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ABSTRACT 

 

 

Integrated Techno-Economic and Life Cycle Analyses of Biomass 

Utilization for Value-Added Bioproducts in the Northeastern United 

States 

 

Yuxi Wang 

A multi-stage spatial analysis was first conducted to select locations for lignocellulosic 

biomass-based bioproduct facility, using Geographical Information System (GIS) spatial 

analysis, multi-criteria analysis ranking algorithm, and social-economic assessment. A case study 

was developed to determine locations for lignocellulosic biorefineries using feedstocks including 

forest residue biomass and three energy crops for 13 states in the northeastern United States. In 

the entire study area, 11.1% of the counties are high-suitable, 48.8% are medium-suitable for 

biorefinery siting locations. A non-parametric analysis of cross-group surveys showed that 

preferences on biorefinery siting are homogeneous for experts in academia and industry groups, 

but people in government agencies presented different opinions. With the Maximum Likelihood 

test, parameters of distributions and mean values were estimated for nine weighted criteria. 

Social asset evaluation focusing on degree of rurality and social capital index further sorted 

counties with higher community acceptance and economic viability. A total of 15 counties were 

selected with the highest potential for biorefinery sites in the region. 

A mixed-integer linear programming model was then developed to optimize the multiple 

biomass feedstock supply chains, including feedstock establishment, harvest, storage, 

transportation, and preprocessing. The model was applied for analyses of multiple biomass 

feedstocks at county level for 13 states in the northeastern United States. In the base case with a 

demand of 180,000 dry Mg/year of biomass, the delivered costs ranged from $67.90 to $86.97 

per dry Mg with an average of $79.58 /dry Mg. The biomass delivered costs by county were 

from $67.90 to 150.81 per dry Mg across the northeastern U.S. Considered the entire study area, 

the delivered cost averaged $85.30 /dry Mg for forest residues, $84.47 /dry Mg for hybrid 

willow, $99.68 for switchgrass and $97.87 per dry Mg for Miscanthus. Seventy seven out of 387 

counties could be able to deliver biomass at $84 per dry Mg or less a target set by US DOE by 

2022. A sensitivity analysis was also conducted to evaluate the effects of feedstock availability, 

feedstock price, moisture content, procurement radius, and facility demand on the delivered cost. 

Our results showed that procurement radius, facility capacity, and forest residue availability are 

the most sensitive factors affecting the biomass delivered costs. 



An integrated life cycle and techno-economic assessment was carried out for three 

bioenergy products derived from multiple lignocellulosic biomass. Three cases were studied for 

production of pellets, biomass-based electricity, and pyrolysis bio-oil. The LCA was conducted 

for estimating environmental impacts on cradle-to-gate basis with functional unit of 1000 MJ for 

bioenergy production. Pellet production had the lowest GHG emissions, water and fossil fuels 

consumption, for 8.29 kg CO2 eq, 0.46 kg, and 105.42 MJ, respectively. Conversion process 

presented a greater environmental impact for all three bioenergy products. With producing 

46,926 tons of pellets, 260,000 MWh of electricity, and 78,000 barrels of pyrolysis oil, the net 

present values (NPV) for all three cases indicated only pellet and biopower production cases 

were profitable with NPVs $1.20 million for pellet, and $81.60 million for biopower. The pellet 

plant and biopower plant were profitable only when discount rates are less than or equal to 10%, 

while it will not be profitable for a pyrolysis oil plant. The uncertainty analysis indicated that 

pellet production showed the highest uncertainty in GHG emission, bio-oil production had the 

least uncertainty in GHG emission but had risks producing greater-than-normal amount of GHG. 

For biopower production, it had the highest probability to be a profitable investment with 

95.38%. 

A study evaluated the environmental and economic impacts of activated carbon (AC) 

produced from lignocellulosic biomass was evaluated for energy storage purpose. Results 

indicate that overall “in-plant production” process presented the highest environmental impacts. 

Normalized results of life cycle impact assessment showed that the AC production had 

environmental impacts mainly on carcinogenics, ecotoxicity, and non-carcinogenics categories.  

We then further focused on life cycle analysis from raw biomass delivery to plant gate, the 

results showed “feedstock establishment” has the most significant environmental impact, ranging 

from 50.3% to 85.2%. For an activated carbon plant of producing 3000 kg AC per day in the 

base case, the capital cost would be $6.66 million, and annual operation cost was $15.46 million. 

The AC required selling price (RSP) was $16.79 per kg, with the discounted payback period 

(DPB) of 9.98 years. Alternative cases of KOH-reuse and steam processes had GHG emission of 

15.4 kg CO2 eq, and 10.2 kg CO2 eq for every 1 kg activated carbon, respectively. Monte Carlo 

simulation showed 49.96% of the probability for an investment to be profitable in activated 

carbon production for supercapacitor electrodes. 
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Biomass, is a renewable energy sources that has the potential to remediate the greenhouse 

gas emissions (Elia et al. 2011). Carbon dioxide is absorbed from atmosphere during its growth 

and cultivation resulting in negative greenhouse gas emission. Biomass can also be utilized as a 

renewable feedstock for biopower, transportation fuels, and biomaterials, and biochemicals 

(Brown 2019; Putro et al. 2016). The commercially available biofuels are commonly made from 

rapeseed and corn. However, their production have drawbacks on failure in higher N2O emission 

(Crutzen et al. 2008), or negatively land use changes (Searchinger et al. 2008). As a result, recent 

studies have turned to the use of other lignocellulosic feedstocks, such as perennial grasses or 

short rotation woody crops, and forest residues for bioenergy and value-added bioproducts 

(Higman and Burgt 2003). In the meanwhile, biomass-based high-value biochemical products 

have not been realized at a commercial scale due to economic and environmental challenges 

(Shen et al. 2015). 

The northeastern region in United States has a wealth of existing biomass feedstocks and 

the potential to increase supplies in the future. Residues from timber industry, perennial grasses, 

or short rotation woody crops are the main sources easily accessible lignocellulosic feedstocks in 

the northeastern region of the U.S (Liu et al. 2017). Studies (Wang et al. 2006; Wu et al. 2012) 

on availability of woody biomass showed a great potential of woody biomass supply capability 

in this area. A study by Wang et al. (2006) analyzed the biomass resources in West Virginia, the 

third most heavily forested state in U.S. yields nearly 2.41 million dry tons of biomass per year. 

Energy grasses after drying can be used as the biorefinery feedstock, with the merits of high 

biomass yield, low moisture content (Miao et al. 2012). Switchgrass, the native perennial warm-

season grass in United States, can be used as an energy crop with high productivity and low 
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maintenance cost. Compared with switchgrass, miscanthus is another type of perennial 

rhizomatous grass, and its production is characterized by low fertilizer and pesticide requirement 

(Lewandowski et al. 2000).   

Lignocellulosic biomass shows a great potential in bioenergy and high-value biochemical 

production. Based on an EIA study (2020a), the annual renewable energy usage in the U.S. had 

exceeded coal consumption since before 1885 in 2019. The consumption of renewable energy 

U.S. has increased 17.9% from year 2015, and biomass-based energy in renewable energy is the 

most promising resource especially, for 43.5% in total renewable energy usage (EIA 2020b). In 

addition to energy products, biomass can be used to create value-added bioproducts like 

chemicals and materials, and some popular carbon-based products including carbonaceous 

materials, sugar alcohols, and bioplastics (Irmak 2017). Furthermore, the production of 

bioenergy and bioproducts has the potential to revitalize rural communities as rural areas are in 

decline, especially when using products derived from multiple sources like forest residue and 

energy crop feedstocks locally. 

1.1 Supply chain of biomass utilization  

 To successfully produce bioenergy products from various biomass feedstocks, supply 

chain configuration is the most important strategy before any further decisions. Gold and Seuring 

(2011) reviewed bioenergy production supply chain studies and summarized the main 

components of biomass supply chain: feedstock harvesting and collection, storage, transport, 

pretreatment and conversion. Though orders of process may change, repeat or more processes 

may be added, the main components of a biomass supply chain are similar in many respects 

(Rentizelas et al. 2009).  
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Delivered cost of biomass feedstock is an important factor in biomass supply chain, which 

affects the final product value greatly (Wright 2010; Swanson et al. 2010). In a study of biomass-

based transportation fuel by Wright (2010), cost of biomass as feedstock showed its importance 

in the sensitivity analysis and feedstock cost varies among feedstock supply/demand locations all 

year round. Similarly, feedstock cost is an important parameter influencing the final product 

value from biomass (Swanson et al. 2010). The methods of biomass harvesting vary, depending 

on the types of biomass (Wang et al. 2013). For logging residues, studies have been primarily 

focusing on harvest and transportation systems such as whole-tree chipping and slash bundling to 

improve productivity and lower the cost (Yoshioka et al. 2006; Gan and Smith 2006). Harvesting 

systems and methods used for biomass harvesting activities affect overall harvesting cost, 

productivity, overall profitability of harvesting operations, returns to a landowner, and ecological 

impact (Herr and Carlson 2013). The existing harvest technology for short rotation woody crops 

(SRWCs) basically can be divided into logging, bundling, chipping and baling (Ehlert and 

Pecenka 2013). Chipping during harvest is the most cost-effective way to achieve chipped crops 

(Eisenbies et al. 2014). Eisenbies et al. (2014) thoroughly examined a single-pass, cut and chip 

harvest system of SRWC in New York State, and the results showed the harvester performance 

change and depend on machine capability, ground conditions, field layout, and so on. Harvesting 

switchgrass and miscanthus is similar to other grasses or crop residues (Sokhansanj et al. 2002). 

Brownell and Liu (2011a) evaluated four herbaceous biomass handling systems and found the 

“single-pass harvesting” equipment is a new trend in harvesting and collecting grass biomass.  

Reducing the material size, increasing the bulk density, and increasing the energy density, 

make it possible to improve biomass feedstock characteristics and efficiency through the supply 

chain. Generally, chipping and baling can be done at the harvesting site. Chipping is a size 
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reduction method for biomass that improves efficiency of thermally or chemical conversion 

(Hamelinck et al. 2005). Size reduction of the material from whole stems or large sections into 

chips is one of the most common methods to improve transportation properties. Chipping 

increases the feedstock density of woody biomass by 243 percent for transportation, and the 

larger surface area allows for more drying and improving the energy characteristics (Angus-

Hankin et al. 1995; Richard, 2010). Baling is a key technology for crops to be handled in further 

logistics and get their density increased, as well as reducing the risks of feedstock deterioration 

(Forsberg 2000). Baling involves compressing a material and tightly binding the compressed 

material to maintain the compression, for woody biomass this process has the ability to double 

the bulk density over loose material (Angus-Hankin et al. 1995).   

Moisture content would affect the cost in biomass supply chain operation. In the analysis 

of forest biomass delivery for bioenergy production, Sessions (2013) pointed out moisture 

management is a supply chain problem, and is affected by harvesting season and storage 

methods. Moisture content of biomass depends on a number of factors including species, 

diameter, season of year harvested, and length of time the material has been on the ground or in 

piles (Hakkila 1989). Reducing moisture content involves letting biomass dry in the field, on the 

landing, or in a satellite yard prior to delivery to the plant (Uslu et al. 2008).  

There are two major pathways of converting biomass into biofuel and bioproducts: 

thermochemical and biochemical. Thermochemical conversion includes combustion, 

gasification, liquefaction, and pyrolysis (Goyal et al. 2008). Combustion is the direct burning of 

biomass in the presence of oxygen for the purpose of generating heat. Heat from combustion can 

then be used to generate mechanical power, which can be used to produce electricity (Goyal et 

al. 2008). Gasification partially oxidizes the feedstock to create a combustible gas mixture by 
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heating the biomass in an environment that has an inadequate supply of oxygen to support 

combustion (Devi et al. 2003). Pyrolysis uses an oxygen free environment to thermally destruct 

biomass and is best suited for the production of liquid fuels, but also produces gasses and solids  

(Mohan et.al. 2006). Biomass biochemical conversion always involves the use of microbes, 

enzymes, or chemicals (Singh et al. 2015). When producing liquid fuels from biomass, 

lignocellulosic material could be converted to sugar via enzymatic hydrolysis (Cadham et al. 

2016). Generally, a biochemical conversion system for lignocellulosic biomass produces the C6 

and C5 sugars first, and then converts the polysaccharides into products like fuels or chemicals 

(Elbersen et al. 2017). 

1.2 Life cycle assessment and techno-economic analysis  

 As a hand-on methodology for assessing environmental impacts, life-cycle assessment 

(LCA) accounts and manages environmental impacts associated with all the stages of the life-

cycle of biomass-based products. The environmental impacts of bioenergy or bioproduct 

production are hotly-debated as methodologies for life cycle assessment vary widely (Caputo et 

al. 2014; You et al. 2011; Budsberg et al. 2012; Popp et al. 2011; Hsu et al. 2010). You (2012) 

built a multi-objective optimization model of a cellulosic biofuel supply chain that showed 

multiple factors affected the reduction of GHG emissions. Akhtari (2014) demonstrated that 

besides contributing to socioeconomic development, forest biomass utilization for district 

heating would support British Columbia’s Clean Air program and would improve air quality 

within Williams Lake area. 

A feasibility analysis is also called a techno-economic analysis, in which the technical 

aspects of a project are coupled to the economic aspects (Patel et al. 2011). First, the basic 

theoretical configuration is developed, and a mass-and-energy balance is performed. Second, 
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cost estimation allows the investment and production cost of a biorefinery to be determined. 

Techno-economic models are built to establish production process and provide cost and 

performance boundaries (Kapila et al. 2017). Techno-economic analysis studies on biomass-

based power plants could solve economic problems of real cases. To provide liquid 

transportation fuels and electricity, two gasification models of biomass-to-liquid production have 

been compared and shown that the product value is lower for high temperature gasification even 

though there is a higher investment cost than that for the low temperature gasification (Swanson 

et al. 2010). Liquid fuels or chemicals could be the most promising product in biomass 

conversion. A process model for a lignocellulosic biofuel production has been presented by 

Klein-Marcuschamer (2010) for the usage of lignocellulosic ethanol on energy related 

environmental and economic consultation. As in the study of naphtha and diesel fuels production 

with the feedstock of biomass via fast pyrolysis method, Wright (2010) built models with two 

fixed yearly production rates, which with respective capital costs and fuel product values for 

both nth plant and pioneer plant .  

There appears a necessity to further analyze biomass utilization for bioenergy and 

bioproducts in the Northeast. Furthermore, it is crucial to analyze economic and environmental 

impacts of biomass-based bioenergy production in the region. Therefore, this dissertation 

focused on (1) identification of the suitable locations for new facilities of bioenergy and value-

add products in the northeastern U.S., (2) supply chain configurations of multiple biomass as 

feedstocks with consideration of biomass harvest and logistics optimization, (3) real case studies 

of bioenergy productions in the aspects of economic feasibility and environmental impacts, and 

(4) integrated techno-economic and life cycle analyses of  highly porous biomass-based activated 

carbon for high-performance supercapacitors.  
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2. OPTIMIZATION OF FACILITY SITING OF BIOENERGY AND 

BIOPRODUCTS IN NORTHEAST US1  

 

  

 
1 To be submitted to Biofuels, Bioproducts & Biorefining (Biofpr). 
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Abstract: 

A multi-stage spatial analysis was conducted to select locations for lignocellulosic 

biomass-based bioproduct facility using Geographical Information System (GIS) spatial analysis, 

multi-criteria analysis ranking algorithm, and social-economic assessment. Site suitability 

indices were first created and evaluated for the entire study area using a linear fuzzy-logic 

prediction model. An integrated measure of stakeholder preferences was then identified and used 

for weighing the score adjustment of siting criteria in the Analytic Hierarchy Process. Surveys of 

expert’s opinions from various stakeholder groups were collected to leverage their insights in 

biomass and bioproducts field and integrated into weight adjustment in site ranking.  

A case study was developed to determine locations for lignocellulosic biorefineries using 

feedstocks including forest residue biomass and three energy crops for 13 states in the 

northeastern United States. In the whole study area, 11.1% are high-suitable, 48.8% are 

moderately-suitable for biorefinery siting locations. A non-parametric analysis of cross-group 

surveys showed that preferences on biorefinery siting are homogeneous for experts in academia 

and industry groups, but people in government agencies showed different opinions. With the 

Maximum Likelihood test, parameters of distributions and mean values were estimated for nine 

weighting criteria. Social asset evaluation focusing on degree of rurality and social capital index 

further sorted counties with higher community acceptance and economic viable. A total of 15 

counties were selected with highest potential for biorefinery sites. 
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2.1 Introduction 

To mitigate the challenges of energy security and increasing greenhouse gas emissions 

associated with burning fossil fuels, alternative energy sources such as biomass energy should be 

considered. Renewable energy from biomass has shown its potential to supply energy with a near 

carbon-neutral manner of greenhouse gas emissions (EIA 2019a; EIA 2019b), and create 

opportunities for rural development goals. According to EIA’s Energy Review (2019c), 

renewable energy usage has increased to 20% of the overall energy consumption in the U.S., and 

biomass-based energy accounts for 44% of all renewable energy. Recent studies have 

highlighted the use of lignocellulosic biomass (e.g., perennial grasses, short rotation woody 

crops, forest residues) as feedstock for biofuel, bioproducts, or for bioenergy production (Jonker 

et al. 2016; Liu et al. 2017; Hanssen et al. 2019). However, to realize the transformational 

potential of these science and engineering breakthroughs, biofuel production technologies must 

be equally compatible with regional feedstock availability, transportation infrastructure, and 

relevant community assets.  

Due to spatial dispersion of biomass, high transportation cost of the feedstock, and the 

possible negative environmental impacts for producing cost-effective bioproducts (Thomas et. al. 

2013; Ruiz et al. 2013), selecting the optimal locations of the facility play a critical role in the 

biomass utilization supply chain (Gold and Seuring 2011). Siting bioenergy plants in optimal 

locations at optimum capacities is a challenging task. Due to high geographical dependence of 

many factors associated with optimal siting, the application of spatial information technologies 

such as remote sensing and geographical information system (GIS) have become important tools. 

Determining the suitability of different locations for biomass-based facilities, and finding 

an optimal solution are the two prime aspects of optimum facility location analysis. Usually, the 
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strategy of selecting suitable locations involves multiple criteria including economic and 

environmental impacts. A conventional way to select the facility locations is to use drawing and 

calculation tools (De Smith et. al. 2007), which is generally time and resource consuming. Single 

facility location decisions can be made by using a center-of-gravity approach as described by 

Drezner and Wesolowsky (1980). On the other hand, multi-facility location selection produces 

multiple solutions, including alternative location allocation, projection, p-median, genetic search, 

and different variable neighborhood searches (Brimberg et al. 2000). Drezner and Wesolowsky 

(1991) developed an approach to identify a single facility location with minimizing cost, using 

mathematical model to solve an objective function. In another study, a multiple-facility locating 

problem was solved by using p-median models, considering the uncertainty of demand over time 

(Drezner 1995). These methods use both quantitative and qualitative analyses in selecting 

locations without taking any advantages of spatial data features of the sites.  

GIS-based methods can handle both spatial and non-spatial data. GIS-based methods have 

been used for various site selection applications. For example, McBean et. al. (1995) used both 

vector and raster data to define the location of a landfill. Other used raster data with Boolean 

logic map algebra based on suitability of topography and geographic features to make siting 

decisions (Şener et. al. 2006). Using multiple criteria in site suitability analysis to consider 

multiple possible conditions can aid decision-making for multi-stakeholder groups (Sharifi et al. 

2009). The combination of GIS and multi-criteria decision analysis (MCDA) is an efficient way 

of assessing land suitability (Gomes and Lins 2002). In fact, this approach of combining different 

criteria from various disciplines including technical standards, social selection criteria and 

community acceptance has been used successfully for identifying site locations for landfills 

(Swallow et. al. 1992). The suitability index, usually calculated by GIS map algebra techniques, 
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represents the relative usefulness for a particular land use. Suitability model can be built by 

Boolean or index overlay, as well as fuzzy logic. Fuzzy logic deals with reasoning that is 

approximate rather than fixed and exact. Compared to traditional binary sets (where variables 

may take on true or false values like Boolean), fuzzy logic variables may have a truth value that 

ranges in degree between 0 and 1. Fuzzy logic has been extended to handle the concept of partial 

truth, where the truth value may range between completely true and completely false (Novák, et. 

al.  2012). Fuzzy logic methods could improve the effectiveness in dealing with the imprecise 

values of qualitative criteria, compared to conventional approaches to facility location problems 

(Kahraman, et. al. 2003). One of the important tasks in the suitability analysis is the integration 

of different preference criteria by providing weight factors to the criteria, which expresses the 

importance of each factor relative to others. The most common procedure for multi-criteria 

evaluation is Weighted Linear Combination (WLC). The determination of criterion weights is an 

important part of this method.  

The MCDA provides four methods for assessing criterion weights: ranking, rating, 

pairwise comparison, and trade-off analysis. One approach of incorporating weighting factor in 

the preference criteria is by employing the Analytic Hierarchy Process (AHP) introduced by 

Saaty (1980), and it has particular application in group decision making (Saaty 2008).  In the 

context of AHP, the pairwise comparison technique is used in calculating criteria weights. 

Pairwise comparison method compares entities in pairs to judge the preferable of each entity, and 

is an important application of Analytic Hierarchy Process (Kou et al. 2016). Pairwise comparison 

has the advantage that only focus on the comparison of only two criteria at each time, but 

requires more comparisons than simply ranking or rating. However, this problem could be solved 

by integrating a GIS environment (Flitter et al. 2013). An optimal AHP-GIS approach was 
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developed and applied to identify facility locations and scales for the power generation from 

biomass in Southern Italy (Delivand et al. 2015). GIS mapping techniques were applied to 

England at national scale, and results of analysis showed the spatial supply and demand 

relationships for biomass energy potential and identify spatial factors affecting potential 

generation from bioenergy (Thomas et. al. 2013). 

Both social and economic factors and their interactions should be considered in the site 

selection process. Many researchers have examined the supply chains that link biomass to 

biofuel facilities using a sustainability approach by incorporating aspects of economic, 

environmental, and social criteria into their analyses (Raman et al. 2015; Martinkus et al. 2014). 

The social aspect of sustainability from a biorefinery site selection perspective needs to be 

focused along with regional feedstock availability and transportation infrastructure. The 

resistance or enthusiasm of a community could play an important role in determining the ideal 

location for a new biorefinery. Social capital index provides the positive outcome of human 

interaction on innovation (Wu, et. al.  2008), which has close associations with acceptance of a 

new biorefinery plant (Lovrich et al. 2012). The Index of Relative Rurality (IRR) is a continuous 

measurement of rurality (Waldorf and Kim, 2018), and being rural is an attribute with low 

economic activities. The new biofuel facilities could result in mitigating rural poverty by 

providing jobs, as well as direct and indirect economic gains (Martinkus et al. 2014). 

Locating optimal sites for bioproduct facility is a complex process involving many 

factors like environmental, economic, and social constraints. For instance, biomass feedstock 

availability has significant impact on the location of a bioenergy plant (Delivand et al. 2015). 

Residents consistently prefer that bioenergy facilities be located a certain distance from 

residential areas (Ma et al. 2005). In addition, economic factors also play a critical role in 
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determining the viability of potential biomass-based energy projects (Martinez-Gomez et al. 

2014). With these restrictions and other considerations on land use, the study area is the 

northeastern U.S. In addition to abundant forest-based biomass resources, the region has over 2.8 

million ha available marginal agricultural land (Skousen and Zipper 2014) and 0.5 million ha 

abandoned mine land (Drummond and Loveland 2010), respectively. These lands are generally 

characterized as rocky and sloped soils and are compatible to the development of perennial 

energy crops such as hybrid willow, switchgrass and Miscanthus. The temperate climate in this 

region also provides the conditions of producing biomass of higher yield (Somerville et al. 

2010).  

Therefore, this chapter is to evaluate the potential areas that are suitable for building 

biomass-based facilities in the northeastern US, considering economic, social and environmental 

factors. The specific objectives of this study were to: (1) conduct linear fuzzy-logic prediction 

model and apply site suitability index to identify suitable area for biorefinery facilities in the 

study area, (2) integrate the analytic hierarchy process (AHP) and stakeholder preferences from 

survey responses to perform multi-criteria analysis and determine the candidate locations in 

physical aspect, and (3) combine composite social-economic assessment measurements into the 

site selection and assess the selected biorefinery locations in Northeast US. 

2.2 Methods and Data 

2.2.1 Study Area 

This study uses the multiple biomass supply chains in the Northeastern United States as a 

pilot case to illustrate the utility of the approach of integrating biogeophysical and social assets 

into bioproducts facility siting decisions. An estimated stock of social capital in each US county 

for year 2014 (Rupasingha, et. al. 2014) was used in this study. The measurement of rurality was 
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the Index of Relative Rurality (IRR) summarized by Waldorf and Kim (2018). The county-level 

data generated as part of the social asset analysis process were then utilized to facilitate site 

selection optimization. This approach identifies counties that are “physically” and “socially” best 

prepared to accommodate potential biorefinery infrastructure/supply chain site development. The 

schematic overall flowchart of the approach used and implemented in the study is presented in 

Figure 2.1. 

 

Figure 2.1 Flowchart of the conceptual model for selecting an optimal biomass biorefinery 

facility location. 

The selection process of biomass biorefinery sites includes a GIS-based physical 

assessment of best-fit candidate selection, and an optimal facility selection from social assets 

analysis. In the GIS-based assessment phase, a multi-criteria analysis (MCA) is used to integrate 
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the attribute measures for criteria relevant to decision- makers’ objectives and measures of 

decision-makers’ preferences. Based on a two-stage multi-objective decision model, a set of 

potential facility locations and candidate(s) can be optimized. On the other hand, the social asset 

metrics were used in the evaluation on community collaborative and acceptance of a potential 

facility biorefinery construction. 

