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Abstract 

 

Andrew White 

Organomodified nanoclays (ONCs; i.e., smectite clays with different organic coatings), act 

as nanofillers in applications ranging from automotive, to aerospace, and biomedical 

implementations. Because of their large utilization, ONC industry is projected to be a U.S. $3.3 

billion industry by 2023. However, emerging studies showed that ONCs and ONC-

nanocomposites could harbor health risks upon pulmonary exposure and along their life cycle, 

namely during synthesis, handling, use, manipulation, and disposal. Specifically, the potential for 

exposure and adverse effects on human health primarily includes release of dry particulate during 

handling, manipulation, release during use, and release during end-of-life disposal or recycling 

scenarios. Compared to other ENMs, however, little information exists describing which 

physicochemical properties contribute to their health risk. 

 

My M.S. work at West Virginia University in Prof. Dinu’s group aimed to evaluate acute 

toxicity of a library of ONCs prior to and after simulated disposal by incineration. The analysis 

conducted high content screening and real-time electric cell impedance sensing on bronchial 

epithelial cell monolayers for coupled high-throughput in vitro assessment strategies aimed to 

evaluate acute toxicity of a library of ONCs prior to and after simulated disposal by incineration. 

Coating-, incineration status-, and time-dependent effects were considered to determine changes 

in the pulmonary airway epithelial monolayer integrity, cell transepithelial resistance, apoptosis, 

and cell metabolism respectively.  

 

Results showed that after exposure to each particle at its IC50, pristine nanoclay displayed 

acute loss of monolayer coverage, resistance, and metabolism, coupled with increased number of 

apoptotic cells. Conversely, three different ONCs of prevalent use displayed little loss of 

monolayer integrity but exhibited differential coating-dependent increased apoptosis and up to 40-

45% initial reduction in cell metabolism. Moreover, incinerated byproducts of ONCs exhibited 

significant loss of monolayer coverage and integrity, increased necrosis, and little evidence of 

monolayer re-establishment.  

 

These findings indicate that characteristics of organic coating type largely determine 

mechanism of cytotoxicity and the ability of the monolayer to recover. Use of high content 

screening, coupled with traditional in vitro assays prove to serve as a rapid pulmonary toxicity 

assessment tool to thus help define prevention by targeted physicochemical material properties 

design strategies. 

 

The above contributions to understanding deleterious effect of nanomaterials on human 

model systems is meritorious and transformative and allows for creating new tools for 

toxicological pathways assessment to be considered for improved prevention by design strategies 

and enhanced safety practices.  

 



 

The above contributions has been included in a co-first author publication, namely: 

Stueckle, T.*, White, A.*, Wagner, A., Gupta, R., Rojanasakul, Y., Dinu, C.Z., "Impacts of 

Organomodified Nanoclays and their Incinerated Byproducts on Bronchial Cell Monolayer 

Integrity", Chemical Research in Toxicology (2019) 32, 12, 2445-2458 (*Authors contributed 

equally).
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Introduction:  

 Advanced and additive manufacturing strategies that produce nanocomposite are quickly 

emerging from research and development into larger scale implementation for numerous 

industrial, commercial, and healthcare sectors. Reports show that thermoplastic and thermoset 

nanocomposites for instance are rapidly growing at 25% annually and because of their proven 

sustainable and low-cost production, they are poised to replace older and more costly 

technologies.1  

 

Nanocomposites use one or several engineered nanomaterials (ENMs) incorporated within 

their matrix to gain such additional technological advantages. One of the largest ENM classes by 

volume (70%) and one of the cheapest on a per mass basis2 for use in nanocomposites fabrication 

are organomodified nanoclays (ONCs), smectite clays coated with organic modifiers. Because of 

their large implementation, ONC industry is projected to be a U.S. $3.3 billion industry by 2023.3 

However, emerging studies showed that ONCs and ONC-nanocomposites could harbor health 

risks upon pulmonary exposure and along their life cycle.4-6 Specifically, the potential for exposure 

and adverse effects on human health primarily includes release of dry particulate during handling, 

manipulation, release during use,5, 7 and release during end-of-life disposal or recycling scenarios.8, 

9 Two studies from China for instance already reported high airborne concentrations with resulting 

genotoxicity markers in collected blood from workers.10, 11 It is projected that a majority of end-

of-life scenarios for nanocomposites known to include municipal incineration and recycling12-14 

are also to lead to similar deleterious health effects. Although less is known about such end-of-life 

release and exposure routes, several controlled studies have appeared to confirm release of 

airborne particulate during ONC nanocomposite shredding activities for recycling, with silica dust 
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making up the largest proportion of incinerated fly ash.12, 15 Moreover, other recent studies reported 

that fly ash from incinerated nanocomposite can harbor unique toxicities not present in pre-

incinerated forms.16-18 In one of such studies it was reported the first dose- and time-dependent 

pulmonary effects assessment of pre- and post-incinerated Cloisite 30B, a quaternary ammonium 

compound coated nanoclay, to pristine montmorillonite (Cloisite Na) known to induce silicosis-

like disease in Fuller’ s Earth miners.19 Results showed that Cloisite 30B induced mild lung airway 

damage with a delayed low grade, but persistent inflammatory response in aspirated mice, which 

was overshadowed by a robust, pro-inflammatory response following Cloisite Na exposure. In 

addition, it was shown that incinerated Cloisite Na with an amorphous pyrogenic silica 

morphology caused an acute, but transient, inflammatory response while incinerated Cloisite 30B, 

with a more crystalline morphology, produced a low-grade chronic inflammation, similar to 

crystalline silica.20 Considering that at present, inorganic mineral dust inhalation in occupational 

settings accounts for 15.4% of asthma and 1.8 million COPD cases totaling a combined U.S. $6.23 

billion21 and considering that manufacturing sector jobs contribute to 43.8% of silicosis deaths,22 

there is a pressing need to establish high screening content strategies that allow for health risks 

assessment along ONCs life cycle.  

