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ABSTRACT  

Cu-Based Electrocatalysts for Carbon Dioxide Conversion to Value-Added 

Chemicals 

Qingyang Li 

 

Massive usage of fossil fuel has being causing considerable emission of CO2, which 

increases the temperature of the planet and greatly threaten human living environment, such as 

soil degradation, lower agricultural productivity, desertification, less biodiversity, fresh-water 

reduction, ocean acidification, ozone sphere destruction, etc. A number of technologies are being 

developed to reduce the CO2 amount, however, all existing technologies except utilizing CO2 as 

a feedstock, are hardly to essentially close the anthropogenic carbon loop. Currently, considering 

the economy and operability, electroreduction of CO2 seems to be the most promising strategy to 

convert CO2 to high value chemicals. 

During the process of CO2 electroreduction, Cu-based catalysts become the most popular 

because they meet the requirements of activating CO2 and intermediates, suppression of 

hydrogen formation, and electron transportation. Herein, the factors that affect the Cu-based 

catalysts’ performance, including morphology, particle sizes, presence of atomic-scale defects, 

surface roughness, residual oxygen atoms, and so on, have been surveyed and discussed. In 

addition, the most probable reaction pathways to synthesize the desirable C2 products under 

different situation have been identified, which follow *CO + *CO → *COCO, *CO + *COH → 

C2, *CO + *CHO → C2 and *COH → *CH2 → C2. This report will benefit the design and 

optimization of Cu-based catalysts for the conversion of CO2 to high value chemicals with high 

efficiency and selectivity.          
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Chapter 1. Introduction  

Greenhouse gases are mainly composed of carbon dioxide (CO2), carbon monoxide (CO), 

nitrogen oxides (NOx), methane (CH4) and fluorinated gases, making much contribution to 

sustain the earth’s temperature for the reason that greenhouse gases can absorb thermal radiation 

from the earth's surface and then re-emits the radiation back to the earth (Figure 1.1). However, 

continuously increasing greenhouse gases have being dramatically increasing the temperature of 

our planet due to massive usage of fossil fuel and other industrial activities in which produced 

considerable emission of CO2, NOx, hydrocarbons, CO, and so on (Figure 1.2). Rising 

temperature may cause soil degradation, lower agricultural productivity, desertification, less 

biodiversity, fresh-water reduction, ozone sphere destruction, etc. Excessive greenhouse gases 

also have a directly negative effect on human living environment, such as natural disasters, 

malnutrition, and increased mortality induced by heat wave [1-3].  

 

Figure.1.1 Greater concentrations of greenhouse gases mean more solar radiation is trapped within the Earth’s 

atmosphere, making temperatures rise. Source: W. Elder, NPS 
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Figure.1.2 Global average land-sea temperature anomaly relative to the 1961-1990 average 

temperature in degrees celsius (°C). Source: Hadley Center (Had CRUT4). 

Notably, CO2, accounting for nearly 77% of greenhouse gases, has extremely increased 

after industrial revolution and should be principally responsible for global warming [4,5]. Before 

industrial revolution, new-produced CO2 can be consumed by plants to keep the concentration of 

CO2 balanced. In recent years, it is clearly realized that the human-generated CO2 greatly 

exceeds the threshold of nature’s capability (Table1.1). It is reported by Global Carbon Project 

(GCP) that global CO2 emission from burning fossil fuels, the culprit of CO2 emission, increased 

by 2.7 percent in 2018, after a 1.6 percent increase in 2017. 

Table 1.1. Increase of carbon dioxide in the atmosphere for the last 1000 years [2,3]. 

Year 
Period 

(year) 

Concentration 

(ppm) 

Increase 

(ppm) 

Increase rate 

(ppm/year) 

1000-1800 800 270-280 10 0.01 

1800-1950 150 280-310 30 0.2 

1958-1975 17 315-330 15 0.9 

1975-2002 27 330-370 40 1.5 (8 billion tons) 

2002-2010 8 370-388 18 2.25 (12 billion tons) 

2010-2018 8 388-407 19 2.38 

 

-0.6 
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-0.2 

-1E-15 
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In the past decades, people gradually realized the significance and urgency of controlling 

CO2 concentration to prevent the Earth's temperature from continuously increasing. Though 

relative methods and research are conducted to solve those problems, the effect is limited and the 

CO2 concentration continues to grow [6,7]. Therefore, many nations, especially those main 

emission countries, have issued more strict laws and taken more actions to reverse the situation. 

For example, in 2011, the US Department of Energy (DOE) invested $106 million in various 

CO2-utilization projects, and in 2018, DOE invested $17.6 millions and $44 millions in 

Technologies Capable of Reducing CO2 Capture Cost and Energy Penalties, and Advanced 

Carbon Capture Technologies Projects, respectively. In addition, the European Union has set up 

a prize worths €1.5 million for a technology demonstrating viable CO2 utilization in 2020. China 

is expected to invest $4-5 billion in CO2 recycling from main emission sources, such as coal, 

steel, cement and paper industries [8-10].  

Based on the previous and current supports from society and governments, technologies are 

being developed and applied to further solve the problems. In the following chapters, these 

technologies will be discussed in detail. 
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Chapter 2. Current technologies and on-going research for CO2 

treatment 

Introduction 

CO2 is generated from both nature and human activities. Natural sources are composed of 

decomposition, ocean release and respiration, while human activities include cements and papers 

production, deforestation, and burning of fossil fuel, etc. Basically, there are two ways to control 

and even reduce the CO2 concentration: 1) replacing the traditional fossil fuel, which accounts 

for 87 percent of all human-produced CO2 emissions, with renewable clean energy, such as solar, 

wind and bioenergy; 2) capturing, sequestration and utilization of CO2 [1-3]. Here, we will focus 

on the second method. Although the concentration of CO2 has dramatically increased in past 

decades, its absolute concentration in the air is still low at about 0.04% [4-6]. Therefore, the first 

challenge is to capture diluted CO2 in the air. After CO2 is captured, it can be sequestrated or 

utilized as a feedstock to produce chemicals or fuels.   

2.1 Carbon dioxide capture  

In order to utilize carbon dioxide, the first step is to capture it efficiently. In theory, CO2  

even at low concentration can be transported and injected underground, however, energy cost 

and other  associated costs make this approach impractical [7-9]. Therefore, pure CO2 needs to 

be produced for the purpose of transportation and storage. CO2 capture requires the separation of 

CO2 from other species contained in industrial gases, such as flue gas, synthetic gas, air, or raw 

natural gas [10,11]. These separation steps can be accomplished by physical or chemical solvents, 

filtration membranes, solid adsorbents, or cryogenic separation. There are two approaches to 
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collect CO2 with high concentration: 1) capture it from the large emission factories, utility plant, 

steel and cement plants; 2) and collect it directly in the atmosphere [12,13].   

2.1.1 Capture CO2 from industrial sources  

Basically, there are three different technologies that can be used to capture CO2 from the 

large industrial sources as shown in Figure 2.1, including post-combustion, pre-combustion, and 

oxyfuel. Post-combustion approach separates CO2 from the flue gas produced by the primary 

fuel combustion in the air [14-16]. In pre-combustion approach, fuel reacts with steam and air or 

oxygen first to produce syngas (CO and H2). Then, CO is converted to CO2 by further reaction 

with steam via water-gas-shift reaction, and H2 is separated as fuel. In this process, a lot of work 

needs to be done in the early stage, but the separation is relatively easier in the later stage, and 

hydrogen can be utilized in many industrial processes. Oxy-fuel system uses oxygen to substitute 

air for primary combustion, producing flue gases dominated by water vapor and CO2. This 

process requires the separation of oxygen from the air first. The flue gas produced by this 

method has a very high concentration of CO2 [17-20]. It is economically feasible to capture CO2 

in power plants with post-combustion system under certain conditions. CO2 separation from 

natural gas is a matured technology. The technology of pre-combustion has been widely used in 

the fertilizer manufacturing and hydrogen production industries. 
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Figure 2.1. Summary of CO2 capture technologies [18]. 