2.2.2 Site Suitability Analysis 

The physical site selection was completed in a two-stage process that is similar to the 

method described by Wu et. al. (2011) and Hartley (2014).  The process starts with computing 

the site suitability indices for the entire study area using a linear fuzzy-logic prediction model 

based on 11 criteria (Table 2.1). The fuzzy logic membership function (realized by map algebra) 

was used to achieve the site index in range 0-1, in which the smaller number represents the lower 

suitability and the larger number indicates the higher suitability, and all the index numbers are 

positive (Wu et al. 2011): 

𝑆𝑆𝐼 = ∑(𝑓𝑚𝑤𝑚) ∗ ∏ 𝑏𝑛 (1) 

fm-The value of criteria m,  

wm -The weight of criteria m, 

bn - The criteria score of constraint n.   

 

Where 𝑆𝑆𝐼 is the site suitability index, 𝑓𝑚 is the value of criteria 𝑚, 𝑤𝑚 is the weight of criteria 

m and 𝑏𝑛 is the criteria score of constraint 𝑛.  Since the criteria were measured at different 

scales, the variables were transformed and normalized so that a positive change in a variable is 

reflected as a positive change accordingly in the suitability outcome. 
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Table 2.1 Site suitability criteria for biomass refinery facility. 

Criteria Acceptable range 

Feedstock availability 
Biomass 

Availability 
Less than 80 km 

Transportation 

network 
Primary roads Less than 5 km a 

Construction 

limitation 

Slope Less than 10% b 

Powerlines Less than 1.6 km a 

Water bodies Less than 5 km a 

Distance from 

communities 

2500-10,000 population  less than 1 km;  

10,000-20,000 population less than 2.5 km;  

>20,000 population less than 5 km 

Elevation More than 100 m c 

Environmental 

impacts 

Flood Plain More than 500 m d 

Public land More than 500 m e 

Protected Area More than 1 km e 

Wetland More than 500 m e 

a. (Koikai 2008) 

b. (Stans, Siciliano, and Podesta 1969) 

c. (Hendrix and Buckley 1992) 

d. (Wu, Wang, and Strager 2011) 

e. (Hartley 2014) 

 

To obtain the suitability indices of criteria, fuzzy values of the criteria are used. The input 

variables for assessing site suitability of biorefinery facility usually consider: (a) feedstock 

availability; (b) transportation network; (c) construction limitation; and (d) environmental 

impacts. The site suitability is evaluated to minimize the variable cost and potential negative 

environmental impacts with considerations of all other related constraints. The variable cost in 

this study includes cost to purchase and transportation of feedstock and products, utility fee 
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(power lines extension cost, water transportation cost), and cost for possible incidents (flood). 

The environmental impact could be anything like site and water pollution, and possible damages 

of wildlife. The variables considered as evaluation criteria are listed in Table 2.1 and were used 

to construct the fuzzy-logic membership functions, which were expressed as distance metrics and 

then normalized based on site preference. 

The constraint for feedstock availability was based on the area which has feasibility of 

feedstock transportation. The importance of transportation and logistics in the biomass supply 

chain has been recognized, and transportation distance is one of the crucial factors affecting the 

cost of biomass delivery, and bioproducts marketing (Sharma et al. 2017). The transportation 

cost of processed biomass crops from the harvest site to facility would rise as round-trip distance 

increase (Kizha and Han 2016). With assuming transportation distance of less than 50 miles (80 

km) in the base case (Bain et al. 2003), biomass feedstocks like residues or energy crops could 

potentially be available for energy uses at a reasonable delivered price. 

When applying the suitability model to every layer of suitability analysis for each 

criterion, each grid/cell on map layer receives 1 or 0 for each variable based on whether the cell 

met the affirmative conditions of the variable (Heacock and Hollander 2011). For instance, when 

creating a suitability layer for criterion “biomass availability < 80 km”, buffered polygons were 

created on map to show transport-feasibility zones (that biomass available with procurement 

distance less than 80 km) around counties with annual biomass availability exceeding 180,000 

dry Mg (subject to the facility demand constraint). Therefore, all grids fell in these featured 

zones are assigned with a feasibility value 1, other grids receive 0. Site suitability is assessed as a 

function of general physical characteristics, proximity to infrastructure, and presence of utilities, 

raw materials, environmental factors and economic growth potential. Multiplied by 100 times of 
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the suitability index for each cell, the site suitability index is then reclassified into three 

categories (non-suitable, low-suitable, and high-suitable) to create a GIS raster layer that can be 

used for future candidate analysis and selection. 

2.2.3 AHP and Weight Solicitation 

Analytical Hierarchy Process (AHP) was adopted as a robust and flexible MCDM tool to 

deal with this complex decision problem. AHP structures the complex decision as a hierarchy of 

goal, criteria and alternatives, pair-wisely compares elements at each level of the hierarchy with 

respect to each criterion, and vertically synthesizes the judgements over the different levels of 

the hierarchy (Sánchez-Lozano et. al. 2016). In this study, AHP was applied criteria weights. 

In the context of Analytical Hierarchy Process (AHP), Saaty (2008) developed the 

pairwise comparison technique, which is used in calculating criteria weights. Compared to point 

allocation and rank ordering methods, the pairwise comparison has a strong theoretical 

foundation (Malczewski 1999). Scale of 1 to 9 is usually used in describing the preference. 

However, in some studies, 3-point weighting scheme based on 1-9 scale is applied to lessen the 

difficulty defining preferences with slight differences (Strager and Rosenberger 2006). 

Min {𝐿𝑝(𝐴𝑗) − [∑(𝑊𝑖) [
(𝑓𝑖

∗ − 𝑓𝑖𝑗)

(𝑓𝑖
∗ − 𝑓𝑖

∗∗)
]

𝑝𝑁

𝑖=1

]

1
𝑝

} 

𝐿𝑝(𝐴𝑗) -Distance metric as a function of the decision alternative 𝐴𝑗 and the parameter p; 

𝑊𝑖 -The standardized form of the criterion weight; 

𝑓𝑖
∗ - The ideal or best value for criterion i; 

𝑓𝑖
∗∗- The minimum or worst value for criterion i; 

𝑓𝑖𝑗 – The actual value 

 

 In this study, intensity scale was ranging from 1-9 with detailed description showed in 

Table 2.2.  A consistency test was performed to assure that choices were not randomly entered, 

which is based on whether the consistency ratio (CR) is less than 0.1. Only when there is 
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consistency, the weights are valid with CR smaller than 1. Otherwise, the pairwise comparisons 

must be redone until the consistency condition is accomplished (Saaty 1980). 

Table 2.2 Intensity scale for pairwise comparison and the creation of pairwise matrix. 

Intensity Definition Explanation 

1 Equal importance Elements A and B are equally important 

3 Moderate importance Elements A is moderately more important than element B 

5 Strong importance Elements A is strongly more important than element B 

7 Very strong importance Elements A is very strongly more important than element B 

9 Extreme importance Elements A is extremely more important than element B 

2,4,6,8 Intermediate values N/A 

Reciprocal Inverse judgment Element A is less important than element B 

 

To better address the perspective of bioenergy and bioproduct siting selection from 

expertise in biomass and bioproduction field, a survey was designed targeting to research 

scientists and bioenergy industry was made and 30 responses were collected in order to compare 

stakeholders’ preferences and summarize criteria weighting scores in overall view. 

The weight of each criterion is determined by the pairwise comparison method, which 

compares each pair of two variables' importance in terms of the plant location selection. To 

integrate the preferences of the survey participants in the field of biomass, it is important to 

incorporate the inputs from different stakeholder’s groups into the framework model. Preference 

weights measured for different land management alternatives or conservation criteria can vary 

significantly across the survey participants and across groups of these participants.  

The weights from the AHP were analyzed to test the following three hypotheses: (1) if 

the individual survey participants could be grouped based on their affiliations, (2) whether the 

groups’ preferences were substantially different from each other, and (3) if different, on which 

criteria they differed. By default, the weights for all criteria should follow normal distributions 

with population mean values estimated by sample average values. If the variation in individual 
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responses is great within a group, and the hypothesis of normality fails, a new distribution was 

fitted and calculated for the expected value to represent the group. 

A nonparametric, two-way analysis of variance by Friedman’s Q statistic was used to test 

the differences of preference weights. The null hypothesis for the intra-group comparisons states 

that the preference of member 𝑖 in a group (y) was represented by a population (𝑃𝑦). Here are the 

alternative hypotheses: 

𝐻0: 𝑦𝑖 = 𝑃𝑦    ∀ 𝑖 ∈ 𝑃𝑦 

𝐻1: 𝑦𝑖 ≠ 𝑃𝑦    ∀ 𝑖 ∈ 𝑃𝑦 

And for the inter-group comparisons test whether the preferences comprising a group (𝑃𝑦 

or 𝑃𝑧) are from the same population P: 

𝐻0: 𝑃𝑦 = 𝑃𝑧    ∀ 𝑦𝑖 ∈ 𝑃𝑦;  𝑧𝑖 ∈ 𝑃𝑧; 𝑦 ≠ 𝑧  

𝐻1: 𝑃𝑦 ≠ 𝑃𝑧    ∀ 𝑦𝑖 ∈ 𝑃𝑦;  𝑧𝑖 ∈ 𝑃𝑧; 𝑦 ≠ 𝑧  

The test statistic is given by Sheskin (2003). The test is described as given data {𝑥𝑖𝑗}𝑛×𝑘 

matrix with n rows and k columns, and a single observation at the intersection of each block and 

treatment, calculate the ranks within each block. 

𝑄 =
12𝑛

𝑘(𝑘 + 1)
∑(𝑟𝑗 −

𝑘 + 1

2
)2

𝑘

𝑗=1

 

𝑟𝑗 =
1

𝑛
∑ 𝑟𝑖𝑗

𝑛

𝑖=1

 

The nonparametric Mann–Whitney U-test is used for the differences of preference 

weights for each criterion across groups (Strager and Rosenberger 2006). The smaller value of 

U1 and U2 is the one used when consulting significance tables. The sum of the two values is 

given by Zar(1998): 
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𝑈1 + 𝑈2 = 𝑅1 − 
𝑛1(𝑛1 + 1)

2
 +  𝑅2 −  

𝑛2(𝑛2 + 1)

2
 

R 3.5.1 (R Development Core Team 2008) and RStudio software (RStudio Team 2015) 

were used to aid the computation of both statistics. 

2.2.4 Social assets analysis and MCDA 

In social asset analysis, data collected at the county level were used to estimate the levels 

of degree of rurality and social capital for the biorefinery site selection. Degree of rurality was 

estimated for each county, based on four dimensions: population size, density, percentage of 

urban residents, and distance to the closest metropolitan area. Its score ranges from -1 to 1, 1 

indicating the highest level of urbanization and while -1 representing the highest level of rurality. 

To specifically promote rural development, counties with scores nearer to -1 of these indices 

with spatial proximity to biomass sources and related structural assets should be considered as 

good candidates for biorefinery sites.  

Social capital index shows the level of supportive collective action expected from a 

particular county, and it is measured through voter turnout, census response rate, the number of 

non-profit organizations, and a general consideration of the number of establishments in 

religious organizations, civic and social associations, business associations, political 

organizations, professional organizations, labor organization, fitness and recreational sports 

centers, and population. High social capital index reflects community reciprocity and easier 

access to human capital (Westlund and Larsson 2016), which can be considered as highly 

suitable locations.  
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2.3 Results 

2.3.1. Weight solicitation from experts’ survey 

Multiple surveys were distributed to attendees during the 2017 Northeast Woody and 

Warm-Season Biomass Consortium annual conference together with the Mid-Atlantic Biomass 

Energy Conference and Expo in State College, PA, and 20 feedbacks were collected. Other 

professionals in bioenergy field were also reached in the following months of the conference. 

Graduate students emphasized in biomaterials, wood science, forestry, logistics modeling in the 

consortium were surveyed to provide diverse perspectives in biorefinery siting decision. A total 

of 30 survey responses were collected and categorized into three groups by their employer; 16 of 

which were graduate students or faculty members in academia, 7 worked for government 

agencies, and 7 were with biomass energy industries. 30 pairwise comparison matrices in total 

were created for each survey response. Table 2.3 showed one (out of thirty) pairwise comparison 

matrix and relative weights. 
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Table 2.3 Pairwise comparison matrix - an example from the survey.  

Criterion 
Biomass 

availability 

Distance 

from main 

road 

Distance 

from electric 

substation 

Distance to 

waterbody 

Flood risk 

of potential 

siting 

Adjacent 

land uses of 

potential 

siting 

Population 

in siting 

area 

Landowner-

ship 

Unemploy-

ment rate in 

potential 

siting 

Biomass 

availability 
1.00 9.00 0.20 9.00 9.00 5.00 9.00 0.20 0.20 

Distance 

from main 

road 

0.11 1.00 0.11 9.00 1.00 1.00 9.00 0.11 9.00 

Distance 

from 

electric 

substation 

5.00 9.00 1.00 9.00 9.00 5.00 9.00 9.00 9.00 

Distance to 

waterbody 
0.11 0.11 0.11 1.00 0.20 1.00 0.20 0.20 0.20 

Flood risk 

of potential 

siting 

0.11 1.00 0.11 5.00 1.00 0.20 1.00 1.00 9.00 

Adjacent 

land uses of 

potential 

siting 

0.20 1.00 0.20 1.00 5.00 1.00 0.20 1.00 5.00 

Population 

in siting 

area 

0.11 0.11 0.11 5.00 1.00 5.00 1.00 0.20 0.11 

Landowner-

ship 
5.00 9.00 0.11 5.00 1.00 1.00 5.00 1.00 5.00 

Unemploy-

ment rate in 

potential 

siting 

5.00 0.11 0.11 5.00 0.11 0.20 9.00 0.20 1.00 

 

Histogram plots of the weighting score frequency failed to support the assumption of 

normality for all criteria and data was showed skewed. Like normal distribution estimated with 

parameters scale and shape, Weibull, lognormal, and gamma distributions are all commonly used 

in reliability and life testing problems for modeling skewed data (Siswadi and Quesenberry 

1982). Therefore, Weibull, lognormal, and gamma distributions are used (Figure 2.2).  

Histograms showed a right skewed trend for “Distance from electric substation”, “Adjacent land 

uses of potential siting”, “Population in siting area”, and “Unemployment rate in potential 

siting”, which all showed that the weighting indexes for these criteria are clustered at a relative 

low level. Small weight score ranges for “Distance from main road”, “Distance to waterbody”, 
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and “Unemployment rate in potential siting”, indicated people who took the survey had similar 

opinions on these criteria. 

 

Figure 2.2 Frequency of the weighting scores for 9 criteria from 30 survey responses. From 

left to right, top to bottom, (1) Biomass availability, (2) Distance from main road, (3) 

Distance from electric substation, (4) Distance to waterbody, (5) Flood risk of potential 

siting, (6) Adjacent land uses of potential siting, (7) Population in siting area, (8) 

Landownership, and (9) Unemployment rate in potential siting  
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The Friedman’s Q statistics for the intra-group comparisons showed that individuals 

within government agency group had varying levels of weighting preference at 95% significance 

level. The inter-group comparisons test rejected the hypothesis that all three groups are from the 

same population and significant differences showed in every paired groups with p-values all less 

than 0.05 (Table 2.4). 

Table 2.4 Comparisons of intra-group and inter-group differences. 

Group Friedman chi-squared statistic p-value 

Intra-group comparison 

Academia 12.776 0.1198 

Government Agency 17.489 0.0254** 

Industry 14.32 0.0738* 

Inter-group comparisons 

Academia vs. Government 

Agency 
25.509 0.001274*** 

Academia vs. Industry 21.347 0.006281** 

Government Agency vs. 

Industry 
26.52 0.0008552*** 

*significant at p<0.1, ** significant at p<0.05, *** significant at p<0.005. 

The weight scores were examined and varied by groups for nearly all criteria (Figure 

2.3). By examining the pattern of single weighting values in each group, we found the opinions 

from the academic group were variable. Experts in government agencies and industry both 

agreed with a higher importance for “Biomass availability” and “Flood risk of potential siting”, 

compared to opinions from academic people. Different from government and academic experts, 

industry people recognized criteria “Distance to waterbody” and “Unemployment rate” should 

have a higher weighting score in biorefinery selection.  Participants of university professors and 

students viewed “Distance from electric substation” should be more important, and industry 

respondents admitted that “Landownership” is a critical factor. In average, similar weighting 
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scores showed for “Distance from main road”, “Distance from main road”, and “Population in 

siting area” among all three groups. 

 

Figure 2.3 Weight scores comparison by survey groups. From left to right, top to bottom, 

(1) Biomass availability, (2) Distance from main road, (3) Distance from electric substation, 

(4) Distance to waterbody, (5) Flood risk of potential siting, (6) Adjacent land uses of 

potential siting, (7) Population in siting area, (8) Landownership, and (9) Unemployment 

rate in potential siting. 

The statistical difference across groups for each criterion examined by Mann–Whitney U-

test indicated that some criteria were statistically different (Table 2.5).  Academic and industry 

responses differed only for one (“Distance from electric substation”, p=0.089) out of the nine 

total criteria. The only other differences among responding groups were between government 
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agency and industry groups for the criteria of “Unemployment rate” (p=0.091) and for 

“Landownership” (p=0.082).  

Table 2.5 Statistically different criteria and the aggregated group weights. 

Criterion Academia Industry 

Distance from electric 

substation  
0.12553334 0.08946275* 

   

 Government Agency Industry 

Landownership  0.13768094 0.09090278* 

Unemployment rate in 

potential siting  
0.08222107* 0.10541657 

*significant at p<0.1. 

By further examining the fitness for these criteria using Cullen and Frey graphs of the R 

package fitdistrplus (Delignette-Muller et al. 2018), we found that the criteria “Distance from 

electric substation” and “Unemployment rate in potential siting” fell into the lognormal 

distribution, and “Landownership” fitted well to loglogistic distribution (Figure 2.4).  

 

Figure 2.4 Cullen and Frey plots for criteria: (a) Distance from electric substation, (b) 

Distance from electric substation, and (c) Unemployment rate in potential siting.  

With the Maximum Likelihood test, parameters of those distributions were calculated, 

and the expected values for all these criteria were derived accordingly (Table 2.6). It is showed 
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that the weight score for “Distance from electric substation” is 0.1097, for “Unemployment rate 

in potential siting” is 0.1149 and 0.0932 for criteria “Landownership”.  

Table 2.6 Parameter adjustments for non-normal distributions with Maximum Likelihood 

test. 

Criteria Distribution 
Parameter 

Expected value 
Mean_log SD_log 

Distance from electric substation lognormal -2.2795513 0.3760556 0.1096851 

Unemployment rate in potential 

siting lognormal 
-2.4422441 0.3716554 0.1148819 

  location scale  

Landownership loglogistic 0.11485348 0.02429281 0.09327594 
 

 

A pairwise comparison matrix was created to reflect the preference or importance of the 

evaluation criteria in the suitability model. The normalized weights are listed in Table 2.7. The 

weights and tests for inconsistency were derived using the eigenvector method. All CR values 

are lower than 0.1, and therefore the evaluations of these criteria are consistent. Flood risk of 

potential siting has the highest weight value (0.1534), which was the most critical factor 

affecting a biorefinery plant location. Biomass availability (0.1405) was the second most 

important factor. The population near a siting area (0.0869) was the lowest weighted factor. 

  



37 

 

Table 2.7 Pairwise comparisons of the relative weights of the variables. 

Criterion Adjusted weight index 

Flood risk of potential siting 0.1534 

Biomass availability 0.1405 

Unemployment rate in potential 

siting 
0.1142 

Distance from electric substation 0.1091 

Distance from main road 0.1045 

Adjacent land uses of potential 

siting 
0.1021 

Distance to waterbody 0.0966 

Landownership 0.0927 

Population in siting area 0.0869 

 

2.3.2. Suitability analysis and reclassification 

Boolean values (0 and 1) were assigned to the general conditions of feedstock 

availability, transportation network, construction limitation (slopes, elevation, utility, and water 

body), and environmental impact factors (floodplain, public land, protected area and wetland 

area). Slope and elevation were derived from an elevation dataset using GIS surface analysis and 

reclassified into two categories (suitable and non-suitable) on the basis of site preferences. The 

site suitability index (SSI) in the study area computed using GIS based spatial analysis ranged 

from 25 to 101 for each county.  
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Figure 2.5 Candidate locations selected from suitability analysis. 

In Figure 2.5, the SSI was then grouped into three categories by the Quantile 

classification method: low-suitable (25-50), moderately-suitable (51-75), and high-suitable (76-

101). The zonal statistics indicated that the average distances of each alternative site to the 

desired location with consideration of spatial features and related criteria were between 32.53 km 

and 133.54 km. In 387 counties in the Northeast US, 155 counties are in low-suitable category, 

189 counties are in medium-suitable category while 43 counties are in high-suitable category and 

were selected for further analysis. 
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2.3.3. Siting candidates based on social assets analysis 

The degree of rurality for the entire United States ranged from -0.7800 to 0.9220 with an 

average of 0. In Northeast region was ranged between -0.22 and 0.92. Different from the large 

variation showed nationally, the social capital indices in the study area trended very close to the 

mean value 0 and ranged from -2.47 and 2.57. The degree of rurality and social capital index for 

43 potential candidates with high suitability to build a biorefinery facility, were then ranked and 

summed into a single social asset ranking with equal weights. 

An overall ranking for all selected facility locations were summarized with physical asset 

occupied 70% of importance and social asset is with 30% of weight. Fifteen out of 43 sites were 

selected based on social asset factors: degree of rurality and social capital scores (Figure 2.6). 

 

Figure 2.6 Optimal biorefinery facility locations selected from biophysical assets and social 

assets with social asset scores. 
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2.4 Discussion 

2.4.1.  Differences of survey respondents in biorefinery siting selection 

To estimate the mean value of a population that might not be normally distributed, the 

sample size should be sufficiently large and is usually greater than 30 samples (Israel 1992). In 

this study, the population mean was estimated based on a survey of 30 samples since these 

random samples could be approximately normally distributed according to the central limit 

theorem.  

For comparisons among the three groups of respondents in the survey, each sample group 

had a relatively small size of samples, which was 16, 7 and 7 surveys for academia, government 

agencies, and biomass energy industries groups, respectively. Thus, parametric tests are not very 

robust to deviations from a Gaussian distribution with small samples and would be seriously 

affected by outliers. By applying the so-called distribution-free tests based on fewer assumptions, 

nonparametric tests were applied to compare among these three groups (Wobbrock et al. 2011). 

Specifically, Friedman test was used to test the differences of preference weights inter- and intra-

groups while Mann-Whitney test was applied instead of two-sample t-test in parametric analysis 

to analyze the differences of preference weights for each criterion across groups. 

The differences from the Friedman’s Q statistics for the intra-group comparisons, could 

be caused by the participants’ area of expertise that was reflected in their preference weights for 

the various criteria among the three groups. Therefore, individual participants from academia and 

industry were confirmed based on their homogeneity of preferences. The participants from the 

government agencies were categorized as a group more than who they represented for the 

homogeneity of their preferences. 
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2.4.2. Uncertainty in biorefinery siting 

The variations in feedstock availability, biomass price, and many other parameters are 

among the major challenges in biorefinery siting selection. Even though a majority of recent 

studies on bioproduct facility siting and supply chain design assumed all the parameters in the 

system are known, there is a high level of uncertainty that can be encountered in practices. By 

considering cost efficiency, uncertainty of biomass feedstocks supply chain would have great 

impacts on feedstock delivery costs, and locations of a biorefinery facility would be affected 

when optimizing facility siting. Uncertain supply of biomass occurs because of many variables 

are comprised in the supply chain system. Biomass availability could be influenced by terrain, 

spatial location, harvest type and machinery combination, as well as weather conditions. The 

great variation in biomass supply due to seasonal harvest operation and environmental conditions 

may influence the facility location by reducing the demands.  

There is a large amount of forest residue potentially available, and it is also promising to 

grow energy crops like shrub willow, switchgrass, or Miscanthus to alleviate the potential risk of 

biomass supply. However, costs in biomass supply chain are primarily affected by feedstock 

types due to different harvest and establishment systems. Facility locations with sufficient 

biomass supply are important in siting optimization, where feedstocks have higher yield rate and 

harvest efficiency. Price of fossil fuels like diesel would have impacts on both delivery costs and 

the economic feasibility of bioproducts. Based on our previous study, a change of $0.10 per liter 

diesel fuel would positively affect biomass delivery cost with an increase of $0.17 per dry Mg 

(Wang et al.  2019).  

In addition, the uncertainty on selling price of biofuel, and logistic costs including 

transportation and operation costs related to the feedstock preparation at the field will directly 
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impact the biomass supply chain system including both measurable and unmeasurable 

parameters. In this study, to improve the model’s accuracy, measurable features such as 

“biomass availability”, “distance from main road” were taken into consideration in the weighting 

criteria. However, some unmeasurable criteria like “stakeholder’s lifestyle”, or “sustainable 

levels” that cannot not be considered in the model due to related data availability, could have 

affected the spatial sensitivity to siting preference differences. 

2.4.3. Social impacts in biorefinery siting decision process 

Social assets analysis can further aid the siting decision process to optimize facility 

locations by potentially promoting rural development in supportive communities. To specifically 

support rural community development, a higher level of rurality and social capital index was 

used in ranking the most suitable locations. In this case, besides boosting rural economy, the 

investor might be also aware of situating a biorefinery plant near densely populated areas. But in 

some other cases, in an attempt to minimize the transport costs of moving bioproducts from a 

plant to final distribution centers or urban transit depots, the site would ideally not be far from 

major cities. An additional consideration should focus on the land type of a rural area. In some 

rural areas, the land mainly covers with biomass feedstocks, facilities could be possibly located 

around with low population density. But in some rural areas with majority characterized by 

natural areas with recreation and tourism as important economic drivers, decisions for 

biorefinery location should be more concerned about environmental amenities endangered and 

potential effects on tourism. At the local community level, biorefinery facility siting decisions 

should be made with consideration of the compatibility of the existing social and cultural assets 

of the people residing in those areas, along with the physical accessibility (Gomes and Lins 

2002). The social asset scores utilized in this analysis provided better comparison and assessment 
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of potential facilities while still accounting for regional differences that are better indicators of 

success between facilities in the region of interest. Social capital index can be higher even in 

rural regions due to a larger number of non-profit or social organizations. There should be less 

variation in both degree of rurality and social index for areas with high suitability to build a 

bioproduct facility. It implies that the suitability analysis can successfully filter candidate areas 

with potentials to be selected as biorefinery sites with homogeneous physical attributes. 