 

The present study aims to establish a high-throughput screening strategy to evaluate 

potential differences in mode of action of selected ONCs of prevalent use and their incinerated 

byproducts on a confluent monolayer of human bronchial epithelial cells, a model for human 

pulmonary airway. To demonstrate study’s feasibility, we hypothesized that presence of hydroxyl 

groups in the ONCs would drive a robust and different mode of cytotoxic action on the selected 

cells when compared to pristine montmorillonite and incinerated byproducts, with known surface 
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available silica groups. Using high content screening, electrical cell impedance sensing (ECIS), 

and flow cytometry, combined with traditional cell metabolism screening, we foresee the ability 

to inform and improve ‘prevention-by-design’ strategies to protect workers and general public 

while retaining the benefits of ONC nanocomposite technology. The generated results are expected 

to further our understanding of how physical and chemical properties of ONCs along their life 

cycle influence modes of toxic action to human airways, with future investigations in both 

pulmonary in vivo animal models and human workers to be tailored to identify specific adverse 

health effects to thus help protect against ONC-induced pulmonary disease.  
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Materials and methods: 

Nanoclay and byproduct sample information 

Nanoclay samples (i.e., unmodified, bentonite (Nanomer® PGV) and surface modified 

clays: Nanomer® I.31PS (0.5-5 wt.% aminopropyltriethoxysilane and 15-35 wt.% 

octadecylamine), I.34TCN (25-30 wt.% methyl dihydroxyl hydrogenated tallow ammonium), and 

I.44P (35-45 wt.% dimethyl dialkyl amine); Figure 1) were purchased from Sigma-Aldrich. 

Thermal degradation by incineration of such nanoclays was performed at 900 °C using a TGA701 

Thermogravimetric Analyzer (LECO). Resultant ash was collected and used as a model for 

thermally degraded byproduct formation (referred to hereafter as PGV900, I31900, I34900, and 

I44900, respectively).23, 24 

 

 

 

Figure 1. Surface coating chemistry of three Nanomer organomodified nanoclays 

(ONCs). Chemical structures of surface coatings on montmorillonite nanoclay. 

I3
1

I3
4

I4
4
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Nanoclay and byproducts characterization 

Chemical composition of each nanoclay or resulting byproduct (i.e., nanoclays PGV, 

I.31PS, I.34TCN, I.44P and byproducts PGV900, I31900, I34900, and I44900, respectively) was 

determined by Fourier Transform Infrared Spectroscopy (FTIR) using a Digilab FTS 7000 

equipped with a diamond Attenuated Total Reflection (ATR; Varian). Scans were executed at a 

resolution of 4 cm-1 and in a range of 4000-400 cm-1; 100 scans were merged and averaged to 

obtain a full spectrum. 

 

Elemental composition of the individual samples (i.e., nanoclays and byproducts) was 

evaluated via energy dispersive X-ray spectroscopy (EDS) on a Hitachi S-4700 Field Emission 

Scanning Electron Microscope (Hitachi High-Technologies Corporation) operating at 20 kV. 

Samples were fixed to carbon tape prior to analysis. 

 

Nanoclays or byproducts size distributions was investigated in phosphate buffered saline 

(PBS; Lonza) and Dulbecco’s modified Eagle medium (DMEM; Corning) supplemented with 5% 

fetal bovine serum (FBS; Life Technologies) using dynamic light scattering (DLS) and a 

Mastersizer 2000 equipped with a Hydro 2000S accessory (Malvern Instruments). For sch 

analysis, solutions of each sample were bath sonicated and added to the Hydro 2000S until laser 

obscuration was within 10-20%. Measurements were performed at a constant stirring speed of 

1750 rpm and under constant sonication, with results being presented as the average of 3 

consecutive repetitions. 
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Cell culture and treatment 

Low passage immortalized human bronchial epithelial cells (BEAS-2B; ATCC) were 

cultured in DMEM supplemented with 5% FBS, 1% L-glutamine (Corning), and 1% 

penicillin/streptomycin (Life Technologies). Cell cultures were maintained in 100 mm dishes 

(Corning) and kept in a humidified atmosphere of 37 °C and 5% CO2. Regular passaging of cells 

was performed using 0.25% trypsin/ethylene diamine tetraacetic acid (EDTA) solution (Life 

Technologies). 

 

Half-maximal inhibitory concentration (IC50) values for each nanoclay and its byproduct 

were determined using BEAS-2B cells seeded at a density of 1.5 E+05 cells/ml into 12 well plates 

(Thermo Scientific) and following established protocols1. Briefly, confluent cells were exposed to 

nanoclays or byproducts previously bath sonicated for 10 min (2510 Branson: 100 W) in dispersant 

DMEM supplemented with 5% FBS. The treatment was performed at doses of 0, 0.03, 0.3, 13, 26, 

66, 132, and 197 μg/cm2 (0-750 μg/ml) for 24 h. Following exposure, cells were harvested and 

stained with 0.4% trypan blue solution (Invitrogen). Live cell counts were performed on a 

Countess automated counter (Invitrogen) to determine IC50 values to be used in the remaining 

cellular assays.  

 

High-content cell imaging 

Cells were seeded into black 96-well high-content screening (HCS) plates (Corning) at a 

density of 1.5 E+05 cells/ml and allowed to proliferate and achieve a confluent monolayer for 24 

h. The cells were subsequently exposed to the IC50 values of each nanoclay or byproduct for 24 h. 

Following exposure, cells were carefully washed with PBS and stained with 1 µl/ml Hoechst 33342 
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(Thermo Fisher Scientific) and 1 mM CellMask® Red (Thermo Fisher Scientific) for 30 min at 37 

°C to evaluate and compare monolayer integrity at the different exposure doses.  

 

Stained samples were once again washed with PBS and imaged using the ImageXpress 

Micro XLS Widefield High-Content Analysis System (Molecular Devices) under 10 and 20X 

objectives. For this, the population(s) of cells were analyzed by scanning through the bottom of 

the plate and acquiring images for each desired fluorescence channel (i.e., chosen to accommodate 

the above listed staining). Briefly, the blue channel (excitation /emission of 377/447 nm) was used 

to visualize Hoechst, while the Cy5 (excitation /emission of 628/692 nm) channel was used to 

visualize CellMask. The experiment was conducted as 3 independent runs with 8 wells per 

nanoclay or byproduct sample being tested. For each well, 4 independent fields (image size of 

1400 x 1400 µm) were sampled.  

Accompanying MetaXpress Software v.5.3 was used to analyze each image with the multi-

wavelenth cell scoring module. Briefly, stained area and mean fluorescence intensity were 

exported for each cellular event and used to define and analyze cell number, individual cell area, 

monolayer coverage (% of stained area with respect to image size), and nuclear distribution (as a 

function of nuclear area and intensity), respectively. For this, cells were defined as nuclear 

(Hoechst positive) events with minimum and maximum widths of 5 and 30 µm respectively, as 

well as an intensity above local background of 300 gray levels. The module allowed for 

quantification of single cell parameters including stained area and intensity. Number of Hoechst 

stained nuclei was subsequently used to define cell count while mean region of interest (ROI) of 

Hoechst 33342 was used to define nuclear size. Lastly, single cell area was defined using the ROI 
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of both wavelengths and monolayer coverage was calculated as the percentage of stained area with 

respect to image size. 

