

2.3). The CM at 10-25 cm had larger POC (12.4 g kg-1) than HF (4.7 g kg-1) and CP (3.5 g kg-1) 

at 10-25 cm which were observed as the two lowest POC contents (Fig. 2.3).  
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2.3.3 Mineral-associated organic carbon 

Significant main effects of type, depth, and the interaction between them were found for MOC 

and MOC/TOC ratio (p < 0.01). The MOC was significantly larger in the soil at 0-10 cm than 10-

25 cm (Fig. 2.4A). The two highest MOC were found at HF (17.6 g kg-1) and CP (18.7 g kg-1) at 

0-10 cm, which was significantly larger than CM at 0-10 cm (Fig. 2.4A). There were no 

significant differences found among the three land use at 10-25 cm. Contrary to MOC, the two 

highest MOC/TOC ratio values were found at HF (64%) and CP (66%) at 10-25 cm, which was 

significantly larger than CM (40%) at 10-25 cm as well as all the three land uses at 0-10 cm (Fig. 

2.4B).  

2.3.4 Carbon management index (CMI) 

Significant main effects of land use, depth, and their interactions on LI, CPI, and CMI were 

found (p < 0.01). The highest LI (2.57), CPI (1.62) and CMI (419.2) were found in CM at 10-25 

cm and were significantly larger than CM at 0-10 cm and CP at both 0-10 cm and 10-25 cm (Table 

2.2). The CP had the lowest CMI (73.6) at 10-25 cm due to the lowest LI (Table 2.2). There were 

no significant differences between CPI and CMI for CM at 0-10 cm and CP at both 0-10 cm and 

10-25 cm (Table 2.2). 

2.4 Discussion 

2.4.1 Soil carbon fractions 

We found significantly lower TOC and MOC in cropland soil compared to forest and pasture 

soil in the topsoil layer (0-10 cm) (Fig. 2.2 and Fig. 2.4A). Although long-term manure application 

significantly increases TOC, the benefit of manure application might be offset by the tillage effect 

in the cropland soil in this study. This would increase the flux of carbon dioxide and thus SOC 

loss (Reicosky et al., 1997; Tong et al., 2014). Similar results were reported by Singh et al. (2015) 
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where straw amendment in a cereal monoculture system didn’t significantly increase topsoil 

carbon sequestration. The lower content of MOC in cropland is also likely due to tillage, which 

contributes to the decrease of the soil microaggregate proportion in soil (Lopez-Bellido et al., 

2017). Contrary to TOC and MOC trends, there was no significant difference in POC among three 

land uses at 0-10 cm (Fig. 2.3). Sui et al. (2013) reported increased POC in soil at 0-30 cm after 

chemical N fertilizer and manure application. The POC concentration in the cropland soil at 0-10 

cm in our study may have been enhanced by manure application.  

The TOC, POC, and MOC all significantly decreased with increasing depth (p < 0.01), which 

is consistent with the finding of Somasundaram et al. (2017). At 10-25 cm, the TOC and POC 

were significantly larger in cropland than pasture and forest soils (Fig. 2.2 and Fig. 2.3) while 

there were no significant differences in MOC among three land uses. This indicated that manure 

application could increase POC but have limited influence on MOC in cropland soil at 10-25 cm 

(Fig. 2.3 and Fig. 2.4A). No-tillage practices may promote POC to transform to MOC for long 

term stabilization in this cropland soil (Six et al., 2000). Other studies have found that MOC was 

larger than POC in the forest and cropland soil (Jamala, 2013; Somasundaram et al., 2017). 

However, our study observed the dominant organic carbon fractions depended on depth and land 

use. The largest MOC/TOC ratio (>60%) was found in forest and pasture soil at 10-25 cm (Fig. 

2.4B). The MOC/TOC of cropland at 10-25 cm and all three soils at 0-10 cm were all less than 

50% (Fig. 2.4B). The lower MOC/TOC ratio at cropland, forest, and pasture in topsoil could be 

attributed to long-term SOC input from manure application in cropland, litter contribution in the 

forest, and root system in the pasture (Aoyama et al., 1999; Rumpel and Kögel-Knabner, 2011). 
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2.4.2 Implication for long-term land use and management practices under climate change 

Most studies at large scale found degraded soil quality of agricultural soils (Ghosh et al., 2016; 

Kalambukattu et al., 2013; Sainepo et al., 2018; Vieira et al., 2007; Xu et al., 2006). Conversely, 

our study observed the cropland soil at 0-25 cm had improved soil quality after long-term manure 

application (as indicated by larger CMI values; Table 2.2). However, the dominant POC pool 

leads to the sensitivity of the cropland soil to the changes of land use (Buyanovsky et al., 1994; 

Duval et al., 2016; Gong et al., 2009; Lou et al., 2011; Sainepo et al., 2018). A truly effective 

practice for long-term C stabilization may be no-tillage with organic amendments in agricultural 

soils due to the promoted transformation of labile OC to protected OC in macroaggregates and 

microaggregates (Aoyama et al., 1999; Du et al., 2018; Lopez-Bellido et al., 2017; Six et al., 

2000). For example, no-tillage and alley cropping are recommended practices for long-term stable 

SOC stabilization in the current tilled agricultural system (Wolz et al., 2018). 

Our study didn’t find significant differences in TOC, POC, and MOC concentrations between 

pasture and forest soils at the two depths. However, both the topsoil and subsoil had decreased 

soil quality as indicated by CMI compared to the adjacent forest soil (Table 2.2). This is consistent 

with previous studies (Kalambukattu et al., 2013; Sainepo et al., 2018; Xu et al., 2006). This 

implies improved management practices for the pasture soil could improve SOC lability and 

nutrient cycling. Management practices increasing SOC input and driving the translocation of 

labile SOC to subsurface soil may be helpful to increase long-term SOC stabilization.  

Land uses are key factors influencing SOC dynamics and its fractions (Lou et al., 2011; Smith, 

2008). Exploring best management practices is still a priority to solve current environmental 

issues due to anthropogenic disturbance, like reducing SOC loss and restoring OC in the soil to 

mitigate global warming (Smith, 2008). SOC fractions are essential components of current global 
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carbon models (Abramoff et al., 2018). This fine-scale study found different trends of SOC 

fractions compared to large-scale studies, which indicate more fine-scale studies are essential for 

a better assessment of land management effects for a more accurate prediction of SOC dynamics. 

This is imperative for including regional and local scale SOC data for constructing accurate global 

C models (Bird et al., 2001; Jones and Falloon, 2009), especially for soils under anthropogenic 

disturbances. 

2.5 Conclusions 

We found that the cropland soil at 10-25 cm under manure application and tillage had a larger 

POC content compared to the pasture and forest soil while no differences in MOC content were 

observed. According to CMI, improved SOC lability only occurred in cropland soil while 

decreased SOC lability were observed in pasture soils at both 0-10 and 10-25 cm. However, the 

dominant contribution to SOC was from POC at cropland and pasture which implied potential 

rapid SOC loss under disturbance due to a fast turnover time of POC, especially the topsoil. Our 

study indicates that management practices increasing SOC input and driving the translocation of 

labile SOC to subsurface soil may be helpful to increase SOC stabilization in these agricultural 

soils.  
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Table 2. 1 Soil physical and chemical properties at 0-10 cm and 10-25 cm depths under hardwood forest 

(HF), cropland with manure (CM), and continuous pasture (CP) soils.  

 
Forest (HF) Cropland (CM) Pasture (CP) 

0-10 cm 10-25 cm 0-10 cm 10-25 cm 0-10 cm 10-25 cm 

pH 5.3 4.8 7.0 6.3 5.5 5.6 

Electric Conductivity (μs cm-1) 134.4 59.9 260.5 152.6 194.2 103.3 

Total N (g kg-1) 3.4 1.1 2.7 1.5 4.1 1.0 

Total C (g kg-1) 41.4 12.8 32.3 20.8 40.4 10.3 

Exchange Ca (mg kg-1) 912.3 154.2 2856.0 1450.5 1246.0 587.5 

Exchange Mg (mg kg-1) 121.7 40.1 250.9 159.0 141.6 84.2 

Exchange K (mg kg-1) 114.6 55.8 201.5 53.7 241.9 121.5 

Exchange P (mg kg-1) 22.4 8.3 42.5 8.1 49.3 9.8 

Bulk density (Mg m-3) 1.1 1.3 1.4 1.5 1.5 1.7 

Sand (%) 36.0% 26.9% 33.3% 35.1% 44.7% 35.6% 

Silt (%) 53.6% 57.6% 51.4% 49.1% 45.7% 52.3% 

Clay (%) 10.4% 15.5% 15.3% 15.8% 9.6% 12.1% 
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Table 2. 2 Impact of land management practice and depth on carbon pool index (CPI), lability index 

(LI), and carbon management index (CMI) 

Land management practice Depth L LI CPI CMI 

Cropland with manure (CM) 
0-10 1.73 1.28 b 0.78 b 100.2b 

10-25 1.48 2.57 a 1.62 a 419.2a 

Continuous pasture (CP) 
0-10 1.16 0.86 c 0.98 b 83.7b 

10-25 0.52 0.90 c 0.81 b 73.6b 

Hardwood forest (HF)  
0-10 1.35 1.00 1.00 100 

10-25 0.57 1.00 1.00 100 

Different letters within a column were significantly different at p < 0.05 (n=3). L: lability of 

organic carbon.  
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Figure 2. 1 The location of study site. The rectangles represented 10 × 10 m sampling plots (not to scale).  
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Figure 2. 2 Total organic carbon (TOC) at 0-10 cm and 10-25 cm depths under hardwood forest (HF, gray 

filled bar), cropland with manure (CM, black filled bar), and continuous pasture (CP, white filled bar) soils. 

Different letters indicated significant differences at p < 0.05. The error bar represented the standard 

deviation (n=3).  
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Figure 2. 3 Particulate organic carbon (POC) at 0-10 cm and 10-25 cm depths under hardwood forest (HF, 

gray filled bar), cropland with manure (CM, black filled bar), and continuous pasture (CP, white filled bar) 

soils.  

Different letters indicated significant differences at p < 0.05. The error bar represented the standard 

deviation (n=3).  
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Figure 2. 4 Mineral associated organic carbon (MOC) (A) and MOC/TOC (total organic carbon) (B) at 0-

10 cm and 10-25 cm depths under hardwood forest (HF, gray filled bar), cropland with manure (CM, black 

filled bar), and continuous pasture (CP, white filled bar) soils. 

Different letters indicated significant differences at p < 0.05. The error bar represented the standard 

deviation (n=3).  
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Chapter 3 Fe-bound Organic Carbon and Sorption of Aromatic Dissolved Organic Carbon 

in Surface Soil: Comparing a Forest, a Cropland, and a Pasture Soil in a Central 

Appalachian Region, West Virginia 

3.1 Abstract 

The essential roles of Fe oxides in stabilizing long-term soil organic carbon (SOC), especially 

aromatic dissolved organic carbon (DOCaro), are well-established in forest soils and sediments. 

We chose to focus on these processes in agricultural soils in which the input and translocation of 

native DOC to deeper soils are impacted by management practices. We quantified SOC, Fe oxide 

bound SOC (Fe-bound OC), and the DOCaro sorption in a forest, a cropland, and a pasture soil at 

0-10 and 10-25 cm. A significantly larger amounts of Fe oxides in the cropland soil was observed 

compared to the forest and pasture soils at both depths (p < 0.05). Land management practices 

and depth both significantly influenced proportion of the Fe-bound OC (p < 0.05). A larger 

maximum sorption of DOC in the cropland (315.0 mg kg-1) and pasture (395.0 mg kg-1) soils than 

the forest soil (96.6 mg kg-1) at 10-25 cm was found. DOCaro sorption decreased in the three soils 

at 0-10 cm (slope of -0.002 to -0.014 L2 mg-2 m-1) as well as the forest soil at 10-25 cm (-0.016 

L2 mg-2 m-1) with increasing equilibrium DOC concentration. Conversely, the cropland and 

pasture soils at 10-25 cm increased (0.012 to 0.014 L2 mg-2 m-1). These results indicate that the 

forest, cropland, and pasture managed soils may have more complex sorption behaviors in 

stabilizing DOCaro and non- DOCaro than previously known. 

Key words: Soil Organic Carbon · Agricultural soils · Fe oxides· Non-aromatic DOC · Sorption   
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3.2 Introduction 

Soil organic carbon (SOC) bridges biogeochemical C cycling among soil, aquatic, and 

atmospheric environments (Lehmann and Kleber, 2015). Without appropriate soil management, 

SOC is linked to current environmental issues, such as global warming and surface water 

brownification (Han et al., 2017; Kritzberg and Ekström, 2012). These issues are results of 

increased decomposition of SOC, which releases carbon dioxide to the atmosphere and also leads 

to the leaching of dissolved organic carbon (DOC) from soil to surface water (Han et al., 2017; 

Kritzberg and Ekström, 2012). In a changing climate, sequestering more SOC is a promising 

approach to mitigate these environmental issues (Schmidt et al., 2011).  

Iron (Fe) oxides are critical in regulating SOC dynamics and significantly impact SOC 

biogeochemical cycling due to their high surface areas, surficial hydroxyl groups (create 

exchangeable sites), and their abundance in many soils (particularly in redoximorphic features) 

(Chorover and Amistadi, 2001; Kleber et al., 2005; Riedel et al., 2013; Wagai and Mayer, 2007; 

Wagai et al., 2013). The SOC bound to Fe oxides (Fe-bound OC) is physically inaccessible to 

soil microorganisms, which inhibits the degradation and mineralization of SOC and thus has a 

long residence time (Kaiser and Guggenberger, 2000; Kalbitz et al., 2005). Therefore, Fe oxides 

have an important role in contributing to long-term SOC preservation in soils and sediments 

(Lalonde et al., 2012; Wagai and Mayer, 2007). About 19-45 ×1015 g organic carbon (OC) in 

sediments and 266-809 ×1015 g OC in forest soils are preserved by Fe oxides at the global scale 

(Lalonde et al., 2012; Zhao et al., 2016). However, the roles of Fe oxides in SOC stabilization in 

agricultural soils are not as well documented as in the forest soils and in sediment. 

One dominant mechanism of stabilizing SOC is the sorption of DOC to soil mineral surfaces 

mediated by Fe oxides, which is supported by recent molecular level technologies (Coward et al., 
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2018; Eusterhues et al., 2003; Kaiser and Guggenberger, 2000; Oren and Chefetz, 2012). SOC is 

a complex assemblage of various microbial-derived and plant-derived compounds, root exudates, 

and polyaromatic char with different reactivity caused by various functional groups (Lehmann 

and Kleber, 2015; Schmidt et al., 2011). This SOC chemical heterogeneity, which is due to 

various sources and alteration factors, brings more uncertainty and diversity to a full 

understanding of the mechanisms of SOC stabilization, especially in agricultural soils with varied 

management practices  (Lützow et al., 2006; Martens et al., 2004; Tilman et al., 2002). It has 

been reported that grass and cropland have a higher potential to preserve OC compared to forest 

soil (Wiesmeier et al., 2014). Carbon stocks in agricultural soils contribute a significant amount 

of C to global C stock and play an important role in mitigating global warming (Leifeld et al., 

2005). 

Land management practices effect soil physical (e.g. soil aggregate stability), chemical (e.g. C 

and N mineralization, soil and water relationship), and biological properties and thus soil organic 

carbon dynamics in agriculture (García-Orenes et al., 2009; Houlbrooke et al., 2011; Islam and 

Weil, 2000; Singh et al., 1994; Wilson et al., 2008). Thus, management practices are commonly 

adapted as strategies to improve crop production and sequester more SOC (Gomiero et al., 2011; 

Martens et al., 2004; Schmidt et al., 2011). Manure application in croplands and continuous 

grazing in pastures is a common management practice in agricultural ecosystems, which increases 

the aromaticity of DOC in soil (Bhattacharyya et al., 2010; Briske et al., 2008; Gomiero et al., 

2011; Gong et al., 2009; Greenwood and McKenzie, 2001; Kalbitz et al., 1999). Agricultural 

management practices also alter the concentrations of Fe oxides in soil solution, which, in turn, 

influences the preservation of DOC by Fe oxides (Huang et al., 2016a). Poorly crystalline iron 

oxides in agricultural soils increased significantly due to manure application (Huang et al., 2016b; 
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Wen et al., 2019; Zhang et al., 2013). Since soil Fe occurs in various forms differing in 

reducibility, it is important to have a better understanding of Fe oxides with different reducibility 

in soil in stabilizing SOC, for example, exchangeable Fe and microbially reducible Fe (Lovley 

and Phillips, 1987; Van Bodegom et al., 2003). However, multiple forms of Fe oxides with 

different reducibility in stabilizing SOC is still understudied in agricultural soils.  

Plant-derived aromatic and lignin-like high molecular weight compounds are preferentially 

retained by reactive amorphous Fe oxides by forming irreversible inner-sphere bonds, which 

resist DOC desorption and thus contribute to long-term SOC preservation (Coward et al., 2018; 

Kramer et al., 2012; Oren and Chefetz, 2012; Zimmerman et al., 2004). Long term agriculture 

inputs reshape the quantity and quality of SOC present in the soil including aromatic structures, 

structural complexity, and DOC molecular weight (Kalbitz et al., 1999; Takata et al., 2011; 

Wilson and Xenopoulos, 2009). This highly impacts the interactions between DOC and Fe oxides 

due to the changes in quantity and quality of DOC accessible to soil Fe minerals. Current studies 

mostly focus on Fe-bound OC in sediment, permafrost, and forest soils (Kramer et al., 2012; Mu 

et al., 2016; Wagai and Mayer, 2007; Zhao et al., 2016).  

In the central Appalachian region, anthropogenic disturbances are increasing, which leads to a 

major issue of soil degradation and depletion of carbon stocks. In this region, the forest, pasture, 

and cropland soils account for 62, 18, and 8% of land use. Thus, assessing the soil quality and 

carbon sequestration is paramount to develop best management practices for restoration and 

sustainable agriculture. Most previous studies focus on SOC sequestration of severely disturbed 

soils (Chaudhuri et al., 2011; Chaudhuri et al., 2012) and dissolved organic C fluxes in peatland 

soils (Yavitt, 1994).  However, there are few studies on the capacities of forest, cropland, and 

pasture soils for long-term SOC sequestration, especially by incorporating the role of Fe oxides. 
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An improved understanding of Fe-bound OC and interactions between Fe oxides and DOC, 

especially aromatic DOC, is crucial for a better understanding of the mechanisms of long-term 

SOC sequestration in agricultural soils. Additionally, filling this research gap is essential for 

developing and evaluating the best management practices in terms of soil nutrient dynamics. It 

may provide useful information to accurately predict the global SOC changes in the warming 

environment. 

Climate and soil properties are important factors influencing SOC dynamics (Gosling et al., 

2013; Jobbágy and Jackson, 2000; Luo et al., 2017). Current studies have been done at the scale 

of larger watersheds (Duval et al., 2016; Kalambukattu et al., 2013; Luo et al., 2017; Nahrawi et 

al., 2012; Sainepo et al., 2018). However, these studies are potentially confounded by differences 

within watershed other than land management practices, for example, different parent materials, 

topography, and climate. To minimize the effects of parent materials, topography, and climate 

within a watershed on SOC dynamics, pseudo-replicated studies may be informative. Therefore, 

a single fine-scale watershed was chosen in our study, which was derived from the same source 

parent material and had similar climate conditions (Kellner et al., 2018). Specifically, a cropland, 

a pasture, and a forest soil within this small catchment were selected. 