Organic solvent and membrane are usually used to separate and capture CO2. Normally, 

organic solvents, such as monoethanolamine (MEA) and ammonia, are considered as the most 

available and widely used technology. However, it is not reasonable to considered it as a 

sustainable technology for its high cost and difficulty in regeneration. Membrane technology will 

be one of the most promising technologies, because it is compact, modular, mobile, low cost and 

environment-friendly [21-25]. 

2.1.2 Capture CO2 from atmosphere 

Chemically scrubbing CO2 directly from the ambient air is another technology for CO2 

capture [26]. Though it is costly and energy-intensive, it is still an attractive technology because 

its potential scale of deployment is enormous [27-29]. 
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2. 2 CO2 storage and sequestration 

CO2 sequestration is considered as a potential technology for large-scale reduction of CO2 

concentration in the air. The idea is to inject compressed CO2 into the ground or ocean to store it 

there for a long period of time [30-32]. For oceanic fixation, liquid carbon dioxide is injected 

into the ocean at different depths via ocean pipelines or marine transportation vessels, allowing it 

to dissolve in water or form stable carbon dioxide lakes. On land, liquid carbon dioxide is 

injected into the underground formation where it is locked by water dissolution, physical 

adsorption or chemical reactions (Figure 2.2).  

In 2013, the United States Geological Survey (USGS) released the first comprehensive, 

geologically-based probabilistic assessment for CO2, showing a range of 2,400 to 3,700 metric 

gigatons of potential CO2 storage in USA. In addition, assessment also proved that carbon 

dioxide can be successfully injected using today’s engineering practices and technologies [33,34]. 

However, Geological and oceanic sequestration have significant disadvantages. For example, 

when CO2 is injected into the ocean, it may lead to the acidification of seawater, endangering the 

ecosystem. In addition, there is a risk of leakage that could contaminate groundwater or endanger 

organisms after it is buried underground. In the past, sequestration of CO2 in the underground 

was practiced for its convenience and low cost. However, in recent years, the social acceptance 

becomes lower and lower for the uncertainty and controversy [35,36].  
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Figure 2.2. CO2 sequestration underground and in sea. Source: Reagan Smith Energy Solutions, 

INC. 

2.3 CO2 utilization  

According to the report from Energy Information Administration (EIA), in the coming 

decades, energy consumption will increase continuously and fossil fuel still dominates the 

energy market, which means CO2 emission will further threaten our lives (Figure 2.3). Closing 

material cycle is a fundamental principle of industrial ecology. Hence, the best way to avoid 

sustained CO2 increase in the atmosphere is to keep the carbon balanced in biosphere [37-40]. 

Obviously, CO2 utilization is more consistent with this principle than CO2 sequestration. 

Basically, there are two ways to utilize CO2: 1) use it “as is”; 2) used it as feedstock to synthesize 

fuels and chemicals. 
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Figure 2.3. World energy consumption tendency. Source: U.S. Energy Information 

Administration, International Energy Outlook 2017. 

2.3.1 Use CO2 “as is” 

Every year, about 20 million tonnes of CO2 are widely utilized in industries “as is” [41]. For 

example, it is used as shield gas in manufacturing and construction industries at a large scale. In 

food industry, people use it to prevent fungal and bacterial growth, carbonate soft drinks, beers 

and wine, de-caffeinate coffee, keep food fresh, etc [42,43]. In oilfield, engineers use CO2 foam 

to enhance oil recovery. Interestingly, CO2 can be captured to enhance the growth of plants as 

some studies have shown that increasing the concentration of CO2 appropriately is beneficial to 

photosynthesis [44]. In addition, it is also used for neutralizing alkaline water, and producing fire 

extinguishers.  

2.3.2 CO2 is used as feedstock for chemical synthesis 

Statistically, over 90% of commercially available organic chemicals are produced from 

crude oil. CO2 conversion to organic chemicals will help reduce the emitted CO2 in air and the 

consumption of petroleum. In reality, industry has made some progress in utilizing CO2 as raw 

http://www.eia.gov/outlooks/ieo/
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materials to produce chemicals (Table 2.1). Two notable examples are salicylic acid and urea 

produced from CO2 which account for approximately 60% of the total worldwide consumption.  

Table 2.1. Major commodity chemicals currently synthesized from CO2 on an industrial scale 

globally. First three groups data are cited from reference [45] and the other data are cited from 

reference [46]. 

Chemical Production (ton) 

Cyclic carbonates  80,000 in 2010  

Salicylic acid 89,800 in 2013  

Urea 164,000,000 in 2015  

Polycarbonate (Asahi Kasei process)  605,000 

Polypropylene carbonate  76,000  

Acetylsalicylic acid 90,000  

Methanol 4000  

Thanks to the advances in technology, more and more methods for CO2 utilization have 

been developed in recent decades. For example, since 2013, Calera has been using CO2 to 

produce pure calcium carbonate, which is turned into fiber cement boards [47,48]. More research 

has being conducted to convert CO2 to cyclic carbonates due to its rapid growth in the area of 

electrolytes for lithium ion batteries [49,50]. Another promising area is the production of polyols, 

which are used as the raw material for polymers to further produce adhesives, coatings, 

mattresses, insulation refrigerator, and so on.  

2.3.3 CO2 conversion to fuel 

People have been debating the unmeaning topic for several decades when fossil energy will 

run out. First, it is hard to predict the amount of fossil fuel because it is subjected to many 

uncertain factors, such as the development of exploration and exploitation technology, and the 
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consumption rate. Second, the environment cannot enduringly tolerate the use of fossil as the 

main energy source and the energy configuration must be changed because fossil energy will 

inevitably cause global warming, acid rain, haze, and so on. Therefore, establishing a renewable 

carbon system will not only reduce CO2 emissions, but also alleviate other pollution caused by 

fossil processing and transportation. Though tremendous work has been done to convert CO2 to 

high-value products, it is impossible to essentially close the anthropogenic carbon loop. Because 

about 70% fossil fuel is combusted to generate energy while only 7% is used as chemical 

products according to the data from EIA (Figure 2.4). Therefore, to prevent continuous carbon 

accumulation in ecosphere, fossil fuel must be replaced by other energy without carbon emission, 

such as solar, wind and water.       

 

Figure 2.4. Usage pattern of US fossil fuel. Source: U.S. Energy Information 

Administration, Monthly Energy Review. 

Reduction of CO2 to fuel has become the most promising strategy because it helps reduce 

the amount of CO2 in air and CO2 can work as an energy storage matrix where other energy can 

be stored and transported. At least six potential CO2 conversion technologies are current topics to 

https://www.eia.gov/totalenergy/data/monthly/#summary
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realize 3E (efficiency, effect and economy) and implement on industrial scale. Some of them are 

close to commercialization, some are at the benchtop scale, and some have yet to be 

scientifically proven (Figure 2.5).  

 

Figure 2.5. Proposed timeline of CO2 utilization methods [54]. Note: the specific time ranges are 

based on extrapolation of timeline development of other disruptive technologies such as the 

advent of 3D printing, solar energy adoption, and electric vehicle development. 

