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Abstract 

Autonomous and non-autonomous requirements for the c-Jun                               
N-terminal kinase signaling pathway in early forebrain development 

 
Jessica Genevieve Cunningham 

 
The cerebral cortex is responsible for a wide variety of high-level functions including 

cognition, sensory perception, fine motor control, and the orchestration of body movements.  
The cortex is comprised of cortical excitatory neurons and inhibitory interneurons, which are 
arranged in a highly organized fashion into different layers and regions.  These two types of 
cells operate in a delicate balance between excitation and inhibition, which is critical for proper 
cortical circuitry.  In order for the cortex to execute its numerous functions, it must both send 
and receive input to other brain regions through axonal connections.  The organization within 
the cortex and orchestration of connections with other brain regions is established from very 
early in development, and disruptions occurring even during embryogenesis can lead to lasting 
changes in cortical circuitry.  Neurodevelopmental disorders such as autism, epilepsy, and 
schizophrenia are thought to arise from disturbances in the formation of cortical circuits, which 
can occur years before a disease physically manifests.  Therefore, it is critical to understand the 
fundamental mechanisms responsible for early circuitry formation in order to gain better insight 
into the causes of these diseases. 
 This dissertation explores the role of the c-Jun N-terminal kinase (JNK) signaling 
pathway in early forebrain development.  A novel genetic knockout mouse model is used to 
eliminate all of JNK signaling in vivo from a population of cells that gives rise to cortical 
inhibitory interneurons.  In Chapter 2, I provide evidence that JNK signaling is required for the 
proper migration of interneurons during embryonic development and their correct laminar 
allocation in the early postnatal cortical wall.  This is demonstrated through both in vivo genetic 
approaches and ex vivo pharmacological inhibition of JNK signaling, and utilizes live-imaging 
techniques to assess the dynamic properties of migratory interneurons.  In Chapter 3, I 
discovered a novel, non-autonomous requirement for JNK signaling in the pathfinding of 
thalamocortical axons.  When JNK signaling is eliminated in the ventral telencephalon, it causes 
a misrouting of the thalamocortical axons that normally traverse through this territory.  These 
are the first studies examining the complete loss of JNK function from cells located in the 
forebrain in vivo, and provide novel insight into the roles of JNK signaling in the development of 
cortical inhibitory interneurons and thalamocortical axons.  Understanding the genetic regulation 
of forebrain development will help uncover potential causes of neurodevelopmental disorders, 
and can ultimately lead to better treatment of these devastating diseases.   
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The cerebral cortex 

The cerebral cortex is a highly organized structure that is responsible for a wide variety 

of functions including cognition, movement, learning, and language (Misic et al., 2016).  The 

cortex can be divided into two hemispheres, each of which is organized into the frontal, parietal, 

temporal, occipital, and limbic lobes (Broca, 1878; Leuret and Gratiolet, 1839; Pessoa and Hof, 

2015).  Anatomical regions that are histologically distinct can be defined by specialized structure 

and function, which are referred to as Brodmann’s areas (Brodmann, 1909).  Within the cortex 

itself, the grey matter contains both glutamatergic excitatory neurons and γ-aminobutyric 

acidergic (GABAergic) inhibitory interneurons, which function together in a delicate balance 

(Tatti et al., 2017).  These two cell types are histologically organized into horizontal layers and 

vertical columns, which was first observed over a century ago through Golgi staining of the 

cortex by Ramon y Cajal (Ramon y Cajal, 1881).  The radial columns were first shown to be 

functionally related in the somatosensory cortex of a cat (Mountcastle, 1957), and have 

subsequently been studied to gain a deeper understanding of the relationship between 

cytoarchitecture and resultant function (Jones and Rakic, 2010; Rakic, 2007).   

Even though inhibitory interneurons and excitatory neurons eventually occupy the same 

cortical laminae in the cortical wall, their developmental origins and migratory routes are very 

distinct (Nadarajah and Parnavelas, 2002; Wichterle et al., 2001).  Inhibitory interneurons are 

born in subcortical locations, and migrate tangentially over a long distance to reach their final 

laminar position (Hatanaka et al., 2016; Wichterle et al., 2001).  In contrast, excitatory neurons 

are born in the cortex itself, and migrate radially over a relatively short distance before 

depositing into the correct cortical layer (Rakic, 1972; Tan and Shi, 2013).  In the developing 

cortex, neural progenitors are located in the ventricular zone (VZ) and subventricular zone 

(SVZ) and undergo an asymmetric division to give rise to cortical excitatory neurons (Miyata et 

al., 2004; Williams and Price, 1995).  Excitatory neurons then migrate along radial glia 

scaffolding, which have cell bodes in the VZ/SVZ and processes that extend to the pial surface 
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of the cortical wall, and are actually themselves neural progenitors (Campbell and Gotz, 2002; 

Levitt and Rakic, 1980; Noctor et al., 2001).  Excitatory neurons are known to deposit in an 

“inside-out” fashion, in which early-born neurons deposit into the lower layers of the developing 

cortical plate, and late-born neurons deposit into upper layers.  This was first discovered by 

radioactive thymidine injections in the developing mouse (Angevine and Sidman, 1961), and 

later in rats (Berry and Rogers, 1965) and monkeys (Rakic, 1977).  The correct migration of 

both excitatory and inhibitory neurons throughout development, and subsequent organization 

into a six-layered neocortex, are critical for the functional capabilities of the human cortex later 

in life (Misic et al., 2016).   

While certain brain functions are primarily executed by one structural region, it is 

believed that complex behaviors as well as cognitive functions emerge from interactions 

between different brain areas (Cristofori et al., 2019; McIntosh, 2000).  White matter consists of 

axon tracts that serve to connect the cortex to both itself and other brain regions (Sherman and 

Guillery, 2011).  Nearly all cortical regions send projections to and receive input from the 

thalamus, a centralized brain structure containing dozens of nuclei that relays important motor 

and sensory information to distinct cortical regions via thalamocortical axons (Adams et al., 

1997; Gezelius and Lopez-Bendito, 2017).  These connections are critical for proper circuitry 

function, and also allow for higher-order processing of information within a particular cortical 

region or across different cortical areas (Nakajima and Halassa, 2017; Sherman, 2017).  

Disruptions to the formation of cortical circuits, even those that occur during embryogenesis, 

can lead to neurodevelopmental disorders such as autism, epilepsy, and schizophrenia 

(Doherty and Owen, 2014; Kato and Dobyns, 2005; Rossignol, 2011).  It is therefore critical to 

gain a deeper understanding of the early developmental processes involved in cortical circuitry 

formation. 
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Cortical Inhibitory Interneurons 

Overview of properties and functions 

Cortical inhibitory interneurons are greatly outnumbered by cortical excitatory neurons, 

representing around 20% of all neurons in the cerebral cortex (Beaulieu et al., 1992; Hendry et 

al., 1987; Meinecke and Peters, 1987).  Interneurons form inhibitory connections onto nearby 

neurons, as well as establish gap junction-mediated electrical networks with other interneurons, 

which can serve to regulate excitatory transmission produced in the brain (Markram et al., 

2004).  Various populations of interneurons can even work simultaneously to provide distinct 

input frequencies to different regions of pyramidal neurons (Whittington and Traub, 2003).  

These connections are formed through synapses, which permit the direct transmission of 

electrochemical signals between cells, allowing inhibitory interneurons to coordinate the activity 

of other cortical cell populations (Hestrin and Galarreta, 2005).   

Even though interneurons are a minority of cells in the cerebral cortex, they play many 

essential roles in various types of cortical function.  In the visual cortex, interneurons induce 

critical periods in cortical plasticity, which is necessary for proper visual function (Hensch, 

2005).  The critical period can actually be delayed or brought forward by altering GABA 

transmission, and reduced inhibition in early life in a mouse model prevented experience-

dependent plasticity (Fagiolini and Hensch, 2000; Iwai et al., 2003; Morales et al., 2002).  In the 

auditory cortex, interneurons were shown to facilitate associative fear learning by engaging in a 

disinhibitory microcircuit, and when GABA activity was blocked in the cortex, the fear response 

was markedly reduced (Letzkus et al., 2011).  Indeed, neuromodulation plays a key role in 

learning (Suga and Ma, 2003), and interneurons are both targets of extrinsic modulators such 

as neurotransmitters, and are also known to modulate their own activity (Bacci et al., 2005).  In 

the awake cortex, synaptic inhibition was found to dominate during cortical responses to visual 

stimulation, which functions to spatially restrict the spread of neuronal activity and allows for a 
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more precise response to a localized visual stimulus (Haider et al., 2013).  Overall, interneurons 

play a critical role in cortical circuitry and are essential for the proper functioning of the cerebral 

cortex.  

Interneurons are a heterogenous population of cells (Cauli et al., 1997), and can be 

categorized into different classes based on criteria including morphology, expression of 

peptides, synaptic properties, the subcellular domains they target in postsynaptic cells, and 

action potential patterns (Kawaguchi and Kubota, 1997).  There are three main classes of 

interneurons, which all uniquely contribute to cortical circuit function (Rudy et al., 2011).  

Parvalbumin(PV)- and somatostatin-expressing interneurons are born in the medial ganglionic 

eminence (MGE), whereas the caudal ganglionic eminence (CGE) gives rise to 5HT3aR-

expressing interneurons, including reelin- and VIP-positive cells (Inan et al., 2012; Rossignol, 

2011; Rudy et al., 2011).  PV-positive interneurons are fast-spiking interneurons, and are the 

most abundant type in the cortex (Hu et al., 2014).  PV cells are divided into basket cells which 

target the cell body and dendrites of excitatory neurons, and chandelier cells which target the 

axon initial segment of excitatory neurons (Kawaguchi and Kubota, 1997).  Somatostatin-

expressing interneurons are a diverse group of interneurons (Riedemann, 2019), one type of 

which is the defined Martinotti cell, which is calbindin-expressing and extends an axon to inhibit 

the distal apical dendrite of excitatory neurons in layer I (Ma et al., 2006).  CGE-derived 

interneurons express 5HT3aR, a serotonin receptor, and can largely be divided into vasoactive-

intestinal peptide (VIP)-expressing and VIP-lacking cells (Lee et al., 2010; Xu et al., 2010b).  

Overall, interneurons are incredibly diverse and contribute to the function of cortical circuitry in 

different ways, and elucidating the unique properties of each subtype will be critical to our 

understanding of cortical function. 
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Discovery of tangentially-migrating interneurons 

Interneurons were first described by Ramon y Cajal as short-axon cells that had a 

horizontal morphology (Ramon y Cajal, 1895).  Later histological studies revealed that certain 

cells migrated in a direction that was tangential to radially migrating neurons in the cortex in 

rabbits (Stensaas, 1967), opossums (Morest, 1970), and mice (Shoukimas and Hinds, 1978).  

Lineage tracing studies using a retrovirus identified cells traveling perpendicular to radial glial 

fibers (Austin and Cepko, 1990; Walsh and Cepko, 1988).  A similar observation of tangentially-

oriented cells in the neocortex was reported in a mouse model which labeled nearly half of all 

cells using X-inactivation mosaics (Tan and Breen, 1993).  This tangential mode of migration 

was first observed in pioneering time-lapse imaging studies of ferret cortical slices, where DiI-

labeled neurons were observed migrating orthogonal to the radial direction (O'Rourke et al., 

1992), however the origin of these tangentially-oriented cells remained unknown at the time. 

By placing DiI and DiA crystals into the lateral ganglionic eminence (LGE), which is the 

nascent striatum located in the ventral telencephalon (Deacon et al., 1994), labelled cells from 

cultured slices were observed migrating tangentially in the preplate in the dorsal telencephalon 

(de Carlos et al., 1996).  Another group also performed a similar experiment by using DiI to label 

LGE-derived cells in culture, however they also were able to show that these cells contained 

GABA, and hence showed that GABAergic interneurons migrated from the basal forebrain to the 

neocortex (Anderson et al., 1997).  In this same study, brain slices were transected at the 

pallial-subpallial boundary (PSPB) on one side of the slice, and after being cultured, the 

transected sides had ten times fewer GABAergic neurons in the cortex, suggesting they had 

originated from below the PSPB (Anderson et al., 1997).  In utero experiments revealed similar 

results, in which the PSPB was sectioned in one hemisphere in utero, then one day later in 

development, a buildup of GABAergic cells was located in the subpallium of the sectioned side 

of the brain (Tamamaki et al., 1997).  These studies collectively suggested that interneurons 

were born in the subpallium and migrated tangentially across the PSPB to reach the cortex.  
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Generation of interneurons 

Cortical interneurons are born in the ganglionic eminences, which are so named 

because they will later give rise to the basal ganglia (Fentress et al., 1981), and are divided into 

the medial, lateral, and caudal ganglionic eminences (MGE, LGE, and CGE, respectively).  

Early studies first suggested that cortical interneurons were born in the LGE and MGE, when a 

DiI crystal was placed into the LGE or MGE of cortical slices, and DiI-labeled GABAergic cells 

were found in the cortex (Anderson et al., 1997; Lavdas et al., 1999).  However, in a separate 

study, DiI was injected specifically into the MGE or LGE in cultured brain slices, and it was 

discovered that only cells from the MGE, and not the LGE, migrated into the cortex (Wichterle et 

al., 1999).  Two separate studies in 2001 helped resolve this point of confusion.  First, fate-

mapping of interneurons was performed by transplanting Bromodeoxyuridine- (BrdU) labeled 

MGE or LGE into unlabeled recipient slices, which revealed that the MGE is the primary source 

of tangentially migrating cells in the cortex during early development (Anderson et al., 2001).  A 

second study used an ultrasound-guided in utero approach to transplant prelabeled MGE or 

LGE donor cells into a wild type embryo, and demonstrated in vivo that the MGE, and not the 

LGE, gives rise to cortical interneurons (Wichterle et al., 2001).  Thus, the cortical interneurons 

that were observed following DiI placement in the LGE (Anderson et al., 1997) were actually 

MGE derived cells that had picked up the label while migrating through the LGE territory.   

Additional evidence suggesting interneurons arise in the MGE came from studies of a 

Nkx2.1 knockout mouse. The transcription factor Nkx2.1 is expressed in the MGE, and in the 

Nkx2.1-/- model, interneurons were significantly reduced in the cortex (Sussel et al., 1999).  It 

was later demonstrated that the CGE also gives rise to cortical interneurons through 

experiments using in vivo fate mapping approaches (Nery et al., 2002), which has since been 

confirmed in other studies (Butt et al., 2005; Lopez-Bendito et al., 2004).  Overall, approximately 

70% of interneurons arise from the MGE, 30% from the CGE, and a small fraction from the 

preoptic area (Gelman et al., 2009; Miyoshi et al., 2010).  MGE-derived interneurons in the 
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mouse are first generated around embryonic (E) day 9.5, and peak around E13.5, whereas 

CGE-derived interneurons are first generated around E12.5, and peak at E15.5 (Miyoshi et al., 

2007; Miyoshi et al., 2010).   

 

Interneuron migration 

Interneurons migrate a long distance from their place of origin in the ganglionic 

eminences to reach their final targets in the cortex, and rely on both intra- and extra-cellular 

guidance molecules and signaling gradients to effectively navigate the developing forebrain.  

During their migration, interneurons dynamically extend and retract branches to sense and 

respond to cues in their environment, which steers them into the correct direction (Ang et al., 

2003; Nadarajah et al., 2003).  Interneurons then move forward through a process called 

nucleokinesis, or somal translocation (Bellion et al., 2005; Moya and Valdeolmillos, 2004).  

Additionally, proper positioning of intracellular organelles in interneurons, including the primary 

cilium, has also been shown to play a role in their guided migration (Baudoin et al., 2012; 

Higginbotham et al., 2012).  Disruptions to the primary cilium in interneurons impairs the 

neuron’s morphology, and as a result alters the synaptic connectivity in the cortex (Guo et al., 

2017). 

Interneurons are repelled from both the MGE and LGE through chemorepulsive cues to 

direct interneuron migration out of the ventral telencephalon and towards the cortex (Wichterle 

et al., 2003; Zhu et al., 1999).  Ephrin-A5 is expressed in the ventricular zone of the ganglionic 

eminences, and serves as a chemorepulsive cue through the EphA4 receptor on interneurons 

(Rudolph et al., 2010; Zimmer et al., 2008).  Another chemorepellent in the striatum is 

semaphorin, which repels interneurons expressing neuropilin receptors (Marin et al., 2001).  In 

addition to being repelled from the ganglionic eminences, chemoattractive factors present in the 

cortex attract interneurons.  For instance, Neuregulin-1 (Flames et al., 2004) in the cortex 
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attracts interneurons expressing the receptor Erbb4 (Yau et al., 2003), and stromal-derived 

factor 1 (SDF1, also known as Cxcl12) attracts interneurons expressing Cxcr4 (Li et al., 2008; 

Lopez-Bendito et al., 2008).  Interneurons reach the cortical rudiment by embryonic (E) day 12, 

after which they continue their tangential migration into the neocortex in streams (Anderson et 

al., 2001; Lavdas et al., 1999). 

Interneurons migrate tangentially in organized streams in the cortex, traveling through 

the marginal zone (MZ), subventricular zone (SVZ), and subplate streams (Wichterle et al., 

2001).  Interestingly, the origin of the cortical interneuron (MGE or CGE) does not determine 

which migratory stream the interneuron will choose (Miyoshi and Fishell, 2011), however the 

cortical environment can have a major impact on interneuron stream maintenance.  One 

chemoattractant that interneurons utilize to stay in streams is Cxcl12, which is expressed in the 

cortex in the meninges near the MZ, and in progenitor cells in the SVZ region (Stumm et al., 

2003; Tiveron et al., 2006).  Interneurons sense Cxcl12 signaling through the expression of the 

receptors Cxcr4 and Cxcr7, and indeed, with genetic loss of either of these two receptors, 

cortical interneurons prematurely exit their streams and deposit into the cortical plate (Abe et al., 

2014; Sanchez-Alcaniz et al., 2011; Wang et al., 2011).  The timing of stream exit is a critical 

developmental process, because alterations at this stage can lead to lasting changes in the 

layering of inhibitory interneurons, which can directly affect the delicate balance between 

excitation and inhibition in the cortex (Lopez-Bendito et al., 2008). 

 

Layering with cortical excitatory neurons 

Interneurons travel in tangential streams into the cortex, switch to a radial mode of 

migration to enter the cortical plate, but then must transition out of their motile state in order to 

terminate in the appropriate location in the cortical wall.  It has been shown that gamma-

aminobutyric acid (GABA; Cuzon et al., 2006; Inada et al., 2011) and glutamate (Manent et al., 
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2006) expression in the cortical wall enhances the migration of interneurons in mouse embryos, 

acting through GABAA (Soria et al., 1999) and AMPA (Metin et al., 2000) receptors, 

respectively, located on migratory interneurons.  GABA and glutamate initially enhance 

interneuron migration during embryogenesis by depolarizing the interneuron membrane to 

increase calcium transients inside the cell (Metin et al., 2000; Soria et al., 1999).  However, 

during early postnatal development, GABA switches from a motile cue to a stop signal for 

cortical interneurons (Bortone and Polleux, 2009).  KCC2, a potassium/chloride exchanger, is 

expressed on interneurons several days after reaching the cortex, and shifts the interneuron’s 

response to GABA from depolarizing to hyperpolarizing (Bortone and Polleux, 2009).  Additional 

evidence supported the notion that KCC2 upregulation is at least in part responsible for 

migration termination, when MGE-derived interneurons were found to upregulate KCC2 earlier 

than CGE-derived interneurons, and MGE-derived cells terminate their migration earlier than 

their CGE counterparts (Miyoshi and Fishell, 2011). 

In addition to slowing and stopping their migration, cortical interneurons must decide 

where to deposit in the cortical wall, and several different factors including the location and time 

of their generation have been shown to play a role in this decision process.  Interneurons 

generated from the MGE and CGE layer in two distinct patterns, with MGE-derived interneurons 

layering in an inside-out pattern, and CGE-derived interneurons contributing 75% of their 

population to upper layers, and 25% to lower layers, regardless of their birth dates (Miller, 1985; 

Miyoshi et al., 2010).  Additionally, two different studies showed that interneurons born at the 

same embryonic time point, determined by viral injections, tended to cluster together in the 

cortex in vertical or horizontal columns (Brown et al., 2011; Ciceri et al., 2013).  However, fate-

mapping studies determined that the final laminar organization in the cortex was dependent on 

the region of origin of the interneuron, and therefore the subtype, rather than by the date of birth 

(Miyoshi and Fishell, 2011).  Interneurons born in the MGE and CGE at E12.5 primarily resided 

in complementary deep and superficial layers, respectively, even though they were generated at 
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the same time (Miyoshi and Fishell, 2011).  Additionally, interneurons born in either the MGE or 

CGE layered according to their place of birth, even when transplanted into the opposite 

ganglionic eminence, and were allowed to migrate into the cortex from the altered location (Butt 

et al., 2005; Nery et al., 2002).  

The cortical environment into which inhibitory interneurons are migrating also likely plays 

a role in determining the final positioning of interneurons.  Interneurons were shown to enter 

their final laminar position in the cortical wall well after their age-matched cortical excitatory 

neurons had reached their destinations (Pla et al., 2006).  Heterochronic transplantations of 

MGE-derived interneurons into host mouse embryos additionally revealed that both early 

(E12.5) and late (E15.5) born interneurons can switch their laminar fates based on the age of 

the new cortical environment (Valcanis and Tan, 2003).  Indeed, the organization and identity of 

cortical excitatory neurons in the developing cortical plate can directly impact the layering of 

inhibitory interneurons, as evidenced by disrupted interneuron distribution in mutants with 

excitatory neuron layering defects (Hevner et al., 2004; Lodato et al., 2011).   

 

Cortical circuitry diseases and development 

Disorders thought to arise from a common abnormality in brain development can be 

studied in tandem to try to gain a deeper understanding of underlying causes and pathologies.  

Several neurologic/neuropsychiatric disorders, including autism, epilepsy, and schizophrenia, 

have been suggested to arise from an imbalance between excitation and inhibition in the 

cerebral cortex (Doherty and Owen, 2014; Kato and Dobyns, 2005; Rossignol, 2011).  Although 

the age at which clinical symptoms emerge is different for all of these diseases, the critical time 

frame shaping the course of the disease may arise very early in postnatal life, or even as early 

as embryogenesis.  Disruptions in genes that control many different aspects of interneuron 
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development, including genes that control the generation, migration, and function of 

interneurons, can contribute to the etiologies of these various disorders (Rossignol, 2011).     

In Autism Spectrum Disorder (ASD), a very heterogeneous disorder in regards to 

presentation, one hypothesis of the common underlying mechanism is an imbalance between 

excitation and inhibition in the brain (Uzunova et al., 2016), which was first suggested as a 

model for the disease in 2003 (Rubenstein and Merzenich, 2003).  In patients with ASD, levels 

of glutamic acid decarboxylase (GAD) 65 and 67, the enzymes the convert glutamate to GABA 

in the brain, were reduced in the cortex (Fatemi et al., 2002).   

Mutations in the methyl-CpG binding protein 2 (MECP2) gene are known to cause ASD, 

along with other related disorders including Rett syndrome (Amir et al., 1999; Chahrour and 

Zoghbi, 2007).  Rett syndrome is characterized by stereotyped behaviors, cognitive defects, and 

seizures, and in mouse models of the disease, cortical function was shown to be altered due to 

changes in the excitation/inhibition balance in the brain (Dani et al., 2005).  One known target of 

the MECP2 gene is Dlx5, which regulates interneuron development (Horike et al., 2005).   

Intriguingly, it was shown that specific loss of MECP2 from GABAergic interneurons 

recapitulated behavioral features of Rett syndrome, and caused cortical hyperexcitability (Chao 

et al., 2010).  

Schizophrenia is a disorder that presents in late adolescence, yet the pathological 

mechanisms underlying this disorder are thought to occur much earlier in brain development.  

Studies from postmortem tissue of patients with schizophrenia show altered levels of 

interneuron marker genes, demonstrating a different proportion of interneuron subtypes (Fung 

et al., 2014; Fung et al., 2010).  Additionally, the interneurons most altered in schizophrenia 

originated primarily from the MGE, showing a developmental structure that may be altered in a 

disease showing symptoms twenty or more years later (Fung et al., 2014).  Therefore, analyzing 

genes that affect the development of different populations of interneurons or their embryonic 

precursors can help provide insight into mechanistic causes of diseases such as schizophrenia. 



13 
 

Epilepsy can manifest during childhood or adolescence, and its etiology may stem from 

disruptions to inhibitory circuit formation during development.  One of the first studies linking 

developmental interneuron dysfunction to later epileptic behavior was performed by Powell and 

colleagues in Pat Levitt’s laboratory.  In a mouse model lacking urokinase-type plasminogen 

activator receptor (u-PAR), a cell membrane receptor, interneurons aberrantly migrated out of 

the ganglionic eminences, and as a result, there were reduced numbers of interneurons in the 

embryonic and postnatal cortex (Powell et al., 2001; Powell et al., 2003).  In the adult animals, 

mice display higher anxiety-like behaviors, have spontaneous seizures, and are more 

susceptible to pharmacologically induced seizures (Powell et al., 2003).  Interestingly, the 

parvalbumin subtype of interneurons was found to be predominately affected (Powell et al., 

2003).  While therapies for epilepsy have advanced, there are still treatment-resistant seizures 

that are debilitating.  A recent treatment option being explored is the implantation of MGE-

derived interneuron precursors into seizure foci (Jaiswal et al., 2015).  Studying the migration 

patterns of these and other interneuron subpopulations will enable the therapeutic strategies for 

previously untreatable disorders to become more effective. 

Several other disorders with known interneuron migration deficits early in development 

leading to disorders later in life have been identified.  22q11 deletion syndrome, also known as 

DiGeorge syndrome, leads to a wide variety of clinical phenotypes including delayed 

neurodevelopmental function and associated behavioral challenges, and is also a significant risk 

factor for autism and schizophrenia (Niklasson et al., 2009).  Mouse models of 22q11 deletion 

syndrome demonstrated altered interneuron migration during development, and later aberrant 

distribution of interneurons in the adult cortical wall (Meechan et al., 2009; Meechan et al., 

2012b), which was accompanied by cognitive impairment due to changes in cortical circuitry 

(Meechan et al., 2015).   

Another neurodevelopmental disorder, X-linked lissencephaly, is the first human disorder 

linked to a deficit in the tangential migration of interneurons.  X-linked lissencephaly is a 
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disorder associated with a smoother appearance of the brain, mental retardation, intractable 

epilepsy, and developmental delays, and has been shown to be caused by mutations in the 

aristaless-related, homeobox (ARX) gene (Kato et al., 2004; Stromme et al., 2002).  Mice with 

mutations in ARX had aberrant tangential migration of interneurons during development, and a 

subsequent loss and abnormal distribution of interneurons in the cortical plate (Kitamura et al., 

2002).  This was consistent with neuropathological findings of postmortem human brains at late 

gestation, in which a lack of interneurons in the cortex was identified (Bonneau et al., 2002).  

Since the excitation/inhibition imbalance in the brain was caused by tangential migration defects 

early in life, the new term “developmental interneuronopathy” was proposed to categorize 

epilepsies caused by early disruptions to interneurons (Kato and Dobyns, 2005), highlighting the 

importance of this cell population in neurodevelopmental diseases.   

  

Thalamocortical pathway 

The role of the thalamus 

 The thalamus is located in the diencephalon and can be divided into dozens of 

structurally and functionally distinct nuclei (Jones, 2007).  Nuclei primarily in the dorsal region of 

the thalamus send projections to different cortical areas, relaying essential motor and sensory 

input from different areas of the body and the brain to the cortex (Jones, 2001).  In addition to 

the traditionally-described role as a sensory-motor relay station, the thalamus also plays a 

critical role in allowing the cortex to communicate to other higher cortical areas through a 

cortico-thalamo-cortical pathway (Sherman and Guillery, 2011).  Indeed, when thalamic activity 

was chemically inhibited, the trans-thalamic activation of other cortical areas was silenced, 

demonstrating a critical role of the thalamus in relaying information not only from the body to the 

cortex, but between cortical areas (Theyel et al., 2010). 
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 The topography of thalamocortical projections is highly organized, with rostromedial and 

caudolateral thalamic nuclei projecting to more rostral and caudal cortical areas, respectively 

(Caviness and Frost, 1980).  Most thalamic nuclei project to a defined cortical region through 

topographical sorting that is established during embryonic development before any external 

sensory input is received (Catalano et al., 1996; Dawson and Killackey, 1985).  In addition to the 

higher-level projection patterns by distinct thalamic nuclei, each nucleus shows a precise 

internal topographic organization, which transfers a topographical replica of the sensory surface 

to the neocortex (Woolsey and Van der Loos, 1970).  For example, in the rodent somatosensory 

map, whiskers form a barreloid map in the ventroposterior nucleus of the thalamus, which is 

then transferred to a barrel map in the primary somatosensory cortex, in a pattern that emerges 

during early development (Killackey et al., 1990; Wu et al., 2011).  Even by birth (postnatal day 

0) in the mouse, the topography of thalamocortical axons in the deep cortical layers of the barrel 

cortex is highly precise (Agmon et al., 1995), and by postnatal day 3, a whisker pad-like pattern 

emerges in the cortex (Rice et al., 1985).   

Any disruptions to this high level of topographic precision in early thalamocortical axon 

pathfinding can have long-term implications in thalamic connectivity as well as cortical 

organization and function (Anton-Bolanos et al., 2018).  The sorting of thalamocortical axons in 

the ventral telencephalon is critical for the transfer of the whisker map to the neocortex, as 

disruptions to the transcription factor Ebf1 in the basal ganglia caused somatosensory 

thalamocortical axons to shift toward the visual cortex, and as a result, thalamic axons failed to 

form a topographic barrel map (Lokmane et al., 2013).  Thalamocortical input is not only 

essential for proper mapping of sensory surfaces, but it has also been shown to directly 

influence the size and gene expression patterns of different cortical areas (Vue et al., 2013).  