Sorption experiments in the majority of studies used DOC extracted from forest O horizon 

soils, which were different from the sorbent soils (Chevallier et al., 2010; Coward et al., 2018; 

Kramer et al., 2012; Wagai and Mayer, 2007; Wiseman and Püttmann, 2006). This prevents the 

interpretation of these studies for naturally occurring sorption processes; the DOC source to sub- 

surface soils are from in-situ surface soils. Thus, we were interested in using the DOC extracted 

from the cropland, pasture, and forest managed topsoil to mimic the sorption processes as they 

occur in-situ. 
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The objectives of this study were to (1) operationally quantify three forms of Fe oxides (the 

exchangeable, amorphous Fe, and crystallized Fe oxides), three forms of SOC (total SOC (TOC), 

Fe-bound OC, and DOC released during amorphous Fe extraction), and Fe and TOC molar ratio 

(OC:Fe), and (2) quantify the sorption of DOC and changes in aromaticity of DOC after sorption 

using batch experiments from the pasture, cropland, and hardwood forest managed soils. We 

hypothesized that if cropland and pasture soils had higher potential to stabilize more organic 

carbon, then cropland and pasture soils would show higher amounts of Fe-bound OC, more 

adsorption of aromatic DOC, and larger adsorption capacity than the forest soil.  

3.3 Materials and Methods 

3.3.1 Study site description 

This study was carried out at the West Virginia University’s Animal Science Farm in 

Morgantown, West Virginia (39°40' N, 79°56' W). The mean annual precipitation is 99.6 cm. The 

mean annual temperature is 11.4ºC (Wright, 1982). The elevation of the whole study area ranges 

from 287 m to 381 m. 

The three representative land management types were forest, pasture, and cropland. The forest 

was composed of mixed deciduous hardwood (HF) trees that were approximately 120 years old. 

The permanent pasture was continuously grazed (CG) with 0.5-0.75 dry dairy cows and/or heifers 

per hectare for 20 years. The cropland was a continuous corn (Zea mays) field with manure 

application (CM) for at least 20 years. More descriptions about the management and botanical 

composition of each land type are illustrated in Chapter 2.2.1 and 2.2.2.  

Through a combination of computer mapping and field surveys, four 10 m x 10 m plots were 

selected within the forest, cropland, and pasture, which is illustrated in Figure. 2.1. The elevation 

of the four plots at forest field was from 303.5 - 338.7 m. The slope was 25 -35%. The soil was 
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mapped as Celleoka-Westmoreland silt loams (Fine-loamy, mixed, active, mesic Ultic 

Haplusdalfs) (Soil Survey Staff, 2017). The four plots from the pasture were located within 

delineations of the same soil map unit as the forest plots and had similar elevation (324.4 -341.8 

m) and slope (25 - 35%). The parent material was loamy residuum weathered from limestone, 

sandstone, and shale (Soil Survey Staff, 2017). In the cropland, the elevation of the four plots 

were from 289.0 - 292.4 m. The soil was mapped as Holly silt loam) (Fine-loamy, mixed, active, 

nonacid, mesic Typic Fluvaquents) and Lobdell silt loam (Fine-loamy, mixed, active, mesic 

Fluvaquentic Eutrudepts). These four plots were on the flood plain adjacent to the slope where 

the forest and pasture plots were located. The parent material was recent loamy alluvium derived 

from limestone, sandstone, and shale.   

3.3.2 Soil sampling 

Soil samples were collected in June 2018. Four 10 m x 10 m soil plots with silimilar micro-

environmental conditions, like vegetation distribution, were randomly selected in the field for 

each land type. The forest plots had a very thin, minimally decomposed litter layer. When 

sampling, the litter layer was removed. The pasture plots excluded the supplemental feeding and 

watering post for the dry dairy cows and heifers and were at least 5 m away from the edge of the 

field. The cropland plots were at least 10 m away from the riparian grass buffer. Six soil sample 

cores at each plot were collected in an S pattern to a depth of 25 cm using a soil sampling probe 

with a 3 cm diameter. All soil cores were sectioned into two layers (0-10 cm and 10-25 cm). Pairs 

of cores from each plot were combined then composited across all four plots within a land type 

to form three pseudoreplications for both depth increments and all three land management types. 

The study and sampling site is presented in Fig. 2.1. 
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For the adsorption experiment, three 0.5 m x 0.5 m subplots were chosen from each plot and 

the soil of the top 5 cm from the three subplots was collected. The collected soil samples from 

three subplots of all four plots within each land type were composited to make one representative 

and homogeneous sample for each land type. Then, the collected soil samples were sieved to a 2-

mm seive and used to extract DOC as a DOC source of mimicing DOC percolating from surface 

to deeper mineral soils in the field condition. The study and sampling site is presented in Fig. 2.1.  

3.3.3 Soil physical and chemical analysis 

Each bulk sample was divided into two subsamples. One subsample was air dried at room 

temperature, ground, and sieved through a 2-mm sieve for determination of soil pH, EC, and 

particle density. The description of these determinations is summarized in Chap 2.2.3. The 

physical and chemical properties were determined using the air-dried soil samples and are 

presented in Table 2.1. The other subsample was sieved through a 2-mm sieve and stored at 4ºC 

until analysis within three days. 

The air-dried soil samples for determination of OC fraction were acidified with 1 M HCl with 

a 1:2 (m:V) solid:solution ratio to degas the inorganic C in soil and then dried at 70ºC for 24 hours. 

TOC in the oven-dried soil samples was determined by dry combustion (Elementar Vario MAX 

Cube, Hanau, Germany). The Fe-bound OC was determined using citrate-bicarbonate-dithionite 

(CBD) method (Mu et al., 2016; Zhao et al., 2016). The reactive Fe concentrations in the filtrate 

after CBD extraction were determined using ICP-OES, which represented the crystalline Fe(III) 

oxides in soil (Van Bodegom et al., 2003). The OC:Fe was calculated using the Fe-bound OC and 

the reactive Fe concentration in the CBD extraction. Exchangeable Fe (Feex) in fresh soil 

subsamples was determined to using 0.5 M HCl and the microbially reducible amorphous Fe 

(Feamor) was calculated as the Fe extracted from fresh soil using 0.25 M hydroxylamine 
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hydrochloride and 0.25 M HCl minus the Fe extracted with 0.5 M HCl (Lovley and Phillips, 1987; 

Van Bodegom et al., 2003). Exchangeable Fe represented the directly exchangeable Fe portion 

forming soil adsorption complexes; Microbially reducible amorphous Fe represented the portion 

of amorphous Fe (III) oxyhydroxide which could be reduced (Van Bodegom et al., 2003). The 

released Fe was determined according to methods described by Lovley and Phillips (1987). The 

released DOC in the filtrate was determined using Shimadzu-TOC V (Tokyo, Japan) and, as a 

measure of aromaticity, the specific ultraviolet absorbance at 254 nm (SUVA254) of the released 

DOC was determined using method described by Weishaar et al. (2003). 

3.3.4 Adsorption experiments 

A DOC stock solution from each land type was obtained by percolating the composited soil 

samples with 12.5 mM CaCl2 solution using a 1:1 (m:V) fresh soil to solution ratio (Alva et al., 

1991; Houba et al., 2000). The mixture was shaken at 200 cycles per minute for 6 days at room 

temperature. The percolates were centrifuged and filtered through 0.45-µm filters. The filtrate 

was used as DOC stock solution and stored at -20ºC until used in adsorption experiments. The 

extracted DOC stock solution was 119, 120, and 150 mg L-1 for forest, cropland, and pasture 

soils.The stock solution was diluted to five DOC concentrations (forest and cropland: 12, 24, 48, 

60, 72 mg L-1; pasture: 15, 30, 60, 75, and 90 mg L-1) using 12.5 mM CaCl2 solution, which was 

adjusted using the same ratio for each DOC concentration level of each soil. The pH and EC were 

adjusted to be about 7 using 1 M HCl and 1 M NaOH and 2.5 µS cm-1 using 12.5 mM  CaCl2 

before starting the sorption experiment. The pH and EC of the initial DOC extract solution of 

each land type are summarized in Table 3.1. 

For generating sorption adsorption data, 3.0 g of air dried soil was mixed with 30.0 ml of one 

of the five DOC solutions in 50 ml centrifuge tubes with two replications each. The control for 
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each isotherm was done by using 12.5 mM CaCl2 with 0 mg L-1 DOC. The mixtures were shaken 

for 24 hr at 30 rpm on a rotary shaker. Then the mixtures were centrifuged for 30 min at 3000 

rpm (1600 g). The supernatant was filtered through 0.45-µm filters. The filtrate was stored at 4ºC 

and analyzed within two days. The pH, EC, DOC concentration, and SUVA254 of DOC in the 

filtrate were determined after the sorption experiment as described above.  

3.3.5 Isotherms 

The modified Langmuir isotherm (Eq. 5), which added a desorption term b, in mg kg-1, to 

correct for the desorption of native adsorbed solute on the soil surface, was used (Kothawala et 

al., 2008). 

ADS =  
k × Qmax × qe

1+ k × qe
− b                                                                                                                   (5) 

Where ADS is amount of adsorbed DOC in mg kg-1, k is binding affinity in L mg-1, Qmax is the 

maximum sorption capacity in mg kg-1, and qe is the equilibrium concentration in mg L-1. 

3.3.6 Statistical analysis 

Repeated measure analysis of variance (rmANOVA) and Tukey adjustment were performed 

to test main effects of land management practice, depth, and their interaction on TOC, Fe-bound 

OC, reactive Fe, and OC:Fe molar ratio at α = 0.05 using SAS PROC MIXED procedure (Version 

11. SAS Institute Inc., Cary, NC, USA). Across all three land management practices and two 

depths, a linear regression was conducted between released DOC and Fe during extracting 

exchangeable Fe and microbially reducible Fe, assuming independence. Similarly, a non-linear 

regression was performed between the SUVA254 of released DOC and released Fe. Correlations 

between TOC, Feex, Feamor, reactive Fe, Fe-bound OC, and OC:Fe molar ratio were determined 

using non-parametric Spearman’s correlation using JMP 10.0 (SAS Institute Inc., Cary, NC, 
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USA). The probability of false positives in multiple analyses of  the non-parametric Spearman’s 

correlation was adjusted using a Benjamini-Hochberg procedure with a false discovery rate of 

0.25 (Benjamini and Hochberg, 1995). The isotherms were fit using a G-Newton iterative method 

with least square functions to estimate the fit using JMP (Kothawala et al., 2008). The 

performance of the fit was evaluated using the minimum root mean square error (RMSE) when 

estimating how well the model fit the data (Kothawala et al., 2008). The linear regression was 

performed between the changes in SUVA254 of the DOC solution and equilibrium DOC 

concentrations for the adsorption experiment. 

3.4 Results and Discussion 

3.4.1 Effects of soil texture on TOC, Fe-bound OC in proportion, and reactive Fe 

Soil texture is an important factor influencing SOC dynamics. It has been reported that SOC 

is significantly linear correlated with the combined silt and clay content in soils with similar 

climate, vegetation, and topography at 0-1 m depth (Hassink, 1997; Zinn et al., 2005). Increasing 

clay content increases the stability and decreases the mineralization of sensitive SOC fractions, 

such as particulate SOC (Franzluebbers and Arshad, 1997). However, Hassink (1994) only 

observed this relationship in soil with a high water table (Hassink, 1994). This relationship was 

also shown to be different between the forest and cropland soils (Matus et al., 2007). Other studies 

reported weak or no relationship between SOC and soil texture (Franzluebbers et al., 1996; 

Hassink, 1994). Likewise, we didn’t find significant relationships between the combined silt and 

clay content and TOC, reactive Fe, and OC-Fe in proportion in soil (p > 0.05) (Table 3.4). This 

indicated soil texture didn’t have significant influences on the TOC and Fe oxides in the soils 

with different land management practices in our study. 
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3.4.2 TOC and Fe-bound OC in forest, cropland, and pasture managed soils 

Significant influences of land management practices, depth, and the interaction between 

management and depth were observed on TOC and Fe-bound OC in proportion (p < 0.01) except 

for main effects of management practices on TOC (p = 0.07). No significant differences were 

observed among the forest, cropland, and pasture managed soils at 0-10 cm (Fig. 3.1A). The 

cropland managed soil at 10-25 cm had significantly higher TOC (17.79 g kg-1) compared to the 

forest soil (12.13 g kg-1) and pasture soil (9.61 g kg-1).  

Significantly higher Fe-bound OC in proportion was found in the forest (32%) and pasture 

(34%) soils at 10-25 cm, which was similar to the Fe-bound OC range in forest soils reported by 

Zhao et al. (2016). However, compared to the forest and pasture soils at 10-25 cm, significantly 

lower Fe-bound OC in forest (25%) and pasture soils (26%) at 0-10 cm and cropland soil at both 

0-10 cm (23%) and 10-25 cm (22%) were observed (Fig. 3.1 B), which had a similar range as 

marine sediment and permafrost ecosystem (approximate 20%) (Lalonde et al., 2012; Mu et al., 

2016). This indicated that the Fe oxides were more efficient in stabilizing SOC in the pasture and 

forest soil at 10-25 cm than the soils at 0-10 cm, which could reveal different mechanisms of Fe 

oxides in stabilizing SOC between top and subsurface layer of forest and pasture managed soils 

(Guggenberger and Kaiser, 2003). Although manure application likely increased total SOC 

concentration in cropland soils, especially in the subsurface soil, there was no significant 

difference of Fe-bound OC in proportion between top and subsurface soils (Figure. 3.1B) (Tong 

et al., 2014). This indicated limited influence of manure application on increasing SOC bound 

with Fe oxides even though the high aromaticity of DOC was present (Table 3.1). Other 

mechanisms may contribute to the SOC increase in the cropland soil. Although these significant 

differences of Fe-bound OC in proportion were observed, only depth was a significant influence 
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in terms of the amount of Fe-bound OC (Table 3.4). This indicated other non-Fe oxides associated 

SOC play an important role in stabilizing SOC and contributed to the observed differences in Fe-

bound OC in proportion in soils with three management practices. 

3.4.3 Reactive Fe and OC: Fe molar ratio among three land use management practices 

Only land management practices had significant influence on reactive Fe concentration (p < 

0.01). The reactive Fe significantly influenced the Fe-bound OC proportion in soil, which was 

indicated by a significant negative correlation (ρ = -0.5, p = 0.03) (Table 3.2) (Fig. 3.2C). The 

three soils had a similar reactive Fe range compared to the forest soil reported by Zhao et al. 

(2016) (up to 19.3 g kg-1) and a lower range than that reported by Wagai et al. (2013) (up to 180 

g kg-1). The crop land soil had a significantly higher reactive Fe concentration at both 0-10 cm 

(23.86 g kg-1) and 10-25 cm (23.72 g kg-1) than forest and pasture soils at both layers (Fig. 3.1C). 

This may be due to long-term manure application, which can increase the concentration of poorly 

crystalized Fe oxides (Zhang et al., 2013). It also suggested that cropland soil had a high amount 

of reactive Fe that was not bound with OC (Fig. 3.1C; Table 3.4), which may result from 

disturbance due to tillage. The forest and pasture soils at both depth increments had similar 

reactive Fe concentrations (HF0-10 cm: 16.93 g kg-1; HF10-25 cm: 16.75 g kg-1; CG0-10 cm: 12.98 g kg-

1; CG10-25 cm: 14.71 g kg-1) (Fig. 3.1C). 

Significant main effects of land management practices and depth, as well as the interaction 

between management and depth were observed on OC:Fe molar ratio (p < 0.01). The OC:Fe molar 

ratio is an indictor used to assess the type of interactions between Fe oxides and OC (Wagai and 

Mayer, 2007). When the ratio is between 0 to 1, the dominant sorption between Fe oxides and 

OC occurs (Wagai and Mayer, 2007). The dominant interaction is incorporation and/or chelation 
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when the ratio is above 1 (Wagai and Mayer, 2007). It significantly influenced the concentrations 

of Fe oxides in soil which indicated by a significant negative correlation between reactive Fe and 

OC:Fe molar ratio (ρ = -0.5, p = 0.03) (Table 3.2). The 0-10 cm samples from all three land 

management practices had an OC:Fe molar ratio larger than 1 (Fig. 3.1D), which indicated that 

incorporation and/or chelation interactions dominated. This was similar to Zhao et al. (2016), who 

reported that forest soils had a dominant incorporation between Fe oxides and OC in the top 20 

cm. However, all 10-25 cm samples from the three land management practices had dominant 

sorption interactions, which was indicated by a OC:Fe molar ratio close to 1 (Fig. 3.1D).  

3.4.4 Association between OC and amorphous and exchangeable Fe 

Amorphous Fe oxides are strongly associated with SOC (Kleber et al., 2005; Porras et al., 

2017; Wiseman and Püttmann, 2006) and contribute to 64% of SOC storage (Kramer et al., 2012). 

Chemical retention of aromatic DOC by amorphous Fe contributes to long-term SOC storage, 

especially for subsurface soil (Kramer et al., 2012). The microbial reducible amorphous Fe, the 

exchangeable Fe, the DOC concentration during extraction, and SUVA254 of released DOC were 

determined in our study. A significantly positive linear relationship was found between the 

released DOC and Fe concentration across all land management practices (r2= 0.54, p < 0.01) 

(Fig. 3.2A). This is consistent with Kramer et al. (2012) which reported the released DOC during 

extraction was linearly related to the amount of short range ordered Fe minerals. The forest and 

pasture soils had the highest amounts of released DOC during microbially reducible amorphous 

Fe extraction (Fig. 3.2A). Although high aromatic DOC and amorphous Fe concentration were 

observed in cropland soil, lower amounts of released DOC were found in cropland soil (Fig. 3.2A). 

This indicated that Fe oxides were more efficient in stabilizing aromatic DOC in the forest and 

pasture soils than the cropland soil. The interactions of amorphous Fe and SOC may be altered 
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by intensive disturbance or other non-sorptive mechanisms could be a reason for the low amounts 

of SOC associated with amorphous Fe oxides in cropland soil (Coward et al., 2017). 

In our study, the aromaticity of released DOC had a significantly positive relationship with 

amorphous Fe concentration (r2= 0.89, p < 0.001) (Fig. 3.2B). These results were consistent with 

Kramer et al. (2012). This indicated amorphous Fe had similar roles in preserving aromatic DOC 

across different land management practices. However, a higher aromaticity of released DOC 

stabilized by microbially-reducible amorphous Fe was found in pasture and cropland soils than 

forest soil only at 0-10 cm (Fig. 3.2B), which was consistent with higher SUVA254 of DOC in 

pasture and cropland soils than the forest soil (Table 3.1). These differences suggested 

interactions between aromatic DOC and amorphous Fe differed at different depths in these three 

soils.   

3.4.5 Sorption of DOC to three land use management practices soils  

The three land management practice soils had increasing DOC sorption with increasing 

equilibrium concentration and a higher amount of DOC sorption at 10-25 cm than 0-10 cm (Fig. 

3.3 HF-a, CM-a, and CP-a). The desorption occurred at low equilibrium concentrations (<30 mg 

L-1) of the cropland soil, pasture soil, and forest soil at 10-25 cm, while sorption and stabilization 

of DOC from soil solution only occurred at higher soil DOC concentrations (Fig. 3.3 HF-a, CM-

a, and CP-a). The soil DOC is dynamically altered by a multitude of soil conditions, for example, 

the stabilization of DOC only occurs in conditions leading to high soil DOC production, like 

continuing flooding or wet-dry cycles (Chow et al., 2006). The forest soil at 0-10 cm had 

desorption of the studied equilibrium concentration range (0-72 mg L-1) at 0-10 cm (Fig. 3.3 HF-

a). This revealed that forest topsoil released DOC to solution, which could be leached and 
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percolated to deep surface soil for sorption and stabilization (Fig. 3.3HF-a). Overall, agricultural 

soils had a higher maximum capacity to sorb and stabilize DOC than the forest soil (Table 3.5), 

which was consistent with higher SUVA254 of agricultural soils than forest soil (Table 3.1) (Kaiser 

and Zech, 1999). It implied a higher potential to sequester additional SOC in the cropland and 

pasture soils than the forest soil (Wiesmeier et al., 2014). Additionally, cropland soil at 10-25 cm 

and pasture soils at 0-10 cm had greater binding affinity compared to forest soils at 0-10 cm (Table 

3.5). The lowest binding affinity was observed in cropland soil at 0-10 cm (Table 3.5), which may 

be due to tillage disturbance. These differences could be also due to different soil minerology. 