Electrocatalytic conversion of CO2 is closest to commercialization [51-53]. Many startup 

and established companies, such as Opus-12, Mitsui Chemicals, Carbon Recycling International, 

and Carbon Electrocatalytic Recycling Toronto, are currently at the forefront to monetize the 

technology [54,55]. With the cost decrease of renewable energy, electrocatalysis will become 

more and more attractive [56].  

However, CO2 is extremely stable due to the strong C=O double bond with bonding energy 

of 750 kJ·mol
−1

 which is considerably larger than that of C-C (336 kJ·mol
−1

 ), C-O (327 

kJ·mol
−1

 ), and C-H (411 kJ·mol
−1

 ) [57]. Significant energy is required to break the C=O bond. 

Meanwhile, it is very difficult to control the reaction paths and lots of products may be produced 

during the reduction process, increasing the difficulty in products separation (Table 2.3).  
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Table 2.3. Standard electrochemical potentials for CO2 reduction [58]. 

 

The foreground of CO2 reduction for commercial use is dependent on the development of 

highly efficient and selective catalysts with relatively low energy cost. In recent years, much 

progress have been made on catalyst to reduce the energy barrier and control reaction pathway 

[59,60]. In the coming chapter, we will focus on the most popular catalysts, Cu-based catalysts, 

and summarize the factors influencing their performance.  
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Chapter 3. Recent advances in CO2 reduction on copper-based 

electrocatalysts 

Introduction  

Electrocatalysis is one of the most promising approaches for its renewable and 

environmental friendly properties as well as it has the potential to sustain solar-fuel-based 

economy. Many valuable products, such as CO, formate, methanol, methane, ethanol and 

ethylene, can be produced via electrocatalysis, which can be directly or indirectly used in 

industrial processes. For example, ethanol can be blended in gasoline for auto-engines, and CO 

can be converted to many chemicals via Fischer-Tropsch synthesis. Although it possesses great 

potential, the application is seriously held back by its high overpotential, poor selectivity and low 

faradaic efficiency. Therefore, it is urgent to study the reaction mechanism and develop tailor-

made electrocatalysts.  

The design of electrocatalytic reactor is critical in CO2 reduction. Though many kinds of 

reactor configurations have been developed to enhance CO2 conversion, the working principle is 

similar (Scheme 3.1). Typically, there are four main components in a reactor, including anode, 

cathode, membrane and electrolyte. Specifically, H2O is oxidized to O2 spilling at the anode, 

while CO2 is electrochemically reduced to produce CO and low carbon organic compounds on 

the cathode, such as CH3OH, CH3CH2OH, C2H4 and CH4. According to the statistical data, 

platinum is commonly used as anode, and KHCO3 dominates electrolyte field [3]. Many studies 

have reported improvement on the performance of membrane. Currently, Nafion produced by 

Dupont is the most popular one [4,5]. Multitudinous metals and their derivatives, such as Cu, Zn, 
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Ag, Au, Co, Pd, Bi, etc., are used as cathode. Scheme 3.2 details the structure and components of 

a electrochemical reactor [2].  

In this chapter, we will discuss the progress in Cu-based catalysts because Cu is the most 

researched catalyst having the potential to be commercialized. 

 

Scheme 3.1. Schematic illustration of electrochemical reduction of CO2 [1]. 

 

Scheme 3.2. A schematic drawing of the full electrochemical cell including a buffer layer with 

circulating liquid electrolyte [2]. 
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The binding energies of *CO and *H  (* denotes a surface adsorption site) are used as the 

descriptors for the correlation between the electrocatalytic performance and the surface property 

of different metals. It seems weak binding strength of *CO may cause massive CO formation 

because it is hard to absorb CO after it is formed on those metals, such us Au, Ag and Zn. While 

weak binding strength of *H may cause high proportion of H2 because it is hard to absorb *H 

after it is formed on those metals, such as Ni and Pt. Among those metal catalysts, Cu possesses 

the intermediate binding strength to *CO and does not have hydrogen underpotential deposition 

(Hupd). Those are the reason why copper is the only metal producing various hydrocarbons with 

relative high efficiency (Figure 3.1 and Table 3.1). Currently, Cu is the most commonly studied 

and may be the most suitable for large-scale application due to its cheap price and excellent 

catalytic property [3,4].  

 

Figure 3.1. The binding energies of the intermediates,       and       (CO* = *CO, H* = *H)  

[3].  
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Table 3.1. Reported faradaic efficiencies of various products measured for the electroreduction 

of CO2 in 0.1M KHCO3 [4]. 

 

Though Cu looks like the best metal catalyst for electrocatalytic CO2 reduction, its 

performance needs to be improved to achieve high efficiency and selectivity. As shown in Figure 

3.2, under relative low potential of -0.75 V vs. RHE (Reversible Hydrogen Electrode), only H2, 

CO and formate are produced [5]. According to previous research, the underlying reasons for 

high selectivity of Cu were related to local pH near electrode, morphology, particle sizes, the 

presence of atomic-scale defects, surface roughness, strains, and/or residual oxygen atoms in the 

catalysts, etc [6-9]. Experimental and computational results suggested that the active sites, 

chemical kinetics and transport effects greatly contributed to high efficiency and electivity. Here, 

we summarize the factors influencing the performance of Cu-based catalysts.  
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Figure 3.2. Current efficiency for each product as a function of potential (left) and Tafel plot of 

the partial current going to each product (right), respectively [5]. 

3.1 Fabricated Cu as the only metal for CO2 conversion 

3.1.1 The effects of current and potential 

In 2018, Dan Ren et al[10] conducted a survey of the current and potential for CO2 

conversion, which showed the selectivity of HCOO
-
/CO, C2H4, and CH4 was greatly affected by 

current and potential as long as under the mass transport limitation of CO2. Four Cu catalysts 

(metallic and oxide-derived) with different surface roughness were prepared via 

electrodeposition, termed as Cu-10, CuO-1, CuO-10, and CuO-60 with post-reduced roughness 

to be 1.4, 5, 48, and 186, respectively. The result showed that total current was positively related 

to the surface roughness and applied potential, while the maximum current for CO2 reduction 
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was around -20 mA·cm
-2

 when the total currents were around -40 mA·cm
-2 

(Figure 3a). When 

the total current exceeded a particular value, the current density decreased and more H2 was 

produced due to the low CO2 concentration and buildup of OH
-
 near electrode (Figure 3b). It was 

proved that different energy barriers were the reason causing CO, HCOO
-
, C2H4, C2H5OH, and 

CH4 at different potential windows (Figures 3.3d-e). The morphology of Cu catalysts affected 

not only catalytic active sites, but also roughness for lying limiting current density in the suitable 

potential window for different products [11,12].  

 

Figure 3.3. a) Total geometric current density; b) current density for CO2 reduction; c) faradaic 

efficiency of methane on Cu-10 and CuO-1; d) faradaic efficiency of ethylene and ethanol on 

CuO-1, CuO-10, and CuO-60 catalysts; and e) faradaic efficiency of carbon monoxide and 

formate on CuO-60 catalyst [10]. 