2.5 Conclusions  

The integrated physical and social assets analysis for biomass supply chain siting 

decisions fills the gap between spatial analysis-based facility siting and the lack of evaluation of 

the socioeconomic viability. A fuzzy-logic prediction model incorporating AHP is a viable tool 

to predict the site suitability index of county level or a smaller grid. Experts’ opinions surveyed 

to leverage the experience in biomass energy and bioproducts increased the robustness of the 

weighting solicitation of evaluation criteria. Different from a single objective optimization 

analysis, multi-criteria decision-making method was applied in this study to solve the multi-

objective problem in biorefinery siting selection and analyses all the trade-offs into the decision-

making procedure of facility site selection. 

 The 43 counties or sites resulted from the suitability analysis in Northeast US could be 

used as potential candidates for biorefinery facilities in the region. When considering the social 

asset impacts, 15 locations were further identified for regional economic development featuring 

both environmental and social assets and impacts. The biomass-based biofuel/bioproduct plant 

location optimization provides the basis for the commercialization of biomass to bioenergy 

products. The modeling process and findings of this study could be employed in the community 

engagement efforts to promote the rural economic development in the northeastern U.S.   
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Abstract:   

A mixed-integer linear programming model was developed to optimize the multiple 

biomass feedstock supply chains, including feedstock establishment, harvest, storage, 

transportation, and preprocessing. The model was applied for analyses of multiple biomass 

feedstocks at county level for 13 states in the northeastern United States. In the base case with a 

demand of 180,000 dry Mg/year of biomass, the delivered costs ranged from $67.90 to $86.97 

per dry Mg with an average of $79.58 /dry Mg. The biomass delivered costs by county were 

from $67.90 to 150.81 per dry Mg across the northeastern U.S. Considered the entire study area, 

the delivered cost averaged $85.30 /dry Mg for forest residues, $84.47 /dry Mg for hybrid 

willow, $99.68 for switchgrass and $97.87 per dry Mg for Miscanthus. Seventy seven out of 387 

counties could be able to deliver biomass at $84 per dry Mg or less a target set by US DOE by 

2022. A sensitivity analysis was also conducted to evaluate the effects of feedstock availability, 

feedstock price, moisture content, procurement radius, and facility demand on the delivered cost. 

Our results showed that procurement radius, facility capacity, and forest residue availability were 

the most sensitive factors affecting the biomass delivered costs. 
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3.1 Introduction 

Biomass utilization for bioenergy and bioproducts continues to grow due to environmental 

concerns of fossil fuel uses and rural development. With the need that biomass resources can be 

harvested and collected sustainably and should not compete with the food chain, forest residues, 

energy crops, and poultry litter are all viable biomass resources for energy. 

Forest residues produced during timber harvesting is one of the important feedstocks for 

biofuels and bioproducts (Wu et al. 2010), with the potential to sufficiently produce 12 to 16 

billion gallons of ethanol annually in the U.S. (Buchanan 2010). Hanssen et al. (2019) also 

showed that forest residue could play a large role in bioenergy supply with its cost-competitive 

attribute and potentially fulfill up to 50% of the total second-generation bioenergy demand by 

2050. Perennial grasses, and short rotation woody crops can be grown on marginal agriculture 

land or disturbed mine land in the northeastern U.S (Lewandowski et al. 2003; Volk et al. 2006). 

Different from conventional woody biomass, growing energy crops on abandoned mine and 

marginal agricultural lands should help improve land uses from environmental protection 

perspective as well as filling the gap between insufficient supply of forest residues as biomass 

feedstock and the demand of a medium- to large-size biorefinery. The native perennial warm-

season grass in northeastern United States, such as switchgrass (𝑃𝑎𝑛𝑖𝑐𝑢𝑚 𝑣𝑖𝑟𝑔𝑎𝑡𝑢𝑚𝑠) and 

Miscanthus (𝑀𝑖𝑠𝑐𝑎𝑛𝑡ℎ𝑢𝑠 × 𝑔𝑖𝑔𝑎𝑛𝑡𝑒𝑢𝑠), whose production is characterized by low fertilizer 

and pesticide requirement (Lewandowski et al. 2000), can be also used as an energy crop with 

high productivity and low maintenance cost (Stoof et al. 2015), especially for sustainable 

biomass production (Varnero et al. 2018). Short rotation hybrid willow also has the great 

potential to use as a feedstock for value-added bioproducts in the northeastern U.S. (Wang et al. 

2006; Wu et al. 2012; Liu et al. 2017a). A number of trails for woody crops like shrub willow 
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(𝑆𝑎𝑙𝑖𝑥 𝑠𝑝.) have been established with various breeding at multiple locations, and related studies 

are being developed at large scales (Volk et al. 2018). A techno-economic analysis that provides 

uncertainty of net present value (NPV) and minimum selling price (MSP) in bioenergy on shrub 

willow production could help promote the real-world applications (Frank et al. 2018). 

Effective biomass harvest and logistics are the key to the success of biomass energy and 

bioproducts industry. A biomass supply chain typically consists of biomass feedstock 

establishment, harvesting, storage, transportation, preprocessing and conversion (Liu et al. 

2017a).  Biomass supply chain optimization is one way to improve the effectiveness of biomass 

logistics and involves simultaneous considerations of multiple supply chain components such as 

biomass cultivation and production facilities along with biomass flow through the chain. For 

example, an application of IBSAL simulation model for warm-season grass showed that supply 

chain optimization could decrease the baling cost by 21% and CO2 emissions by 27% (Lautala et 

al. 2015). Jonker (et al. 2016) also indicated that supply chain optimization of sugarcane-based 

ethanol production in Brazil could reduce the production costs by 20.1% for first generation and 

14.5% for second generation, respectively. Biomass supply chain optimization may vary 

according to stakeholders’ needs, which usually have direct relationship with supply chain 

performance measures. The delivered cost of biomass is one of the most important measures 

(Neely 1995), subject to various environmental and operational constraints. 

Feedstock cost is an important component when producing renewable biomass-based 

biofuels, and improvement of biomass logistics would dramatically boost the economic viability 

for bioproduction (Atashbar et al. 2018). Mathematical programming has long been used in 

optimizing forest and biomass supply chain management problems. One of the many challenges 

in biomass-to-bioenergy supply chain optimization, is to consider as many variables as possible 
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in the entire supply chain that could lead to a really complicated problem (Yue et al. 2014).  The 

mixed-integer linear programming (MILP) is being popularly employed in biomass logistics 

modeling with considerations of economic, environmental, and social impacts (Kim et al. 2011; 

Huang et al.  2010; Elia et al. 2013; Parker et al. 2010; Giarola et al. 2011; You et al. 2012).  

A two-step process supply chain of biomass-based biofuel via fast pyrolysis and Fischer-

Tropsch was modeled using the mix integer linear programming, including analysis of optimal 

design of biomass supply chain networks, optimized biomass locations and amounts, candidate 

sites and capacities for conversion, and the logistics of transportation in the Southeastern region 

of the United States (Kim et al. 2011). An ethanol supply chain was examined using a mixed 

integer linear programming model in multiple stages to minimize the total system cost for 

biomass feedstocks over the entire planning, demand, resource, and technology constraints 

(Huang et al. 2010). A mixed integer programming model was developed by Wu (2011) to 

minimize the delivered cost of woody biomass in central Appalachian region. They found that 

optimal plant location and minimum woody biomass delivered cost were closely associated with 

biomass handling systems. Zhang et al. (2013) studied switchgrass-based bioethanol supply 

chain in North Dakota at county-level using a MILP model. A MILP problem was also solved to 

identify biorefinery locations and make harvest/transportation decisions by maximizing net 

present value in the midwestern US, with uncertainty analysis emphasizing only on production 

aspects (Marvin et al. 2012). A MILP modeling process was also used in examining the 

economic and environmental benefits of utilizing energy crops in the northeastern United States.  

A techno-economic analyses were conducted for three feedstocks and three different 

bioproducts, along with the supply chain components. Up to 50% of the total cost was associated 

with the expenses of capital, operation and maintenance, while other costs included 
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transportation, feedstock development (Liu et al. 2017a). Another study by Liu et al. (2017b) 

analyzed the economic feasibility and environmental benefits of converting coal and biomass to 

liquid fuels (CBTL), a mixed integer linear programming model was developed to conduct 

economic feasibility analysis, and results showed required selling price changed based on the 

differences of biomass to coal mix ratios, as well as the change of internal rate of returns. 

Although mathematical programming was usually involved for multi-criteria decision analysis 

(Atashbar et al. 2018), other analysis methods such as Geographic Information Systems (GIS) 

can also be a great supplement to solving multi-criteria decision problems. A biomass harvest 

and logistics system was developed by Karkee (2016) to apply a mixed integer non-linear 

programming model for management of switchgrass and corn/corn stover without consideration 

of storage cost.  To address new perspectives in the multi-criteria decision-making process, the 

GIS-based analysis with mapping can help better understand the complexity of location-oriented 

problems and specific characteristics of these locations for biomass production and biorefinery 

(Ki 2018).  

There are various feedstocks available in the Northeastern U.S. including high productivity 

perennial grasses, short rotation woody crops such as hybrid willow, and forest residues. To 

facilitate the regional rural economic development, there appears a necessity to further analyze 

multi-biomass feedstock supply chains in the northeastern U.S. Therefore, the objectives of this 

study were to (1) develop a mixed integer linear programming model to optimize multiple 

biomass feedstock harvest and supply chains logistics, (2) quantify and map the delivered costs 

of biomass feedstocks with regional case scenarios, and (3) conduct sensitivity analyses of the 

multiple feedstock harvest and logistics according to biomass availability, harvest rate, moisture 

content, procurement radius, and facility capacity. 
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3.2 Mathematical Model Development  

A typical supply chain for multiple biomass feedstocks and the potential pathways include 

the following components: feedstock development, harvesting, storage, transportation, 

preprocessing, and conversion (Figure 3.1). The incorporation of multiple feedstocks into a 

single supply chain will improve the temporal supply of feedstocks, reduce the procurement 

radius needed to supply a facility and reduce the overall delivered cost. 

 

Figure 3.1 Multiple biomass feedstock supply chains in the northeastern U.S. 

The multiple-feedstock harvest and logistics optimization is formulated as a mixed integer 

linear programming (MILP) model. The objective is to minimize the total delivered cost of 

biomass from biomass production site to the gate of a biorefinery facility with considerations of 

the number, location, and size of processing facilities, biomass availability and the amount of 

materials to be transported from the various supply nodes to optimized facility locations of the 

configured biomass supply chains.   
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3.2.1 Objective function 

In this multiple feedstock supply chain, both woody and herbaceous materials are 

considered as feedstocks including forest residues, short rotation willow, switchgrass and 

Miscanthus. The objective of this mixed-integer linear programming model is to minimize the 

delivery cost of multiple feedstocks biomass along supply chains: 

𝑀𝑖𝑛 Ζ =  𝛼 + 𝛽 + 𝛾 + 𝛿 + 𝜃 (1) 

Where 

Ζ – Delivered cost of biomass feedstock 

𝛼 – Cost of feedstock establishment 

𝛽 – Biomass feedstock collection cost 

𝛾 – Storage cost of biomass feedstock 

𝛿 – Transportation cost of biomass feedstock 

𝜃 – Preprocessing cost 

For field handling of biomass, there are two parts: energy crop establishment or forest 

residues stumpage, and collection operations. In this model, the investment in crop establishment  

has calculated based on biomass grower payment as dollars per dry ton, and different handling 

systems are considered for each feedstock type. Feedstock establishment processes are similar 

among energy crops such as willow, switchgrass and Miscanthus, which consist of planting, 

fertilizing, weed clearing, etc. For forest residues, stumpage value was considered as the 

establishment cost substitute. Specifically, for forest residue stumpage, it is an estimated value 

that landowners would accept to trade the right to harvest for revenues with any private firms. 

Forest residues produced during forest operations were collected in three collection scenarios: 

whole-tree chipping, chipping of extracted residue, and integrated timber production and residue 
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chipping. Both cable skidder and grapple skidder were considered for residue extraction. The 

feedstock establishment and harvest costs were calculated using the following equations: 

𝛼 = ∑ ∑ 𝑄𝐸𝑡𝑖 ∗ 𝐸𝐶𝑡

𝐼

𝑖=1

𝑇

𝑡=1

 (2) 

    

𝛽 = ∑ ∑ ∑ 𝑄𝐻𝑚𝑡𝑖 ∗ 𝐻𝐶𝑡

𝐼

𝑖=1

𝑇

𝑡=1

𝑀

𝑚=1

 (3) 

To ensure a continuous, sufficient supply of feedstocks in bioenergy production, it is 

important to store biomass appropriately at certain locations relative to feedstock production and 

biorefinery sites (Inman et al. 2010). Biomass feedstock, especially seasonal crops are harvested 

in specific seasons each year. There is a storage need for biomass, to meet the production 

demand over the year (Rentizelas et al. 2009). The storage of biomass can occur at several 

locations along the supply chain,  and suitable storage areas could be on the site or at a depot 

(Hoyne and Thomas 2001). At the harvest site, biomass can be stored at the landing for further 

transport. An intermediate facility that stores biomass before transportation to a conversion 

facility is another option (Eranki et al. 2011), but with a big amount of capital investment. The 

total storage cost consists of two parts: in-field storage costs of all biomass supply locations, and 

inventory costs in preprocessing facilities of each feedstock types along a year. Feedstock 

storage cost is expressed in equation (4):  

𝛾 = ∑ ∑ ∑ 𝑄𝑆𝑚𝑡𝑖 ∗ 𝑆𝐶𝑡

𝐼

𝑖=1

𝑇

𝑡=1

𝑀

𝑚=1

+ ∑ ∑ 𝑄𝐼𝑉𝐷𝑚𝑡 ∗

𝑇

𝑡=1

𝐼𝐷𝐶

𝑀

𝑚=1

 (4) 

Feedstock transportation cost includes the cost of transporting feedstock to preprocessing 

facilities and the cost of from preprocessing facilities to conversion plants (Melero et al. 2012). 

Feedstock is transported mainly in three ways: (1) from collection sites to storage places or 
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landing; (2) to the facilities for preprocessing; (3) to the conversion facilities. Hauling distance, 

along with feedstock mass and volume are the main economic factors affecting transportation 

cost. Three components were taken into consideration into transportation cost, which are 

feedstock transported directly to the preprocessing facility, transported from storage site to 

preprocessing facilities, and preprocessed feedstock transported to conversion plant. The biomass 

transportation cost can be calculated with the following equation (5): 

𝛿 = ∑ ∑ ∑(𝑄𝐻𝐷𝑚𝑡𝑖 + 𝑄𝑆𝐷𝑚𝑡𝑖) ∗ 𝐷𝑖𝑗 ∗ 𝑡𝑟

𝐼

𝑖=1

𝑇

𝑡=1

𝑀

𝑚=1

+ ∑ 𝑄𝐷𝐶𝑚 ∗ 𝑡𝑟 ∗ 𝐷0

𝑀

𝑚=1

 (5) 

Size reduction of biomass such as chipping and grinding is one of the most common 

preprocessing methods to improve transportation properties (Yancey et al. 2013). Generally, 

chipping or baling can be done at the harvesting site. Reducing moisture content of biomass that 

involves letting biomass dry in the field, on the landing, or in a satellite yard prior to delivery to 

the plant (Uslu et al. 2008), can also improve the biomass transportation. In this study, the 

feedstock preprocessing cost is expressed as:  

𝜃 = ∑ ∑(𝑄𝐷𝑚𝑡 ∗ 𝐶𝐶𝑡

𝑇

𝑡=1

𝑀

𝑚=1

+ 𝑄𝐷𝑚𝑡 ∗ 𝐷𝐶𝑡) (6) 

3.2.2 Constraints 

The objective function is subject to the following constraints: 

a. Feedstock availability 

In each year, there should be certain amount of feedstock available biomass t in county 𝑖 so 

that the quantity of harvested feedstock at supply location 𝑖 for each biomass type 𝑡 will not 

exceed its availability.  



61 

 

In each year, there should be certain amount of feedstock available biomass t in county 𝑖 so 

that the quantity of harvested feedstock at supply location 𝑖 for each biomass type 𝑡 will not 

exceed its availability.  

∑ 𝑄𝐻𝑚𝑡𝑖

𝑀

𝑚=1

− 𝐴𝑉𝐴𝐿𝑡𝑖 ∗ 𝑝𝑡𝑖 ≤ 0 , ∀𝑡, 𝑖 (7) 

In each specific time period, the quantity of feedstock harvested in month 𝑚 at supply 

location 𝑖 cannot be greater than the quantity of available feedstock during this specific period. 

𝑄𝐻𝑚𝑡𝑖 − 𝐴𝑉𝐴𝐿𝑡𝑖 ∗ 𝑝𝑡𝑖 ∗ 𝛾𝑚𝑡 ≤ 0, ∀ 𝑚, 𝑡, 𝑖 (8) 

b. Biomass material balance along supply chain 

In each month 𝑚, amount of harvested feedstock should be less than or equal to the 

amount of feedstock established or its yield.  

𝑄𝐸𝑡𝑖 ≥ 𝑄𝐻𝑚𝑡𝑖 , ∀𝑚, 𝑡, 𝑖 (9) 

After harvesting, a certain proportion of harvested biomass will be directly transported to a 

preprocessing facility without storage process, and the rest of it will be stored on landing or in an 

intermediate storage. In month 𝑚, the amount of harvested feedstock transported to 

preprocessing facilities and to storage sites cannot exceed the total amount of harvested 

feedstock. The loss of feedstock due to degradation from on-site storage was also taken into 

consideration with a monthly dry-matter loss rate 𝐷𝑀𝑡 of each feedstock types. An estimate of 

matter loss during storage was considered into the supply chain balance, and 4.5% of mass loss 

per month for aerated unprotected chips (Eisenbies et. al. 2016), and 2% of mass loss per month 

for perennial grass bales (Sanderson et.al. 1997).    

 𝑄𝐻𝑚𝑡𝑖 − 𝑄𝐻𝐷𝑚𝑡𝑖 − 𝑄𝐻𝑆𝑚𝑡𝑖(1 + 𝐷𝑀𝑡) ≥ 0, ∀𝑚, 𝑡, 𝑖 (10) 
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The amount of the quantity of biomass stored in previous months and the quantity of 

biomass transported from harvesting, less than the quantity of feedstock transported to 

preprocessing facilities, should be greater than or equal to total amount of the quantity of 

biomass feedstock stored in month 𝑚. 

𝑄𝑆(𝑚−1)𝑡𝑖 + 𝑄𝐻𝑆𝑚𝑡𝑖(1 + 𝐷𝑀𝑡) − 𝑄𝑆𝐷𝑚𝑡𝑖(1 + 𝐷𝑀𝑡) ≥ 𝑄𝑆𝑚𝑡𝑖, ∀ 𝑚, 𝑡, 𝑖 (11) 

At a preprocessing facility, biomass feedstock can be transported to a refinery facility 

either directly after harvesting or from an on-landing storage site. In the processing facility, 

inventory of feedstock and moisture content should be taken into consideration. The total 

quantity of biomass inventory at a preprocessing site and the newly-come biomass in month 𝑚, 

should be greater than or equal to the quantity of feedstock transported to a conversion plant. 

∑ 𝑄𝐷𝑚𝑡 ∗ (1 − 𝑚𝑐𝑡)

𝑇

𝑡=1

− 𝑄𝐷𝐶𝑚 ∗ (1 − 𝑚𝑐0) ≥ 0 , ∀𝑚 (12) 

𝑄𝐼𝑉𝐷(𝑚−1)𝑡 − 𝑄𝐼𝑉𝐷𝑚𝑡 + ∑ (𝑄𝐻𝐷𝑚𝑡𝑖 + 𝑄𝑆𝐷𝑚𝑡𝑖)𝐼
𝑖=1 − 𝑄𝐷𝑚𝑡 ≥ 0, ∀𝑚, 𝑡        (13) 

Quantity of feedstock transported from the preprocessing facility and the feedstock 

inventory at the conversion plant should be no less than the required amount for production each 

month. 

(𝑄𝐷𝐶𝑚 + 𝑄𝐼𝑉𝐶(𝑚−1) − 𝑄𝐼𝑉𝐶𝑚)(1 − 𝑚𝑐0) − 𝑞𝑐𝑚  ≥ 0, ∀ 𝑚 (14) 

c. Facility capacity 

The quantity of stored feedstock in storage site cannot exceed the storage capacity. 

𝑄𝑆𝑚𝑡𝑖 < 𝐶𝐴𝑃𝑆𝑚𝑡𝑖 , ∀𝑚, 𝑡, 𝑖 (15) 

The amount of feedstock for preprocessing and conversion at a facility cannot exceed the 

facility capacity. 

𝑄𝐷𝑚𝑡 ∗ (1 − 𝑚𝑐𝑡) < 𝐶𝐴𝑃𝐷𝑚𝑡𝑖 , ∀𝑚, 𝑡, 𝑖 (16) 



63 

 

 The model was solved using the GAMS/CPLEX solver, and the delivered cost, and 

quantity of multiple biomass delivered were determined by site and operational factors. To 

perform MILP optimization with GAMS, a branch and cut algorithm was applied. The process 

divides the entire problem into a series of LP problems and solves them separately. This 

algorithm includes: problem size reduction by LP preprocessing, sub-LP problems solution, LP 

relaxation, and integer-feasible solutions (Mitchell 2002; Albert 2006). To examine solution 

quality, the proof of optimality is examined by GAMS/Examiner when lower constraint bound 

equals the upper’s bound (Abdelmaguid 2018). 

3.3 Methods and Materials 

3.3.1 Study area 

 

Figure 3.2 Study area and feedstock availability (a) forest residues, (b) short rotation 

willow, (c) switchgrass, and (d) Miscanthus. 
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The study area consists of 13 states in the northeastern United States, including 

Connecticut, Delaware, Maine, Massachusetts, Maryland, New Hampshire, New Jersey, New 

York, Pennsylvania, Rhode Island, Vermont, West Virginia, and Ohio (NEWBio 2012). We 

considered two woody biomass feedstocks (forest residues, short rotation willow) and two 

perennial warm-season grasses switchgrass and Miscanthus. These feedstocks are with great 

potential for large amount of availability and use of widespread abandoned and marginal lands in 

the Northeastern U.S., with consideration of feedstock establishment, harvesting, storage, 

transportation, and processing (Figure 3.2).   

Based on research studies by the USDA Forest Service, more than 40 percent of the 167.13 

million ha (413 million acres) of land in the northeastern United States is forest. The northeastern 

U.S. has available marginal agricultural land of over 2.8 million ha (6.92 million acres) (Skousen 

and Zipper 2014) and abandoned mine land of 0.5 million ha (1.23 million acres) (Drummond 

and Loveland 2010), respectively. These lands are generally characterized as rocky and sloped 

soils and are compatible to the development of perennial energy crops. The temperate climate in 

this region also provides the conditions of producing biomass of higher yield (Somerville et al. 

2010).  

3.3.2   Data and Case Scenarios 

The data on biomass availability were derived from the Billion-Ton 2016 report (U.S. 

Department of Energy 2016), which provides the distribution of potential biomass feedstock for 

all lignocellulosic resources available at county-level in the northeastern U.S. According to 

Forest Inventory and Analysis (FIA library, USDA Forest Service), the yield of forest residues is 

about 11.11-27.79 dry Mg/ year. Annual yield of hybrid willow is 11.89-15.67 dry Mg/ha 

(29.38-38.71 dry Mg /acre) (Timothy et al. 2004; Stoof et al. 2015; Kandel et al. 2016; Fahmi et 
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al. 2008), 11.35-20.20 dry Mg/ha (28.06-49.91 dry Mg/acre) (Fike et al. 2006; Jung et al. 1990; 

Sanderson et al. 2006; Khanna et al. 2008) for switchgrass, and 12.11-27.44 dry Mg/ha (26.93-

67.07 dry Mg/acre) (Khannaet al. 2008; Brosse et al. 2012; Miguez et al. 2009; Fahmi et al. 

2008) for Miscanthus, respectively. Biomass establishment and harvesting data were based on 

our previous studies (Wang et al. 2008; Wu et al. 2011; Eisenbies et al. 2017) and EcoWillow 

simulations (Wu et al. 2011; Khanna et al. 2008; Heavey and Volk 2015).  Storage data were 

based on a study by Pantaleo (2013), while preprocessing data were based on a previous study 

(Norman and Oscarsson 2002). Storage is considered as open storage and in-building storage, 

while preprocessing is considered as in-wood chipping and baling, and willow chipping are 

already included in the harvesting cost. Transportation rate of chips is $0.106 per ton per 

kilometer ($0.17 ton-1 /mile) , and for bales is $0.066 per ton per kilometer ($0.11 ton-1 /mile)in 

the base case (Hartley 2014, Duffy 2015). Other data were derived from the National Elevation 

Dataset, 2011 National Land Cover Database, and 2010 Census Data (Gesch et al. 2002, Homer 

et al. 2012, and U.S. Census Bureau 2017). 

3.3.2.1 Base case scenario 

The base case scenario was defined as delivering biomass to facilities that required 

180,000 dry Mg per year with considerations of major parameters such as harvest area, feedstock 

rate, price, transportation distance and facility capacity (Table 3.1).  
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Table 3.1 Parameter configurations for the base case and other case scenarios for 

sensitivity analysis.  