For example, goethite was shown to preferentially retain aromatic OC while montmorillonite was 

shown to retain low molecular weight OC and no preference to aromatic OC (Chorover and 

Amistadi, 2001). However, future study is still needed to confirm this. 

3.4.6 Changes of aromaticity of DOC during sorption  

The changes of aromaticity of DOC in the solution were significantly related to the equilibrium 

DOC concentration (Fig. 3.3 HF-b, CM-b, and CP-b; Table 3.3). Kramer et al. (2012) reported a 

similar retention trend of aromatic DOC by short ranged Fe minerals across all soil types. 

However, Rumpel et al. (2015) found the main decomposed plant-derived OC (high aromaticity) 

in the topsoil layer and microbial-derived OC (low aromaticity) in the deep soil layer, which leads 

to different SOC stabilization processes. The evidence in our study that the observed different 

sorption trends at different land type soils at different depths may  be due to different DOC sources 

(Rumpel et al., 2015). 

We used ΔSUVA254 to indicate the change of aromaticity of DOC during sorption processes. 

ΔSUVA254 was calculated as SUVA254 of the DOC after 24 hours sorption minus the SUVA254 at 
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the beginning of sorption experiment. A negative ΔSUVA254 meant the SUVA254 of DOC in 

solution decreased after adsorption, which indicated the net loss of aromatic DOC in solution, 

while a positive ΔSUVA254 meant the SUVA254 of DOC in solution increased after sorption, 

which indicated the net gain of aromatic DOC in solution. Agricultural soils at 0-10 cm had 

positive ΔSUVA254 values and similar decreasing trends with increasing equilibrium 

concentrations, which indicated desorption processes of aromatic DOC from soil mineral surface 

(Fig. 3.3 CM-b and CP-b; Table 3.3). This is different from the majority of current studies that 

report preferential sorption of aromatic and phenolic moieties of DOC to soil or iron minerals 

(Coward et al., 2018; Kramer et al., 2012; Oren and Chefetz, 2012; Scott and Rothstein, 2014). 

Coward et al. (2018) proposed a three-step sequential sorption processes of DOC (aromatic, 

lignin-like, and aliphatic compounds) on Fe oxyhydroxide within the first four hours of sorption. 

Surface exchange of DOC between mineral surface and solution still occurs beyond four hours, 

which may lead to mobilization of stabilized DOC (Oren and Chefetz, 2012; Sowers et al., 2019). 

The binding of aromatic and carboxyl moieties with soil minerals are typically irreversible by 

forming inner-sphere bonds, while outer-sphere bonding with carboxyl moieties are readily 

desorbed (Oren and Chefetz, 2012). Our study indicated more reversible bonding with non-

aromatic DOC might be the mechanisms occurring in agricultural topsoil, like multiple exchange 

processes (Leinemann et al., 2018). Adhikari and Yang (2015) found that stabilized aliphatic acid 

by hematite was more resistant than aromatic carbon during reduction release. This reveals that 

stabilization of non-aromatic DOC, like carboxyl-rich DOC, and reduction release of aromatic 

OC may be important pathways of SOC stabilization and destabilization in topsoil (Coward et al., 

2018; Kaiser and Guggenberger, 2000; Kalbitz and Kaiser, 2008; Sowers et al., 2019).  
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The pasture and cropland soils at 10-25 cm had negative ΔSUVA254 values. The increasing 

trends with increasing equilibrium DOC concentrations had similar increasing slopes, which 

indicated sorption of aromatic DOC decreased with increasing DOC concentration (Fig. 3.3 CM-

b; Fig. 3.3 CP-b; Table 3.3). This indicates more irreversible bonds with aromatic DOC were 

formed in agricultural soils at 10-25 cm, especially at lower equilibrium concentrations. Unlike 

cropland soils with an aromatic sorption of the studied DOC concentration range (0-72 mg L-1), 

the pasture soils reached a zero-net sorption of aromatic DOC. This may indicate that desorption 

processes of aromatic DOC occurs, which may reveal more complex processes between aromatic 

DOC and soil surfaces than reported interactions between Fe pure minerals and DOC (Coward et 

al., 2018; Sowers et al., 2019). 

Unlike the sorption pattern of the cropland and pasture soils at both 0-10 and 10-25 cm, forest 

soils had decreasing trends of ΔSUVA254 with increasing equilibrium DOC concentrations (Fig. 

3.3 HF-b; Table 3.3). The 0-10 cm soil materials reached zero net sorption of aromatic DOC at 

high equilibrium DOC concentrations (Fig. 3.3 HF-b). The 10-25 cm soils had net desorption of 

aromatic DOC at low equilibrium DOC concentration (< 35 mg L-1) and sorption of aromatic 

DOC at high equilibrium DOC concentration (35 - 72 mg L-1) (Fig. 3.3 HF-b). Confirmation of 

molecular level characteristics of sorbed or released DOC remains unclear, which are still in need 

for future research to uncover the reasons behind these trends in different land managed soils. 

3.4.7 Implications for land use and stabilization of DOC for long-term SOC accumulation 

Although most well documented studies had reported the role of amorphous Fe on aromatic 

DOC sorption and Fe oxides on SOC preservation in forest soils and marine sediments (Coward 

et al., 2017; Guggenberger and Kaiser, 2003; Kalbitz and Kaiser, 2008; Riedel et al., 2013; 

Wiesmeier et al., 2014; Zhao et al., 2016), we didn’t find direct and aligned evidences of 
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significant influence of reactive Fe and amorphous Fe in increasing aromatic sorption in 0-10 cm 

or 10-25 cm soils of forest, pasture, and cropland. The three land managed soils had different 

sorption trends of aromatic DOC between agricultural soils (pasture and cropland) and forest soils, 

as well as between agricultural soils from 0-10 cm and soils from 10-25 cm (Fig. 3.3 HF-b, CM-

b, CP-b). The stabilization of aromatic DOC was only enhanced in agricultural soils at 10-25 cm 

with low DOC concentration and in forest soils with high DOC concentration (Fig. 3.3 HF-b, 

CM-b, CP-b). This indicated non-aromatic sorption might be a preference or desorption of 

aromatic OC from soil surfaces occurred in forest soil and agricultural soils at 0-10 cm at low soil 

DOC concentrations (Fig. 3). Thus, a uncertainty exists regarding interactions of soil Fe minerals 

and DOC or aromatic DOC in different land managed soils at different depths and multiple factors 

may regulate DOC and aromatic DOC sorption processes, such as DOC composition (Du et al., 

2018), soil mineralogy (Han et al., 2016), soil mineral surface chemistry (Chorover and Amistadi, 

2001), and structural features of soil aggregates (Chevallier et al., 2010). Future studies are still 

necessary to uncover the influencing factor behind these phenomena.  

Land types and management practices highly influence the quantity and quality of soil Fe 

minerals and DOC and also the conditions of transferring and transformation processes (Anesio 

et al., 2005; Hobley et al., 2017; Kalbitz, 2001; Petrone et al., 2009; Wilson and Xenopoulos, 

2009). This causes more uncertainty in understanding Fe oxides and DOC interactions in 

agricultural soils with different land management practices, and points to a need for future studies 

using a wide range of agricultural soils. This study revealed important contributions of non-

aromatic sorption to soil mineral surfaces in agricultural topsoil. This indicated the limitation of 

current generalized understanding of highly selected sorption of aromatic DOC to Fe oxides, 
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which is still weakly supported by our studies using DOC from in-situ soils and specifying the 

soils with different management practices at different depth.  

Although Leinemann et al. (2018), Lützow et al. (2006), and Scott and Rothstein (2014) 

proposed models that showed stepwise processes or several sorption mechanisms simultaneously 

occurring during sorption, our study indicated more specific context studies in different land soils 

and field studies deserve more efforts and should be the subject of future study (Kaiser and 

Guggenberger, 2000; Leinemann et al., 2018; Lützow et al., 2006; Rumpel et al., 2015). Since 

cropland and pasture are two dominant land types in the world (Václavík et al., 2013), it is 

essential to incorporate more studies in terms of the mechanisms of Fe oxides in stabilizing SOC, 

especially for both non-aromatic and aromatic DOC, to provide theories for appropriate 

management practices in agriculture and robust global C cycling models for C dynamics 

prediction. 

3.5 Conclusions 

Our study confirmed the role of total Fe oxides and amorphous Fe in stabilization of SOC in 

both agricultural and forest soils. Our hypothesis was partially supported. We did find 

significantly different proportion of Fe-bound OC and reactive Fe concentration in the cropland, 

pasture, and forest managed soils. However, we didn’t observe a significant correlation between 

TOC and reactive Fe, or between Fe-bound OC and reactive Fe. Although the cropland soil at 0-

10 and 10-25 cm had the highest amounts of Fe oxides, lower proportion of Fe-bound OC was 

observed in cropland soil at both depths than forest and pasture soils at 10-25 cm, which indicated 

a higher potential to stabilize SOC by Fe oxides in the cropland soil. Additionally, our sorption 

experiments supported our hypothesis because we observed higher sorption of DOC in the 

cropland and pasture soils than the forest soil. The sorption behaviors of aromatic DOC between 
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the cropland and pasture soils were similar at both 0-10 cm and 10-25 cm, which were different 

from that of the forest soil.  

Unlike other studies, our study indicated the significant role of non-aromatic DOC in 

stabilizing DOC in the cropland and pasture soils at 0-10 cm. Additionally, this study indicated 

the native DOC concentrations significantly altered the sorption of aromatic and non-aromatic 

DOC. The changes in the quality and quantity of DOC may reshape SOC dynamics and thus is 

likely a factor for the observed differences of soil nutrient conditions in our soils (Table 2.1). The 

potential for these central Appalachian region soils to sequester carbon may be influenced by the 

quality and quantity of DOC. 
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Table 3. 1 The properties of DOC stock solution, extracted from hardwood forest (HF), cropland with 

manure application (CM), and continuous pasture (CP) soils at 0-5 cm depth, used in sorption experiment 

 Hardwood Forest 

(HF) 
Cropland (CM) Pasture (CP) 

pH 7.1 7.1 7.2 

EC (μs cm-1) 2.4 2.5 2.5 

SUVA254 (L m-1 mg-1) 0.8 1.4 1.2 
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Table 3. 2 Correlation matrix of Spearman correlation coefficients (r) of the investigated parameters 

Parameters TOC Feex Feamor OC:Fe Reactive Fe Fe-bound OC 

TOC 1      

Feex 0.64* 1     

Feamor 0.63* 0.95* 1    

OC:Fe 0.77* 0.42 0.39 1   

Reactive Fe -0.04 0.30 0.33 -0.50* 1  

Fe-bound OC -0.54* -0.67* -0.67* -0.02 -0.50* 1 

TOC: Total organic carbon; Feex: Released Fe after 0.5 M HCl extraction; Feamor: Released Fe after 

0.25 M HCl and 0.25 M NH2OH·HCl extraction; OC:Fe: Organic carbon over Fe molar ratio; Fe-

bound OC: Organic carbon preserved by Fe; * p < 0.01.  
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Table 3. 3 Linear regressions between ΔSUVA254 of DOC solution and equilibrium DOC concentration for 

three land type soils at 0-10 cm and 10-25 cm depths. 

Land 

type 
Depth Equation Adjusted r2 p 

Forest 
0-10 cm ΔSUVA254 = -0.014 qe  + 1.10 0.93 0.005 

10-25 cm ΔSUVA254 = -0.016 qe  + 0.71 0.86 0.014 

Cropland 
0-10 cm ΔSUVA254 = -0.002 qe  + 0.18 0.68 0.053 

10-25 cm ΔSUVA254 = 0.014 qe  - 0.76 0.78 0.031 

Pasture 
0-10 cm ΔSUVA254 = -0.006 qe  + 0.61 0.77 0.031 

10-25 cm ΔSUVA254 = 0.012 qe  - 0.49 0.89 0.01 

ΔSUVA254 (m
-1 L/mg): The specific ultraviolet absorbance at 254nm of filtered DOC in solution 

at equilibrium minus that of DOC at original solutions; qe (mg/L): The equilibrium concentration 

of filtered DOC solution. 
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Table 3. 4 Estimated linear regression using a standard square least approach between total organic carbon 

(TOC), Fe-bound OC, and reactive Fe and the combined silt and clay content in in hardwood forest (HF), 

cropland with manure application (CM), and continuous pasture (CP) soils at 0-10 cm and 10-25 cm depth 

Investigator 

factor 
Model equation r2 

p  

TOC TOC = 0.25 (silt+clay) + 0.15 0.31 0.25 

Fe-bound OC Fe-bound OC = 0.57 (silt+clay) + 0.71 0.09 0.56 

Reactive Fe Reactive Fe = 0.44 (silt+clay) + 0.93 0.15 0.44 
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Table 3. 5 Sorption characteristics of three land type soils at 0-10 cm and 10-25 cm depths. 

Parameters 
Forest Cropland Pasture 

0-10 cm 10-25 cm 0-10 cm 10-25 cm 0-10 cm 10-25 cm 

Qmax (mg kg-1) 518 1685 1159 3203 1631 2638 

k (L mg-1) 0.0029 0.0024 0.0018 0.0073 0.0039 0.0025 

b (mg kg-1) 219 148 148 81 139 84 

RMSE 3.6 8.2 7.8 3.2 5.6 7.3 

Modified Langmuir isotherm (Eq 5) was used to describe the DOC sorption. The maximum 

sorption capacity (Qmax) and binding affinity (b) were obtained to compare the sorption 

characteristics of three land types. The crop land soil at 0-10 cm had the highest Qmax (3203 mg 

kg-1) while forest soil at 0-10cm had the lowest Qmax (518 mg kg-1). The forest and pasture soils 

showed larger Qmax (forest: 1685 mg kg-1; pasture: 2638 mg kg-1) at 10-25 cm than the soils at 0-

10 cm (forest: 518 mg kg-1; pasture: 1631 mg kg-1). The cropland had the opposite trend. The two 

highest sorption affinity, k, was found in crop land soil at 10-25 cm (0.0073 mg L-1) and grassland 

soil at 0-10 cm (0.0039 mg L-1) while the lowest k was in cropland soil at 0-10 cm (0.0018 mg L-

1).  
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Figure 3. 1 Total organic carbon (TOC) (A), Fe-bound OC (B), reactive Fe (C), and organic carbon Fe 

molar ratio (D) in forest (HF), cropland (CM), and pasture (CP) soils at 0-10 cm and 10-25 cm depth.  

Different lower-case letters indicated significant differences at α = 0.05. The error bar represented 

the standard deviation (n=3).  
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Figure 3. 2 Regression relationship between the amount of released DOC (A) and SUVA254 of DOC released 

(B) from soils after 0.5 M HCl at 0-10 cm (diamonds) and 10-25 cm (squares), 0.25 M HCl and 0.25 M 

NH2OH·HCl extraction at 0-10 cm (circles) and 10-25 cm (triangles) in forest (black fill), cropland (gray 

fill), and pasture (no fill).  

Panel A: Released DOC (mg kg-1 soil) = 0.19 * Fe (g kg-1) + 0.16, r2= 0.54, p < 0.01; Panel B: 

SUVA254 of released DOC (m-1 mg-1 L per g soil) = 9.27 * ln (Fe) (g kg-1) + 39.84, r2= 0.89, p < 

0.0001.   
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Figure 3. 3 Dissolved organic carbon (DOC) sorption to the forest (HF-a), cropland (CM-a), and pasture 

(CP-a) soils and the change of SUVA254 (Δ SUVA254) of the DOC solution after sorption to the forest (HF-

b), cropland (CM-b), and pasture (CP-b) soils at 0-10 cm and 10-25 cm depth.  

The solid lines were the fitted modified Langmuir isotherm. The dashed lines were the fitted linear 

regression. ADS: adsorbed DOC; Δ SUVA254: The specific ultraviolet absorbance at 254nm of filtered DOC 

in solution at equilibrium minus that of DOC at original solutions;  
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Figure 3. 4 Fe-bound OC in hardwood forest (HF), cropland with manure application (CM), and continuous 

pasture (CP) soils at 0-10 cm and 10-25 cm depth. 

Different lower-case letters indicated significant differences at α = 0.05. The error bar represented 

the standard deviation (n=3).  
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Chapter 4 Assessment of Dissolved Organic Carbon and Iron Effects on Water Color Between a 

Forest and Pasture Dominated Fine-scale Catchment in a Central Appalachia Region, West 

Virginia1 

4.1 Abstract 

Dissolved organic carbon (DOC) and iron (Fe) have been observed to be the important 

contributors to surface water brownification. Additionally, the DOC quality influences water color 

by forming Fe-DOC complexes that provide additive effects and is influenced by dominant land 

use type within watersheds. However, the influence of quantity and quality of DOC on Fe and 

water color is poorly understood in headwater streams. The aim of this study was to investigate 

the effects of DOC and Fe on water color in forest (FC) and pasture (GFC) fine-scale watersheds 

to remove the confounding effects of climate and soil parent material. Significant differences of 

DOC, Fe, and water absorbance at 420nm (a420) between FC and GFC were found (p < 0.05). A 

dominant contribution to water color was from DOC (95.5 - 63.7%) with a decreasing trend when 

Fe increased from 0.011 to 0.258 mg L-1. There were no significant interactions between FC and 

GFC and Fe on either a420/DOC (p = 0.06) or specific ultraviolet absorbance at 254 nm (SUVA254) 

(p = 0.30). Increasing a420/DOC and SUVA254 were significantly associated with increasing Fe 

concentration (p < 0.01). Significant interactions were found between FC and GFC and Fe on 

spectral slope ratio (S ratio) (p < 0.01). The response rate of S ratio with increasing Fe per unit 

was 0.235 for GFC while it was -11.043 for FC. These differences indicate that land use may 

change the quality of DOC, influence Fe-DOC interactions, and thus affect water color. Linking 

the effects of soil Fe and DOC and headwater Fe and DOC may help identify optimal management 

practice to mitigate surface water brownification. 

Key words: DOC· Fe· Brownification· SUVA254· S ratio· Land use 

  

 
1 This chapter has been published in the journal of Environmental Science and Pollution Research. 
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4.2 Introduction 

Increasing surface water brownification is frequently reported and is predicted to continuously 

increase in many large-scale watersheds of the northern hemisphere (Haaland et al., 2010; 

Weyhenmeyer et al., 2016). It is a current environmental concern with wide-reaching ecological 

and societal impact, e.g. on functions of aquatic ecosystems (Williamson et al., 2015) and 

potentially increasing pretreatment cost of drinking water due to the formation of toxic byproducts 

(Richardson et al., 2007).  

It is known that dissolved organic carbon (DOC) contributes to water brownification due to 

the presence of colored DOC (Pace and Cole, 2002; Roulet and Moore, 2006). However, it is also 

found that an increase of water brownification is not sufficiently explained solely by increased 

DOC concentration (Erlandsson et al., 2008). Given the interaction of iron (Fe) with DOC, it has 

been reported that Fe can provide additive effects to water color by forming complexes with DOC 

(Maloney et al., 2005; Weyhenmeyer et al., 2014). The complexes between Fe and DOC can 

extend the residence time of both Fe and DOC in water (Maloney et al., 2005) and thus increase 

water brownification (Sarkkola et al., 2013). Specifically, Sarkkola et al. (2013) concluded that 

this phenomenon is attributed to increasing concentrations of both DOC and Fe.  

Several studies have been done to quantify the relative contributions of DOC and Fe to water 

color. Although the dominant contribution is from DOC in most large-scale watersheds, carbon 

specific absorbance increases due to the presence of Fe (Weyhenmeyer et al., 2014). The 

contribution from Fe to water color increases with increasing Fe concentration. Xiao et al. (2015) 

reported that Fe dominated water color when Fe concentration reached 4.6 mg L-1. Apart from 

quantifying contribution to water color from the concentrations of DOC and Fe, the quality of 

DOC and interactions between DOC and Fe influence water color (Xiao et al., 2013). However, 
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studies combining quality of DOC and thus interactions between DOC and Fe to explain surface 

water color are rare. 