 

3.1.2 The effects of catalyst structure 
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According to literature reports, noble metals and ionic liquids were competent to selectively 

reduce CO2 to CO with high selectivity at low current density [13]. Unfortunately, they were 

restricted for bulk application due to high cost. Inspired by solid oxide fuel cell and hollow fiber 

from nickel and stainless steel, Recep Kas et al [14] prepared Cu hollow fibers used for CO 

production. The Cu hollow fibers could be employed as both gas diffuser and cathode attributed 

to a defect-rich porous structure as well as extraordinary improvement in mass transport (Figure 

3.4). The hydrogen evolution was suppressed while the current density was unprecedentedly high 

at low potentials. Hence, CO2 was converted with total faradaic efficiencies up to 85% at 

overpotentials between 200 and 400 mV, and 75% CO faradaic efficiency was achieved at a 

potential of -0.4 V versus RHE [15], which showed excellent performance compared with other 

catalysts (Figure 3.5). 
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Figure 3.4. SEM images of Cu hollow fibers: a) outer surface, 50 mm; b) outer surface, 2 mm; c) 

cross-sectional of a perpendicularly broken, 100 mm; d) outer surface and cross-section in the 

parallel direction to the length, 50 mm, e) cross-sectional image of the Cu hollow fiber, 500 μm; 

and f) Cu hollow fiber employed as an electrode at 20 mL·min
−1

 gas flow [14]. 

 

Figure 3.5. Comparison of the performance of different electrodes on the basis of the partial 

current density with CO at variable potentials [14]. 
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3.1.3 The effects of pH value 

The pH value at the electrode/electrolyte interface is proved to greatly influence the 

selectivity of final products. High pH is prone to CO coupling which further produces C2H4 [16]. 

In order to further improve the selectivity of hydrocarbon products affected by pH, Cu nanowire 

was synthesized with different length and density (longer length was corresponding with higher 

density). Longer Cu nanowire electrode was always surrounded with higher pH electrolyte, 

because the HCO3
-
 in electrolyte was hard to diffuse into the Cu NW arrays and the OH

-
 

generated by CO2 reduction was hard to diffuse out the Cu NW arrays (Figure 3.6). C2H4 

accompanied with other products (e.g C2H6 and ethanol) were generated on relatively longer Cu 

nanowires [17]. The result was supported by previous conclusion that CO coupling step was 

favored at a high local pH near the catalyst surface [18]. It could be an efficient approach to 

systematically control products on Cu nanowire by varying Cu nanowire length and even pH of 

electrolyte. 
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Figure 3.6. a) Schematic illustration of the diffusion of electrolytes into Cu nanowire arrays; b 

and c) faradaic efficiency of various products at 8.1-µm-length Cu NW arrays and 3-µm-length 

Cu NW arrays, respectively [17]. 

3.1.4 The effects of particle size 

It is well known that varying the size of the catalytically active species is another strategy to 

tune surface chemisorption and enhance catalytic activities and selectivity in many reactions, 

such as ammonia synthesis, hydrogenation, electrocatalytic CO oxidation [19,20]. In 2014, Rulle 

Reske et al [21] investigated the size effects of Cu nanoparticles (NP) on the CO2 reduction 

activity and, in particular, on product selectivity. The results showed the particles from 2 to 15 

nm caused unexpected selectivity and activity variation. Generally, Cu NP exhibited higher 

current densities as the size decreased, which meant smaller size may cause higher activity, 

especially when the size was smaller than 5 nm (Fig 3.7). However, high activity was not 
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equivalent to high selectivity. If CO and H2 were the preferred products to serve as feedstock for 

gas-to-liquid reaction technologies, the smaller size of Cu nanoparticles may be the better choice, 

while size smaller than 5 nm should be avoided for hydrocarbon products. Here, it was deduced 

that small Cu size may cause strong bonding between intermediate reaction species (*CO and *H) 

and catalyst, inhibiting the mobility of CO and H to form hydrocarbon.     

 

Figure 3.7. a) Linear sweep voltammetry and; b) composition of gaseous products of CO2 

reduction on Cu NP with different size [21]. 

3.1.5  The effects of subsurface oxygen 

It has been reported by many groups that oxide-derived copper showed higher CO binding 

energy which changed the products of CO2 reduction [22,23]. However, the mechanism of this 

phenomenon was not clear until Andre Éilert et al [24] proved the presence of oxygen and 

absence of oxide copper based on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) 

and quasi in situ Electron Energy Loss Spectroscopy (EELS). In 2016, Andre Éilert et al exposed 

a polycrystalline copper to electrochemical oxidation-reduction cycles to prepare the catalyst. 

Results showed the new catalyst improved overall CO2 reduction activity and product yield 

towards more ethylene versus methane (Fig3.8). It was proposed that residual subsurface oxygen 
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formed by oxidation-reduction cycles changed the electronic structure of the catalyst and created 

sites with higher carbon monoxide binding energy by reducing the σ-repulsion. Therefore, C-C 

bond formation was kinetically favored due to higher CO coverage on the catalyst [25,26].  

 

Figure 3.8. a) Cyclic voltammogram of an oxidation-reduction cycle of Cu in 0.1 M KHCO3 and 

4 mM KCl; b and c) online electrochemical mass spectrometry results of CO2 reduction with 

polycrystalline Cu (b) and Cu after an oxidation-reduction cycle (c) [24].  

3.1.6 The effects of sulfur and surface defect 

Atomic vacancy defects influence electrocatalytic performance by adjusting the electronic 

structure of neighboring atoms and consequently influence the energy barriers of the rate-

limiting reaction intermediates [27,28]. A core-shell nanoparticles structure catalyst designated 

as Cu2S-Cu-V (where V denotes vacancy) was synthesized based on the theory that copper 

sulfide could provide a means to form stable surface defects and control the density of surface 

vacancies by introducing sulfur into the Cu structure (Figure 3.9). Due to the synergetic effect of 

Cu2S core and the surface copper vacancies, the Cu2S-Cu-V played an excellent role in 

suppressing unwanted C2 products and shifted product distribution towards alcohols [29]. 
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Figure 3.9. Catalyst design and structural characterization. a) Schematic illustration of Cu2S-Cu-

V electrocatalyst design; b) TEM and c) EDS mapping of the original V-Cu2S nanoparticles; d) 

EDS mapping; e) high-resolution TEM; f) EDS line scan and g) the ratio of Cu/S concentration 

of the reduced Cu2S-Cu-V nanocatalysts after electrochemical reduction. V-Cu indicates Cu with 

surface vacancies [29]. 
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3.2 Cu alloy catalysts 

Previous work has demonstrated that electrochemical CO2 reduction with a planar Cu foil as 

the catalyst will produce at least 16 different products in varying quantities, which require high 

energy consumption in product separation. Cu-based bimetallic catalysts have been recognized 

as another class catalysts for CO2 electroreduction at lower overpotential. It possesses the ability 

to produce specific products by modulating the adsorption and desorption of key intermediates 

on the catalyst surface. In the past years, many published research reported to focus on 

developing bimetallic Cu-based catalysts. Recent research indicated that different pattern and 

distribution of the bimetallic catalyst impacted not only product distribution, but also the yield 

[30].  

3.2.1 The selectivity to CH4 

Copper based catalysts are well known for the conversion of CO2 to CO and other deep 

reduction products with relatively favorable efficiencies at room temperature. In 2018, 4% Cu-

doped CeO2 nanorods electrocatalyst was used for CH4 production with a faradaic efficiency as 

high as 58% at -1.8V [31]. In this type of catalyst, copper was well dispersedly loaded on the 

CeO2 at the single atomic/ionic level preventing the copper being oxidized and aggregating. 

There were up to three oxygen vacancies around each Cu site because of the substitution action 

of Cu (Figure 3.10). The synergetic effect of Cu, CeO and oxygen vacancy resulted in a highly 

effective catalytic site for electroreduction. The result also mentioned that the C-C banding was 

substantially prohibited on the catalyst due to atomic dispersion of the electrocatalytic Cu sites, 

dramatically enhancing CH4 formation [32,33]. 
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Figure 3.10. Theoretical calculations of the most stable structures of Cu-doped CeO2 (110) and 

their effects on CO2 activation [31]. 