 

As a supplementary/ complementary analysis to the Hoechst/CellMask stain, the assay was 

repeated by substituting a cytoplasmic stain for the membrane stain. The same exposure conditions 

and materials were used. Following exposure, cells were carefully washed with PBS and stained 

with 1 µl/ml Hoechst 33342 and 5 µM Calcein AM (Thermo Fisher Scientific) for 20 min at 37 

°C. Stained samples were again washed with PBS and imaged with a FITC filter (excitation / 

emission of 470/525 nm) on the ImageXpress system; the same method of image analysis was 

applied. Stained particle-only were used as controls and analyzed as indicated above to determine 

any nanoparticle-dye interactions; analysis was performed for both assays.  

 

Electrical cell-substrate impedance sensing (ECIS) 

Assessment of cellular behavior was performed in real time with an electrical cell 

impedance instrument (ECIS-Zθ; Applied BioPhysics). For each experiment, a pre-fabricated 

ECIS array (96W20idf) of 96 wells (each well containing an electrode), with a total sensing area 

of 3.985 mm2 was used. Measurements were performed at a frequency of 4000 Hz. Prior to every 

cellular experiment, the electrodes were stabilized (i.e., to minimize electrode drift) and pre-

equilibrated with 200 µl of DMEM for 2 h. After electrode stabilization, BEAS-2B cells were 

seeded into the array at a density of 1.5 E+05 cells/ml (22,500 cells/well) in 150 µl of media/well.  

 

Cell cultures were allowed to form a confluent monolayer for 24 h, as determined by a 

constant resistance instrument reading. After this period, they were exposed to the IC50 values of 
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the nanoclays or byproducts (identified as listed above) and monitored continuously for 48 h. 

Specifically, a multi-frequency module was used to monitor the alpha parameter, or the resistance 

due to current passing between the electrode and basal cell membrane24-26 and known to be a 

sensitive indicator of cellular adhesion and cell-substrate interactions.27, 28 

 

Apoptosis/necrosis detection 

The percentages of apoptotic and necrotic cells were determined using a TACS Annexin 

V-FITC apoptosis detection kit (Trevigen). For this, BEAS-2B cells were seeded into 12-well 

plates at 2.5 E+05 cells/well for 24 h. Cells were then exposed to the IC50 values of the nanoclays 

or byproducts for 24 h, harvested, and centrifuged at 300 g for 8 min at 4 °C. Each sample was 

then incubated with 1 µl Annexin V-FITC and 10 µl propidium iodide (PI) prepared in ice-cold 

1X binding buffer in the dark at room temperature for 15 min (all reagents were purchased from 

Invitrogen). Samples were subsequently suspended in 400 µl binding buffer and analyzed via flow 

cytometry (LSR Fortessa; BD Biosciences).  

 

FACS excitation of 488 nm and emission wavelengths of 530 nm (FITC fluorescence) and 

610 nm (PI fluorescence), respectively were considered. Approximately 10,000 events were 

recorded for each sample and scored for percentages of viable (FITC –, PI –), early apoptotic 

(FITC +, PI –), apoptotic (FITC +, PI +), and necrotic (FITC –, PI +) cells, respectively. Analysis 

was performed using FCS Express 6 software (De Novo Software); double labeling required 

compensation using cells stained solely with each dye. Additionally, particle-only controls (i.e., 

nanoclay or byproduct suspended in media) stained with each dye were also analyzed to determine 

any nanoparticle-dye interactions. 
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Cellular metabolic activity 

Evaluation of mitochondrial metabolic activity upon nanoclay or byproduct exposure was 

performed using a water-soluble tetrazolium salt (WST-1) assay (TaKaRa Bio). For this, cells were 

seeded into 96-well plates (CELLTREAT Scientific Products) at a density of 1.5 E+05 cells/ml. 

After 24 h, the cells were treated with the IC50 value of each nanoclay or byproduct (identified 

previously); cells in media served as controls.  

 

Changes in cellular viability were detected as a colorimetric shift resulting from reduction 

of the tetrazolium salt (4-[3-(4-idophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene 

disulfonate) into formazan,29 with the colorimetric change being known to be directly proportional 

to the quantity of metabolically active cells.30 Following 24, 48, or 72 h of exposure, 10 μl of WST-

1 reagent was added to each well. The cells were incubated for an additional 2 h at 37 °C. Changes 

in sample absorbance were evaluated using a FLUOstar OPTIMA plate reader (BMG LABTECH) 

at 485 nm. Media and nanoclay or byproduct suspended in media served as blanks with obtained 

absorbance measurements from these blanks being deducted from their corresponding cellular 

measurement(s). 
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Statistical analyses:  

In addition to the statistical analysis as specified above, each cellular assay was repeated 

in technical triplicates and biological duplicates (n=6). ECIS was repeated 4 times with biological 

replicates of 4 for each sample (n=16). All values are presented as the mean value for the indicated 

replicates with (+/-) SE bars. Significance was evaluated with a one-way analysis of variance 

(ANOVA) and the Tukey-Kramer method with JMP 13.0 software (SAS Institute). Results were 

considered significant when *p < 0.05.  
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Results and discussion:  

There is a critical need to assess organically modified nanoclays (ONCs) prior to 

manufacturing, production, use, and disposal in order to design viable strategies that mitigate both 

user and environmental risks associated with such materials implementation.31 The need is driven 

by large scale integration of ONCs into both consumer and industrial applications.3 This study 

aimed to determine changes in cellular behavior upon exposure to ONCs and pristine nanoclays, 

all using high-content screening (HCS) and high-throughput real-time electric cell impedance 

sensing (ECIS) to thus overcome limited metrics and large time scale variations provided by the 

standard single point cell-based assays such as water-soluble tetrazolium salt (WST-1). By 

analyzing a large number of cells in complex environments (i.e., upon exposure to pristine 

nanoclay and ONCs that mimic user-manufacturing or their byproducts that mimic disposal by 

incineration) and by providing numerical representation to characterize cellular behavior, we 

envision the ability to develop a systematic assessment strategy of large applicability and 

implementation capability to other kind of nanomaterials or their downstream byproducts, all along 

their lifecycle.  

