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Abstract

Theory and Techniques of Convergence for
Topologica Transformation
Groups

Murtadha Sarray

In this dissertation, we present new set functions called strongly limit and strongly
prolongation limit sets. We show the new sets, especially strongly prolongation limit sets,
characterize proper action under an arbitrary setting. That is, we characterize proper action for
wider class of proper G-spaces. Also, we show the new version of the sets could be derived from
strongly exceptional sets which have been used as a good technique for the characterization of a
proper maps. Moreover, we review properties of well-known limit sets and prolongations and
properties for the new version of limit sets under an arbitrary setting on a G-space XNext, we
give characterizations for a proper action and alocally proper action using the new set functions
and some relevant areas where one could use these sets to describe some topological properties
for a space Xr algebraic properties for agroup Gacting on XFollowing the technique of limit
sets, we present a new version of action as weaker forms of the proper action called w-actions
using convergence techniques. This approach yields new directions for the proof of some
existing theorems which are then given as well as come counter-examples. We give some
applications for our weaker forms and how convergence techniques could be fruitful to explain
the relations among certain notions in the theory of G-spaces. Finally, according to our weaker
forms, we characterize the notion of enough dlice that has presented by H. Biller using w-Cartan

action.
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Chapter O

| ntroduction

Limit and prolongation limit sets are used in the theory of dynamical systemsto
describe trajectory behaviors, especialy their stability in their phase spaces[7]. It
iIswell known within that theory (R-spaces or Z-spaces), briefly, as a special case
of ageneral theory called topological transformation groups (G -space theory), so
severa studies have been conducted with these kinds of set functions to describe
also properties of the general topological transformation groups.

In general, two versions of proper G-spaces were discovered in the middle of
19" century. Palaisin [28] introduces most of the basic concepts of G-spaces
which under certain settings are taken with G as acompact (Lie) group and X a
completely regular topological space. On the other hand, Bourbaki [11], introduces
the concept of proper action for arbitrary topological groups and general
topologica spaces. Next Palais generalizes the class of a compact group action to
wider one that istermed a proper action (or Palais proper) where G is an arbitrary
Hausdorff locally compact topologica group and X is acompletely regular space.
After Palais work, many studies have arisen to investigate conditions that keep
many notions no longer true in the sense of Palais such as the dice theorem, the
conjugacy theorem, the equivariant embedding theorem and others. Some
researchers have used these set functions as a technique to characterize a proper
action groups on spaces under certain conditions. A fortiori one could use them
also to investigate notions are related to proper action.
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In chapter one, we recall some basic background of topological concepts
such as the separation axioms, compactness, local compactness, nets,
connectedness, and paracompact spaces. In section two, we review many concepts
of the theory of topological groups. For instance, we review netsin atopological
group, locally compact groups and Lie groups which form the background of our
work. In the last section, we concern ourselves with some notions of G-space
theory. Werecall the definitions and properties of proper mapping, Bourbaki
proper action, and Palais proper action.

In chapter two, especialy in section one, we recall some concepts of general
topology theory such as, for example, quasi-compact mappings, proper mappings,
and their characterizations by convergence techniques. In section two from the
same chapter, we state the definitions of the limit set and its prolongation limit set
under arbitrary settings. Also, we review properties and some counter examples. In
section three, we present the definitions of the strongly limit set and its strongly
prolongation limit set also under arbitrary settings. Moreover, we list properties of
the new version of sets and give the main result in this chapter (Theorem 2.3.3)
which is given as the following:

An action of a group G on a space X is proper if and only if the strongly

prolongation set is the empty.

In the last section, wefirst recall some interesting results for proper and locally
proper (Cartan) G-spaces in the sense of Paais setting and how limit sets could be
good keys to describe the orbit space. Also, we present other results under weaker
conditions such as the relations of close points and their stabilizers and close orbits
and their kerndls. Finally, we give a new proof for conjugacy neighborhood