Stream DOC concentration is largely regulated by the quantity and quality of soil DOC since 

the catchment soil is the main source at both the regional and global scales in different ecosystems 

(Battin et al., 2008; Graeber et al., 2012; Tank et al., 2010). Stream water DOC concentration is 

strongly correlated with soil C pool (Aitkenhead et al., 1999). Three fundamental processes 

influencing DOC in surface water include soil DOC production, hydrologic transport of DOC 

from soil to stream, and modification of DOC during transport in soil and stream, which controls 

the transport of carbon from soil to stream (Brooks et al., 1999; Sanderman et al., 2009). Thus, 

land use/land cover is an important factor influencing the transport of DOC and Fe in soil to 

adjacent water bodies, especially in upstream waters (Dillon and Molot, 1997; McDowell, 1984). 

It is known that high molecular weight DOC preferentially forms Fe complexes (Ekström et al., 

2011; Pennanen and Frisk, 1984). It has been shown that changes in land use lead to changes in 

the amount and composition of DOC in a stream (Graeber et al., 2012; Petrone et al., 2011; 

Wilson and Xenopoulos, 2009; Yang et al., 2012). The changes in the amount and composition 

of DOC may influence the presence of Fe, the complex of DOC and Fe, and thus water color.  

Other biotic and abiotic factors govern the three processes, such as temperature, discharge, 

vegetation, hydrological factors, and soil minerals (Armstrong et al., 2012; Camino‐Serrano et 

al., 2014; Erlandsson et al., 2008; Lambert et al., 2013; Maurice et al., 2002; Sanderman and 

Amundson, 2008) in addition to land cover. Most studies have quantified the contribution of DOC 

and Fe to water color according to concentration of DOC and Fe in large-scale watersheds based 

on dominant land cover of the catchments of sampling locations (Ekström et al., 2016; Köhler et 

al., 2013a; Kritzberg et al., 2014; Kutser et al., 2015; Sarkkola et al., 2013; Weyhenmeyer et al., 
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2014; Williamson et al., 2015). However, multiple locations within a large-scale watershed bring 

more factors beyond land cover, especially for high order streams. This has been weakly 

addressed and is a limitation of these studies. Additionally, the quantity and quality of DOC and 

Fe change with passage through watersheds (Fellman et al., 2009; Neubauer et al., 2013). Thus, 

there is still uncertainty regarding the role of land cover on water color in these large-scale 

watershed studies; Pseudo-replicated fine-scale studies may help address that uncertainty (De 

Paula et al., 2016; Kellner et al., 2018). 

Watersheds dominated by agricultural land management tend to have a significantly higher 

concentrations of Fe and DOC and thus darker water color compared to forest dominated 

watersheds (Temnerud et al., 2014). The DOC and Fe in fine-scale headwater watersheds with 

different land use has different influences on the presence of DOC and Fe in higher order streams. 

Thus, a better understanding of DOC and Fe on water color is necessary and essential in fine-

scale forest and agricultural headwater streams for developing best management practices to 

mitigate surface water brownification. This is especially important in the watersheds in the central 

Appalachian region, which shows issues of surface water quality and deteriorated aquatic 

ecosystems (Bryce et al., 1999). However, little information is available in terms of combining 

both quality of DOC and quantity of DOC and Fe to explain water color in fine-scale agricultural 

and forestry headwater streams in this region.  

Altogether, to address the limitations of current studies in large-scale watersheds and the issues 

of deteriorated surface water quality in the central Appalachian region, we chose two headwater 

catchments (dominated by a long-term pasture and hardwood deciduous forest) with similar soil 

types, size, discharge, climate, topography, and geological regimes (Fig 2.1) (Kellner et al., 2018). 

In addition, soil management practices in these two headwater streams have been maintained for 
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more than 20-years, which makes their long-term effects on surface water chemistry significant. 

The aims were to (i) quantify and compare DOC and Fe concentrations and their relative 

contributions to water color between pasture and forest dominated headwater streams, and (ii) 

determine which the DOC fractions interacted with Fe indicating by DOC quality indexes and 

thus contributed to watercolor in these two headwater streams.  

4.3 Materials and Methods 

4.3.1 Study area and sampling 

This study was carried out at West Virginia University’s Animal Science Farm (39°40' N, 

79°56' W) in Morgantown, West Virginia. The elevation ranges from 287 m to 381 m above sea 

level. The mean annual temperature is 11.4ºC and the mean annual precipitation is 99.5 cm 

(Wright, 1982).  

Three representative land-use types were found in these two watersheds: forest, permanent 

pasture, and annual crop land. The forest was composed of mixed hardwood trees that are 

approximately 120 years old (Fithian, 1979). The dominant hardwood types included white oak 

(Quercus alba), northern red oak (Quercus rubra), yellow poplar (Liriodendron tulipifera), white 

ash (Fraxinus americana), and hickory (Carya tomentosa) (Fithian, 1979). The pasture was 

continuously grazed with 10-15 dry dairy cows and/or heifers and mowed once in October each 

year for 20 years. The vegetation present included grasses, legumes, and forbs. The dominant 

species were red clover (Trifolium pretense), white clover (Trifolium repens), ironweed (Vernonia 

baldwinii), smart weed (Polygonum pensylvanica), horsenettle (Solanum carolinense), kentucky 

bluegrass (Poa pratensis), and timothy (Phleum pretense). The crop land was a continuous corn 

(Zea mays) field with conventional tillage. Each year for at least 20 years composted dairy manure 

had been incorporated at a rate of 2,700 to 3,600 kilograms per hectare. Additional 100 kilograms 
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urea per hectare was applied to corn at 0.2 - 0.5-meter growth stage. Winter wheat (Triticum 

aestivum) was planted as a cover crop after the corn was harvested. 

Stream water samples were collected from two fine-scale headwater catchments (1.308 km2) 

(Fig. 4.1). The first headwater stream (FC) (0.913 km2) was predominately the forest land use 

(0.774 km2, 85.8%). The other three types included grassland (0.097 km2, 9.8%), crop land (0.03 

km2, 3.3%), and developed area (0.01 km2, 1.1%). We collected one sample influenced by the 

forest land use (F) and the other influenced by the crop land use (C) (Fig. 4.1). The second 

headwater stream (GFC) (0.405 km2) was predominantly pasture (0.201 km2, 49.6%). The other 

three types along this stream included forest (0.142 km2, 35%), crop land (0.039 km2, 9.6%), and 

developed area (0.023 km2, 5.8%). All land cover delineations were determined using ArcGIS 

(Version 10.7.1) and National Land Cover Dataset from 2011.  

We collected four samples potentially influenced by pasture (GH and GG), forest (GF), and 

crop land use (GC) (Fig. 1). Water samples were collected from the six sites on June 26, July 17, 

August 21, 2017, November 6, 2017, and January 10, 2018. All samples were collected using acid 

washed 1 L polyethylene bottles in triplicate and transported immediately to the laboratory. All 

water samples were filtered through Whatman 0.45-µm filters and stored in a refrigerator under 

4ºC and analyzed within 3 days after collection. All laboratory analyses were performed in 

triplicate. 

4.3.2 Laboratory analysis 

The pH was determined using a Mettler Toledo SevenEasy pH meter (Columbus, OH, USA). 

Non-purgeable organic carbon (NPOC) was determined using a Shimadzu-TOC V (Tokyo, Japan) 

to represent DOC concentration (detection limit: 50 ug L-1). The quantity and quality of DOC in 

surface water are influenced by microbial activity, which is enhanced by nutrient enrichment, 
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such as nitrate and phosphate (Gulis and Suberkropp, 2003). Microorganisms have an important 

role in changing the quantity and quality of DOC. So, nitrate and phosphate in the filtrate were 

determined colorimetrically by the difference between the absorbance of 220 nm and 275 nm 

(Armstrong, 1963), and at 880 nm (Murphy and Riley, 1962), respectively, using a Cary 50 UV 

spectrophotometer (CA, USA). Total dissolved Fe was determined using inductively coupled 

plasma-optical emission spectroscopy (ICP-OES) (Optima DV2100, Perkin Elmer, Waltham, 

MA) (detection limit (12 ug L-1) was determined using the standard curve). 

Absorbance spectra from 230 - 600 nm at 1 nm intervals were obtained using a BIOTEK 

microplate reader (Epoch 2, Winooski, VT, USA) in a 1 cm cuvette. All spectra (aλ) were 

expressed as m-1 (Helms et al., 2008). Absorbance at 420 nm (a420) was used to assess stream 

water color (Köhler et al., 2013a). The absorbance spectral slope ratio (S ratio) was calculated as 

the ratio of the spectral slope at 350 - 400 nm and at 275 - 300 nm (Helms et al., 2008). The 

specific ultraviolet absorbance at 254 nm (SUVA254) was calculated as the ratio of absorbance at 

254nm (a254) and DOC concentration (Weishaar et al., 2003).  

Excitation scans were performed to determine fluorescence indices (including β/α, HIX, and 

FI) using a Cary Eclipse spectrophotometer (Palo Alto, CA, USA) for all water samples. Raman 

scattering was removed by subtracting a deionized water blank. Inner filter effects were corrected 

for all samples (Ohno, 2002). The freshness index (β/α) was determined as the ratio between 

intensity at emission wavelength (λem) 380 nm over λem maximum between 420 nm and 435 nm 

at excitation wavelength (λex) 310 nm (Huguet et al., 2009). The humification index (HIX) was 

determined by the ratio of the area of the peak at λem 435 - 480 nm and λem 300 - 345 at λex 254 

nm (Zsolnay et al., 1999). The fluorescence index (FI) was determined as the ratio between λem 

470 nm and λem 520 nm at λex 370 nm  (Cory and McKnight, 2005; McKnight et al., 2001). 
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4.3.3 Data analysis 

A goodness-of-fit Shapiro-Wilk test was performed to assess the normality of distribution of 

all continuous variables. Differences in DOC, Fe, and a420 between FC and GFC were assessed 

using t-tests. Single and multiple linear regression models were developed to explain a420 by Fe 

and DOC and their relative contributions to water color as described by Köhler et al. (2013a). The 

effects of stream type (FC and GFC: fixed effect), Fe (random effect) and their interaction on 

carbon specific absorbance (a420/DOC), S ratio, and SUVA254 were determined using mixed 

models with location nested within stream types as a fixed effect using SAS PROC Mixed 

procedure (Version 11. SAS Institute Inc., Cary, NC, USA). Significant differences were declared 

at p < 0.05. If a significant interaction between stream type and Fe in the mixed model was found, 

separate regression models were developed. Otherwise a combined regression line was used. 

Regression was performed regressing a420/DOC, S ratio, and SUVA254 on Fe for FC and GFC.  

Principle component analysis (PCA) was performed to evaluate the variability of this system 

using a420, DOC, Fe, SUVA254, S ratio, HIX, β/α, FI, nitrate, and phosphate. A non-parametric 

Spearman’s correlation was performed to investigate the correlation of a420, DOC, Fe, SUVA254, 

S ratio, HIX, β/α, FI, nitrate, and phosphate with a420, DOC, and Fe at α=0.05 using JMP (Version 

10. SAS Institute Inc., Cary, NC, USA). A Benjamini-Hochberg procedure was used to control 

the false positives of multiple analyses of  the non-parametric Spearman’s correlation by using a 

false discovery rate of 0.25 (Benjamini and Hochberg, 1995). 

4.4 Results 

4.4.1 DOC and Fe trends and their relative contribution to a420 

All DOC, Fe, and a420 had significant differences between FC and GFC (p < 0.01). There were 

no significant differences among different sites within each headwater stream (p > 0.05). DOC, 
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Fe, and a420 were greater in all four sites (GH, GG, GF, and GC) at GFC compared to the two 

sites (F and C) at FC (Table 4.1). The average DOC, Fe, and a420 at GFC were 1.91, 2.79, and 

4.34 times greater, respectively, compared to FC. The highest DOC (8.16 ± 0.028 mg L-1), Fe 

(0.258 ± 0.063 mg L-1), and a420 (4.33 ± 0.016 m-1) were at GH (GFC) in January 2018 (Table 4.1). 

The lowest DOC (1.86 ± 0.02 mg L-1, July) and a420 (0.19 ± 0.04 m-1, June) were at F while the 

lowest Fe (0.011 ± 0.001mg L-1, June) was at C (FC) (Table 4.1). 

The variation of a420 explained by DOC and Fe was estimated using linear and multiple 

regression analysis for the whole dataset (n=30). The variation in a420 explained by DOC was 

79.9% (MDOC, p < 0.0001) and by Fe was 59.9% (MFe, p < 0.0001) (Table 4.2). An improved 

model for a420 explained 86.3% of the variation by both DOC and Fe (MDOC+Fe, p < 0.0001) (Table 

4.2). The increase of a420 with increasing Fe concentration per unit was much higher (MFe: 10.286; 

MDOC+Fe:4.471) than with increasing DOC concentration per unit (MDOC: 0.518; MDOC+Fe: 0.390) 

(Table 4.2). 

The relative contribution of DOC and Fe to water color was estimated using MDOC+Fe (Table 

4.2). The relative contribution of DOC to a420 was dominant and followed a negative linear trend 

decreasing from 95.48% to 63.74% when Fe concentration increased from 0.011 to 0.258 mg L-1 

(Fig. 4.2). The relative contribution of Fe had a positive increasing trend ranging from 4.52% to 

26.26% (Fig. 4.2). 

4.4.2 Estimating variations of interaction between DOC and Fe  

There were main effects of stream type and Fe a420/DOC (p < 0.01) on a420/DOC while there 

were no significant interactions between Fe and types of streams on a420/DOC (p = 0.06) (Table 

4.3). Overall, Fe had additive effects on a420/DOC, as indicated by a positive logarithmic 

relationship (Fig. 4.3) (r2 = 0.55, p < 0.0001). 
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To evaluate how the quality of DOC influenced the interaction of DOC and Fe, we included 

an estimate of the relationship between SUVA254, S ratio, and Fe. There were significant main 

effects of stream type and Fe on SUVA254 and S ratio (p < 0.01) (Table 4.3). There was no 

significant interaction between Fe and type of streams on SUVA254 (p = 0.30) (Table 4.3). The 

concentration of Fe and the SUVA254 of DOC had a significant positive increasing relationship 

(r2=0.73, p = 1.97E-9) (Fig. 4.4). Significant interactions between Fe and type of streams on S 

ratio were found (p < 0.01) (Table 4.3). When comparing S ratio and Fe between FC and GFC, a 

more rapidly decreasing trend of FC (slope: -11.04) was found in comparison to that of GFC 

(slope: 0.24) with increasing Fe (Fig. 4.5). 

4.4.3 Principle component analyses 

The PCA was carried out to determine the variability of the system at both FC and GFC as a 

function of a420, DOC, Fe, S ratio, SUVA254, HIX, β/α, FI, nitrate, and phosphate. It indicated that 

components 1 and 2 explained 73.2% of variance for FC and 66.5% of variances for GFC (Fig 

4.6). At FC, significant positive correlations were found between Fe and FI and a420 as well as 

nitrate and DOC (Fe-a420: ρ = 0.68, p = 0.029; FI-a420: ρ = 0.75, p = 0.013; nitrate-DOC: ρ = 0.68, 

p = 0.029) (Table 4.4). At GFC, both DOC and Fe had significant positive correlation to a420 

(DOC-a420: ρ = 0.62, p < 0.01; Fe-a420: ρ = 0.66, p < 0.01). The SUVA254 and β/α were positively 

correlated to Fe (SUVA254-Fe: ρ = 0.61, p < 0.01; β/α-Fe: ρ = 0.69, p < 0.01) while phosphate 

was negatively correlated to Fe (phosphate-Fe: ρ = -0.69, p < 0.01) (Table 4.4). 

4.5 Discussion 

4.5.1 DOC and Fe contributions to water color 

Our study showed a similar a420 range in the two headwater streams compared to large-scale 

watersheds (Köhler et al., 2013a; Kritzberg and Ekström, 2012; Kutser et al., 2015; Temnerud et 
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al., 2014). DOC with Fe were found to be the main predictor to water color in these two headwater 

streams. A better model was obtained with DOC and Fe as predictors, which indicated by a higher 

R2 (0.86). This is consistent with trends of DOC and Fe to water color in large-scale watersheds 

(Köhler et al., 2013a; Kritzberg and Ekström, 2012; Weyhenmeyer et al., 2014). However, a 

higher variance (> 90%) explained by DOC and Fe has been found in large-scale watersheds 

(Köhler et al., 2013a; Xiao et al., 2015). This might indicate a higher amount of uncolored DOC 

was present in this headwater watershed (Xiao et al., 2015). 

The relative contribution of DOC was greater than Fe and dominated water color in these two 

headwater streams in this study. However, it depends on Fe concentration when determining the 

dominant contributors. Xiao et al. (2015) found Fe concentration is 4.6 mg L-1at large-scale 

watersheds while our study observed a much lower Fe concentration (0.341 mg L-1: extrapolated 

from fit equations in Fig. 4.2) for an equal contribution of DOC and Fe to water color. This 

variability might be due to completely different catchment properties and it has been shown that 

significantly larger trends of water brownification are expected at agricultural dominant 

catchments compared to forest dominant catchments (Temnerud et al., 2014). It has been reported 

that the saturation point of Fe contribution to adsorption is 1 mg L-1 (Maloney et al., 2005). 

Therefore, because the Fe breakeven point in these two headwater streams (0.341 mg L-1) was 

lower than 1 mg L-1 and also the reported Fe concentrations in large-scale watershed. We 

anticipated that it is easy to achieve the concentrations where the contribution of Fe has a 

dominant effect on water color in headwater stream. Therefore, more significant water 

brownification would be expected in these two headwater streams compared to higher order 

streams. 
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Similar to large-scale watershed, iron provided additive effects on a420, which was indicated 

by the positive logarithmic increase of a420/DOC with increasing Fe concentration (Fig. 4.3) and 

model improvement with DOC and Fe as independent variables. Addition of Fe to humic lake 

water leads to higher absorbance because of the formation of Fe-DOC complexations (Maloney 

et al., 2005). Fe and DOC co-variation occur in our headwaters and similar results have been 

found in 11 small headwater streams in Swede (Weyhenmeyer et al., 2014). According to 

Maloney et al. (2005), these additive effects of Fe level off when Fe concentration increases up 

to 1 mg L-1 and DOC is saturated with Fe. In our study, the highest a420/DOC was 0.53 when Fe 

was 0.258 ± 0.063 mg L-1 at GFC headwater streams. The Fe concentration was much lower than 

1 mg L-1, which implies that water color is expected to continue to increase as Fe concentration 

increases in these two headwaters. 

4.5.2 DOC quality influence DOC-Fe interaction in water 

The change of DOC quality is a reason for the observed variation of carbon specific absorbance. 

DOC quality closely links to DOC and Fe cycling in an aqueous environments (Riedel et al., 

2013). High molecular weight (MW) DOC is the preferential source forming DOC-Fe complexes 

(Pennanen and Frisk, 1984). Soil water treated with low acid deposition tends to have high MW 

and aromatic DOC, which results in high carbon specific absorbance (Ekström et al., 2011). This 

is consistent with our study. At a shallow oxic surface water, Fe is oxidized and preferentially 

bound with aromatic DOC (Riedel et al., 2012) and thus the retention of Fe increases. 

In our study, we used SUVA254 to indicate the aromaticity of DOC because SUVA254 has been 

shown as a good proxy to estimate dissolved aromatic carbon (Weishaar et al., 2003). We found 

that SUVA254 and Fe were higher in GFC headwater than FC headwater (Fig 4.4), which might 

be due to high SUVA254 of DOC translocated from grassland soil compared to forest soil 
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(McDowell, 1984; Sanderman and Amundson, 2008). This indicated that the increasing 

concentration of aromatic DOC was associated with increasing Fe concentration and thus 

increasing water color in agricultural headwaters. However, Riedel et al. (2012) found that upon 

adding Fe to a DOC solution, the DOC and Fe both decrease and DOC tend to be more aliphatic 

acids rich in carboxyl and less aromatic. This is likely due to the high Fe concentration used in 

this experiment, which is higher than in natural waters. It has been reported that Fe tends to 

coagulate with DOC and precipitate from the system when Fe concentration reaches 1 mg L-1 

(Maloney et al., 2005). We found a significant positive relationship between SUVA254 and Fe, 

which is different from Riedel et al. (2012) due to low Fe concentrations that are far below 

saturated concentrations in these two shallow oxic headwaters streams.  