 

The model systems used for the proposed assessment were selected based on their level of 

implementation in manufacturing and consumer settings respectively. Namely, Nanomer® clay 

PGV, pristine bentonite, as well as Nanomer® clays I31, I34, and I44, organically modified 

bentonites (Figure 1) have been frequently incorporated into polymer matrices32-36 and served as 

test materials to model human inhalation exposure during manufacturing, production and use. 

Thermally degraded byproducts of these samples (i.e., PGV900, I31900, I34900, and I44900) 

served as test materials to model the exposure in a disposal environment by incineration. An 
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immortalized human bronchial epithelial cell line (BEAS-2B) was used for high-throughput cell-

based approaches.37, 38 

 

Physicochemical characterization of nanoclays and byproducts 

Presence of an organic modifier has previously been shown to influence toxicity of 

nanoclays. For instance, Stueckle et al., found that hydrophobic organo-modification resulted in 

reduced pulmonary toxicity and delayed inflammatory response in mouse lung compared to 

exposure to pristine, uncoated nanoclay.20 Complementary, we previously showed that 

physicochemical properties such as size, morphology, agglomeration, and surface chemistry of the 

above selected nanoclays or byproducts alter behavior of such materials in a biological 

environment as well as dictate their potential to induce cellular stress and changes.39, 40 

 

Herein we briefly confirmed previous physicochemical characterization by evaluating 

pristine nanoclay and ONCs as well as their byproducts. Specifically, with Fourier Transform 

Infrared Spectroscopy (FTIR) analysis of the as-received clays (Figure 2a) we confirmed the 

presence of the organic modifiers in all the ONCs, with peaks associated with Si-O-Si (1000 cm-

1) and Al-OH-Al (900 cm-1) being identified. We also confirmed that thermal degradation induced 

loss of the peaks of the organo-modifiers as well as a shift in peaks associated with Si-O-Si and 

Al-OH-Al (Figure 2b) indicating the loss of both the organo-modifier and the aluminosilicate 

lattice structure.  
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Figure 2. Surface coating chemistry of three Nanomer organomodified nanoclays 

(ONCs). Surface chemistry determination of a) as-produced nanoclay and b) incinerated 

byproduct by Fourier Transform Infrared Spectroscopy (FTIR) analysis. 
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Analysis of the elemental composition of as-received samples (Figure 3) revealed that 

ONCs had higher amounts of C relative to PGV pristine nanoclay. Additionally, I31 and I44 had 

higher amounts of O and lower amounts of Al, Si, and Fe relative to PGV. These differences in 

composition further confirmed previous report and the presence of the organo-modifiers in I31, 

I34, and I44.23 Thermal degradation caused a decrease in C content and increase in O, Al, and Si, 

thus confirming loss of both the organic modifiers and aluminosilicate lattice structure (Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Elemental surface analysis of as received nanoclay as determined by energy 

dispersive analysis (EDX). Mean area under the curve from EDS spectra were calculated and 

compared. Inset depicts trace element % weight. * and ~ indicate significant differences 

compared to PGV and as-produced counterpart, respectively (p ≤ 0.05). 
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Figure 4: Elemental surface analysis of incinerated byproduct of pristine nanoclay as 

determined by energy dispersive analysis (EDX). Mean area under the curve from EDS spectra 

were calculated and compared. Inset depicts trace element % weight. * and ~ indicate significant 

differences compared to PGV and as-produced counterpart, respectively (p ≤ 0.05). 

 

Lastly, our analysis of the hydrodynamic particle size in different inert and cell culture 

media (Phosphate Buffer Saline-PBS and Dulbecco’s modified Eagle medium-DMEM 

respectively), showed that I31 and I34 had smaller sizes (sub-micron range) in DMEM than 

pristine nanoclay PGV or I44 (Table 1 and Figure 5). These size differences are likely due to 

nanoclay- or nanoclay coating-medium interactions, leading to such events as protein corona 

formation41 and particle repulsion.42 
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Table 1: Hydrodynamic diameter distributions of suspended as-produced and incinerated byproduct of pristine nanoclay and 

ONCs in BEAS-2B culture medium and PBS.  Values represent mean and SE (n=3). 

 

 

 

PGV I31 I34 I44 PGV900 I31900 I34900 I44900

< 10 % 2.46 +/- 0.09 0.21 +/- 0.01 0.28 +/- 0.01 2.97 +/- 0.00 3.14 +/- 0.04 0.05 +/- 0.00 2.92 +/- 0.01 3.27 +/- 0.00

< 50 % 3.70 +/- 0.15 0.29 +/- 0.01 0.38 +/- 0.01 4.31 +/- 0.01 4.60 +/- 0.07 0.09 +/- 0.00 4.31 +/- 0.01 4.93 +/- 0.01

< 90 % 7.81 +/- 0.46 0.53 +/- 0.02 0.64 +/- 0.02 8.50 +/- 0.02 8.69 +/- 0.09 0.15 +/- 0.00 8.32 +/- 0.02 9.32 +/- 0.03

< 10 % 3.80 +/- 0.02 0.83 +/- 0.59 0.21 +/- 0.01 2.86 +/- 0.00 0.90 +/- 0.79 2.53 +/- 0.00 3.02 +/- 0.00 3.11 +/- 0.00

< 50 % 6.08 +/- 0.03 1.27 +/- 0.95 0.29 +/- 0.02 4.24 +/- 0.01 1.33 +/- 1.16 3.66 +/- 0.01 4.44 +/- 0.19 4.73 +/- 0.00

< 90 % 12.25 +/- 0.20 2.48 +/- 1.93 0.5 +/- 0.03 8.28 +/- 0.03 2.57 +/- 2.23 6.86 +/- 0.01 8.97 +/- 0.01 9.06 +/- 0.01

PBS

DMEM
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Namely, hydrophilic PGV and hydrophobic I44 are more likely to strongly associate with 

their respective hydrophilic and -phobic regions of proteins present in the DMEM medium. On the 

other hand, I31 and I34, which have relative intermediate hydrophobicity compared to PGV and 

I44, would induce less protein adsorption to thus yield better dispersion.43, 44 Furthermore, their 

respective modifiers containing amine (I31) and hydroxyl (I34) groups may induce varied 

dispersity via hydrogen bonding, van der Waals forces, and electrostatic interactions and cause 

clay repulsion.42 Following thermal degradation, we observed no differences in size distribution 

for the nanoclays thus further confirming loss of the organic modifier and ability for the previously 

listed interactions (Figure 5).  