theorem.
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In chapter three, section one, we show how convergence techniques can
describe well-known kinds of proper actions such as Bourbaki, Palais, and the
stronger one that is presented by Buam, Connes and Higson. Moreover, we also
show how the sets might be used to prove results concerning and a good technique
to gain more knowledge about the local structure of G-spaces. In section two, we
review the weaker conditions of the version of Cartan G-space that are introduced
by Biller in [8] and show that these conditions could be replaced by a weaker
condition (convergence condition) using set functions. Also, we give an example
that shows that our condition is weaker than Biller’s. Moreover, according to the
weaker form of Cartan (we follow Biller), we introduce three kinds actions are
called w-proper actions that are increasing strength. Furthermore, we investigate
the relations and implications among the new version of the w- actions. Finally, in
section three, an application for the weaker forms of w-actions on a topological
group is given and we show some results from [5] that become immediately results
of our forms and their proofs become short and understandable. By G-space X it is
meant an arbitrary topologica group G acts continuously on an arbitrary
topological space X. We also follow Bourbaki for term “quasi-notion” istaken by a
definition of the notion lacking Hausdorff axiom. Thus, by a quasi-compact, and a
guasi-paracompact we mean these notions without T, property. Regular and
completely regular spaces always possess the T, property.

Chapter four is divided into two sections, in the first one, we discuss the
dlice notion in G-space theory and give amotivation for the existence of dice
theory. Werely there on the usual definition of the twisted product to describe an
H-dlice. In the second section, we characterize the enough dlice notion, that has
been presented by Biller [8], using the weaker form of w-Cartan action for G asa

locally compact group (not necessary Lie group) and X as a completely regular
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space. As aresult, we give the relation between Baum-Connes-Higson proper with

our notion.
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Chapter 1

Fundamental Concepts

In this chapter we recall the basic background of topological spaces, topological
groups, and topological transformation groups that form a base for all the notions
that we shall present over next chapters.

1.1 Topological Concepts

1.1.1 Theorem. [25] Let X be atopological space. Then the following are
equivalent:
1. XisT,,thatis, every two distinct points x, y in X, each belong to an open set
which does not contain the other.
2. Every singleton subset {P} of X isclosed.
3. Every singleton subset {P} of X isthe intersection of all open sets containing
it.
1.1.2 Theorem. [11] Let X be atopological space. Then the following are
equivalent:
1. XisT,, thatis, every pair of distinct points x,y € X belongs respectively to
digoint open sets.
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2. Theintersection of the closed neighborhoods of any point of X consists of
that point alone.

3. Thediagonal of the product space X x X isaclosed set.

1.1.3 Definition. [14] A topological space X is completely regular if whenever F is
aclosed setin X and x € X suchthat x & F, thereisacontinuous map f: X —
[0,1] suchthat f(x) =0and f(F) = 1.

1.1.4 Remark. In next chapter, when we mention a completely regular space X we
mean in addition that it agrees with the above definition and that it isalso T, that
IS T%.

1.1.5 Definition. [30] A topological space X islocally compact if each point

in X has a compact neighborhood.

1.1.6 Definition. [30] A topological space X is caled regular provided for every
closed subset F of X, and apoint x € X with x ¢ F there are two digjoint open
neighborhoods U and V withx e Uand F € V.

1.1.7 Remark.

1. InaT, locally compact space X each point has a neighborhood whose
closure is compact, then we often shall say that points of X have a compact
closure neighborhood. Over the next chapters, locally compact spaceis
aways meant T,, otherwise we call it locally quasi-compact.

2. AT, locally compact space X has a property that every point x € X thereis
acollection of neighborhoods {U,,} of x with U,,,; € U,, where U,,,, iS
compact for every positive integer n. It is also important to refer here that the
collection of neighborhoods above may not be neighborhood base for the
point x.

1.1.8 Definition. [30] A set D isadirected set if thereisarelation < on D
satisfying:
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1l a < aforeacha €D.

2. fay <a,anda, < a; thena; < as.

3. Ifa,p € D, thenthereissomey € Dwitha <yandf <.
1.1.9 Definition. [30] A netinaset X isamap x: D - X, whereD isa
directed set. Theimage x(«) isausualy denoted by x, and we often use the
notation {x, },ep OF {x,}. A subnet of anet x: D — X isacomposition x- ¢,
wherep : M — D isamap and M is adirected set such that

1. ¢(a;) < @(ay) whenever a; < a,.