Even though dominant land use could be a factor leading to the difference of SUVA254 in 

headwater streams, in situ DOC and Fe transformation could also be factors, e.g. microbial 

degradation (Miller and Moran, 1997). These processes can lead to the change of 

spectrofluorometric properties of DOC. Freshness index (β/α) indicated the relative proportion of 

DOC that was produced recently by microbial degradation (Huguet et al., 2009). The average β/α 

ratio of GFC and FC headwater were 0.671 ± 0.096 and 0.529 ± 0.162, respectively. This might 

imply a higher microbial transformation of DOC and Fe in pasture dominant headwater. 

Another clue for microbial degradation is that the S ratio of DOC in GFC headwater was 

smaller compared to DOC in FC headwater (Fig. 4.5). S ratio is used to estimate the average MW 

of DOC and a smaller S ratio indicates higher MW DOC (Helms et al., 2008). Thus, this implies 

that the MW of DOC in GFC headwater was higher than the MW of DOC in FC headwater. 

Higher visible absorbance was obtained for hydrophobic acids which were larger MW DOC 

compared to smaller MW hydrophilic acids at the same Fe concentration (Pullin et al., 2007). 
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And higher MW DOC indicates higher bacterial growth rate and respiration rate (Amon and 

Benner, 1996). Carbohydrates derived from plants are the preferable substrate to degrade and the 

products released from degradation processes are difficult to be degraded again and have longer 

retention time (Kalbitz et al., 2003). However, S ratio was not sensitive enough to illustrate the 

interaction of Fe and DOC with different MW in these two headwater streams (Fig. 4.5). The 

higher β/α ratio and lower S ratio in GFC headwater indicated greater high MW DOC which 

might be produced from microbial degradation and became refractory. This fraction could be 

DOC source to form more Fe-DOC complexes, increase Fe retention in water and thus increase 

carbon absorbance for an extended time (Maloney et al., 2005). 

The PCA revealed a high degree of variability explained by a420, DOC, Fe, SUVA254, S ratio, 

HIX, β/α, FI, nitrate, and phosphate at both FC (73.2%) and GFC (66.5%), which might indicate 

different processes in GFC and FC headwater catchments. Phosphate was negatively related to 

Fe in GFC headwater streams (phosphate-Fe: ρ = -0.69, p < 0.01) (Table 4.4). This might be 

because phosphate tends to complex with oxidized Fe, precipitate, and thus remove oxidized Fe 

from solution (Voegelin et al., 2013). The FI index indicated precursors of DOC. When FI is 

larger than 1.8, the DOC precursor is more microbial (McKnight et al., 2001). In our study, the 

average FI at GFC was 2.27 while it was 1.56 at FC. The FI was significant positively correlated 

with a420 in FC stream water (FI-a420: ρ = 0.75, p = 0.013), which indicated the water 

brownification is increased when more DOC was derived from microbial precursors. We found a 

lower HIX and higher S ratio at FC and higher HIX and a lower S ratio at GFC. Although there 

were no significant correlations of HIX and S ratio on a420, DOC and Fe, we found HIX and S 

ratio to be negatively correlated with a420, DOC and Fe at FC while HIX and S ratio were 

positively correlated with a420 and Fe and negatively correlated with DOC at GFC (Table 4.4). 
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This indicated lower MW DOC at FC and higher MW DOC at GFC, which might explain the 

browner water color at GFC. 

4.5.3 Implication for land use management to mitigate water color increase 

Land use/land cover is an important factor influencing the transport of DOC and Fe in soil to 

adjacent water bodies, especially in headwater streams (Dillon and Molot, 1997; McDowell, 

1984). Headwater streams account for 53% of the total stream miles in the continental U.S. 

(Nadeau and Rains, 2007), so it is very important to have a better understanding of C and Fe 

cycling in headwater streams that highly influence downstream water quality. Differences in land 

use lead to variations in input and composition of DOC into soil solution and further into water 

body (Kalbitz, 2001; Poeplau and Don, 2013; Takata et al., 2011; Twongyirwe et al., 2013). 

Stream water DOC concentration is strongly correlated with soil C pool (Aitkenhead et al., 1999). 

Molecular characteristics of dissolved organic matter differ due to land cover (McElmurry et al., 

2013) and also the concentration of DOC differs even in adjacent catchments (Oni et al., 2014). 

In the U.S., the three dominant land use types are pasture (29%), forest (28%), and crop land 

(17%) (Bigelow and Borchers, 2017). Because brownification of surface water is expected to 

continue due to future climate change (Weyhenmeyer et al., 2016), it is very important to get a 

better understanding of the DOC and Fe chemistry in headwater streams influenced by pasture, 

forest, and crop land. 

We found that the GFC headwater stream had higher DOC, Fe, β/α ratio, FI, and lower S ratio. 

This indicated the presence of microbially-derived DOC in the headwater stream. In other studies 

it has been shown that microorganisms first decompose the non-chromophoric DOC and leave 

the chromophoric DOC, which turns water color to brown (He et al., 2018). The indexes from 

this study might indicate that pasture managed headwater streams had a higher amount microbial 
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decomposed chromophoric DOC compared to forest headwater streams. This accumulated 

chromophoric DOC might explain the browner water color in the GFC headwater catchment. This 

is consistent with the findings of Riedel et al. (2012), which showed aromatic DOC is the 

preferential carbon species for Fe to form complexes. We found strong significant positive 

relationship between SUVA254 and Fe concentration (Fig. 4.5). Thus, we interpret that microbial 

processes might lead to the higher aromatic DOC at GFC headwater. 

4.6 Conclusion 

In conclusion, compared to large-scale watersheds, our studies observed a similar water color 

(a420) range with lower DOC and Fe concentration ranges in the two fine-scale streams. Likewise, 

the dominant contributor to water color was from DOC. However, a much lower Fe concentration 

is expected when Fe dominates water color in the two headwater streams. Additionally, our study 

found DOC with lower S ratio, microbially-derived and higher SUVA254 was present in the 

pasture headwater stream compared to the forest dominant headwater stream. The strong 

significant relationship between SUVA254 and Fe indicated water color was strongly influenced 

by interactions between Fe and aromatic DOC in both headwater streams. In the absence of 

chemical speciation of DOC and Fe, our evidence for the processes behind DOC and Fe 

interactions, and their influence on water color was indirect. In addition, due to the modification 

of DOC during transport in both soil and stream processes, this study can be improved by 

disentangling DOC sources from the soil and/or upstream. To get a better understanding of the 

DOC and Fe biogeochemical cycling and their effects on water color, future studies should 

integrate soil and soil water studies.  
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Figure 4. 1 Sampling sites and water sampling locations  

(C and F at forest dominant headwater stream (FC); GH, GG, GF, and GC at pasture dominant headwater 

stream (GFC); The black dot in the West Virginia (WV) map at the bottom represented West Run watershed)   
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Figure 4. 2 The relative contributions of Fe and DOC to a420 at forest dominant and pasture dominant 

headwaters (n=30). 

 The contributions were determined using model MDOC+Fe in Table 2 according to methods described by 

Köhler et al. (2013b). The fit equations for Fe (dash line) is Fe%=125.983 Fe + 7.107 (r2=774, p = 1.54E-

10), for DOC (solid line) is DOC%=-125.983 Fe +92.983 (r2=774, p = 1.54E-10) 
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Figure 4. 3 Regression of a420/DOC on Fe (n=30).  

The triangles represented GFC data. The circles represented FC data. No significant interactions between 

Fe and types of streams on a420/DOC were observed (p = 0.06), so only one fitting line was developed. The 

fit equation was a420/DOC = 0.101 ln (Fe) + 0.0573 (r² = 0.548, p = 2.89E-06) 
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Figure 4. 4 Regression of specific ultra-violet absorption at 254 nm (SUVA254) on Fe at GFC and FC (n=30).  

The triangles represented GFC data. The circles represented FC data. No significant interactions between 

Fe and types of streams on SUVA254 were observed (p = 0.30), so only one fitting line was developed. The 

fit equation was SUVA254 = 19.73 Fe + 2.49 (r² = 0.729, p = 1.97 E-9) 
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Figure 4. 5 Regression of spectral slope ratio (S ratio) on Fe at GFC and FC (n=30).  

The triangles represented GFC data. The circles represented FC data. The fit equation for GFC (dash line) 

was S ratio = 0.2352 Fe + 0.77253 (r² = 0.0598, p = 0.298). The fit equation for FC (solid line) was S ratio 

= -11.0432 Fe + 1.6278 (r² = 0.248, p = 0.1156) 
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Figure 4. 6 Loading plots for component 1 and 2 at FC (left) and GFC (right) headwaters 

a420: Adsorption at 420 nm; DOC: Dissolved organic carbon; Fe: Iron; S ratio: Spectral slope ratio; 

SUVA254: Specific ultra-violet absorption at 254 nm; β/α: Freshness index; HIX: Humification 

index; FI: Fluorescence index.  
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Table 4. 1 Means of a420, dissolved organic carbon (DOC), and iron (Fe) at FC and GFC headwater streams 

(n=3) 

 (F and C from upstream to downstream at FC headwater stream; GH, GG, GF and GC from upstream to 

downstream at GFC headwater stream; June, July, August, and November at 2017; January from 2018) 

  Location June July August November January 

a420                

L m-1 mg-1 

C 0.31±0.14 0.31±0.11 0.41±0.03 0.52±0.08 0.54±0.16 

F 0.21±0.02 0.19±0.04 0.52±0.2 0.58±0.16 0.55±0.32 

GH 1.66±0.30 1.55±0.23 1.45±0.41 1.04±0.16 4.33±0.16 

GG 1.24±0.29 1.55±0.23 1.66±0.01 1.61±0.32 2.76±0.32 

GF 1.04±0.03 1.45±0.23 1.97±0.40 1.78±0.24 2.07±0.08 

GC 1.45±0.29 1.47±0.21 2.07±0.34 1.84±0.08 1.96±0.16 

DOC        

mg L-1 

C 2.42±0.10 1.98±0.03 4.44±0.08 2.18±0.23 2.55±0.03 

F 2.13±0.01 1.86±0.02 4.17±0.70 2.00±0.1 2.45±0.29 

GH 4.69±0.03 4.59±0.08 5.02±0.03 3.97±0.06 8.16±0.28 

GG 4.38±0.04 3.83±0.18 5.71±0.35 4.24±0.04 6.69±0.55 

GF 4.56±0.33 4.28±0.36 5.76±1.21 4.23±0.06 6.08±0.13 

GC 4.76±0.22 3.96±0.32 5.45±0.26 4.20±0.12 5.58±0.17 

Fe            

mg L-1 

C 0.011±0.001 0.037±0.006 0.033±0.003 0.075±0.004 0.043±0.014 

F 0.012±0.001 0.028±0.008 0.052±0.002 0.046±0.002 0.047±0.004 

GH 0.038±0.000 0.059±0.006 0.078±0.001 0.122±0.017 0.258±0.063 

GG 0.040±0.001 0.076±0.003 0.085±0.021 0.186±0.013 0.225±0.014 

GF 0.026±0.001 0.045±0.016 0.070±0.002 0.181±0.032 0.189±0.042 

GC 0.022±0.001 0.038±0.000 0.085±0.022 0.151±0.052 0.149±0.011 
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Table 4. 2 The estimated single and multiple linear regression for a420 explained by dissolved organic carbon 

(DOC) and iron (Fe) 

Model Model equation R2 p  

MDOC a420 = 0.518 DOC - 0.846 0.799 1.73E-11* 

MFe a420 = 10.287 Fe + 0.479 0.599 3.2E-7* 

MDOC+Fe a420 = 0.390 DOC + 4.471 Fe – 0.676 0.863 8.6E-13* 

* significant at α=0.0; Each model was developed using data from five sampling time and 

all locations at both forest and pasture headwater streams. 
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Table 4. 3 Mixed model analyses of variance of the effects of stream type (FC and GFC; fixed effects), Fe 

(random effects) and interaction between Fe and stream type on carbon specific absorbance (a420/DOC), 

spectral slope ratio (S ratio), and specific ultra-violet absorption at 254 nm (SUVA254) with location nested 

within stream types as fixed effect 

Response Fe Type (T) Fe*T Location (T) 

A420/DOC ** ** 0.06 0.66 

SUVA254 ** 0.27 0.3 0.9 

S ratio ** ** 0.0025 0.99 

** p < 0.01 at α=0.05; Type: forest headwater stream (FC) and pasture headwater stream (GFC); 

Location represented all two locations (F and C) at forest headwater stream (FC) and all four 

locations (GH, GG, GF, and GC) at pasture headwater stream (GFC); Location (T) indicated 

location nested within stream types as a fixed effect.  
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Table 4. 4 Pearson's correlation coefficients among DOC quantity and quality, Fe and a420 parameters at FC 

and GFC headwaters 

Type   a420 DOC Fe Type   a420 DOC Fe 

FC 

a420 1   

GFC 

a420 1   

DOC 0.44 1  DOC 0.66* 1  

Fe 0.68* 0.25 1 Fe 0.62* 0.33 1 

S ratio -0.31 -0.47 -0.53 S ratio 0.1 -0.37 0.09 

SUVA254 0.62 -0.03 0.35 SUVA254 0.37 0.04 0.61* 

β/α -0.1 -0.16 0.25 β/α 0.13 -0.16 0.69* 

Nitrate -0.05 0.68* -0.3 Nitrate 0.2 0.59 -0.12 

Phosphate -0.41 0.13 -0.31 Phosphate -0.28 -0.22 -0.69* 

HIX -0.24 -0.65 -0.13 HIX 0.17 -0.34 0.39 

FI 0.75* 0.27 0.48 FI 0.16 0.37 <0.01 

 means a significant correlation after Benjamini-Hochberg adjustment with a false discovery rate 

of 0.25. a420: adsorption at 420 nm; DOC: dissolved organic carbon; Fe: iron; S ratio: spectral 

slope ratio; SUVA254: specific ultra-violet absorption at 254 nm; β/α: freshness index; HIX: 

humification index; FI: fluorescence index. 

 For forest headwater stream (FC), The analysis was conducted using data from five sampling 

times and two locations (F and C) while the analysis was performed using data from five 

sampling time and four locations (GH, GG, GF, and GC) for pasture headwater stream (GFC).  
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Chapter 5 Comparing Dissolved Organic Carbon and Fe in the Soil and Headwater Streams 

in a Forest and a Pasture Catchment in a Central Appalachian Region, West Virginia 

5.1 Abstract 

Dissolved organic carbon (DOC) and Fe concentrations cause surface water brownification. 

Land-use effects on the quantity and quality of DOC are well-established in large-scale watersheds. 

However, there is more to understand about how soil Fe oxides are involved in DOC and Fe 

processes in soil and streams, especially in fine-scale catchments. We investigated DOC, the 

specific ultraviolet absorbance at 254 nm (SUVA254), exchangeable Fe (Feex), and amorphous Fe 

concentrations (Feamor) in soils as well as DOC, SUVA254, and dissolved Fe in stream water within 

a fine-scale forest and pasture catchment. Forest soil had a significantly larger average DOC 

concentration (71.7 ± 33.8 mg kg-1) and lower average SUVA254 (2.8 ± 1.0 L m-1 mg-1) than the 

pasture soil at 0-10 cm (DOC: 71.7 ± 33.8 mg kg-1; SUVA254: 4.2 ± 1.4 L m-1 mg-1). The pasture 

soil at 0-10cm had significantly larger average Feex (132.8 ± 57.6 mg kg-1) and Feamor (813.9 ± 

461.2 mg kg-1) concentrations than the forest soil (Feex:120.3 ± 55.4 mg kg-1; Feamor: 303.2±213.5 

mg kg-1). Negative correlations between Feex and DOC in the forest soil and positive correlations 

between Feex, Feamor and SUVA254 in both forest and pasture soils were found (p < 0.05). The 

pasture headwater stream had significantly larger DOC, SUVA254, and Fe than the forest headwater 

stream (p<0.05). Our study indicated Fe oxides may have different interactions with DOC, which 

leads to differences in the quantity and quality of DOC and dissolved Fe in watersheds of differing 

scale. 

Key words: Surface Water Brownification · Catchments · Forest· Pasture · SUVA2544  
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5.2 Introduction 

Dissolved organic carbon (DOC) is a major component of the global C cycle (Cole et al., 2007; 

Jardine et al., 2006). It is highly mobile and reactive (Neff and Asner, 2001), which affects the 

biogeochemical C processes occurring in soil, aquatic environment, and atmosphere (Kalbitz et 

al., 2000; Lehmann and Kleber, 2015; Thomas, 1997). Many large-scale watersheds in the 

northern hemisphere have been shown increased DOC concentration, which leads to increased 

surface water brownification (Evans et al., 2005; Haaland et al., 2010; Weyhenmeyer et al., 2016). 

Brownification deteriorates the ecological and societal functions of surface water and thus is a 

current environmental concern (Williamson et al., 2015). Additionally, it leads to the increasing 

pretreatment cost of drinking water (Richardson et al., 2007). 

The quantity and quality of stream DOC concentration are largely regulated by the quantity 

and quality of soil DOC at both the regional and global scales (Battin et al., 2008; Graeber et al., 

2012; Tank et al., 2010). Soil DOC production, hydrologic transport from soil to stream, and 

modification during transport in soil and stream, are three fundamental processes controlling the 

quantity and quality of DOC in stream water (Brooks et al., 1999; Sanderman et al., 2009). 

Various biotic and abiotic factors govern DOC transport processes, such as climatic conditions, 

discharge, and soil minerals (Armstrong et al., 2012; Camino‐Serrano et al., 2014; Lambert et al., 

2013; Maurice et al., 2002; Sanderman et al., 2008). Studies have been conducted on the effects 

of land-use on DOC and dissolved Fe concentrations in large-scale watersheds (Ekström et al., 

2016; Köhler et al., 2013a; Kritzberg et al., 2014; Kutser et al., 2015; Sarkkola et al., 2013; 

Weyhenmeyer et al., 2014; Williamson et al., 2015). However, large-scale watershed studies 

bring effects other than land use within a watershed, for example, different parent materials, 

topography, and climate, that confound interpretations. Thus, these studies potentially bring 
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uncertainty to the current understanding of DOC and Fe dynamics in the surface water. Pseudo-

replicated studies may be helpful to address this uncertainty by minimizing influences derived 

from confounding effects. 

The interactions between soil Fe oxides and DOC in soil play an important role in influencing 

the availability and mobility of DOC (Chorover and Amistadi, 2001; Coward et al., 2017; Du et 

al., 2018). For example, forming Fe-DOC complexes through sorption to preserve DOC (Anesio 

et al., 2005; Lovley et al., 1998; Singh et al., 2016). The reductive dissolution of amorphous Fe 

facilitates the export of soil DOC to stream in headwater catchments, especially during long 

periods of water logging (Grybos et al., 2009; Lambert et al., 2013). Lambert et al. (2013) 

observed large amounts of released DOC and increased dissolved Fe(Ⅱ) concentration due to the 

reduction of amorphous Fe during high flow periods. Therefore, Fe oxides may influence the 

amount and composition of DOC exported from soil to stream, which influences dissolved Fe 

concentration in headwater stream and thus surface water brownification (Kritzberg et al., 2014; 

Kritzberg and Ekström, 2012; Neal et al., 2008; Pullin et al., 2007; Sarkkola et al., 2013).  