Alterations in the connectivity between the thalamus and cortex have been implicated in various 

disorders, including those that arise from disruptions during development. 
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Thalamocortical connectivity and neurodevelopmental disorders 

  Neurodevelopmental disorders associated with excitation/inhibition imbalances have 

also been associated with altered thalamocortical circuitry, including schizophrenia (Karlsgodt et 

al., 2008), epilepsy (Pulsipher et al., 2011), and autism (McFadden and Minshew, 2013).  

Schizophrenia is a neuropsychiatric disorder characterized by altered perceptions of reality and 

distorted thoughts that interfere with daily function, and is thought to arise from developmental 

alterations to neural connectivity (Canu et al., 2015; Pantelis et al., 2003).  Anatomic analyses 

first revealed disruptions to white matter axonal tracts as well as changes in the size of the 

thalamus of patients with schizophrenia (Jones, 1997; Shenton et al., 2001).  Technological 

advances have since allowed for more sophisticated approaches to understand the relationship 

between structure and function in the human brain.  Resting state functional magnetic 

resonance imaging (fMRI) was used to map functional connectivity between the cortex and 

thalamus, and indeed, activity in specific cortical areas correlated with distinct regions in the 

thalamus (Zhang et al., 2008; Zhang et al., 2010).  When compared to control subjects, patients 

with schizophrenia were found to have increased motor/somatosensory-thalamic and reduced 

prefrontal-thalamic connectivity (Woodward et al., 2012).  This study demonstrated functional 

alterations in thalamocortical circuitry in schizophrenia, and revealed that separate thalamic 

circuits could be differentially affected in this disorder (Woodward et al., 2012). 

 Another neurodevelopmental disorder in which altered thalamocortical circuitry has been 

implicated is epilepsy, a disease characterized by repeated seizures due to abnormal 

excessive/synchronous electrical activity in the brain (Patel and Moshe, 2020).  fMRI studies 

showed activation of the thalamus in patients with idiopathic generalized epilepsy, as well as in 

a patient having an absence seizure (Aghakhani et al., 2004; Salek-Haddadi et al., 2003).  In 

patients with temporal lobe epilepsy, brain recordings revealed increased synchrony between 

the thalamus and temporal lobe during seizures, and the degree of synchrony was correlated 

with an early loss of consciousness (Guye et al., 2006).  Based on the patterns of activation and 
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deactivation in the thalamus and frontal/parietal regions in patients having seizures, it was 

postulated that the altered connections between the thalamus and cortex during seizures is also 

responsible for the reduced state of responsiveness in patients (Gotman et al., 2005). 

 Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) both 

manifest in early childhood, and disruptions in thalamocortical connectivity have been identified 

in both diseases.  In patients with ASD, reduced functional connectivity to the thalamus was 

found during a face recognition task, which is a social cognition known to be impaired in 

affected individuals (Kleinhans et al., 2008).  In a study combining both structural and functional 

imaging of patients with ADHD, white matter tracts were reduced in volume, and functional 

connectivity in the thalamus was reduced (Qiu et al., 2011).  It will be critical to understand the 

relationship between structural alterations in connectivity and their resulting functional and 

behavioral consequences. 

 

The development of thalamocortical connections 

Thalamocortical axons must extend a lengthy distance over a long period of time during 

development in order to reach their intended targets in the cortex, and they do so through a 

highly orchestrated process.  The dorsal thalamus is organized into different nuclei that are 

morphologically and functionally distinct, which begin to develop at E10.5 in the mouse brain 

(Angevine, 1970; Scholpp and Lumsden, 2010).  Thalamocortical axons extend from the 

thalamus beginning at E11.5, traverse through the prethalamus, then cross the diencephalon-

telencephalon boundary (DTB) beginning at E12.5 (Braisted et al., 1999).  In the ventral 

telencephalon, thalamocortical axons are guided by classical axon guidance molecules as well 

as intermediate targets including corridor cells positioned in the internal capsule region (Lopez-

Bendito et al., 2006; Molnar et al., 2012).  At the pallial-subpallial boundary around E14.5, 

ascending thalamocortical and descending corticothalamic axons extend in such close proximity 
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to one another, that they were thought to guide each other’s extension in the so-called 

“handshake hypothesis” (Molnar and Blakemore, 1995).  Once arriving to the cortex, 

thalamocortical axons accumulate in the subplate region of the developing cortical wall before 

synapsing onto their final targets in the cortical plate (Lund and Mustari, 1977; Shatz and 

Luskin, 1986). 

 

Thalamocortical axon repulsion from the hypothalamus 

 After exiting the thalamus ventrally and traversing the prethalamus, thalamocortical 

axons must make a sharp lateral turn to exit the diencephalon and enter the telencephalon in 

route to the cortex.  It was first discovered that thalamocortical axons did not enter the 

hypothalamus by visualizing early embryonic thalamocortical axons in fixed brain slices using 

DiI (Braisted et al., 1999).  Additionally, axons from thalamic explants were repelled by the 

hypothalamus in vitro, however the guidance cue directing this repulsion was unknown (Braisted 

et al., 1999).  Slit proteins were found to be responsible for the hypothalamic repulsion after 

thalamocortical axons in Slit2 and Slit1/Slit2 knockout mice aberrantly projected into the 

hypothalamus instead of crossing the diencephalon-telencephalon boundary (DTB) region 

(Bagri et al., 2002).  In situ hybridization revealed high levels of Slit1 and Slit2 in the 

hypothalamus in the developing mouse embryo, along with Robo1 and Robo2 receptor 

expression in the dorsal thalamus (Bagri et al., 2002).  The temporal expression of this 

receptor/ligand combination would allow for Slits to be the repellant for thalamocortical axons in 

the hypothalamus, along with the fact that Slit was found to be a midline repellent for Robo-

expressing axons in Drosophila (Kidd et al., 1999) and in the developing vertebrate spinal cord 

(Brose et al., 1999; Long et al., 2004). 

 Slit2 was shown to be a repellant for thalamocortical axons in vitro when axons from 

thalamic explants turned away from Slit2-expressing COS cells in culture (Lopez-Bendito et al., 
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2007).  In this same study, Robo2 and Robo1/Robo2 knockout mice displayed similar axonal 

phenotypes to the Slit1/Slit2 knockout mouse, in which thalamocortical axons aberrantly 

invaded the hypothalamus (Lopez-Bendito et al., 2007).  The repulsion of thalamic axons away 

from the hypothalamus in vitro was then confirmed in a rat model (Braisted et al., 2009), after 

being originally demonstrated in a mouse model (Braisted et al., 1999).  Additionally, when Slit 

function is blocked in a hypothalamic explant, axons from thalamic explants grow towards the 

Slit-deficient hypothalamus, further suggesting Slit mediates the repulsion of thalamocortical 

axons away from the hypothalamus (Braisted et al., 2009).  Moreover, in mouse mutants with 

loss of Gbx2 or Lhx2 from the thalamus, Robo1 and Robo2 expression was disrupted in 

thalamic axons, which caused thalamocortical axons to misroute into the hypothalamus 

(Chatterjee et al., 2012; Marcos-Mondejar et al., 2012). 

 

Thalamocortical axon crossing at the diencephalon-telencephalon boundary 

(DTB) 

 Repulsion from the hypothalamus via the secreted protein Slit is one means by which 

thalamocortical axons are directed towards the telencephalon (Bagri et al., 2002; Braisted et al., 

2009; Lopez-Bendito et al., 2007).  In addition to diffusible chemorepellents from the 

hypothalamus, a population of cells known as “guidepost cells” have also been suggested to be 

important in guiding thalamocortical axons across the critical diencephalon-telencephalon 

boundary.  Guidepost cells have their cell bodies located in the thalamocortical axon pathway, 

and extend an axon to the dorsal thalamus.  While no specific marker exists for these cells, they 

can be identified by retrograde labeling of axons and cell bodies when a DiI crystal is placed into 

the developing dorsal thalamus (Godement et al., 1987).  The idea of guidepost cells in 

thalamocortical connectivity was first formulated when cells located in the thalamic reticular 

nucleus were shown to project to the dorsal thalamus in a rat embryo (Mitrofanis and Guillery, 
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1993) and later a ferret (Mitrofanis, 1994).  Guidepost cells located in the internal capsule region 

were first discovered in a hamster (Metin and Godement, 1996), and later, in rat embryos, when 

retrogradely labeled cells with axons that extended into the dorsal thalamus were detected in 

the internal capsule near the coursing thalamocortical axons (Molnar et al., 1998).  In the mouse 

model, guidepost cells were present in the internal capsule at E12.5, which is when the first 

thalamic axons arrive at the DTB, and have not yet entered the internal capsule (Braisted et al., 

1999).  More recent analyses showed these retrogradely labeled guidepost cells are Islet1-

positive, and many come from the Dlx5/6 lineage of cells in the ventral telencephalon (Feng et 

al., 2016).  While the ultimate fate of these cells remains unknown, embryonic analyses 

examining the presence of retrogradely labeled cells in the rat brain demonstrated that their 

number diminish over the course of development and their distribution in the telencephalon 

becomes more disperse (Molnar and Cordery, 1999). 

 In several different mouse models where thalamocortical axons are unable to cross the 

DTB, the guidepost cells have been reported as reduced or missing.  In the Mash1 mutant, 

guidepost cells were completely absent from the ventral telencephalon, and no thalamocortical 

axons had crossed the DTB (Tuttle et al., 1999).  Guidepost cells were still present in the Pax6, 

Emx2, and Sema6A mutants, however the cells were displaced and more spread out in the 

telencephalon (Jones et al., 2002; Lopez-Bendito et al., 2002; Mitsogiannis et al., 2017).  

Reductions in the numbers of guidepost cells were observed in Lhx2-/-, OL-protocadherin-/-, 

and  Dlx5/6-Cre;Celsr3fl/fl mice (Feng et al., 2016; Lakhina et al., 2007; Uemura et al., 2007).  

Since no molecular marker currently exists to label these cells exclusively, it is unknown in 

mutants with missing/reduced number of guidepost cells whether the cells are no longer 

present, or whether they are present and are unable to extend an axon to the dorsal thalamus. 
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Navigation of thalamocortical axons through the telencephalic corridor 

 After crossing the DTB, thalamocortical axons must extend through the ventral 

telencephalon before reaching the cortex.  A population of cells called the “corridor” cells guide 

thalamocortical axons in the ventral telencephalon (Lopez-Bendito et al., 2006).  Corridor cells 

originate in the lateral ganglionic eminence, and migrate both medially and caudally beginning 

at E11.5 to form a permissive territory through the Nkx2.1-postiive medial ganglionic eminence 

(MGE) and globus pallidus (GP), which are normally not permissive to thalamocortical axons 

(Lopez-Bendito et al., 2006).  Corridor cells express a membrane bound isoform of the 

Neuregulin-1 protein, CRD-NRG1, which attracts thalamocortical axons expressing the receptor 

ErbB4 (Lopez-Bendito et al., 2006).  In addition to providing guidance through the ventral 

telencephalon, the caudal migration of corridor cells to the DTB is important in the early 

guidance of thalamocortical axons as they first enter from the diencephalon.  In mouse 

embryos, the corridor region extends caudally and thalamocortical axons cross the DTB, 

however in chick embryos, the corridor extends medially but not caudally, and thalamocortical 

axons do not cross the DTB region (Bielle et al., 2011a).  This study also demonstrated that 

corridor cells express Robo1 and Robo2 receptors, and they migrate caudally due to Slit2-

medaited repulsion from the MGE and preoptic area (Bielle et al., 2011a).   

Several different mouse models with thalamocortical axon guidance defects at the DTB 

have disruptions to the corridor region.  In the Slit2-/- mice, Ebf1-positive corridor cells fail to 

extend caudally to the DTB region (Bielle et al., 2011a).  In Frizzled3-/- mice, Islet-1 positive 

cells expand into the GP region, and the Nkx2.1-postiive domain of the GP occupies a larger 

area (Morello et al., 2015).  A similar invasion of Islet1-positive cells into the GP occurred in the 

OL-protocadherin-/- mouse, which was accompanied by a failure of Islet1-positive cells to 

extend caudally (Uemura et al., 2007).  Furthermore, Islet1-positive cells were more broadly 

distributed in the ventral telencephalon of the Pax6-/- mouse (Simpson et al., 2009).  It is still 

unknown whether the corridor cells are responsible for thalamocortical axon guidance strictly in 
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the ventral telencephalon, or if they can also assist in the thalamocortical axon extension across 

the DTB in vivo.  In slice culture in vitro assays where the DTB remained intact, a wild type 

corridor graft was able to partially rescue the axon misrouting phenotype in the Slit2-/- mouse, 

suggesting the corridor may play a role in DTB crossing (Bielle et al., 2011a).   

 

Sorting of thalamocortical axons in the ventral telencephalon 

 Once in the ventral telencephalon, thalamocortical axons are sorted by gradients of 

guidance molecules expressed along the rostrocaudal axis.  Early studies demonstrated that the 

ventral telencephalon was attractive for thalamocortical axons in vitro when axons from thalamic 

explants grew towards telencephalic explants in a collagen assay (Braisted et al., 1999).  One of 

the attractive factors was identified as Netrin-1, when axons from thalamic explants grew 

towards Netrin-1-expressing cells (Braisted et al., 2000).  However, Netrin-1-blocking antibodies 

only slightly decreased the biased growth of thalamic axons to telencephalic explants, 

suggesting other chemoattractive factors may also be expressed by the telencephalon (Braisted 

et al., 2000).  Additionally, in Netrin1-/- mice, although the crossing of axons at the DTB 

remained unimpaired, thalamocortical axons were disorganized once in the internal capsule 

(Braisted et al., 2000).  This study, combined with Netrin-1 expression in the ventral 

telencephalon at the time thalamocortical axons are first traversing that region (Metin et al., 

1997; Serafini et al., 1996), implicate Netrin as a key signaling molecule in early thalamocortical 

axon pathfinding.  Netrin-1 was found to be expressed in a high-rostral to low-caudal gradient in 

the ventral telencephalon (Powell et al., 2008).  Netrin-1 is a chemoattractant for rostral thalamic 

axons which express high levels of the Dcc receptor that mediate Netrin-1’s attractive effects, 

and is a chemorepellent for caudal thalamic axons which express high levels of the Unc5A/C 

receptors that mediate the repulsive effects of Netrin-1 (Powell et al., 2008).   



23 
 

 Two other classes of axon guidance molecules, semaphorins and ephrins, were 

identified as key regulators of the topographic sorting of thalamocortical axons in the ventral 

telencephalon.  Semaphorins3A/3F and EphrinA5 are expressed in high-caudal to low-rostral 

gradients in the telencephalon, and act through Sema6A and EphA3/4/7 receptors on thalamic 

axons, respectively, to appropriately sort thalamocortical axons as they are coursing through the 

ventral telencephalon (Dufour et al., 2003; Leighton et al., 2001).  Gradients of EphrinA5 have 

been shown to prevent the caudal growth of rostral thalamic axons, which express high levels of 

EphA3/4/7 receptors, and gradients of Semaphorin3A/4F have been shown to prevent the 

caudal growth of intermediate thalamocortical axons (Dufour et al., 2003; Little et al., 2009; 

Wright et al., 2007).  More recent work has demonstrated that gradients of Slit and Netrin act 

together to guide thalamocortical axons in the ventral telencephalon (Bielle et al., 2011b; Leyva-

Diaz et al., 2014).  FLRT3 was identified as a novel co-receptor for Robo1, and in the presence 

of Slit1 in the telencephalon, both Robo1 and FLRT3 receptors are required on thalamic axons 

in order for the axons to be attracted to the Netrin-1 gradients (Leyva-Diaz et al., 2014). 

 

Longitudinal axon pathways that cross the DTB in early development 

 Thalamocortical axons first cross the DTB at E12.5 in the mouse, aided in part by Slit-

mediated repulsion from the hypothalamus, chemoattractants from the ventral forebrain, 

guidepost neurons and their axonal projections to the thalamus, and corridor cells in the ventral 

telencephalon.  Besides thalamocortical axons, several other longitudinal axon pathways must 

cross the DTB during a similar developmental time window in route to their final targets.  The 

two longitudinal axon pathways that reciprocally connect the striatum to the substantia nigra 

(striatonigral) and the substantia nigra to the striatum (nigrostriatal) cross the DTB at around the 

same time as thalamocortical axons (Garcia-Pena et al., 2014; Morello et al., 2015).  
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Disruptions to both of these pathways have been identified in mouse mutants with aberrant 

thalamocortical connectivity. 

OL-protocadherin is highly expressed in developing striatal cells located in the ventral 

telencephalon (Hirano et al., 1999), and in mouse knockout models, striatal axons fail to cross 

the DTB in vivo and are unable to properly extend in vitro (Uemura et al., 2007).  In this same 

model, both thalamocortical and nigrostriatal axons are misrouted into the hypothalamus instead 

of crossing the DTB (Uemura et al., 2007).  Frizzled3 is a Wnt receptor, and has been shown to 

be critical for the extension of thalamocortical axons across the DTB region (Hua et al., 2014; 

Wang et al., 2002; Wang et al., 2006).  In the Frizzled3-/- mouse, both striatonigral and 

nigrostriatal axons fail to properly extend, and as result do not cross the DTB region 

(Fenstermaker et al., 2010; Hua et al., 2014; Morello et al., 2015).  Finally, in Slit1/2 double 

knockout mice, nigrostriatal axons are similarly misrouted into the hypothalamus (Bagri et al., 

2002).  Much remains to be determined on how and if these different axon pathways rely on 

each other for guidance, and how coordinated orchestration of axon pathways, corridor and 

guidepost cells, and signaling gradients work together during development to form a highly 

complex and organized brain. 

 

The c-Jun N-terminal Kinase (JNK) Signaling Pathway 

JNK Signaling Cascade 

Intracellular signaling pathways are critical for the integration of extracellular cues that 

cells must respond to in order to interact with their environment.  The c-Jun N-terminal Kinase 

(JNK) signaling pathway is a member of the mitogen-activated protein kinase (MAPK) signaling 

pathway, and is controlled by two upstream MAPK kinases, MKK4 and MKK7, which are 

activated by various MAPKKKs through phosphorylation (Weston and Davis, 2007; Yamasaki et 

al., 2012).  As the terminal kinase in the signaling cascade, JNKs phosphorylate a wide variety 
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of downstream substrates to regulate cellular behavior (Manning and Davis, 2003).  JNK was 

initially discovered after being purified from rat liver 30 years ago (Kyriakis and Avruch, 1990), 

and has subsequently been shown to regulate normal processes of cell proliferation, protein 

degradation, cell movement, and apoptosis (Bogoyevitch and Kobe, 2006).   

The JNKs are encoded by the three genes Jnk1, Jnk2, and Jnk3, also known as Mapk8, 

Mapk9, and Mapk10, respectively, and are alternatively spliced into ten different isoforms 

(Gupta et al., 1996; Kyriakis et al., 1994).  Jnk1 and Jnk2 are ubiquitously expressed throughout 

the body, but Jnk3 is found primarily in the brain, and in smaller amounts in the cardiac smooth 

muscle and testes  (Kuan et al., 1999; Martin et al., 1996).  All three JNKs are expressed in both 

the developing and adult brain (Brecht et al., 2005; Kuan et al., 1999).  Interestingly, JNK has 

been shown to be differentially regulated in neurons compared to non-neuronal cells and tissue.  

In non-neuronal cells, JNK is activated in response to stress (Davis, 2000); however, in 

neuronal cells, JNK1 is constitutively active, and JNK2 and JNK3 are stress-responsive (Coffey 

et al., 2000; Coffey et al., 2002).  In non-neuronal cells, JNK has been implicated in the 

induction of autophagy (Ogata et al., 2006; Wei et al., 2008; Yu et al., 2004); however, in 

neuronal cells, JNK suppresses autophagy (Xu et al., 2011).  These differences between 

neuronal and non-neuronal cells suggests JNK may play a unique role in the nervous system. 

 

The role of JNK in neuronal migration 

JNK has been shown to play a role in the migration of many different cell types, including 

fibroblasts, tumor endothelial cells, several cancer cell lines, and smooth muscle cells (Huang et 

al., 2003; Kavurma and Khachigian, 2003; Malchinkhuu et al., 2005).  However, JNK’s role in 

neuronal migration was first discovered in 2003, when both a dominant-negative form for JNK 

(Derijard et al., 1994) and the JNK inhibitor SP600125 (Bennett et al., 2001) suppressed the 

migration of excitatory neurons in the developing cortical wall (Kawauchi et al., 2003).  
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Additionally, studies using either SP600125 or a short hairpin RNA knockdown of Jnk1 

demonstrated that JNK signaling was required for proper nuclear movements and leading 

process branching in migrating cortical excitatory neurons (Nishimura et al., 2010; Nishimura et 

al., 2014). 

Several studies have shown disruptions to radial migration of neurons when upstream 

activators of JNK signaling are altered.  Mitogen-activated protein kinase upstream protein 

kinase (MUK, also known as dual leucine zipper-bearing kinase- DLK), is a MAPKKK that 

activates JNK (Hirai et al., 1996), and when DLK is overexpressed in neural precursor cells, the 

migration of excitatory neurons is arrested in the subventricular zone of the cortical wall (Hirai et 

al., 2002).  Additionally, in DLK-/- mice, as well as in cortical slices treated with SP600125, the 

acceleration of excitatory neurons in the subplate region of the cortex was delayed (Hirai et al., 

2006).   Excitatory neuron migration was also shown to be delayed when the two direct 

upstream activators of JNK signaling, MKK4 and MKK7, were genetically removed from 

neuronal cells in mice using the Nestin-Cre driver line (Wang et al., 2007; Yamasaki et al., 

2011). 

The effects of removing different JNK genes, as well as using genetic models to 

eliminate JNK function, have been utilized more recently.  Excitatory cortical neurons in Jnk1 

knockout mice displayed an increased speed of migration in early phases of excitatory neuron 

migration (Westerlund et al., 2011).  Using short hairpin RNAs to selectively target Jnk2 or Jnk3 

through in utero electroporation showed decreased migration of excitatory neurons with the 

knockdown of Jnk2, and no change in the migration with the knockdown of Jnk3 (Zhang et al., 

2016).  Our lab was the first to show a requirement for JNK signaling in the migration of cortical 

interneurons.  In both pharmacological and genetic approaches, cortical interneurons were 

delayed in their entry into the cortex, prematurely dispersed from migratory streams, and 

inappropriately allocated in the early postnatal cortex (Myers et al., 2020; Myers et al., 2014).  

Additionally, JNK signaling is required for the proper dynamic behaviors of migrating 
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interneurons, including leading process branching and nucleokinesis (Smith et al., 2020).  JNK 

signaling therefore plays a role in the migration of both cortical excitatory neurons and inhibitory 

interneurons. 

 

JNK’s role in axon pathfinding 

 JNK signaling has also been shown to play a role in axon growth, regeneration, and 

pathfinding.  Before JNK’s specific role in axon development was determined, it was 

demonstrated that JNK function was necessary for neurite architecture and dendritic length 

(Bjorkblom et al., 2005; Coffey et al., 2000).  JNK was first demonstrated to play a role in 

neuronal polarity when the active phosphorylated form of JNK was found to be highly enriched 

in the axon on neurons, and inhibition of JNK signaling in neurons in vitro prevented 

axonogenesis (Oliva et al., 2006; Tararuk et al., 2006).  Interestingly, JNK has also been shown 

through multiple different studies to play an essential role in axon regeneration (Arthur-Farraj et 

al., 2012; Raivich et al., 2004), and recently, through a phosphoproteomics analysis, JNK was 

found to be activated in growth cones specifically in growing and regenerating axons (Kawasaki 

et al., 2018). 

 Studies in mouse models provided evidence for JNK’s role in axons in vivo, through 

genetic knockouts of JNK itself, upstream activators of JNK signaling, or JNK binding proteins.  

Jnk2 knockout mice had normal development of the anterior commissure, however in Jnk1 

knockout mice, the anterior commissure developed normally up until postnatal (P) day 6, but 

was completely lost by P12 (Chang et al., 2003).  In mice with loss of DLK, the anterior 

commissure, corpus callosum, and other cortical tracts were disrupted (Hirai et al., 2006).  

Another mouse model that displayed severely disrupted axon tracts involved the conditional 

deletion of MKK7, an upstream activator of JNK signaling (Asaoka and Nishina, 2010; Davis, 

2000).  When MKK7 was removed from neural stem cells and postmitotic neurons using the 
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Nestin-Cre driver line, knockout mice had enlarged ventricles, and reduced size of the striatum, 

internal capsule, anterior commissure, and corpus callosum (Yamasaki et al., 2011).  

Interestingly, these severe axon phenotypes were not observed when MKK4, the other main 

upstream activator of JNK signaling, was removed from the same lineage (Wang et al., 2007).    

Finally, in mice deficient in JIP3 (JNK interacting protein 3), which can form a scaffold with JNK 

(Ito et al., 1999; Whitmarsh et al., 1998), both the corpus callosum and anterior commissure 

failed to cross the midline (Cho et al., 2011; Ha et al., 2005; Kelkar et al., 2003).  Collectively, 

these studies suggest that JNK plays an important role in the development of major axon 

pathways in the developing forebrain.  

 

JNK and disease 

JNK has been shown to play a role in many different types of neurologic diseases, 

ranging from neurodevelopmental to neurodegenerative disorders.  Postmortem brains from 

Alzheimer’s and Parkinson’s patients were found to have increased JNK activity (Ferrer et al., 

2001; Ferrer et al., 2003), and JNK was actually found to localize to pathological brain regions 

containing plaques and tangles (Pei et al., 2001; Zhu et al., 2001).  Through animal models, 

JNK has even been shown to increase amyloid-Beta plaque load and hyperphosphorylate tau in 

Alzheimer’s brains (Mazzitelli et al., 2011; Reynolds et al., 1997).   

Increasing evidence has been found for JNK’s role in neuropsychiatric disorders, and 

patients with gene anomalies in the JNK pathway have presented with a variety of diseases.  

The first genetic link between JNK and schizophrenia was discovered in a patient with a 

mutation in the MAPKK7 gene, which is an upstream activator of JNK signaling (Winchester et 

al., 2012).  Patients with autism have been found to have alterations in the TAOK2 gene, an 

upstream activator of JNK signaling (de Anda et al., 2012; Weiss et al., 2008), as well as 

mutations in GSTP1, a JNK regulatory protein (Williams et al., 2007).  Mutations in the 
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IL1RAPL1 gene have been associated with mental retardation and autism (Carrie et al., 1999; 

Piton et al., 2008), and mouse models have shown that IL1RAPL1 signals through JNK 

(Pavlowsky et al., 2010a; Pavlowsky et al., 2010b). 

Widescale genetic analyses have associated JNK signaling with neurodevelopmental 

disorders.  An array-comparative genomic hybridization was performed on patients with 

structural brain malformations, many of whom had Intellectual Disability, and gene ontology 

search revealed that genes in the JNK cascade are likely to play a significant role in the etiology 

of brain malformations (Kariminejad et al., 2011).  Additionally, a separate study analyzed the 

gene expression profile of autism-susceptibility genes in the developing human brain, and found 

JNK to be a major signaling pathway central to autism spectrum disorder networks (Ziats and 

Rennert, 2011).  

JNK3 specifically has been implicated in human disorders including epilepsy and 

cognitive dysfunction (Kunde et al., 2013; Shoichet et al., 2006).  A case study revealed a 

truncated JNK3 protein in a patient with epilepsy and a learning disability, in which chromosome 

mapping showed that Jnk3 was disrupted in a de novo balanced translocation (Shoichet et al., 

2006).  A second unrelated patient with intellectual disability had a similar mutation in Jnk3, and 

in both patients, the mutations resulted in truncated proteins that were unable to phosphorylate 

the JNK target c-Jun in vitro (Kunde et al., 2013). 

JNK knockout mouse models have provided additional insight into JNK’s role in 

neurological disorders.  In Jnk3 knockout mice, animals were found to be resistant to kainate-

induced seizures, due to the neuroprotection offered by removal of JNK’s ability to elicit 

neuronal death in the hippocampus (Yang et al., 1997).  In Jnk1 knockout mice, animals 

displayed reduced depressive and anxiety-like behaviors (Mohammad et al., 2018).  The 

precise role that JNK plays in all of these disorders still remains to be unraveled, but both 

patient and animal studies show evidence that disruption of the JNK signaling pathway can 

contribute to the etiology of these disorders. 
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JNK knockout animal models 

Prior studies investigating the loss of JNK function have utilized both in vivo mouse 

models as well as pharmacological inhibition of JNK signaling in order to gain insight into the 

role of JNK in neural development.  Genetic approaches have largely examined the loss of only 

one or two JNK genes (Coffey, 2014; Zdrojewska and Coffey, 2014), and in one case all three 

from cerebellar Purkinje cells (Xu et al., 2011), which limits our understanding of JNK function 

as a whole, since JNK genes can partially compensate for one another.  Indeed, JNK2 

deficiency through a chemical genetic approach was found to cause a compensatory increase in 

JNK1 function (Jaeschke et al., 2006), and in Jnk2-/- mice, JNK1 levels are increased, and in 

Jnk3-/- mice, JNK1 levels were found to be increased in brain tissue (Brecht et al., 2005; Chen 

et al., 2005). 

Generation of a mouse model with loss of all three JNK genes requires a conditional 

approach, since the constitutive deletion of just Jnk1 and Jnk2 is embryonic lethal in mice (Kuan 

et al., 1999; Sabapathy et al., 1999).  Isoform-specific functions of JNK in neurons have been 

demonstrated in prior studies (Brecht et al., 2005), however removal of all JNK function is 

required to reveal roles for JNK in autophagy (Xu et al., 2011) and neuronal death (Bjorkblom et 

al., 2008).  Indeed, the most promising neuroprotective effects observed in vivo from chemical 

inhibitors of JNK do not distinguish between JNK isoforms (Graczyk, 2013).  Therefore, studies 

examining the loss of all three JNK genes will be critical to understand JNK’s role in biological 

processes. 