Parameters Base Case Sensitivity Analysis 

Total harvested  

(million ha) 

Forest residuesa 37.75 

N/A 
Willowb,c 0.63 

Switchgrassb,c 2.52 

Miscanthusb,c 3.14 

Feedstock yield rate 

(dry Mg/ha) 

Forest residuesd 11.11-27.79 

N/A 
Willowe 11.89-15.67 

Switchgrassf 11.35-20.20 

Miscanthusf 12.11-27.44 

Feedstock price 

($/dry Mg) 

Forest residuesg 23.62 1.6-2.4 

Willowg 42 33.6-50.4 

Switchgrassf 23.9 19.12-28.68 

Miscanthusf 29 23.2-34.8 

Moisture contenth 40% 30%-50% 

Transportation distance(km) 75 10-150 

Facility capacity (dry Mg) 180,000 144,000-216,000 

Fossil fuel price ($/Liter) 0.946 0.757-1.136 

a. (Burrill et al. 2017)  

b. (Skousen and Zipper 2014) 

c. (Drummond and Loveland 2010) 

d. (2016 Billion Ton Report, Department of Energy) 

e. (EcoWillow 2.0, Justin P. Heavey and Timothy A. Volk) 

f. (Liu et al. 2017a) 

g. (Hartley, 2014) 

h. (Mosier et al. 2005) 

i.  (Mosier et al. 2005) 

The choice of a biorefinery site is of great importance when trying to meet the goal of 

producing cost-effective multiple-biomass-based energy and products, due to spatial dispersion 

of the feedstock, the high transportation cost of feedstock, and the possible negative impacts on 

the environment. Each county in the study area was considered as a potential biomass supply 

location and it was also assumed that the feedstocks were aggregated to the centroid of the 
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county. Geographic information system (GIS) is a viable tool to identify siting locations 

considering multiple criteria, for example, for minimizing the cost of dairy manure transportation 

(Paudel et al. 2009) and for optimizing an emergency facility location using a modified particle 

swarm optimization algorithm (Ma et al. 2019). In this study, the locations of the bioenergy 

plants were selected based on an integrated physical and social assets analysis, including 

suitability analysis, multi-criteria ranking, and social-economic assessment (Wang et al. 2019).  

First, 43 potential plant candidates were selected out of 387 locations in the study region with 

high-suitable indices, and then 15 locations were further identified for the regional economic 

development featuring both environmental and social asset impacts. The nine criteria considered 

were: biomass availability, distance from main road, distance from electric substation, distance 

to waterbody, flood risk of potential siting, adjacent land uses of potential siting, population in 

siting area, landownership, and unemployment rate in potential siting. To meet a necessary 

setting required by our mathematical model, all 15 sites selected were considered for medium 

size biorefinery plants with the same capacity of 180,000 dry Mg feedstock for the base case 

scenario (Figure 3.3). 
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Figure 3.3 Locations of candidate facilities and optimal biorefinery siting within the study 

area. 

3.3.2.2 Other case scenarios 

The variation of feedstock availability, feedstock price, transportation distance, moisture 

content, facility capacity, and fossil fuel price were taken into consideration into multiple cases. 

Maximum and minimum feedstock price and facility capacity were examined for every feedstock 

material. Demand and siting location of biorefinery, along with feedstock availability will have 

effect on hauling distance, where a transportation distance range of 15-135 km (9.32-83.88 

miles) was analyzed on delivered cost. Delivered cost along biomass supply chain will also be 

affected by moisture content and current fossil fuel price. 
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3.3.3 Sensitivity analysis 

Several factors affect the delivered cost of multiple biomass feedstocks, including 

feedstock availability/demand, feedstock price, materials moisture content, procurement radius, 

facility capacity and fossil fuel price. Based on the base case, these factors were analyzed in 

terms of sensitivity and uncertainty under different case scenarios (Table 3.1). 

3.4 Results   

3.4.1 Base case scenario 

 The delivered cost of biomass for the 15 facility locations averaged $79.58 per dry Mg, 

ranging from $67.90 to $86.97 per dry Mg with consideration of a series of supply chain 

components of feedstock establishment, harvest, transportation, storage, and preprocessing 

(Figure 3.4). 

 

Figure 3.4 Spatial descriptions of biomass delivered costs of biomass within the study area. 
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The base case results showed that delivering biomass to facilities with longer 

transportation distances resulted in higher delivered costs (Table 3.2). The delivered cost would 

increase 28.1% if the average transportation distance increased from minimum 22.04 km (13.7 

miles) to maximum 75.2 km (46.7 miles).  

Table 3.2 Transportation distance and the delivered cost associated with optimally selected 

facility locations.  

ID 
Facility 

Locations 

Min 

Transportatio

n Distance 

(km) 

Average 

Transportatio

n Distance 

(km) 

Max 

Transportatio

n Distance 

(km) 

Average Total 

Delivered Cost $/dry 

Mg 

1 Schenectady 11.41 57.77 107.07 80.73 

2 Onondaga 20.62 62.24 180.39 81.66 

3 Jefferson 17.49 59.16 203.95 82.22 

4 Pick 34.36 64.75 155.78 85.13 

5 Washington 15.38 75.2 201.44 86.97 

6 Cambria 9.43 42.05 127.49 81.76 

7 Cameron 13.48 62.56 154.36 83.88 

8 Cumberland 3.6 45.62 181.59 81.49 

9 Raleigh 5.23 57.96 129.43 81.78 

10 Taylor 5.32 65.65 192.33 83.81 

11 Aroostook 2.34 28.11 85.63 69.96 

12 Kennebec 5.62 35.62 88.54 74.35 

13 Penobscot 2.17 22.04 89.22 67.90 

14 Grafton 8.17 38.11 99.78 75.44 

15 Rutland 7.93 46.15 108.92 76.62 

 

Results of the base case also showed that both feedstock establishment and harvest costs 

accounted for over 70% of the total delivered cost (33.91% and 40.32%), which were $27.29, 

and $32.45 per dry Mg respectively. They were followed by 11.6%, and 9.04% of the total 

delivered cost for transportation and preprocessing costs. Biomass storage was the least cost 

component accounting for 5.11% (Table 3.3).  

 

Table 3.3 Cost components of base case scenario  
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  Cost $ per dry Mg 

  
Establishment Harvest Storage Preprocessing Transportation 

Average 

Total 

Min 18.62 25.63 3.47 4.74 5.26 67.90 

Max 35.16 38.61 5.02 7.75 13.57 86.97 

Average 26.40 32.45 4.12 7.28 9.34 79.58 

 

 Storage is employed in all cases to balance the conflict between the consistent demand 

from biorefineries, and the seasonal supply of bioenergy feedstocks. The use of storage allows 

for the materials that came from energy crops to be utilized well beyond the harvest window for 

the material. Outdoor storage was considered for the base case scenario, 56% of the material 

resided in storage before being used for conversion. Since there could be a certain amount of 

feedstock shortage in non-harvest season, storage inventory increased until the end of first 

quarter of the year to meet the full storage capacity, and gradually decreased until the end of 

third quarter when the inventory was exhausted, and the new harvest season began. In the view 

of energy crops inventory, during the harvesting season, there is no storage except for the safe 

inventory in biorefineries from May to September during a year. 

Examining the cost components for each feedstock type, it showed the proportion of cost 

components varies from material types (Figure 3.5). Establishment cost of forest residues 

occupied the least proportion of the total delivery cost with 21.3% compared to other feedstock 

types. Harvest cost for willow proportion is 26.5% and is lower than that for with other feedstock 

materials.  Storage cost for forest residues, willow, switchgrass and Miscanthus all occupied a 

small proportion (4.8% to 7.0%) of total delivered cost. Proportion of preprocessing cost is 

10.5% and 9.2%, respectively, for forest residues and willow are higher than perennial grass with 

percentage. The transportation cost for forest residues is only 15.5%, compared to the proportion 

of 20-25% for others. 
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Figure 3.5 Biomass delivered cost components by feedstock types. 

3.4.2 Regional analysis of multiple feedstock supply chains  

The biomass delivered costs varied from county to county and from state to state in the 

northeastern U.S. (Figure 3.6). It ranged from $67.90 to 150.81 per dry Mg by region across the 

northeastern U.S. The delivered cost was less than $90 per dry Mg in 311 counties, while 60 

counties were shown with a delivered cost of $80-100 per dry Mg. There were 16 counties with a 

delivered cost of more than $100 per dry Mg. Considering the DOE’s target to lower delivered 

cost for lignocellulosic biomass than $84 per dry ton in year 2022 (DOE 2016), and $71 per dry 

ton in year 2030, our results showed that 77 out of 387 counties in the region could deliver 
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biomass with a cost of less $84/dry ton, and 2 counties with cost of below $71/dry ton.

 

Figure 3.6 Spatial distribution of the regional biomass delivered costs. 

The results show that the supply chain components followed a similar trend of the total 

delivered cost among regions (Figure 3.7).  

Feedstock harvest cost is the primary cost component and accounted for 29% to 46% of the 

total cost. There are differences among these regions in harvest cost, from the lowest harvest cost 

of $34.96 per dry Mg in Maine to the highest harvest cost of $40.90 per dry Mg in New Jersey. 

The variation harvest cost mainly caused by different collection systems of feedstocks. 

It followed by establishment (14.6% to 29.8%). Storage accounted for a small portion 

(3.3%-5.7%) of the total delivered cost ranging from $3.13 to $3.94 per dry Mg, and there was 

no much difference among regions. Preprocessing or size reduction cost in the supply chain in 

this study ranged from 5.7% to 9.4% of the total delivered cost, which is from $6.35/ dry Mg to 
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$7.36/ dry Mg. For comparisons of the biomass delivered among 13 states in the study area, both 

transportation cost and its proportion to the total delivered cost varied greatly among the states, 

with a range from the lowest $9.11 per dry Mg to the highest $47.22 per dry or from 10.3% to 

43.0%. 

 

Figure 3.7 Percentage of cost components of biomass delivered cost by state. 

The biomass delivered costs at county level was analyzed by feedstock type (Figure 3.8). 

Among four biomass feedstocks, delivered of forest residue chipped on landing averaged $81.78 

per dry Mg, ranging from $67.74 to $125.88/dry Mg. The switchgrass delivered cost ranged from 

$63.89 to $149.83, with an average of $99.68 per dry Mg. For willow and Miscanthus, average 

delivered costs were $95.85/dry Mg and $97.87/dry Mg, ranging from $70.29 to $149.83/ dry 

Mg, and $66.39 to $153.39/ dry Mg, respectively. 
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Figure 3.8 Regional biomass delivered costs by feedstock (a) Forest residues, (b) Short 

rotation willow, (c) Switchgrass, and (d) Miscanthus. 

Across the entire study area, the delivered cost and its cost components were analyzed, and 

results were summarized in Table 3.4. Result showed that for feedstock of forest residues, it has 

the lowest average delivered cost of $ 88.79 per dry Mg, ranged from $67.74 to $125.88/dry Mg 

with a difference of $58. For willow, switchgrass, and Miscanthus, the delivered costs were 

$95.85/ dry Mg, $99.68/ dry Mg, and $97.87/ dry Mg, respectively. 
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Table 3.4 Delivered cost and cost components by feedstock types. 

Feedstock 

Forest 

residues 
Willow Switchgrass Miscanthus 

Cost 

components 

($/dry Mg) 

Establishment 18.15 27.23 32.36 31.20 

Harvest 39.64 22.42 41.23 40.10 

Storage 5.28 5.89 4.75 4.75 

Preprocessing 8.98 7.80 2.23 2.23 

Transportation 13.25 21.13 19.11 19.59 

Total 

delivered cost 

$/dry Mg 

Mean 85.30 84.47 99.68 97.87 

Min 65.74 70.29 63.89 66.39 

Max 125.88 143.98 149.75 133.39 

 

In comparisons to other chain components, storage and preprocessing for all four feedstock 

types accounted for relatively smaller proportions of the total delivered cost. Willow feedstock 

had the highest establishment cost of $40.20 per dry Mg. Harvesting switchgrass and Miscanthus 

resulted in higher cost of $41.23/ dry Mg and $40.10/ dry Mg, and it followed by forest residues 

($35.80/dry Mg), and willow ($22.42/dry Mg). If logging residues are collected from harvested 

sites, their stumpage price is a fraction of the whole-tree stumpage price that is based on the ratio 

of the yield from residues to the yield from a whole tree (Langholtz et al. 2016). Thus, the 

logging residue stumpage price could be ranging $5.5 to $22 per dry Mg. Harvesting costs for 

logging residues in this study include felling, skidder, delimbing, and loader costs. Our result is 

reasonable that the collection cost was similar to previous studies in the Northeast US, compared 

with the studies by Wu et al (2011; 2010) on forest residue handling cost in West Virginia that it 

is from $19.37 to $46.9 per dry Mg for collection systems: cable skidder-loader, grapple skidder-

loader, and slash bundler- forwarder–bundles. 

The utilization of multiple energy feedstocks varies in the region. While switchgrass and 

Miscanthus have a potential to grow as feedstocks, forest residues have been primarily utilized in 

most of the states. Less than 1% of Miscanthus was utilized in New York, Pennsylvania, West 
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Virginia, and Maine. For the rest of the northeastern states, Miscanthus was also utilized no more 

than 5.03%. The states of New York and Pennsylvania have a good growth potential for 

switchgrass and willow, while in Maine, Pennsylvania, and West Virginia there are large amount 

of forest residues available. With the tradeoff of feedstock availability, establishment cost, 

harvest and logistics, the delivered cost of specific biomass could be reduced in some areas with 

higher availability of forest residues and higher growth potential of energy crops.  

3.5 Discussion 

The model developed can provide the best fits of machines to select the most cost-efficient 

logistics for given tasks. Compared to the studies by Zhang et al. (2013) , Karkee (2016) and  

Marvin (2012), our study analyzed multiple feedstock resources including both woody and 

herbaceous biomass not only at state level but also at county level, which greatly fulfill the 

completeness of available biomass feedstock for energy and bioproducts production in the entire 

Northeastern US. A dynamic time-series attribute on monthly basis was considered in both the 

objective function and the constraints in this study, which was not thoroughly addressed in 

previous studies.  

3.5.1 Biomass delivered cost 

It showed that it is possible to lower the delivered cost of lignocellulosic biomass in 13 out 

of total 15 case scenarios with potential facility locations to meet the demand of a potential 

biorefinery facility with a capacity of 180,000 dry Mg per year in the northeastern United States. 

This can meet the U.S. DOE’s target to lower the total delivered cost of lignocellulosic biomass 

especially for short rotation woody crops to $84 per dry ton (DOE 2016) by 2022 from site to 

throat of conversion reactor. In the minimum delivered cost case of $67.90 per dry Mg in 

Penobscot, Maine, 177,570 dry Mg of forest residue and 2,430 dry Mg of willow were delivered 
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to the facility which includes $20.12 per Mg and $ 25.63 per Mg costs for feedstock 

establishment and harvest each year. Open storage and preprocessing incurred drying and 

chipping cost $3.47 per Mg and $4.74 per Mg. Average procurement radius of biomass is 22.04 

km that cost $5.26 per Mg for a base case. 

In the maximum delivered cost case of $86.97 per dry Mg in Washington, Ohio, the 

facility utilized 159,156 dry Mg of forest residue, 15,633 dry Mg of willow, 3127 dry Mg of 

Miscanthus and 2084 dry Mg of switchgrass. Harvest cost occupied the largest proportion of 

delivery cost, which was $ 38.61 per Mg annually, following by feedstock establishment of 

$35.16 per Mg. The storage cost was 44.7% more and preprocessing cost was 63.5% more than 

that of the minimum case. Average procurement radius of 75.2 km for this case was 241% longer 

than that for the minimum delivery cost case. 

For the range of biomass delivered cost of $67.90 to $86.97 per dry Mg, the configuration 

of supply chain components varied. With the lowest delivery costs of $67.90 per dry Mg in 

Penobscot, Maine, the proportion that forest residue was 98.7% of biomass. In the highest 

delivery cost case in Washington, Ohio, 85.4% of utilized feedstock were forest residues. Willow 

was utilized as the second largest proportion of the supply chain ranged from highest as 10.1% to 

lowest as 1.0% among cases. 

A combined whole-tree chipping and on-site residue collection was considered as one of 

the major collection system of forest residue. A mechanized harvesting system using a feller-

buncher and grapple skidder is popular in the region to conduct conventional timber harvesting 

including small-diameter and low-quality trees. Small-diameter trees were harvested, and both 

harvested whole trees and on-site residues were extracted using cable/grapple skidders, and chips 

were produced at landing. In difficult terrains, chainsaws can fell trees to form a manual 
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harvesting system with cable or grapple skidder. A cut-and-chip system was applied for willow 

shrub harvesting and chip collection. For perennial grasses, the harvest process included mowing 

and baling, while squared baling were considered for improvement of transportation capacity. 

In a study of logging residue utilization in southern West Virginia (Grushecky et.al.  2007), 

the extraction cost ranged from $20.94 to 69.51 per dry ton with an assumption of 50% moisture 

content. This result is similar to the harvest/collection costs of logging residue form logistics 

optimization in this paper.  

The biomass delivered cost is sensitive to biomass availability, feedstock price, 

transportation distance, biomass moisture content, facility capacity and fossil fuel price (Figure 

3.9). A sensitivity analysis of the biomass delivered cost in base case was conducted for 12 

factors with 10% change. If diesel price increased 10%, the delivered cost would increase 2.4%. 

When a 10% increase of facility capacity occurred, the delivered cost would increase 7.9%, but 

the delivered cost would reduce 6.8% if the facility capacity was down 10%. Transportation 

distance of biomass usually has a great impact on the biomass delivered cost. An addition of 

10km (6.21 mile) of transportation distance would increase or reduce 8.6% of the delivered cost.  

If moisture content of biomass lowered 10%, it could reduce 2.5% of the biomass delivered cost. 

Feedstock availability had effect on the delivered cost and varied according to feedstock types. A 

10% change of Miscanthus availability caused a change of 0.2-0.9% of the biomass logistics 

delivered cost, while a 10% change of switchgrass availability would either decrease 1.6% or 

increase 2.3% of the delivered cost. For forest residue, the delivered cost would reduce 3.6% 

with a 10% decrease of its availability or increase 3.2% with its availability increase 10%. 

Sensitivity analysis of feedstock price for other three energy crops indicated that a 10% change 

of feedstock price slightly affected the delivered cost (from -1% to 1%), while a 10% change of 
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feedstock price for the base case of forest residue would affect the delivered cost from -3.3 to 

3.3%. 

 

Figure 3.9 Sensitivities of the multiple biomass feedstock delivered cost according to 

feedstock availability, feedstock price, moisture content, procurement radius, facility 

capacity, and fossil fuel price. 

The delivered cost of biomass is sensitive to facility capacity of biorefinery because the 

facility capacity affects feedstock demand, and further impact feedstock establishment, harvest, 

storage, as well as biomass procurement radius or transportation distance. Transportation of bulky 

biomass typically increases the cost dramatically depending on hauling distance. The longer the 

transportation distance is the higher the transportation cost will be. In the meantime, turnaround, 

loading and unloading times are also the key factors in biomass transportation logistics. It is 
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essential to reduce the transportation cost through optimizing biomass logistics (Wu et al. 2011). 

Following the regional gross vehicle weight regulations, managing moisture content of biomass 

could effectively improve payload size of trucking and can significantly affect the delivered cost 

of biomass feedstocks.  

In the base case scenario, the average delivered cost of multiple feedstocks ranged from 

$67.90 to $86.97 per dry Mg.  Compared to previous studies with similar supply chain 

components and feedstock types, the delivered cost of biomass by this study is similar to the 

results 64.69 to $98.31 per dry Mg (Hartley 2014) , and $29.7 to $97.1 per dry Mg  (Grushecky 

et al. 2007) for the entire biomass supply chains from fields to biorefineries. However, our result 

is higher than that of $44 to $47 per dry ton (Kumar and Sokhansanj 2007) simulated by using 

IBSAL model, since they excluded transportation and collection cost components.  

Since there is no adequate amount of energy crops planted for commercial purposes now in 

the region, the feedstock availability potential analyzed in this study was based on the Billion-Ton 

study by U.S. Department Of Energy (DOE 2016), and these availability potentials could be 

changed due to variations of some impact factors in the future, such as land use, supply and demand 

of biomass. Meanwhile, this study primarily focuses on the biomass delivered cost and does not 

include profit or other payment due to risk and policy uncertainties, and these factors would expect 

potentially to increase the biomass logistics costs. In 15 base cases of spatial biorefinery locations, 

delivered costs to 13 facility locations were lower than $84 per dry ton. In these cases, forest 

residues accounted for a majority proportion of among multiple biomass feedstocks, due to low 

stumpage cost and large amount of availability. The total delivered cost of biomass from this study 

would be higher if alternative or additional pretreatments were used for feedstocks. For instance, 
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further size reduction and hot water extraction would increase preprocessing costs for some 

specific treatments of biomass for  specific bioproducts production (Kumar et al. 2009). 

3.5.2 Cost components of biomass supply chain 

Harvest and establishment costs were primarily affected by feedstock types. Perennial 

grasses of switchgrass and Miscanthus are both warm-season plant with high potential as a 

promising feedstock for bioproducts and bioenergy. In general, the yield of Miscanthus is higher 

than that of switchgrass, which could lead to a relatively higher collection cost for baling and a 

longer mowing time per acre basis. Forest residue collection after harvesting activities would cost 

more than collection activity incorporated into round wood harvesting. Increase in feedstock yield 

and harvest efficiency are important to the future economic viability of multiple feedstocks. 

Field storage was chosen in the optimization of logistics and it only accounted for 5.1% of 

the total delivered cost at $4.12/dry Mg. However, attention should be paid to potential risks of 

biomass, while on-site storage could lead to extra mass loss. A dry-matter loss factor considered 

in the mathematical model intends to examine the uncertainty in potential energy loss during 

storage process. 

Size reduction of grinding was considered as a major component in preprocessing of our 

modeling process. Chips of woody biomass and bales of perennial grasses were the materials for 

transportation. Within a certain procurement radius, biomass transportation could be economical, 

and it may require more connections/storage points (or depots) between biomass supply sources 

and bioenergy facilities. This makes the transportation an important component in the biomass 

supply chain. The impacts of sensitivity factors were examined on multiple cases (Figure 3.10). 
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Figure 3.10 Impacts of sensitivity factors to transportation cost.  

Four case scenarios were examined on the delivered cost for transportation distance ranged 

from 15 to 135 km (9.32-83.88 miles).  

As transportation distance changed from 15 to 135 km (9.32-83.88 miles) with 75 km (46.60 

mile) as the base case, the variation of delivered cost increased for all feedstock types. With 

moisture content from 25% to 50%, the delivered cost increased more quickly when moisture 

content was higher than 40%. The moisture content rate would affect the effective payload of 

transportation, and drying in field could reduce transportation cost as much as 20% (Hartley 2014). 
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In the meanwhile, uncertainties of fossil fuel price caused by international fuel market and policy 

would affect the economic feasibility of biomass utilization for bioenergy and bioproducts. 

Determination of “economies of scale” (Hartley 2014), of which the most economic facility 

capacity, would lead to a more effective logistics system and economical procurement radius of 

biomass. As biomass availability declines and/or facility demand increases, an increased 

transportation distance of biomass would incur the delivered cost to increase dramatically.  

3.6 Conclusions  

Focusing on entire biomass supply chains, the delivered cost of multiple biomass 

feedstocks was optimized with considerations of biomass supply/demand and potential 

biorefinery locations in the northeastern United States. Through supply chain and logistics 

optimization, 77 out of total 387 counties in the northeastern United States could be able to 

deliver biomass at a cost of $84 per dry ton - a target by US DOE by 2022. Additionally, two 

counties in the region could deliver at a cost of less than $71 per dry ton – a US DOE’s target by 

2030. Fifteen spatially located biorefinery sites across the region further indicate the regional 

bioeconomic potentials. The optimized supply chains include integrated timber/forest residue 

production using feller-buncher for felling and grapple skidder for extraction, onsite chipping 

and chip van trucking at a cost of 70.74/dry Mg in Maine, 81.54/dry Mg in New York, and 

82.80/dry Mg, in West Virginia.  

The variance of biomass delivered cost is primarily affected by the differentiations of 

feedstock types, collection system and availability/accessibility. Feedstock establishment and 

harvest/collection are the two major cost components and generally account for 70% of the total 

delivered cost. The delivered cost was most sensitive to transportation distance or procurement 

radius and facility capacity. The procumbent radius of biomass is one of the most important 
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factors affecting the total delivered cost. Transportation cost could be lower and overall 

economics could be feasible when supplying feedstocks to local and relatively small to medium 

size facilities, such as local pellet mills and co-firing power plants. Feedstock price, moisture 

content and fossil fuel price all have impacts on biomass delivered cost. If market for 

lignocellulosic biomass could be well developed nationwide, train would be another viable 

method to reduce the transportation cost of biomass. Trucking is usually preferred for short-

distance transportation with its flexibility, while train can be used for long-distance of bulky 

biomass. For truck transportation, there are two key constraints - weight and dimension 

limitations regulated by the governments. Train is usually limited by volume instead of weight 

(Lin et al. 2016). Raw biomass like chips or bales has an inherently low mass and density, which 

would result in economic constraints for train transportation. Thus, densification of raw biomass 

such as bundling and pelletizing could be a solution to improve the cost effectiveness of biomass 

transportation. 
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4. ENVIRONMENTAL AND ECONOMIC ASSESSMENTS AND 

UNCERTAINTIES OF MULTIPLE LIGNOCELLULOSIC 

BIOMASS UTILIZATION FOR BIOENERGY PRODUCTS: 

CASE STUDIES 3  

 
3 To be submitted to Energies Special Issue "Analysis of Bio-based Products for the Circular Economy" 
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 Abstract:   

Life cycle assessment (LCA) and techno-economic analysis (TEA) were applied to assess 

economic feasibility and environmental benefits of utilizing multiple biomass feedstocks for 

bioenergy products under three different technological pathways with consideration of 

uncertainties. Three cases were studied for production of pellets, biomass-based electricity, and 

pyrolysis bio-oil. A Monte Carlo simulation was used to examine uncertainties of fossil energy 

consumption, bioenergy conversion efficiency, stochastic production rate, production increasing 

rate, sale price of bioenergy products, and discount rate, and to estimate the behavior of 

environmental and economic parameters considering the risk in project sustainability.  