Fe-oxides regulate not only DOC sorption contributing to soil organic carbon stabilization, but 

also the release of DOC leading to increasing CO2 efflux and thus OC loss (Coward et al., 2018; 

Creed et al., 2013; Grybos et al., 2009; Porras et al., 2017). Soil Fe occurs in various forms 

differing in reducibility which may play different roles in regulating DOC production and export 

processes. For example, exchangeable Fe representing the exchangeable Fe portion forming soil 

sorption complexes; amorphous Fe representing the portion of amorphous Fe (III) oxyhydroxide 

which could be reduced by microorganisms (Lovley and Phillips, 1987; Van Bodegom et al., 

2003). The reduction of Fe-oxyhydroxides leading to the release of DOC has been reported in 

wetland soils (Hagedorn et al., 2000), in organo-mineral soils (Lambert et al., 2013), and forest 
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soils (Creed et al., 2013). Thus, it is important to have a better understanding of Fe oxides with 

different reducibility in controlling DOC availability and mobility. However, there is more to 

understand about the role of soil Fe minerals in soil DOC modification and export to stream. 

Various management practices have been applied to improve crop yield and soil productivity 

in agriculture. These practices alter the quantity and quality of soil DOC, which also alters Fe 

minerals in soil (Chantigny, 2003; Huang et al., 2016a; Huang et al., 2015; Kalbitz, 2001; Takata 

et al., 2011; Wilson and Xenopoulos, 2009; Zhang et al., 2013). Agricultural management 

practices also lead to the loss of soil organic carbon as DOC and alteration of hydrologic pathways 

(Autio et al., 2016; Graeber et al., 2012; Ogle et al., 2005). These influence the export of DOC 

from soils to streams (Lambert et al., 2013; Spencer et al., 2008; Van Gaelen et al., 2014). In 

addition, Agricultural management practices alter the concentrations of Fe oxides in soil, which 

influences the mobility of DOC (Huang et al., 2016a). Poorly crystalline iron oxides in 

agricultural soils are significantly increased by manure application (Huang et al., 2016b; Wen et 

al., 2019; Zhang et al., 2013). Plant-derived aromatic compounds are preferentially retained by 

poorly crystalline amorphous Fe oxides (Coward et al., 2018; Kramer et al., 2012; Oren and 

Chefetz, 2012; Zimmerman et al., 2004). The stabilized DOC by Fe oxides can be mobilized and 

released into soil solution through Fe reduction and dissolution in reducing microsites (Creed et 

al., 2013). This evidence leads to more uncertainty of our understanding of DOC inputs and 

outputs in catchments (Chantigny, 2003; Graeber et al., 2012; Sanderman and Amundson, 2008; 

Tank et al., 2010; Temnerud et al., 2014). Additionally, linking DOC in the soil to DOC quantity 

and quality in headwater streams provides important information for developing best management 

practices in agriculture to promote soil productivity and surface water quality. However, few 
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studies have used Fe oxides differing in reducibility to link DOC and Fe in soil and headwater 

streams in either agricultural or forest catchments.  

In the central Appalachian region, major issues of soil degradation, depletion of SOC stocks, 

and deterioration of aquatic ecosystems are increasing due to increasing anthropogenic 

disturbances (Bryce et al., 1999; Chaudhuri et al., 2012; Lei et al., 2020). To better understand 

Fe effects on DOC and Fe trends in the stream and the deteriorated surface water quality in the 

central Appalachian region, a single fine-scale catchment was chosen in our study which had been 

maintained in this state for more than 20-years. In addition, this catchment was derived from the 

same source parent material and had similar climate conditions (Kellner et al., 2018).  

The aims of our study were to 1) compare the temporal variations in DOC amount and 

composition in both soil and stream waters, and 2) examine the temporal variations of 

exchangeable Fe and amorphous Fe minerals in the soil as well as the temporal and spatial 

variations in dissolved Fe concentration in an agricultural pasture catchment and forest catchment 

in West Virginia.  

5.3 Materials and Methods 

5.3.1 Study area and sampling 

This study was carried out at West Virginia University’s Animal Science Farm (39°40' N, 

79°56' W) in Morgantown, West Virginia. The elevation ranged from 287 m to 381 m above sea 

level. The mean annual temperature was 11.4ºC and the mean annual precipitation was 99.5 cm 

(Wright 1982). The average precipitation of the sampling period was 0.12 cm and the daily 

precipitation is presented in Fig. 5.2. 
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Two headwater catchments (1.308 km2) were chosen (Fig. 5.1). The three representative land 

use types were forest, cropland, and pasture. The forest headwater stream (0.913 km2) was 

predominately the forest land use (0.774 km2, 85.8%). The other three types included pasture 

(0.097 km2, 9.8%), cropland (0.03 km2, 3.3%), and developed area (0.01 km2, 1.1%). The pasture 

headwater stream (0.405 km2) was predominantly pasture (0.201 km2, 49.6%). The other three 

types along this stream included forest (0.142 km2, 35%), cropland (0.039 km2, 9.6%), and 

developed area (0.023 km2, 5.8%). All land cover delineations were determined using ArcGIS 

(Version 10.7.1) and National Land Cover Dataset from 2011. In our study, we focused on the 

forest and pasture, which were two dominant land types. The forest was composed of mixed 

deciduous hardwood trees which were approximately 120 years old. The permanent grassland 

was continuously grazed with 0.5-0.75 dry dairy cows or/and heifers per hectare for 20 years. The 

pasture was mowed once in October every year. More descriptions about the management and 

vegetation of each land type are illustrated in Chap 2.2.21. 

We collected one sample potentially influenced by the forest land use (F) and the other 

influenced by the cropland use (C) (Fig. 5.1). Four samples potentially influenced by pasture (GH 

and GG), forest (GF), and cropland use (GC) were collected (Fig. 5.1). Water samples were 

collected from the six sites on October 1st, November 6th, 2017, January 10th, February 28th, June 

16th, July 14th, 2018 (Fig. 1). All samples were collected using acid washed 1 L polyethylene 

bottles and transported immediately to the laboratory. All water samples were filtered through 

Whatman 0.45-µm filters and stored in a refrigerator under 4ºC and analyzed within 3 days after 

collection. All analyses were performed in triplicate. 

Soil sampling was conducted at the same time when the stream water samples were collected. 

Four 10 × 10 m plots with similar micro-environmental conditions like vegetation distribution, 
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were randomly selected in the field for each land type. The forest plots had a very thin, minimally 

decomposed litter layer (< 1cm). When sampling, the litter layer was removed. The pasture plots 

that were not disturbed by feeding and watering dry dairy cows and heifers and at least 5 meters 

away from the edge of the field. One plot was on the shoulder slope. Two plots were on the 

backslope. The other one was on the foot slope. Six soil sample cores were collected from each 

plot in an S pattern to a depth of 25 cm using a soil sampling probe (3 cm in diameter). The six 

soil cores from each plot were divided into two layers (0-10 cm and 10-25 cm) and composited 

in pairs to provide three replications at each depth at each plot. Four replications from four plots 

were composited so that there were three replications at each depth for each land management 

practice. The study and sampling site are presented in Fig. 5.1. More details of the four plots at 

each filed were summarized in Chap 2.2.2. 

Each bulk sample was divided into two subsamples. One subsample was air-dried at room 

temperature, ground, and sieved through a 2-mm sieve for determination of soil pH, EC, and 

particle density. The description of these determinations is summarized in Table 2.1. The physical 

and chemical properties were determined using the air-dried soil samples and are presented in 

Table S2-2. The other subsample was sieved through a 2-mm sieve and stored at 4ºC until analysis 

within three days. 

5.3.2 Laboratory analysis 

For stream water samples, the pH was determined using a Mettler Toledo SevenEasy pH meter 

(Columbus, OH, USA). Non-purgeable organic carbon (NPOC) was determined using a 

Shimadzu-TOC V (Tokyo, Japan) to represent DOC concentration. Total dissolved Fe was 

determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) (Optima 

DV2100, Perkin Elmer, Waltham, MA). Absorbance spectra from 230-600 nm at 1 nm intervals 
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were obtained using a BIOTEK microplate reader (Epoch 2, Winooski, VT, USA) in a 1 cm 

cuvette. All spectra (aλ) were expressed as m-1 (Helms et al. 2008). The specific ultraviolet 

absorbance at 254 nm (SUVA254), as a measure of aromaticity, was calculated as the ratio of 

absorbance at 254 nm (a254) and DOC concentration (Weishaar et al., 2003). Exchangeable Fe 

(Feex) and microbially reducible amorphous Fe (Feamor) were determined in fresh soil subsamples. 

Feex in fresh soil subsamples was extracted using 0.5 M HCl and Feamor was calculated as the Fe 

extracted from fresh soil using 0.25 M hydroxylamine hydrochloride and 0.25 M HCl minus the 

Fe extracted with 0.5 M HCl (Lovley and Phillips, 1987; Van Bodegom et al., 2003). The released 

Fe was determined according to methods described by Lovley and Phillips (1987). For DOC 

determination in fresh soil subsamples, 5 g fresh soil was extracted with 50 ml 12.5 mM CaCl2 

solution. The mixture was shaken for about 2 hours at 200 cycles per minute and then centrifuged 

at 3000 rpm (1600 g) for 10 minutes. The supernatant was filtered through 0.45-um sterile nitrile 

membrane filter and stored at 4ºC until further analysis. The DOC concentration and SUVA254 of 

DOC in the supernatant were determined as described above. The air-dried soil subsamples for 

the determination of total organic carbon (TOC) and the proportion of Fe-bound OC were 

acidified with 1 M HCl with a 1:2 (m: V) solid: solution ratio to degas the inorganic C in soil and 

then dried at 70ºC for 24 hours. TOC in the oven-dried soil samples was determined by dry 

combustion (Elementar Vario MAX Cube, Hanau, Germany). The proportion of Fe-bound OC 

was determined using citrate-bicarbonate-dithionite (CBD) method (Mu et al., 2016; Zhao et al., 

2016). 

5.3.3 Statistical analysis 

The two-way repeated measure analysis of variance (rmANOVA) (repeated depth and month) 

and Tukey adjustment were performed to test the main effects of the land-use management 
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practice, depth, month, two-way interactions, and three-way interactions on TOC, DOC in soil, 

SUVA254 of soil DOC, Feex, and Feamor at α = 0.05 using SAS PROC MIXED procedure (Version 

9.4. SAS Institute Inc., Cary, NC, USA). The one-way repeated measure analysis of variance 

(rmANOVA) (repeated depth) and Tukey adjustment were performed to compare the average of 

TOC, soil DOC, SUVA254 of soil DOC, Feex, Feamor, and the proportion of Fe-bound OC of six 

months. Correlations between TOC, soil DOC, SUVA254, Feex, and Feamor were determined using 

non-parametric Spearman’s correlation using JMP 12.0 (SAS Institute Inc., Cary, NC, USA). The 

probability of false positives in multiple analyses of the non-parametric Spearman’s correlation 

was adjusted using a Benjamini-Hochberg procedure with a false discovery rate of 0.25 

(Benjamini and Hochberg, 1995). 

Since the DOC, Fe, and SUVA254 at the two locations in forest headwater stream and the four 

locations at pasture headwater stream were not independent, a non-parametric Wilcoxon signed-

rank test was used to compare the significance of DOC, Fe, and SUVA254 among the six locations. 

If a p-value less than 0.05 was found, a non-parametric comparison using Wilcoxon methods was 

conducted to compare the significant differences for each pair. 

5.4 Results 

5.4.1 Average and seasonal changes of DOC, SUVA254 and Fe concentrations in the soils at the 

forest and pasture catchments 

Land-use management practice, depth, month, two-way interactions, and three-way 

interactions all had significant influences on TOC, DOC, and SUVA254 (p < 0.01) (Table S1-1). 

The forest and pasture soil at 0-10 cm (forest: 33.7 ± 4.3 g kg-1; pasture: 31.7 ± 3.0 g kg-1) had a 

significantly larger average TOC than forest and pasture soils (forest: 10.6 ± 1.4 g kg-1; pasture: 

9.3 ± 1.6 g kg-1) at 10-25 cm (Table S1-2 and Fig S1-1).  
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Forest soil had significantly larger average DOC concentration at 0-10 cm (71.7 ± 33.8 mg kg-

1) than 10-25 cm (53.1 ± 30.2 mg kg-1), which all significantly larger than the pasture soil at both 

depths (Table S1-2 and Fig. 5.3a). However, a significantly larger average SUVA254 was observed 

in the pasture soil (4.2 ± 1.4 L m-1 mg-1) than the forest soil at 0-10 cm (2.8 ± 1.0 L m-1 mg-1) 

(Table S1-2 and Fig. 5.3b). A significantly larger average SUVA254 were found in the pasture soil 

(2.2 ± 1.3 L m-1 mg-1) compared to the forest (1.6 ± 0.7 L m-1 mg-1) at 10-25 cm (Table S1-2 and 

Fig. 5.3b). All the forest and pasture soils had larger DOC concentrations in October, November, 

and January than the average except for the pasture soil at 10-25 cm (Fig. 5.3a). The two soils at 

both depths in February, June, and July all showed lower DOC concentration than the average of 

the six months (Fig. 5.3a). Contrary to the DOC trends, the two soils at both depths showed larger 

SUVA254 than the average in June and July while lower SUVA254 in October, November, and 

January (Fig. 5.3b). 

Land-use management practice, depth, month, two-way interactions, and three-way 

interactions all had significant influences on Feex, and Feamor (p < 0.05) (Table S1-1). The pasture 

soil at 0-10cm had significantly larger average exchangeable Fe concentration (pasture: 132.8 ± 

57.6 mg kg-1) than forest soils (120.3 ± 55.4 mg kg-1) while there was no significant difference 

between forest and pasture soils at 10-25 cm (Forest: 71.8 ± 47.0 mg kg-1; pasture: 60.6 ± 17.7 

mg kg-1) (Table S1-2 and Fig. 5.4a). For the average microbially reducible Fe, the highest content 

was found in pasture soil at 0-10 cm (813.9 ± 461.2 mg kg-1) (Table S1-2 and Fig. 5.4b). 

Exchangeable Fe in pasture soil Fe had larger content in February, June and lower contents in 

October, November, January, and July while forest soil showed highest exchangeable 

concentration in July compared to the average (Fig. 5.4a). All two soils at two depths showed 
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larger microbially reducible Fe concentrations in February and June and lower at October, 

November, January and July except the pasture soil at 0-10 cm (Fig. 5.4b). 

5.4.2 Seasonal changes of DOC and Fe concentrations in the forest and pasture headwater 

streams 

The DOC, SUVA254, and Fe concentrations showed significant differences between the pasture 

headwater and the forest headwater stream (Fig. 5.5 and 5.6; Table 5.2 and 5.3) (p < 0.05). It 

showed significantly greater DOC and Fe concentrations at GH, GG, GF, and GC than the F and 

C (Fig. 5.5; Table 5.2).  However, only significantly larger SUVA254 were observed at GH, GG, 

GF, and GC than the C (Fig. 5.6; Table 5.3).  

Additionally, the DOC, SUVA254, and Fe concentrations had a wider seasonal change at the 

four locations in the pasture headwater stream than the two locations at the forest headwater 

stream, which was shown by the observed larger standard deviation (Fig. 5.5 and 5.6; Table 5.2). 

Compared to the upstream locations at each stream, the seasonal changes in DOC, SUVA254, and 

Fe concentrations become smaller than at downstream locations, which was shown by the smaller 

standard deviations (Table 5.2).  

The seasonal trends of both DOC and Fe were different among locations (Fig. 5.5). For 

example, GH was different from GG, GF, and GC (Fig. 5.5). The DOC concentration at GH in 

the pasture headwater stream was greater in January, February and lower in October, November, 

June, and July compared to the average DOC (Fig. 5.5). The DOC concentrations at GG, GF, and 

GC were all larger in October, January, and July and lower in November, February, and June (Fig. 

5.5). The Fe concentration at GH was larger in January, and July and lower in October, November, 

February, and June than the average Fe while the Fe concentrations at GG, GF, and GC were 

larger in November, January, and June and lower in October, February, and July (Fig. 5.5). DOC 
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concentration was highest at both F and C locations in October (Fig. 5.5). Except for October, the 

seasonal DOC and Fe concentrations were close to the average DOC and Fe concentrations at F 

and C locations. 

Unlike the seasonal trends of DOC and Fe concentrations at the four locations (GH, GG, GF, 

and GC) in the pasture headwater stream, SUVA254 showed similar changes all four locations 

except for January and February (Fig. 5.6). Compared to the average of SUVA254 at each location, 

GH and GG showed larger SUVA254 while GF and GC showed lower SUVA254 in January (Fig. 

5.6). At February, GH showed larger SUVA254 while GG, GF, and GC showed lower SUVA254 

(Fig. 5.6).  

5.5 Discussion 

5.5.1 Effects of land-use management practices on the average DOC and SUVA254 in the soil 

Our study showed that land-use management practices, depth, and two-way interactions all 

significantly influenced DOC concentration and SUVA254 in the soil (Table S1-1). The forest 

soils had significantly larger average DOC concentration than the pasture soil at both 0-10 cm 

and 10-25 cm (Fig. 5.3a). This is similar to other reported studies (Chantigny, 2003; Jiao et al., 

2009; Khomutova et al., 2000). Armstrong et al. (2012) suggested that vegetation regulated DOC 

concentration in the pore water by affecting the quality and quantity of the litter with different 

vegetation types. In our study, the larger average DOC concentration in the forest soils may be 

due to the thin litter layer in this hardwood forest, which contributed to DOC in the mineral layer 

from the release of organic molecules during the litter decomposition (Borken et al., 2011; Janeau 

et al., 2014; Qi et al., 2012; Strobel et al., 2001). Contrary to the DOC trends, the pasture soil at 

0-10 cm had larger annual average SUVA254 than that of soils at 10-25 cm and also forest soils at 
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both depths (Fig. 5.3b). This may be due to the presence of a larger proportion of humic-like 

compounds in agricultural soils compared to forest soils (Gui et al., 2016; Shang et al., 2018). 

5.5.2 Seasonal changes of DOC and SUVA254 in the forest and pasture soils  

Soils from the two land-use managements showed consistent seasonal changes of DOC and 

SUVA254 between 0-10 cm and 10-25 cm (Fig. 5.3). Compared to the average DOC concentration 

of six months, both soils had larger DOC concentration in the fall and earlier winter (October, 

November, and January) and lower DOC concentrations in winter and early summer (February, 

June, and July) (Fig. 5.3a; Table S1-2). In contrast, the SUVA254 of DOC was lower in October, 

November, January, and February while it was larger in June and July compared to average 

SUVA254 (Fig. 5.3b; Table S1-2). After the long drying period without precipitation in September 

(Fig. 5.2), all soils showed the highest DOC concentration and lowest SUVA254 in October or 

November and then decreased during the rewetting period. This is consistent with De Troyer et 

al. (2014) who reported increased DOC and decreased SUVA254 of DOC after soil drying and 

rewetting processes. Soil drying and rewetting cycles may be a significant factor in our study, 

which largely affected DOC concentration and composition due to the alternation of biological 

processes (De Troyer et al., 2014; Merckx et al., 2001). This indicated a major role of microbes 

in regulating DOC dynamics in the season involving in drying and rewetting cycles. The SUVA254 

trends in the forest and pasture soils of our study indicated a similar shift of DOC sources from 

relatively fresh or microbial-derived DOC after the long dry season to more altered and highly 

decomposed sources during the rewetting and wetting season as water moves through soils 

(Sanderman et al., 2008). 

Different DOC sources were an important factor leading to the differences in the quantity and 

quality of DOC as well as the seasonal trend (Sanderman et al., 2008). A wider range of the DOC 
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concentrations in the forest soil than the pasture soil was observed in our study (Fig. 5.3a; Table 

S1-2). Root exudates throughout the growing season are the majority of fresh C input in the 

grassland soil while litter fall is dominated the SOC input and distributed through the year in the 

forest soil (Sanderman et al., 2008; Yano et al., 2000). This indicated that the seasonal dynamics 

of DOC in the forest soils are processes highly dependent on climatic factors. For example, soil 

moisture and temperature, are important factors involved in DOC production and decomposition 

through microbial biological activity in the forest soil (Camino‐Serrano et al., 2014; Kaiser et al., 

2001). Similar results were also reported by Dawson et al. (2008) who confirmed the main role 

of biological activity instead of discharge in influencing the seasonal change of DOC. 