Studies examining the requirement for JNK in neuron migration and axon elongation 

have either explored the loss of one or two JNK genes in vivo, or used in vitro approaches of 

pharmacological inhibition.  Prior to this thesis work, JNK’s roles in interneuron stream 

maintenance, laminar allocation, and thalamocortical axon pathfinding were all unknown.  In this 

dissertation, the requirements for JNK function in forebrain development are explored in vivo in 

a novel conditional triple knockout (cTKO) mouse model, where Jnk1 is conditionally eliminated 
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from Dlx5/6-lineage cells in a Jnk2;Jnk3 knockout background.  This work demonstrates critical 

roles for JNK function in cortical inhibitory interneuron migration and allocation, and in early 

thalamocortical axon pathfinding. 
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Abstract 

The precise migration of cortical interneurons is essential for the formation and function 

of cortical circuits, and disruptions to this key developmental process are implicated in the 

etiology of complex neurodevelopmental disorders, including schizophrenia, autism, and 

epilepsy.  We recently identified the c-Jun N-terminal kinase (JNK) pathway as an important 

mediator of cortical interneuron migration, regulating the proper timing of interneuron arrival into 

the cortical rudiment.  In the current study, we demonstrate a vital role for JNK signaling at later 

stages of corticogenesis, when interneurons transition from tangential to radial modes of 

migration.  Pharmacological inhibition of JNK signaling in ex vivo slice cultures caused cortical 

interneurons to rapidly depart from migratory streams and prematurely enter the cortical plate.  

Similarly, genetic loss of JNK function led to precocious stream departure ex vivo, and stream 

disruption, morphological changes, and abnormal allocation of cortical interneurons in vivo.  

These data suggest that JNK signaling facilitates the tangential migration and laminar 

deposition of cortical interneurons, and further implicates the JNK pathway as an important 

regulator of cortical development.   
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Introduction 

Guided migration of cortical interneurons is mediated by the precise spatial-temporal 

integration of extracellular cues with intracellular signals.  Failure to detect, transduce, or 

respond to these cues can alter the abundance, distribution, and connectivity of interneurons in 

the cerebral cortex, which may underlie severe neurological disorders like schizophrenia, 

epilepsy, and autism (Di Cristo, 2007; Kato and Dobyns, 2005; Marin, 2012).   

Upon generation in the medial and caudal ganglionic eminences of the ventral forebrain, 

cortical interneurons migrate long distances to reach and infiltrate the cortical rudiment (Miyoshi 

et al., 2010; Nery et al., 2002; Xu et al., 2004).  Within the developing cerebral cortex, 

interneurons predominantly travel in tangentially-oriented streams located in the marginal zone 

(MZ), subventricular zone (SVZ), and to a lesser extent, the subplate.  As cortical development 

proceeds, interneurons gradually transition from tangential to radial modes of migration in order 

to leave their streams, layer in the cortical plate, and form synaptic connections (Miyoshi and 

Fishell, 2011).  The mechanism by which cortical interneurons mediate this tangential to radial 

switch appears to be multifactorial, and has been attributed to several molecular pathways, 

including C-X-C motif chemokine ligand 12 (Cxcl12) and its receptors Cxcr4/Cxcr7 (Li et al., 

2008; Lopez-Bendito et al., 2008; Sanchez-Alcaniz et al., 2011; Wang et al., 2011), Connexin 

43 (Elias et al., 2010), Sonic hedgehog (Baudoin et al., 2012), and Neuregulin 3 and its receptor 

ErbB4 (Bartolini et al., 2017).  These pathways likely converge on cytoskeletal modulators, 

including Doublecortin and p27kip1, which have been shown to influence the dynamic behavior of 

migrating cortical interneurons at key choice points in their trajectories (Friocourt et al., 2007; 

Godin et al., 2012; Kappeler et al., 2006; Lysko et al., 2014).  To date, the intracellular signaling 

pathways that regulate the tangential progression of cortical interneurons in migratory streams 

and the timing of migratory stream exit are largely unknown.  

The c-Jun N-terminal kinases (JNKs) comprise a subgroup of evolutionarily conserved 

mitogen-activated protein kinases.  Three genes, Jnk1 (Mapk8), Jnk2 (Mapk9), and Jnk3 
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(Mapk10), encode JNK proteins that function to transduce stressful extracellular stimuli, as well 

as enable normal physiological processes, including cell proliferation, apoptosis, differentiation, 

and migration (Davis, 2000).  JNKs are implicated in multiple aspects of brain development, 

including neuronal migration in the cerebral cortex (Coffey, 2014).  We previously found that 

JNK signaling controls the timing of interneuron entry into the cerebral cortex and the initial 

formation of tangential streams of migratory cells (Myers et al., 2014), however, the role that 

JNK plays in later stages of interneuron migration, including the tangential to radial switch, is 

unknown.   

In the current study, we use pharmacological inhibition and genetic ablation of JNK 

function to investigate the role that JNK signaling plays in the tangential progression of cortical 

interneurons in migratory streams and the allocation of interneurons in the developing cortical 

wall.  In live-imaging experiments from both pharmacologically treated and genetically 

manipulated ex vivo brain slices, cortical interneurons abandoned their tangential orientations, 

vacated streams, and prematurely entered the cortical plate.  Genetic loss of JNK function in 

vivo resulted in delayed entry of interneurons into the cortex at E13.5, morphological 

abnormalities and early stream departure of interneurons at E15.5, and incorrect positioning of 

calbindin-positive and calbindin-negative interneurons in the postnatal day 0 cortical wall.  Our 

findings suggest that JNK signaling is required for the maintenance of migratory streams and 

that inhibition of JNK may facilitate the switch from tangential to radial modes of migration in 

order to promote the infiltration of cortical interneurons into the nascent cortical plate.  
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Results 

Loss of JNK signaling alters the radial distribution and migratory orientation of 

cortical interneurons 

To determine if JNK signaling is required to maintain preformed streams of migratory 

cortical interneurons, we cultured live-vibratome sections from E14.5 Dlx5/6-Cre-IRES-EGFP 

(Dlx5/6-CIE) mouse brains in either control or JNK-inhibited conditions for 12 hours (Fig. 2.1A).  

Pharmacological inhibition of JNK signaling was attained using a pan-JNK inhibitor, SP600125 

(Bennett et al., 2001), at concentrations previously shown to cause a delay in the entry of 

interneurons into the cerebral cortex (Myers et al., 2014).  In control slices, interneurons travel 

tangentially in robust, organized streams within the marginal zone (MZ) and subventricular zone 

(SVZ), which were preserved at both the entry zone (lateral location) and the leading edge 

(medial location) of cortical interneuron migration (Fig. 2.1B-D).  In JNK-inhibited slices, 

interneurons disbanded from migratory streams and entered the cortical wall after treatment 

with 20 µM (Fig. 2.1E-G) and 40 µM SP600125 (Fig. 2.1H-J).  Disruption to the MZ and SVZ 

streams in JNK-inhibited slices occurred throughout the entire cortex, however significant 

alterations in cortical interneuron radial distribution were only present at the leading edge (Fig. 

2.1L-M).  Post-hoc analyses showed statistically significant decreases of cortical interneurons 

positioned in cortical bins roughly corresponding to the MZ, intermediate zone (IZ), and SVZ, as 

well as increases of cortical interneurons in the ventricular zone (VZ).   

Since radial distribution analysis indicated that interneurons from JNK-inhibited slices 

were displaced from their migratory streams, we asked whether their direction of migration was 

altered.  Distributions in the orientation of leading processes were significantly different between 

control and 20 µM SP600125, and between control and 40 µM SP600125 conditions (Fig. 2.1K).  

In control conditions, 49.5% (99/200) of interneurons were tangentially oriented, whereas only 

32.0% (57/178) of interneurons in the 20 µM SP600125 condition, and 32.0% (82/256) of 
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interneurons in the 40 µM SP600125 condition, maintained a tangential orientation.  

Collectively, these data suggest that JNK inhibition alters the migratory trajectory of cortical 

interneurons and leads to their departure from migratory streams.   

JNK inhibition disrupts migratory properties of cortical interneurons and causes 

premature departure from the SVZ stream 

Since fixed analyses indicated that JNK inhibition led to migratory stream departure, we 

performed live-imaging experiments on E14.5 Dlx5/6-CIE brain slices to determine whether JNK 

inhibition altered the dynamic behavior of migratory cortical interneurons.  Unlike in control 

slices, where interneurons mainly traveled tangentially in migratory streams (Fig. 2.2A-E,K; 

Supplemental Movie 2.1), cortical interneurons dramatically evacuated the SVZ stream in slices 

treated with 20 µM SP600125 (Fig. 2.2F-J,L; Supplemental Movie 2.2).  Breakdown of the SVZ 

stream began within a few hours of SP600125 treatment (Fig. 2.2G), and by 12 hours, 

interneurons had often vacated the SVZ stream (Fig. 2.2J).  In control slices, 74.3% (107/144) 

of interneurons remained in the SVZ stream, whereas in SP600125-treated slices, only 29.9% 

(43/144) of the tracked cortical interneurons remained.  This change in migratory behavior was 

accompanied by significant decreases in maximum, mean, minimum, and standard deviation of 

migratory speeds (values=mean±s.e.m.; control: max=146.5±3.28, mean=67.6±2.16, 

min=10.3±0.67, SD=37.3±0.98 µm/hour; SP600125: max=103.0±4.80, mean=41.1±3.25, 

min=2.88±0.53, SD=24.6±0.99 µm/hour; Fig. 2.2M), and hence an overall decrease in distance 

traveled (data not shown).  Speed variability, which is the ratio of track standard deviation to 

track mean speed, was also significantly increased in JNK-inhibited conditions (control: 

0.622±0.020; SP600125: 0.727±0.021; Fig. 2.2N).  Compared to controls, migratory tracks of 

cortical interneurons in SP600125-treated slices were shorter in displacement over a 2-hour 

period of time (control: 111.1±4.76 µm; SP600125: 51.9±2.57 µm; Fig. 2.2O), and had a more 
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tortuous trajectory (track straightness, control: 0.806±0.014; SP600125: 0.631±0.027; Fig. 

2.2P). 

In addition to tracking interneuron movement, the orientation of leading processes was 

recorded as tangential, diagonal, or radial in each movie frame (control: 3985 frames from 144 

tracked cells; SP600125: 6486 frames from 144 tracked cells).  The distribution of leading 

process orientations was significantly different between control and JNK-inhibited conditions 

(Fig. 2.2Q).  Interneurons in control conditions spent 72.1±2.42% of their time in a tangential 

orientation, whereas JNK-inhibited interneurons only spent 42.8±1.93% of their time in a 

tangential orientation.  Instead, JNK-inhibited interneurons spent significantly more time in both 

diagonal (35.5±2.45%) and radial (21.7±2.98%) orientations when compared to controls 

(21.2±2.27% diagonal, 6.7±1.28% radial).  The non-tangential trajectories of interneuron leading 

processes suggest that they are leaving the SVZ stream, which was reflected in a statistically 

significant shift in the final overall radial distribution of interneurons in the cortical wall (Fig. 

2.2R).  Post-hoc analyses revealed a significant dispersion of interneurons from the SVZ and an 

accumulation of interneurons in the cortical plate (CP) and MZ after 12 hours of JNK inhibition.  

Overall, our results indicate that JNK signaling is required to maintain the tangential orientation 

and migratory speed of cortical interneurons.  Also, the robust infiltration of the CP upon JNK 

inhibition suggests that downregulation of JNK signaling could mediate the timing of cortical 

interneuron departure from migratory streams and subsequent entry into the CP. 

Migratory stream integrity can be partially restored after removal of JNK 

inhibition 

In order to determine if the integrity of disrupted migratory streams could be recovered 

through restoration of JNK signaling, we cultured E14.5 sections for 12 hours in media 

containing 20 µM SP600125, rinsed the slices, and then cultured the slices for an additional 12 
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hours in control media.  We compared these sections to slices that were treated identically but 

grown in either control media or media with 20 µM SP600125 for the entire 24 hours. 

Interneurons in control conditions (Fig. 2.3A-C) predominantly maintained their location in the 

MZ and SVZ streams at both the entry zone and the leading edge.  Compared to controls, slices 

treated with 20 µM SP600125 (Fig. 2.3D-F) contained cortical interneurons that were widely 

dispersed from MZ and SVZ streams, accumulating in the CP and VZ regions.  When the JNK 

inhibitor was rinsed out after 12 hours and replaced with control medium (“washout,” Fig. 2.3G-

I), cortical interneurons partially recovered from stream dispersion.  Collectively, there were 

statistically significant changes in the radial distribution of interneurons between all three 

conditions at both the entry zone and leading edge.  As expected, the SVZ showed a significant 

decrease in the abundance of cortical interneurons in the 20 µM SP600125 condition, indicating 

that JNK inhibition led to evacuation of the SVZ stream.  At the entry zone and leading edge 

locations, there was no statistical difference in the radial distribution of interneurons between 

control and washout conditions in the MZ, CP, and VZ regions (Fig. 2.3K-L), showing a recovery 

in the placement of interneurons that had accumulated in the CP and VZ when slices were 

grown in 20 µM SP600125.  However, interneurons were differentially distributed within the SVZ 

region, showing incomplete recovery of the SVZ stream. 

We also measured the angle of interneuron leading processes in all three conditions 

(Fig. 2.3J).  The overall distribution of leading process angles was statistically different between 

the control and 20 µM SP600125 conditions, but the overall distribution was not significantly 

different between the control and washout conditions, indicating that interneuron orientation had 

partially recovered.  Thus, during acute JNK inhibition of ex vivo slices, interneurons depart from 

migratory streams and have misdirected leading processes, suggesting that their ability to 

correctly navigate their environment is compromised.  However, once JNK inhibition is removed, 

interneurons reorient their trajectories and partially repopulate migratory streams, indicating that 

their ability to respond to guidance cues located in their normal routes of migration is restored.  
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JNK signaling is required for interneurons to enter the cortex at the correct time 

in vivo 

After finding that pharmacological loss of JNK signaling disrupted migratory streams of 

cortical interneurons in ex vivo slice cultures, we next wanted to determine if the complete 

genetic loss of JNK function from interneurons disrupts interneuron migration in vivo.  Jnk1;Jnk2 

double mutants are early embryonic lethal (Kuan et al., 1999), and combinatorial loss of Jnk1 

and Jnk2 has a greater effect on interneuron migration than loss of Jnk1 alone (Myers et al., 

2014).  We therefore developed two conditional knockout models in which Jnk1 was removed 

from interneurons using a Dlx5/6-CIE driver in either a constitutive Jnk2 null background 

(conditional double knockout, cDKO: Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-), or in a constitutive Jnk2;Jnk3 

double null background (conditional triple knockout, cTKO: Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-; Jnk3-/-) in 

order to completely eliminate JNK signaling in interneurons.  In previous work (Myers et al., 

2014), we showed that at different rostrocaudal levels, interneurons in cDKO cortices had a 

delayed entrance into the cortex when compared to embryos heterozygous for the conditional 

deletion of Jnk1 in a Jnk2 null background (cHKO: Dlx5/6-CIE; Jnk1fl/+; Jnk2-/-) at E13.5.  In 

order to determine if the entry of interneurons into the cortex was similarly disrupted in cTKO 

embryos at E13.5, we compared cTKO, cHKO, and cDKO genotypes (Fig. 2.4A-C), and found a 

statistically significant interaction between genotype and bin location (Fig. 2.4E).  Moreover, we 

observed an allelic dosage effect in the requirement for JNK in interneuron entry into the cortex 

(Fig. 2.4A-C,E).  Post-hoc analyses revealed that there were significant increases in the 

proportion of interneurons located at the entry zone, as well as significant decreases in the 

proportion of interneurons reaching more medial cortical positions when Jnk genes were 

progressively eliminated.  These data indicate that genetic removal of Jnk1, Jnk2, and Jnk3 

leads to an even more pronounced delay in interneuron entry into the E13.5 cortex than removal 

of Jnk1 and Jnk2. 
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Surprisingly, we found that by E15.5, interneurons had advanced to the same location in 

the medial cortex of all three genotypes, indicating that cortical interneurons recover from their 

initial delay at E13.5 (Fig. 2.4F-H, arrows).  After observing a similar medial advancement in the 

cHKO and cDKO cortices at E15.5, we quantitatively assessed the radial distribution of cortical 

interneurons at lateral, mid, and medial cortical locations, and found no statistical differences 

between these two genotypes (Fig. 2.S1).  The apparent recovery of interneuron advancement 

and stream integrity in the cDKO cortex compared to the cHKO cortex allowed us to compare 

interneurons between cDKO and cTKO cortices to determine whether the additional removal of 

Jnk3 in cTKO embryos further impairs their development. 

Genetic loss of JNK signaling alters interneuron distribution and morphology 

Despite an apparent recovery in the medial advancement of interneurons in the E15.5 

cortex, we found that the integrity of migratory steams was disrupted in cTKO brains (Fig. 2.5).  

Gaps were present in the MZ and SVZ streams throughout the lateral to medial extent of the 

cortex (Fig. 2.5E-F), suggesting that interneurons were missing or displaced from their normal 

positions.  Some cTKO brains had even more severe disruptions, including prominent clusters 

of interneurons extending from the MZ, or aggregations of interneurons in the subplate region 

(Fig. 2.S2G,I).  cTKO brains that contained large clusters of interneurons also displayed obvious 

disruptions to the developing cortical wall (Fig. 2.S2H).  We excluded cTKO brains from our 

analyses that contained prominent dipped regions of the cortical plate, since this dysmorphic 

feature impeded our ability to accurately measure the radial distribution of interneurons.  When 

the remaining cTKO brains were compared to cDKO brains, we found the overall radial 

distribution of cortical interneurons was significantly altered in the E15.5 cTKO cortical wall (Fig. 

2.5I).  The lower SVZ contained fewer interneurons in the cTKO cortex, while the upper SVZ 

contained more, suggesting that interneurons were prematurely departing from the SVZ stream.  
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Morphological alterations in the leading processes and/or cell bodies of cortical interneurons 

could indicate a disruption in their migratory properties (Baudoin et al., 2012; Bellion et al., 

2005; Martini and Valdeolmillos, 2010).  To determine whether the genetic loss of JNK signaling 

impacted interneuron morphology, we first measured the length of leading processes of 

individual interneurons located between the SVZ and MZ streams at E15.5.  The average 

leading process length from cDKO interneurons was statistically longer than in cTKO 

interneurons (cDKO: 17.8±1.10 µm; cTKO: 13.1±0.82 µm; Fig. 2.5L).  Additionally, by 

measuring the circularity of interneuron soma, we found cTKO interneurons to be significantly 

more spherical than interneurons in cDKO cortices (cTKO: 0.741±0.0038; cDKO: 0.695±0.010; 

Fig. 2.5M).  No statistical differences were found in either the area or perimeter of the 

interneuron cell bodies (data not shown), suggesting that their overall size remained 

unchanged.  Interestingly, in brains with cortical malformations, we found many interneurons 

with short, blebby leading processes, as well as very spherical cells bodies (Fig. 2.S2I, 

arrowheads), suggesting interneuron morphology was more affected in these brains.   

Taken together, our data indicate that complete genetic removal of JNK signaling from cortical 

interneurons in a Jnk2;Jnk3-deficient environment leads to irregularities in migratory streams 

that are evident by E15.5 in vivo, as well as morphological alterations to interneurons that are 

consistent with disrupted migratory properties.  

Genetic removal of JNK alters the dynamic migratory properties of cortical 

interneurons in ex vivo slices 

We next assessed whether the dynamic properties of cortical interneurons changed with 

genetic ablation of JNK signaling.  When organotypic brain slices from E14.5 embryos were 

imaged for 18 hours ex vivo, many interneurons in cDKO slices maintained tangential 

progression in migratory streams throughout the entire imaging period (Fig. 2.6A-E; 

Supplemental Movie 2.3).  In contrast, fewer interneurons maintained tangential progression 
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over the 18-hour imaging period in cTKO slices (Fig. 2.6F-J; Supplemental Movie 2.4), and 

many more cTKO interneurons departed from migratory streams in the last 6 hours of imaging 

(Fig. 2.6H-J).  Only 46.0% (138/300) of all tracked cortical interneurons remained in the SVZ 

stream in cTKO slices, while 59.7% (179/300) remained in cDKO slices.  In order to determine if 

the requirement for JNK differed during the 18 hours of imaging, we analyzed interneuron 

migration in three, 6-hour intervals (0-6 hours, 6-12 hours, and 12-18 hours, pseudocolored to 

represent time Fig. 2.6K-M).  We found that changes in the dynamic behavior of cDKO and 

cTKO interneurons were most pronounced during the 12-18 hour time frame, when interneurons 

normally begin to exit streams.  

Unlike with pharmacological JNK inhibition, alterations in the track behavior of cTKO 

interneurons were not accompanied by statistically significant reductions in migratory speed 

(cDKO: max=123.3±5.12, mean=57.9±2.76, min=8.98±0.84, SD=32.0±1.54 µm/hour; cTKO: 

max=121.7±3.7, mean=51.1±2.02, min=7.08±0.96, SD=32.2±1.01 µm/hour; Fig. 2.6N), or a 

corresponding reduction in overall track length (data not shown).  When examining track speed 

variability however, there was a statistical difference between cDKO and cTKO interneurons 

(cDKO: 0.642±0.024; cTKO: 0.752±0.022; Fig. 2.6O), suggesting that cTKO interneurons are 

not traveling at consistent speeds along their migratory tracks.  Also, similar to pharmacological 

inhibition of JNK, cTKO interneurons had an overall shorter displacement (cDKO: 92.3±5.09 µm; 

cTKO: 75.7±3.39 µm; Fig. 2.6P) and less straight trajectories (cDKO: 0.773±0.011; cTKO: 

0.718±0.020; Fig. 2.6Q).  Additionally, when we assessed the amount of time that the leading 

processes of migrating interneurons were oriented tangentially, diagonally, or radially in each 

movie frame (cDKO: 2266 frames from 100 tracks; cTKO: 2441 frames from 100 tracks), we 

found statistically significant differences between the two genotypes (Fig. 2.6R).  cTKO 

interneurons spent significantly less time orientated tangentially (26.2±1.94%) compared to 

cDKO interneurons (40.9±3.73%), and significantly more time orientated diagonally (cTKO: 

51.9±2.15%; cDKO: 43.4±0.84%).  This finding supports our observation that more interneurons 
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are leaving streams and are angled upwards towards the CP region of cTKO slices.  Together, 

these data indicate that genetic loss of JNK signaling alters the migratory behavior of cortical 

interneurons in ex vivo slices of cTKO brains, resulting in tracks with more variable migratory 

speeds, and more tortuous, misrouted trajectories that increase in severity as development 

proceeds. 

Since our dynamic imaging data revealed that the migratory trajectories of cTKO 

interneurons worsened over time, we sought to determine if this change in migratory behavior 

lead to a gradual redistribution of interneurons in ex vivo slices (Fig. 2.7).  Initially, no 

differences in interneuron distribution were observed between E14.5 cDKO and cTKO cortices 

at the 0-hour time point (Fig. 2.7A-C).  However, robust redistribution of cTKO interneurons was 

evident by the end of the 18-hour imaging period (Fig. 2.7D-F).  Post-hoc analyses revealed that 

there were significant decreases in the abundance of interneurons from the SVZ region of cTKO 

cortices, and concomitant increases in the abundance of interneurons in the CP region.  These 

data suggest genetic elimination of JNK signaling leads to a premature accumulation of cortical 

interneurons in the CP.   

JNK-depleted interneurons are incorrectly distributed in the early postnatal 

cortex 

We next wanted to determine whether the early disbanding of interneurons from 

migratory streams led to long-lasting alterations in their laminar distribution.  Although attempts 

to rear cTKO pups into adulthood proved unsuccessful, we were able to recover live animals at 

postnatal (P) day 0 in expected Mendelian ratios and analyze their cortices (Fig. 2.8).  Similar to 

E15.5, some cTKO brains contained cortical malformations at P0, which were variable in size 

and location (data not shown).  We used the mid-cortical position at the level of the anterior 

commissure to examine the distribution of interneurons, since gross malformations in the 

cortical plate were not detectable at this location.  When we compared the radial distribution of 
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interneurons between cDKO and cTKO cortices at P0 (Fig. 2.8A-B), we found statistically 

significant alterations in their placement (Fig. 2.8E).  Post-hoc analyses revealed that 

interneurons in cTKO cortices were most prominently reduced in the VZ/SVZ, and elevated in 

the lower CP and MZ regions.  In order to determine whether alterations in interneuron 

placement were consistent across interneuron subtypes, we examined the positioning of 

calbindin-labeled cortical interneurons in the P0 cortical wall (Fig. 2.8C-D).  Statistically 

significant alterations in the radial distribution of calbindin-GFP doubled labeled cells were 

observed between cDKO and cTKO cortices (Fig. 2.8F), with post-hoc analyses identifying 

significant reductions in the VZ and elevations in the lower CP regions.  Interestingly, calbindin-

GFP double labeled cells did not accumulate in the MZ region, where GFP-positive cells also 

accumulated in cTKO brains (Fig. 2.8E, bin 1).  Indeed, we found a striking increase of GFP-

positive calbindin-negative interneurons (open arrowheads in Fig. 2.8C-D) in the MZ region of 

cTKO cortices (Fig. 2.8G, bin 1), suggesting that changes to the distribution of the calbindin-

labeled cortical interneurons do not fully account for interneuron allocation defects in cTKO 

brains.  Together, our data suggest that migratory anomalies occurring during embryonic 

development lead to lamination defects that persist until P0 in cTKO mice, and that the laminar 

re-distribution of cortical interneurons in cTKO cortices does not uniformly influence all 

interneuron subtypes.    

Assessing autonomy for JNK function in interneuron migration and allocation 

Although our data support a role for JNK in the migration and laminar positioning of 

cortical interneurons, it is not clear whether interneurons have a cell-intrinsic requirement for 

JNK signaling, or whether genetic and pharmacological inhibition of JNK disrupts interneuron 

migration through non-autonomous mechanisms.  In the cTKO model, JNK is completely 

eliminated from cortical interneurons, however, Jnk2 and Jnk3 are constitutively deleted from 

the entire animal, which means JNK-depleted interneurons must navigate a partially JNK-
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deficient environment into and within the cortical rudiment.  In order to determine whether the 

Jnk2 and Jnk3 double knockout environment could itself lead to interneuron migration 

anomalies, we compared the allocation of Dlx5/6-CIE cortical interneurons between wild type 

and Jnk2;Jnk3 double knockout mice at P0.  We did not find statistically significant alterations in 

the distribution of Dlx5/6-CIE interneurons between these genotypes (Fig. 2.9A-B,D), 

suggesting that loss of Jnk2 and Jnk3 is insufficient to alter interneuron allocation.  Moreover, 

when we compared the distribution of interneurons in mice that conditionally eliminated only one 

copy of Jnk1 from a Jnk2;Jnk3 double knockout background (Fig. 2.9C), we found statistically 

similar distributions of interneurons to those in wild type and Jnk2;Jnk3 mutant cortices (Fig. 

2.9D).  However, interneuron distribution in cTKO brains (Fig. 2.8B) was statistically different 

than wild type (Fig. 2.9A; F(9,60)=12.73; p<0.0001), Jnk2;Jnk3 double knockout (Fig. 2.9B; 

F(9,60)=18.12; p<0.0001), and even Jnk2;Jnk3 double knockouts missing one copy of Jnk1 from 

Dlx5/6-CIE cells (Fig. 2.9C; F(9,60)=13.39; p<0.0001) by Two-way ANOVA.  These findings 

suggest defects in interneuron positioning are only present when JNK is completely eliminated 

from interneurons in cTKO brains. 

Finally, since pharmacological inhibition of JNK in ex vivo slice cultures disrupts JNK 

signaling in all cell types within the slice, we asked whether JNK inhibition could impair the 

migration of interneurons when they are grown alone.  We grew explants of medial ganglionic 

eminence (MGE) tissue in 3D Matrigel cultures for one day, added control medium or medium 

containing 20 µM SP600125, then imaged interneurons live for 12 hours (Fig. 2.9E-G; 

Supplemental Movies 2.5 and 2.6).  By tracking cells in both conditions, we found JNK inhibition 

in MGE explant cultures to impair the migratory properties of cortical interneurons.  When 

compared to controls, JNK-inhibited interneurons displayed statistically significant alterations in 

mean and minimum migratory speeds (control: max=70.4±5.11, mean=25.8±1.92, 

min=3.40±0.59, SD=17.0±1.39 µm/hour; SP600125: max=63.4±3.53, mean=19.2±0.84, 

min=2.03±0.24, SD=14.4±0.77 µm/hour; Fig. 2.9H), speed variability (control: 0.680±0.021; 
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SP600125: 0.755±0.026; Fig. 2.9I), displacement (control: 90.9±7.37 µm; SP600125: 63.6±2.59 

µm; Fig. 2.9J), and track straightness (control: 0.872±0.015; SP600125: 0.826±0.009; Fig. 

2.9K).  These findings suggest that the migratory behavior of cortical interneurons at least 

partially relies on a cell-intrinsic requirement for JNK signaling. 
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Discussion 

We found that tangential progression of cortical interneurons in migratory streams 

depends on the JNK signaling pathway.  Pharmacological inhibition of JNK signaling in E14.5 

slices resulted in dispersion of cortical interneurons from pre-formed migratory streams, which 

was partially recoverable upon removal of the inhibitor.  Live imaging revealed that acute JNK 

inhibition led to rapid stream departure, as JNK-inhibited cortical interneurons switched from 

tangential to radial modes of migration, exited the SVZ stream, and infiltrated the cortical plate.  

To genetically eliminate JNK from interneurons, we developed conditional triple knockout 

(cTKO) mice, which removed Jnk1 from interneurons of Jnk2;Jnk3 double knockouts.  Live 

imaging of cTKO slice cultures at E14.5 recapitulated our ex vivo pharmacologic data by 

showing an increase in non-tangential migratory trajectories, evacuation of the SVZ stream, and 

premature accumulation of interneurons in the cortical plate.  In cTKO cortices in vivo, 

interneurons were delayed in their arrival to the cortex at E13.5 and were displaced from 

migratory streams at E15.5.  At P0, we found that interneurons in cTKO cortices had vacated 

the VZ/SVZ and overpopulated deeper layers of the CP and MZ, and that distinct subtypes of 

cortical interneurons accumulated differently in the JNK-deficient cortical wall.  Finally, we 

provided genetic and pharmacological evidence that disrupted migration and allocation of 

cortical interneurons at least partially relies on cell-intrinsic requirements for JNK signaling.  