 

 

Figure 5: Hydrodynamic diameter of as-produced Nanomer nanoclays in PBS vs. 

DMEM medium. * indicates a significant difference compared to PBS (p ≤ 0.05; 90th percentile 

of particles analyzed). 
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High-content screening microscopy (HSC) at half maximum inhibitory concentration (IC50) 

HCS approach was next employed to study biological indicators of cytotoxicity as resulted 

from exposure to pristine nanoclay and ONCs and their byproducts, namely monolayer integrity, 

cellular size, and nuclear distribution. For this, a confluent monolayer of BEAS-2B was used to 

thus mimic pulmonary function and accurately predict lung injury/response. It is known that cell-

cell adhesion as well as monolayer formation are integral factors in epithelial cell differentiation.45 

Previous reports showed that monolayer formation regulates growth, spreading, migration, 

proliferation, viability, and cytoskeletal function of cells.46-48 BEAS-2B cells were considered 

suitable models49 since previous research showed that they could serve as an accurate in vitro 

system for evaluating lung-related toxicity.50  Fixed dose considered for our HCS analysis was 

from previously reported IC50 values for each of the nanoclays or byproducts being used in this 

study.23 Briefly, the reported IC50 was obtained upon exposure of BEAS-2B cells to a range of 

different sample concentrations (0-197 µm/cm2); dose range was chosen to mimic exposure in 

manufacturing/disposal environments51 and represent a working lifetime exposure of 45 years 

based on 8 h/day and 50 weeks/year, while accounting for particle and lung characteristics.52 

Analysis showed that resulting IC50 for the nanoclays and their byproducts were 325 µg/mL for 

PGV, 20 µg/mL for I31, 10 µg/mL for I34, 50 µg/mL for I44, 400 µg/mL for PGV900, 150 µg/mL 

for I31900, 200 µg/mL for I34900, and 175 µg/mL for I44900, respectively.23  

 

High content imaging analyses showed that cells exposed to PGV (Figure 6) have a 

significant loss of cell monolayer coverage (up to 6.4%) when compared to unexposed controls. 

This significant loss of monolayer coverage was also mirrored in cell nuclear counts.  
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Figure 6: Representative 10x magnification images from HCS of Nanomer 

organomodified nanoclay and incinerated byproduct particle exposure to human bronchial 

epithelial cells monolayer integrity, cell shape, and nuclear morphology. Cell membrane (red) 

and cytoplasm (green) fluorescent probes were imaged in separate assays with nuclear (blue) 

probe. White arrows indicate cell morphology change from unexposed cuboidal-shaped cells to 

PGV-exposed elongated cell morphology. 
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Further, there were changes in the individual cell shape such as cell elongation as well as observed 

loss of membrane integrity (Figure 6- white arrows). 

Changes in PGV-exposed cellular morphology from their typical oval nature (shown for 

controls) to a more stretched, spindle-shaped profile indicate a cell-survival and potential initiation 

of wound healing response, such as EMT.53 Relative to controls, cells exposed to I31, I34, and I44 

(Figure 6) exhibited no significant changes in monolayer coverage (87%, 91%, and 77.2%, 

respectively; Figure 7). Contrary, cells exposed to PGV900, I31900, I34900, and I44900 (Figure 

1) showed a significant loss of cell monolayer coverage (about 55%, 40%, 55%, and 32%, 

respectively- Figure 7).  

 

 

 

Figure 7. Quantification of HCS analysis of bronchial epithelial monolayer coverage to 

Nanomer organomodified nanoclay and incinerated byproduct exposure. 

 

Moreover, cells exposed to PGV900 showed a significantly higher monolayer coverage 

relative to cells exposed to PGV, while cells exposed to I31900, I34900, and I44900 exhibited 

significantly lower monolayer coverage than their respective, as-received ONC counterparts 

(Figure 8).  
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Figure 8. Quantification of HCS analysis of bronchial epithelial monolayer cell count to 

Nanomer organomodified nanoclay and incinerated byproduct exposure. 

 

No significant changes to single cell area were detected upon treatment with nanoclays and 

byproducts with respect to the controls (Figure 9). 

 

Figure 9. Single cell area of bronchial epithelial cells exposed to pre- and post-incinerated 

nanoclays. No significant difference was observed. 
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Analysis of nuclear area of cells exposed to ONCs and byproducts relative to controls 

(Figure 10) showed that there was a significant loss for cells treated with PGV (average of 38.1 

µm2) relative to control cells (average of 219.5 µm2). Moreover, cells exposed to I44900 showed 

a significant 9% loss in nuclear area (from 219.5 µm2 to 198.8 µm2 respectively). However, cells 

treated with I31, I34, and I44 and their byproduct counterparts did not exhibit significant changes 

in nuclear area when compared to the controls.  

 

 

 

Figure 10. Quantification of HCS analysis of bronchial epithelial monolayer nuclear area to 

Nanomer organomodified nanoclay and incinerated byproduct exposure. 
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that cells exposed to PGV900, I31900, and I44900 exhibited significantly higher nuclear 

intensities than their respective, as-received counterparts. 

 

 

 

 

Figure 11. Quantification of HCS analysis of bronchial epithelial monolayer nuclear intensity to 

Nanomer organomodified nanoclay and incinerated byproduct exposure. 
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(i.e., greater DNA material) with no change in nuclear area associated with monolayer integrity 

loss suggests that surviving bronchial epithelial cells exposed to byproducts had entered a different 

cell cycle phase compared to unexposed and ONC-exposed cells.  Bronchial epithelial cells, upon 

exposure to PM2.5 and other fine particulate, usually display transient G2 arrest, Reactive Oxygen 

Species (ROS), and inflammation prior to undergoing either apoptosis or wound healing repair 

acitivity.59-61 Such HSC results complement previous studies by Stueckle et al., showing that in 

vivo Day 1 post-exposure to mouse lung that both Cloisite Na and incinerated Cloisite Na (similar 

to PGV and PGV900) exhibited acute lung damage and inflammation in collected bronchoalveolar 

lavage fluid and histopathological analysis..20 Conversely, Cloisite 30B (with a similar I34 coating) 

displayed a delayed, moderate increase in lung damage at Day 7 with minimal damage at Day 1 

post-exposure.  