3.2.2 The selectivity for syngas 

Though Cu-based catalysts have excellent performance for CO2 reduction, there are still 

two problems need to be solved, poor resistance to oxidation and selectivity. To solve the 

problems, an ultrathin Cu/Ni(OH)2 nanosheets catalyst was engineered using sodium formate as 

protector to prevent Cu being oxidized and Ni(OH)2 as supporter for preventing Cu nanosheets 

from being sintered during electrocatalysis (Figure 3.11A-E). Because the redox potential of 

HCOO
-
 was lower than Cu, HCOO

- 
suppressed oxidation of Cu similar to the cathodic protection 

in galvanized iron pipes. Cu/Ni(OH)2 exhibited both excellent CO2 adsorption ability and 

superior charge transport kinetics. It was cost-effective, and the nanosheets provided a current 

density of 4.3 mA·cm
-2

 with a CO Faradaic efficiency of 92% at a low overpotential of -0.39 V. 

Interestingly, syngas was the only products and the ratio of CO and H2 was tunable by applying 

different potentials [34,35]. The high selectivity may be attributed to the following reasons: 1) 

Cu/Ni(OH)2 had excellent ability to absorb CO2 while poor ability to absorb CO; 2) Cu/Ni(OH)2 
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exhibited a superior charge transport kinetics; 3) the existence of HCOO
- 
prevented the Cu from 

being oxidized; 4) the Cu was well dispersed (Figures 3.11 F, G).  

 

Figure 3.11. A) TEM image of the Cu/Ni(OH)2 nanosheets after being stored in air at room 

temperature for 90 days; B) XRD patterns of the nanosheets after storing in air at room 

temperature for 7 to 90 days; c) TPD-MS profiles of the Cu/Ni(OH)2 nanosheets heated in 

vacuum, whereas the bottom shows relative ionization intensities of the main decomposition 

products at different temperatures, the top displays the accumulative ionization intensity (m/z, 

mass/charge ratio); D) FTIR spectrum of the nanosheets and E) adsorption model of formate on 

Cu (color codes: cyan, Cu; red, O; gray, C; white, H). F) STEM and G) EDX mapping images of 

the Cu/Ni(OH)2 nanosheets [34]. 

When particle size was between 5 and 15 nm, Cu exhibited similar catalytic selectivity in 

hydrocarbon formation, while the catalytic performance and selectivity unexpectedly increased 

with decreasing Cu particle size when its size was below 5 nm. Meanwhile, previous work 

proved that finely controlled size of Pd displayed high Faradaic efficiency and current density for 

CO production. Here, Zhen Yin et al [36] synthesized the Cu-Pd bimetallic alloy with different 

ratio supported on carbon to produce CO. Pd85Cu15/C catalyst showed good activity and 

G 

F
F 
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selectivity (Figure 3.12) because the rate-determining steps of CO2 absorption and CO desorption 

were improved while the H
+
 combination was inhibited due to synergistic effect of electronic 

effect and geometric effect.  

 

Figure 3.12. CO2 reduction activity over PdCu/C and Pd/C catalysts in CO2-saturated 0.1 M 

KHCO3 solution [36].  

3.2.3 The selectivity for multiple-carbon products 

Recently, many alloying catalysts have been synthesized to convert CO2 to multiple-carbon 

products, especially oxygenated species such as alcohols, because these products are generally 

more valuable than their hydrocarbon counterparts and they are in liquid form under ambient 

conditions which simplify the subsequent processing, storage, and distribution [37].  

CuPd nanoalloys 

It was another challenge to evaluate the relationship between the atomic arrangements/ 

ratios (Figure 3.13) and the performance of CO2 reduction. Related studies [38] were conducted 

to elucidate the mechanism, showing the phase-separated bimetallic catalysts produced C2 
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chemicals while the well-ordered catalysts favored the conversion of CO2 to CH4. For the phase-

separated catalysts, the Cu atoms structure may allow for favorable molecular distance and small 

steric hindrance for dimerizing *CO and *COH which were further converted to C2 products. 

While for the ordered structure, Pd stabilized surface *CHO which were further converted to 

CH4. It was shown that electronic effect played less important role than geometric/structural 

effect which determined catalytic selectivity and activity, because Cu had much higher d-band 

position than PdCu. It was further proved that Cu had much better performance to produce C2 

than that of Pd (Figure 3.14). Based on a literature report, the orientation of intermediate toward 

the active sites influenced the reaction, similarly, different ratios of component in the bimetallic 

catalysts caused various orientations of the intermediate on the surface, therefore led to different 

selectivity [39].  

 

Figure 3.13. a) Illustration of the prepared CuPd nanoalloys with different structures; b) XRD 

patterns of CuPd nanoalloys, Cu, Pd and CuPd alloys; c-e) high-resolution TEM images of Cu 

(red) and Pd (green) [38]. 
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Figure 3.14. Faradaic efficiencies for a) CO; b) CH4; c) C2H4; d) C2H5OH for catalysts with 

different Cu:Pd ratios: Cu, Cu3Pd, CuPd, CuPd3, and Pd [38]. 

CuZn nanoalloys 

Among all products from the reduction of CO2, ethanol is an attractive liquid fuel. However, 

due to the barrier of higher energy needed for C-C coupling, previously mentioned Cu 

nanostructure only produced ethanol with faradaic efficiency generally < 20 % while ethylene as 

the primary C2 product [40]. Though heteroatoms have been added to Cu to improve selectivity 

between ethanol and ethylene, it is hard to realize both high partial current and high selectivity 

[41]. In order to overcome the shortcoming, ZnO was used to modify the CuO nanowires surface 

using atomic layer deposition (ALD) to improve selectivity. Compared to commonly used 

methods, such as electrodeposition, annealing or solution processing, ALD was flexible to adjust 

various bimetallic structures and/or the ratio between different metallic components. As a result, 

48.6 % faradaic efficiency and 97 mA·cm
-2 

partial current density for C2  liquids was achieved at 

-0.68 V. 32 % faradaic efficiency of ethanol was formed at -1.15 V and the partial current 

density increased from 7.5 mA·cm
-2

 on Cu to 10.5 mA·cm
-2 

on CuZn. According to the 
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systematic analysis of the electrocatalytic behavior, it was believed that the presence of Zn 

modified the binding energy of CO on Cu, which was combined with *CH3 to form *COCH3, a 

precursor of ethanol [42].  

Scientists also propose to alloy Ag with Cu to bring their superiority into full play, because 

Ag is a highly selective catalyst for CO production while Cu possesses the capability to further 

reduce CO to more valued products [43,44]. CuAg nanoporous structure catalyst was synthesized 

using 3,5-diamino-1,2,4-triazole (DAT) as an inhibitor (Figure 3.15). Because of the existence of 

DAT, the nucleation of Cu or Ag was inhibited, and Cu and Ag were homogeneously mixed via 

electrodeposition. The catalyst exhibited excellent efficiency with about 60% C2H4 and 25% 

C2H5OH at a relatively low applied potential (-0.7 V vs. RHE) and a high current density (300 

mA·cm
-2

) [45]. According to previous research results [46], Cu2O was mainly responsible for 

high yield of CH3OH. It was deduced here that high selectivity towards C2H4 and C2H5OH was 

because the incorporation of Ag into the alloy. In one aspect, Ag oxide could be reduced by Cu 

due to the formation enthalpies of Cu2O (-169 kJ·mol
-1

) and Ag2O (-31.1 kJ·mol
-1

); In another 

aspect, Cu was more likely to be oxygenated to Cu2O because Cu atoms in the CuAg samples 

tended to carry a slightly positive charge. In 2018, Drew Higgins [47] prepared CuAg thin films 

with nonequilibrium Cu/Ag alloying for CO2 reduction, further explaining why Ag could 

improve the selectivity to C2 products. The results indicated that though the overall reduction 

activity decreased for CuAg versus Cu, Ag miscibility into Cu increased the activity and 

selectivity toward liquid carbonyl products likely due to the decreased surface binding energies 

of oxygen-containing intermediate species. Meanwhile, it was observed that the competing 

products of hydrocarbons and H2 were significantly suppressed. Density functional theory (DFT) 

simulation suggested that Ag doped in Cu weakened the binding energy of *H species, causing 
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the steadily decrease in activity and selectivity toward hydrocarbons and the H2 when the ratio of 

Ag/Cu increased. The better understanding of the underlying mechanisms may further improve 

selectivity toward liquid carbonyl products.  