Together, our results suggest that JNK signaling maintains the integrity of cortical interneuron 

migratory streams and enables the correct positioning of interneurons in the cortical wall.  

Molecular mechanisms underlying cortical plate invasion by interneurons  

The JNK signaling pathway might facilitate interneuron departure from migratory streams 

by intersecting with other known mediators of cortical plate invasion.  The chemokine Cxcl12 is 

expressed along the migratory routes of cortical interneurons and helps to establish and 

maintain migratory streams in the developing cortex (Stumm et al., 2003; Tham et al., 2001; 
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Tiveron et al., 2006).  Chemoattraction to Cxcl12 is mediated by the activity of two chemokine 

receptors, Cxcr4 and Cxcr7, which are expressed by migrating cortical interneurons (Lopez-

Bendito et al., 2008; Sanchez-Alcaniz et al., 2011; Wang et al., 2011).  Pharmacological loss of 

Cxcr4 function in other studies (Lysko et al., 2011; Wang et al., 2011), and the JNK pathway 

here, results in migratory stream departure and the precocious entry of interneurons into the 

cortical plate.  Cxcr4, Cxcr7, and Cxcl12 null mice have disrupted migratory streams and 

persistent alterations to cortical interneuron distribution (Abe et al., 2014; Lopez-Bendito et al., 

2008; Sanchez-Alcaniz et al., 2011; Wang et al., 2011), which closely parallel our findings in 

cTKO cortices.  Additionally, in both Cxcr7 null (Wang et al., 2011) and cTKO mice, 

interneurons have morphological alterations, including shorter, less tangentially-oriented leading 

processes.  These similarities, along with other studies indicating that Cxcr4 signaling can 

activate JNK to induce migration in non-neuronal cells (Decaillot et al., 2011; Liao et al., 2015), 

suggest that JNK may act downstream of chemokine signaling to modulate the formation and 

maintenance of migratory streams.  Thus, as interneuron responsiveness to Cxcl12 diminishes, 

a key feature thought to mediate migratory stream departure (Li et al., 2008), JNK levels may 

decline to enable the tangential to radial switch. 

Mechanisms outside of chemokine signaling also appear to regulate cortical plate 

invasion. Connexin43 (Cx43), a gap junction protein, participates in the tangential to radial 

transition by promoting adhesion between cortical interneurons and radial glial cells (Elias et al., 

2010).  Studies in cardiomyocytes suggest that JNK activation downregulates the expression of 

Cx43 (Petrich et al., 2002).  In interneurons, downregulation of Cx43 decreases interneuron 

entry into the cortical plate (Elias et al., 2010).  Therefore, developmental reduction of JNK 

activity could promote migratory stream exit by increasing the expression of Cx43 in migrating 

cortical interneurons.  Additionally, other extrinsic factors may reinforce cortical plate invasion.  

For example, Sonic hedgehog (Shh) is expressed at low levels in the developing cortex, and 

treatment of cortical slices with Shh results in stream dispersion and cortical plate accumulation 
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(Baudoin et al., 2012), reminiscent of the stream departure seen after JNK inhibition.  Similarly, 

Neuregulin 3 (Nrg3) is expressed by excitatory neurons in the developing cortex (Bartolini et al., 

2017), and is a ligand for ErbB4, a receptor tyrosine kinase expressed by migrating cortical 

interneurons (Flames et al., 2004; Yau et al., 2003).  Overexpression of Nrg3 promotes 

migratory stream departure, and conditional deletion of Nrg3 or ErbB4 alters the laminar 

allocation of interneurons in the postnatal cortex (Bartolini et al., 2017).  Thus, it is possible that 

activation of these pathways reduces JNK activity in cortical interneurons, or that reduced JNK 

activity facilitates Shh- and ErbB4-mediated migratory stream departure, but additional 

experiments are needed to test these models.  

Diverse requirements for JNK during cortical interneuron migration 

Complex migratory decisions, such as choosing when and where to depart from 

migratory streams, likely involve the coordination of extrinsic and intrinsic molecular signals.  

Since JNKs are expressed in both interneurons and other cells of the cortical environment 

(Myers et al., 2014), JNK signaling may influence interneurons through both autonomous and 

non-autonomous mechanisms.  One means by which JNK could exert a cell autonomous 

influence on cortical interneuron migration is through modulation of the cytoskeleton.  For 

instance, doublecortin, a microtubule-binding protein known to regulate leading process 

branching and guided migration of cortical interneurons (Friocourt et al., 2007; Kappeler et al., 

2006), is a downstream target of JNK signaling (Gdalyahu et al., 2004; Jin et al., 2010).  

Additionally, p27kip1 is a microtubule-associated protein that coordinates microtubule 

polymerization and actomyosin contraction to attune leading process branching and 

nucleokinesis (Godin et al., 2012).  Conditional deletion of p27kip1 from post-mitotic cortical 

interneurons delays cortical entry at E12.5 (Godin et al., 2012), similar to our observations 

following loss of JNK.  During cancer cell migration, JNK signaling regulates cell-cell adhesions 

via p27kip1 phosphorylation (Kim et al., 2012), suggesting a link exists between JNK and p27kip1 
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in migratory cells.  Molecular mechanisms underlying the connections between JNK signaling, 

cytoskeletal modulators, and other intrinsic features of interneuron migration remain to be 

determined. 

In addition to intrinsic mechanisms, extrinsic influences on cortical interneuron migration 

may also be controlled by JNK.  Indeed, we found greater disruptions to cortical interneuron 

migratory properties when ex vivo slices were treated with a JNK inhibitor than when 

interneurons were inhibited in the absence of all other cortical cells (compare Fig. 2.2M-P to Fig. 

2.9H-K).  This suggests that disruptions to JNK signaling may alter the environment that cortical 

interneurons travel through.  Migrating cortical interneurons normally rely on cellular and 

molecular interactions with other cells to navigate into and within the cerebral cortex.  For 

instance, interneurons often reorient their mode of migration from tangential to radial after 

making contact with radial glia in the cortical wall (Yokota et al., 2007).  Furthermore, disruptions 

to radial glia (Haubst et al., 2006; Talebian et al., 2017), cortical intermediate progenitors (Abe 

et al., 2015), cortical excitatory neurons (Hevner et al., 2004; Lodato et al., 2011; Pla et al., 

2006), microglia (Squarzoni et al., 2014), blood vessels (Barber et al., 2018), and 

thalamocortical axons (Zechel et al., 2016) all have a non-autonomous effect on the migration of 

cortical interneurons.  Therefore, if JNK activity is required for the normal development of these 

cellular components of the cortical environment, as is the case for radially migrating cortical 

excitatory neurons (Westerlund et al., 2011; Zhang et al., 2016), JNK disruption may non-

autonomously impact interneuron migration. 

In pharmacologically treated and genetically manipulated ex vivo slices, interneurons 

adopted non-tangential trajectories and prematurely departed from migratory streams, indicating 

that both approaches used to eliminate JNK function yielded consistent results.  However, we 

found that interneurons in JNK-inhibited slices displayed greater alterations in migratory 

properties, which led to faster and more complete disruption of migratory streams.  This could 

be explained by inherent differences in acute pharmacologic inhibition, where JNK signaling is 
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abruptly abrogated, versus chronic genetic loss, where JNK removal may be compensated for 

over time.  Alternatively, since all three Jnk proteins are globally inhibited after SP600125 

treatment while Jnk1 is retained in Dlx5/6-CIE-negative cells of cTKO cortices, Jnk1 function in 

non-interneuronal cells of the genetic model may lessen the severity of interneuron phenotypes.  

Thus, regardless of how differences between pharmacologic and genetic manipulations 

originate, JNK function in other cell types should be carefully considered. 

Finally, our data suggest that Jnk2 and Jnk3 are not critical for the normal allocation of 

cortical interneurons at P0.  However, we cannot exclude the possibility that the Jnk2 and Jnk3-

deficient environment of cTKO brains does not further compromise the migration and allocation 

of JNK-depleted interneurons.  Moreover, since JNK is conditionally deleted in ventral forebrain 

progenitors of the cTKO brain, we cannot exclude the possibility that aberrant subcortical 

migration or delayed entry into the cortical rudiment impacts subsequent allocation of 

interneurons in the cortical wall.  More sophisticated in utero manipulation experiments 

designed to only eliminate JNK activity from cortical interneurons after they have entered the 

cortex are needed to address the autonomous and temporal requirements for JNK in 

interneuron migration and allocation. 

Conclusions and Future Perspectives 

We found a novel requirement for JNK signaling in cortical interneuron stream 

maintenance, interneuron migratory behavior and morphology, and the laminar distribution of 

interneurons in the cortical wall.  These findings are significant, since even minor disruptions to 

the migration of cortical interneurons have been implicated in the etiology of severe neurological 

and neuropsychiatric disorders (Dubos et al., 2018; Meechan et al., 2012a; Volk et al., 2015).  

Therefore, elucidating upstream activators and downstream effectors of JNK signaling in cortical 

interneurons will be essential for determining extrinsic and intrinsic functions of JNK in cortical 
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development, and could help to unravel complex neurodevelopmental disorders that impinge 

upon the formation and function of the cerebral cortex. 

 

Materials and Methods 

Animals 

Mice (Mus musculus) were housed and cared for by the Office of Laboratory Animal 

Resources at West Virginia University.  Timed-pregnant dams (day of vaginal plug = embryonic 

(E) day 0.5) were euthanized by rapid cervical dislocation, and mouse embryos were 

immediately harvested for tissue culture or histological analyses.  For ex vivo pharmacological 

slice culture experiments, CF-1 (Charles River) dams were crossed to hemizygous Dlx5/6-Cre-

IRES-EGFP (Dlx5/6-CIE; (Stenman et al., 2003)) males maintained on a C57BL/6J (Stock # 

000664, The Jackson Laboratory) background to achieve timed pregnancies at E14.5.  For 

medial ganglionic eminence (MGE) explant assays, C57BL/6J dams were crossed to Dlx5/6-

CIE males. For in vivo genetic knockout experiments, as well as ex vivo slice cultures using 

genetic knockout material, new mouse strains were established and maintained on a C57BL/6J 

background.  Floxed Mapk8tm1Rjd mice (Jnk1fl/fl; (Das et al., 2007); kindly provided by Dr. Roger 

Davis) were bred with Mapk9tm1Flv (Jnk2-/-; Stock # 004321, The Jackson Laboratory), 

Mapk10tm1Flv (Jnk3-/-; Stock # 004322, The Jackson Laboratory), and/or Dlx5/6-CIE mice to 

generate breeding stock for genetic experiments.  Jnk1fl/fl; Jnk2-/- dams were mated with Dlx5/6-

CIE; Jnk1fl/+; Jnk2-/- males to generate conditional heterozygote knockout mice (cHKO: Dlx5/6-

CIE; Jnk1fl/+; Jnk2-/-) and conditional double knockout mice (cDKO: Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-).  

Jnk1fl/fl; Jnk2-/-; Jnk3-/- dams were mated with Dlx5/6-CIE; Jnk1fl/+; Jnk2-/-; Jnk3+/- males to 

generate conditional triple knockout mice (cTKO: Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-; Jnk3-/-), as well as 

Dlx5/6-CIE; Jnk1fl/+; Jnk2-/-; Jnk3-/- mice.  To generate Dlx5/6-CIE; Jnk2-/-; Jnk3-/- animals, Jnk2+/-

; Jnk3-/- dams were mated with Dlx5/6-CIE; Jnk2-/-; Jnk3+/- males.  P0 Dlx5/6-CIE animals were 
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generated by crossing C57BL/6J dams with a Dlx5/6-CIE male.  All animal procedures were 

performed as approved by the Institutional Animal Care and Use Committee at West Virginia 

University. 

Organotypic Slice Cultures 

Dlx5/6-CIE positive embryos were collected at E14.5 and dissected in ice-cold complete 

HBSS (cHBSS; Tucker et al., 2006).  The embryonic brains were embedded in a solution of 3% 

low melting point agarose (Fisher Scientific BP165-25) in cHBSS, sectioned coronally into 300 

µm slices on a Leica VT1000 S vibratome, and transferred to poly-L-lysine/laminin coated 

transwell membrane inserts in 6-well plates (BD Falcon; Polleux and Ghosh, 2002).  Each well 

was filled with 1.8 mL of slice culture media (Tucker et al., 2006) containing either dimethyl 

sulfoxide (DMSO, Sigma D2438) as a vehicle control or the pan-JNK inhibitor SP600125 (Enzo 

Life Sciences BML-EI305-0010) at a final concentration of 20 µM or 40 µM, as previously 

described (Myers et al., 2014).  Slices were grown for 12 hours for the pharmacological dosage 

experiment (Fig. 2.1).  For the washout experiment (Fig. 2.3), slices were grown for 12 hours, 

the media containing the vehicle or the inhibitor was replaced, and the slices were grown for an 

additional 12 hours.   

3D Matrigel Assay 

Dlx5/6-CIE positive embryos were collected at E14.5.  MGE tissue was micro-dissected 

in ice-cold cHBSS, cut into small explants, and stored in cHBSS on ice.  Matrigel (Corning 

#356237) was combined 1:1 with serum free media (Polleux and Ghosh, 2002), and 150 µL of 

the Matrigel mixture was added to each well of an 8-well chamber coverslip slide (Thermo 

Fisher 155411) on ice.  Two to three MGE explants were placed at the bottom of each well near 

the coverslip.  The slide was then transferred to a tissue culture incubator at 37oC with 5% CO2 

for 30 minutes to solidify the Matrigel mixture with the embedded explants.  Warm serum free 

media was added to each well and the explants were cultured for 24 hours.  After 24 hours, 
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serum free media containing either control (DMSO) or SP600125 at a final concentration of 20 

µM was added to each well immediately before imaging. 

Live Imaging 

Live-vibratome slices of E14.5 brains (prepared as above) were transferred to Millicell 

inserts (Millipore PICM0RG50) in a FluoroDish (World Precision Instruments FD35-100) either 

filled with 1.6 mL slice culture media for genetic knockout experiments, or filled with 1.6 mL slice 

culture media containing either control (DMSO) or 20 µM SP600125 for pharmacological 

experiments.  FluoroDish preparations, or Matrigel slides (prepared as above), were transferred 

to a Zeiss 710 confocal microscope equipped with stable environmental controls maintained at 

37oC with 5% humidified CO2.  Multi-position time-lapse z-series were acquired every 10 min for 

12-24 hours with a LD Plan-Neofluar 20x/0.4 Korr objective lens for slices, and with a 20x Plan-

Apo lens for the Matrigel experiments.  The field of view was centered on the mid-point of the 

cortical wall for slices, and at the leading edge of interneuron outgrowth for the Matrigel 

explants.  Tissue samples were collected from embryos for retrospective genotype identification. 

Live Imaging Analyses 

4D live-imaging movies were analyzed using Imaris (Version 9.3.1) software by Bitplane.  

In slice culture assays, interneurons were tracked from left, center, and right portions of the SVZ 

stream from movies recorded at the mid-cortical position.  For selection, interneurons had to 

originate in the SVZ stream, migrate for at least 2 hours, and be clearly distinguishable from 

surrounding cells.  For Matrigel assays, interneurons had to migrate for a minimum of 4 hours.  

All cell tracks were stopped when interneurons were no longer visible/distinguishable from 

nearby cells, if they stopped moving for a period of 60 min while being tracked, or when the 

movie ended.  For the pharmacological experiments, 12 interneurons were tracked from each of 

the 12 movies per condition (n=12), for a total of 144 tracks per condition.  Movies were 

generated from at least 7 different embryos per condition over 3 experimental days.  For the 
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genetic experiments, 10 interneurons were tracked from each of the 10 movies per genotype 

(n=10), for a total of 100 tracks per genotype in each of the three 6-hour segments (300 

tracks/genotype).  Movies were generated from 5 different brains per genotype, collected over 4 

experimental days.  For the Matrigel experiment, 10 interneurons were tracked from each of the 

8 movies per condition (n=8), for a total of 80 tracks per condition, collected from 3 experiments.  

All tracks from each movie were averaged together for dynamic analyses.  Cortical interneurons 

were tracked using the Spots feature of Imaris to capture migratory speed, distance, 

displacement, and track straightness data, which were analyzed by two-tailed Student’s t-tests.  

Displacement was normalized to the minimum track length (2 hours slice culture, 4 hours 

Matrigel) to account for differences in the total times of tracked cells.  In addition, in the slice 

culture experiments, the direction of the leading processes of tracked cells was recorded each 

frame as tangential, diagonal, or radial orientation.  Overall differences in orientation were 

determined by Two-way ANOVA followed by Fisher’s LSD post-hoc analyses.    

Tissue Processing, Cryosectioning, and Immunohistochemistry 

E13.5 or E15.5 brains were dissected in phosphate-buffered saline (PBS; 136.9mmol 

NaCl, 2.683mmol KCl, 4.290mmol Na2HP04 7H2O, 1.470mmol KH2P04) and immersion fixed 

with 4% paraformaldehyde (PFA) in PBS overnight at 4oC.  Postnatal (P) day 0 pups were 

anesthetized on ice and transcardially perfused with chilled PBS followed by 4% PFA, and 

brains were dissected in PBS and immersion fixed overnight at 4oC.  Samples were rinsed with 

PBS and progressed through a sucrose series (10%, 20%, and 30%) prior to embedding.  For 

fixed analyses of ex vivo slice cultures, slices were rinsed in PBS, fixed overnight in 4% PFA at 

4oC, passaged through sucrose, and re-embedded in agar sucrose (3.5% agar + 8% sucrose) 

prior to removal from the transwell membrane.  Both brains and slices were embedded in Tissue 

Freezing Medium (VWR 15146-019), flash frozen in liquid nitrogen-cooled 2-methyl butane 

(Fisher Scientific 03551-4), and stored at -80°C.  Frozen brains and slice cultures were 
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sectioned coronally at 12 µm on a Leica cryostat (CM 3050S), collected in series onto 

Superfrost Plus slides (Fisher Scientific 12-550-15), and stored at -20°C prior to use.  Slides 

were rehydrated with PBS for 20 mins and blocked for 2 hours in permeability solution (Myers et 

al., 2014) with 5% normal goat serum.  Primary antibodies including Chicken anti-GFP (1:1500, 

Abcam ab13970) and Rabbit anti-Calbindin (1:2000, Swant CB38) were diluted in permeability 

solution, applied to the slices, and incubated overnight at 4°C.  Slices were thoroughly rinsed in 

PBS and incubated with secondary antibodies including Alexa 488 conjugated goat anti-chicken 

(1:4000, Invitrogen) and Alexa 546 conjugated goat anti-rabbit (1:2000, Invitrogen) diluted in 

permeability solution at room temperature for 2 hours.  Hoechst (Thermo Scientific 62249, 

1µg/ml) was used as a nuclear counterstain.  Slices were rinsed in PBS, mounted in an 

aqueous mounting medium containing an anti-fade reagent, and stored at 4°C. 

Imaging and Quantification of Cryosectioned Slices 

Imaging. Immunofluorescently-labeled cryosections of embryonic brain slices were imaged on a 

Zeiss 710 confocal microscope with a 20x Plan-Apo objective lens.  P0 sections were imaged 

using an Olympus VS120 Slide Scanner with a UPLSAPO 10x objective.  Confocal and slide 

scanned images were uniformly adjusted for levels, brightness, and contrast in Adobe 

Photoshop. 

Interneuron distribution. For quantifying radial distribution of interneurons, cropped regions of 

the cortical wall were equidistantly segmented into 10 bins from pial to ventricular surfaces (as 

in Fig. 2.S1C-D).  For quantifying interneuron entry into the cortex, the E13.5 cortical rudiment 

was divided into 5 equidistant bins (lateral to medial, as in Fig. 2.4D).  For all experiments, the 

numbers of cells present in each equidistant bin were counted and their percentile distributions 

across all bins were determined for each tissue section.  Bin distributions were averaged across 

sections of the same treatment group or genotype, and statistical significances were determined 

by Two-way ANOVA followed by Fisher's LSD post-hoc analyses (GraphPad Prism 8).  For 
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E13.5 and E15.5 in vivo analyses, cropped regions from 2 hemi-sections were quantified at 4 

predefined rostrocaudal locations, for a total of 8 sections per brain (n=5 brains/genotype).  At 

P0, 3 hemi-sections were selected from slices containing the anterior commissure region (n=3 

or n=5 brains/genotype).  In pharmacological experiments, 4 sections were used from each 

treated slice (n=5 brains/condition). 

Interneuron morphology and leading process orientation. Interneuron morphologies were 

quantified by measuring the circularity of cell bodies and the length of leading processes in 

Adobe Photoshop.  Leading process length was measured from clearly distinguishable cells 

located between the SVZ and MZ streams as a vector from the end of the cell body to the 

furthest point of the longest process.  Two-tailed Student’s t-tests were used to evaluate the 

statistical significance of morphological measurements between cells analyzed in each 

genotype.  For both measurements, cells were selected from 2 hemi-sections per brain, at the 

same defined rostrocaudal location (n=5 brains/genotype).  Orientation of leading processes 

was determined by measuring the angle of displacement from the tangential direction, which 

was defined as 0 degrees.  All angle measurements (n=5 brains/condition) were grouped into 

12 different bins of 30 degrees each, and statistical significances were determined by Chi-

Square analysis followed by Fisher's LSD post-hoc analyses (GraphPad Prism 8). 

 

Acknowledgements 

We would like to thank Katie Padgett and Kelly Stake for their assistance in sample processing 

and data analysis, as well as Amanda Ammer and Karen Martin for their excellent microscopy 

support.  Imaging experiments were performed in the WVU Imaging Facilities, which have been 

supported by the WVU Cancer Institute, the WVU HSC Office of Research and Graduate 

Education, and NIH grants P20RR016440, P30GM103488, P20GM121322, U54GM104942, 

P20GM10343, and P30GM103503.   



59 
 

 

Competing Interests 

No competing interests declared. 
 

Author Contributions 

Conceptualization: A.K.M. and E.S.T.; Methodology: A.K.M., J.G.C., and E.S.T.; Formal 

analysis: A.K.M., J.G.C., S.E.S., and J.P.S.; Investigation: A.K.M., J.G.C., J.P.S., S.E.S., and 

C.A.S.; Writing- original draft: A.K.M.; Writing- review and editing: J.G.C., A.K.M., S.E.S., and 

E.S.T.; Visualization: J.G.C., A.K.M., and S.E.S.; Supervision: E.S.T.; Funding Acquisition: 

E.S.T. 

 

Funding 

This work was supported by the National Institutes of Health grant R01NS082262 to EST.   

  



60 
 

Figures 

 

Figure 2.1: JNK activity is required for cortical interneurons to remain tangentially 

oriented in migratory streams.  (A) Schematic diagram illustrating ex vivo slice culture of 

E14.5 Dlx5/6-CIE brains in control or SP600125-treated conditions.  (B-D) In control slices, 
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cortical interneurons travel tangentially in migratory streams in the MZ and SVZ (dashed lines, 

D).  (E-J) Streams are disrupted with 20 μM (E-G) and 40 μM (H-J) SP600125.  Representative 

interneurons are highlighted in red.  (K) Quantification of leading process angles.  Interneurons 

are more tangentially oriented in control (200 cells) compared to 20 µM (178 cells; p=0.0009) 

and 40 µM (256 cells; p=0.0014) SP600125 conditions (Chi-Square).  (L-M) Interneurons in 

JNK-inhibited conditions are significantly displaced at the leading edge (Two-way ANOVA: 

F(18,120)=3.582; p<0.0001).  All analyses were performed on n=5 brains/condition from at least 4 

experimental days.  Error bars represent mean±s.e.m., post-hoc by Fisher’s LSD ***p<0.001, 

**p<0.01, *p<0.05. Scale bars: 250 μm (B,E,H); 75 μm (C-D,F-G,I-J). 
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Figure 2.2: Dynamic migratory properties of cortical interneurons are perturbed following 

pharmacological inhibition of JNK.  (A-J) Movie frames from E14.5 Dlx5/6-CIE cortices 

imaged under control (A-E) or 20 μM SP600125 (F-J) conditions for 12 hours ex vivo.  Dashed 

lines follow the top of the SVZ stream in control conditions (A-E), and breakdown of the SVZ 

stream in JNK-inhibited conditions (F-J).  (K-L) Tracks (pseudo-colored by time) from 12 

interneurons in control (K) or 20 μM SP600125 (L) conditions.  For each condition, 12 

interneurons were tracked from n=12 movies (144 tracks/condition), generated from at least 7 

different embryos over 3 experimental days.  (M-P) Quantification of interneuron migratory 
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properties (Student’s t-tests).  (Q) Quantification of interneuron leading process orientations 

(Two-way ANOVA: F(2,66)=61.71; p<0.0001).  (R) Quantification of the radial distribution of 

interneurons at 12 hours (Two-way ANOVA: F(9,220)=7.651; p<0.0001).  Error bars represent 

mean±s.e.m., post-hoc by Fisher’s LSD ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.  Scale 

bars: 50 μm. 
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Figure 2.3: Migratory stream integrity partially recovers after removal of JNK inhibitor.  

(A-C) Migratory streams remain intact (dashed lines, C) when slices are grown in control 

conditions for 24 hours.  (D-F) MZ and SVZ streams are disrupted when slices are grown in 20 

μM SP600125.  (G-I) Partial recovery of the SVZ stream is observed when slices are grown in 
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20 μM SP600125 for 12 hours, rinsed, and then grown in control media for an additional 12 

hours (“washout”).  Representative interneurons are highlighted in red.  (J) Quantification of 

leading process angles.  Differences are found between control (129 cells) and 20 μM 

SP600125 (178 cells; p=0.031), but not between the control and washout (106 cells; p=0.065) 

conditions (Chi-Square).  (K-L) Stream dispersion partially recovers in the washout condition 

(Two-way ANOVA: entry zone F(18,120)=2.579, p=0.0012; leading edge F(18,120)=2.785; p=0.0005).  

All analyses were performed on n=5 brains/condition from 5 experimental days.  Error bars 

represent mean±s.e.m., post-hoc by Fisher’s LSD ***p<0.001, **p<0.01, *p<0.05.  Scale bars: 

250 μm (A,D,G); 75 μm (B,C,E,F,H,I). 
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Figure 2.4: Arrival of interneurons into the cortex is transiently delayed by genetic 

removal of JNK function in vivo.  (A-C) At E13.5, interneuron entry (MZ stream-closed 

arrowheads, SVZ stream-open arrowheads) is progressively delayed into the cortex with the 

stepwise removal of JNK function in vivo.  (D-E) Quantification of interneuron distribution in 5 

equidistant bins (lateral to medial) was performed on n=5 brains/genotype (Two-way ANOVA: 
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F(8,60)=7.52; p<0.0001).  (F-H) Interneurons in all three genotypes have advanced to a similar 

location in the medial cortical wall by E15.5 (arrows).  Error bars represent mean±s.e.m., post-

hoc by Fisher’s LSD ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.  Scale bars: 100 μm (A-C); 

150 μm (D,F-H). 

 

  



68 
 

 

Figure 2.5: Genetic loss of JNK signaling results in interneuron stream displacement and 

morphological changes at E15.5.  (A-C) In conditional double knockout (cDKO) cortices, 

interneurons travel in organized streams in the MZ (B) and SVZ (C).  (D-F) In conditional triple 

knockout (cTKO) cortices, frequent gaps are found in the MZ (E) and SVZ (F) streams (arrows).  

(G-I) Quantification of interneuron distribution in the cortical wall from n=5 brains/genotype 

(Two-way ANOVA: F(9,80)=2.17; p=0.0328).  (J-M) Quantification of interneuron morphology from 
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n=5 brains/genotype (Student’s t-tests).  cTKO interneurons (430 cells) have shorter leading 

processes (closed arrowheads) than cDKO interneurons (510 cells), and cTKO interneurons 

(656 cells) have more circular cell bodies (open arrowheads) than cDKO interneurons (787 

cells).  Error bars represent mean±s.e.m., post-hoc by Fisher’s LSD **p<0.01.  Scale bars: 150 

μm (A,D); 25 μm (B,E,J,K); 50 μm (C,F,G,H). 
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Figure 2.6: Dynamic properties of migrating interneurons are disrupted in ex vivo slices 

from cTKO brains.  (A-E) Movie frames from E14.5 cDKO cortices imaged for 18 hours ex 

vivo.  Dashed line represents the top of the SVZ stream.  (F-J) Movie frames from cTKO 

cortices show premature disbanding of interneurons from migratory streams.  (K-M) 

Representative tracks (pseudo-colored by time) from interneurons recorded during 0-6 hours 
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(K), 6-12 hours (L), and 12-18 hours (M) in cDKO and cTKO slices. 10 interneurons were 

tracked during each time interval for a total of 30 tracks/movie, 300 tracks/genotype.  Movies 

(n=10) collected from 5 different embryos/genotype on 4 experimental days were used for 

analyses.  (N-Q) Quantification of interneuron dynamics during the 12-18 hour timepoint 

(Student’s t-tests).  (R) Quantification of interneuron leading process orientations (Two-way 

ANOVA: F(2,54)=9.63; p=0.0003).  Error bars represent mean±s.e.m., post-hoc by Fisher’s LSD 

***p<0.001, **p<0.01, *p<0.05.  Scale bars: 50 μm. 
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Figure 2.7: Cortical interneurons gradually disperse from migratory streams in cTKO 

cortices.  (A-B,D-E) Movie frames from 0 and 18-hour timepoints captured from E14.5 cDKO 

and cTKO ex vivo cortices.  (C,F) Quantification (n=5 brains/genotype) of the radial distribution 

of interneurons reveals no difference at 0 hours, but significant redistribution by 18 hours (Two-

way ANOVA: F(9,80)=4.06, p=0.0003).  Error bars represent mean±s.e.m., post-hoc by Fisher’s 

LSD **p<0.01, *p<0.05.  Scale bar: 50 μm. 
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Figure 2.8: Cortical interneurons are mispositioned in the early postnatal cortex of cTKO 

mice.  (A-B) GFP-positive (Dlx5/6-CIE) interneurons in the cDKO (A) and cTKO (B) cortical wall.  