 

Real-time assessment of cellular behavior  

BEAS-2B cellular behavior before and after exposure to nanoclays and byproducts was 

also analyzed as a function of changes in cell-induced impedance signals. ECIS analysis were 

considered to supplement HSC results since previous reports showed that such screening strategy 

provides a real-time, high-throughput, non-invasive analysis of quantitative changes in cell 

morphology and cell-substrate interactions that could be used to monitor behavior, morphology, 

attachment,26 and movement of cells.37, 62  We and others have previously shown the ability of 

ECIS to monitor cells exposed to a variety of nanomaterials through such real-time, high-

throughput, label-free approach.24, 28, 63 Representative ECIS measurements of normalized 

resistance values of cells exposed to IC50 of nanoclays and byproducts were performed for 48 h at 

4 kHz frequency and are shown in Figure 12a (nanoclays) and b (byproducts) respectively.  
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Figure 12. Representative measurements of normalized resistance upon exposure for 48 h to (a) 

nanoclays and (b) byproducts. 
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Chosen operational frequency was previously shown to be optimal for measurements of 

cellular behavior such as cellular membrane integrity, attachment, and cell-cell interactions.64, 65 

Our results showed that upon cell seeding, the normalized resistance values increased with time, 

due to an increase in sensing area known to be a result of cells settling and interfacing with the 

electrodes during the 24 h of monolayer formation.28, 62 As the seeded cells developed a confluent 

monolayer, resistance values tapered off to constant values.26 After monolayer coverage was 

recorded, cells were exposed to IC50 concentrations of each nanoclay or byproduct in real-time, as 

described above.  

 

Figure 12a indicates that exposure to nanoclays induced time- and treatment-dependent 

cellular behavior. Specifically, there was an initial loss of resistance for all exposed cells which 

was attributed to the electrode disconnection to ensure cell exposure, followed by an increase in 

resistance for all cells except those exposed to PGV. Cells exposed to PGV lost all resistance 

within 24 h of treatment and exhibited no recovery during the 48 h of observation. Within the 

period of 2-7 h of exposure, the cells exposed to I31 and I44 showed a slight loss in resistance with 

respect to controls. From 7-24 h, cells exposed to I34 exhibited similar behavior to control cells 

and a slightly higher resistance, while those exposed to I31 recovered to a resistance value similar 

to that of the controls. Exposure to I44 induced a loss in resistance also relative to control cells. 

Furthermore, within the 24-36 h of observation, it was noted that cells exposed to I34 showed no 

changes in resistance behavior overall however held a slightly higher resistance than controls. 

Complementary, cells treated with I31 and I44 also exhibited a slight rise in resistance relative to 

controls. From 36-48 h of observation, no changes in resistance were observed for any of these 

exposed cells, all relative to controls. Final resistance values for cells treated with I31, I34, and 
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I44 were of similar trends to controls, with slightly higher and lower values for I31 and I44, 

respectively. 

 

Analysis of cellular monolayers exposed to byproducts are shown in Figure 12b and also 

reveal both time- and treatment-dependent response, however with major overall differences 

relative to nanoclays. Specifically, after an observed initial loss of resistance for all cells (again 

attributed to the disconnection from the electrode), within the first 2 h of exposure there was an 

increase in resistance more so for cells treated with PGV900. From 2-10 h, cells exposed to all 4 

byproducts showed a loss in resistance relative to controls. While resistances of cells exposed to 

I31900, I34900, and I44900 were far less than controls, those exhibited by cells exposed to 

PGV900 were only slightly less than those of the control. During the period of 10-28 h of exposure, 

no additional changes in resistance were observed. Finally, from 28-48 h of observation, cells 

exposed to all byproducts exhibited steady recovery of resistance however to values far less than 

those observed for the controls. Relative to one another, I34900 induced the greatest loss in 

resistance, while I44900 caused the lowest. 

 

Given that one of the cytoskeleton’s functions is to regulate cell-substrate interactions66 

and that changes in cellular adhesion may be associated with changes in both cellular 

morphology67 and elasticity,68, 69 we also evaluated changes in cell adhesion (i.e., α value) 

properties upon exposure to nanoclays or byproducts. Figures 13a and b assess whether there were 

any restrictions of current pathways beneath the cell monolayers as imposed by such exposures.26, 

27  
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Figure 13. Representative measurements of normalized α parameter after 48 h of exposure is 

shown for (a) nanoclays and (b) byproducts (n = 4). Horizontal dashed lines indicate start of 

particle exposure. 
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As with the overall resistance measurements, an initial loss of α value was noted for all 

cells (Figure 13a). Within the first hour of exposure however, there was an increase in α. Also, 

similar to the resistance measurements, PGV induced an immediate and steady reduction in 

adhesion with no observed recovery of the cells over the 48 h of observation, all relative to control. 

While cells exposed to I31 exhibited no significant change in cell attachment with respect to the 

controls, exposure to I34 and I44 caused slight, gradual reduction in adhesion during the last 36 h 

of evaluation. Correspondingly, during the first hour of exposure, an increase in adhesion was 

observed for all cells exposed to byproducts (Figure 13b). Also, similar to the overall resistance, 

exposure to PGV900 induced a more dramatic increase in α when compared to the other 

byproducts or controls.  

 

Overall treatment with all 4 byproducts induced a similar trend of changes in α as it did for 

changes in overall resistance. Namely, it was noted that values for attachment fell with respect to 

controls for 2-10 h, began to stabilize from 10-26 h, and recovered slightly during the remaining 

time of observation (up to 48 h). It should also be noted that cells exposed to PGV900 exhibited 

higher α during the initial 2-26 h however fell back to levels similar to controls for the rest of the 

observation time. Exposure to the other byproducts induced loss of α with respect to controls; full 

recovery of α was not observed for any of the samples. Relative to one another, I34900 induced 

the greatest loss of α, while I44900 caused the lowest. Our results complement previous studies 

that showed silica exposure changes bronchial epithelial cell adhesion, attachment, and cell-to-cell 

signaling (Kasper et al. 2011, Perkins et al. 2015). Epithelial cells under enhanced inflammatory 

signaling were also shown to exhibit increased adhesion abilities, which were partially mediated 

via inflammatory cytokines and NFκB signaling (Leir et al. 2003, Ward et al. 2015).  
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These observed changes in both resistance and α show that organically modified nanoclays 

or byproducts induce a time- and dose-dependent cellular behavior thus confirming the above HSC 

studies and possibly hinting as changes in cell cycle,70 attachment,71 viability,72 and morphology– 

during cell death.37, 62 For instance, cells exposed to PGV lost all resistance during exposure, 

further confirming cell death and loss of monolayer coverage while exposure to ONCs however 

induced varying degrees of changes in monolayer resistance and recovery, dependent on the type 

of organic modifier, as shown in HSC screening. Our observations also show that the first 10 h of 

exposure are the most critical and need to be monitored since they yielded significant changes for 

cells exposed to almost all nanoclays and byproducts (with the exception of I34 for the resistance 

measurements). These changes are presumably due to differentiation of cellular internalization.73 

Indeed, our physicochemical analyses have shown that organo-modification and thermal 

degradation significantly changed the degree of hydrophobicity and particle-medium interactions. 