The cradle-to-gate LCA results showed that pellet production had the lowest GHG 

emissions, water and fossil fuels consumption, (8.29 kg CO2 eq, 0.46 kg, and 105.42 MJ 

respectively). The conversion process presented a greater environmental impact for all three 

bioenergy products. The GHG emission, freshwater and fossil fuel consumptions in conversion 

process all accounted for more than half of the total environmental impacts, ranging from 

52.66% to 89.57%. With producing 46,926 tons of pellets, 260,000 MWh of electricity, and 

78,000 barrels of pyrolysis oil, the net present values (NPV) for all three cases indicated that 

only pellet and biopower production cases were profitable with NPVs $1.20 million for pellet, 

and $81.60 million for biopower. The pellet plant and biopower plant were profitable only when 

discount rates are less than or equal to 10%. The uncertainty analysis indicated that pellet 

production showed the highest uncertainty in GHG emission, bio-oil production had the least 

uncertainty in GHG emission but had risks producing greater-than-normal amount of GHG. 

Biopower production had the highest probability to be a profitable investment with 95.38%. 
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4.1 Introduction 

The increasing global energy consumption has been resulting in the need to further develop  

bioenergy  products using a variety of renewable materials, including forest residues (Searle and 

Malins 2016; Sowlati 2016), and energy crops (Robertson et al. 2017). Biomass is considered an 

environmentally friendly energy resource through its carbon mitigation function (Demirbaş 

2001), and is a preferred alternative to fossil energy resources to reduce the greenhouse gas 

emissions (U.S. Department of Energy 2015). Biomass could be used to produce bioenergy 

products in a variety of forms, such as firewood, pellet, electricity, ethanol, and biofuels. Since 

carbon dioxide is consumed during biomass growth, biomass mitigates the amount of greenhouse 

gases (GHG) emission generated during the energy conversion (Morais et al. 2015). Thus, 

energy production from biomass has the advantage of emitting smaller amounts of GHG.  

The utilization of lignocellulosic biomass for biofuels and bioproducts has been steadily 

increased (Cherubini 2010). Current production and application of first-generation biofuels from 

food crops for biodiesel and bioethanol are well understood (Novo et al. 2012; Elander and 

Putsche 2018). However, compared to food crops, lignocellulosic biomass like forest residues 

and energy crops is a major source of cheap and abundant nonfood materials available from 

plants (Naik et al. 2010). Therefore, lignocellulosic feedstock can offer the potential to provide 

novel biofuels or bioenergy, known as the second generation of biofuels (Sims et al. 2010).  

In a biorefinery facility, biomass conversion processes and equipment are integrated to 

produce power, fuels, or any value-added products from biomass. The biomass conversion 

processes utilize physical, chemical, biological, and thermal pathways (Naik et al. 2010).  

Densification is a physical conversion that can help overcome the drawback of forest residues 

and other lignocellulosic biomass materials that always have uneven bulky characteristics 
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(Stevens and Verhé 2004). The densification of biomass improves the efficiencies in biorefinery 

facilities and reduces the handling costs of biomass (Yancey et al. 2013). Pellet is a bioproduct 

that intensifies the loose biomass and has become popular as solid biofuel (Goliński and 

Foltynowicz 2012). Combustion is a common means of converting biomass to energy, with a 

proven technology that low-cost, highly reliable, relatively well understood and commercially 

available (Bhaskar et al. 2011). Lignocellulosic biomass fired or co-firing power plants can 

produce electricity, heat or steam using either direct or indirect combustion systems (Liu et al. 

2017). One major processing route for the production of biofuels from lignocellulosic feedstocks 

is thermo-chemical, which produces a wide range of long carbon chain biofuels, such as bio-oil, 

aviation fuel, ethanol, or reformed fuels (Sims et al. 2010). Thermochemical conversion using 

pyrolysis has been considered an important and promising technique for biofuel production (J. 

Zhang and Zhang 2019). In most cases, the pyrolysis process is a basic component of 

thermochemical conversion (Bhaskar et al. 2011). Fast pyrolysis is an approach to produce 

reliable higher energy content liquid fuels from biomass. The pyrolysis-derived liquid fuels can 

also be blended with petroleum-based fuels such as gasoline or diesel for transportation vehicles 

(Lehto et al. 2014).  

Many analyses have been conducted on these conversion processes in terms of economics, 

environmental and life cycle assessments (Fantozzi and Buratti 2010; Sultana and Kumar 2012; 

Loock 2008; Sowlati 2016). Recent economic analyses indicated that the above mentioned 

bioenergy products have economic advantages to compete with other alternative fuels (Hill et al. 

2006; Cadenas and Cabezudo 1998). A number of techno-economic studies demonstrated the 

economic feasibility of biomass-based bioenergy production (Arena et al. 2010; Pootakham and 

Kumar 2010; Brown and Wright 2014). With lower expected feedstock costs and no competition 
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with food, lignocellulosic feedstock was studied as a major bioenergy resource. In a study of 

biomass-based energy production, techno-economic performance of different plant scale levels 

in UK were compared, and the economic viability of different processes through a discounted 

cash flow analysis was analyzed (Patel et al.  2012). Trippe et al. (2011) examined the biomass-

to-liquid and chemicals production by adopting a two-stage concept, and concluded that the cost 

to produce one normal cubic meter (Nm3) of syngas is $25.07 (23€), with potential reducing 

costs 50% when coal as feedstock was introduced. As in the study of naphtha and diesel range 

fuels production with the feedstock of biomass via fast pyrolysis pathway, Wright et al. (2010) 

established the models with two fixed yearly production rates, respective capital costs and fuel 

product values for both 𝑛th plant and pioneer plant. Few studies were conducted to qualify the 

economic uncertainty and risks associated with a biomass-to-bioenergy project. Batan et al. 

(2016) studied microalgae-based biofuel and characterized the economic feasibility, and their 

results showed the economic performance and price and cost projections, that production cost 

reaches $3.46 and $3.69 per liter of algal raw oil and diesel, respectively. 

Life-cycle assessment is a comprehensive procedure for estimating environmental impacts 

on either cradle-to-gate or cradle-to-grave basis for systematic energy production (Tan et al. 

2004). Efforts have been made on life cycle assessment in productions of multiple conversion 

pathways of biomass (Caputo et al. 2014; You et al. 2011; Budsberg et al. 2012; Popp et al. 

2011; Hsu et al. 2010). Caputo et al. (2014) constructed a life cycle assessment model of willow 

as a short rotation crop to estimate the footprints of willow for energy process, and the system 

consumed 445.0 to 1,052.4 MJ of fossil energy per oven-dry tonne (odt) biomass and provided a 

large carbon sink that more than compensated for carbon emissions. A life cycle assessment by 

Budsberg et al. (2012) on ethanol production with willow biomass as feedstock indicated that 
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life-cycle carbon emissions of ethanol production from willow are carbon negative compared to 

gasoline equivalent energy but 169% more of life-cycle freshwater was consumed than the 

gasoline equivalent. Liu et al. (2017) conducted a study using life cycle inventory (LCI) to 

investigate the environmental load of multiple bioenergy products with three energy crops. Their 

results showed that willow to bio-product system usually had lowest environmental impacts and 

cost compared to perennial grasses. 

Monte Carlo simulation was the most commonly recommended approach for uncertainty 

analysis (Lo et al. 2005; Sonnemann et al. 2003; Heijungs and Huijbregts 2004; M. Huijbregts 

2002). Uncertainty analysis is not commonly performed in LCAs, although great efforts have 

been made on classification, definition, and sources of uncertainty as well as methodological 

aspects for expressing uncertainty (Huijbregts 1998; Geisler et al. 2005; Guo and Murphy 2012). 

At the life cycle inventory (LCI) phase, publicly available LCA databases only provide inventory 

data with no uncertain information. The LCA uncertainty of willow-based biomass production 

was investigated by Caputo et al. (2014), and the impacts of a series of parameters including 

additional herbicide treatment, planting densities and nursery module were examined. Nguyen et 

al. (2014) evaluated two scenarios for corn-based bio-ethanol supply chains in Kansas with 

Monte Carlo simulation to examine the uncertainty in greenhouse gas (GHG) emissions, and 

their results showed that the GHG emissions range from 24 g CO2 eq/MJ to 41 g CO2 eq/MJ 

depending upon the location, size and number of preprocessing depots. There are several 

economic challenges to overcome in bioenergy production associated with processing 

technologies (Gold and Seuring 2011), feedstock availability and its logistics cost (Sukumaran et 

al. 2010), feedstock sustainability (Puri et al. 2012), financial and technical issues for 

commercial scale production, and assessment of indirect impacts (Kandaramath Hari et al.2015).  
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Technological and economic uncertainties of eight cellulosic biofuel production pathways via 

both biochemical and thermochemical conversions were evaluated by Zhao et al. (2015). They 

reported that the distributions of NPV and breakeven fuel price for each case, and concluded that 

the fast pyrolysis and hydro processing pathways are with the relatively lower risk for investors. 

A techno-economic study (Zhang et al. 2013) with Monte-Carlo analysis compared two bio-oil 

pathways of two-staged and single staged upgrading and identified that the two-stage 

hydrotreating has a relatively low risk for project investment. 

There appears a necessity to analyze and quantify the environmental and economic impacts 

and their uncertainties in utilizing multiple biomass feedstocks for major bioenergy products at a 

regional scale. The objectives of this study were to: (1) conduct a life cycle assessment (LCA) to 

examine the environmental impacts of utilizing the multiple biomass feedstocks for bioenergy 

products in the northeastern U.S., (2) perform an economic analysis of the bioenergy feedstock 

supply chains, and (3) quantify the uncertainties of the production of bioenergy products in terms 

of economic feasibility and environmental impacts. 

4.2 Materials and Methods 

In this study, multiple lignocellulosic bioenergy feedstocks (forest residues, hybrid willow, 

switchgrass and Miscanthus) were considered for producing three bioenergy products: pellets, 

bio-power, and liquid biofuels. Base cases were identified with parameter configurations listed in 

Table 4.1. Data were primarily collected from regional bioproduct companies - two companies 

for biomass to pellets, one for biomass to liquid fuels, and one for biomass to biopower in the 

northeastern U.S. For pellet production, a local pellet plant produced 46,926 tons of pellets with 

a sale price at $185 per ton. For biopower generation, the production yield was calculated as 

260,000 MWh per year by setting plant capacity of 30 MW for 365 days operated annually, and 
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the sale price was 10.5 cents per kilowatt hour (U.S. EIA 2020). 78,000 barrels of pyrolysis oil 

were produced with assumed sale price of $54/bbl, according to estimation of the potential 

minimum selling price by the U.S. government’s NREL lab (Lorenz Bauer, 2017). According to 

information provided by a pellet fuel company, the retail price ranged from $180 to $210 per ton 

of pellets. In the electric power monthly report, it mentioned that in United States, the average 

price of electricity to ultimate customers was in the range of 8 cents to 26 cents per Kilowatt 

hour (U.S. EIA 2020).  Recently, the crude oil price dropped to its lowest point at $11.26 per 

barrel on April 24, 2020, and it brings big challenge in producing economic feasible biomass-

based pyrolysis oil. Based on a U.S. DOE’s report (Wright et al. 2010), the NREL estimates the 

minimum selling price per gallon of a commercially finished fuel made from current fast 

pyrolysis oil is about $2.53 per gallon ($106/bbl). Thus, the price range for pyrolysis oil was 

$11.26-106.26 per barrel in this study. By feeding one dry ton of lignocellulosic biomass as 

feedstock, it produced 0.83 ton of pellet fuel, or 1.53 megawatt hours, or 0.46 barrel of fast 

pyrolysis oil. The feedstock price for all cases was assumed at $84 per ton based on the DOE’s 

target to lower delivered cost for lignocellulosic biomass than $84 per dry ton in year 2022 (DOE 

2016). 
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Table 4.1 Parameter configurations for base case analysis. 

Parameter 
Products 

Pellets Electricity Pyrolysis oil 

Production technology Pellet mill 
Combustion with 

steam turbine 
Fast Pyrolysis 

Annual yield 46,926 Ton 260,000,000 KWh 78,000 bbl 

Product sale price $185/ton(a) $0.105/KWh(b) $54/bbl (c) 

Price Range $180-210/ton $0.08-0.26/KWh $11.26-106.26/bbl 

Product yield rate 

(from per dry ton of 

feedstock)   

0.83 ton of pellet(a) 
1.53 MWh of 

electricity 

2.17 bbl of pyrolysis 

oil 

Capital Investment $4,403,744  $71,616,960  $106,015,291  

Annual operation cost $4,046,745  $3,560,469  $612,069  

Feedstock price $84/ton $84/ton $84/ton 

(a) Provided by Greene Team Pellet Fuel Company 

(b) U.S. Energy Information Administration 2020 

(c) (Lorenz Bauer 2017) 

 

The baseline model was then coupled with Monte Carlo simulation to conduct uncertainty 

analysis of greenhouse gas emission (GHG) and Net Present Value (NPV) for bioenergy 

products derived from lignocellulosic biomass feedstock (Figure 4.1).  
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Figure 4.1 Flow chart of the economic and environmental impacts of biomass for bioenergy 

products. 

4.2.1 Life Cycle Assessment 

A cradle-to-gate LCA model framework developed includes feedstock collection, 

transportation, storage and preprocessing, bioenergy production (Figure 4.2). This study focuses 

on the GHG emissions, water and fossil fuel consumption. The functional unit (f.u.) of the 

system is 1,000 MJ of energy products. The boundary of this LCA includes raw feedstock 

handling (harvest/collection), storage, transportation, preprocessing, and conversion, following 

the International Organization for Standardization (ISO)’s LCA standards (Klöpffer 1997). 
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(a) Pellet  

 

(b) Bio-Power  

 

(c) Pyrolysis oil 

Figure 4.2 Block flow diagram of multiple-feedstock logistics and production processes, 

(a)Pellet, (b)Bio-Power, and (c) Pyrolysis oil  
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Life cycle inventory of feedstock collection includes harvesting of logging residues using 

grapple loader, grapple skidder and chipper, while establishment of energy crops consists of site 

preparation, planting, fertilization and cut-and-chip or harvest-and-baling. The fuel consumption 

of residues harvest system was based  on a study by Wu et al. (2011).  The US LCI database was 

also used for the biomass transportation process (National Renewable Energy Laboratory 2012). 

The composition of multiple biomass feedstock was based on a study by Wang et al. (2020) for 

an optimized solution of the minimized delivered cost of biomass in the northeastern U.S. 

The LCA model was developed using the environmental modeling tool SimaPro and database 

ecoinvent (PRé Consultants 2016, Wernet et al. 2016). The impact of GHGs was calculated 

using 100-year global warming potentials (Liu et al. 2017). All the emissions were converted 

into the carbon dioxide equivalent (kg CO2 eq). The reduction of GHG emissions was calculated 

as the difference between the emissions from petroleum-derived-diesel and the emissions from 

the energy products by the three technologies in this study. The calculation of water consumption 

(kg) followed the method by Boulay et al. (2011). Fossil energy consumption (MJ) was 

calculated based on the Frischknecht’s studies (Frischknecht et al. 2007; 2015; Frischknecht et 

al.1998). 

4.2.2 Mathematical model for Techno-economic analysis 

To evaluate the economic feasibility, the processes of the selected bioenergy pathways 

were first defined (Figure 4.2) and a range of NPVs was estimated for each pathway scenario 

based on stochastic analysis of the commodity prices and economic parameters. 

The NPV method is a good way to analyze the profitability of an investment with unique 

advantages comparing across other economic methods, in counting time value of investment and 
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ranking capability (Žižlavský 2014). The formulation of the NPV for biomass to bioenergy 

products is as follows: 

𝑁𝑃𝑉 = −𝑇𝐼𝐶 +
𝑄1

(1 + 𝛾)
+

𝑄2

(1 + 𝛾)2
+ ⋯ +

𝑄𝑛

(1 + 𝛾)𝑛
−  𝐸𝐶 + 𝑆𝑉 

= −𝑇𝐼𝐶 + ∑
𝑄𝑗

(1+𝛾)𝑗
𝑛
𝑗=1 −  𝐸𝐶 + 𝑆𝑉     (1) 

Where,  

𝑇𝐼𝐶–the total initial cost for a bioenergy plant project; 

𝑛–bioenergy plant lifetime; 

𝑄𝑗–net cash flow at any year 𝑗 after project startup, without equipment replacement costs; 

𝛾–interest rate; 

𝐸𝐶–present value of equipment replacement costs; 

𝑆𝑉–salvage value. 

 The annual net cash flow 𝑄𝑗 for a bioenergy plant production after the project startup 

shows difference between cash inflows and outflows by operating a bioenergy plant over each 

year, and it was calculated as: 

𝑄𝑗 = ((𝑃𝑄𝑗 ∗ (1 + 𝛿𝑗) ∗ 𝑝) − 𝐹𝐶𝑗 − 𝑂𝐶𝑗) (1 + 𝜖)𝑗                             (2) 

Where,  

𝑃𝑄𝑗–Quantity of product produced and sold for year j, for instance, tons of pellets, or amount of 

electricity in KWh, or number of barrels of bio-oil; 

𝛿𝑗–Production increased rate based on previous year; 

𝑝 –Unit selling price; 

𝐹𝐶𝑗–Lignocellulosic feedstock cost for year 𝑗 in dry matter basis; 

𝑂𝐶𝑗–Operation and maintenance cost at the bioenergy plant for year 𝑗; 

𝜖–Inflation rate. 
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And a constraint was set that the increased annual production shouldn’t be exceeded the 

yearly capacity for bioenergy plant. 

𝑃𝑄𝑗 ∗ (1 + 𝛿𝑗) ≤  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                                                                                   (3) 

For quantity of bioenergy products produced and sold 𝑃𝑄𝑗, 

𝑃𝑄𝑗 = 𝐹𝑄𝑗 ∗ (𝜏)              (4) 

Where,  

𝐹𝑄𝑗–Feedstock quantity in dry Mg transported to and utilized in facility for year 𝑗; 

𝜏 –Conversion rate, fuels produced by each dry Mg of feedstock. 

For feedstock cost  𝐹𝐶𝑗  at year 𝑗, 

𝐹𝐶𝑗 = 𝜑 ∗ 𝐹𝑄𝑗                          (5) 

Where,  𝜑 is Feedstock price per ton. 

The total present value of equipment replacement costs, 𝐸𝐶 can be calculated from 

Equation (6) using the acquisition value for equipment at year zero  𝐴𝑉. The 𝐸𝐶 takes into 

account the equipment initial costs plus the inflation in the period since it began to operate until 

its replacement, and for each replaced equipment it will be calculated. 

𝐸𝐶 = ∑ 𝐴𝑉
(1+𝜖)𝑦

(1+𝛾)𝑦𝑦                   (6) 

Where, 

𝑦–year of the equipment replacement; 

𝐴𝑉- The acquisition value for equipment at year zero, which means the purchased value of the 

asset.      

The salvage value was calculated by the following equation:   

𝑆𝑉 = ∑ 𝐸𝐼𝐶𝑖 (1 − 𝜏)𝑛𝑁
𝑖                                                                       (7) 
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Where, 

𝑁- Total amount of equipment; 

𝐸𝐼𝐶𝑖- Equipment purchase cost for equipment 𝑖; 

τ- Depreciation rate; 

The total annual cost consists of annualized capital costs (calculated assuming an interest 

rate of 10% (Mahmoudi et al. 2009; Mobini et al. 2011)), operating and maintenance costs, and 

biomass feedstock cost. The total installed costs were calculated by a factored estimation 

(McKendry 2002a; 2002b; 2002c), based on the major equipment required for various 

production processing. All capital costs are in 2020 U.S. dollars with the equipment cost 

inflation calculated using the Chemical Engineering Plant Cost Index (CEPCI) (Anderson 2014).  

4.2.3 Monte Carlo simulation for uncertainties  

Monte Carlo simulation is a mathematical technique which performs risk analysis by 

building models with random variables for decision (Rubinstein and Kroese 2016). In this study, 

we used this computational algorithm to estimate the environmental impacts and techno-

economic benefits of biomass-based energy production. Separate simulation runs with 5,000 

iterations were conducted. Monte Carlo analysis was performed for both environmental impacts 

and economic feasibility in this study (Table 4.2).  

  



113 

 

Table 4.2 Descriptions of parameters for uncertainty analysis. 

Variable Scenarios Minimum Base Case Maximum Distribution 

Parameters of Life Cycle Inventory 

Diesel Consumption in Collection 

(per ton biomass, L) 
All 4.97 6.21 7.45 Uniform 

Lubricant Oil Consumption (per ton 

biomass, kg) 
All 0.048 0.06 0.072 Beta 

Pellet Annual Production (ton) Pellets 37,543 46,929 56,314 Triangular 

Electricity Annual Production 

(MWh) 

Bio-

power 
208,000 260,000 312,000 Triangular 

Pyrolysis oil Annual Production 

(bbl) 
Biofuel 62,400 78,000 93,600 Triangular 

Parameters of Techno-economic Assessment 

Pellet Conversion Rate (tons per dry 

ton feedstock) 
Pellets 0.81 0.83 0.90 Beta 

Electricity Conversion Rate (MWh 

per dry ton feedstock) 

Bio-

power 
1.37 1.53 1.68 Beta 

Liquid Bio-oil Conversion Rate (bbl 

per dry ton feedstock) 
Biofuel 1.89 2.17 2.56 Beta 

Increase over previous year All 0% 0% 5% Lognormal 

Pellets Sales Price (per ton) Pellets $180 $185 $210 Beta 

Electricity Sales Price (per KWh) 
Bio-

power 
$0.08 $0.105 $0.26 Beta 

Liquid Bio-oil Sales Price ($/bbl) Biofuel 11.26 54 106 Beta 

Biomass Feedstock Price (per dry 

Mg) 
All $69 $84 $136 Beta 

Discount rate All 0% 5% N/A Lognormal 

 

Greenhouse gas (GHG) emissions from bioenergy supply chains are critical, since climate 

change and energy policies often encourage bioenergy as a sustainable GHG mitigation option 

(Röder et al. 2015). The conventional life cycle assessment (LCA) does not perform quantitative 

uncertainty analysis. However, the reliability of life cycle assessment results can be improved by 

characterizing the associated uncertainty (Lo et al. 2005). The uncertainty of GHG was 

quantified using various probabilistic methods, including Monte Carlo simulation with 

knowledge of the underlying probability distribution functions that characterize the model 

parameters.  A total of 1,000 random trials were conducted to study the effect of uncertainty. 

Several factors affecting the life cycle GHG emissions of biomass-derived fuel products were 
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examined, including the production technology, and the efficiency of production, the operation 

and maintenance of bioenergy production.  

Yearly cash flows were generated for the three productions, and the NPVs were derived 

from these cash flows. Stochastic production rate, production increasing rate, sale price, 

feedstock price, and discount rate were used to adjust the models. The Monte Carlo 

implementation results in a set of NPV values, which are represented by their corresponding 

probability distributions. The greater the number of iterations performed, the better the precision 

of the uncertainty would be examined.  

4.3 Results 

4.3.1  Life cycle analysis 

The environmental impacts of the three bioenergy technological pathways were listed in 

Table 4.3, and all environmental impacts were calculated with f.u. of 1000 MJ for bioenergy 

production. Pellet production presented the lowest GHG emissions with 8.29 kg CO2 eq and 

consumed the least amount of fresh water and fossil fuels. Pyrolysis oil production had the 

highest environmental impacts for all impact factors. The pyrolysis oil production emitted the 

highest amount of greenhouse gas, which was double that of biopower production, and 3.87 

times that of pellet production. Both biopower and pellet production consume a small quantity of 

fresh water compared with pyrolysis oil production, for 0.73, and 0.46 kg, respectively.   
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Table 4.3 LCA results for bioenergy products: Pellet, Biopower, and Pyrolysis oil. 

Products Impact Factor 

Bioenergy Supply Chain Components 

Total 

LCA 

Impacts 
Feedstock 

Collection 
Transportation  

Storage and 

Preprocessing 
Conversion 

Pellet 

Greenhouse Gas 

Emission 

1.239 0.294 2.394 4.368 8.295 

Blue Water 

Consumption 

0.01 0.04 0.01 0.41 0.46 

Fossil Energy 

Consumption 

2.37 6.08 2.55 94.42 105.42 

Bio-

Power 

Greenhouse Gas 

Emission 
3.24 6.33 2.14 3.87 15.58 

Blue Water 

Consumption 
0.05 0.36 0.07 0.25 0.73 

Fossil Energy 

Consumption 
2.26 17.98 6.14 35.68 62.06 

Pyrolysis 

oil 

Greenhouse Gas 

Emission 
2.93 3.74 0.62 23.29 30.58 

Blue Water 

Consumption 
0.12 0.36 0.08 3.84 4.40 

Fossil Energy 

Consumption 
2.82 7.24 2.71 100.40 113.16 

 

  The percentages of the total impacts were analyzed and summarized by supply chain 

components for pellets, biopower and bio-oil (Figure 4.3).  Feedstock transportation contributed 

most to the greenhouse gas (GHG) emission and blue water consumption (BWC) when 

producing biopower with 40.66% of total GHG emission, and 48.81% of blue water 

consumption. It was different from pellet and biofuel production in which the conversion process 

attributed more GHG (with 52.66% and 76.17%, respectively) and BWC (with 88.53% and 

87.27%, respectively) . All four processes (including feedstock collection, transportation, storage 

and preprocessing, and conversion) for biopower production contributed more than 10% of 

GHGs. Storage and preprocessing for pellet and bio-oil production accounted for both very low 
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portions of the total GHG emission, for 2.00% and 2.03%, respectively.  When producing 

electricity from lignocellulosic biomass, the top two processes transportation (48.81%), and 

conversion (34.64%) consumed the most water. Conversion was the process in bioenergy supply 

chain consuming the largest amount of fossil energy in all three bioenergy productions, and all 

exceeded 50% of total fossil fuel consumption. Specifically, the conversion processes consumed 

89.57% and 88.72% of total fossil energy to produce pellet and bio-oil. For biopower production, 

57.49% of fossil energy was consumed in combustion and 28.79% of fossil fuel was used in 

feedstock transportation process, following with 9.90% for storage and preprocessing, and 3.64% 

for feedstock collection. 