 

Figure 3.15. a) XRD and b) XPS patterns of CuAg-poly (6% Ag) electrodeposited without DAT, 

Cu-wire (0% Ag) electrodeposited with DAT, and CuAg-wire (6% Ag) electrodeposited with 

DAT [45]. 

3.3 Organic Cu  

It was reported that the hydrophobicity of electrode was regarded as an determinant on the 

selectivity of CO2 reduction, because its submerged hydrophobic surfaces trapped appreciable 

amounts of gas at the nanoscale which facilitates CO2 accumulation at the Cu-solution interface 

[48,49]. Inspired by the plastrons of diving bell spider composed of hydrophobic hairs that 

trapped air and thereby allowed the spider to respire under water, a hierarchically structured Cu 

dendrites electrode was synthesized with super hydrophobic surface generated by 1-

octadecanethiol treatment (Figure 3.16). As a result, H2 evolution was substantially suppressed 

from 71% faradaic efficiency to 10%, while CO2 reduction was increased from 24% to 86%, of 

which C2 products comprised 74% FE [50]. 
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Figure 3.16. The illustration of a-b) wettable dendrite electrode and c-d) hydrophobic dendrite 

electrode for electroreduction [50].    

Zhe Weng et al [51] synthesized a Cu centered organic catalyst in 2016, copper-porphyrin 

complex (copper(II)-5,10,15,20-tetrakis-(2,6-dihydroxyphenyl) porphyrin), called PorCu (Figure 

3.17). It was used as a heterogeneous electrocatalyst for reducing CO2 to hydrocarbons in 

aqueous media. At the point of -0.976 V, the partial current densities of CH4 and C2H4 were 13.2 

and 8.4 mA·cm
-2

, while the corresponding turnover frequencies were 4.3 and 1.8 molecules·site
-

1
·s

-1
, respectively. The catalytic reaction rates for hydrocarbon products were higher than other 

reported molecular metal complex catalyst and most Cu based electrocatalysts at around ~-1 V. It 

was considered the Cu center and OH groups in the porphyrin structure played indispensable role 

for the high conversion [52,53]. Especially, the PorCu molecular structure with the Cu center in 

the +1 oxidation state worked as the active catalyst for electrochemically converting CO2 to CH4 

and C2H4, and the OH groups may help bind certain reaction intermediates or provide an intra 

molecular source of protons.  
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Figure 3.17. Synthetic routes for copper-porphyrin molecular catalysts [51]. 
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3.4 Conclusion  

In this chapter, we discuss why Cu is the most popular metal and briefly introduce the 

electrochemical cell used for CO2 electroreduction. Furthermore, referring to recent 

representative Cu-based catalysts, we illustrate factors influencing the performance of catalysts 

and primarily explain how those factors impact the activity and selectivity of CO2 conversion. 

Those factors are pH value, morphology, particle sizes, the presence of atomic-scale defects, 

surface roughness, and/or residual oxygen atoms, and so on. In summary, these factors can 

benefit selectivity and yield by optimizing binding capability of CO2 and intermediates, 

suppressing hydrogen formation and improving electron transportation. There are many methods 

that are introduced to optimize the performance of Cu-based catalyst. For example, doping Cu 

with other metal proves to be an effective and feasible option. Doping may help change both the 

inner structure and outer structure simultaneously, further optimizing the binding energy, 

improving electron transportation and suppressing hydrogen formation. This chapter can guide 

us to produce more ideal catalysts, in addition, the information presented in this chapter can be a 

foundation to summarize the property and mechanism in next chapter.  

Nevertheless, it is very difficult to fairly and objectively compare current results used for 

analyzing the catalytic performance of different catalysts due to a lack of standardized methods 

for measuring and reporting activity data [54]. The conversion rate of CO2 is influenced by 

catalyst type, electrolyte, hydrodynamics of the electrochemical cell, etc. Hence, the 

recommended measurements should evaluate the data in the absence of a convolution of intrinsic 

kinetics and mass transport effects and will not introduce artifacts from impurities, either from 

the electrolyte or counter electrode. In addition, electrochemical reactions rates should be 
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normalized to both the geometric electrode area and the electrochemically active surface area to 

facilitate the comparison of reported catalysts [55,56].   
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Chapter 4 Performance and mechanism of Cu-based catalysts  

Introduction  

Electrochemistry has been becoming more and more important because of renewable 

energy consumption and storage. Progresses in controllable synthesis approaches and 

characterization of catalyst have significant benefit in understanding fundamental mechanism 

and developing highly efficient catalysts. Meanwhile, numerical models have being 

supplemented the experimental results to simulate the reaction path and calculate the energy cost. 

In this chapter, we will summarize and discuss the catalytic property and mechanism. 

4.1 Catalytic performance  

Cu-based catalysts are the most promising to realize commercial utilization for valued 

chemicals production, such as methane, ethanol and ethylene. Various types of Cu-based 

catalysts (pure Cu, Cu bimetallic, organic Cu, etc.) have been developed to achieve this goal [1]. 

Table 4.1 summarizes the cu-based catalysts and their performance for different chemical 

products in recent years. 
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Table 4.1. Summary of electrocatalytic reduction toward carbon products performance on 

different catalysts [1]. 

Catalyst 

E/V Faradaic efficiency/% JC2+ 

(mA·cm
-2

) 
CO CH4 C2H4 C2H5OH propanol C2+ 

Phase-separated CuPd 
a)
 -0.74   48 15    

Cu NCs/Cu foils 
a)

 -0.96   32   60.5 41 

Ag-Cu core-shell
 b)

 -1.06  18 25     

Cu2O derived Cu NP
 b)

 -1.1   19     

Cu mesocrystal
 b)

 -0.99  1.47 27.2     

Cu nanowire array
 b)

 -1.1   17.4  8   

Prism Cu
 b)

 -1.1      35 10 

Cu NPs covered Cu foil
 b)

 -1.1  1    36 N.A. 