Additionally, the soil samples from forest and pasture were collected from different positions at 

the hillslope. Hillslope is a factor influencing water flow pathways, which depend on season 

(Curmi et al., 1998; Sanderman et al., 2009). This suggests that different water flow pathways 

may occur in the pasture and forest soils. The flow paths depend on the seasonal water table 

fluctuations and thus influenced the concentration and composition of DOC seasonal changes in 

soil and stream (Janeau et al., 2014). Toosi et al. (2014) also found flow paths had significant 

differences of DOC in forest soil while the DOC concentration and properties in agricultural soil 

didn’t show clear differences. This is consistent with our study which showed a wider seasonal 

variation of DOC in forest compared to the pasture soil. 

5.5.3 Comparison of average of DOC and SUVA254 between two catchments 

Different flow pathways and DOC in-soil and/or in-stream processes within a catchment alter 

the amounts and sources of DOC exported to the stream water (Hood et al., 2006; Van Gaelen et 

al., 2014). Although the DOC concentration in the pasture soil was significantly lower compared 

to the forest soil at both depths (Fig. 5.3; Table S1-2), a significantly larger DOC concentration 
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was observed in the pasture headwater stream at the four locations compared to the forest 

headwater stream at the two locations (Fig. 5.5a; Fig. 5.6; Table S1-2 and 5.4). This may indicate 

different flow pathways and DOC in-soil and in-stream processes occurring in the forest and 

pasture catchments, which influenced the amounts and sources of DOC exported to the stream 

water. Van Gaelen et al. (2014) reported seepage as an important pathway in grassland with 

shallow water tables while riparian and throughfall contribute to the rising of DOC concentration 

in the forest headwater stream. Additionally, the contribution of groundwater differs in soils 

during base flow in altering the DOC seasonal trends (Hur et al., 2014; Van Gaelen et al., 2014). 

Our results indicated the flow paths through groundwater may be different between the two 

catchments, which highly altered the interactions of DOC with subsurface soil. However, the 

significantly larger SUVA254 in the pasture soil at 0-10 cm and the overall high DOC 

concentration in the pasture headwater was likely due to a larger proportion of flow path through 

DOC-rich topsoil through all seasons (Hood et al., 2006). Additionally, we found the forest 

headwater stream and pasture headwater stream showed varied DOC changes while SUVA254 

showed consistent seasonal changes (Fig. 5.5 and 5.6). Van Gaelen et al. (2014) reported similar 

SUVA254 trends during base flow for both the forest and pasture catchments and showed larger 

SUVA254 during summer, which is consistent with our study. Similarly, we didn’t find significant 

SUVA254 differences between F, GH, GG, GF, and GC locations (Fig. 5.6; Table 5.3). 

Since clay and silt in soil have high sorption capacities, they are an important factor in affecting 

DOC concentration and composition in soil solution and also the exporting soil DOC to rivers 

(Kalbitz et al., 2005; Nelson et al., 1992). Thus, the significantly lower DOC concentration in the 

forest catchment may be explained by the larger clay and silt content in the forest soil (Table 2.1), 

so this may lead to larger selective sorption of DOC to soil minerals and lower DOC export to 
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headwater stream in the forest soil than the pasture soil (Sanderman et al., 2008). Aromatic DOC 

is preferred to absorb by mineral soils (Maurice et al., 2002), so the DOM exported from clay 

soils is less aromatic than that from organic soils (Autio et al., 2016). A significantly lower 

retention time of DOC was observed in prairie mineral soils compared to forest mineral soils 

(Sanderman and Amundson, 2008). These may explain why the DOC concentration and SUVA254 

of DOC in forest headwater stream were significantly lower than the pasture headwater stream. 

The surface runoff is likely another reason for the larger DOC concentration in the pasture 

catchment since steep slope significantly positive related to DOC export (Janeau et al., 2014)  

5.5.4 Linking DOC and Fe between soil and stream 

In-stream and in-soil processes are both important factors influencing the transport of DOC 

from soil to stream spatially and temporally in headwater catchments (Dawson et al., 2001; 

Sawicka et al., 2016; Vidon et al., 2014), which may lead to DOC spatial and chemical variances 

within a headwater stream at different locations. Although a lowest SUVA254 at all locations in 

both forest and pasture catchments was observed at October, we found the DOC concentration 

and SUVA254 had different seasonal trends between the upstream location and the downstream 

locations at each catchment (Fig 5.3; Fig. 5.5a; Fig. 5.6). For example, in July, the DOC 

concentrations at GG, GF, and GC locations were larger while it was much lower at GH location 

compared to the annual DOC concentration at each location (Fig. 5.5a). This may indicate more 

DOC input sources downstream during July. Additionally, larger SUVA254 was observed at GH 

location while GG, GF, and GC locations showed lower SUVA254 in February compared to 

average SUVA254 (Fig. 5.6). This suggested that in-stream and in-soil processes in our study were 

important factors altering the DOC and SUVA254 seasonal trends, especially at the pasture 

catchments with mixed land-use types.  
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Fellman et al. (2009) reported quality of DOC became more similar after passing through the 

watershed. Consistently, we found a larger seasonal variation of SUVA254 at the upstream location 

compared to the downstream location (Table S1-2). The seasonal SUVA254 trends were highly 

similar at the downstream locations of the whole sampling period (GF and GC) (Fig. 5.6). 

However, different SUVA254 trends were observed during the winter season at the upstream 

location, such as January and February (Fig. 5.6). Larger SUVA254 was also observed at GH at 

January and February and at GG at January compared to the annual DOC concentration of each 

location (Fig. 5.6). This indicated more aromatic DOC sources or processes increasing aromatic 

DOC in-stream during winter only occurred at the upstream locations. Or there were processes 

that decreased the aromatic DOC at the downstream locations in the pasture catchment.  

Drying and rewetting processes influence the quantity and quality of DOC transported from 

soil to headwater streams (De Troyer et al., 2014). We found lower aromatic SUVA254 during the 

rewetting period in October, November, and January while larger SUVA254 during spring flush 

and early summer in June, and July in three soils and the two headwater streams (Fig. 5.3 and 

5.6). This indicated the DOC was recently leached from microbial fractions during the rewetting 

period and aromatic fractions during spring flush, which were similar trends observed in other 

upland streams (Fellman et al., 2009; Striegl et al., 2005). However, DOC residence time may 

change this trend due to the microbial influence. For example, Striegl et al. (2005) found a low 

SUVA254 in summer due to longer DOC residence time and increased microbial consumption. In 

addition, vegetation root and fungi associated with vegetation exudes organic acids, which can 

mobilize stabilized aromatic DOC and thus increasing the aromaticity of DOC, for example, 

oxalic acid (Keiluweit et al., 2015; Strobel, 2001). This may be a factor leading to the high 

SUVA254 at pasture soils and then the pasture headwater stream (e.g. June and July in our study 
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at the growing stage). Unfortunately, we don’t have data to evaluate the influence of low molecule 

weight organic acids on mobilizing stabilized aromatic DOC. 

5.5.6 Iron role in regulating the quantity and quality of DOC in soils 

By only considering the land use and seasonal effects, studies of effects of land-use 

management practices and the season on the concentration and composition of DOC at watershed 

of various scales reported conflicting results (Autio et al., 2016; Graeber et al., 2012; Hur et al., 

2014; Wilson and Xenopoulos, 2008). For example, Graeber et al. (2012) showed land use had a 

strong seasonally independent influence on the export of DOC from soil to stream. In contrast, 

Wilson and Xenopoulos (2008) didn’t observe significant differences between forest and 

agricultural catchments. 

Fe-oxyhydroxides regulates not only DOC sorption contributing to soil organic carbon 

stabilization, but also the release of DOC leading to increasing CO2 efflux and thus OC loss 

(Coward et al., 2018; Creed et al., 2013; Grybos et al., 2009; Porras et al., 2017). The reduction 

of Fe-oxyhydroxides leading to the release of DOC has been reported in the wetland soils 

(Hagedorn et al., 2000), in the organo-mineral, and albic soil horizons (Lambert et al., 2013). 

Similarly, we found significant negative correlations between Feex and DOC in the forest soil 

(Table 5.1). However, no significant correlation between these two Fe fractions and DOC was 

observed in the pasture soil (Table 5.1). Creed et al. (2013) found topographic features (e.g. slope) 

along the hillslopes regulated the mobile DOC. More specifically, toeslope and footslope features 

are transiently saturated zones leading to spatially and temporally reducing conditions (Creed et 

al., 2013). This may explain the reason for no significant correlation between Fe fractions and 

DOC since the soil sampling from pasture soils were from the shoulder, backslope, and toeslope 
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along the hillslope. This indicates the reduction of Fe-oxyhydroxides may play an important role 

in regulating the DOC quantity in the forest soil and the export of Fe to headwater stream.  

Grybos et al. (2009) found aromatic organic molecules was the most reactive DOC pool 

contributing reduction of Fe-oxyhydroxides. The reduction of Fe-oxyhydroxides is accompanied 

by the release of DOC and the increase of SUVA254 of the released DOC (Grybos et al., 2009). 

Consistently, we observed significant positive correlations between Feex, Feamor and SUVA254 in 

both forest and pasture soils (Table 5.1). This suggests that aromatic DOC was one of the most 

important source pools that may involve in the reduction of Fe-oxyhydroxides in the forest and 

pasture soils. We found SUVA254 of DOC in forest and pasture soils were significant predictors 

to DOC variation in F location in the forest headwater stream and GH location at the pasture 

headwater stream (Table S2-1). This may influence Fe concentration in headwater streams due to 

the interaction between Fe and aromatic DOC. For example, Lei et al. (2020) found a significant 

positive regression between aromatic DOC and dissolved Fe concentration in headwater streams. 

Therefore, our study indicated that Fe-oxyhydroxides reducing processes may be more important 

in influencing the aromatic DOC proportion instead of the whole DOC pool. 

We found microbially reducible Fe concentration in forest soils at 0-10 cm significantly 

negative explained Fe variation at the F location (Table S2-1). However, the amorphous Fe and 

exchangeable Fe were not significant predictors of Fe concentrations in the pasture catchment 

(Table S2-1). This indicated that the Fe-reducing processes may directly influence Fe 

concentrations in the forest headwater stream. Conversely, Fe-reducing processes may indirectly 

influence Fe concentration by influencing aromatic DOC in the pasture headwater stream (Table 

5.1). Since reducing microsites are spatially and temporally dynamic (Creed et al., 2013), our 
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study also indicated different reducing microsites may occur between these two catchments, 

which lead to different Fe and DOC in-soil and in-stream interactions.  

The dissolved Fe influenced the quantity and quality of DOC in water, especially aromatic 

DOC (Kutser et al., 2015; Pullin et al., 2007; Xiao et al., 2016). Thus it impacts surface water 

brownification since dissolved Fe is a significant contributor to water brownification (Ekström et 

al., 2016; Kritzberg and Ekström, 2012; Neal et al., 2008). Except for DOC sources, Fe-reducing 

processes are influenced by both the seasonal hydrology and soil properties since both specific 

hydroclimatic conditions and pedologic characteristics influence the occurrence of Fe-reducing 

conditions (Lambert et al., 2013). However, how Fe-reducing processes influence the quantity 

and quality of DOC and also the dissolved Fe concentration in headwater catchments still need to 

incorporate intense seasonal and spatial soil data for a better understanding. Additionally, since 

our soil sampling only represented part of DOC sources to the headwater stream, our study could 

be improved by soil sampling from all representing DOC sources which contribute to the DOC 

quantity and quality in the headwater water stream.  

5.6 Conclusions 

Altogether, our study indicated that both land-use management practices and the season played 

important roles in regulating the concentration and composition of DOC and Fe in both forest and 

pasture catchments. We found a larger average DOC and a wider seasonal change in the forest 

soil than the pasture soil. Conversely, an average larger SUVA254 and a wider seasonal change in 

pasture soil compared to the forest soil. In addition, the pasture soil at 0-10cm had significantly 

larger average Feex and Feamor concentrations than the forest soil. The pasture headwater stream 

had significantly larger DOC, SUVA254, and Fe (p<0.05) and a wider seasonal change than the 

forest headwater stream. This may indicate different flow pathways and DOC in-soil and in-
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stream processes occurring in the forest and pasture catchments, which influenced the quantity 

and quality of DOC exported to the stream water. Moreover, negative correlations between Feex 

and DOC in the forest soil and positive correlations between Feex, Feamor and SUVA254 in both 

forest and pasture soils were found. Our study indicated that Fe-oxyhydroxides reducing 

processes may be more important in interacting with aromatic DOC proportion instead of the 

whole DOC pool. 

There are inherent difficulties in using stream DOC from regional and global to infer stream 

DOC in local scale watersheds. Our study indicated the significant roles of Fe oxides in regulating 

the quantity and quality of DOC in both surface soils and headwater streams, which was different 

in forest and pasture catchments. To better understand Fe-oxyhydroxides and DOC interactive 

processes at fine-scale local environments, the next step should be to establish the effects of 

hydrologic processes and DOC sources. This may help explain DOC stabilization and 

destabilization as well as surface water brownification.   
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Figure 5. 1. The location of study site. The rectangles represented 10 m × 10 m soil sampling plots (not to 

scale) while the black filled circles represented stream water sampling locations. 
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Figure 5. 2 Precipitation during the sampling period  

(data extracted from: http://api.wunderground.com/history/ airport/KMGW/2017/8/1/DailyHistory.html). 

The diamonds indicated the six sampling dates. The black straight line indicated the average precipitation 

of the whole sampling period. 
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Figure 5. 3 Dissolved organic carbon (DOC) (a) concentration and the specific ultraviolet absorbance at 

254 nm of DOC (SUVA254) (b) of six months (October, November, January, February, June, and July) in 

hardwood forest (HF) and continuous pasture (CP) soils at 0-10 and 10-25 depths. The asterisk represented 

the average of the six months.  
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Figure 5. 4 Exchangeable Fe extracting using 0.5 M HCl extraction (Feex) and microbially reducible Fe 

extracting using 0.25 M HCl and 0.25 M NH2OH·HCl (Feamor) of six months (October, November, January, 

February, June, and July) in hardwood forest (HF) and continuous pasture (CP) soils at 0-10 and 10-25 

depths. The asterisk represented the average of the six months.   
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Figure 5. 5 Dissolved organic carbon (DOC) (a) and dissolved iron (Fe) (b) in the forest headwater stream 

at F and C location and in the pasture headwater stream at GH, GG, GF, and GC location in October, 

November, January, February, June, and July.  

 

Figure 5. 6 Specific ultraviolet absorbance at 254 nm of DOC (SUVA254) in the forest headwater stream at 

F and C location and in the pasture headwater stream at GH, GG, GF, and GC location in October, 

November, January, February, June, and July. 
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Table 5. 1 Correlation matrix of Spearman correlation coefficients (r) of the investigated parameters in 

hardwood forest (HF) and continuous pasture (CP) soils 

Type Parameters TOC DOC SUVA254 Feex Feamor 

HF 

TOC 1     

DOC  1    

SUVA254 0.65* -0.56* 1   

Feex 0.53* -0.43* 0.73* 1  

Feamor 0.50*  0.41*  1 

CP 

TOC 1     

DOC 0.49* 1    

SUVA254 0.71*  1   

Feex 0.62*  0.64* 1  

Feamor 0.64*  0.63* 0.74* 1 

TOC: Total organic carbon; DOC: dissolved organic carbon; SUVA254: the specific ultraviolet 

absorbance at 254 nm of DOC; Feex: Released Fe after 0.5 M HCl extraction; Feamor: Released Fe after 

0.25 M HCl and 0.25 M NH2OH·HCl extraction. * represented p < 0.05; Blank cells: no significant 

correlation.  
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Table 5. 2 The average and standard deviation of DOC, Fe, and SUVA254 of six months (October, November, 

January, February, June, and July) in the two locations (C and F) at the forest headwater stream and four 

locations (GH, GG, GF, and GC) at the pasture headwater stream. 

Parameters F C GH GG GF GC 

DOC 2.56±0.96 2.64±0.89 5.35±1.59 5.02±1.2 4.82±1.18 4.7±1.00 

Fe 0.034±0.015 0.033±0.023 0.14±0.07 0.14±0.08 0.12±0.07 0.11±0.06 

SUVA254 4.19±1.47 3.98±0.96 6.58±2.16 6.28±1.86 5.93±1.76 6.04±1.63 

DOC: dissolved organic carbon in mg L-1; SUVA254: the specific ultraviolet absorbance at 254nm of 

DOC in m-1 L mg-1; Fe: dissolved Fe in mg L-1.  
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Table 5. 3 Non-parametric Wilcoxon signed-rank test of DOC, Fe, and SUVA254 among the six locations 

(F and C at the forest headwater stream; GH, GG, GF, and GC at the pasture headwater stream (first column) 

and non-parametric comparisons for each pair using Wilcoxon methods (fourth to ninth columns) 

Parameters Type Location F C GH GG GF GC 

DOC* 

Forest 
F             

C       

Pasture 

GH  *     

GG * *     

GF * *     

GC * *         

Fe* 

Forest 
F             

C       

Pasture 

GH * *     

GG * *     

GF *      

GC * *         

SUVA254* 

Forest 
F             

C       

Pasture 

GH  *     

GG  *     

GF  *     

GC   *         

* indicated significant differences at α=0.05 level. DOC: dissolved organic carbon in mg L-1; SUVA254: 

the specific ultraviolet absorbance at 254nm of DOC in m-1 L mg-1; Fe: dissolved Fe in mg L-1.  
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Chapter 6 Summary and Conclusions 

In this study, I was interested in differences in SOC and Fe oxide fractions in a hardwood, 

cropland, and pasture soils at 0-10 and 10-25 cm in a fine-scale catchment with similar climate 

and geography, especially the capacity of these soils to sorb aromatic dissolved organic carbon 

(Chapter 2, 3, and 4). Additionally, I elucidated how the temporal pattern of soil dissolved organic 

carbon and reducible Fe oxides influenced the temporal and spatial pattern of dissolved organic 

carbon and dissolved Fe in surface headwater streams (Chapter 5). The major findings of this 

project were: 

1. Soil organic carbon fractions differed in stabilization mechanisms and thus, by 

extension, turnover times. Multiple indicators including TOC, POC, MOC, and CMI 

were used to compare cropland with manure application (CM) and continuous pasture 

(CP) effects to a hardwood forest (HF) at soil depths of 0-10 cm and 10-25 cm were 

used (Chapter 2). The cropland soil at 10-25 cm under manure application and tillage 

had a larger POC content compared to the pasture and forest soil while no differences 

in MOC content were observed. According to CMI, improved SOC lability only 

occurred in cropland soil while decreased SOC lability were observed in pasture soils 

at both 0-10 and 10-25 cm. However, the dominant contribution to SOC was from POC 

at cropland and pasture which implied potential rapid SOC loss under disturbance due 

to a fast turnover time of POC, especially the topsoil. This study indicates that 

management practices increasing SOC input and driving the translocation of labile 

SOC to subsurface soil may be helpful to increase SOC stabilization in these 

agricultural soils.  
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2. SOC, Fe-bound OC, and the aromatic DOC sorption behaviors of cropland, pasture, 

and forest soil at 0-10 cm and 10-25 cm were investigated (Chapter 3). The role of total 

Fe oxides and amorphous Fe in stabilization of SOC in both agricultural and forest soils 

was confirmed. A significantly different proportion of Fe-bound OC and reactive Fe 

content was found in the cropland, pasture, and forest managed soils. Although the 

cropland soil at 0-10 and 10-25 cm had the highest amounts of Fe oxides, lower 

proportion of Fe-bound OC was observed in cropland soil at both depths than forest 

and pasture soils at 10-25 cm, which indicated a higher potential to stabilize SOC by 

Fe oxides in the cropland soil. Additionally, the sorption experiments had higher 

sorption of DOC in the cropland and pasture soils than the forest soil. The sorption 

behaviors of aromatic DOC between the cropland and pasture soils were similar at both 

0-10 cm and 10-25 cm, which were different form that of the forest soil. Unlike other 

studies, this study indicated the significant role of non-aromatic DOC in stabilizing 

DOC in the cropland and pasture soils at 0-10 cm. Additionally, this study indicated 

the native DOC concentrations significantly altered the sorption of aromatic and non-

aromatic DOC. The potential for these central Appalachian region soils to sequester 

carbon may be influenced by the quality and quantity of DOC. 