Such parameters were previously shown to influence internalization (e.g., for a variety of materials 

from titanium dioxide, to organically modified silica, and carbon nanotubes) with such process to 

occur in the first few hours of exposure74-77 and be influenced by material’s geometry and size,75, 

78 surface functionalization,79 and degree of hydrophobicity.23 The influence on cell behavior was 

shown to persist with changes in elastic properties or cycle all the way to 12 h of observation.80 

Although cells exposed to I31 and I44 exhibited reduction of resistance initially, we observed their 

recovery to values similar to those of the controls. This suggests either overall cellular recovery or 

adaptation to the environment. Indeed, Kim et al., previously found that cells can adapt to 

nanoparticle uptake and still continue their cell cycle.81 It should be noted, however, that this 

recovery of resistance was not observed for cells exposed to the byproducts, further indicating 

different possible mechanism of toxicity.  
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Evaluation of early/late apoptosis, necrosis and cell metabolism 

With the above results and complementing studies by Yoshida et al., showing that organically 

modifying particles with amine or carboxyl groups reduces the amount of generated reactive 

oxygen species and DNA damage in HaCaT and TLR-1 cells82 and Sharma et al., showing that 

genotoxic effects of nanoclays, such as DNA strand-breaks, in Caco-2 cells were induced by the 

presence of quaternary ammonium compounds (QAC)s,83 we were also motivated to identify any 

programmed cell death. 

 

Figure 14. Flow cytometric analysis of the effect of treatment on cell apoptosis and 

necrosis. Representative flow cytometry scatter plots. 
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To ensure high-throughput screening and thus complement both HSC and ECIS, we 

employed flow cytometry of cells stained with Annexin V-FITC, and PI. Representative flow 

cytometry scatter plots of control (unexposed) cells and cells treated with nanoclays or 

byproducts are shown in Figure 14. Representative flow cytometry scatter plots of particle-only 

controls illustrating the effects of particle-dye interactions are shown in Figure 15-18. 

 

Figure 15. PGV/I31 particle-only control samples for apoptosis flow cytometry analysis. 
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Figure 16. I34/I44 particle-only control samples for apoptosis flow cytometry analysis. 

 

 

 



47 

 

 

 

Figure 17. PGV/I31900 particle-only control samples for apoptosis flow cytometry analysis. 
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Figure 18. I34900/I44900 particle-only control samples for apoptosis flow cytometry analysis. 

 

 

Our analysis (Figure 19) showed that significantly higher levels of apoptosis and necrosis 

were induced, relative to control cells, following short-term exposure (for 24 h) to IC50 
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concentrations of both nanoclays and byproducts. Specifically, exposure to both PGV and I31 

induced significantly higher percentages of cells in early apoptosis (23% and 13%, respectively) 

relative to control cells (3%). However, exposure to I34 and I44 did not induce significantly higher 

percentages of cells in early apoptosis (6.56% and 6.08%, respectively).  

 

 

 

Figure 19: Flow cytometric analysis of the effect of treatment on cell apoptosis and necrosis. 

Quantitative comparison of live, apoptotic, and necrotic cells.  * indicates significant difference 

between exposed samples and controls; ~ indicates significant difference between nanoclays and 

the corresponding thermally degraded byproduct (p < 0.05). 
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Additionally, we observed significantly higher percentages of cells in late apoptosis upon 

exposure to I31 and I44 (12% each) relative to control cells (3.6%). Neither PGV nor I34 induced 

significantly higher percentages of late apoptotic cells (2.98% and 4.93%, respectively). Levels of 

necrotic cells were significantly higher than controls (1.2%) following exposure to I31 and I44 

(2.4% and 3.4%, respectively), but not upon exposure to PGV and I34 (0.48% and 1.45%, 

respectively). 

 

Complementary, exposure to byproducts did not induce a significant increase in either early 

or late apoptotic cells with respect to control cells. However, exposure to all 4 byproducts caused 

significantly higher percentages of necrotic cells (4% for PGV900, 3.4% for I31900, 3.3% for 

I34900, and 3.4% for I44900) with respect to control cells (1.2%). Levels of early apoptotic cells 

upon exposure to PGV900 (4.7%) and I31900 (3.1%) were significantly different from those 

induced by PGV and I31, respectively. Furthermore, levels of late apoptotic cells upon exposure 

to I31900 (4.7%) and I44900 (5.1%) were significantly different from those induced by I31 and 

I44, respectively. Finally, levels of necrotic cells were significantly different for PGV900, I31900, 

and I34900 with respect to their as-received counterparts. 

 

Our results further confirm that the presence and type of organic modifier induces different 

mechanisms and levels of cell death. For instance, I31 induced a much wider range of cell death, 

while I44 was shown to only induce significantly higher levels of late apoptosis and necrosis, both 

relative to controls. These differences again support the hypothesis that mechanism of toxicity 

depend on the differences in organo-modification of the nanoclays.84 Specifically, the modifier for 

I31 (Figure 1) contains a silane coupling agent used to interact with polymers to a dissimilar 
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material such as silica or alumina oxide.85 This compound may also cause interaction with 

biomolecules with inherent hydroxyl groups86 or the cell membrane.87 Furthermore, the hydroxyl 

groups located within the organic modifier of I34 have significant potential for bioreactivity. It has 

been shown for instance that these groups can interact with biomolecules, cause membrane 

damage, and induce apoptosis.14, 88, 89 Further, both of the organic modifiers in I31 and I44 

contained long alkyl chains.  

 

 

 

 

Figure 20. Cellular viability determined with WST-1 assay after 24, 48, and 72 h 

exposure, respectively to nanoclays. 
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These high-throughput results are support by the changes in cellular metabolic activity 

before and after exposure to IC50 concentrations of nanoclays or byproducts as supplemented by 

water-soluble tetrazolium salt (WST-1) assay. Briefly, exposure to PGV led to a significant loss 

of cellular viability (1%) with respect to controls (unexposed cells), with slight observed recovery 

after 48 and 72 h of observation time (10% and 13%, respectively; Figure 20).  