Electropolished Cu foil
 b)

 -1.05      40.6 2.8 

44-nm Cu cubic NPs
 b)

 -1.1   41   46.4 1.4 

Cu NPs ensembles
 b)

 -0.75      ～50  

3.6-um Cu2O film
 b)

 -0.99   34.26 16.37  50.8 17.8 

OD-Cu4Zn
 b)

 -1.05      51 15 

Cu28Ag72
 b)

 Pulse   12.8 17.3  54.2  

Cu(100) single electrode
 b)

 -1  30.4 40.4 9.7 1.5 57.8 2.9 

18-nm Cu
 b)

 -1.03   42.6 11.8 5.4 59.8 18.7 

Cu(100)
 b)

 -0.97      60 2 

Pd85Cu15/C
 b)

 -0.89 86       

Plasma Oxidized Cu
 b)

 -0.9   60   60 12 

CuOx-Vo
 b)

 -1.4   63   63  

Ag-Cu2O PS
 c)

 -1.2  1.7 7.8 20.1    
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Mesoporous Cu film
 d)

 -0.8      57 7 

N-doped graphene dots
 d)

 -0.75   31   67 40 

Cu DAT wire
 d)

 -0.69      68.9 124 

Au3Cu
 d)

 -0.38 90.2       

Ultrathin Cu/Ni(OH)2 NS
 d)

 -0.39 92       

Nanoporous Cu
 e)

 -0.67   38.6 16.6 4.5 62 411 

ZnO/CuO
 e)

 -0.68   18.1 41.4 5.5 66.7  

CuAg wire
 e)

 -0.68   60 25  85 265 

Surface Reconstructed Cu
 f)

 -2.6   56  5 73 17 

Abrupt Cu interface
 g)

 -0.67      81 608 

3D porous hollow fibre 

copper
 h)

 
-0.4 72       

 

As can been seen in the Table 4.1, there are many factors influencing the selectivity and 

productivity, such us type of metal, surface structure, shape. Basically, to make products with 

high value, high energy will be required. For example, CO can be produced at a current of ~-

0.4V with high production, while approximately -0.7V will be required to produce more valuable 

carbon chemicals. Though it is very hard to do quantitative analysis due to too many 

uncertain/various factors, qualitative analysis can be done to further guide experimental or 

computational study to design and synthesize more reliable Cu-based catalysts. According to the 

basic knowledge of electrochemistry and the published catalysts in Table 4.1, we may obtain the 

following summarization. 

First, currently, Cu is the most important metal for CO2 conversion. Scientists studied the 

shape and the particle size of Cu-based catalysts to produce more efficient catalysts. From the 
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macro scene, catalysts with high specific surface area are more efficient because they provide 

more adsorption sites for CO2 and intermediates, which have been partially proved by the 

evidences listed in the above table that the abrupt Cu interface has very high current for CO2 

conversion at low potential and most Cu are produced to nanoscale size. At the micro level, it 

cannot be guaranteed that higher productivity of target product will be achieved when the 

particle size because smaller. Because too small particle size may result in the shortage of multi-

sites to produce products with more than one carbon. This deduction may be supported by Rulle 

Reske’s experiment, showing that the main product will be CO and H2 when the particle size of 

the catalyst is smaller than 2 nm. 

Second, the doped metal in Cu is significant to determine the final product. Different metal 

doped in Cu may cause different product preference and the ratio of metals doped in the Cu also 

influence the product distribution. For one thing, specific metal may increase the current. For 

another thing, it can improve the adsorption site to avoid the steric hindrance. Basically, Au, Pd, 

Zn and Ag catalysts favor the formation of CO, which means it is hard to produce products with 

more value when they are used alone. However, when Au and Ag is doped in Cu, they can 

reduce the energy cost to produce more valuable products. For example, CuAg wire and 

ZnO/CuO are excellent catalysts to produce C2+ products with high efficiency at relatively low 

potential, and faradaic efficiency are 85 and 66.7 at -6.8 V, respectively. However, when Pd and 

Au are doped in Cu, the effect to increase organic carbon chemicals is limited or even 

counterproductive. The possible reason is that there is competition in the alloy which means Cu 

may be stronger to absorb CO2 than Zn and Au, while it is weaker to absorb CO2 than Pd and Au. 

Another possible reason is that the atomic radius of doped atom ( Pd:169 pm, Au:174 pm, 



Qinyang Li: Cu-Based Electrocatalyst for Carbon Dioxide Conversion to Value-Added Chemicals 

53 

 

Ag:165 pm, Zn:142 pm, Cu:145 pm)  may not match the bond length of C-C, resulting in 

blocking C-C formation.  

4.2 Mechanism and pathways for CO2 conversion to C2 products 

Understanding electrocatalytic mechanism and the relationship between catalyst’s structure 

and performance on molecular level will further provide sights and thoughts to design and 

improve catalysts to enhance CO2 reduction ability and produce more high-value products. 

However, proposing a conclusive mechanism for the reduction of CO2 is challenging, as more 

than ten chemicals are produced from CO2. Besides, these chemicals include a broad mix of 

aldehydes, ketones, carboxylic acids, and alcohols, out of which 12 are C2  or C3 species, 

showing the complexity of this reaction. Therefore, a lot of work have been done to improve the 

efficiency and selectivity. Though the relationships between catalytic performances and various 

factors (pH, defect, size, shape, chemical bond, etc.) have been experimentally investigated, most 

publications have not systematically discussed the reaction pathway and mechanism. As we 

know, the electron transfer to adsorbate is thought to have low kinetic barrier. The step for 

achieving C-C coupling determines the rate and selectivity of C2 products, because it needs to 

overcome the barrier of C-C bond formation which consumes much energy.  

There is nearly no debate that CO2 will be converted to HCOOH and CO first. HCOOH can 

not be converted to other chemicals further. Normally, CO is ideal product because it is the 

intermediate to electrocatalytically produce organic carbon chemicals, such as CH4, C2H4, and 

CH3CH2OH. Experiments also reveal that the product distribution of CO reduction is as same as 

that of CO2 reduction. Those are why many researches focus on CO conversion when they study 

the mechanism of CO2 conversion.  
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To obtain more valuable organic carbon chemicals, the first step is to prohibit the formation 

of HCOOH and the desorption of CO. Since CO and formate products involve very different 

reaction mechanism, formate formation can be suppressed by controlling pH, designing new 

nanoscale catalysts and modifying the properties of the electrolyte, to obtain high concentration 

of CO. Meanwhile, it is found that Cu(100) only leads to CO formation without HCOO
–
. Ruud 

Kortlever et al [2] proposed the reaction pathways  in Figure 4.1. They pointed out that when the 

applied potential was -0.8V, the reaction occurred on the Cu(111) facet and the products tended 

to be C1 and CH4 was dominant when *CHO and *COH were the intermediates. When the 

applied potential was low, reaction occurred on Cu(100) and *CO dimerization occurred on 

Cu(100) facet to produce C2 products which was dominated by C2H4. Ming Ma et al [3] 

proposed that there were two pathways to produce C2 products (Figure 4.2) and C2H4 could be 

produced from both *CO → *COH → C2H4 and *CO + *CO → *COCO paths. However, both 

research only focused on thermodynamic level, ignoring the influence of reaction barriers. For 

example, though direct dimerization of *CO is thermally available under low potential, it is 

obvious that the barrier of dimerization of adsorbed *CO is still very high under an electric field 

and it is unfavorable from kinetic perspective [4].  
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Figure 4.1. Possible reaction pathways for the electrocatalytic reduction of CO2 to products on 

transition metals and molecular catalysts [2]. 
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Figure 4.2. Proposed reaction paths for electrocatalytic reduction of CO2 on Cu nanowire arrays 

[3].   

In 2013, electron-ion transfer reactions were taken into account to study reaction kinetics of 

elementary steps. The results indicated that the reduction of CO was the key selectivity-

determining step on Cu(111) and *COH played a critical role in forming methane/ethylene. C2H4 

was produced through nonelectrochemical *CH2 dimerization as shown in Figure 4.3. Moreover, 

it was further proved that reaction environment and potential were essential for determining 

intermediates content and the formation of methane/ethylene [5]. 
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Figure 4.3. Proposed reaction paths for CO2 electroreduction on Cu(111) [5]. 