(C-D) GFP-calbindin double-labeled (DL) interneurons in the cDKO (C) and cTKO (D) cortical 

wall.  (E-G) Quantification of the radial distribution of GFP-positive (E; Two-way ANOVA: 

F(9,80)=20.33, p<0.0001), DL (F; Two-way ANOVA: F(9,80)=3.700, p=0.0006), and GFP-positive 

calbindin-negative (G; Two-way ANOVA: F(9,80)=18.77, p<0.0001) interneurons.  GFP-positive 

interneurons are reduced in the VZ/SVZ and are elevated in the lower cortical plate (CPL) and 

marginal zone (MZ) of the cTKO cortical wall (arrowheads A-B).  DL interneurons are reduced in 

the VZ and elevated in the CPL of the cTKO cortical wall (closed arrowheads, C-D), but 
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unchanged in the MZ.  GFP-positive calbindin negative interneurons are increased in the MZ 

(open arrowheads C-D).  Quantification from n=5 brains/genotype.  Error bars represent 

mean±s.e.m. ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.  Scale bar: 100 μm. 
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Figure 2.9: Cortical interneurons appear to have a cell-intrinsic requirement for JNK 

signaling.  (A-D) Dlx5/6-CIE, Dlx5/6-CIE; Jnk2-/-;Jnk3-/-, and Dlx5/6-CIE; Jnk1fl/+;Jnk2-/-;Jnk3-/- 

cortices have statistically similar distributions of cortical interneurons, n=3 brains/genotype.  (E) 

E14.5 Dlx5/6-CIE medial ganglionic eminence (MGE) explants are grown in a 3D Matrigel assay 

for 1 day in vitro (DIV), treated with control or 20 µM SP600125 media, and then imaged live for 

12 hours.  (F-G) Tracks (pseudo-colored by time) from 5 representative interneurons in control 

and 20 μM SP600125 conditions.  For each condition, 10 interneurons were tracked from n=8 

movies (80 tracks/condition) collected from 3 experiments.  (H-K) Quantification of dynamic 

interneuron properties (Student’s t-tests).  Error bars represent mean±s.e.m. **p<0.01, *p<0.05.  

Scale bars: 100 μm (A-C); 50 μm (F-G). 
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Figure 2.S1: Conditional removal of Jnk1 from Jnk2 knockouts does not alter the radial 

distribution of cortical interneurons at E15.5 in vivo.  (A-B) Interneurons travel in organized 

streams in cHKO and cDKO cortices at E15.5.  (C-D) Binning strategy for interneuron radial 

distribution.  All cropped regions of the cortex were segmented into 10 equidistant bins to 

determine the radial distribution of cells from the pial to ventricular surface.  (C-K) Quantification 

of the radial distribution of interneurons at lateral (entry zone, C-E), middle (mid-cortex, F-H), 
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and medial (leading edge, I-K) locations across the cortical wall revealed no statistically 

significant differences in the distribution of interneurons between the two genotypes.  

Quantification from n=5 brains/genotype.  Results analyzed by Two-way ANOVA.  Error bars 

represent mean±s.e.m.  Scale bars: 200 μm (A-B); 100 μm (C-D,F-G,I-J). 
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Figure 2.S2: Cortical malformations are present in a subset of cTKO embryos at E15.5.  

(A-C) cDKO cortices have an organized CP (B, outlined in red dashed lines), and migratory 

interneurons with long, mainly tangentially-oriented leading processes (C, closed arrowheads) 

and elongated cell bodies (C, open arrowhead).  (D-F) A representative cTKO brain used for in 

vivo quantitative analysis of interneuron morphology and distribution (Fig. 2.5) contains an 

organized cortical plate (E), small clusters of interneurons in the CP region (F, dashed circle), 

and interneurons with more circular cell bodies (F, open arrowheads) and shorter leading 

processes (F, closed arrowheads).  (G-I) Several cTKO cortices had malformations of the CP at 

E15.5 (n=3; H), which included large CP dips protruding into the IZ, and were therefore 

excluded from quantitative analyses.  (I) Interneurons often formed large clusters in and around 

the malformed regions (dashed circles), and had more pronounced morphological changes to 
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cell bodies (open arrowheads) and leading processes (closed arrowheads) than cTKO cortices 

without severe CP malformations.  Scale bars: 100 μm (A,D,G); 50 μm (B-C,E-F,H-I). 
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Movie 2.1: Live imaging of migrating cortical interneurons in an E14.5 Dlx5/6-CIE brain 

slice under control conditions.  Ventrolateral left, dorsomedial right.  Movie Clip 1. Mid-

cortical position of an E14.5 Dlx5/6-CIE brain slice imaged for 12 hours in control conditions.  

Cortical interneurons predominately migrate tangentially in MZ and SVZ streams as they 

advance across the cortex.  Some cells travel diagonally or radially to switch streams, but rarely 

stop in the cortical plate region.  Movie Clip 2. Three tracked cortical interneurons originating in 

the SVZ maintain their tangential orientation and remain in the SVZ stream for the duration of 

the recording. 
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Movie 2.2: Live imaging of migrating cortical interneurons in an E14.5 Dlx5/6-CIE brain 

slice treated with SP600125.  Ventrolateral left, dorsomedial right.  Movie Clip 1. Mid-cortical 

position of an E14.5 Dlx5/6-CIE brain slice imaged for 12 hours in 20 μM SP600125, a pan-JNK 

inhibitor.  Cortical interneurons migrate slower, change trajectories, and evacuate the MZ and 

SVZ streams to infiltrate the cortical plate by the end of the imaging period.  Movie Clip 2. Three 

tracked cortical interneurons take tortuous trajectories from the SVZ stream to enter the cortical 

plate, where they remain for the duration of the imaging period. 
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Movie 2.3: Live imaging of migrating cortical interneurons in an E14.5 cDKO brain slice at 

the mid-cortical position.  Ventrolateral left, dorsomedial right.  Movie Clip 1. Interneurons in 

cDKO brain slices migrate in organized MZ and SVZ streams when imaged ex vivo for 18 hours.  

Movie Clips 2-4. The 18-hour movies were divided in to three, 6-hour time intervals for 

quantification of dynamic behavior of interneurons.  In cDKO slices, interneurons in all three 

time intervals maintain a tangential orientation, and migrate in the SVZ throughout the duration 

of the recording. 

 

  



83 
 

 

Movie 2.4: Live imaging of migrating cortical interneurons in an E14.5 cTKO brain slice at 

the mid-cortical position.  Ventrolateral left, dorsomedial right.  Movie Clip 1. Interneurons in 

cTKO brain slices begin to migrate in organized streams, but as time progresses, exit streams 

and infiltrate the cortical plate by the end of the 18-hour imaging period.  Movie Clip 2. During 

the first 6 hours of imaging, some interneurons begin to leave the SVZ (Cell 1), whereas the 

majority of cells remain in the SVZ (Cells 2, 3).  Movie Clip 3. During hours 6-12 of imaging, 

even more cells begin to evacuate the SVZ (Cells 5,6).  Movie Clip 4. During the last 6 hours of 

imaging, migrating interneurons adopt more convoluted trajectories and infiltrate the cortical 

plate (Cells 7, 8, 9). 
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Movie 2.5: Live imaging of migrating MGE cortical interneurons in a 3D Matrigel assay 

under control conditions.  Medial ganglionic eminence (MGE) explant left, outgrowth area 

right.  Interneurons migrating away from E14.5 Dlx5/6-CIE MGE explants were imaged for 12 

hours in control conditions.  Representative tracks from 5 cells demonstrate interneurons 

migrating in consistent, straight trajectories. 
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Movie 2.6: Live imaging of migrating MGE cortical interneurons in a 3D Matrigel assay 

treated with SP600125.  Medial ganglionic eminence (MGE) explant left, outgrowth area right.  

Interneurons migrating away from E14.5 Dlx5/6-CIE MGE explants were imaged for 12 hours 

after 20 μM SP600125 treatment.  Representative tracks from 5 cells show interneurons 

migrating slower in shorter, less straight trajectories. 
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Abstract 

Thalamocortical connectivity is essential for proper sensory processing.  Axonal 

pathways between the thalamus and cortex are established early in development, and require 

the guidance of intermediate guidepost cells and axons to correctly navigate the developing 

forebrain.  In this study, we identify a novel role for the c-Jun N-terminal Kinase (JNK) signaling 

pathway in thalamocortical axon guidance.  In a mouse model with loss of JNK from the Dlx5/6 

territory, thalamocortical axons aberrantly project ventrally from the thalamus and into the 

hypothalamus, and are unable to cross the diencephalon-telencephalon boundary (DTB).  In 

addition, corticothalamic, striatonigral, and nigrostriatal axons are all unable to cross the DTB 

and fail to reach their intended targets.  The telencephalic corridor is morphologically altered, 

and guidepost cells in the ventral telencephalon are severely reduced.  This study is the first to 

define an essential, non-autonomous requirement for JNK signaling in the early establishment 

of thalamocortical connectivity. 
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Introduction 

The thalamus relays essential sensory processing information to the cerebral cortex via 

thalamocortical axons (Jones, 2001).  The thalamocortical axon pathway is a longitudinal axon 

projection in the forebrain, and must extend over a long distance to reach precisely defined 

targets in the cortex (Leyva-Diaz and Lopez-Bendito, 2013).  Throughout development, 

thalamocortical axons use a combination of long- and short-range guidance cues (Braisted et 

al., 1999), and rely on intermediate targets and guideposts to guide their trajectories (Squarzoni 

et al., 2015).  Disruptions to thalamocortical connectivity, even from early in neural 

development, can lead to disorders such as autism, schizophrenia, and bipolar disorder 

(Anticevic et al., 2014; Nair et al., 2013).   

 The formation of the thalamocortical pathway occurs throughout embryonic and early 

postnatal development in the mouse brain.  Thalamocortical axons must first extend ventrally 

from the dorsal thalamus, traverse through the prethalamus, then cross the diencephalon-

telencephalon boundary (DTB) around embryonic (E) day 12.5 (Lopez-Bendito and Molnar, 

2003).  Once in the ventral telencephalon, thalamocortical axons extend through the developing 

internal capsule, guided by gradients of axon guidance cues such as Netrins, Slits, Ephrins, and 

Semaphorins expressed in the developing striatum (Molnar et al., 2012).  At the pallial-subpallial 

boundary, thalamocortical axons meet descending corticothalamic axons (Molnar et al., 1998; 

Molnar and Blakemore, 1995), before coursing into the cortex to their defined targets.  The 

correct patterning and cellular composition of the expansive territory through which 

thalamocortical axons must traverse is critical for establishing proper connectivity.  

 In addition to establishing gradients for the proper sorting of thalamocortical axons, the 

ventral telencephalon is a critical intermediate target for thalamocortical axon pathfinding, 

containing both corridor and guidepost cells that are necessary for proper guidance of 

thalamocortical axons in early development.  Corridor cells migrate from the lateral ganglionic 

eminence and form a growth-permissive territory for thalamocortical axons between the medial 
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ganglionic eminence and the nascent globus pallidus (Bielle et al., 2011a; Lopez-Bendito et al., 

2006).  Guidepost cells reside in the ventral telencephalon and send axons back to the 

thalamus and prethalamus, and are thought to provide scaffolding for thalamocortical axons 

(Braisted et al., 1999; Metin and Godement, 1996; Molnar and Cordery, 1999).  Disruptions to 

both of these territories have been described in mutants with thalamocortical axon pathfinding 

phenotypes, notably in the ability of thalamocortical axons to cross the DTB (Lopez-Bendito, 

2018; Molnar et al., 2012).  Indeed, disruptions to this critical intermediate territory have been 

shown to non-autonomously affect proper thalamocortical axon guidance, as these mutations 

are not targeting the thalamocortical axons themselves.   

The Dlx (distal-less) homeobox genes are arranged as three bigene clusters (Dlx1/2, 

Dlx3/4, and Dlx5/6) in mice, and encode a family of transcription factors that are critical for the 

development of GABAergic interneurons (Zerucha and Ekker, 2000).  The Dlx5/6 domain is 

expressed in the developing forebrain (Panganiban and Rubenstein, 2002), notably spanning 

the territory that encompasses both corridor and guidepost cells.  The intergenic region of the 

Dlx5/6 bigene cluster contains the cis-acting regulatory element I56ii which is essential for the 

development of corridor cells (Fazel Darbandi et al., 2016).  Interestingly, in mice with 

conditional deletions of Linx (Mandai et al., 2014), Celsr3 (Zhou et al., 2008; Zhou et al., 2009), 

or Frizzled3 (Hua et al., 2014; Qu et al., 2014) in the Dlx5/6 region, thalamocortical axons are 

non-autonomously misrouted.  This implicates the Dlx5/6 territory as a critical intermediate 

region for the extension of thalamocortical axons. 

Disruptions to intermediate guideposts could non-autonomously influence axons in a 

variety of ways.  Signaling gradients could be disrupted, which would impact the normal 

attractive and repulsive signals in the developing striatum.  Additionally, the generation, 

migration, or axon extension of intermediate targets, such as the corridor or guidepost cells, 

could also be affected, resulting in disruptions to thalamocortical axons.  c-Jun N-terminal 

Kinase (JNK) is a mitogen-activated protein kinase which has been shown to play a role in 
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various aspects of neural development, including cellular migration and axon extension (Coffey, 

2014).  We therefore hypothesized that JNK function in the ventral telencephalon could play a 

role in early thalamocortical axon guidance.  

 Here, we show that complete loss of JNK function from the Dlx5/6 territory results in 

thalamocortical axon misrouting from early in development.  Thalamocortical axons are unable 

to cross the diencephalon-telencephalon boundary (DTB), and instead misroute both ventrally 

into the hypothalamus, and rostrally along the DTB.  Telencephalic corridor cells are 

mispositioned, and guidepost cells are significantly reduced in number.  Additionally, 

corticothalamic, striatonigral, and nigrostriatal axons are unable to project across the DTB and 

thus fail to reach their targets.  This is the first time that JNK signaling has been shown to have 

a non-autonomous requirement in thalamocortical axon pathfinding. 
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Results 

Axon tracts are missing or misrouted in JNK conditional triple knockout (cTKO) 

mice  

Longitudinal axon tracts in the developing forebrain use intermediate targets as 

guideposts during their extensive trajectories to their targeted regions.  The ventral 

telencephalon encompasses the developing internal capsule, which serves as an intermediate 

target for both thalamocortical and corticothalamic axons.  To determine the requirement for 

JNK signaling in this critical intermediate territory, we developed a conditional triple knockout 

(cTKO) mouse that conditionally removes Jnk1 from Dlx5/6-CIE lineage cells of constitutive 

Jnk2;Jnk3 double knockouts.  This effectively removes all of JNK signaling from the territory 

through which major axon pathways traverse in early development.  

We began by labeling embryonic (E) day 17.5 brain sections with L1, a transmembrane 

adhesion molecule that labels many axon tracts in the developing brain (Stallcup et al., 1985).  

In control brains at this age, axons span the internal capsule region, connecting the cortex to the 

thalamus (Fig. 3.1 A,C, n=3/3).  In cTKO mice however, the internal capsule was completely 

missing (Fig. 3.1 B,D, n=3/3), and there were no connections between the diencephalon and 

telencephalon.  Additionally, a large, “U-shaped” bundle of axons was present underneath the 

hypothalamus (Fig. 3.1 B, n=3/3).  Commissural axon tracts including the anterior commissure 

and corpus callosum were present in the cTKO brain and still crossed the midline, but appeared 

to be reduced in size and trajectory (Fig. 3.S1 A-D).   

Axons were present in the cortex of cTKO mice, however also appeared reduced in 

number.  To determine the identity of the cortical axons, we labeled E15.5 brain sections with L1 

and Tag1, a neural adhesion molecule which labels corticofugal axons (Wolfer et al., 1994) (Fig. 

3.1 E-L).  L1-positive and Tag1-positive axons were present in the intermediate zone (IZ) of 

both the control (Fig. 3.1 E-H; n=7/7) and cTKO (Fig. 3.1 I-L; n=7/7) cortical walls at E15.5.  
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However, L1-positive/Tag1-negative fibers, which travel in the upper IZ, were completely absent 

from cTKO brains (Fig. 3.1 I-L, n=7/7), suggesting that a population of axons which originated 

sub-cortically was affected.  Additionally, Calbindin-labeled axons were completely absent from 

cTKO brains at E15.5 (Fig. 3.S1 E-F, n=11/11).  Thus, we found several major axon deficiencies 

in cTKO forebrains, including a loss of axons normally traversing the upper IZ in the cortical 

wall, a disrupted internal capsule, and an ectopic accumulation of axonal fibers coursing 

beneath the hypothalamus. 

 

Thalamocortical axons misroute ventrally in cTKO mice 

Since L1-postive/Tag-1 negative axons were absent from cTKO cortices, and there was 

an ectopic L1-positive bundle of axons beneath the thalamus, we examined whether 

thalamocortical axons were aberrantly projecting in cTKO brains.  We placed a DiI crystal into 

the dorsal thalamus of fixed brain slices at E15.5 to observe the projection pattern of 

thalamocortical axons (Fig. 3.2 A-B).  In control slices, DiI-labeled axons extended from the 

thalamus, crossed the diencephalon-telencephalon boundary (DTB), and projected through the 

internal capsule in the telencephalon (Fig. 3.2 C, n=8/8).  However, in cTKO slices, DiI-labeled 

axons projected to the DTB, but rather than crossing into the telencephalon at this level, turned 

ventrally and coursed through the hypothalamus (Fig. 3.2 D, n=3/3).   

To further assess the trajectory of thalamocortical axons, we labeled E15.5 brain 

sections with NetrinG1, a netrin that is enriched in the dorsal thalamus during development, and 

serves as a marker of most thalamocortical axons (Nakashiba et al., 2000).  NetrinG1 is distinct 

from the axon guidance molecule Netrin1.  In control brains, NetrinG1-positive thalamocortical 

axons crossed the DTB at caudal levels, extended through the internal capsule, and reached 

the mid-cortical wall (Fig. 3.2 E-I, n=4/4).  However, in cTKO brains, we observed two different 

patterns of thalamocortical axon misrouting.  At caudal levels, thalamocortical axons extended 
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from the thalamus, but instead of crossing the DTB, projected ventrally into the hypothalamus in 

all cTKO brains examined (Fig. 3.2 L-N, n=15/15).  Additionally, a second bundle of 

thalamocortical axons extended rostrally in a large fascicle along the DTB (Fig. 3.2 J-L, 

n=15/15).  From this rostrally-projecting bundle, some thalamocortical axon fibers splayed into 

the ventral forebrain at ectopic positions (Fig. 3.2 J-K), but with varying degrees of penetration 

(Fig. 3.S2).  At E15.5, we observed cTKO brains with no axons present in the telencephalon 

(Fig. 3.S2 C-D, n=6/15), axons entering the telencephalon but not reaching the internal capsule 

(Fig. 3.S2 E-F, n=5/15), axons ectopically reaching the internal capsule but not the cortical 

rudiment (Fig. 3.S2 G-H, n=2/15), and axons reaching the cortical rudiment but not in the 

correct number or location (Fig. 3.S2 I-J, n=2/15).  Together, both DiI and immunohistochemical 

analyses indicate that thalamocortical axons are massively misrouted at the DTB region in 

cTKO brains.  

 

Thalamocortical and corticothalamic axons take aberrant trajectories in cTKO 

mice 

Immunohistochemical analysis revealed that thalamocortical axons mis-projected both 

ventrally and rostrally in cTKO brains at E15.5.  Despite failing to cross the DTB and properly 

extend through the internal capsule, some thalamic projections entered the telencephalon at 

aberrant locations (Fig. 3.2S, n=9/15).  To determine whether these fibers eventually extended 

into the cortex, we examined brains at postnatal (P) day 0, the oldest age we were able to 

collect viable cTKO mice (Table 3.1).  P0 brains were collected, fixed, hemisected along the 

midsagittal plane, and a DiI crystal was placed into the dorsal thalamus (Fig. 3.3A). 

In control brains, DiI-labeled axons projected from the thalamus, across the DTB, 

through the internal capsule, and into the cortex (Fig. 3.3 B-E; n=5/5).  However, in all cTKO 

brains examined, thalamocortical axons misrouted ventrally into the hypothalamus (Fig. 3.3 H-I, 
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L-M, n=4/4), verifying our NetrinG1 immunohistochemistry (Fig. 3.2 M) and DiI-labeled slice 

(Fig. 3.2D) results at E15.5.  The axons that did not extend into the hypothalamus instead 

projected rostrally on the ventral surface of the brain near the DTB (Fig. 3.3 F-G, J-K).  Similar 

to the E15.5 timepoint, thalamocortical axons were observed invading the striatum from an 

ectopic ventral position (Fig. 3.3 F-G, J-K).  These ectopically projecting DiI-labeled fibers only 

reached the cortex in half of the cTKO brains examined (Fig. 3.3 J, n=2/4), and when they did, 

they were less abundant and less advanced than their control counterparts.  We also noticed 

increased ventricular volume in cTKO slices, which has been shown in other mutants with 

thalamocortical axon guidance phenotypes (Hua et al., 2015; Hua et al., 2014; Tissir et al., 

2005; Wang et al., 2002).  CT scans were performed on whole heads at P0, where we observed 

increased ventricular volume in the intact cTKO brain (Fig. 3.3, n=6/6). 

Since thalamocortical and corticothalamic axons have been shown to be intimately 

related with one another during development, we asked whether the subcortical trajectory of 

cortical axons was also compromised in cTKO mice.  Using the same experimental design as 

above (Fig. 3.3A), we placed a crystal of DiI into the cortex of the other half of the P0 brains 

(Fig. 3.4A).  In control brains, DiI-labeled corticothalamic axons assumed a normal trajectory 

through the internal capsule, crossed into the diencephalon, and reached the dorsal thalamus 

(Fig. 3.4 B-D, n=5/5).  Additionally, DiI-labeled cell bodies were present in the thalamus from 

retrograde labeling of thalamocortical axons (Fig. 3.4 D-E, n=5/5).  In cTKO brains however, 

cortical axons were severely misrouted and did not coalesce into an organized internal capsule 

(Fig. 3.4 F-G,H-K, n=4/4).  Instead, cortical axons ectopically entered the subpallium in large, 

disorganized fascicles at rostral levels (Fig. 3.4 F,J-K, n=4/4).  Cortical fibers only reached the 

thalamus in half of the cTKO brains examined (Fig. 3.4 L, n=2/4).  Interestingly, backfilled 

thalamic cells were only found in cTKO brains that had corticothalamic fibers in the thalamus, 

and when present, were reduced in number (Fig. 3.4 L-M).   
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We observed a range of axon misrouting phenotypes in cTKO mice in both thalamic and 

cortical DiI experiments at P0.  Since a DiI crystal was placed into either the thalamus (Fig. 3.3) 

or cortex (Fig. 3.4) of the same hemisected brain, we compared the degree of axon misrouting 

between the thalamic and cortical DiI placements.  Indeed, we found that in the cTKO brains 

that lacked thalamic innervation of the cortex (Fig. 3.3 F-I), no cortical axons had reached the 

thalamus (Fig. 3.4 F-G).  Additionally, no backfilled thalamic cells were present after the cortical 

DiI placement (Fig. 3.4 H-I), indicating that thalamic axons had not reached the cortex in both 

halves of each brain examined.  Similarly, in cTKO brains with partial thalamic innervation of the 

cortex (Fig. 3.3 J-M), some cortical axons had reached the thalamus (Fig. 3.4 J-L), and 

backfilled thalamic cells were present (Fig. 3.4 L-M).  Thus, reciprocal thalamocortical and 

corticothalamic projections were comparably affected in each of the cTKO brains examined. 

 

Thalamocortical axons are misrouted early in development in cTKO brains 

We next assessed the developmental time course of thalamocortical axon misrouting in 

cTKO brains.  Using NetrinG1 as a marker for thalamocortical axons, we examined brains 

ranging from E12.5 to P0 (Fig. 3.5 A-J).  At E12.5, when thalamocortical axons first cross from 

the diencephalon into the telencephalon (Fig. 3.5 A inset, n=2/2), no NetrinG1-positive fibers 

crossed the DTB in cTKO mice (Fig. 3.5 F inset; n=2/2).  Similarly, at E13.5 when the furthest 

advanced thalamocortical fibers have approached the pallial-subpallial boundary (Fig. 3.5 B, 

n=6/6), NetrinG1-positive axons were absent from the ventral telencephalon in cTKO mice (Fig. 

3.5 G, n=8/8).  When we examined the diencephalon-telencephalon boundary region at E13.5, 

where NetrinG1-positive axons normally cross the DTB in control brains (Fig. 3.5 K-L, n=6/6), 

we observed ventrally projecting thalamocortical axons in cTKO brains that failed to cross the 

DTB (Fig. 3.5 M-N, n=8/8).  Thus, the misrouting of thalamocortical axons begins in early 

development, when thalamocortical axons would normally first be crossing the DTB region.  
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Thalamocortical axons were similarly misrouted in cTKO brains at E15.5 (Fig. 3.5 H, n=15/15), 

E17.5 (Fig. 3.5 I, n=3/3), and P0 (Fig. 3.5 J, n=5/5), with the size of the “U-shaped” bundle 

increasing in thickness as development proceeds. 

In E13.5 cTKO brains, thalamocortical axons extended ventrally from the thalamus and 

through the prethalamus (Fig. 3.5 M-N, n=8/8), suggesting their initial extension in the 

diencephalon is grossly unaffected.  However, after exiting the prethalamus, thalamocortical 

axons were unable to cross the DTB.  Interestingly, this pathway is populated by Dlx5/6-CIE-

positive cells and axons, which form a diencephalic corridor from the prethalamus to the ventral 

forebrain in control brains (Fig. 3.5K-L).  In cTKO brains however, Dlx5/6-CIE-positive cells were 

present either in the telencephalon or diencephalon, but like the thalamocortical axons, failed to 

span the DTB (Fig. 3.5 M-N).  Indeed, Dlx5/6-CIE-positive cells appeared to form a piled-up 

wedge on the diencephalic side of the DTB (Fig. 3.5 M-N).  These data collectively suggest that 

thalamocortical axons are able to extend properly from the thalamus to the DTB in cTKO brains, 

however at the DTB region, there is a disruption to both thalamocortical axons and Dlx5/6-CIE-

positive cells and axons, which are the target of our conditional JNK deletion. 

 

Telencephalic corridor and guidepost cells are disrupted in cTKO mice 

The corridor is a permissive territory in the developing ventral telencephalon that 

supports the extension of thalamocortical axons through an otherwise growth inhibitory 

environment (Lopez-Bendito et al., 2006).  Since disruptions to the corridor region have been 

implicated in thalamocortical axon misrouting, and the Dlx5/6 domain spans this region, we 

examined the corridor in control (n=4) and cTKO (n=5) brains at E13.5 at 4 different rostro-

caudal locations (Fig. 6).  Brain slices were labeled with Islet1 to reveal corridor cells (Fig. 3.6 B-

E), which migrate ventral-medially from the lateral ganglionic eminence (LGE) to position 

themselves between the Nkx2.1-positive medial ganglionic eminence (MGE) progenitor domain 
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and the nascent globus pallidus (GP).  The Islet1-positive corridor extends caudally to the DTB, 

where thalamocortical axons project from the diencephalon into the telencephalon (Fig. 3.6 D-

E).  In cTKO brains, the distribution of Islet1-positive cells is similar to control brains at rostral 

levels (Fig. 3.6 F).  However, immediately caudal to this location, Islet1-positive cells are 

ectopically located in a region corresponding to the globus pallidus in control brains (Fig 3.6 G).  

At more caudal levels, where Islet1-positive cells normally associate with thalamocortical axons 

in control brains (Fig. 3.6 D-E), the Islet1-positive cells are severely reduced in number in cTKO 

brains, and no thalamocortical axons have crossed the DTB (Fig. 3.6 H-I).   

Additionally, the Nkx2.1 expression domain is altered in cTKO mice.  In control brains, 

Nkx2.1-positive GP cells are present throughout the corridor region and reside directly beneath 

the thalamocortical axons as they enter the telencephalon (Fig. 3.6 D-E).  However, the GP was 

irregularly shaped in cTKO brains, with Nkx2.1-positive cells spreading out to the lateral, pial 

margin of the ventral telencephalon (Fig. 3.6 F).  Slightly more caudal, the Nkx2.1-positive GP 

shifted dorsal and lateral, in some cases splitting with the apparent influx of ectopically 

positioned Islet1-positive cells (Fig. 3.6 G).  Similar to Islet1-positive cells, Nkx2.1-positive cells 

are missing from the caudal corridor of cTKO brains, where thalamocortical axons should cross 

into the telencephalon (Fig. 3.6 H-I).  In control brains, both Islet1- and Nkx2.1-positive cells are 

precisely positioned at the point of axon crossing at the DTB (Fig. 3.6 E,K), however, these two 

populations of cells fail to extend caudally to the DTB in cTKO brains (Fig. 3.6 I,L). 

In control brains, a population of diencephalic Islet1-positive cells form a scaffold 

beneath the thalamocortical axons (Fig. 3.6 E,K).  Unlike telencephalic Islet1-positive cells that 

nearly disappeared at this level in cTKO brains, diencephalic Islet1-positive cells were present 

in seemingly normal numbers in cTKO mice (Fig. 3.6 I,L).  However, these Islet1-positive cells 

stopped short of the DTB at the position where thalamocortical axons misrouted ventrally (Fig. 

3.6 I,L).  These data suggest that at the level of the DTB, both Islet1- and Nkx2.1-positive cells 
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are mispositioned or even missing from the ventral telencephalon, which may account for the 

inability of thalamocortical axons to cross the border. 