2. Foreacha € D, thereisy € M suchthat a < ¢(y) . For y € M theimage

xo@(y) iswritten X,

1.1.10 Definition. [30] Let {x,} beanet in atopological space X. Then {x,}
convergesto x € X (written x, — x) provided it is eventually in every
neighborhood of x. That is, for every neighborhood U of x thereisan a, € D such
that x, € U foreach a >a, . We say {x,} hasapoint x as acluster point
provided {x,} is frequently in every neighborhood of x , i.e., for every
neighborhood U of x and every a, € D, thereissomea € D with @ > a, such that
X, €EU.
1.1.11 Theorem. [30] A net {x,} has y asacluster point if and only if has a subnet
which convergestoy.
1.1.12 Theorem. [30] If E ¢ X, thenx € E if and only if thereisanet {x,} inE
withx, — x.
1.1.13Theorem. [30] Let f: X = Y beamap. Then f iscontinuous at x, in X if
and only if whenever x, = x,inX,then f (x,) = f (x.)inY.
1.1.14 Theorem. [30] For atopological space X, the following are equivalent:

a) X iscalled compact (= for every open cover of X has afinite subcover).

b) Every net in X has acluster point.



F‘unc[amenta/ Tjonceptes

1.1.15 Remark.

1. Anet{x,}inX issaidtohaveno aconvergent subnetin X iswritten as

x, — oo if and only if every subnet of {x,} has no alimit point [30].
2. If X isT,, then every convergent net in X has a unique limit [30].
3. Over the next chapters, compact space will be always T, . Otherwise, we call
it quasi-compact.

4. From now on, amap will always mean a continuous mapping.
1.1.16 Definition. [24] Let X be atopological space. A collection A of subsets of
X issaid to belocally finitein X if every point of X has a neighborhood that
intersects only finitely many elements of A.
1.1.17 Lemma. [24] Let A be alocally finite collection of subsets of X. Then:

a. Any subcollection of A islocaly finite.

b. The collection of the closures of the elements of A islocally finite.

C. Usead = Ugen 4.
1.1.18 Definition. [24] Let A be a collection of subsets of the space X. A
collection B of subsets of X issaid to be arefinement of A (or issaid to refine A)
if for each element B of B thereisan element A of A containing B. If the elements
of B are open sets, we call B an open refinement of A; if they are closed sets, we
call aclosed refinement.
1.1.19 Definition. [24] A space X is paracompact if every open covering A of X
has alocally finite open refinement B that covers X.
1.1.20 Example. The set of real numbers R with the usual topology is
paracompact. If A isan open cover of R. Consider a collection of open intervals

0, = (-n,n),n=0,1,2,.. where 0, = @. Since 0,, is compact, then thereisa
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finite number of members of A, say Ay, Ay, ..., A, , COVErs 0,.PutB; = 4; n

(R\0,,_,), and B,, = {B4, B,, ..., B,}. Then the collection B =u B,, islocaly finite
and arefinement of A.

1.2 Topological Group Concepts

1.2.1 Definition. [18] A topological group isaset G with two structures:

1. G isagroup.

2. G isatopological space.

such that the two structures are compatible; that is, the multiplication law
u: G X G > G and theinversionlaw v: G —» G~ are both continuous.
1.2.2 Remark.

1. Thetwo conditionsin definition (1.2.1) are equivalent to the fact that the
mapt: G X G — G isdefined by (g4, 9,) = 9195 iscontinuous.

2. A continuousmap l,: G X G — G definedby x — gx iscalled theleft
trandation by g. Thismap hasinverse [ ;-1 which is also continuous.
Moreover, [, isahomeomorphism. Similarly, all right trandationsr,: G —
G are homeomorphisms.

3. A topologica space X which satisfies the property that for every pair of
pointsx,y € X, then thereisahomeomorphismon X sendingxtoyis
called homogeneous. Therefore, every topologica group is homogeneous. A
map 1,,,-1 (Or r,-1,)) send apoint x into y.

4. Every group admits atopologica group structure with discreate topology.

1.2.3 Proposition. [18] Let ¢ be atopological group, and A, B be subsets of G.
Thenfor g € G we have:
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1. Ag = Ary; = {ag: a € A}; Ag iscaled theright trandate of A by g.

2. gA = Al; ={ga:a € A}; gAiscdled the left trandate of A by g.