3. The spatial trends of DOC and Fe in forest (FC) and pasture (GFC) dominant headwater 

watersheds and their effects on water color were studied (Chapter 4). Compared to 

large-scale watersheds, this study observed a similar water color (a420) range with lower 

DOC and Fe concentration ranges in the two fine-scale streams. Likewise, the 

dominant contributor to water color was from DOC. However, a much lower Fe 

concentration is expected when Fe dominates water color in the two headwater streams. 
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Additionally, this study found DOC with lower S ratio, microbially-derived and higher 

SUVA254 was present in the pasture headwater stream compared to the forest dominant 

headwater stream. The strong significant relationship between SUVA254 and Fe 

indicated water color was strongly influenced by interactions between Fe and aromatic 

DOC in both headwater streams. In the absence of chemical speciation of DOC and Fe, 

this evidence for the processes behind DOC and Fe interactions, and their influence on 

water color was indirect. In addition, due to the modification of DOC during transport 

in both soil and stream processes, this study can be improved by disentangling DOC 

sources from the soil and/or upstream. To get a better understanding of the DOC and 

Fe biogeochemical cycling and their effects on water color, future studies should 

integrate soil and soil water studies. 

4. Dissolved organic carbon (DOC) and Fe concentration in surface water, which is 

regulated by soil DOC sources and the transport processes from the soil to stream, are 

two main contributors to surface water brownification (Chapter 5). The seasonal DOC, 

the specific ultraviolet absorbance at 254 nm (SUVA254), exchangeable Fe (Feex), and 

microbially reducible amorphous Fe content (Feamor) were investigated in the forest, 

cropland, and pasture soils at 0-10 cm and 10-25 cm. A larger average DOC and a 

wider seasonal change was found in the forest soil than the pasture soils. Conversely, 

an average larger SUVA254 and a wider seasonal change in pasture soils compared to 

the forest soil. In addition, the pasture soil at 0-10cm had significantly larger average 

Feex and Feamor concentrations than the forest soil. However, the pasture headwater 

stream had significantly larger DOC, SUVA254, and Fe (p<0.05) and a wider seasonal 

change than the forest headwater stream. This may indicate different flow pathways 
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and DOC in-soil and in-stream processes occurring in the forest and pasture catchments, 

which influenced the quantity and quality of DOC exported to the stream water. 

Moreover, negative correlations between Feex and DOC in the forest soil and positive 

correlations between Feex, Feamor and SUVA254 in both forest and pasture soils were 

found. This study indicated that Fe-oxyhydroxides reducing processes may be more 

important in interacting with aromatic DOC proportion instead of the whole DOC pool. 

Altogether, this study indicated that both land-use management practices and the season played 

important roles in regulating the concentration and composition of SOC and Fe factions and their 

interactions in both fine-scale forest and pasture catchments. There are inherent difficulties in 

using stream DOC from regional and global to infer stream DOC in local scale watersheds. Our 

study indicated the significant roles of Fe oxides in regulating the quantity and quality of DOC in 

both surface soils and headwater streams, which was different in forest and pasture catchments. 

To better understand Fe-oxyhydroxides and DOC interactive processes at fine-scale local 

environments, the next step should be to establish the effects of hydrologic processes and DOC 

sources. This may help explain DOC stabilization and destabilization as well as surface water 

brownification.  
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Appendix S1 

Table S1- 1 The two-ways repeated measures of variance analysis (repeated depth and month) 

Effect Type Depth Type*Depth Month Type*Month Depth*Month Type*Depth*Month 

df 1 1 1 5 5 5 5 

TOC 0.0148 <.0001 0.369 0.0035 0.0138 0.0080 0.0345 

DOC <.0001 <.0001 0.0667 <.0001 <.0001 <.0001 0.0003 

SUVA254 <.0001 <.0001 <0.0001 <.0001 <.0001 0.0006 0.0557 

Feex 0.8596 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

Feamor <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 

TOC: Total organic carbon; DOC: dissolved organic carbon; SUVA254: the specific ultraviolet 

absorbance at 254 nm of DOC; Feex Released Fe after 0.5 M HCl extraction; Feamor: Released Fe 

after 0.25 M HCl and 0.25 M NH2OH·HCl extraction; Fe-bound OC: proportion of organic carbon 

preserved by Fe oxides. 
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Table S1- 2 The average and standard deviation of TOC, DOC, SUVA254, Feex, and Feamor of six months 

(October, November, January, February, June, and July) in hardwood forest (HF) and continuous pasture 

(CP) soils at 0-10 and 10-25 depths. 

Type Depth 
TOC DOC SUVA254 Feex Feamor 

g kg-1 mg kg-1 m-1 L mg-1 mg kg-1 mg kg-1 

F 1-10 33.7±4.3 a 71.7±33.8 a 2.8±1.0 b 120.3±55.4 b 406.7±244.0 b 

F 10-25 10.6±1.4 b 53.1±30.2 b 1.6±0.7 d 71.8±47.0 c 303.2±213.5 c 

P 1-10 31.7±3.0 a 47.1±21.5 c 4.2±1.4 a 132.8±57.6 a 813.9±461.2 a 

P 10-25 9.3±1.6 c 26.1±16.6 d 2.2±1.3 c 60.6±17.7 c 288.7±152.5 c 

TOC: Total organic carbon; DOC: dissolved organic carbon; SUVA254: the specific ultraviolet 

absorbance at 254 nm of DOC; Feex: Released Fe after 0.5 M HCl extraction; Feamor: Released Fe 

after 0.25 M HCl and 0.25 M NH2OH·HCl extraction; Fe-bound OC-CPs: proportion of organic 

carbon preserved by Fe oxides. 
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Figure S1- 1 Total organic carbon of six months (October, November, January, February, June, and July) 

in hardwood forest (HF) and continuous pasture (CP) soils at 0-10 and 10-25 depths.  
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Appendix S2 Predictors for variations of DOC and Fe concentrations in forest and pasture 

headwater streams  

S2.1 Statistical analysis  

The data collected in Chapter 5 were used to develop statistical models to predict the 

significant factors explaining the variations of DOC and Fe concentrations in forest and pasture 

headwater streams. 

To pre-screen the most significant predictors from the soil and stream water parameters to 

explain stream water DOC and dissolved Fe, the stepwise linear regression analysis was 

conducted including soil data at both depths and stream water data at each location. The variation 

inflation factor was used to exclude predictor variables with collinearity. Models with the highest 

explained variance (R2) were selected (Table S2-2). Variables were also checked for normality of 

distribution using the Shapiro-Wilk W test. A transformation was applied when applicable. After 

the significant predictors for DOC or Fe at each location were selected from pre-screening, PROC 

MIXED models were conducted at both 0-10 cm and 10-25 cm separately when soil parameters 

were selected in the models (Version 9.4; SAS Institute Inc., Cary, NC, USA). The month was 

treated as a repeated effect using autoregressive or compound symmetry covariance structure 

when developing PROC MIXED models. The models with the smallest Adjusted Akaike 

Information Criterion (AAIC) were selected and reported. 

S2.2 Results 

For DOC concentration at F location, only Fe concentration of stream water at F location was 

the significant predictor (ρ Fe-Fw = -0.75) (Fig S2-1; Table S2-1 and 2). Additionally, SUVA254 of 

DOC in forest soil (ρ SUVA254-Fs = 0.74) and SUVA254 of DOC of stream water at F location (ρ 

SUVA254-Fw = 39.9) had a tendency to be significant predictors (Fig S2-1; Table S2-1). DOC 
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concentration at F location positively correlated with DOC concentration at C location (ρ DOC-Fw 

= 0.84) (Fig S2-1; Table S2-1). For Fe concentration at F location, DOC concentration (ρ DOC-Fs 

= -0.02) and microbially reducible Fe concentrations in the forest soil at 0-10 cm were significant 

predictors while they showed a tendency to be significant predictors at 10-25 cm (Fig S2-1; Table 

S2-1). DOC concentration in cropland soil at both 0-10 cm and 10-25 cm significantly predicted 

the Fe concentration at C location (Fig S2-1; Table S2-1). 

For DOC concentrations at GH, GG, GF, and GC locations, the pre-selected predictors using 

stepwise regression didn’t show significant effects at GG and GF locations when considering 

repeated month effects (Table S2-1). The DOC concentration at the GH location significantly 

explained by both soil parameters at both depths and stream parameters (Fe-GHw, DOC-Gs, SUVA254-Gs, 

C-Fe-Gs) (Fig S2-1; Table S2-1). However, only the proportion in Fe-bound OC at 0-10 cm C-Fe-Gs 

significantly predicted DOC concentration at the GH location. Conversely, the DOC 

concentration at the GC locations only influenced by stream parameters (DOC-GFw, SUVA254-GFw, Fe-

GHw) (Fig S2-1; Table S2-1).  

The pre-selected predictors didn’t show significant effects on Fe concentration at upstream 

GH and GG locations when considering repeated month effects in the developed models (Table 

S2-1). However, the Fe concentrations at downstream GF and GC location were significantly 

influenced by the Fe concentrations of the upstream locations (Fig S2-1; Table S2-1). For example, 

Fe concentration at GG significantly influenced the Fe concentration at GF location which 

significantly influenced the concentration at GC location (Fig S2-1; Table S2-1). 
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S2.3 Discussion 

S2.3.1 Significant explaining factors of DOC variation in headwater stream 

Different in-soil and in-stream processes may occur, which leads to different trends of the 

quantity and quality of DOC between upstream and downstream locations in the forest and pasture 

headwater streams (Fig S2-1; Table S2-1). Both parameters associated with the quantity and 

quality of DOC in soil and stream significantly explained the DOC variance at upstream locations 

at both the forest and pasture catchments (F at forest catchment; GH and GG at pasture catchment) 

(Fig S2-1; Table S2-1). However, only parameters associated with the quantity and quality of 

DOC in the upstream location significantly explained the variance of DOC concentration at the 

downstream location (Fig S2-1; Table S2-1). Thus, the quantity and quality of DOC at upstream 

location highly influenced quantity and quality of DOC at downstream location. This indicated 

that both in-soil and in-stream processes co-influence the dynamics of DOC at upstream locations 

while dominant in-stream processes influences involved in the DOC transport and transformation 

at downstream locations, which is supported by Fellman et al. (2009) study.  

DOC concentration in pasture soils was a significant negative predictor of DOC concentrations 

at GH location (Table S2-1). This is similar to Huang et al. (2013) study who found a negative 

relationship between headwater stream DOC and riparian DOC at mountain area with a 

significant altitude gradient. SUVA254 of DOC in the forest soils was a significantly positive 

predictor in forest headwater stream while SUVA254 of DOC in the pasture soil was a significant 

negative predictor of explaining the DOC concentration in pasture headwater stream (Fig S2-1; 

Table S2-1). This indicated different sources, transformation, and transport processes altering the 

quality of DOC in the soil to stream water occurred between the forest and pasture catchments. 

Different hydrological regimes may be occurred due to the variation of precipitation along the 
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season (Fig 5.2) and thus various seasonal trends of DOC concentration and SUVA254 of DOC in 

the stream (Hood et al., 2006; Lambert et al., 2013; Maurice et al., 2002). For example, the 

rewetting period is on the rising limb of hydrograph and the DOC sources are dominantly from 

riparian areas (Hood et al., 2006; McGlynn and McDonnell, 2003). However, due to the lack of 

hydrological data and limited soil sampling from both hillslope and riparian areas restricted direct 

evidence and conclusions in terms of the DOC sources and transport processes.  

 S2.3.2 Iron role in regulating the quantity and quality of DOC in soils 

The SUVA254 of DOC in forest and pasture soils were significant predictors to DOC variation 

at F and GH locations (Fig S2-1; Table S2-1), which was consistent with Grybos et al. (2009) 

who found aromatic organic molecules was the most reactive DOC pool contributing reduction 

of Fe-oxyhydroxides. The reduction of Fe-oxyhydroxides is accompanied by the release of DOC 

and the increase of SUVA254 of the released DOC (Grybos et al., 2009). Fe-bound OC in the 

pasture soil at 0-10 cm significantly explained the variation of DOC at GH location (Table S2-1). 

In addition, microbially reducible Fe in forest soils at 0-10 cm negatively significantly explained 

Fe variation at the F location (Table S2-2). These evidence indicated that the reduction of Fe-

oxyhydroxides may be more reactive only in 0-10 cm compared to 10-25 cm. Along with the 

significantly high SUVA254 of DOC in both the pasture soil and the headwater stream, our results 

indicated the reduction of Fe-oxyhydroxides may also play an important role in regulating the 

mobility of aromatic DOC from soil to headwater stream at upstream locations in both forest and 

pasture catchments. Our study also indicated that Fe-oxyhydroxides reducing processes may be 

more important in influencing the aromatic DOC proportion instead of the whole DOC pool. 

Since the soil sampling only represented part of DOC sources to the headwater stream, this study 
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could be improved by soil sampling from all representing DOC sources which contribute to the 

DOC quantity and quality in the headwater water stream.   
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Figure S2- 1 The significant explanatory variables selected using stepwise regression models for dissolved 

organic carbon (DOC) (dashed lines) and dissolved iron (solid lines) in forest (non-bold lines) and pasture 

(bold lines) headwater streams.  

The parameters with arrows inside the stream represented influences of stream parameters while the 

parameters with arrows outside the stream represented influences of soil parameters. The little w with in-

stream parameters represented stream water parameters while little s outside stream with capital HF, CM, 

and CP represented soil parameters of forest, cropland, and pasture. C and F inside the forest stream were 

sampling location at forest headwater stream while GH, GG, GF, and GC inside the pasture stream were 

sampling location at pasture headwater stream. DOC: dissolved organic matter in soil solution or in stream 

water; SUVA254: The specific ultraviolet absorbance at 254 nm of DOC in soil solution or stream water. 

Feamor: Released Fe after 0.25 M HCl and 0.25 M NH2OH·HCl extraction; Fe-bound OC: proportion of 

organic carbon preserved by Fe oxides.  
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Table S2- 1 Significant final predictor variables for dissolved organic carbon (DOC) and dissolved iron (Fe) 

in both forest and pasture headwater streams at different locations (F, C, GH, GG, GF, and GC) which 

represented different influences from different land management practices. 

SUVA254- HFs (CMs, CPs, Fw, GHw, GGw, and GFw) represented the specific ultraviolet absorbance at 254 nm 

of DOC in forest soil solution (cropland soil solution, pasture soil solution, stream water at GH location, stream water 

at GG location, and stream water at GF location); DOC- HFs (CMs and CPs) represented the concentration of  

dissolved organic carbon in forest soil (cropland soil and pasture soil); Fe-Fw (GHw) represented dissolved iron 

concentration in stream water at F and GH location; Feex-CPs: Released Fe after 0.5 M HCl extraction in pasture soil; 

Feamor-HFs: Released Fe after 0.25 M HCl and 0.25 M NH2OH·HCl extraction in forest soil; Fe-bound OC-CPs: 

proportion of organic carbon preserved by Fe oxides in pasture soil; AAIC: Adjusted alkaike information criterion; 

NS: non-significant; * represented p < 0.05; # represented 0.05 < p < 0.1. 

Stream 

Type 
Location 

Investigated 

Parameters 
Explaining Term 

Estimate AAIC 

0-10cm  10-25 cm 0-10cm  10-25 cm 

Forest 

F  

DOC 

Intercept 2.23 2.50 

2.6 1.4 
SUVA254-Fw 39.9# 41.88# 

Fe-Fw -0.75* -0.7* 

SUVA254-HFs 0.74# 1.01# 

Fe 

Intercept 0.1 0.09 

-9.4 -6.2 DOC-HFs 0.0002* 0.0003# 

Feamor-HFs -0.014* -0.014# 

C  

DOC 
Intercept -0.62* 

-7.1 
DOC-Fw 0.84* 

Fe 
Intercept -0.016 0.0011 

-11.4 -10.9 
DOC-CMs 0.0012* 0.001* 

Pasture 

GH 
DOC 

Intercept 2.71* 9.6* 

-4.1 1.4 

Fe-GHw 25.1* 22.29* 

SUVA254-CPs -0.76* -0.94* 

Ln DOC-CPs -2.7* -2.19* 

Fe-bound OC-CPs 0.66* 1.08 

Fe SUVA254-GHw NS   

GG 

DOC 

Intercept 4.3# 1.91 

28.2 24.9 

Feex-CPs -0.014 0.65 

DOC-GHw 0.52# -0.006 

SUVA254-GGw NS 

DOC-CPs NS 

Fe 
DOC-CPs NS 

 
SUVA254-GGw NS 

GF 

DOC 
Intercept NS 

8.3 
DOC-GGw NS 

Fe 

Intercept 0.12 

-8.3 Fe-GGw 0.85* 

SUVA254-GHw -0.0021 

GC 

DOC 

Intercept -0.4# 

-3.3 
DOC-GFw 0.99* 

SUVA254-GFw 0.12* 

Fe-GHw -2.50* 

Fe 
Intercept 0.017 

-21.3 
Fe-GFw 0.78* 
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Table S2- 2 Significant final predictor variables for dissolved organic carbon (DOC) and dissolved iron (Fe) 

in both forest and pasture headwater streams at different locations (F, C, GH, GG, GF, and GC) using 

forward stepwise regression analysis 

 

SUVA254- HFs (CMs, CPs, Fw, GHw, GGw, and GFw) represented the specific ultraviolet absorbance at 254 nm of 

DOC in forest soil solution (cropland soil solution, pasture soil solution, stream water at GH location, stream water at 

GG location, and stream water at GF location); DOC- HFs (CMs and CPs) represented the concentration of  dissolved 

organic carbon in forest soil (cropland soil and pasture soil); Fe-Fw (GHw) represented dissolved iron concentration 

in stream water at F and GH location; Feex-CPs: Released Fe after 0.5 M HCl extraction in pasture soil; Feamor-HFs: 

Released Fe after 0.25 M HCl and 0.25 M NH2OH·HCl extraction in forest soil; Fe-bound OC-CPs: proportion of 

organic carbon preserved by Fe oxides in pasture soil;   

Stream 

Type 
Location 

Investigated 

Parameters 
Explaining Term p Adjusted R2 

Forest 

F DOC Intercept 

0.0001 0.86 

SUVA254-Fw 

Fe-Fw 

SUVA254-HFs 

DOC-HFs 

F Fe Intercept 

0.0002 0.75 DOC-HFs 

Feamor-HFs 

C DOC Intercept 
<0.0001 0.76 

DOC-Fw 

C Fe Intercept 

<0.0001 0.88 
SUVA254-Fw 

DOC-CMs 

SUVA254-CMs 

Pasture 

GH DOC Intercept 

<0.0001 0.98 

Fe-GHw 

SUVA254-CPs 

DOC-CPs 

Fe-bound OC-CPs 

GH Fe Intercept 
<0.0001 0.97 

SUVA254-GHw 

GG DOC Intercept 

0.004 0.57 Feex-CPs 

DOC-GHw 

GG Fe Intercept 

0.03 0.38 SUVA254-GGw 

DOC-CPs 

GF DOC Intercept 
<0.0001 0.92 

DOC-GGw 

GF Fe Intercept 

<0.0001 0.97 Fe-GGw 

SUVA254-GHw 

GC DOC Intercept 

<0.0001 0.99 
DOC-GFw 

SUVA254-GFw 

Fe-GHw 

GC Fe Intercept 
<0.0001 0.97 

Fe-GFw 
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