Another population of cells thought to assist thalamocortical axons across the DTB are 

guidepost cells (Braisted et al., 1999), which reside in the ventral telencephalon and extend 

axons to the dorsal thalamus.  Since these cells are often missing or reduced in number in 

mutants with thalamocortical axon defects, we investigated whether they were present in the 

brains of cTKO mice.  While the molecular profile of these guidepost cells remains unknown, 

they can be retrogradely labeled by placing a DiI crystal into the dorsal thalamus (Fig. 3.7).  In 

E13.5 control brains, a bundle of thalamocortical axons crossed the DTB and projected through 

the ventral telencephalon (Fig. 3.7 A-D; n=6/6).  Retrogradely-labeled cells were found in close 

association with the internal capsule at both rostral and caudal levels of the ventral 

telencephalon in territories that were Dlx5/6-CIE positive (Fig. 3.7 A-D).  However, in cTKO 

brains, thalamocortical axons projected ventrally from the thalamus and did not cross the DTB 

(Fig. 3.7 E-H; n=6/6).  At rostral levels, there were no labeled axons in the telencephalon (Fig. 

3.7 E-F).  Although a few scattered retrogradely-labeled cells were labeled, they were reduced 

in number (Fig. 3.7 E-H) when compared to control brains.  Collectively, the disruption to the 

telencephalic corridor and the reduced number of guidepost cells indicate that the territory 

through which thalamocortical axons normally traverse is altered in cTKO brains. 

 

Reciprocal connections between the striatum and substantia nigra are altered in 

cTKO mice 

Besides thalamocortical and corticothalamic axons, several other axonal pathways cross 

the DTB during early development.  Two pathways in particular reciprocally connect the striatum 

to the substantia nigra (striatonigral) and the substantia nigra to the striatum (nigrostriatal).  

Since these pathways course in close proximity to thalamocortical axons as they approach the 



99 
 

DTB, and disruptions to both the striatonigral and nigrostriatal pathways have been observed in 

mice with thalamocortical axon guidance defects, we examined striatal and nigral axon 

projection patterns in cTKO mice.  In control brains, Darpp32-positive striatal axons project from 

the striatum, across the DTB, and reach the substantia nigra in the midbrain (Fig. 3.8 A,C-E,I 

n=6/6).  Reciprocally, tyrosine hydroxylase (TH)-positive nigral axons project from the 

substantia nigra to join the median forebrain bundle, cross the DTB, and disperse diffusely in 

the striatum (Fig. 3.8 A,I n=6/6).  However, in cTKO brains, Darpp32-positive fibers coalesce 

and are entangled in the striatum (Fig. 3.8 B,F; n=5/5).  These striatal fibers do not cross the 

DTB and are therefore missing at the level of the substantia nigra (Fig. 3.8 B,G-H,J).  

Nigrostriatal fibers are likewise unable to fully extend along the anterior-posterior axis in cTKO 

brains (Fig. 3.8 B), and instead misroute in a “U-shaped” bundle into the hypothalamus (Fig. 3.8 

J, n=8/8), similar to the NetrinG1-positive thalamocortical axons.  In both the thalamocortical 

and nigrostriatal pathways, we observe similar patterns of misrouting, in which normally 

ipsilaterally projecting tracts are misrouted and become commissural.  We next wanted to 

determine if nigrostriatal axons mis-projected early in development similar to thalamocortical 

axons.  Indeed, TH-positive axons misrouted as early as E13.5 (n=4/4), and had formed a 

similar “U-shaped” bundle by E15.5 (Fig. 3.S4; n=15/15).  In the cTKO model, multiple 

longitudinal axon pathways are unable to properly extend along the rostrocaudal axis, fail to 

cross the DTB, and some incorrectly project across the midline. 

 

Non-autonomous requirement for JNK signaling in thalamocortical axon 

pathfinding 

Although our data strongly implicate a non-autonomous role for JNK signaling in 

establishing major forebrain axon tracts, we cannot exclude the possibility that the constitutive 

loss of Jnk2 and Jnk3 in the cTKO model impacts thalamocortical projections.  In the cTKO 
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model, Jnk1 is conditionally removed from Dlx5/6-CIE cells in a Jnk2;Jnk3 knockout mouse (Fig. 

3.9 B), where thalamocortical axons themselves have lost Jnk2 and Jnk3 function.  To test 

whether the loss of Jnk2 and Jnk3 alone impairs thalamocortical axon pathfinding, we 

developed a new mouse model to constitutively remove Jnk2 and Jnk3, while leaving Jnk1 

function intact (Fig. 3.9 C).  NetrinG1-positive thalamocortical axons in the Dlx5/6-CIE;Jnk2-/-

;Jnk3-/- mouse extended through the internal capsule and reached the cortex at E15.5 (Fig. 3.9 

C, n=3/3) and at P0 (Fig. 3.S5 C, n=3/3) in levels comparable to control brains (Fig. 9A, n=4/4, 

Fig. 3.S5 A, n=5/5).  We next asked whether the removal of Jnk1 from the Dlx5/6 territory alone 

could be causing the thalamocortical axon misrouting.  In the Dlx5/6-CIE;Jnk1fl/fl mouse (Fig. 

3.9D), where Jnk1 is conditionally removed from the Dlx5/6 territory but Jnk2 and Jnk3 remain 

intact, thalamocortical axons cross the DTB and enter the cortex (Fig. 3.9D, n=3/3).  The 

removal of Jnk2 and Jnk3 constitutively, or the conditional removal of only one JNK gene, Jnk1, 

from the Dlx5/6 territory, are themselves insufficient to cause thalamocortical axon misrouting.   

Since our data indicated that dosage of JNK gene function was an important component 

of the thalamocortical axon misrouting phenotype, we next asked whether a single copy of 

either Jnk1 or Jnk3 was sufficient for proper thalamocortical axon extension.  In the Dlx5/6-

CIE;Jnk1fl/+;Jnk2-/-;Jnk3-/- mouse (Fig. 3.9 E), only one copy of Jnk1 is conditionally removed 

from the Dlx5/6 lineage in a Jnk2/Jnk3 double knockout background.  Thalamocortical axons 

are able to extend across the DTB and into the cortex in this mouse model at E15.5 (Fig. 3.9 E, 

n=5/5) and P0 (Fig. 3.5 D, n=4/4), suggesting that only one copy of Jnk1 is needed in the Dlx5/6 

territory for proper thalamocortical axon extension.  Similarly, in the Dlx5/6-CIE;Jnk1fl/fl;Jnk2-/-

;Jnk3+/- mouse, where only one copy of Jnk3 is present, thalamocortical axons extend properly 

though the internal capsule and into the cortex (Fig. 3.9F, n=5/5).  Retaining one copy of Jnk1 in 

the Dlx5/6 territory, or one copy of Jnk3 in the mouse, is sufficient for thalamocortical axons to 

cross the DTB and reach the cortex.  Thus, it appears to be the complete loss of JNK function 
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from the Dlx5/6 territory that leads to the non-autonomous misrouting of thalamocortical axons 

in cTKO mice. 
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Discussion 

 In this current study, we show there is a non-autonomous requirement for JNK signaling 

in thalamocortical axon pathfinding.  In the cTKO model, Jnk1 is conditionally removed from 

Dlx5/6 lineage cells in a Jnk2/Jnk3 null background, which completely eliminates JNK signaling 

from the territory through which thalamocortical axons traverse.  Beginning early in 

development, thalamocortical axons are unable to cross the diencephalon-telencephalon 

boundary (DTB) in cTKO brains, and instead misroute both ventrally into the hypothalamus as 

well as rostrally along the ventral surface of the telencephalon.  Other longitudinal axon tracts in 

the cTKO forebrain, including the corticothalamic, striatonigral, and nigrostriatal axons, are 

unable to cross the DTB, and fail to reach their intended targets through the appropriate 

pathway and in the correct number.  Both the Islet1-postivie corridor cells and Nkx2.1-positive 

globus pallidus are mispositioned in the cTKO ventral telencephalon, and fail to extend caudally 

to the DTB region.  Guidepost cells in the ventral telencephalon which normally project axons 

back to the dorsal thalamus are severely reduced in number in the cTKO brain.  An allelic series 

of different genetic mouse models reinforced the non-autonomous requirement for JNK 

signaling in thalamocortical axon pathfinding, and demonstrated that all three JNK genes must 

be removed from the Dlx5/6 territory for thalamocortical axon misrouting to occur. 

 

Autonomous and non-autonomous requirements for JNK signaling in the 

development of major forebrain and midbrain axon trajectories 

 The diencephalon-telencephalon boundary is a critical region in the developing forebrain 

through which thalamocortical, striatonigral, and nigrostriatal axons all have to traverse early in 

embryonic development.  In the cTKO model, all three axon pathways are unable to extend past 

the DTB and reach their intended targets.  However, the complete loss of JNK function in the 

cTKO model only occurs from the Dlx5/6 lineage, which does not directly target the thalamus 
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and thalamocortical axons, or the substantia nigra and nigrostriatal axons.  The Dlx5/6 

expression domain encompasses the lateral and medial ganglionic eminences in the ventral 

telencephalon, as well as portions of the prethalamus and hypothalamus (Panganiban and 

Rubenstein, 2002; Stenman et al., 2003).  Therefore, striatonigral axons are directly impacted 

by the conditional deletion of JNK, and could themselves have an autonomous requirement for 

JNK function in axon extension and guidance.  The loss of proper striatal connectivity could in 

turn cause thalamocortical and possibly even nigrostriatal axons to misroute.  Indeed, in an OL-

protocadherin knockout, the loss of striatal axons was shown to be responsible for 

thalamocortical axon misrouting (Uemura et al., 2007).  Conditional removal of JNK function 

from the cells giving rise to striatal axons would need to be examined to determine if striatal 

axons have an autonomous requirement for JNK signaling, and if the striatal defects could be 

responsible for other axon misrouting phenotypes in the cTKO model. 

 Since the thalamus is not targeted by the conditional Dlx5/6 deletion of Jnk1, and  

extension of thalamocortical axons is normal in the Dlx5/6-CIE;Jnk2-/-;Jnk3-/- mouse model, 

this suggests there is a non-autonomous requirement for JNK signaling in the extension of 

thalamocortical axons.  In the ventral telencephalon, the Dlx5/6 territory encompasses both 

corridor cells and guidepost neurons, two populations of cells known to non-autonomously 

influence thalamocortical axon pathfinding.  The telencephalic corridor is formed by Islet1-

positive cells migrating ventromedially from the lateral ganglionic eminence, to form a 

permissive territory between the Nkx2.1-positive medial ganglionic eminence and globus 

pallidus (Lopez-Bendito et al., 2006).  In the cTKO model, both Islet1- and Nkx2.1-positive cells 

fail to extend caudally towards the DTB in the telencephalon, and Islet1-positive cells aberrantly 

invade the globus pallidus.  Disruptions to the corridor have been documented in other models 

with thalamocortical axon misrouting phenotypes (Bielle et al., 2011a; Lopez-Bendito et al., 

2006; Morello et al., 2015; Simpson et al., 2009; Uemura et al., 2007), and may be a reason 

why thalamocortical axons don’t extend across the DTB in the cTKO mouse. 
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A second population of cells in the ventral telencephalon thought to be important in early 

thalamocortical axon guidance are guidepost neurons, which extend axons back to the dorsal 

thalamus (Braisted et al., 1999; Metin and Godement, 1996; Molnar and Cordery, 1999).  In the 

cTKO model, these cells are severely reduced in number, similar to other models in which 

thalamocortical axons fail to extend across the DTB (Jones et al., 2002; Lakhina et al., 2007; 

Mitsogiannis et al., 2017; Tuttle et al., 1999; Uemura et al., 2007).  Interestingly, some of these 

backfilled cells were found to be Dlx5/6-positive in another model, which were then missing from 

the ventral telencephalon with the Dlx5/6-mediated deletion of Celsr3 (Feng et al., 2016).  

These backfilled cells reside in the Dlx5/6 territory in the cTKO model, and the severe reduction 

in number of these cells may impact early thalamocortical axon guidance.  The loss of JNK 

signaling in the Dlx5/6 territory is directly impacting corridor and guidepost neurons, which is 

likely non-autonomously impacting thalamocortical axon pathfinding.  

 

Non-canonical WNT signaling in thalamocortical axon extension 

The Planar Cell Polarity (PCP) pathway is a component of non-canonical Wnt signaling, 

known for its roles in tissue morphogenesis, cilia organization, and directed cell migration 

(Simons and Mlodzik, 2008; Wang and Nathans, 2007).  Two seven-transmembrane receptors 

for Wnt ligands in the PCP pathway, Frizzled3 (Goodrich and Strutt, 2011; Vinson et al., 1989) 

and Celsr3 (Usui et al., 1999), were both shown to play novel roles in axon guidance (Tissir et 

al., 2005; Wang et al., 2002), however the mechanism through which this occurs is currently 

unknown.  Interestingly, after Frizzled3 recruits Dishevelled inside of the cell, one of the main 

signaling cascades that is part of the PCP pathway is the binding of this complex to Rac1, which 

activates JNK signaling (Niehrs, 2012). 

In both the Frizzled3 and Celsr3 knockout mice, there are severe disruptions to major 

axon pathways including the thalamocortical, corticothalamic, and nigrostriatal tracts, and a near 
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complete breakdown of the internal capsule (Fenstermaker et al., 2010; Tissir et al., 2005; 

Wang et al., 2002; Wang et al., 2006).  These are very reminiscent of the cTKO mouse, in which 

thalamocortical and corticothalamic axons fail to cross the internal capsule, and nigrostriatal 

axons are misrouted at the level of the hypothalamus.  Interestingly, Frizzled3 and Celsr3 have 

been conditionally removed using the Dlx5/6 driver line, and nearly identical phenotypes have 

been reported (Hua et al., 2014; Qu et al., 2014; Zhou et al., 2008; Zhou et al., 2009).  However, 

when Celsr3 or Frizzed3 were deleted in both the cortex and the thalamus, longitudinal axon 

pathways developed normally, suggesting it is the expression of the PCP proteins in the territory 

through which axons traverse and not the axons themselves that is critical for their proper 

guidance (Qu et al., 2014).   

Recent studies have looked more closely at the intermediate target territories in both of 

these mutants.  Ventral telencephalic guidepost cells were missing or severely reduced in the 

Celsr3 (Jia et al., 2014) and Dlx5/6;Celsr3fl/fl (Feng et al., 2016) mice, respectively, similar to 

the severe reduction observed in the cTKO forebrain.  In the cTKO mouse, the telencephalic 

Islet-positive corridor cells invaded the globus pallidus, which was also observed in the Celsr3 

(Jia et al., 2014) and Frizzled3 (Morello et al., 2015) mutants.  Additionally, in both the Celsr3 

and cTKO mutants, Nkx2.1-positive cells failed to extend caudally to the DTB region (Jia et al., 

2014).  Finally, striatal connections were compromised in both Celsr3-/- and Frizzled3-/- mice 

(Jia et al., 2014; Morello et al., 2015), which was reminiscent of the Darpp32-positive axons 

being unable to extend past the DTB in the cTKO mutant.  Future studies will aim to determine if 

the axon phenotypes observed in mutants of the PCP genes act upstream of the JNK signaling 

pathway to cause the axon misrouting phenotypes observed in all three mutants.  
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Axon guidance cues and gradients in thalamocortical axon pathfinding 

 Gradients of attractive and repulsive cues in the telencephalon, including netrins, slits, 

ephrins, and semaphorins, guide the sorting of thalamocortical axons once they reach the 

subpallium.  Disruptions to these guidance cues have resulted in the mis-targeting of 

thalamocortical axons to different cortical areas.  Since the conditional deletion of JNK signaling 

in the cTKO mouse is targeting the ventral telencephalon, there may be a disruption to the 

patterning of guidance cues, which could affect the sorting of thalamocortical axons that are 

able to enter the telencephalon at later embryonic and early postnatal time points in ectopic 

positions.   

Netrins are diffusible guidance cues, expressed in an anterior-high posterior-low gradient 

in the ventral telencephalon (Braisted et al., 2000).  DCC (deleted in colorectal cancer), Unc5, 

and FLRT3 (fibronectin leucine rich transmembrane) receptors, among others, on 

thalamocortical axons use the Netrin gradient once in the telencephalon to fan-out along the 

anterior-posterior axis to target the appropriate cortical areas (Leyva-Diaz et al., 2014; Powell et 

al., 2008).  In Netrin-/- mice, thalamocortical axons are disorganized in the ventral 

telencephalon, and fewer thalamic axons reach the cortex (Braisted et al., 2000; Powell et al., 

2008), similar to the cTKO mouse here.  Interestingly, Netrin1 has been shown to increase JNK 

activity in neurons, and removal of JNK signaling inhibited axon outgrowth induced by Netrin1, 

suggesting JNK acts downstream of Netrin signaling in axon guidance (Qu et al., 2013).   

Slit2 is another guidance molecule that is expressed in an anterior-high, posterior-low 

gradient, but is restricted to the corridor region in the ventral telencephalon.  It can guide the 

positioning of corridor cells in the ventral telencephalon through expression in the ventral medial 

ganglionic eminence and preoptic area (Bielle et al., 2011a).  In Slit2-/- mice, the corridor fails to 

extend caudally to the DTB, similar to the cTKO mouse, and as a result, thalamocortical axons 

fail to cross the DTB and instead misroute into the hypothalamus (Bielle et al., 2011a).  JNK 
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acts upstream of Slit/Robo signaling in Drosophila (Iida et al., 2019; Vaughen and Igaki, 2016), 

however the connection between the two pathways in mouse embryogenesis remains unknown. 

In addition to their expression in the telencephalon, both Netrins (Kennedy et al., 1994; 

Kennedy et al., 2006) and Slits (Bagri et al., 2002) are also expressed along the midline in the 

hypothalamus.  The presence of these guidance molecules normally prevents axons from 

inappropriately crossing the midline.  However, in Dcc-/- (Xu et al., 2010a) and Slit1-/-;Slit2-/- 

mice (Bagri et al., 2002), TH-positive nigrostriatal axons mis-project ventrally into a “U-shaped” 

bundle in the hypothalamus, instead of coursing rostrally into the telencephalon.  The TH-

positive axons in the Dcc-/- and Slit1-/-;Slit2-/- mice aberrantly course through the hypothalamus 

at a similar location to the “U-shaped” bundle of nigrostriatal axons observed in the cTKO 

model.  The Dlx5/6-targeted deletion of JNK signaling also encompasses the hypothalamus, 

suggesting chemo-repulsive cues normally present at the midline may be compromised in cTKO 

mice.   

In addition to their known roles in axon guidance, recent work has shown that crosstalk 

between different guidance molecules can regulate axonal pathfinding (Stoeckli, 2018).  For 

instance, thalamocortical axons respond differently to slits and netrins when the two gradients 

are presented in combination with one another (Bielle et al., 2011b; Dupin et al., 2015; Leyva-

Diaz et al., 2014), suggesting that common mechanisms may underly axons’ responsiveness to 

multiple guidance cues.  Trio, a guanine nucleotide exchange factor that activates Rac1 and 

RhoA downstream of Netrin (DeGeer et al., 2015) and Slit2 (Backer et al., 2018) signaling, 

respectively, was shown to be critical for the correct formation of the corridor and the 

thalamocortical axon pathway in a mouse model (Backer et al., 2018).  Interestingly, JNK is a 

downstream target of both Rac1 (Coso et al., 1995; Minden et al., 1995; Rosso et al., 2005) and 

RhoA (Marinissen et al., 2004; Tang et al., 2018).  Future studies are needed to unravel 

whether JNK signaling could be playing a role in one of the classical axon guidance signaling 
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pathways, or whether it could even act as a common downstream target, serving as a link 

between different guidance molecules.   

 

Conclusions 

 Thalamocortical axons extend a long distance through many different territories to reach 

their cortical targets, and disruptions at any point along this path can lead to lasting changes in 

cortical circuitry.  Here, we identified a novel, non-autonomous requirement for JNK signaling in 

the early pathfinding of thalamocortical axons.  Elucidation of upstream and downstream 

regulators in this critical developmental process will further enhance our understanding of the 

establishment of thalamocortical connectivity, and in turn how neurological diseases may arise. 
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Materials and Methods 

Animals 

The Office of Laboratory Animal Resources at West Virginia University housed and 

cared for mice (Mus musculus) used in all experiments.  All mouse procedures were approved 

by and performed in accordance with the Institutional Animal Care and Use Committee at West 

Virginia University.  Mice in all crosses were acquired and maintained on a C57BL/6J 

background.  The individual mouse strains are as follows: C57BL/6J (Stock # 000664, The 

Jackson Laboratory); Dlx5/6-Cre-IRES-EGFP (Dlx5/6-CIE; (Stenman et al., 2003)), floxed 

Mapk8tm1Rjd mice (Jnk1fl/fl; (Das et al., 2007); kindly provided by Dr. Roger Davis); 

Mapk9tm1Flv (Jnk2-/-; Stock # 004321, The Jackson Laboratory); Mapk10tm1Flv (Jnk3-/-; 

Stock # 004322, The Jackson Laboratory).  Dlx5/6-CIE control animals were generated by 

crossing C57BL/6J dams with Dlx5/6-CIE hemizygous males.  Jnk1fl/fl; Jnk2-/-; Jnk3-/- dams 

were mated with Dlx5/6-CIE; Jnk1fl/+; Jnk2-/-; Jnk3+/- males to generate conditional triple 

knockout (cTKO: Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-; Jnk3-/-), Dlx5/6-CIE; Jnk1fl/+; Jnk2-/-; Jnk3-/-, 

and Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-; Jnk3+/- mice.  Jnk2+/-; Jnk3-/- dams were mated with Dlx5/6-

CIE; Jnk2-/-; Jnk3+/- males to generate Dlx5/6-CIE; Jnk2-/-; Jnk3-/- animals.  Jnk1f/fl dams 

were mated with Dlx5/6-CIE; Jnk1fl/+ males to generate Dlx5/6-CIE; Jnk1fl/fl animals. 

Tissue collection and processing 

Dams were placed into male cages each night, and checked every morning for a vaginal 

plug.  The day of the vaginal plug was recorded as embryonic day 0.5.  For embryonic 

collections, timed-pregnant dams were euthanized by rapid cervical dislocation.  Embryos were 

removed and placed in phosphate-buffered saline (PBS; 136.9mmol NaCl, 2.683mmol KCl, 

4.290mmol Na2HP04 7H2O, 1.470mmol KH2P04), and tissue for genotyping was taken.  E12.5 

and E13.5 whole heads were collected into 4% paraformaldehyde (PFA; Millipore Sigma, 

818715).  E15.5 and E17.5 brains were dissected out from the heads, then placed into 4% PFA.  
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For P0 collections, newborn pups were deeply anesthetized on ice, and transcardially perfused 

with 1X PBS followed by 4% PFA.  Brains were dissected out from the head, and placed in 4% 

PFA on ice.  All collected material was fixed for 24 hours in 4% PFA at 4°C, before being 

transferred through a sucrose series (10%, 20%, 30%) for cryoprotection.  Material was then 

embedded in Tissue Freezing Medium (VWR 15146-019), frozen, and stored at -80°C.  Frozen 

material was sectioned at 12 µm on a Leica cryostat (CM3050S) onto superfrost plus slides 

(Fisher, 12-550-15), and stored at -20°C prior to staining. 

Immunohistochemistry and Imaging 

Slides were outlined with a pap pen (Electron Microscopy Sciences, 71310), and 

rehydrated for 20 mins with 1X PBS, followed by permealization buffer with either 5% normal 

donkey (EMD Millipore, S30-100ml) or goat serum (Thermofisher scientific, 16210064).  Primary 

antibody was diluted in block, placed on the slides, and left to incubate overnight at 4°C.  Slides 

were then rinsed with 1X PBS, followed by incubation with secondary antibodies diluted in block 

for 2 hours at room temperature.  After incubation, slides were rinsed again with 1X PBS, then 

stained with the nuclear counterstain Hoechst (Thermo Scientific 62249, 1µg/ml) for 10 minutes.  

Slides were rinsed before being cover-slipped with mounting media (Mowiol 4-88, Polysciences, 

17951) containing an anti-fade reagent (p-Phenylenediamine, Fisher Scientific, AC130570050).  

All slides were stored at 4°C prior to imaging.  Brain sections were imaged using an Olympus 

VS120 Slide Scanner with a UPLSAPO 10x objective, as well as on a Zeiss 710 confocal 

microscope with a 20x Plan-Apo objective lens. 

DiI  

E13.5.  E13.5 heads were collected as above, and placed in 4% PFA overnight at 4°C.  

Following fixation, head were rinsed into 1X PBS.  Whole heads were hemi-sected along the 

mid-sagittal plane, and a DiI crystal (Invitrogen, D3911) was placed into the dorsal thalamus of 

both halves of the brain.  The heads incubated at 37°C for 2 weeks in the dark in 1X PBS.  
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Following incubation, each half was embedded in 3% agarose (Fisher Scientific, BP165-25), 

sliced at 150 µm on a Leica vibratome (VT1000S), serially collected, and mounted onto slides.   

E15.5.  E15.5 brains were collected as above, and placed in 1.5% PFA overnight at 4°C.  After 

being rinsed into 1X PBS, brains were embedded in 3% agarose, then   sectioned coronally at 

300 µm on a vibratome.  DiI crystals were placed into one half of the dorsal thalamus in the 

slices.  Brain slices were allowed to fill for 3 days at room temperature in 1X PBS in the dark 

before being mounted onto slides. 

P0.  P0 mice were perfused as described above, and brains were placed in 4% PFA for 1 week 

at 4°C.  Brains were then rinsed into 1X PBS and hemi-sected along the mid-sagittal plane.  DiI 

crystals were placed into the cortex of one half of the brain, and into the dorsal thalamus in the 

other half.  Brains incubated at 37°C for 8 weeks in the dark.  Each half of the brain was 

embedded in 3% agarose, sectioned at 200 µm on a vibratome, then slide mounted before 

imaging. 

All images from DiI placements were acquired using a Zeiss 710 confocal microscope with a 

20x Plan-Apo objective lens. 

CT scans 

P0 mice were perfused as above.  Whole heads were placed in 4% PFA for 2 days at 

4°C, after which they were transferred to stability buffer (4% w/v paraformaldehyde (pH 7.2), 4% 

w/v acrylamide (Bio-Rad 1610140), 0.05% w/v bis-acrylamide (Bio-Rad 1610142), 0.25% w/v 

VA044 initiator (Fisher Scientific, NC0632395), 0.05% w/v Saponin (EMD Millipore, 558255), in 

1x PBS) for 3 days at 4°C (Hsu et al., 2016).  The conical containing the heads in stability buffer 

underwent nitrogen desiccation (3 minutes vacuum, 3 minutes Nitrogen, 3 minutes vacuum), 

and was then placed in a water bath at 37°C for 3 hours.  Heads were carefully removed from 

the stability buffer, and placed in 0.1 N iodine (Thermo Fisher Scientific, AC12422) to stain for 2 

days, with iodine being replaced at 24 hours.  The heads were embedded in 3% agarose, then 
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were imaged on a Bruker SkyScan 1272 MicroCT scanner (Al 0.5 mm filter, 850 ms exposure, 

and 7 μm resolution). 

 

Primary Antibodies: 

Host: Antigen: Concentration: Company: Product 
Number: 

Rabbit Calbindin 1:2000 Swant CB38 
Rabbit  Darpp-32 1:1000 Syanptic 

Systems 
382 002 

Chicken GFP 1:1500 Abcam ab13970 
Goat Islet1 1:500 R&D Systems AF1837 
Rabbit L1 1:250 Aviva Systems 

Biology 
ARP63103 

Goat NetrinG1 1:250 R&D Systems AF1166 
Rabbit Nkx2.1 1:500 Santa Cruz sc-13040 
Rabbit p-JNK 1:1000 Promega V7931 
Mouse Tag1 1:12.5 DSHB AB_2315433 
Chicken TH 1:1000 Aves Labs TYH 

 

Secondary Antibodies: 

Antibody: Concentration: Company: Product Number: 
Donkey anti-Chicken 488 1:4000 Jackson Immuno 

Research 
703-545-155 

Goat anti-Chicken 488 1:4000 Invitrogen A11039 
Donkey anti-Goat 546 1:2000 Invitrogen A11056 
Goat anti-Chicken 546 1:2000 Invitrogen A11040 
Goat anti-Mouse 546 1:2000 Invitrogen A11003 
Goat anti-Rabbit 546 1:2000 Invitrogen A11010 
Donkey anti-Chicken 647 1:2000 Jackson Immuno 

Research 
703-605-155 

Donkey anti-Rabbit 647 1:2000 Jackson Immuno 
Research 

711-605-152 

Goat anti-Rabbit 647 1:2000 Invitrogen A21244 
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Figures 

 
Figure 3.1: Axons are missing or misrouted in the cTKO brain.  A-D. Immunohistochemistry 

for L1 in E17.5 brain sections in coronal (A-B) and axial (C-D) planes. The internal capsule 

(arrow) is present in control (A,C) but not cTKO (B,D) brains.  An ectopic “U-shaped” bundle 

projects into the hypothalamus in cTKO brains (open arrowheads, B).  E-L. E15.5 cortices 

labeled with L1 and Tag1.  L1-positve and Tag1-positive axons are present in control (E-H) and 

cTKO (I-L) cortices.  A population of L1-positive/Tag1-negative axons is present in control 

brains (open arrowheads, F,H), but missing in cTKO brains (asterisks, J,L).  Ctx- cortex, IC- 

internal capsule, Th- thalamus, Tel- telencephalon, Di- diencephalon. 
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Figure 3.2: Thalamocortical axons are misrouted in cTKO brains.  A-B. E15.5 brains are 

fixed and sectioned coronally at 300 microns, then a DiI crystal (asterisk) is placed into the 

dorsal thalamus. C-D. DiI labels axons projecting through the internal capsule in control brains 

(arrow, C), and axons projecting ventrally into the hypothalamus in cTKO brains (arrow, D).  E-

N. NetrinG1-labeled thalamocortical axons in rostrocaudal series of control (E-I) and cTKO (J-N) 

brains at E15.5.  In control brains, axons project through the internal capsule (arrow, E-I) and 

reach the cortex (open arrowheads, E-I).  In cTKO brains, fibers project into the hypothalamus 
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(open arrowheads, L-M), rostrally along the ventral telencephalon (arrows, J-N), and ectopically 

into the striatum (closed arrowheads, J-K). 
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Figure 3.3: Axons projecting from the thalamus take aberrant trajectories in the P0 cTKO 

brain.  A. P0 brains were hemisected along the midsagittal plane, a DiI crystal was placed into 

the thalamus, and after incubation, brains were sectioned in the coronal plane at 200 microns.  