3. AB = Upepg Ab = UgeqaB.

4. A"t ={at:a € A}).
1.2.4 Proposition. [18] Let ¢ be atopological groupand A,B c G and g € G.
Then:

1. If Aisopen, then Ag and gA are open.

2. If Aisclosed, the Ag and gA are closed.

3. If Aisopen, then AB and BA are open.

4. If Aisclosed and B isfinite, then AB and BA are closed.
1.2.5 Remark. Let G be atopological group and F be afundamental system of
neighborhoods of the identity element e in G. Then for every g € G the collection
Fg = {Ug: UF}isafundamental system of open neighborhoods of g.
1.2.6 Proposition. [18] Let F be afundamental system of open neighborhoods of
the identity element e. Then

1. IfU,V € F,thereisW € F suchthaa W cUNnV.

2. If g e U € F,thenthereisV € F suchthat gV < U.

3. IfU€EF, g€ G,thenthereisV € F suchthat g~'Vg € U.

4. If U € F, thenthereisV € F suchtha VvV~ c U.
1.2.7 Remark. Any fundamental system of open neighborhoods of the identity
element e, say F, also satisfies: VU € F,3V,W € F suchthat V-1 € Uand W? <
U.
1.2.8 Proposition. Let G be atopological group. Then G isregular.
Proof. Take a closed subset F of G and apoint e € G suchthat e  F. Then there
isabasic neighborhood U € F suchthat UU ' € FCor UU N F =@. ThenU N

10
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FU = @. FU isaneighborhood of F. By homogenous property of G. Therefore, G
iIsregular.m
1.2.9 Proposition. A topological group G isT; if and only if the set {e} is closed.
Proof. If {e} is closed then for every point g € G, theset g{e} = {g} is closed.
Thus, G isT;. The other side of proof isobvious.m
1.2.10 Proposition. Let G be atopologica group and H be a subgroup of G. Then
the following properties hold:
1. H isasoatopological subgroup. The topology on H isjust therelative
topology of the topology of G.
2. Theleft (or right) coset set G /H = {gH: g € G} isendowed, in a natural
way, by a quotient topology induced by the canonica quotient map q: G -
G /H. Thistopology makesthe map g is open and continuousand G /H is
regular.
3. If H isanormal subgroup of G, then the coset spaceis also atopological
group.
4. Thecoset space G/H isT, if and only if H isaclosed subgroup of G.
5. If H isan open subgroup, then it is aso closed.
Proof. It isobvious.m
1.2.11 Proposition. Let G be atopologica group and {g,} beanetin G. Then the
following hold.
1. {gg.}(or{g,g9}) isanetinG foreachg € G.
2. Ifg,—e, thengg, = g (org,g— g)foreachg €G.
3. Ifg, = oo, thengg, = oo (or g,g — ) foreach g € G.
4. If g, > oo, theng™! - oo,
Proof. The proof of all these statements follows from the continuity of

multiplication and inversion maps. =

11
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1.2.12 Definition. A topologica group G is called quasi-compact provided the
underlying topological space of G is aquasi-compact, that is, for every open cover
of G has afinite subcover. Moreover, G iscaled locally quasi-compact whenever

G isalocally quasi-compact as topologica space and thisis equivalent to that there
IS a quasi-compact neighborhood of the identity element e of G.

1.2.13 Definition. A topological group G is acalled connected provided the
underlying topological space G is connected, that is, there are not two disjoint
clopen subsets U and V of G separating G. Moreover, G is called locally connected
if each point g in G has a connected neighborhood. If the only connected

subspaces of G are the singletons, then G is called totally disconnected.

1.2.14 Components and identity components

Let G be atopological group and let R be arelation on G is defined by for every
X,y € G: xRy if and only if there is a connected subspace of G containing both x,
and y. R isan equivalencerelation on G. Therefore, R decomposes G into maximal
digoint connected subspaces are called components. The component that contains
theidentity element e is called the identity component is denoted by G.. In general,
the components are closed but not open.
1.2.15 Remark.

1. Theidentity component G, isaclosed normal subgroup of G.

2. Thequotient G /G, isaways atotally disconnected topological group.

12
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1.2.16 Some properties of quasi-compact and locally quasi-compact
group.
If G isatopological group and H is asubgroup of G, then the following hold:
1. If G islocaly guasi-compact, then every quasi-compact subset K of G hasa
guasi-compact neighborhood.
2. If G isquasi-compact (or locally quasi-compact) group, and H is closed,
then H and G /H are quasi-compact (locally quasi-compact).
3. If G isaquasi-compact group and H isclosed. Thenfor g € G, gHg™' € H
if andonly if gHg™! = H.[12]
4. Theclosure H is aso asubgroup of G. Moreover, if H isnormal then sois
H.
5. If C isaquasi-compact subset of G, then C is quasi-compact since C isthe

image of C quotient map G — G /{e}. [17]

1.3 LieGroups

In this section, we recall the concept of Lie group and some its relative
properties, and we will not go deeply in this concept. However, it forms
background for what we study in the chapter four.