In 2016, Xiao et al [6] predicted the atomistic mechanisms for the pathways of products 

during CO reduction at different pH conditions on Cu(111) facet. Free energies for CO reduction 

(Figure 4.4) indicated that C1 products were relatively easy to be produced at acidic atmosphere 

while C2 chemicals preferred *CO + *COH/*CHO pathway at neutral pH or *CO + *CO → 

*COCO pathway at alkaline atmosphere. At low pH = 1 with potential of -0.80 V, multi-carbon 

production was kinetically suppressed, C1 products were mainly produced through *COH 

pathway. At neutral pH value with potential of -1.17 V, though both *CO + *CO → *COCO and  

*CO + *COH/*CHO pathways might be accessible, *COH reduction was dominant and C1 was 

the man product. At high pH = 12, C1 pathway was kinetically blocked and *CO + *CO → 

*COCO pathway was predominant. However, we must point out that *COCO is highly unstable 

on the Cu(111) surface. Compared to *CHO, *COH was favored due to their activation barriers 

of *COH(0.21 eV) and *CHO(0.39 eV) calculated by DFT at -1.15 V on Cu(111) facet [2].  
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Figure 4.4. Free energy of CO electrochemical reduction on Cu(111) at pH = 1, 7 and 12, 

respectively [6]. 

Though Cu(111)  facet can be utilized to produce C1 products and C2 products, C1 is 

preferential. Dimerization of the intermediates *CHO or *COH toward ethylene is believed to be 

the pathway that produces ethylene once current density reaches 10 mA·cm
-2

 and takes place on 

both Cu(100) and Cu(111) facet. However, Cu(100) is a more active surface than Cu(111), 

leading to lower overpotentials for both C1 and C2 products. Earlier work showed C1 was 

preferentially formed on Cu(111), while C2H4 was the main product on Cu(100) [9]. In addition, 

pH value was a significant factor for the product selectivity. At pH = 1 (acidic), CH4 was 

observed without C2H4 or other C2 products on both Cu(100) and Cu(111) [7]. In contrast, C2H4 
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production was comparable with CH4 production in the presence of neutral and basic solutions. 

As C2 products was more valuable, reaction on Cu(100) was desirable for its higher performance 

than Cu(111) to produce C2 products. Meanwhile, recent experiments showed that under 

standard electrochemical conditions, Cu(100) may be more stable. In 2015, Tao Cheng et al [8] 

reported *CHO was the main intermediate for C1 products on Cu(100), rather than *COH. In 

2018, Alejandro Garza et al [10] proposed another reaction pathway for the reduction of CO to 

C2 products at high potentials on Cu(100). It showed *CO + *CHO → *COCHO occurred first, 

and then *COCHO was converted to C2H4 or CH3CH2OH (Figure 4.5), meaning *CHO was the 

main intermediate when reaction occurred on Cu(100). Based on the previous research, we try to 

summarize the possible pathways for CO2 conversion to C2 products. Basically, there are four 

pathways for C2 formation, which are *CO + *CO → *C2, *CO + *COH → C2, *CO + *CHO 

→ C2 and *COH → *CH2 → C2. When the potential is small (~-0.4V), though the reaction 

thermally follows *CO + *CO → *COCO pathway on Cu(100), it is hard to react due to kinetics 

barrier [9]. When the potential is high, the reaction mainly follows the path *CO + *COH → 

C2H4 or *COH → *CH2 → C2 on Cu(111). On Cu(100) surface at high potentials, *CO + *CHO 

→ C2 is supposed as the main way to produce C2. Different reaction pathways for C2 products 

are summarized in Figure 4.5. 
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Figure 4.5. Summarized mechanisms for the reduction of CO to C2 products [1,10]. 

After we elucidate the reaction mechanism, we can design the effective catalyst to obtain 

the aimed product. For example, *C2H3O is the common reaction intermediate for both ethylene 

and ethanol formation (Figure 4.5. b, c), therefore, it is possible to modify the catalyst’s structure 

to suppress ethylene production while promote the hydrogenation of the intermediate and finally 

enhance the selectivity towards alcohols [11,12].  
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4.3 Conclusion  

High overpotential of the reaction and low activity of currently known catalysts still hamper 

this process from commercialization. Cu-based catalysts are known to electrochemically convert 

CO2 to hydrocarbons and/or oxygenates at considerably high faradaic efficiency, however, other 

products such as CO, HCOO-, and H2 are also produced at fairly high faradaic efficiencies. The 

existing catalysts are hard to satisfy the industrial usage (FE >> 50% for C2 products, current 

density << –200 mA·cm
-2

 while applied potentials >> –1.0 V vs. RHE [8]. In addition, to satisfy 

the industrial requirements, the catalysts should be durable, however, few research results related 

to catalyst’s lifetime have been reported.  

CO2 can be directly converted to valuable products in the presence of catalyst in one step or 

two steps which reduced CO2 to CO first and then converted to fuels with higher energy. This 

technology can satisfy long-distance and heavy freight transportation requirements. Although 

CO2 can be catalytically converted to fuels, it requires high energy. In particular, the reduction of 

H2O to H2 considerably compete with synthesis to fuel at low potential. There is a debate that 

two steps may be more attractive for lower energy cost and higher selectivity and controllability, 

because CO reduction activity may be obscured in the presence of a large excess of CO2 [13]. 

According to our study, the two step reaction may have more advantages compared with one step 

reaction [14-17]. On one hand, CO is the intermediate to convert CO2 to chemical products. 

Though Cu may be the best catalyst to directly convert CO2 to organic products, it does not mean 

it is the best candidate to convert CO2 to CO. Actually, there are many metals used to produce 

CO, such as Ag, Au, and Co, most of which achieve the FE more than 90% under relative low 

potential. On the other hand, the adsorption energy and mechanism of CO on the catalyst surface 

is significantly different with that of CO2. The adsorption atom is C for CO adsorption on the 
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catalyst while O become the adsorption atom for CO2 adsorption. Compared to CO2, CO can be 

easier adsorbed due to its structure. Hence, recently, more and more research are focused on CO 

conversion.  

Current mechanism achievement of converting CO2 to value-added products are not enough 

and the debates of reaction pathways are still existing. Because many factors influence the 

catalyst’s performance and it is very hard to build the models to precisely reflect the real 

situation [18-20]. Though more computational and experimental work need to be done to further 

elucidate the mechanism of producing C2 products, the following summaries may be universally 

accepted. 

i) The applied potential is a determining factor influencing the reaction. Though low potential is 

beneficial, it is impossible to fulfill our goals under certain value. For example, direct 

dimerization of *CO is thermally available under low potential, it is obvious that the barrier of 

dimerization of adsorbed *CO is still very high under an electric field and it is kinetically 

unfavorable. Theoretically,  no matter what reaction situation we create, the kinetic barrier exist. 

At current situation, the range from -0.65 to -1.0 V may be reasonable and acceptable.   

ii) Facet is an important factor when we consider the selectivity of CO2 conversion. Normally, 

Cu(111) facet prefers to produce C1 products while Cu(100) facet prefers to convert CO2 to C2 

products. That is why much research focus on Cu(100) now.  

iii) The reaction to produce C2 products is pH sensitive. C2 products can be produced with high 

yield under higher pH value. The situation is corresponding with our former finding that longer 

nanowire may lead to higher C2 yield. 
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iv) It is useful to dope suitable atoms into Cu-based catalysts to change its electrical structure or 

space structure to further improve the efficiency and selectivity of the catalysts. 

v) In reality, making a single proton-electron pair transfer to *CO intermediates to form 

*CHO/*COH could promote the occurrence probability of coupling to other *CO derived 

intermediates.  
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