 

Figure 4.3 Percentages of the total impact of Greenhouse Gas Emission (GHG), Blue Water 

Consumption (BWC), and Fossil Energy Consumption (FEC) by supply chain components 

for Pellet, Biopower, and Bio-oil. 
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4.3.2 Techno-economic analysis 

Based on economic assessment for multi-feedstock multi-pathways bioenergy production, 

the economic evaluations were summarized in Table 4.4.  

Table 4.4 Economic evaluation for three products: Pellet, Biopower, and Pyrolysis oil. 

Parameter 
Products 

Pellets Electricity Pyrolysis oil 

Bioenergy production summary 

Plant life (year) 16 25 20 

Feedstock consumption (dry tons) 848,114 4,079,847 666,900 

Bioenergy production 703,935 ton 6,240,000 MWh 1,760,564 bbl 

Economic feasibility summary 

Total investment cost ($) 4,403,744  149,550,000  106,015,291  

Total feedstock cost ($) 71,241,614  342,707,175  56,019,600  

Total operating cost ($) 60,701,175 85,451,256  11,629,319  

Total revenue ($) 139,236,253  694,526,976  80,028,000 

Net Present Value (NPV) ($) 1,201,069  81,598,262  (98,998,847) 

Discount rate (%) 5 5 5 

 

Total biomass feedstock consumption and bioenergy mass production were summarized. 

With consumed 848,114 dry Mg of biomass feedstock, a pellet plant could produce 703,935 ton 

of pellet products, which bring a total of $139.23 million revenue, and the net present value was 

$9.64 million in 16 year. Via biomass combustion to produce electricity, a biopower plant could 

utilize around six times of feedstock, which could bring 4.7 times of revenue ($657,69 million) 

than a pellet plant. For biopower production, the net present value was $108.77 million with 

discount rate of 5%. The total amount of biomass feedstock consumed for bio-oil production was 

similar to pellet production but resulted with a much lower NPV at -$98.14 million. Among all 

the cost components, the operating cost represents the largest contribution (52-63%) to the total 

production cost, and it is followed by the capital investment ranging from 30-36.5%. The 
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production costs averaged $14.81 per ton for pellets, $0.04 per KWh for biopower, and $40.11 

per barrel for pyrolysis fuels. 

Usually, a discount rate is used in discounted cash flow analysis to compute a net present 

value, and it reflects the opportunity costs, inflation, and risks accompanying of time (Rasheed et 

al. 2016). With the general rule of thumb for selecting an appropriate discount rate that the 

discount rate equals investors’ required rate of return (Jagannathan et al. 2016), the product net 

present values (NPV) of bioenergy plants via three conversion pathways were analyzed based on 

0%-30% discount rate (Figure 4.4). Results showed that the pellet plant and biopower plant 

would be profitable when the discount rate was less than or equal to 10%.  For pellet production, 

the NPV ranged from $2.89 million to $0.21 million for discount rate 0% to 10% accordingly. 

The biopower plant would be profitable with NPV ranged from $106.04 million to $15.75 

million only when the discount rate was less than or equal to 10%, and the NPV dropped 

dramatically as discount rate increased. For pyrolysis oil production, it was never profitable even 

though the discount rate as low as 0%. 
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Figure 4.4 The impacts of discount rate on Net Present Value for three products: Pellet, 

Biopower, and Pyrolysis oil. 
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4.3.3 Uncertainties of the environmental and economic impacts 

GHG emissions from bioenergy supply chains are critical to their sustainability and GHG 

mitigation potential. Uncertainty of GHG for three bioenergy products were examined using 

Monte Carlo simulations (Figure 4.5). In Figure 4.5, the right tail of pellet and the left tail of Bio-

power were very close to each other. The largest value of the three impact factors among the 

three technologies were 51.2 kg CO2 eq greenhouse gas emissions for bio-oil production. The 

results presented here show a small variation in emissions from electricity generated from 

lignocellulosic biomass ranging from 15.4 to 15.9 CO2 kg eq GHG emission of per 1000 MJ. 

Bio-oil production had a compacted distribution of GHG emission simulated from Monte Carlo, 

and its GHG emission distribution is right skewed, ranging from 21.9 to 51.2 CO2 kg eq per 1000 

MJ. The GHG emission simulation for pellet production showed a large variation with GHG 

from 7.4 to 10.5 CO2 kg eq per 1000 MJ. Among three bioenergy products, pellet production 

showed the highest uncertainty in GHG emission, bio-oil production had the least uncertainty in 

GHG emission but had risks producing greater-than-normal amount of GHG. 
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Figure 4.5 Uncertainty of Greenhouse gas emission of three biofuel products 

Five sensitive variables were accessed in terms of NPVs.  After 5,000 iterations the MC 

converges to the NPV results with the behavior of the NPV under consideration of related 

parameter uncertainties (Figure 4.6).  
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Figure 4.6 Fitness of statistical distributions of uncertainties: (a) pellet fuel, (b) biopower, 

(c) biofuel. 

For pellet fuel production, the distribution presents an average NPV of -$2,104,886 with 

39.58% of probability to be a profitable investment. The Anderson-Darling factor was calculated 

to figure out the best fitted distribution. A Weibull distribution showed the best fit with lowest 

A-D factor of 4.04. In the biopower production pathway, the profitable probability was 95.38% 

with uncertainty factors introduced. For an 80% credible interval, the simulation results of NPV 

ranged from $34.02 million to $425.92 million (for percentile 10% to 90%). A Gamma 
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distribution with parameters location value of $89.42 million, and scale value of $84.42 million, 

could be used for the probability prediction of the biopower production. The probability for a 

biofuel plant to be profitable was zero. A beta distribution can represent the uncertainty 

distribution. 

4.4 Discussion 

4.4.1 Environmental impacts 

 Power generation emits significant amounts of greenhouse gases (GHGs), which are 

combination of CO2, CH4, and NxO . The global warming potential with GHG has taken into 

account the upstream processes of power generation. Spath and Mann (2004) studied the GHG 

emissions for biomass and conventional fossil systems to generate electricity, and found the 

biomass direct-fired system have the global warming potential -148% lower compared to 

traditional coal-fired power plant, and 99% lower of fossil fuels combustion. Hsu (2012) studied 

the GHG emissions for biomass-based pyrolysis oil, and showed that greenhouse gas emissions 

could be reduced around 50% from pyrolyzed biofuels compared to fossil fuels. To produce 

every 1000 MJ of bioenergy, bio-oil production generated the highest GHG emission, and 

consumed most fresh water and fossil energy among all three bioenergy products. In a pyrolysis 

oil study by Steele et al. (2012), the results showed the global warming potential for pyrolysis 

bio-oil production is 32 kg CO2 eq, which is very close to 30.58 kg CO2 eq of GHG emission in 

this study. Though with higher GHG emission than the other two bioenergy products, pyrolysis 

technology is advancing at a rapid rate and has a promising potential for commercial conversion 

of biomass to fuels. 

 Contributions to the total GHG emissions of biorefinery systems were different based on 

conversion pathways. For bio-oil production, pyrolysis conversion was the only crucial process 
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to determine how much GHG emits. However, when producing pellet, feedstock collection, 

storage and processing, and pelletizing all played large role in determining the final GHG 

balance. It is the same for biopower production that all processes contribute more than 10% of 

the total GHG emission. These changes among different bioenergy products could be explained 

by different utilization of energy at the facilities. Based on the study by Cherubini and Jungmeier 

(2010),  the largest fraction of total GHG emission originated from diesel/gasoline consumption, 

followed by electricity from natural gas, heat and others. The production of pellet showed lower 

GHG emissions than the other two products, and the reason was there is only a low level of 

electricity consumption in pellet mill with less processing (Fantozzi and Buratti 2010; Steele et 

al. 2012).  Even though energy consumption is usually high for biomass power generation (Nuss 

et al. 2013), the heat and electricity could be self-sufficient, with more feedstock required. 

4.4.2 Economic feasibility 

For bioproduct investment, the major capital cost items for a bioenergy production system 

include various processing and controlling equipment. System cost intensity tends to decrease as 

the system size increases, but this could increase significantly with feedstock costs (Tidball et al. 

2010).  Usually the scale of a biopower plant or a biofuel refinery is much larger, and a larger 

facility will demand more biomass with more biomass handling cost (Sultana et al. 2010). A few 

smaller size facilities will be able to reduce the transportation distance of biomass delivery. The 

capital and operational and maintenance costs were adjusted from previous studies, and the costs 

for pellet facility were much lower than these of the other two bioenergy products. 

Feedstock cost occupied a large proportion of the total impact on the final production 

costs. In a study of biomass-based transportation fuel by Wright et al. (2010), the cost of biomass 

as feedstock is an important factor affecting the sensitivity of the total cost and the feedstock cost 
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varies among feedstock supply/demand locations all year round. Consequently, the feedstock 

cost was also proved as an important parameter influencing the final product value from biomass 

(Swanson et al. 2010). It is critical to lower feedstock cost by minimizing delivery cost through 

logistic optimization (Wang et al. 2020). Biomass logistics modeling and optimization have long 

been on a single biomass feedstock at a relatively small scale, and this study showed that it is 

necessary to focus on multiple feedstocks at relatively large commercial scale. In biomass 

logistics optimization, biomass feedstock with issues such as low bulk density, spatially 

dispersed, high mass loss during handling always needs to be considered to lower the biomass 

delivered cost. There are various feedstocks available in the northeastern U.S. including energy 

grass, short rotation woody crops such as hybrid willow, and forest residues.  

4.4.3 Uncertainty and risks analysis 

In bioenergy production with renewable sources, the use of the MC method has advantages 

when compared to traditional sensitivity analysis. Monte Carlo simulation provides a dynamic 

approach to assessment of bioenergy production environmentally and economically. 

With counting uncertainty factors for three bioenergy products, 10,000 iteration of MC 

simulation was made. The pellet production showed more flat distribution than other two cases 

implied its highest uncertainty in GHG emission. This suggests that any slight change of 

environmental impact factors for pellet fuel production could easily raise the GHG emission. For 

the biofuel scenario, its environmental impacts would be less affected with little uncertainty, 

even though it had highest GHG emission. 

Fossil fuel price have a great impact on bioenergy market, especially for pyrolysis oil 

production from biomass. In this study, the biofuel case always showed negative NPV for sale 

price ranged $11.26 to $106/bbl. However, the bio-oil plant would be profitable if the market 
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price could rise to $135 per barrel, and the NPV would be as high as $2.52 million with 5% 

discount rate. Accounting multiple economic uncertainty factors, the relative low probability 

with 49.57% for a pellet plant to be profitable implies a relatively high risk in investment. 

Compared to the high probability (over 80%) to be profitable for biopower plant, it could due to 

the smaller scale for bioenergy plant would show much more fragile to the changes of financial 

environment and biomass and bioenergy market. To increase assurance of investment 

profitability, adding additional processing to upgrade products that could lead to a premium price 

would provide financial benefits. 

4.5 Conclusion 

This paper provides a dynamic approach to conduct an integrated life cycle and techno-

economic assessment for three bioenergy products utilizing multiple lignocellulosic biomass as 

feedstock. Results of the LCA and TEA provide insights for commercial-level decision making 

with regards to bioenergy production alternatives and investment potentials. Results can also 

inform potential policy makers aimed at facilitating growth in the bioenergy and bioproducts 

industries in the Northeast United States. 

The life cycle assessments for each supply chain component show different patterns for 

pellet, biopower, and biofuel production. The variance of environmental burden and cost were 

mostly explained by the differences of conversion pathways of the products. Biopower 

production presented the lowest GHG emissions, but with the highest water and fossil energy 

consumptions. Results of the LCA present that pyrolysis bio-oil production has the highest 

environmental impacts for GHG emission water and fossil fuel consumption, and pellet 

production has the lowest environmental impacts. 
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The economic feasibility of multiple biomass feedstocks for bioenergy products is essential 

for scale-up of various technologies. Separate process-based technical cost models were 

developed for the three established bioenergy production processes, and cases pellet and 

biopower production showed profitable under certain plant assumptions and circumstances. The 

net present value was most sensitive to discount rate when producing biopower, which implies 

higher risk when investors require a higher rate of return. 

Analytical approaches like Monte Carlo simulation could make more accurate decisions by 

applying a large number of iterations. For GHG emission, pellet production shows higher 

uncertainty than the other two bioenergy products. For financial evaluation, there is higher 

chance to be a profitable investment for biopower production.  
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5. QUANTIFYING ENVIRONMENTAL AND ECONOMIC 

IMPACTS OF HIGHLY POROUS ACTIVATED CARBON 

FROM LIGNOCELLULOSIC BIOMASS FOR HIGH-

PERFORMANCE SUPERCAPACITORS4 

  

 
4 To be submitted to Renewable Energy. 
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Abstract:   

Activated carbons (AC) from lignocellulosic biomass feedstocks have been used as 

supercapacitor electrodes. This chapter evaluated the environmental and economic impacts of 

AC produced from lignocellulosic biomass for energy storage purpose. The life cycle assessment 

(LCA) was employed to quantify the potential environmental impacts associated with AC 

production via the proposed processes including feedstock establishment, harvest, transport, 

storage and in-plant production. A techno-economic model was constructed to analyze the 

economic feasibility for AC production, which included the processes in the proposed 

technology, as well as the required facility installation and management. A base case together 

with two alternative scenarios of KOH-reuse and steam processes for carbon activation were 

evaluated for both environmental and economic impacts, while the uncertainty for the net present 

value (NPV) of the AC production was examined with seven economic indicators. 

Our results indicated that overall “in-plant production” process presented the highest 

environmental impacts. Normalized results of life cycle impact assessment showed that the AC 

production had environmental impacts mainly on carcinogenics, ecotoxicity, and non-

carcinogenics categories.  We then further focused on life cycle analysis from raw biomass 

delivery to plant gate, the results showed “feedstock establishment” has the most significant 

environmental impact, ranging from 50.3% to 85.2%. For an activated carbon plant of producing 

3000 kg AC per day in the base case, the capital cost would be $6.66 million, and annual 

operation cost was $15.46 million. The AC required selling price (RSP) was $16.79 per kg, with 

the discounted Payback Period (DPB) of 9.98 years. Alternative cases of KOH-reuse and steam 

processes had GHG emission of 15.4 kg CO2 eq, and 10.2 kg CO2 eq for every 1 kg activated 
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carbon, respectively. Monte Carlo simulation showed 49.96% of the probability for an 

investment to be profitable in activated carbon production for supercapacitor electrodes. 
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5.1 Introduction 

Lignocellulosic materials such as energy grasses and woody biomass are widely 

recognized as environmentally friendly feedstocks for value-added bioproducts (Liu et al. 

2017a),  including for bioenergy production (Liu et al. 2017b) and carbon sequestration (Zhao et 

al. 2019), and as an essential element for the production of active carbon-based material (Gu et 

al. 2018). Utilizing biomass to develop alternative energy storage devices with high energy 

densities is a viable solution due to the uncertainty of fossil fuels and increased environmental 

concerns (Subramanian et al. 2007). Supercapacitors are intermediate systems between 

electrochemical batteries and dielectric capacitors, which can deliver high power during few 

milliseconds (Kötz and Carlen 2000). Carbon supercapacitors are one of the three different types 

of supercapacitors (Gamby et al. 2001). Among the variety of carbonaceous materials such as 

carbon aerogel, activated carbon (Obreja 2008), and carbon nanotubes (Portet et al. 2005) 

currently investigated for supercapacitor electrode, activated carbon is the most widely used 

material mainly because of its cost effectiveness, good conductivity and potential environmental 

improvement (Teo et al. 2016).  Despite the fact that carbon electrode is mostly produced from 

nonrenewable materials like coal and petroleum, lignocellulosic biomass has been known as a 

renewable and inexpensive feedstock for AC-based supercapacitor electrodes. 

Fundamentals behind activation of carbon materials have been well studied and the 

activation of carbon materials is generally done either by a physical or chemical process (Chen et 

al. 2011; Alhashimi and Aktas 2017). In the case of physical activation process, a large amount 

of internal carbon mass in carbon structures are removed with activators such as steam or carbon 

dioxide (Bergna et al. 2018), while in the chemical activation process, chemicals agents used in 

both carbonization and activation steps so the raw material is thermally decomposed 
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(Świątkowski 1999). The synthesis protocol of the biomass-based AC capacitors usually includes 

pyrolysis (for carbonization) and activation processes (Yakaboylu et al. 2019). Various studies 

on activated-carbon supercapacitors have investigated the integration pyrolysis and activation 

processes, and all showed high specific capacitances of biomass derived carbon (Cao et al. 2016; 

Sun et al. 2013; Li et al. 2011). 

Though efforts have been made by researchers to study on biomass-based activated 

carbon for energy storage applications (Teo et al. 2016; Hassan et al. 2020), the production of 

lignocellulosic activated carbon for energy storage purpose still faces many technical, economic, 

and environmental challenges. Studies have focused on using lignocellulosic material for 

activated carbon production due to its voluminous amounts (González-García 2018) and 

environment-friendly attributes (Hjaila et al. 2013). However, the downside of using 

lignocellulosic material for activated carbon production is the low carbon yield (Hassan et al. 

2020), which could result in economic and environmental issues. Meanwhile, the other key 

challenge towards the carbon supercapacitor is the development of low cost activated carbon 

compared to other electrode materials (Rufford et al. 2008). 

Life Cycle Assessment (LCA) is an approach that accounts and manages environmental 

impacts by considering all the aspects of resource uses and emissions associated with an 

industrial system from either cradle-to-gate or cradle-to-grave (Curran 2008). A full LCA study 

typically includes four steps: goal and scope, inventory analysis, impact assessment, and the 

interpretation of results (Muralikrishna and Manickam 2017). Life Cycle Assessment has been 

widely applied to analyze the environmental impact of the utilization of biomass to various 

biomass-based products (Liu et al. 2017b; Budsberg et al. 2012). Liu et al. (2017a) compared 

three bioenergy products from three lignocellulosic feedstocks and found that pellet production 
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presented the lowest greenhouse gas (GHG) emissions and fossil energy consumption than 

biopower and biofuels. A LCA of ethanol production via bioconversion of willow biomass 

showed  a 1.69 times greater of water consumption compared to  the gasoline production of 

using the same feedstock (Budsberg et al. 2012). The environmental impacts associated with the 

activated carbon production vary depending on different feedstocks and synthetic processes. A 

cradle-to-gate LCA study of activated carbon from woody biomass has showed that the 

cumulative energy demand would potentially decrease by 35% compared to coal-based activated 

carbon (Gu et al. 2018). A study on the environmental impacts of activated carbon from olive-

waste cakes showed that the impregnation using H3PO4 as chemical activation agent  is a major 

process responsible for the majority of the impacts (Hjaila et al. 2013). Another LCA study of 

activated carbon from coconut shells implied that using renewable resources to produce AC 

would reduce both human toxicity and global warming (Arena, Lee, and Clift 2016).  

Previous studies have focused on cost estimation of biomass derived activated carbon 

(Ng et al. 2003; Stavropoulos and Zabaniotou 2009). A process flow diagram was developed for 

AC production from pecan shells in a plant with a capacity of 10000kg/day, with a production 

cost of $2.89/kg (Ng et al. 2003). The activated carbon production processes were compared 

using various feedstocks with the production costs ranging from $1.56 to $2.24 per kg of 

activated carbon (Stavropoulos and Zabaniotou 2009).  

However, a comprehensive assessment of the economic feasibility and life cycle analysis 

for carbon supercapacitors is still lacking. As the electrodes industry continues to grow, it is 

critical to develop a baseline analysis of the biomass derived activated carbon for energy storage 

purpose and evaluate its performance economically and environmentally. The objectives of this 

study were to: (1) perform a life cycle assessment analyzing the environmental impacts of 
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biomass-based activated carbon; (2) conduct a techno-economic analysis for utilizing the energy 

crops for carbon supercapacitors, (3) compare environmental impacts from alternative scenarios 

of the activated carbon productions, and (4) quantify the economic uncertainty of the AC 

productions. 

5.2 Materials and Methods 

In this study, an entire process of activated carbon production was defined with utilizing 

energy crops of switchgrass and miscanthus to produce highly porous activated carbon for 

supercapacitor electrodes. The processes of the AC production include biomass establishment, 

harvest, transport, storage, and in-plant production.  

The raw feedstock: switchgrass and miscanthus, has been established in the field and was 

harvested and stored before delivery to the activated carbon (AC) plant, and then it is ground and 

blended into relatively fine material of smaller particle size in order to facilitate the carbonization 

and activation thereafter. Biochar is prepared by intermediate pyrolysis in a fixed bed with raw 

materials. After being impregnated with the potassium hydroxide (KOH) solution for chemical 

activation with the precursor-to-KOH ratio always kept constant at 1:4 by weight (Yakaboylu et 

al. 2019), the intermediate carbon is activated in at 850 °C. In the base case, it was assumed the 

plant production rate of 3000 kg per day, which is a capacity to meet the demand of a small-to-

medium supercapacitor electrode market (Sun et al. 2013). 

Two alternative scenarios of life cycle impacts were examined relative to the base case in 

terms of sensitivity. In the activation process of the baseline, the potassium hydroxide (KOH) 

was used as an activation agent and the KOH was not recycled, which would bring a great 

amount of environmental burden due to the chemical consumption and waste water created 

(Montes and Hill 2018). For the first case scenario, the introducing chemical recycling and 



146 

 

reusing of potassium hydroxide with a mass loss of 10% was considered. The steam activation 

was used in the second alternative scenario and it is a common process to produce activated 

carbon for general purposes at commercial scale (Nor et al. 2013). 

Then the uncertainty of the economic impacts was examined according to the changes of 

stochastic production rate, production increase rate, sale price, equipment salvage price, and 

discount rate in the models. Monte Carlo (MC) simulation results in a set of values for the NPVs, 

are represented by their corresponding probability distributions (Table 5.1). 

Table 5.1 Impact factors for the TEA uncertainty analysis. 

Item Base Case Value Prob Distribution 

Labor rate $18.58/hr Beta(4.8,2.7) min=7.25 max=25 

Raw materials Delivery cost $80/dry Mg Beta(2,9) min=69 max=130 

KOH price $750/dry Mg Uniform(500,1000) 

Lang factor 3.63 Beta(2.3,5) min=3 max=5 

Days operated 320 days Beta(3,3) min=310 max=330 

Production Price $17/kg Beta(6,6.5) min=5 max=30 

Discount Rate 5% Uniform(0.05,0.1) 

 

5.2.1 Life Cycle Assessment 

5.2.1.1 Goal and scope definition 

A cradle-to-gate LCA model was developed to estimate the environmental impacts of 

active carbon production for supercapacitors from lignocellulosic biomass. The entire study 

boundary for producing high-performance activated carbon includes two major components: 

biomass feedstock production and in-facility AC production (Figure 5.1).  The cradle-to-gate 

LCA considers feedstock establishment, harvest, transportation, and storage, in-plant production, 

and final products. In an AC production plant, raw materials were processed through: (1) size 

reduction, (2) thermochemical conversion into biochar via pyrolysis, and (3) chemical activation. 

The functional unit (f.u.) of the system was 1000 kg of energy-storage-purpose activated carbon.  
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Figure 5.1 Study boundary of the activated carbon production from lignocellulosic 

biomass. 

5.2.1.2 Life cycle inventory 

With producing 1000 kg of highly porous AC, the material inputs were carried out to 

estimate the environmental output over the AC production (Table 5.2). Diesel and lubricating oil 

were consumed by machine handling in almost every process. The utilization of fertilizer and 

herbicide was also considered and could potentially have great environmental impacts. 

Electricity and potassium hydroxide (KOH) were the materials consumed in size-reduction, 

carbonization, and activation. Data of input was from the studies by Liu et al. (2017a), Arena et 

al. (2016), Yakaboylu et al. (2019), and the US LCI database (US NREL 2012). 
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Table 5.2 Environmental inputs and outputs for energy-storage activated carbons (ACs) 

from cradle-to-gate, on a per ton (1000 kg) basis (f.u.). 

  Amount Unit 

Product    

 AC 1000 kg 

Feedstock consumed 

 Multiple Lignocellulosic Biomass 8.94 Dry Mg 

Input    

 Diesel 80.56 L 

 Lubricating oil 0.78 kg 

 Ammonium sulphate, as N 51.00 kg 

 Glyphosate 0.18 kg 

 Electricity, medium voltage 669.83 kWh 

 Potassium hydroxide (KOH) 22,560.00 kg 

Output    

 Butadiene 3.39E-05 kg 

 Acetaldehyde 6.65E-04 kg 

 Acrolein 8.02E-05 kg 

 Benzene 8.09E-04 kg 

 Carbon dioxide, fossil 1.03E+04 kg 

 Carbon monoxide, fossil 4.58 kg 

 Formaldehyde 1.02E-03 kg 

 Methane, fossil 8.31E-03 kg 

 Nitrogen oxides 3.35 kg 

 Nitrogen oxides 2.76 kg 

 PAH, polycyclic aromatic hydrocarbons 1.46E-04 kg 

 Particulates, > 2.5 um, and < 10um 9.57E-02 kg 

 Propene 2.24E-03 kg 

 Toluene 3.55E-04 kg 

 Sulfur monoxide 4.96E-02 kg 

 VOC, volatile organic compounds, unspecified origin 9.79E-02 kg 

 Xylene 2.47E-04 kg 

 Dinitrogen monoxide 2.08E-03 kg 

 water 3.21E+03 kg 

 Oxygen 1.14E+03 kg 

 Nitrogen 3.15E+04 kg 

 Dust 9.24E+01 g 

  Tar (as naphthalene) 9.23 kg 
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Lignocellulosic feedstock was considered as raw materials to produce energy-storage 

purpose activated carbons. Energy crops of switchgrass and Miscanthus, feedstock establishment 

and collection were considered containing site preparation, planting, fertilization and herbicides, 

mowing, baling and collection. Equipment used in these processes included plow, disk, horrow, 

hopper, tedder, rake, baler, wheel loader, and tractor (Liu et al. 2017a). Feedstock was then 

transported by truck for 50 miles to processing facility, and active drier, grinder, and hammer 

mills were included in the storage and preprocessing process. Feedstocks were pyrolyzed at 

450ºC for carbonization process, then activated by being mixed and heated with potassium 

hydroxide (KOH) at 800 ºC. The feedstock-to-KOH ratio was 1:4 by weight and KOH would be 

discarded after usage (Yakaboylu et al. 2019). The fuel and materials consumption of the harvest 

system was modified  from the studies by Liu et al. (2017a). The transportation process was also 

applied based on the data in the US LCI database (US NREL 2012). The fuel and materials 

consumption of carbonization and activation process were adjusted based on the studies by 

Arena et al. (2016) and Yakaboylu et al. (2019). 