1.3.1 Definition. [22] Let M be atopological space and R™ be n-dimensional
Euclidean space. A pair (U, ¢) consisting of anopen set U in M and a
homeomorphism ¢ of U in M onto an open set in R™, is called a chart (or

coordinate neighborhood) of M. When we write

QD(X) = (901(96), QDz(X), ...,QDn(X)), x € U;

13
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@;(x) iscaled ith coordinate function. If apoint x of M liesin U, then we say that
(U, @) isachart at x.

A collection of charts {(U,, ¢,)} is called an atlas (or system of coordinate
neighborhoods) on M if {U,} formsacover of M. The atlasis smooth if each pair
of indices a, g with U, N Uz # @, the map

Pp 0zt 9 (Ug NUR) = @o(Ug N Up)
Issmooth (that is, of the class C*®).
1.3.2 Definition. [22] Two smooth atlases {(U,, ¢,)} and {(V,, )} aresaidto
be equivalent if the union {(U,, ¢,)} VU {(V,, ¢,)} issmooth, i.e., if the map

9p a9 Uy NVg) = 9o (Uy NVp)
is a diffeomorphism for each pair («, ) with U, N Vg # @. An equivalence class
of atlaseson M is caled adifferential or smooth structure on M and we denote the
equivalence class of an atlas {(U,, ¢,)} by [(Ugy, 02)]-
1.3.3 Definition. [20] A smooth manifoldisapair (M, [(U,, ¢,)]) Wwhere M isa
Hausdorff space satisfying the second axiom of countability and [(U,, ¢,)] isa
smooth structure on M. We also say that (M, [(U,, ¢,)]) is asmooth n-manifold
when we want to emphasize the dimension of R™.
1.3.4 Definition. [22] G isaLie group provided that:

1) G isaManifold.

2) G isagroup.

3) The group operation is smooth, that is, themapsa: G X G - G and 5: G -

G defined by a(g, h) = gh and B(g) = g~ both smooth. Here G x G is
endowed with the structure of the product manifold.

1.3.5 Example. Gl(n, C) isone of the classic Lie groups.

14



F‘unc[amenta/ Tjonceptes

Propertiesof Lie groups

1.3.6 Theorem. [20] A closed subgroup H of aLiegroup G isan embedded Lie
subgroup.

1.3.7 Theorem. [20] If H isaclosed subgroup of aLiegroup G, then there exists a
unique smooth structure on the space G /H such that:

1) Theprojection g: G = G /H is smooth.

2) Theprojection q: G — G/H hasasmooth local cross-section.
1.3.8 Corollary. [20] If H isaclosed normal subgroup of aLiegroup G, then G/H
iIsaLiegroup and the natura projectionq: G —» G/H isaliegroup
homomorphism.
1.3.9 Proposition. [20] Every Liegroup G islocally compact.
1.3.10 Proposition. [20] Every Liegroup G islocally connected.
1.3.11 Definition. [19] A topological group has no small subgroups (NSS) if there
exists aneighborhood U of the identity element e such that the only subgroup in U
is{e}.
1.3.12 Proposition. [19] Every Liegroup G iSNSS.
1.3.13 Proposition. [19] Locally compact G of NSS property isalie group.

1.4 Topological Transformation Groups

1.4.1 Definition. [12] A topological transformation group isatriple (G, X, @)
where G isatopological group and X isatopological spaceand ¢: G X X = X isa
continuous map such that:

a ¢ (91,9092,%) = ¢(g192,x) forevery g,, g, €G, x € X.

b. @(e,x) = x forevery x € X, where e theidentity element of G.
1.4.2 Remark.

15
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1. Themap ¢ iscalled an action of G on X and the space X together with ¢ is
called a G- space (or more precisely left G- space).

2. Since ¢ is understood from the context we may use a notation gx for
¢ (9,x) and g;(g2x) = (g192) x for ¢ (91, 9(92,%)) = (9192 ,%).

3. ForH cGandA < X wewriteHA = {ga |g< H,a<A for ¢ (H, A).

4. A subset A € X issaid to beinvariant under G if GA = A.

5. ForgeG,amap ¢ ,: X — X isdefined by ¢, (x) = ¢ (g,x) = gxisa
continuous. Also, ¢ . @4, = @4,4, aNd @, = Iy istheidentity map of X. A
map ¢, has an inverse continuous map ¢ ,-1. Therefore, for every g € G,
the map ¢, is ahomeomorphism of X.