 

Furthermore, cells exposed to I31, I34, and I44 exhibited significantly reduced viability 

(52%, 51%, and 42%, respectively) after 24 h of exposure, with respect to controls. After 48 and 

72 h of exposure, however, full recovery of viability (compared to controls) for cells exposed to 

both I31 and I34 (107% and 93%, respectively) was observed. Although cells exposed to I44 

recovered viability (87%) with respect to controls after 48 h of exposure, a second loss of cellular 

viability was observed after 72 h (with samples exhibiting 23% of control values), indicating a 

delayed toxic response. 

   

Cells exposed to all 4 thermally degraded byproducts exhibited significant loss of cellular 

viability at 24 (PGV900 at 36%, I31900 at 18%, I34900 at 37%, and I44900 at 30%), 48 (46%, 

46%, 46%, and 45%, respectively), and 72 (38%, 29%, 34%, and 23%, respectively) h relative to 

control cells. Only slight recovery of viability cells treated with byproducts, compared to controls, 

after 48 and 72 h of exposure was observed.  Furthermore, at all 3 time points, viability of cells 

exposed to PGV900 was significantly higher than those of cells exposed to PGV. Additionally, 

cellular viability upon exposure to I31900 and I34900 was significantly different than their 

respective counterparts after 48 and 72 h. Treatment with I44900, however, induced significantly 

different cellular viability with respect to treatment with I44 at only the 48 h time point.  
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Additionally, exposure to IC50 concentrations of byproducts induced changes in cellular viability 

(Figure 21).  

 

 

 

Figure 21. Cellular viability determined with WST-1 assay after 24, 48, and 72 h 

exposure, respectively to byproducts. 

 

 

Proposed mechanisms responsible for differences in cell behavior 

The difference in mechanism of cell death observed for the different exposures may be 

attributed to the potential of these chains to influence changes in structure of the lipid membrane 

as well as provoke changes in cell signaling.90 Moreover, surface functionalization of nanoparticles 

with fatty acids has been shown to influence the rate of cellular uptake, presumably due to the 

interactions with the lipid membrane.91 Additionally, we noted that mechanisms of cell death for 

0

0.5

1

1.5

2

2.5

24 h 48 h 72 h

N
o
r
m

a
li

z
e
d

 M
it

o
c
h

o
n

d
r
ia

l 
A

c
ti

v
it

y

Control PGV900 I31900 I34900 I44900

*
*
*

~
*

~
* ~
*

~
* ~

*

~
*

~
* *

~
*



54 

 

byproducts were similar to one another, but dissimilar from their as-received counterparts. This is 

again presumably due to loss of the organic modifiers (and their respective bioactivities), silanol 

groups, and platelet structure. Verma et al., found for instance that platelet-type nanoclays induced 

greater toxicity on the lung epithelial cell line A549 than tubular-type nanoclays.92 

Complementary, Zhang et al., found that pyrolytic amorphous silica (comparable to PGV900) 

induced an ROS-dependent pathway of toxicity in erythrocytes, with eventual hemolysis.93 

Furthermore, Zhang et al showed that toxicity of amorphous silica was dependent on framework 

and surface chemistry, triggering differences in inflammation response93 with studies by Schreider 

et al. and Stueckle et al., for instance both reporting that incinerated montmorillonite causes 

pulmonary inflammation and potentially increases risk for fibrosis development.20, 55 

 

Previous investigations into nanoclay-induced toxicity have shown that they could activate 

different cellular responses such as oxidative stress,74, 94 membrane damage,95 mitochondrial 

dysfunction,95 micronucleation,96 DNA damage,83, 97 and apoptosis.74 Furthermore, these toxic 

effects can change given differences in aspect ratio, organo-modification, and agglomeration of 

the nanoclays. Our observation of significant loss of cellular viability upon exposure to pristine 

nanoclay corresponds well with knowledge that surface groups such as silanol and aluminum oxide 

are known to cause inflammation and membrane damage.54, 98 Additionally, Kondej et al., and 

Mousseau et al., have recently shown that bentonite and nanoalumina, respectively, both interact 

with lung surfactant, which may induce change in the manner of particle interaction with lung 

cells.99, 100 
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Moreover, we show that cells exposed to I31, I34, and I44 lost 50% viability (with respect 

to controls) after 24 h of exposure, confirming IC50 values.23 These results further suggest a 

difference in mechanism of action compared to pristine nanoclay, indicating significant loss of 

NADH metabolism (i.e., WST-1 assay), but no loss of monolayer coverage (both HSC and ECIS). 

Sublethal concentrations of soluble QACs were previously shown to cause mitochondrial 

fragmentation, inhibition of complex I, and slowed ADP phosphorylation, to result in reduced 

cellular energy charge in columnar epithelial cells (Inacio et al. 2013). This reduction in cellular 

energy can induce apoptosis while higher doses induce necrosis or cell lysis (Inacio et al. 2016).  

Furthermore, within 48 h of exposure, cells exposed to the tested samples showed viabilities 

similar to control cells, indicating likely recovery. Note that cells exposed to I44 again lost viability 

after 72 h of exposure, indicating a delayed toxic response. This is presumably due to dissolution 

of the modifier over time. These observations indicate that both presence and type of organic 

modifier as well as incineration status drive toxicity in vitro.  
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Conclusions:  

Our work aimed to provide an assessment of toxicity for a library of nanoclays and their 

byproducts to help represent the life cycle of these materials. Using high-content screening and 

real-time, cell-based cytotoxicity assays we showed that exposure of human lung epithelial cells 

to these nanoclays or byproducts lead to changes in monolayer integrity, cellular behavior and 

adhesion, to all influence the mechanism of cell death in a manner dependent on physicochemical 

properties of the individual sample. Specifically, type and presence of organo-modification and 

incineration status significantly changed surface chemistry and size distribution of the nanoclays 

and byproducts, which elicited differential cellular response. Future work must focus on 

elucidating the mechanism of pulmonary toxicity for these nanoparticles using complementary in 

vitro and in vivo models. A better understanding of the effects of physicochemical properties on 

toxicity, including immune, airway, and alveolar epithelial cell perturbations could lead to 

improved prevention by design strategies and enhanced safety practices. 
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Notes:  

The findings and conclusions in this article are those of the authors and do not necessarily 

represent the view of the National Institute for Occupational Safety and Health, Centers for Disease 

Control and Prevention. Mention of product names does not constitute endorsement. 

The authors declare no competing financial interest. 
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