5.2.2 Economic Feasibility Analysis  

A mass flow diagram was developed to identify the yield values at each step in the 

carbon production and activation process and to determine the basic process equipment for 

constructing a manufacturing facility (Figure 5.2). According to this diagram, producing one kg 

of powdered activated carbon requires 12.96 kg of raw materials on wet basis. Feedstock 

establishment and harvesting, transportation, and storage, were considered in feedstock 

production component, and 3% of dry matter loss was accounted in each process (Wang et al. 

2020). Based on the pyrolysis and chemical activation of lignocellulosic biomass by Yakaboylu 

et al. (2019), the highly porous activated carbon for energy-storage was synthesized from 
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lignocellulosic biomass following the route of pyrolysis, and chemical activation with Potassium 

hydroxide (KOH) solution. 

 

Figure 5.2 A Mass flow of activated carbon production for high-performance 

supercapacitor. 

5.2.2.1 Cost Estimation 

In the base case, it was assumed the plant life was 10 years with a discount rate of 5%, 

and an annual production yield of 960,000 kg (3,000 kg per day for 320 days operated) of high-

performance ACs (Table 5.3). To support an AC plant with this size, it required a supply of 

8,579 dry Mg of lignocellulosic biomass as feedstock. 
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Table 5.3 Assumptions of the base case for an AC plant for energy-storage material. 

Parameter Unit Amount 

Plant Capacity Tons/day 3 

Days Operated Days/year 320 

Plant Life Year 10 

Feedstock Delivery Cost $/dry Mg 80 

KOH Purchase Price $/dry Mg 750 

AC Yield Rate % of dry feedstock 11.19 

 

Equipment cost was estimated from a combination of vender quotes and literature 

estimates (Ng et al. 2003; Stavropoulos and Zabaniotou 2009), and capital cost was estimated for 

all major technical components and processes within the plant using the Lang Factor method 

(Turton et al. 2018). The total cost was determined by multiplying the total purchase cost for all 

the major items of equipment by a constant called Lang factor. 

𝐶𝑇𝑀 = 𝐹𝐿𝑎𝑛𝑔 ∑ 𝐶𝑃,𝑖
𝑛
𝑖=1                                 (1) 

Where, 𝐶𝑇𝑀  is the capital cost of the plant, 𝐶𝑃,𝑖 is the purchased cost for the major 

equipment unit 𝑖, 𝑛 is the total number of individual units, and 𝐹𝐿𝑎𝑛𝑔 is the Lang Factor. Lang 

factor varies regarding three process plant types: solid processing plants (𝐹𝐿𝑎𝑛𝑔 =  3.10), solid-

fluid processing plants (𝐹𝐿𝑎𝑛𝑔 =  3.63), and fluid processing plants (𝐹𝐿𝑎𝑛𝑔 =  4.70) (Turton et 

al. 2018). In this study, 𝐹𝐿𝑎𝑛𝑔 = 3.63 was used for this combined fluid-solid system. Equipment 

costs derived from literatures were adjusted by multiplying the Producer Price Index (by 

Commodity for Machinery and Equipment: General Purpose Machinery and Equipment) (U.S. 

Bureau of Labor Statistics 2019). 

The cost associated with the day-to-day operation refers to the cost of manufacturing 

(𝐶𝑂𝑀) can be obtained by adding together three cost components: direct manufacturing cost, 

fixed manufacturing cost and total general manufacturing cost (Turton et al. 2018). It is denoted 

in the following equation: 
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𝐶𝑂𝑀(𝐶𝑜𝑠𝑡 𝑜𝑓 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑒) = 0.280𝐶𝑇𝑀 + 2.73𝐶𝑂𝐿 + 1.23(𝐶𝑅𝑀 + 𝐶𝑈𝑇)  (2) 

Where, 𝐶𝑇𝑀  is the capital cost of the plant, 𝐶𝑂𝐿 is the labor cost for plant operation, 𝐶𝑅𝑀 

is the raw material costs for feedstock and chemical solution, and 𝐶𝑈𝑇 is the utility cost for 

electricity, water, and natural gas. In this equation, the coefficients for each variable were 

derived from “total general manufacturing cost” by Turton et al. (2018). 

With the assumption that a single operator works 40 hours per week for 49 weeks 

annually, the number of required labor (N𝑂𝐿) were calculated based on (Turton et al. 2018): 

𝑁𝑂𝐿 = 4.5(𝑠ℎ𝑖𝑓𝑡𝑠) × (6.29 + 31.7𝑃2 + 0.23𝑁𝑛𝑝)
0.5

                         (3) 

Where 𝑃=0 is the number of processing steps involving particulate solids, 𝑁𝑛𝑝 = 10 is the 

number of other processing steps. To estimate the number of operators per shift. In this study, 

there were ten non-particulate processes: hammer mill, soak tanks, rotary dryer, two-rotary-kilns, 

rotary cooler, wash tanks, recovery tanks, storage tanks, rotary dryer, and sieve. For each of the 

𝑁𝑂𝐿 operators assigned an 8-hour shift with a typical 3-week leave, there are 4.5 operators 

required for a plant that runs 24 hours per day. After calculation, the number of labors per shift 

was 2.93 and then rounded up to 3 for later calculation. 

5.2.2.2 Economic evaluation 

To systematically measure and valuate the inputs and outcomes of the production of 

activated carbon, and determine how much the benefit of the investment would outweigh its 

costs, we examined several economic indicators including the return on investment (ROI), net 

present value (NPV), internal rate of return (IRR), and discount pay-pack period (DPB). The use 

of these economic indicators is to connect to the fact that not only the investment return must be 

assured, but the risk in its execution should also be considered.  
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Return on investment (ROI) is a performance measurement used to evaluate the 

efficiency of an investment or compare the efficiency of a number of different investments. The 

ROI can directly measure the amount of return on a particular investment, relative to the 

investment’s cost. To calculate the ROI, the benefit (or return) of an investment is divided by the 

cost of the investment. It is expressed as a percentage or a ratio. 

𝑅𝑂𝐼 =
𝐼𝑡−𝐶𝑝

𝐶𝑇𝑀
                                 (4) 

Where, 

𝐶𝑝 is total production cost; 

𝐼𝑡 is total income during the time period 𝑡; 

𝐶𝑇𝑀 is total investment cost. 

To analyze the profitability of the investment of an activated carbon plant from biomass, 

the net present value (NPV) was calculated by calculating the difference between the present 

value of cash inflows and outflows over the whole plant life (Ross and Westerfield 1988). The 

net present value brings to the present difference between incoming and outgoing cash flows 

during a project lifetime. 

𝑁𝑃𝑉 = −𝐶𝑇𝑀 + ∑
𝐼𝑡

(1+𝑑)𝑡
𝑁
𝑡=1                                (5) 

Where, 

𝐶𝑇𝑀 is total investment cost; 

𝐼𝑡 is the cash flow at single period 𝑡; 

d is the discount rate. 

Internal rate of return (IRR) measures the performance of the efficiency of an investment, 

and it directly estimates the amount of return on a particular investment. This matric is calculated  

over the whole plant life that the returns from an investment fluctuate from one year to the other, 
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and is expressed as a percentage range (Phillips 2012). A general rule-of-thumb is that the higher 

IRR the higher return, and the lower IRR the lower risk. 

Discounted pay-pack period (DPB) is the time period required for the pay-back of 

investment and interest, and it takes into account the present value of cash flow. It is calculated 

by setting NPV=0 and a trial and error procedure is applied. The shorter the payback, the more 

desirable the investment. Conversely, the longer the payback, the less desirable it is. The DPB 

was formulated using the logarithm with consideration of the time value of money, which is 

superior compared to simple payback period formula (Gallo 2016). 

𝐷𝑃𝐵 = ln(
1

1−
𝐶𝑇𝑀×𝑑

𝐶𝐹

) ÷ ln(1 + 𝑑)                         (6) 

Where, 

𝐶𝑇𝑀 is total investment cost; 

d is the discount rate; 

𝐶𝐹 is the cash flow during the whole period. 

5.3 Results 

5.3.1 Life cycle impacts 

The environment assessment for producing 1000 kg of supercapacitor electrode carbon 

products with the KOH activation was assessed using SimaPro 9 (PRé Consultants 2019), the 

database Ecoinvent 3.5 (Wernet et. Al. 2016), and the environmental assessment tool TRACI 2.1 

(Bare 2012) in terms of the cradle-to-gate environmental performance.  

  



155 

 

Table 5.4 LCA impact indicators for the activated carbon production. 

Impact category Unit Total 

Ozone depletion kg CFC-11 eq 2.62E-03 

Global warming kg CO2 eq 6.28E+04 

Smog kg O3 eq 2.23E+03 

Acidification kg SO2 eq 2.06E+02 

Eutrophication kg N eq 1.07E+02 

Carcinogenics CTUh 2.27E-03 

Non carcinogenics CTUh 1.04E-02 

Respiratory effects kg PM2.5 eq 1.41E+01 

Ecotoxicity CTUe 2.26E+05 

Fossil fuel depletion MJ surplus 7.18E+04 

 

Assessments were examined in the following 10 impact categories: ozone depletion, 

global warming, smog, acidification, eutrophication, carcinogenics, non-carcinogenics, 

respiratory effects, and ecotoxicity (Table 5.4). The emitted gases contributed to the depletion of 

the ozone layer was 2.62E-03 Kg CFC-11 equivalent. The total global warming potential when 

producing 1000 kg of high-performance activated carbon (AC) was 62.78 tons of CO2 

equivalent, including greenhouse gases CO2, N2O, NH4, and volatile organic compounds 

(VOCs). The measurement of smog indicated photochemical ozone creation potential 

(POCP)(Simon et al. 2010), accounting for 2226.50 kg O3 equivalent. Acidification emission to 

the atmosphere and subsequently deposited in surface soils and waters (Dissanayake and 

Summerscales 2013) was 206.37 kg SO2 equivalent. Eutrophication potential was 106.73 kg N 

equivalent, which referred to the over-fertilization in aquatic ecosystems over the entire life cycle 

(La Rosa 2016). Both Carcinogenics and Non-carcinogenics are human-toxicological effect 

factors for LCA purposes (Huijbregts et al. 2005), and they were 2.27E-03 and 1.04E-02 CTUh 

(Comparative Toxic Unit for human), respectively. Respiratory effects caused by inorganic 

substances was resulted as 14.09 kg PM2.5 equivalent, and the ecotoxicity potential was 
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2.26E+05 CTUe (Comparative toxic unit for ecotoxicity). The amount of consumed fossil fuel 

was 7.18E+04 MJ surplus. 

 

 

Figure 5.3 Normalized results of life cycle impact assessment of energy-storage activated 

carbon, in ten impact categories. 

Environmental indicators were normalized for each impact categories at midpoint level 

(Figure 3). Midpoint results include a large number of impacts and more details (ten factors in 

this study), and endpoint impacts are usually shown as impact on human health, global warming 

and resource depletion (Ellen Meijer 2014). The normalized factor can relate the impact scores to 

the average impact of a person has to environment per year (Ryberg et al., 2014). Result showed 

that the top three categories with highest potential impacts were carcinogenics, ecotoxicity, and 

non-carcinogenics, with values 43.01, 20.39, and 9.89 per person per year equivalent, 

respectively. The emission of both carcinogenics and non-carcinogenics has impacts on human 
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health at endpoint level (Huijbregts et al. 2005), and accounted for over 60% of the total 

environmental impacts. Ozone depletion, respiratory effects, and smog were the three factors that 

had the least effects on environmental emissions. When considering endpoint levels categorized 

as human health (including carcinogenics, non-carcinogenics, smog, respiratory effects, and 

ozone depletion), ecosystem quality (including acidification, eutrophication, and ecotoxicity), 

resource (referring to fossil fuel depletion), and GHG emission (referring to global warming), the 

results showed that their normalized environmental effects were 55.09, 27.60, 3.81, and 2.59, 

respectively at each endpoint level. 

Among the five process components including feedstock establishment, harvest, 

transportation, storage, and AC production, the process of AC production (carbonization and 

activation) resulted in a majority of the environmental impacts in all ten impact categories, with 

95.8 to 99.6% of the total normalized environmental impacts while 96.70% of the GHG emission 

occurred in the process of “carbon production” phase at a facility site (Table 5.5). 

Table 5.5 Percentage of life cycle environmental impacts of environmental indicators by 

process components. 

Impact category 
Establishment 

%  

Harvest          

% 

Transport       

% 

Storage          

% 

AC Conversion 

% 

Ozone depletion 0.3311 0.0051 0.0066 0.0459 99.6112 

Global warming 0.4091 0.1135 0.1574 0.0167 99.3033 

Smog 2.1094 1.3609 0.7072 0.0192 95.8034 

Acidification 0.8647 0.4516 0.2648 0.0222 98.3966 

Eutrophication 0.3011 0.0678 0.0486 0.0237 99.5588 

Carcinogenics 0.3499 0.0541 0.0697 0.0268 99.4996 

Non carcinogenics 0.4891 0.1122 0.1452 0.0282 99.2253 

Respiratory effects 0.5847 0.1313 0.0607 0.0276 99.1957 

Ecotoxicity 0.5218 0.1319 0.1710 0.0239 99.1513 

Fossil fuel depletion 0.6907 0.1995 0.2586 0.0160 98.8352 
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Figure 5.4 Percentage of life cycle environmental impacts of environmental indicators by 

process components, for biomass feedstock logistics only. 

Then the further analysis of environmental impacts on feedstock logistics (Figure 5.4), 

showed that “feedstock establishment” process had the most significant impact, ranging from 

50.3 to 85.2%. In “feedstock establishment” process, site preparation, fertilizing, and herbicide 

were counted in life-cycle inventory. According to a study by Schmidt Rivera et. al (2017), the 

use of fertilizer (ammonium sulphate) and herbicide (glyphosate) could affect the climate 

change, eutrophication, acidification and ecotoxicity, which have been proved that they are the 
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main cause of highly environmental impacts by feedstock establishment. The top three impact 

categories by feedstock harvest were smog (32.43%), acidification (28.17%), and greenhouse gas 

emission (16.29%). With the assumption of a 50-mile transportation distance for the base case, 

feedstock transport caused 15.12% of the environmental impacts in feedstock logistics. This 

could be increase as transportation distance of biomass increases. The impacts of global 

warming, fossil fuel depletion and ecotoxicity accounted for more than one fifth of the total 

environmental impacts by feedstock logistical activities.  

5.3.2 Techno-economic impacts 

Equipment costs were estimated based on a study by Ng (et al. 2003) and adjusted by 

multiplying producer price index by commodity for machinery and equipment (U.S. Bureau of 

Labor Statistics 2019), which measure the average change over time of the purchase prices of 

required machines in AC production (Table 5.6). The equipment costs for a total of 16 machines 

were $1.83 million for a high-performance AC plant with a productivity of 3000 kg/day. Adding 

installation costs, the total capital costs for this AC plant would be $6.66 million. 

Table 5.6 Capital costs for a biomass derived AC plant for energy-storage. 

Item  Amount Cost 

Hammer mill  2 $28,657 

Two-glass-lined, soak tanks  2 $254,727 

Rotary dryer  1 $23,881 

Two-rotary-kilns  2 $652,739 

Rotary cooler  1 $103,483 

Two-glass-lined, wash tanks  2 $254,727 

Two-glass-lined, recovery 

tanks 

 

2 $264280 

Two-glass-lined, storage 

tanks 

 

2 $222886 

Rotary dryer  1 $23881 

Sieve  1 $4776 

    

Equipment Cost   $1,834,037 

Capital Cost  𝑪𝑻𝑴  $6,657,555 
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Table 5.7 Annual operating costs for an AC plant for energy-storage purpose. 

Item   Annual Cost 

Lignocellulosic Feedstock   $686,327 

KOH    $11,915,401 

Raw Materials 𝑪𝑹𝑴  $12,601,728 

    

Electricity   $77,000 

Water   $14,000 

Natural Gas   $268,000 

Utility 𝑪𝑼𝑻  $359,000 

    

Operating labor 𝐶𝑂𝐿  $94,944 

Direct supervisory and clerical 

labor 

 0.18 × 𝐶𝑂𝐿 $17,090 

Operating Supplies  0.009 × 𝐶𝑇𝑀 $59,918 

Maintenance and repairs  0.06 × 𝐶𝑇𝑀 $399,453 

Laboratory charges  0.15 × 𝐶𝑂𝐿 $14,242 

Plant overhead costs  0.708 × 𝐶𝑂𝐿 + 0.036
× 𝐶𝑇𝑀 

$306,892 

    

Local taxes and insurance  0.032 × 𝐶𝑇𝑀 $213,042 

Patents and royalties  0.03 × 𝐶𝑂𝑀 $102,272 

Depreciation  0.1 × 𝐶𝑇𝑀 $665,755.50 

    

a. Administration costs  0.177 × 𝐶𝑂𝐿 + 0.009
× 𝐶𝑇𝑀 

$76,723 

b. Distribution and selling costs  0.11 × 𝐶𝑂𝑀 $374,997 

c. Research and development  0.05 × 𝐶𝑂𝑀 $170,453 

General Manufacturing Expenses   $1,287,929 

    

Total Operation costs   $15,456,509 

 

The total operation cost for producing highly porous activated carbon was $15.45 million 

annually (Table 5.7). Annually, the raw materials cost was estimated at $12.60 million for 

lignocellulosic feedstock and potassium hydroxide (KOH), and it accounted for the largest 

portion of the total operating cost, 81.53%. Besides raw material cost, adding the costs of utility, 

operating labor, direct supervisory and clerical labor, operating supplies, maintenance and 
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repairs, laboratory charges, and plant overhead costs, the total direct manufacturing costs were 

$13.85 million. The fixed manufacturing costs accounting for local taxes and insurance, patents 

and royalties, and depreciation with rate at 10%, were $981,069. And the general manufacturing 

expenses were $1.29 million. 

5.3.3 Economic feasibility 

Based on economic assessment for activated carbon production, the required selling price 

(RSP) was $16.79 per kg ($16,794.02/ton). Even though the price for general-purpose activated 

carbon could be as low as $1.65/kg, the market price of carbon for supercapacitor electrode can 

be higher with its premium grade ranging from $15 to $50/kg (Zhi et al. 2014; Weinstein and 

Dash 2013).  

Table 5.8 Economic evaluation for an AC plant for energy-storage purpose. 

Economic Indices Amount 

Total Investment Cost $ 6,657,555 

Total Operating Cost $ 154,565,090 

Total Income $ 163,200,000 

Return on Investment (ROI)  129.70% 

Net Present Value (NPV) $ 9,613 

Internal Rate of Return (IRR) 5% 

Discounted Payback Period (DPB) years 9.98 

 

The economic performance of the activated carbon production plant was evaluated in 

terms of ROI, NPV, IRR, and DPB (Table 5.8). It was assumed that all activated carbon products 

were characterized with the same surface area and are sold on a weight basis of $17/kg.  

The return on investment (ROI) of 129.7%, (or annual ROI of 12.97%) shows the net 

return of the AC plant could bring financial gain and the project would be potentially profitable. 

By comparing the difference between the cash inflows and cash outflows over the whole plant 

life, the net present value (NPV) of $9,613 also indicates that it is a profitable project, and this 
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investment should be considered financially. The internal rate of return (IRR) shows the 

expected compound annual growth rate of return that will be earned on the AC project is 5%. By 

discounted to present values of cash flows with return rate of 5%, the discounted payback period 

(DPB) is 9.98 years, which also shows the potential profitability of the AC plant. 

 

Figure 5.5 The impacts of activated carbon selling price on economic indices: (a) 

Accumulated NPV, (b) IRR, (c) ROI, and (d) DPB. 
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The product selling price’s impacts on the economic assessment were analyzed based on 

-15%-30% change of $17 per kg (Figure 5.5). The economic indices of the AC selling price 

range from $12 to $22/kg. At a selling price $15 or $16/kg, all the economic indices indicate that 

the AC plant would not be profitable due to the negative NPV, ROI, and longer DPB (longer 

than plant lifetime). The discounted payback period would be less than two years once the 

product selling price reaches to $20/kg and greater. At $20/kg, the internal rate of return would 

be greater than 50%, ranging from 56% to 85%.  

5.4  Discussion 

5.4.1 Sensitivity of life cycle impacts 

Results of life cycle assessment showed the differences of GHG emissions compared to 

other studies (Ng et al. 2003; Alhashimi and Aktas 2017; Gu et al. 2018). It was mainly because 

of the use of different activation technologies.  The usage of potassium hydroxide without 

recycling would lead to a great environmental impact not only on GHG emission, but also on 

human toxicity. Meanwhile, the wastewater containing resulted KOH in aqueous mix was 

disposed of by the refineries as a hazardous waste (Montes and Hill 2018). Thus, recovering the 

KOH for reuse could benefits AC production economically and environmentally. If 50% of 

potassium hydroxide was recycled, the annual material cost could be reduced to $5.96 million. 

And if an AC plant could reuse 90% of the chemical agent, it would save $10.72 million for 

material cost every year. 

The normalized results of the environmental impacts by the two alternative scenarios 

were compared with the base case (Figure 5.6). The two alternative scenarios demonstrated 

significant decreases of environmental impact in each of the 10 categories. Specifically, for 

greenhouse gas emission, both partial-recycling KOH activation and steam activation had 
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emission of 15.4 kg CO2 eq, and 10.2 kg CO2 eq for every 1 kg activated carbon production, 

respectively. These are 13.33% and 42.30% lower than the coal-based activated carbon of 18.3 

kg CO2 eq/kg (Gu et al. 2018), and are also similar to the GHG emission of 11.15 kg CO2 eq 

from wood-chip-based activated carbon (Gu et al. 2018). 

 

Figure 5.6 Normalized results of life cycle impacts of activated carbon production using 

alternative scenarios: (1) Non-recycling of KOH activation – baseline case, (2) Partial-

recycling KOH activation, and (3) Steam activation for general purpose AC.  



165 

 

Steam activation is a physical process, and the lignocellulosic precursor is carbonized at 

high temperature with controlled gasification. According to the González-García’s study (2018), 

steam-activated carbon products are characterized with only 776-1122 m2/g of surface area, 

which are not adequate to meet the energy-storage requirement for supercapacitor. On the other 

hand, the KOH-activated carbon products showed high specific surface area of up to 3265 m2/g, 

and exhibited great performance for electricity capacitance (Yakaboylu et al. 2019). However, 

problems may occur in KOH recycling related to impurities originated and immature potassium 

recovery. During chemical activation process, the ratio between KOH and precursor mass, 

temperature time and stirring are strictly controlled (Tran et al. 2017), and this would bring  even 

more difficulties to KOH recycling and reuse. 

5.4.2 Uncertainty of economic impacts 

With the production yield rate at 3000 kg of AC per day, and a minimum annual demand 

of 8,579 dry Mg of lignocellulosic biomass as feedstock, a reasonable capital cost was estimated 

at $6.66 million. Compared to the study  (Stavropoulos and Zabaniotou 2009) that a wood-based 

chemical activated carbon plant with 4500 kg/day capacity needs a total investment cost of $6.29 

million, the capital cost for AC plant in this study is 5.56% higher mainly because of higher 

feedstock delivery price.  Meanwhile, the required selling price at the break-even point for highly 

porous AC is $16.79 per kg, which is in the range of the market price of supercapacitor carbon of 

$15 to $50. Therefore, the RSP of this study provides a considerable margin from the actually 

potential selling price of electrode-purpose activated carbon products. 

The uncertain economic environment could arise risks for investment decisions. The 

Monte Carlo (MC) simulation, a proper tool enclosing the net present value (NPV) analysis 

(Shaffie and Jaaman 2016) was employed to achieve reliable cash flows estimation when 



166 

 

considering the investment of the plant for AC supercapacitors. The Monte Carlo simulation was 

conducted using Crystal Ball (Goldman 2002) in this study, and our results show the behavior for 

the NPV with consideration of related parameter uncertainty (Figure 5.7). After 4,982 iterations 

on calculating NPVs, the MC simulation converges to a properly scaled normal distribution of 

NPV, which means the appropriate sample size was adopted in this study. The distribution 

presents that the average NPV is $9,612.86 for this investment with 49.96% probability to be 

profitable.  

 

 

Figure 5.7 Net present value (NPV) uncertainty for an AC plant using lignocellulosic 

biomass. 

For activated carbon production from renewable lignocellulosic biomass sources, the use 

of the Monte Carlo simulation has advantages when compared to traditional methods such as 

sensitivity analysis. While in traditional methods the uncertainties are taken as deterministic 
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values, the MC simulation considers them with a probabilistic behavior and makes the results 

more realistic. 

5.5 Conclusions 

An integrated life cycle and techno-economic analysis was carried out for a small-to-

medium market of activated carbon for supercapacitor derived from lignocellulosic biomass. The 

lack of robust information on environmental and economic performance of a chemical-activated 

carbon production chain for energy-storage purpose limits the AC market potential using 

lignocellulosic feedstock as raw materials.  

In the entire supply chain of AC production, “activated carbon conversion” is the single 

process component resulted in the most impacts in all 10 environmental categories. 

Carcinogenics, ecotoxicity, and non-carcinogenics accounted for over 60% of the total 

environmental impacts related to human health. If just focusing on biomass feedstock logistics 

portion of the entire supply chain, “feedstock establishment” had the most significant impact on 

environment, especially for ozone depletion, respiratory effects, and carcinogenics. The RSP of 

$16.79/kg for activated carbon from lignocellulosic biomass is comparable with the market price 

of $15-50 per kg for supercapacitor carbons.  Our base case study indicates a profitable 

investment of $6.66 million might occur with the economic performance indicators of ROI 

129.7%, NPV $9,613, IRR 5%, and DPB 9.98 years.  