B-E. DiI-labeled axons in control brains project through the internal capsule (arrow) and reach 

the cortex (open arrowhead).  F-M. DiI-labeled axons in cTKO brains project ventrally at caudal 

locations (arrow, H-I, L-M), and extend into the hypothalamus (open arrowhead, H-I, L-M).  At 
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more rostral levels (F-G, J-K), a bundle of axons resides along the ventral telencephalon 

(arrows).  Some DiI-labeled axons in cTKO brains stop in the striatum (open arrowheads, F-G), 

and others are able to reach the cortex (open arrowheads, J-K). 
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Figure 3.4: JNK signaling is required for proper corticothalamic axon extension.  A. P0 

brains were hemisected along the midsagittal plane, a DiI crystal was placed into the cortex, 

and after incubation, brains were sectioned in the coronal plane at 200 microns.  B-E. DiI-
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labeled cortical axons in control brains project through the internal capsule (arrow, C) and into 

the thalamus (open arrowheads, C-D).  Back-filled cells are present in the thalamus (closed 

arrowheads, E).  F-M. DiI-labeled cortical axons in cTKO brains project rostrally and ventrally in 

a large fascicle (arrows, F,J-K).  In n=2/4 cTKO brains (F-I), no cortical axons reach the 

thalamus (G-H), and no backfilled cells are present (I).  In n=2/4 cTKO brains (J-M), axons 

reach the thalamus (L), and backfilled cells are present (closed arrowheads, M).    
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Figure 3.5: Thalamocortical axons are misrouted throughout early development in the 

cTKO brain.  A-E. NetrinG1 labeling of thalamocortical axons from E12.5 to P0 in control 

brains.  Axons extend into the telencephalon at E12.5 (arrow-inset, A), reach the pallial-

subpallial boundary at E13.5 (arrow, B), and continue to extend into the cortex from E15.5-P0 

(arrows, C-E).  F-G. In cTKO brains, NetrinG1-positive axons are missing in the telencephalon 

at E12.5 (asterisk, F) and E13.5 (asterisk, G).  H-J. Axons are present at the DTB (closed 

arrowheads) or below the hypothalamus (arrows) in cTKO mice.  K-L. NetrinG1-positive 

thalamocortical axons project from the thalamus (arrow, K), and cross into the telencephalon at 
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the DTB on top of Dlx5/6-positive cells and axons (open arrowhead, L) at E13.5.  M-N. In cTKO 

brains, thalamocortical axons have extended from the thalamus (arrow, M), however have not 

crossed the DTB, which is missing Dlx5/6-CIE cells and axons (open arrowhead, N).  
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Figure 3.6: The corridor is malformed along the rostrocaudal axis in cTKO brains at 

E13.5.   A. Schematic diagram and Hoechst-labeled slices of the four positions analyzed for 

Islet1 and Nkx2.1 at E13.5.  B-D. Islet1-positive cells form a permissive corridor between two 

Nkx2.1-positive regions (medial ganglionic eminence and globus palidus) through which 
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thalamocortical axons extend (asterisk, D).  E. Thalamocortical axons (asterisk) cross the 

diencephalon-telencephalon boundary (DTB) on top of Nkx2.1-positive cells, and Islet-positive 

cells extending from the diencephalon.  F-I.  In cTKO brains, the Islet1-positive corridor is 

present at rostral levels (arrows, F-G), but is greatly reduced at caudal levels (H-I).  The Nkx2.1-

positive domain is expanded at rostral levels (F) and diminishes at more caudal locations (G-I) 

in cTKO brains.  I. Thalamocortical axons (asterisk) fail to cross the DTB.  Islet1-positive cells 

are present in the diencephalon, but are missing at the DTB.  J-L. Axial view of the corridor 

region at E13.5.  Islet1- (closed arrowhead) and Nkx2.1- (open arrowhead) positive cells extend 

caudally to where thalamocortical axons (asterisk) cross the DTB in control brains (K), but stop 

at rostral levels in cTKO brains (L).  vTel- ventral telencephalon, Di- diencephalon, DTB- 

diencephalon-telencephalon boundary. 
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Figure 3.7: Ventral telencephalic guidepost cells that project to the dorsal thalamus are 

reduced in number in cTKO brains at E13.5.  A-D. DiI-labeled thalamocortical axons and 

backfilled cells (open arrowheads, B,D) are present in the telencephalon after DiI placement in 

the dorsal thalamus at E13.5 in control brains.  E-H. In cTKO brains, thalamocortical axons are 

missing in the telencephalon (asterisks, F,H), and instead project ventrally (arrow, H).  A few 

backfilled cells are present in the ventral telencephalon, but are reduced in number (open 

arrowheads, F,H). 
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Figure 3.8: Axons fail to connect the striatum and the substantia nigra in cTKO brains.  A. 

Darpp32-positive striatonigral axons and TH-positive nigrostriatal axons project across the DTB 

in control brains at E17.5.  B. Darpp32-postive axons are present in the telencephalon in cTKO 

brains but fail to cross the DTB, and TH-positive axons project ventrally.  C-E.  In control brains, 

Darrp32-positve axons are present in the striatum (C), cross the DTB (D), and reach the 
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midbrain (E).  F-H. In cTKO brains, striatal axons are misrouted in the striatum (arrows, F), do 

not cross the DTB (G), and are absent in the midbrain (H).  I. At the level of the hypothalamus, 

Darpp32 (circles) and TH axons travel in fascicles in control brains.  J. In cTKO brains, 

Darpp32-positive axons are missing (asterisks), and TH-positive axons misroute ventrally 

(arrows). Dmh- dorsomedial hypothalamic nucleus, Vmh- ventromedial hypothalamic nucleus. 
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Figure 3.9: Thalamocortical axons require JNK signaling in the territory through which 

they traverse.  A. NetrinG1-labeled thalamocortical axons project through the Dlx5/6-positive 

internal capsule (arrow) in route to the cortex (open arrowhead).  B. In cTKO brains, NetrinG1-

postive axons misroute ventrally to the DTB (arrow) and under the hypothalamus (open 
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arrowhead).  Jnk1 is conditionally deleted with Dlx5/6-CIE, and Jnk2 and Jnk3 are constitutively 

removed.  C-F. NetrinG1-postive thalamocortical axons project through the internal capsule 

(arrows) and into the cortex (open arrowheads) in Dlx5/6-CIE;Jnk2-/-;Jnk3-/- (C), Dlx5/6-

CIE;Jnk1fl/fl (D), Dlx5/6-CIE;Jnk1fl/+;Jnk2-/-;Jnk3-/- (E), and Dlx5/6-CIE;Jnk1fl/fl;Jnk2-/-;Jnk3+/- 

(F) mice.  Red indicates complete loss of a gene, and pink indicates one copy of the gene is 

deleted.   
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Figure 3.S1: Major axon pathways are disrupted in cTKO brains.  A-B.  The corpus 

callosum (arrows) and anterior commissure (closed arrowheads) both cross the midline in 

control (A,C) and cTKO (B,D) brains.  E-F. Immunohistochemistry for Calbindin in E15.5 brain 

sections labels a population of axons in the cortical wall in control brains (open arrowheads, E), 

which are missing from cTKO cortices (asterisks, F).   
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Figure 3.S2: A spectrum of phenotypes is observed in the thalamocortical projections of 

cTKO mice.  A-B. In control brains, NetrinG1-positive thalamocortical axons project through the 

internal capsule (arrow) and into the cortex (open arrowhead).  C-J.  A total of 15 cTKO brains 

were stained with NetrinG1 along the rostrocaudal axis at E15.5 in vivo to understand the 

penetrance of the axons projecting into the telencephalon.  In all 15 of these brains, axons were 

present ectopically in the hypothalamus, however the amount that projected into the 

telencephalon was variable.  C-D.  In 6/15 cTKO brains (Score 1), no NetrinG1-positive axons 

extended into the telencephalon from the fascicle at the DTB (arrows, arrowheads).  E-F.  In 

5/15 cTKO brains (Score 2), stray fibers extended into the ventral telencephalon (arrowheads), 
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but did not reach the internal capsule.  G-H. In 2/15 cTKO brains (Score 3), axons had reached 

the internal capsule (arrowheads), however did not reach the pallial-subpallial boundary.  I-J. In 

2/15 cTKO brains (Score 4), some fibers had reached the cortical rudiment (arrowheads), 

however not to the same extent as controls.  

  



133 
 

 

Figure 3.S3: cTKO mice have enlarged ventricular volume at P0.  A-B.  In control brains in 

the coronal (A) and sagittal (B) views, very little ventricular volume (arrows) is observed in CT 

images of whole heads at P0.  C-F. Two examples of cTKO brains with increased lateral 

ventricular volume (arrows). 
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Figure 3.S4: Nigrostriatal axons are misrouted in early development in the cTKO model.  

A-C. In control brains at E13.5, NetrinG1-positive thalamocortical axons (arrows) and TH-

positive nigrostriatal (closed arrowheads) axons have crossed the DTB and entered the 

telencephalon.  D-F. In cTKO brains, both thalamocortical and nigrostriatal axons fail to reach 

the telencephalon (asterisks).  Nigrostriatal axons begin to misroute at E13.5 in cTKO brains 

(closed arrowhead).  G-I. At E15.5, NetrinG1 axons (arrows) have reach the cortex, and TH 

(closed arrowhead) axons are present in the striatum in control mice.  J-L. In cTKO brains, both 
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sets of axons fail to reach the striatum (asterisk), and NetrinG1 (arrows) and TH (closed 

arrowheads) mis-project ventrally. 
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Figure 3.S5: Thalamocortical axons are only missing from the cortices of cTKO brains at 

P0.  A. In control brains at P0, NetrinG1-positive thalamocortical axons are present in the 

cortical wall (open arrowheads).  B. In cTKO brains, no NetrinG1-postive thalamocortical axons 

are present in the cortex (asterisks).  Ectopic bundles of axons are present in the ventral 

telencephalon (closed arrowheads).  C. In Dlx5/6-CIE;Jnk2-/-;Jnk3-/- (C) and Dlx5/6-
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CIE;Jnk1fl/+;Jnk2-/-;Jnk3-/- (D) mice, NetrinG1-positive thalamocortical axons are present in the 

cortical wall (open arrowheads), and no ectopic bundles are located in the telencephalon. 
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Table 3.1: cTKO mice are unable to survive past postnatal day 0.  In the cross used to 

generate triple-knockout mice (cTKOs), the expected Mendelian odds of obtaining the desired 

genotype is 1/8.  Listed are the numbers of litters, total animals, and numbers of cTKO mice at 

each age point ranging from embryonic (E) day 12.5 through postnatal (P) day 21.  Expected 

Mendelian ratios were collected at all embryonic and early postnatal time points, however no 

cTKO animals were recovered at P21, indicating early postnatal lethality.  
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Chapter 4: Summary and Future Directions 
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Summary  

In this thesis, I have uncovered novel autonomous and non-autonomous roles for the c-

Jun N-terminal Kinase (JNK) signaling pathway in early forebrain development.  Prior to this 

work, the roles for JNK in interneuron stream maintenance, cortical allocation of interneurons, 

and thalamocortical axon pathfinding were unknown.  To address these questions, we used a 

combination of ex vivo pharmacological assays combined with in vivo analyses of genetic 

knockout mouse models to elucidate JNK’s role in these early developmental processes.  We 

created a novel conditional triple knockout (cTKO) mouse model, in which Jnk1 is conditionally 

removed from Dlx5/6 lineage cells in a Jnk2/Jnk3 null background, in order to eliminate all of 

JNK signaling from Dlx5/6 cells.  In Chapter 2, we explored the requirement for JNK signaling in 

the migration and laminar allocation of cortical interneurons, which arise from the Dlx5/6 

lineage, using ex vivo pharmacological inhibition of JNK signaling combined with in vivo 

characterization of the cTKO model.  In Chapter 3, we uncovered a non-autonomous 

requirement for JNK signaling in early thalamocortical axon pathfinding in the cTKO mouse, 

where JNK is eliminated in the territory through which these axons traverse.  In sum, we 

discovered JNK signaling to be critical for many different aspects of early forebrain 

development, through both autonomous and non-autonomous processes.   

 In Chapter 2, both pharmacological and genetic approaches were utilized to examine the 

loss of JNK function in cortical inhibitory interneuron development.  When the pan-JNK inhibitor 

SP600125 was applied to cortical slices grown ex vivo, interneurons rapidly departed from pre-

formed migratory streams.  Live-imaging data revealed altered cell migration, including reduced 

speeds, displacements, and straightness of migrating interneurons.  In the cTKO mouse model, 

where all three JNK genes are eliminated from interneurons in vivo, similar interneuron 

migration phenotypes were observed.  After an initial delay into the cortex at embryonic (E) day 

13.5, interneurons in the cTKO mouse had advanced to the same medial location in the cortical 

wall as controls, however they were dispersed from migratory streams, and had altered 
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morphologies including more circular cell bodies and shorter leading processes.  Live imaging of 

cTKO cortical slices indicated that interneurons were prematurely departing from migratory 

streams, which was accompanied by reductions in displacement and straightness of individual 

migratory cells.  With both pharmacological and genetic loss of JNK function, the leading 

processes of interneurons were oriented away from the tangential plane, indicating the normal 

transition from tangential to radial migration was impaired.  In addition to examining the role of 

JNK signaling in interneuron stream maintenance, we also examined the role for JNK in early 

cortical plate allocation.  At postnatal (P) day 0, interneurons in cTKO brains were greatly 

reduced in the subventricular zone and had accumulated in the lower cortical plate and marginal 

zone regions.  Furthermore, the loss of JNK differentially affected populations of calbindin-

positive and calbindin-negative interneurons, indicating that various subtypes of interneurons 

may have a different requirement for JNK signaling in assuming their correct laminar positions.  

Through both genetic and pharmacological approaches, we were able to demonstrate that the 

requirement for JNK signaling was at least in part cell autonomous. 

  In Chapter 3, we uncovered a novel, non-autonomous requirement for JNK signaling in 

early axon pathfinding in the developing forebrain.  In the cTKO model, a population of axons 

was missing from the cortical wall at E15.5.  Through both immunohistochemical and DiI-

labeling of different axon populations, the axons missing from the cortex were identified as 

thalamocortical axons.  Instead of coursing through the internal capsule and into the cortex, 

thalamocortical axons in the cTKO model project ventrally from the thalamus into the 

hypothalamus, forming an aberrant “U-shaped” bundle of axons.  Corticothalamic axons were 

still present in the cortical wall, as demonstrated through immunohistochemistry and DiI 

labeling, however they were unable to traverse the internal capsule and reach the thalamus.  A 

developmental time series demonstrated that the misrouting began at E12.5, when 

thalamocortical axons normally cross the diencephalon-telencephalon boundary (DTB), and 

persisted until P0.  Attempts to rear cTKO mice past P0 proved unsuccessful, indicating early 
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postnatal lethality.  In the second half of the chapter, cellular and axonal populations known to 

play a role in the early guidance of thalamocortical axons were examined in the cTKO model.  

Corridor cells, which are born in the lateral ganglionic eminence and migrate towards the DTB to 

guide thalamocortical axons, had failed to migrate caudally to the DTB in the cTKO model, and 

furthermore ectopically invaded the nascent globus pallidus.  A second population of cells called 

guidepost cells, which normally reside in the ventral telencephalon and project axons back to 

the thalamus, were severely reduced in cTKO brains.  Other axon pathways that also cross the 

DTB region early in development, including the striatonigral and nigrostriatal pathways, were 

unable to project past the DTB region in the cTKO model, and therefore failed to innervate their 

intended targets.  Finally, through a series of genetic models, we demonstrated that the 

requirement for JNK was non-autonomous, and that only the complete loss of JNK function from 

the territory though which thalamocortical axons traverse resulted in the misrouting phenotypes. 

 

Discussion and Future Directions  

Inhibitory interneurons 

The analysis of interneurons in the cTKO model across embryonic and early postnatal 

development revealed multiple roles for JNK signaling in cortical inhibitory interneurons.  At 

E13.5, interneurons are delayed in their entry into the cortex in vivo.  However, by E15.5, 

interneurons in the cTKO brain have advanced to a similar location in the medial cortical wall as 

compared to controls.  It is unknown whether the initial delayed cohort of interneurons was able 

to advance to the medial edge, or whether a second cohort of interneurons was able to 

compensate for this initial delay.  Additionally, at P0, calbindin-positive and calbindin-negative 

JNK-deficient interneurons were found to differentially allocate in the cortical wall.  Therefore, 

we hypothesized that there may be a different requirement for JNK signaling in interneurons 

based on their time of generation or subtype. 
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 The initial cohort of interneurons is generated from the MGE at E9.5, and from the CGE 

at E12.5 (Miyoshi et al., 2010).  The allocation of interneurons in the cortical wall is primarily 

based on their location of origin, and also their time of birth.  MGE-derived interneurons layer in 

an inside-out pattern based on their time of birth, however CGE-derived interneurons layer in a 

3:1 ratio in the upper to lower cortical layers, regardless of their date of birth (Miyoshi and 

Fishell, 2011).  Since the cTKO model used here uses the Dlx5/6 Cre driver line, it 

encompasses most cortical interneurons and does not distinguish between time of origin or 

subtype.  Additionally, the cTKO mouse dies at P0, preventing further analysis of final 

positioning in the cortical wall as well as subtype specification, which can more effectively be 

observed at later postnatal time points.  Future experiments could be directed at understanding 

JNK’s requirement in different chronologically or subtype-defined populations of interneurons. 

  

Experiments: 

• BrdU is a Thymidine analog used to label a birth-dated cohort of cells, which could be used 

in both slice culture assays and in vivo models to study JNK’s requirement in interneurons 

born at the same time (Figure A1).  Brain slices from BrdU-pulsed dams could be grown in 

SP600125 to determine if JNK differentially affected the entrance, migration, or allocation of 

a single cohort of interneurons.  Similar analyses could be performed in vivo by studying 

BrdU-labeled interneurons in the cTKO model. 

• Attempts to rear the cTKO mouse past P0 have been unsuccessful, which could be due to 

lethal consequences of the JNK deletion or the need to cross foster these litters.  However, 

using a new genetic approach, mice with the same genotype as the traditional cTKO mouse 

have survived to P21 and appear phenotypic (Figure A2).  cTKO mice generated in this new 

cross could be analyzed from embryogenesis through early adulthood, which would provide 

valuable insight into the requirement of JNK in the final laminar allocation and subtype 

specification of cortical inhibitory interneurons in vivo.    
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• Different Cre driver lines can be utilized to study the loss of JNK from different classes of 

interneurons, such as the Somatostatin-Cre to study loss of JNK from a subtype of MGE-

derived interneuron, or the Nkx2.1-Cre and Htr3a-Cre to target cells in the MGE and CGE, 

respectively.  These mice may even survive until later postnatal ages, opening the possibility 

for postnatal anatomical characterization and behavioral assays. 

• In our pharmacological approaches to study the loss of JNK function from interneurons, we 

used the pan-JNK inhibitor SP600125 on ex vivo cortical slices generated from Dlx5/6-CIE 

brains.  We could instead use the aforementioned Cre driver lines, crossed to a tdTomato 

reporter, to examine the pharmacological loss of JNK signaling from specific subtypes of 

interneurons.   

 

Cortical excitatory neurons and radial glia 

In the cTKO model in vivo, in addition to interneuron phenotypes, disruptions to the 

underlying cortical plate were also observed at E15.5 (Figures 2.11, A3) and later at P0 (Figure 

A4).  These findings are significant, since patients with autism and epilepsy have been found to 

have focal cortical dysplasias (Casanova et al., 2013), and genes related to the JNK signaling 

pathway have been implicated in patients with structural brain malformations (Kariminejad et al., 

2011).  While a role for JNK signaling in the migration of cortical excitatory neurons has been 

established by examining the loss of one of the three JNK genes from these neurons 

(Westerlund et al., 2011; Zhang et al., 2016), the combinatorial loss of more than one JNK gene 

on the development of cortical excitatory neurons has yet to be explored.   

Cortical excitatory neurons are born near the ventricular surface of the cortex between 

approximately E12.5 and E16.5, migrate towards the pial surface on radial glial scaffolding, and 

deposit into the developing cortical plate in an inside-out fashion (Noctor et al., 2001).  During 

this time, cortical interneurons are migrating tangentially through this same region (Marin, 2013), 
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and have even been shown to physically contact the same radial glial scaffolding that cortical 

excitatory neurons use for migration (Yokota et al., 2007).  In multiple studies, it has been 

demonstrated that disruptions to cortical excitatory neurons and even radial glial scaffolding can 

affect the laminar allocation of cortical inhibitory interneurons (Hevner et al., 2004; Lodato et al., 

2011; Lopez-Bendito et al., 2008; Poluch and Juliano, 2007; Talebian et al., 2017), however 

disruptions in interneuron migration have not yet been demonstrated to affect the organization 

of other cells in the cortical wall.   

In the cTKO mouse, disruptions to cortical excitatory neurons and radial glial scaffolding 

have been observed in vivo.  We hypothesize there could be an autonomous requirement for 

JNK signaling in cortical excitatory neurons themselves, since both Jnk2 and Jnk3 are 

constitutively lost in the cTKO model, and other studies have demonstrated a role for JNK in 

cortical excitatory neuron migration.  Alternatively, JNK-deficient interneurons may be non-

autonomously influencing the migration of excitatory neurons or the architecture of radial glial 

scaffolding.  Future experiments should expand preliminary findings of disruptions to the 

underlying architecture of the cortical plate and radial glial scaffolding (Figures A5, A6, A7) to 

determine JNK’s role in the development of these structures, and explore the interactions 

between JNK-deficient interneurons and cortical excitatory neurons and glia in the developing 

cortical plate. 

 

Experiments: 

• In vivo analyses of wild type, Jnk2/3-KO, and cTKO mice will enable us to understand if the 

loss of Jnk2 and Jnk3 impacts the development of the cortical plate, and if this phenotype is 

exacerbated in the cTKO mouse in which Jnk1 is additionally removed from Dlx5/6-lineage 

cells.  P0 cortices can be labeled with different layer markers to examine cortical excitatory 

neurons (Figures A4, A5), and with Nestin to label radial glia (Figure A7).   
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• We can assess JNK’s role in early (E12.5) compared to late (E16.5) born excitatory neurons 

through a dual-pulse Thymidine analog strategy (Figure A6).  Later-born cohorts of 

excitatory neurons must migrate through a cortex containing significantly more interneurons, 

and if JNK-deficient interneurons could disrupt excitatory neurons, we predict there would be 

a greater disruption to later-born excitatory neurons in the cTKO model. 

• Ex vivo slice culture assays combined with live-imaging techniques can be utilized to 

examine JNK’s role in the dynamic behavior of various cell types in the cortical wall.  In 

Dlx5/6-CIE or cTKO brains where interneurons express EGFP, cortical excitatory neurons 

and radial glia scaffolding can be labeled in red via electroporation, so both cell types can be 

imaged simultaneously (Figure A7).  This study would allow for an assessment of JNK’s role 

in the migration of cortical excitatory neurons themselves, as well as provide insight into 

dynamic interactions between interneurons and other cortical cells.  

• To determine whether JNK-deficient interneurons can non-autonomously influence 

excitatory neurons in a wild type environment, MGE explants from a cTKO brain can be 

transplanted onto a wild type cortical slice (Figure A8).  After several days, interneurons will 

have migrated into the cortex, and the layering and architecture of cortical excitatory 

neurons can be analyzed.  If no effect on excitatory neurons is observed, it could be due to 

the large number of wild type interneurons in the host environment relative to the JNK-

deficient transplanted interneurons.   

 

Thalamocortical influence on interneuron migration 

 In addition to interactions with cortical excitatory neurons and radial glial scaffolding, it 

has been demonstrated that interneurons use axons to guide their migration (Denaxa et al., 

2001; McManus et al., 2004).  Furthermore, in mice lacking thalamocortical input, cortical 

interneurons are abnormally deposited in the early postnatal cortical wall (Larsen et al., 2019; 
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Zechel et al., 2016).  In the cTKO mouse, the cortex lacks thalamocortical innervation 

throughout embryonic and early postnatal development.  As a result, JNK-deficient interneurons 

are migrating in a cortical environment that is missing a key population of axons known to play a 

role in their laminar allocation.  Therefore, we hypothesize that at least some of the interneuron 

migration phenotypes observed in the cTKO model could be caused by a lack of thalamocortical 

innervation.  Future studies will need to investigate the autonomous versus non-autonomous 

requirements for JNK signaling in the migration of cortical interneurons. 

Several experiments in our laboratory provide evidence supporting an autonomous 

requirement for JNK signaling in the migration of cortical interneurons.  When interneurons are 

grown in isolation in Matrigel, JNK-inhibited interneurons migrated in slower, shorter, and less-

straight trajectories (Figure 2.9).  Other ex vivo studies demonstrated that interneurons from 

cTKO embryos display altered nucleokinesis and leading process branching when they are 

grown in a wild type cortical environment (Smith et al., 2020).  In the cTKO embryo in vivo, 

interneurons are delayed into the cortex at E13.5, which is before thalamocortical axons have 

entered the cortical rudiment, suggesting the delay into the cortex is independent of 

interneurons’ interactions with thalamocortical axons.  Future studies can further explore JNK’s 

autonomous roles in interneuron stream maintenance and laminar allocation. 

 

Experiments: 

• An important first experiment is to assess the migration of JNK-deficient interneurons in 

an in vivo environment containing thalamocortical axons.  We could use in utero 

electroporation of a dominant-negative construct of JNK, or in utero transplantation of a 

cTKO MGE explant, into the ventral telencephalon of a wild type embryo and allow these 

JNK-deficient interneurons to migrate in a control environment.  We would first need to 

determine if this manipulation impacted thalamocortical extension into the cortex, since 

we are asking the question of whether JNK-deficient interneurons can migrate normally 
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in the presence of thalamocortical axons.  We could then perform analyses similar to the 

cTKO model, and use in vivo and ex vivo approaches to study the migration and laminar 

allocation of JNK-deficient interneurons in a wild type environment. 

• In preliminary data from our laboratory, when all of JNK signaling is removed from 

Somatostatin-expressing interneurons in vivo, thalamocortical axons are able to reach 

the cortex in seemingly normal amounts (Figure A9).  Further characterization of this 

mouse line would enable us to study the migration of a subtype of JNK-deficient 

interneurons in an environment with thalamocortical axons.   

 

Attractive and repulsive cues for guiding thalamocortical axons 

Our data strongly supports a non-autonomous requirement for JNK signaling in 

thalamocortical axon pathfinding.  Thalamocortical axons are misrouted in the cTKO model 

when all of JNK signaling is removed from the Dlx5/6 territory, which does not target the 

thalamic neurons themselves.  However, the Dlx5/6 expression domain is broad, and 

encompasses many different areas known to be important in thalamocortical axon pathfinding.  

Therefore, it will be important to decipher where the requirement for JNK signaling is coming 

from in the cTKO model, which may end up being from more than one region. 

Thalamocortical axons must first extend ventrally from the thalamus and through the 

prethalamus, before making a lateral turn at the diencephalon-telencephalon boundary (DTB; 

Molnar et al., 2012).  This initial crossing of the DTB is aided by repulsion from the 

hypothalamus and attraction by the ventral telencephalon (Braisted et al., 1999).  The repulsive 

cues from the hypothalamus have been shown to be directed by Slit-mediated repulsion of 

thalamocortical axons, which express Robo receptors (Bagri et al., 2002; Braisted et al., 2009; 

Braisted et al., 1999; Lopez-Bendito et al., 2007).  The ventral telencephalon exerts attractive 

properties in the corridor region through gradients of axon guidance molecules such as Netrins 
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and Slits (Bielle et al., 2011a; Braisted et al., 2000; Braisted et al., 1999; Leyva-Diaz et al., 

2014).  JNK’s role in mediating Netrin or Slit expression in the thalamocortical axon pathway 

remains unknown, however JNK has been molecularly linked to both axon guidance molecules 

in other systems.  In commissural neurons from mouse spinal cords, JNK signaling is required 

for the coordination of Netrin signaling (Qu et al., 2013), and in Drosophila, JNK has been 

shown to mediate Slit-Robo signaling in epithelial wound repair (Iida et al., 2019).  It remains to 

be determined whether Netrin or Slit expression in the ventral forebrain cells or hypothalamus 

depends on JNK signaling.  

In the cTKO model in vivo, thalamocortical axons aberrantly project into the 

hypothalamus and fail to extend into the ventral telencephalon, and the conditional deletion of 

JNK in the Dlx5/6 territory encompasses both of these regions.  Therefore, we hypothesize that 

the gradients of axon guidance molecules in the hypothalamus and ventral telencephalon have 

been altered in the cTKO model, and are no longer repulsive or attractive for thalamocortical 

axons, respectively. 

 

Experiments: 

• In situ hybridization can be used to analyze the mRNA expression of different axon 

guidance molecules in the developing mouse brain.  Slit and Netrin expression can be 

evaluated at rostral levels in the ventral telencephalon and caudal levels in the 

hypothalamus in control and cTKO brains to determine if there are any changes to these 

critical guidance factors.   

• In vitro explant assays could be utilized to independently assess the repulsive effects of the 

hypothalamus and attractive effects of the ventral telencephalon in the cTKO model.  A wild 

type thalamus explant could be grown in close proximity to a cTKO hypothalamus explant, 

and we could ask whether thalamic axons are repelled by the cTKO hypothalamus.  
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Similarly, we could assess whether a control thalamic explant is attracted to a cTKO ventral 

telencephalic explant. 