The analysis of alternative scenarios suggests that the sustainability of activated carbon 

for supercapacitors production could be improved greatly via reducing the environmental 

emissions and fossil energy consumption. For instance, the GHG could be further lowered for 

83.76%, with a potentially upgraded AC conversion technology in the alternative cases. The 

Monte Carlo simulation also provides a practical way to strategize risks for AC plant investment, 
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as well as project the possibilities of the outcome from the investment. Comparisons of 

sensitivity and uncertainty among case scenarios further prove that chemical agents in AC 

activation play a critical role in the overall environmental performance of the production chain, 

which accordingly imply that the economic and environmental sustainability of highly porous 

AC production could be improved through enhancing innovative carbon activation technologies.  
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The studies in this dissertation were motivated by four factors: (1) the need of selecting the 

optimal facility locations for biomass utilization with overcoming spatial dispersion of biomass, 

high transportation cost of the feedstock, and the possible negative environmental impacts, (2), a 

knowledge gap related to analyzing biomass supply chains with considerations of multiple 

feedstocks to boost the regional rural economic development in the northeastern U.S. (3) the lack 

of detailed and robust techno-economic analysis (TEA) and life cycle analysis (LCA) of diverse 

biomass feedstocks to support a sustainable bioenergy and bioproduct industry, and (4) the 

possibility of integrating frameworks from spatial analysis, mathematic programming, TEA and 

LCA, to aid in further understanding of biomass development. 

A set of modeling techniques were applied in this dissertation to assess the economics and 

environmental impact of the utilization of biomass for bioenergy and value-added products in the 

northeastern United States. According to the results from this dissertation and case scenarios, as 

well as uncertainty and sensitivity analyses, the following conclusions can be drawn: 

(1) The facility siting decision for biomass-based production can be made using integrated 

physical and social assets analysis. Via Experts’ opinions surveying, the participants’ area of 

expertise was reflected in their preference weights for the various criteria, and the to leverage the 

experience via this type of survey could increase the robustness of the weighting solicitation of 

evaluation criteria in biorefinery siting decision. It is proved that the fuzzy-logic prediction 

model incorporating AHP is a viable tool to predict the site suitability index at county level. A 

total of 43 counties or sites resulted from the suitability analysis in the study area could be used 

as potential candidates for biorefinery facilities in the region. To support rural community 

development, social assets analysis taking account a higher level of rurality and social capital 

index can further aid the siting decision process to optimize facility locations by potentially 
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promoting rural development in supportive communities. By accounting the social asset impacts, 

15 out of 43 locations were further identified for regional economic development featuring both 

environmental and social assets and impacts. The modeling process and findings of this study 

could be employed in the community engagement efforts to promote the rural economic 

development in the northeastern U.S.  

(2) The multiple biomass feedstock logistics is optimized with focus on entire biomass 

supply chains. With considerations of biomass supply/demand and potential biorefinery locations 

in the northeastern United States, the delivered costs were optimized with an average of $79.58 

per dry Mg, ranged from $67.90 /dry Mg to $86.97 /dry Mg. With the US DOE target to lower 

the total delivered cost of lignocellulosic biomass to $84 per dry ton by 2022, seventy seven out 

of 387 counties could be able to deliver biomass at a cost of this goal. Additionally, two counties 

in the region could even deliver at a cost of less than $71 per dry ton – the DOE’s target by 2030. 

Sensitivity analyses showed biomass delivered cost was mostly affected the differentiations of 

feedstock types, transportation distance and facility capacity. The biomass delivered cost was 

most sensitive to feedstock availability of forest residues among all feedstock materials. 

Feedstock transportation procurement radius and facility capacity had the most sensitive impacts 

to delivery costs. A reduction of procurement radius of 10 km could change biomass delivery 

cost by 8.65 %. The decrease of facility capacity by 10% from base case could lead to a 6.81 % 

reduction of biomass delivery by $74.16 per dry Mg. In the meanwhile, other impact factors like 

feedstock price, moisture content and fossil fuel price have impacts on biomass delivered cost as 

well. 

(3) An integrated life cycle and techno-economic assessment for bioenergy products 

utilizing multiple lignocellulosic biomass as feedstock was conducted. Three potential cases of 
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lignocellulosic biomass for commercial scale production of bioenergy analyzed for the economic 

and environmental effects. The integrated LCA and TEA provides insights for decision making 

for alternative bioenergy production at commercial level. Results of life cycle assessments on 

cradle-to-gate basis showed the pellet production had the lowest greenhouse gas emissions, as 

well as water and fossil fuels consumption, for 8.29 kg CO2 eq, 0.46 kg, and 105.42 MJ 

respectively with function unit of 1000 MJ of bioenergy products. Among biomass supply chain, 

the process of conversion process presented the greatest environmental impact for all three 

bioenergy products. The different patterns of life cycle assessments by supply chain components 

for pellet, biopower, and biofuel, could be mostly explained by the differences of bio-

productions. A mathematical TEA model to calculate net present value (NPV) was applied to 

three study cases, and only two out of three cases showed profitable with NPVs of $1.20 million 

for pellet, $81.60 million for biopower. Results showed both the pellet plant and biopower plant 

have higher chance to keep being profitable with discount rate changed from 0% to 10%, and 

there’s higher investment risks for producing biopower when the investors require a higher rate 

of return between these two bioenergy productions. Monte Carlo simulation could help with 

more accurate decisions by applying analytical approaches with many iterations. The uncertainty 

analysis of GHG emission implied pellet production with highest uncertain in environmental 

impacts, and bio-oil production had the least uncertainty in GHG emission but was with higher 

risks to produce extreme large amount of greenhouse gas. The uncertainty of investment showed 

biomass-based electricity production had the highest probability to be a profitable investment 

with 95.38%, and the probability for a profitable pellet plant was only 39.58%. 

 (4) The environmental and economic impacts analyses of activated carbons (AC)  from 

lignocellulosic biomass feedstocks demonstrate the AC as a promising product for energy 
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storage purpose as supercapacitor electrodes. It fills the knowledge gap related to robust 

information on environmental and economic performance of a chemical-activated carbon product 

for supercapacitor and helps to improve the limitation for potential AC market using 

lignocellulosic feedstock as raw materials. A base case for a small-to-medium market of highly 

porous AC with KOH-activation was applied for LCA and TEA.  Among all supply chain 

components, “AC conversion” resulted in the most impacts in all 10 environmental categories. 

And three environmental categories related to human health, including carcinogenics, 

ecotoxicity, and non carcinogenics accounted for over 60% of the total environmental impacts. 

The RSP of highly porous AC was16.79/kg, and it is comparable with the market price of $15-

50/kg for supercapacitor carbons. Also, the base case study indicated the AC plant is a profitable 

investment with the economic performance indicators of return of investment (ROI) 129.7%, net 

present value (NPV) $9,613, internal rate of return (IRR) 5%, and discounted period if payback 

time (DPB) 9.98 years. The life cycle analysis of alternative cases of reusing-KOH-activation 

and steam-activation showed that the sustainability of AC production for supercapacitors could 

be improved greatly via reducing the environmental emissions to 24.52% and 16.24% of the base 

case, respectively. The Monte Carlo simulation is a viable method to strategize risks for AC 

plant investment. Results showed there was 49.96% of probability for an AC plant investment to 

be profitable for supercapacitor electrodes. 
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APPENDIX A. SUPPLEMENTAL INFORMATION FOR 

CHAPTER 2 

 Table A-1 Survey sheet for experts’ opinions in biorefinery siting selection 

 

Biomass availability O O O O O Distance from main road

Biomass availability O O O O O Distance from electric substation

Biomass availability O O O O O Distance to waterbody

Biomass availability O O O O O Flood risk of potential siting

Biomass availability O O O O O Adjacent land uses of potential siting

Biomass availability O O O O O Population in siting area

Biomass availability O O O O O Landownership

Biomass availability O O O O O Unemployment rate in potential siting

Distance from main road O O O O O Distance from electric substation

Distance from main road O O O O O Distance to waterbody

Distance from main road O O O O O Flood risk of potential siting

Distance from main road O O O O O Adjacent land uses of potential siting

Distance from main road O O O O O Population in siting area

Distance from main road O O O O O Landownership

Distance from main road O O O O O Unemployment rate in potential siting

Distance from electric substation O O O O O Distance to waterbody

Distance from electric substation O O O O O Flood risk of potential siting

Distance from electric substation O O O O O Adjacent land uses of potential siting

Distance from electric substation O O O O O Population in siting area

Distance from electric substation O O O O O Landownership

Distance from electric substation O O O O O Unemployment rate in potential siting

Distance to waterbody O O O O O Flood risk of potential siting

Distance to waterbody O O O O O Adjacent land uses of potential siting

Distance to waterbody O O O O O Population in siting area

Distance to waterbody O O O O O Landownership

Distance to waterbody O O O O O Unemployment rate in potential siting

Flood risk of potential siting O O O O O Adjacent land uses of potential siting

Flood risk of potential siting O O O O O Population in siting area

Flood risk of potential siting O O O O O Landownership

Flood risk of potential siting O O O O O Unemployment rate in potential siting

Adjacent land uses of potential siting O O O O O Population in siting area

Adjacent land uses of potential siting O O O O O Landownership

Adjacent land uses of potential siting O O O O O Unemployment rate in potential siting

Population in siting area O O O O O Landownership

Population in siting area O O O O O Unemployment rate in potential siting

Landownership O O O O O Unemployment rate in potential siting

A is 

extremely 

more 

important 

than B

B is 

extremely 

more 

important 

than A

A is 

moderately 

more 

important 

than B

Parameter A Parameter B
Equally 

important

B is 

moderately 

more 

important 

than A
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Figure A-1 Scatter plot for survey summary for creation of pairwise matrix 
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APPENDIX B SUPPLEMENTAL INFORMATION FOR 

CHAPTER 3 

Table B-1. Descriptions of parameters and variables in the MILP model. 

Parameters/Variables Description 

Objective Function 

𝛼 Feedstock establishment cost; ($) 

𝛽 Feedstock harvest cost; ($) 

𝛾 Feedstock storage cost; ($) 

𝛿 Feedstock transportation cost; ($) 

𝜃 Feedstock preprocessing cost; ($) 

𝑍 Delivered cost of biomass feedstock 

Feedstock establishment (𝛼) 

𝑄𝐸𝑡𝑖  Quantity of biomass 𝑡 established in county 𝑖 (dry Mg); 

𝐸𝐶𝑡  Establishment cost of biomass t ($/Mg) 

Feedstock harvest (𝛽) 

𝑄𝐻𝑚𝑡𝑖 Quantity of collected/harvested biomass 𝑡 in county 𝑖 in month 𝑚 

(dry Mg); 

𝐻𝐶𝑡 Collected/Harvest cost of biomass 𝑡 ($/ Mg); 

Feedstock storage(𝛾) 

𝑄𝑆𝑚𝑡𝑖 Quantity of biomass 𝑡 stored on-landing site in county 𝑖 in month 

𝑚 ( dry Mg); 

𝑆𝐶𝑡 In field storage cost of biomass 𝑡 ($/dry Mg); 

𝑄𝐼𝑉𝐷𝑚𝑡 Quantity of biomass 𝑡 inventory in month 𝑚 at preprocessing 

facility;( Mg) 

𝐼𝐷𝐶 Inventory cost at preprocessing facility;( $/dry Mg) 

Feedstock transportation(𝛿) 
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𝑄𝐻𝐷𝑚𝑡𝑖  Quantity of feedstock transported directly to the preprocessing 

facility in county 𝑖 at month 𝑚 for biomass 𝑡 after harvesting; (dry 

Mg) 

𝑄𝑆𝑚𝑡𝑖  Quantity of biomass 𝑡 transported from storage site to 

preprocessing facilities in month 𝑚 (dry Mg); 

𝐷𝑖𝑗 Distance from county 𝑖 to facility 𝑗  (km);  

𝑡𝑟 Transportation rate ($*Mg-1/km); 

𝑄𝐷𝐶𝑚 Quantity of preprocessed feedstock transported to conversion 

plant in month 𝑚 ; (dry Mg) 

𝐷0 Distance from preprocessing facility to conversion site (km); 

Feedstock transportation (𝜃) 

𝑄𝐷𝑚𝑡 Quantity of biomass 𝑡 in facility for preprocessing in month 𝑚 ( 

dry Mg); 

𝐶𝐶𝑡 Preprocessing cost for chipping of biomass 𝑡  ($/dry Mg); 

𝐷𝐶𝑡 Preprocessing cost for drying of biomass 𝑡  ($/dry Mg); 

Constraints 

𝐴𝑉𝐴𝐿𝑡𝑖 Biomass 𝑡 availability at location 𝑖 (dry Mg); 

𝑝𝑡𝑖 The proportion of biomass 𝑡 available for harvest at supply location 𝑖; 

𝛾
𝑚𝑡

 A percentage shows the limitation that for biomass t can be 

harvest in month m of whole year; (%)  

𝑄𝐻𝑆𝑚𝑡𝑖 Quantity of harvested feedstock transported to field for storage in 

county 𝑖 at month 𝑚 for biomass 𝑡; (dry Mg) 

𝐷𝑀𝑡 Dry-matter loss rate for each feedstock type per month; (%) 

𝑚𝑐𝑡 Moisture content rate for biomass 𝑡; 

𝑚𝑐0 Moisture content rate for after-preprocessing biomass; 

𝑄𝐼𝑉𝐷𝑚𝑡 Quantity of biomass t inventory in month m; (dry Mg) 

𝑞𝑐𝑚 Monthly demand of feedstock used for conversion process; (dry 

Mg) 

𝐶𝐴𝑃𝑆𝑚𝑡𝑖 Storage site capacity for biomass t in county 𝑖 in month m; (dry 

Mg) 
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𝐶𝐴𝑃𝐷𝑚𝑡𝑖 Preprocessing facility capacity for biomass t in county 𝑖 in month 

m; (dry Mg) 

Parameters 

𝑇 Biomass feedstock type; 

 𝑡 = {𝑙𝑜𝑔𝑔𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠, 𝑆𝑅𝑊𝐶, 𝑠𝑤𝑖𝑡𝑐ℎ𝑔𝑟𝑎𝑠𝑠, 𝑚𝑖𝑠𝑐𝑎𝑛𝑡ℎ𝑢𝑠} 

𝑀 Month;  𝑚 =  {𝑎𝑙𝑙 𝑚𝑜𝑛𝑡ℎ𝑠 𝑖𝑛 𝑎 𝑦𝑒𝑎𝑟} 

𝐼 Biomass supply locations;  𝑖 = {𝑎𝑙𝑙 𝑐𝑜𝑢𝑛𝑡𝑖𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎} 

J Biomass processing facility locations;  𝑗 =

{𝑎𝑙𝑙 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠  𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑢𝑑𝑦 𝑎𝑟𝑒𝑎} 
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APPENDIX C. SUPPLEMENTAL INFORMATION FOR CHAPTER 4 

Table C-1 Cash flows for for bioenergy products: Biopower, Pellet, and Pyrolysis oil.  

Pellet Production 

Year 1 2 3 4 5 6 7 8 9 10 

Production                     

Pellets per year (ton)  0.05M 0.05M 0.05M 0.05M 0.05M 0.05M 0.05M 0.05M 0.05M 

Increase over previous year     0 0 0 0 0 0 0 0 

Revenue                     

Sales  9.25M 9.25M 9.25M 9.25M 9.25M 9.25M 9.25M 9.25M 9.25M 

Equipment sales                     

Operation costs                     

Feedstock costs  -3.68M -3.68M -3.68M -3.68M -3.68M -3.68M -3.68M -3.68M -3.68M 

Fixed operation costs  -1.29M -1.29M -1.29M -1.29M -1.29M -1.29M -1.29M -1.29M -1.29M 

Variable operation costs   -3.01M -3.01M -3.01M -3.01M -3.01M -3.01M -3.01M -3.01M -3.01M 

Capital Investment                     

Equipment purchase -1.59M          

Installation cost -0.60M                   

Cash Flow                     

Net Cash Flow -2.19M 1.26M 1.26M 1.26M 1.26M 1.26M 1.26M 1.26M 1.26M 1.26M 
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Year 11 12 13 14 15 16 17    

Production                  

Pellets per year (ton) 0.05M 0.05M 0.05M 0.05M 0.05M 0.05M 0.00M    

Increase over previous year 0 0 0 0 0 0 0    

Revenue                  

Sales 9.25M 9.25M 9.25M 9.25M 9.25M 9.25M 0.00M    

Equipment sales             0.56M    

Operation costs                  

Feedstock costs -3.68M -3.68M -3.68M -3.68M -3.68M -3.68M 0.00M    

Fixed operation costs -1.29M -1.29M -1.29M -1.29M -1.29M -1.29M 0.00M    

Variable operation costs -3.01M -3.01M -3.01M -3.01M -3.01M -3.01M 0.00M    

Capital Investment                  

Equipment purchase  -0.97M         

Installation cost   -0.35M              

Cash Flow                  

Net Cash Flow 1.26M -0.06M 1.26M 1.26M 1.26M 1.26M 0.56M    
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Biopower Production 

Year 1 2 3 4 5 6 7 8 9 10 

Production                     

Electricity per year (MWH)   260,000 260,000 260,000 260,000 260,000 260,000 260,000 260,000 260,000 

Increase over previous year %     0 0 0 0 0 0 0 0 

Revenue                     

Sales $  28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 

Equipment sales $                     

Operation costs                     

Feedstock costs $  -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M 

Operation costs $   -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M 

Capital Investment                     

Equipment purchase $ -30.08M          

Installation cost $ -12.89M                   

Cash Flow                     

Net Cash Flow $ -42.97M 11.10M 11.10M 11.10M 11.10M 11.10M 11.10M 11.10M 11.10M 11.10M 
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Year 11 12 13 14 15 16 17 18 19 20 

Production                     

Electricity per year (MWH) 260,000 260,000 260,000 260,000 260,000 260,000 260,000 260,000 260,000 260,000 

Increase over previous year %   0 0 0 0 0 0 0 0 0 

Revenue                     

Sales $ 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 28.94M 

Equipment sales $                     

Operation costs                     

Feedstock costs $ -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M -14.28M 

Operation costs $ -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M -3.56M 

Capital Investment                     

Equipment purchase $      -20.05M     

Installation cost $           -8.59M         

Cash Flow                     

Net Cash Flow $ 11.10M 11.10M 11.10M 11.10M 11.10M -17.54M 11.10M 11.10M 11.10M 11.10M 
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Year 21 22 23 24 25 26     

Production                 

Electricity per year (MWH) 260,000 260,000 260,000 260,000 260,000 0      

Increase over previous year %   0 0 0 0 0      

Revenue                 

Sales $ 28.94M 28.94M 28.94M 28.94M 28.94M 0      

Equipment sales $           0      

Operation costs                 

Feedstock costs $ -14.28M -14.28M -14.28M -14.28M -14.28M 0      

Operation costs $ -3.56M -3.56M -3.56M -3.56M -3.56M 0      

Capital Investment                 

Equipment purchase $       
    

Installation cost $                 

Cash Flow                 

Net Cash Flow $ 11.10M 11.10M 11.10M 11.10M 11.10M 0      

 

  



192 

 

 

Pyrolysis Oil Production  
Year 1 2 3 4 5 6 7 8 9 10  

Production                      

Liquid Fuel (bbl)   78,000 78,000 78,000 78,000 78,000 78,000 78,000 78,000 78,000  

Increase over previous year %     0 0 0 0 0 0 0 0  

Revenue                      

Sales $  4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M  
Equipment sales $                      

Operation costs                      

Feedstock costs $  -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M  
Operation costs $   -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M  

Capital Investment                      

Equipment purchase $ 
-

37.11M 
         

 

Installation cost $ 
-

15.90M 
                  

 

Cash Flow                      

Net Cash Flow $ 
-

53.01M 
0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 
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Year 11 12 13 14 15 16 17 18 19 20 21 

Production                       

Liquid Fuel (bbl) 78,000 78,000 78,000 78,000 78,000 78,000 78,000 78,000 78,000 78,000 0  

Increase over previous year %   0 0 0 0 0 0 0 0 0 0  

Revenue                       

Sales $ 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 4.21M 0  

Equipment sales $                     0  

Operation costs                       

Feedstock costs $ -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M -3.02M 0  

Operation costs $ -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M -0.61M 0  

Capital Investment                       

Equipment purchase $ 
-

37.11M 
          

Installation cost $ 
-

15.90M 
                    

Cash Flow                       

Net Cash Flow $ 
-

52.43M 
0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0.58M 0  
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APPENDIX D. SUPPLEMENTAL INFORMATION FOR CHAPTER 5 

Table D-1 LCA impact assessment for 1000 kg Activated carbon with 100% KOH consumption 

Calculation:  Analyze 

Results:  Impact assessment 

Product:  1 p Activated carbon with KOH consumed 100% (of project Highly porous AC) 

Method:  TRACI 2.1 V1.05 / US 2008 

Indicator:  Characterization 

Skip categories:  Never 

Exclude infrastructure 

processes:  
No 

Exclude long-term emissions:  No 

Sorted on item:  Impact category 

Sort order:  Ascending 

Impact category Unit Total Plantation 

Harvest 

Grass 

Transport 

Grass 

Storage 

Grass 

AC Production, at 

Plant-koh100% 

Ozone depletion kg CFC-11 eq 2.62E-03 8.67E-06 1.34E-07 1.74E-07 1.20E-06 0.00260737 

Global warming kg CO2 eq 6.28E+04 256.82098 71.246226 98.815934 10.487938 62340.824 

Smog kg O3 eq 2.23E+03 46.965337 30.29994 15.745106 0.42770795 2133.0583 

Acidification kg SO2 eq 2.06E+02 1.7844581 0.93196766 0.54649583 0.045915906 203.0588 

Eutrophication kg N eq 1.07E+02 0.32140202 0.072371741 0.051863772 0.025309735 106.26164 

Carcinogenics CTUh 2.27E-03 7.93E-06 1.23E-06 1.58E-06 6.07E-07 0.002255893 

Non carcinogenics CTUh 1.04E-02 5.08E-05 1.17E-05 1.51E-05 2.93E-06 0.010304661 

Respiratory effects kg PM2.5 eq 1.41E+01 0.082384561 0.018496899 0.008555499 0.003890875 13.977314 

Ecotoxicity CTUe 2.26E+05 1177.9144 297.78842 385.92735 54.057577 223807.09 

Fossil fuel depletion MJ surplus 7.18E+04 495.89877 143.2553 185.63398 11.46323 70957.576 
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Table D-2 LCA impact assessment for 1000 kg Activated carbon with 10% KOH consumed 

Calculation:  Analyze 

Results:  Impact assessment 

Product:  1 p Activated carbon with 10% KOH consumed (of project Highly porous AC) 

Method:  TRACI 2.1 V1.05 / US 2008 

Indicator:  Characterization 

Skip categories:  Never 

Exclude infrastructure 

processes:  
No 

Exclude long-term 

emissions:  
No 

Sorted on item:  Impact category 

Sort order:  Ascending             

Impact category Unit Total Plantation 

Harvest 

Grass 

Transport 

Grass 

Storage 

Grass 

AC Production, 

at Plant-koh10% 

Ozone depletion kg CFC-11 eq 0.000280201 8.67E-06 1.34E-07 1.74E-07 1.20E-06 0.000270025 

Global warming kg CO2 eq 15863.693 256.82098 71.246226 98.815934 10.487938 15426.322 

Smog kg O3 eq 352.48604 46.965337 30.29994 15.745106 0.42770795 259.04795 

Acidification kg SO2 eq 25.725235 1.7844581 0.93196766 0.54649583 0.045915906 22.416397 

Eutrophication kg N eq 11.403756 0.32140202 0.072371741 0.051863772 0.025309735 10.932809 

Carcinogenics CTUh 0.000241622 7.93E-06 1.23E-06 1.58E-06 6.07E-07 0.000230276 

Non carcinogenics CTUh 0.001133582 5.08E-05 1.17E-05 1.51E-05 2.93E-06 0.001053129 

Respiratory effects kg PM2.5 eq 1.5604246 0.082384561 0.018496899 0.008555499 0.003890875 1.4470968 

Ecotoxicity CTUe 24714.074 1177.9144 297.78842 385.92735 54.057577 22798.386 

Fossil fuel depletion MJ surplus 8020.5797 495.89877 143.2553 185.63398 11.46323 7184.3284 
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Table D-3 LCA impact assessment for 1000 kg Activated carbon with steam activation 

Calculation:  Analyze 

Results:  Impact assessment 

Product:  1 p Activated carbon with steam activation (of project Highly porous AC) 

Method:  TRACI 2.1 V1.05 / US 2008 

Indicator:  Characterization 

Skip categories:  Never 

Exclude infrastructure 

processes:  
No 

Exclude long-term 

emissions:  
No 

Sorted on item:  Impact category 

Sort order:  Ascending             

Impact category Unit Total Plantation 

Harvest 

Grass 

Transport 

Grass 

Storage 

Grass 

AC Production, at 

Plant-steam 

Ozone depletion kg CFC-11 eq 2.05E-05 8.67E-06 1.34E-07 1.74E-07 1.20E-06 1.03E-05 

Global warming kg CO2 eq 10650.97 256.82098 71.246226 98.815934 10.487937 10213.599 

Smog kg O3 eq 144.26 46.965337 30.29994 15.745106 0.42770795 50.824571 

Acidification kg SO2 eq 5.65 1.7844581 0.93196766 0.54649583 0.045915906 2.3450189 

Eutrophication kg N eq 8.12E-01 0.32140201 0.072371741 0.051863771 0.025309735 0.34071632 

Carcinogenics CTUh 1.66E-05 7.93E-06 1.23E-06 1.58E-06 6.07E-07 5.21E-06 

Non carcinogenics CTUh 1.06E-04 5.08E-05 1.17E-05 1.51E-05 2.93E-06 2.52E-05 

Respiratory effects kg PM2.5 eq 1.68E-01 0.082384561 0.018496899 0.008555499 0.003890875 0.054850421 

Ecotoxicity CTUe 2379.77 1177.9144 297.78842 385.92735 54.057577 464.08524 

Fossil fuel depletion MJ surplus 934.66 495.89877 143.2553 185.63398 11.46323 98.412026 
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