• Additionally, we can address the question of whether subsets of thalamocortical axons are 

differentially affected in the cTKO model, since not all axons invaded the hypothalamus in 

vivo.  Calretinin can be used to label a subset of thalamocortical axons originating from the 

lateral dorsal thalamus (Figure A10).  Additionally, two spectrally distinct lipophilic dyes 

could be placed into separate regions of the thalamus to visualize the trajectories of different 

thalamic nuclei in the same preparation.  These experiments would enable us to begin to 

assess whether there could be a different requirement for JNK signaling in various 

populations of thalamocortical axons. 

 

JNK’s role in striatal development 

The developing striatum is located in the Dlx5/6 territory and is therefore directly 

targeted by our conditional deletion of JNK in the cTKO model.  Both striatal axons as well as 

cells derived from the striatum are known to non-autonomously guide thalamocortical axons in 

the ventral telencephalon.  Striatonigral axons course directly beneath thalamocortical axons at 

the DTB region, and have reached the substantia nigra by E13.5 (Morello et al., 2015).  It has 

been suggested that striatal axons are critical for laying down a scaffolding for thalamocortical 

axons, and when striatal axons fail to extend properly, it leads to the misrouting of 

thalamocortical axons (Morello et al., 2015; Uemura et al., 2007).  In addition to striatal axons, 

“corridor” cells derived from the lateral ganglionic eminence (LGE) migrate towards the DTB 

region to form a permissive territory for incoming thalamocortical axons (Bielle et al., 2011a; 

Lopez-Bendito et al., 2006).  Disruptions to the corridor region in other mouse models have 

resulted in the misrouting of thalamocortical axons (Bielle et al., 2011a; Morello et al., 2015; 

Simpson et al., 2009; Uemura et al., 2007). 
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While JNK signaling has not yet been shown to play a role in the development of the 

striatal cells or axons, JNK is involved in many different aspects of axon growth and neuronal 

migration (Coffey, 2014; Zdrojewska and Coffey, 2014).  Additionally, JNK is molecularly linked 

to other known regulators of striatal and corridor cell development.  JNK is a downstream target 

in the noncanonical Wnt signaling pathway, which is activated by Wnt ligands binding to 

Frizzled3 and Celsr3 receptors (Li et al., 2005; Sugimura and Li, 2010).  When Frizzled3 or 

Celsr3 were conditionally removed from the Dlx5/6 territory, thalamocortical axons were 

misrouted in nearly identical patterns to the cTKO mouse (Hua et al., 2014; Qu et al., 2014; 

Zhou et al., 2008; Zhou et al., 2009), suggesting JNK may act downstream of Frizzled3 or 

Celsr3 in the noncanonical Wnt signaling pathway. 

In the cTKO mouse model, disruptions to both striatal axons and corridor cells have 

been characterized.  Striatal axons in the cTKO model are entangled in the ventral 

telencephalon and are unable to project caudally through the DTB and reach the substantia 

nigra (Figure 3.8).  Additionally, in the cTKO mouse, corridor cells fail to extend caudally to the 

DTB at E13.5 (Figure 3.6), and instead invade the nascent globus pallidus.  We hypothesize 

that JNK signaling is autonomously required for the development of the striatum.  Deficits in 

striatal development could then non-autonomously influence the guidance of thalamocortical 

axons. 

 

Experiments for assessing JNK’s role in striatal outgrowth in vitro and in vivo: 

• Striatal explants can be grown in Matrigel to examine the outgrowth of axons (Figure A11).  

Explants from the stratum of wild type and cTKO embryos can be grown in Matrigel to 

determine if striatal axons are able to extend in vitro.  Additionally, wild type explants can be 

grown in either control or SP600125 media to determine if the pharmacological inhibition of 

JNK signaling impacts striatal axon outgrowth. 



152 
 

• It will be critical to examine striatal outgrowth in vivo in the cTKO model at early embryonic 

time points when major axon pathways are first crossing the DTB.  Preliminary data shows 

that OL-protocadherin-positive striatal fibers are unable to extend in vivo in the cTKO model 

(Figure A12).  Additionally, these fibers express the phosphorylated, active form of JNK 

(pJNK) in the control brain but not in the cTKO brain, suggesting a critical role for JNK 

function in the development of the striatum.  

 

Experiments for assessing JNK’s role in corridor cell migration: 

• Explants from the control and cTKO LGE can be grown in Matrigel and imaged live to 

evaluate the dynamic migration of corridor cells.  The explants can also be grown in 

proximity to cells expressing Slit, to assess whether JNK-deficient corridor cells can respond 

to directional guidance cues normally present in the ventral telencephalon. 

• A more detailed in vivo analysis of different striatal markers over embryogenesis would 

provide additional insight into the developmental requirement for JNK signaling in the 

formation of the striatum (Figures A13, A14).  If the positioning of striatal cells near the DTB 

region was comparable between controls and cTKO mice at later time points, this would 

suggest that cTKO corridor cells could be delayed in their migration, which would be 

reminiscent of the delay in migration observed in the cTKO interneurons. 

• Corridor cells have been shown to guide thalamocortical axons once they are in the 

telencephalon, however their role in the initial crossing at the DTB remains largely unknown.  

Therefore, it is important to assess whether the cTKO corridor region could guide 

thalamocortical axons in the telencephalon if the axons had crossed the DTB at the 

appropriate time.  We could place a wild type thalamus explant directly into the ventral 

telencephalon of a cTKO brain slice, and the axon outgrowth towards the cortex can be 

analyzed.  The thalamus explant would need to be fluorescently labeled either with a DiI 
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crystal (Figure A15), or genetically with a Cre line that would label thalamocortical axons.  

We began to try this experiment using the Crh-Cre driver line, which labels thalamocortical 

axons, however the expression does not come on early enough to assess initial axon 

extension (Figure A16), however other mouse models that label thalamocortical axons could 

be explored.   

 

Potential autonomous requirement for JNK in thalamocortical axons 

Even though all of our results strongly suggest a non-autonomous role for JNK signaling 

in thalamocortical axon pathfinding, it is unknown whether JNK could play an autonomous role 

in the extension of thalamocortical axons themselves.  In the cTKO model, thalamocortical 

axons are missing Jnk2 and Jnk3, and the role of JNK signaling in thalamocortical axon 

extension has not been explored.  Even though thalamocortical axons are able to reach the 

cortex in the Dlx5/6-CIE; Jnk2-/-; Jnk3-/- mouse, and even in the Dlx5/6-CIE; Jnk1fl/+; Jnk2-/-; 

Jnk3-/- mouse, it is unknown whether the axons reach the cortex in the correct number and 

position.  Additionally, we cannot rule out the possibility the misrouting phenotypes in the cTKO 

model comes from a combinatorial loss of all of JNK signaling from the Dlx5/6 territory, 

combined with the loss of Jnk2 and Jnk3 from the axons (and the rest of the mouse).   

Although JNK’s role in thalamocortical axon pathfinding has not been established, JNK 

has been shown to play a role in axon growth and generation (Arthur-Farraj et al., 2012; Oliva et 

al., 2006; Tararuk et al., 2006), and disruptions to the upstream activator of JNK signaling, 

MKK7, have been shown to disrupt the internal capsule early in development (Yamasaki et al., 

2011).  We therefore hypothesized that JNK is autonomously required in the extension and 

guidance of thalamocortical axons. 

 

Experiments: 
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• Thalamic explants can be grown in Matrigel in control and JNK inhibitor to determine if 

complete loss of JNK function affected thalamic axon outgrowth.  This could also be 

performed using thalamus explants from JNK knockout mice, including single and 

combinatorial deletions of JNK, to assess if different JNK genes uniquely contribute to 

thalamic outgrowth. 

• To understand whether JNK is developmentally regulated in the thalamus, we can use in 

situ hybridization to analyze the expression of each JNK gene in thalamic nuclei at different 

developmental time points.  This experiment would first be done in control brains to 

understand the expression over time, and could be expanded to include different JNK 

knockout models including the cTKO mouse, to determine if any compensation was taking 

place. 

• The use of a new in vivo conditional genetic knockout mouse model would enable us to 

eliminate all of JNK signaling from the thalamus itself.  A Cre driver line such as Gbx2, which 

is expressed in the developing thalamus, could be utilized to determine if the loss of JNK 

from the thalamus impacted thalamocortical axon growth and guidance. 

 

The possible influence of glial cells on thalamocortical axon pathfinding 

The two main types of cells in the nervous system are neurons and glial cells, and while 

the roles of neurons in thalamocortical axon pathfinding have been extensively studied, the 

potential role of glial cells in the guidance of thalamocortical axons remains largely unknown.  

Glial cells outnumber neurons, and in the central nervous system can roughly be divided into 

oligodendrocytes and astrocytes, which provide a supportive framework for the development of 

the rest of the nervous system (Jessen, 2004).  While glial cells are known for their roles in the 

myelination and support of axons, they also physically interact with both neurons and axonal 

growth cones to provide critical guidance in the developing brain (Nave, 2010; Rigby et al., 
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2020).  The classic example of a neuron-glia interaction in the developing forebrain is the glial-

guided radial migration of cortical excitatory neurons along radial glial scaffolding in the cortical 

wall (Rakic, 1972; Tan and Shi, 2013).  Later studies demonstrated that cortical inhibitory 

neurons also physically contact radial glia during their migration in the cortical wall (Yokota et 

al., 2007), and disruptions to radial glial scaffolding altered the migration and laminar allocation 

of cortical interneurons (Poluch and Juliano, 2007; Talebian et al., 2017).   

In addition to their known roles in cell-cell interactions, glia play critical roles in axon 

guidance both directly through contacting the growth cones of axons or indirectly through the 

secretion of signaling molecules or other factors that alter the local environment (Chotard and 

Salecker, 2004; Rigby et al., 2020).  Glial cells located along the midline provide guidance for 

corpus callosum development, with glial cells located directly below the callosal axons in the 

glial wedge, cells located above the callosal axons within the indusium griseum, and glial cells 

located in the midline zipper and glial sling (Shu et al., 2003; Shu and Richards, 2001; Silver et 

al., 1982).  Midline glia are also important for other commissural axon tracts including the optic 

chiasm (Marcus et al., 1995) and anterior commissure (Cummings et al., 1997).  The secretion 

of both long- and short- range guidance molecules by glial cells located along the midline serve 

to guide callosal axons, some of which include Slits, Netrins, and Semaphorins (Nishikimi et al., 

2013).  These same guidance molecules are critical in the early pathfinding of thalamocortical 

axons, however the role of glia in the early guidance of thalamocortical axons remains largely 

unexplored. 

Two separate studies explored the role for glial cells in thalamocortical axon pathfinding 

within the diencephalon.  The transcription factor Olig2, which is required for the proper 

development of oligodendrocytes, is expressed in the embryonic prethalamus, and loss of Olig2 

leads to hypoplasia of the prethalamus, expansion of the thalamic eminence, and delayed 

extension of thalamocortical axons (Ono et al., 2014).  Within the thalamus itself, disruptions to 
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radial glial cells resulted in the mis-projection of thalamocortical axons (Botella-Lopez et al., 

2019).   

The location of glial cells within the ventral telencephalon, along with their known roles in 

axon guidance, places them in a position to have a potential influence as guidepost cells in early 

thalamocortical axon pathfinding.  Oligodendrocyte precursor cells are present in the ventral 

telencephalon from the medial ganglionic eminence to the anterior entopeduncular area around 

embryonic day 12, which is when thalamocortical axons first cross the diencephalon-

telencephalon boundary (Naruse et al., 2017).  Microglia from outside the CNS are known to 

invade the brain parenchyma, and cluster near developing axons throughout embryonic 

development at timepoints that coincide with thalamocortical axon extension through the ventral 

telencephalon and into the cortex (Pont-Lezica et al., 2014; Reemst et al., 2016; Squarzoni et 

al., 2014).  Indeed, microglia regulate the outgrowth of dopaminergic axons in the ventral 

telencephalon, which follow a similar trajectory as thalamocortical axons across the 

diencephalon-telencephalon boundary and into the telencephalon (Squarzoni et al., 2014).   

Radial glia line the ventricular zone (VZ) of the ventral telencephalon, and have a bipolar 

morphology with an apical process at the VZ, and a basal process extending beyond the VZ 

(García and Harwell, 2017).  They give rise to all neurons and glia generated in the ventral 

telencephalon, either directly or indirectly through generation of other progenitor cell types 

(Marín and Müller, 2014).  Thus, radial glia are the precursors for many critical cell types 

involved in the guidance of thalamocortical axons through the ventral telencephalon.  In addition 

to their role as a precursor, radial glia are known to form fascicles at different boundary regions, 

including the pallial-subpallial boundary in the telencephalon and along rhombomere boundaries 

in the developing hindbrain (Neyt et al., 1997; Yoshida and Colman, 2000).  Very little is known 

about radial glia extending across the developing diencephalon-telencephalon boundary, 

however in the chick embryo, radial glial processes from the thalamic eminence in the 

diencephalon were found to extend towards the amygdala in the telencephalon (Trujillo et al., 



157 
 

2005).  Overall, the direct role of glia in thalamocortical axon pathfinding remains largely 

unexplored, however given their positioning in the ventral telencephalon along with their known 

roles in axon guidance, glia have the potential to influence thalamocortical axons from very early 

in development. 

 

Final Thoughts 

 The cerebral cortex is able to execute a wide variety of different tasks due to its intricate 

cellular architecture, combined with its extensive connections to different regions of the brain.  

This highly organized structure is formed over a large portion of embryonic development, which 

persists into early postnatal life.  Disruptions at any point during this process can lead to lasting 

changes and result in many different neurodevelopmental disorders.  Therefore, it is critical to 

understand the developmental mechanisms that regulate not only the formation of each cell 

type or structure, but the creation of the brain as a whole. 

 Several studies have demonstrated a role for JNK in neurodevelopmental disorders.  

Patients with known mutations in JNK genes or the JNK signaling pathway have presented with 

autism, intellectual disability, epilepsy, and schizophrenia, and largescale genetic analyses have 

suggested that JNK is likely to play a role in the etiology of brain malformations.  However, it is 

unknown how disruptions to the JNK pathway can cause neurological diseases.  Here, we 

provide evidence supporting various roles for JNK in the development of the mouse forebrain 

including the migration and allocation of cortical interneurons, as well as early pathfinding of 

thalamocortical axons.  This information could be used to help guide studies aimed to 

understand underlying neurobiological dysfunction in patients with known genetic mutations.  

For instance, brain organoids can be grown from a patient’s skin cells, and various different cell 

types can be analyzed.  Further, employing more sophisticated methods such as the live-

imaging techniques utilized here, questions about the dynamic behavior of cells from a patient 
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with a disorder can now be studied.  With the novel finding of JNK’s role in thalamocortical axon 

pathfinding, this may help direct a patient’s treatment plan who has a known genetic mutation in 

the JNK signaling pathway.  A patient with generalized intellectual disability, for instance, may 

now undergo a fMRI to specifically look for functional impairment in thalamic connectivity, which 

could help change the course of his or her treatment plan.  While a patient is highly unlikely to 

present with the same genetic mutation as the cTKO mouse, using conditional knockout 

approaches allows us to study the role of genes in specific cell types that are otherwise lethal 

when mutated in all tissue, such as the JNK genes. 

 Even though advances have been made in understanding the developmental regulation 

of individual cell types, it is important to remember that nothing develops in isolation.  Changes 

to one population of cells or brain region can indirectly, or non-autonomously, influence the 

development and final organization of other brain regions.  In this thesis, I explored both 

autonomous and non-autonomous requirements for the c-Jun N-terminal Kinase (JNK) signaling 

pathway in forebrain development.  In Chapter 2, I discovered roles for JNK signaling in the 

migration and allocation of cortical inhibitory interneurons.  In Chapter 3, I uncovered a novel, 

non-autonomous requirement for JNK signaling in thalamocortical axon pathfinding.  In the 

future, it will be critical to gain insight into not only the autonomous requirements of different 

signaling pathways in development, but also to understand how they can non-autonomously 

impact other structures.  
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Figure A1.  BrdU can be used to label a birth-dated cohort of neurons in the developing 

mouse brain.  A. Timed-pregnant dams are injected with 50mg/kg BrdU at E13.5.  Dlx5/6-CIE 

positive embryonic brains are harvested at E14.5, sectioned coronally at 350 µm, then cultured 

48 hours ex vivo in control (B-D) or 20 µM SP600125 JNK inhibitor (E-G).  B-G. After 48 hours 

in culture, brain slices are embedded, re-sectioned into 12 µm thin sections, and labeled for 
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EGFP and BrdU.  Interneurons co-labled with EGFP and BrdU (inset, B-D) were generated at 

the time of the BrdU pulse.  In JNK-inhibited conditions, interneurons are delayed in their entry 

into the cortex (E-F), and many are radially-aligned (closed arrowhead, F).  H. Timed-pregnant 

dams are injected with BrdU at E12.5.  Dlx5/6-CIE positive embryonic brains are harvested at 

E15.5.  I-L. Immunohistochemistry for EGFP and BrdU identifies interneurons (open 

arrowheads) and excitatory neurons (closed arrowheads) that were generated at the time of the 

BrdU pulse. 
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Figure A2. cTKO mice generated through a different genetic cross can survive until P21, 

however display physical and histological phenotypes.  A. Different genetic approaches to 

achieve the cTKO genotype Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-; Jnk3-/-.  In the traditional cross, no 
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pups survived until P21, however in the new cross, 4 pups survived until P21 in seemingly 

normal Mendelian ratios.  B-I. Comparison of parvalbumin and EGFP-positive interneurons at 

P21 in cDKO (Dlx5/6-CIE; Jnk1fl/fl; Jnk2-/-) and cTKO brains reveals an apparent increase in 

the number of interneurons in the cTKO brain.  J-N. A cortical malformation is present in a 

cTKO brain at P21, which contains clusters of parvalbumin (open arrowhead, M) and EGFP 

(open arrowhead, N) positive interneurons.  O. cTKO mice that survived until P21 weighed less 

than their same-sex littermates.  P. Total nuclei counts of cortical cells in sections at the level of 

the anterior commissure at P21, compared to Nkx2.1Cre; MbipC/+ and Nkx2.1Cre; MbipC/C 

mice.  n=1 for the cTKO data.  Q-R. A cTKO mouse at P21 was greatly reduced in size 

compared to a same-sex littermate, and spent the majority of time being socially distant. 
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Figure A3. Malformations are present in cTKO brains at E15.5 and contain disruptions to 

interneurons and the developing cortical plate.  A. A malformation is present in the mid-

cortical wall of an E15.5 cTKO embryo.  B. The developing cortical plate is grossly altered, and 

the pial surface remains largely intact.  C. Interneurons accumulate in the region that is 

malformed.  D-I. Sections collected 36 µm apart show the malformation along the rostrocaudal 

axis. 
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Figure A4. The allocation of cortical excitatory neurons and inhibitory interneurons is 

disrupted in cTKO cortices at P0.  A-D. At P0 in both control and cTKO brains, Brn1 labels 

the majority of cortical excitatory neurons, and Ctip2 labels lower-layer neurons.  Compared to 

control cortices (A,C), the cortical wall is much thinner in cTKO mice, and cortical layers appear 

more compact (B,D).  E-J.  A disruption to the organization of both Brn1 (arrow, F) and Ctip2 

(open arrowhead, I) excitatory neurons is identified in the cTKO cortex at P0.  Interneurons are 

also disrupted in these areas of cortical malformations (G,J). 
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Figure A5. The organization of the developing cortical plate is altered in cTKO mice at P0.  

A-D. In control cortices, Brn2 labels upper-level excitatory neurons, and Brn1 labels the majority 

of excitatory neurons.  The blue dashed line represents the bottom of the developing cortical 

plate.  E. In the cTKO brain, the cortical wall is noticeably thinner, and the lateral ventricle (LV) 

is increased in size.  F. Brn2-positive neurons occupy a larger portion of the developing cortical 

plate.  G-H. Brn1-positive neurons are more evenly distributed throughout the cortical wall in 

cTKO mice, compared to the higher density of Brn1 neurons in upper layers in control brains 

(C). 
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Figure A6. Early- and late-born cohorts of cortical excitatory neurons are uniquely 

identified in the early postnatal cortical wall.  A-D. Timed-pregnant dams were injected with 

IdU at E12.5 and BrdU at E16.5.  Pups from the dams were perfused at P0, and brains were 

collected for analyses.  Mouse anti-BrdU labels both BrdU and IdU (B), and rat anti-BrdU labels 

only BrdU (C).  Therefore, early-born cells at E12.5 which incorporated IdU are Mouse anti-

BrdU positive, but Rat anti-BrdU negative.  Late-born cells at E16.5 which incorporated BrdU 

are mouse and rat anti-BrdU positive, and are organized in the upper cortical plate in control 

brains (open arrowheads, C-D).  E-H. In cTKO brains at P0, late-born excitatory neurons are 

more dispersed throughout the cortical wall (open arrowheads, G-H). 
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Figure A7. Radial glia are disrupted in the cTKO cortical wall and can be analyzed using 

ex vivo slice culture assays.  A-D.  P0 control Dlx5/6-CIE brain labeled with Hoechst as a 

nuclear counterstain (B), EGFP which labels interneurons (C), and Nestin revealing radial glial 

fibers that extend a process to the pial surface (open arrowheads, D).  E-H. In P0 cTKO brains, 

the cortical plate is inundated at two locations (red closed arrowheads, F), interneurons have 

formed clusters (circled, G), and radial glial fibers are detached from the pial surface (open 

arrowheads, H).  I. Experimental design adapted from (Hand et al., 2005), in which the lateral 

ventricle is electroporated with BLBP to label radial glial fibers.  J. Brain slice grown for 24 hours 
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ex vivo after electroporation with BLBP reveals radial glial cells with cell bodies located at the 

lateral ventricle, and processes that extend to the pial surface.  K. Immunohistochemistry of 

radial glia cells from electroporated slices labeled with BLBP-EGFP and Nestin shows cell 

bodies (closed arrowhead) and processes (open arrowhead).  L. Experimental design for using 

BLBP-RFP to label the radial glia in red, in slices where interneurons are labeled with EGFP 

from Dlx5/6-CIE mice.  M-R. Live imaging of Dlx5/6-CIE brain slices electroporated with BLBP-

RFP.  An interneuron labeled in green (arrow) migrates along radial glia in red (asterisk). 
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Figure A8. Medial ganglionic eminence transplants contain interneurons that migrate into 

the cortex of recipient forebrain slices.  A. E14.5 medial ganglionic eminence (MGE) 

explants were generated from Dlx5/6-CIE positive mice and were placed onto the ventral 

forebrain of Dlx5/6-CIE negative embryos.  B.  After 72 hours in vitro, interneurons have 

migrated through the telencephalon and into the cortex of host brain slices.  C. Interneurons are 

present throughout the cortical wall in the marginal zone (MZ), cortical plate (CP), and 

intermediate zone (IZ). 
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Figure A9. Genetic loss of all three JNK genes from the Dlx5/6, but not the Somatostatin, 

territory results in thalamocortical axon misrouting phenotypes.  A-C. Dlx5/6-CIE-labelled 

cells and axons in an E13.5 control mouse brain from rostral (A) to caudal (C) locations.  EGFP-

positive cells span the ventral telencephalon that thalamocortical axons (arrows, B-C) traverse 

in early development, including the territory right beneath the axons at the DTB region (closed 

arrowhead B,C).  D-F. SomatostatinCre-positive cells at E13.5 are more sparsely labeled, and 
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do not span the majority of the ventral telencephalon (asterisk, D).  Cells are located along the 

lateral ventral telencephalon (D), just lateral to the incoming thalamocortical axons (closed 

arrowhead, E), and are sparsely located at the DTB (closed arrowhead, F) beneath the 

thalamocortical axons (arrow, F).  G. Loss of all three JNK genes from the Dlx5/6 territory 

results in a massive ventral misrouting of thalamocortical axons beneath the hypothalamus in 

cTKO brains at P0 (open arrowheads).  H. When all three JNK genes are removed using 

SomatostatinCre, NetrinG1-positive thalamocortical axons have reached the cortex at P0 (open 

arrowheads). 
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Figure A10. Calretinin-positive axons fail to cross into the telencephalon in cTKO 

embryos.  A-C. E13.5 embryonic mouse brains are labeled with NetrinG1, which labels most 

thalamocortical axons, and Calretinin, which labels axons from the lateral thalamus.  Both 

NetrinG1 (arrow, B) and Calretinin (open arrowhead, C) positive axons cross the diencephalon-

telencephalon boundary (DTB) in control brains.  D-F. E13.5 cTKO brains are labeled with 

NetrinG1 (arrow, E) and Calretinin (open arrowhead, F), neither of which cross the DTB.  G-H. 

Calretinin-positive thalamocortical axons (open arrowheads) are located in the telencephalon at 

E15.5 in control brains at both rostral and caudal levels.  I-J. In E15.5 cTKO brains, Calretinin-
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positive axons are located at the DTB region in rostral regions (open arrowhead, I), and are 

coursing ventrally towards the hypothalamus at caudal levels (open arrowhead, J). 
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Figure A11. Explants from the developing striatum extend axons in Matrigel.  A. E14.5 

embryonic brains are sectioned coronally, the lateral ganglionic eminence (LGE) is dissected 

out from slices, and explants are taken to be grown in vitro in Matrigel for 48 hours.  B. LGE 

explant (lower left) extends axons (open arrowheads) after being grown in Matrigel, which can 

be stained with the axonal marker Neurofilament. 
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Figure A12. OL-protocadherin striatal axons fail to extend in the cTKO mouse.  A-D. E13.5 

control brains labeled with OL-protocadherin, a developing striatal marker, and p-JNK.  The 

nascent striatum (arrow) is labeled with OL-protocadherin, which extends axons to the globus 

pallidus (GP, open arrowheads).  These axons are p-JNK positive.  E-H. In the cTKO brain, the 

OL-protocadherin positive striatum (arrow) fails to send axons (asterisk) to the GP, and is not p-

JNK positive.  I-J. In the axial view, OL-protocadherin positive axons (open arrowhead) can be 

seen crossing the DTB in a control brain rostral to where thalamocortical axons course 



177 
 

(asterisk).  K. In cTKO brains, the OL-protocadherin positive domain is contained to the ventral 

telencephalon, and no axons are observed crossing the DTB (asterisk). 
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Figure A13. Corridor cells are present ectopically in the nascent globus pallidus in cTKO 

mice at E12.5. A-C. E12.5 embryonic mouse brain stained for Islet1, a marker of corridor cells, 

and Nkx2.1, which labels the medial ganglionic eminence and globus pallidus.  B. Islet1-positive 

corridor cells (arrow) are located between the two Nkx2.1-positive domains.  C. The globus 

pallidus (encircled) is compact and located in the ventrolateral telencephalon.  D-F. E12.5 cTKO 

embryonic mouse brain labeled with Islet1 and Nkx2.1.  E. Islet1-postiive cells are located in 

both a location similar to controls (arrow), but also have extended ventrally to invade the globus 

pallidus region (closed arrowhead).  F. The globus pallidus is spread out over a wider territory 

(open arrowheads), and appears is less cell dense. 
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Figure A14.  The developing striatum is morphologically altered in the cTKO ventral 

telencephalon.  A-B. Islet1 and Nkx2.1 labeling of E15.5 control embryos.  A. Islet1-labeled 

corridor cells (arrow) extend through the Nkx2.1-positive medial ganglionic eminence (MGE) 

and globus pallidus (GP).  B. The GP (closed arrowhead) resides at the diencephalon-

telencephalon boundary (DTB), located directly beneath thalamocortical axons (asterisk).  C-D. 

Islet1- and Nkx2.1-labeled cTKO brains at E15.5.  C. The Islet1-positive corridor (arrow) 

extends through the MGE and GP, however the GP is displaced laterally (open arrowheads) 

and splits into two separate structures.  D. The Islet1 and Nkx2.1 expression domains are 

expanded compared to controls, and thalamocortical axons form bundles along the ventral 

telencephalon. 
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Figure A15. Transplanted thalamic explants extend axons in Matrigel and slice cultures.  

A. E14.5 Dlx5/6-CIE brains are sectioned in the coronal plane, the thalamus is removed from 

slices, and explants are generated to be placed either in Matrigel or in brain slices.  B-C. 

Thalamus (Th) explants grown in Matrigel extend axons (open arrowheads, B) out from the 

explant (lower left), which can be labeled with the thalamocortical axon marker NetrinG1 (open 
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arrowheads, C).  D. DiI-labeling of axons (open arrowheads, D) grown from a thalamus explant 

that had DiI inserted before being placed in the Matrigel.  E-G. A DiI-labeled thalamic explant is 

placed onto the telencephalic side of the diencephalon-telencephalon boundary (DTB) in a brain 

slice, and has extended axons towards the cortex after 48 hours of growth ex vivo (open 

arrowheads, G). 
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Figure A16. The CrhCre mouse line can be used to label thalamocortical axons at late, 

but not early, embryonic time points.  A. Genetic cross used to generate a mouse expressing 

both the Corticotropin-releasing hormone (Crh) driver line and the red fluorescent reporter 

tandem dimer (TD) Tomato, which enables visualization of thalamocortical axons in mice.  B-D. 

Crh-Cre/+; TD/+ mice at embryonic (E) days 12.5 (B), 13.5 (C), and 15.5 (D), reveal that 

expression of Crh-Cre begins after E13.5, and is evident by E15.5 in the mouse in both the 
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thalamus (asterisk, D) and axons in the internal capsule (arrow, D) and cortex.  E-G. In the Crh-

Cre/+; TD/+ mouse cortex, axons (open arrowheads) are co-labeled for DsRed (a red 

fluorescent protein) and Calbindin, suggesting that Calbindin-positive axons are at least in part 

thalamocortical axons.  H-J. E15.5 vibratome sections of a Crh-Cre/+; TD/+ brain shows 

labeling of axons in the thalamus (asterisk, J), internal capsule (arrow, I), and few axons in the 

cortex (I).  K-M. E17.5 vibratome sections of a Crh-Cre/+; TD/+ brain labels the thalamus 

(asterisk, M) and a larger number of axons in the internal capsule and cortex (arrows) compared 

to the E15.5 embryo (H-I). 
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