6. ThesetT'(X) = {¢,: g € G} formsagroup under maps composition, and
thereis anatural group homomorphismW¥: ¢ — I'(X) isgivenby g — ¢,.
Therefore, an action of atopological group G on aspace X is determined by
afixed homomorphism @ from G into the group of all homeomorphisms of
X Homeo(X) isgivenby gx = f(x), where f € Homeo(X). The kernel of

the action is exactly the kernel of the map ©.

1.4.3 Definitions and notations.

For aG-space X, and x € X asubset Gx = {gx: g € G} iscalled the G-orbit
through apoint x. Let R be arelation on X is defined such that (x,y) € R if and
only if thereis g € G suchthat gx = y, that is, (x,y) € R if and only if both x,
and y belong to the same orbit. Thus, G-orbits form apartition on X. The set of al
G-orbitsisdenoted by X /G and it is called orbit space. One may endow the orbit
space with a quotient topology and a natural open quotient map : X — X /G which
sends every point x into itsorbit Gx. For apoint x € X, asubset G, = {g €

G:gx = x} isasubgroup of G iscalled the stabilizer subgroup over x. A kernel of
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an action © on aspace X can be defined as ker® = N,ex G,. AN action of G on a
space X iscalled freeif G, = {e} for every x € X. Itiscalled effectiveif ker® =
{e} whileit called trangitive if the orbit space X /G isjust one element.

1.4.4 Definition. [12] An equivariant map (continuous) (or a G-map) of left (right)
G-spacesX andY isamap f: X — Y that is preserved the action operation of G,
that is, for every g € G, and x € X, then f(gx) = gf(x). An equivariant map
which is also homeomorphism is called an equivalence.

1.4.5 Some propertiesof equivariant maps
1. If YisaG-spaceand X isatopological space such that thereisamap f: X —
Y with the property f(gx) = gf(x), for every g € G, and x € X, then the
map f admitsan actionon X by G isgivenby gx = gf(x).
2. If f: X - Yisanequivariant map and x € X, then f(Gx) € Gf (x), thatis, f
maps an orbit in X into an orbitin Y. Moreover, f(Gy) S Gf(x)-

3. AG-map f iscaled isovariant if it is oneto one on each orbit, that is,
f(Gy) = Gf(x)-[28]

Proper mapping and proper action

1.4.6 Definition. [30] A map f: X — Y of topologica space X and Y iscalled
closed (open) if the directed image of f for every closed subset of X is closed
(open)inY.

1.4.7 Definition. [11] Let f be amapping of atopological space X into a
topological spaceY. f issaid to be proper if f isa continuous and the mapping
fXi; XXZ—-Y XZisclosed, for every topological space Z.

17
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1.4.8 Proposition: [11] Let f: X — Y beacontinuous injection. Then the
following three statements are equival ent:
1. fisproper.
2. fisclosed.
3. f isahomeomorphism of X onto a closed subset of Y.
1.49 Theorem. [11] Let f: X — Y be amapping. Then the following four
statements are equivaent:
1. fisproper.
2. fisclosed and f~1(y) is quasi-compact for every y € Y.
3. If Fisafilteron X andif y € Y isalimit point of f(F), then thereisa
cluster point x of F suchthat f(x) = y.
4. If Uisan ultrafilter on X and if y € Y isalimit point of the ultrafilter base
f (W), thenthereisalimit point x of U such that f(x) = y.
1.4.10 Definition. [29] Let X bea G- space. A subset A of X issaid to be thin
relative to asubset B of X if the closure of theset ((4,B)) ={g<G | gA~ B # ¢}
Is quasi-compact in G, and we will say that A and B are relatively thin. If A isthin
relativeto itself thenitiscaled thin. X iscaled Cartan if every point x € X hasa
thin neighborhood.
1.4.11 Remark. If X isaG-space and A, B are subsets of X. Then
1. Since (gAN B) = g(An g~'B) it followsthat if Aisthin relative to B, then
Bisthinrelativeto A.
2. Since(gg, A ~ g,B) =g, (95'99,AN B) it followsthat if A and B are
relatively thin, then so are any their trandates g, A and g, B.
3. If Aand B arerelatively thinand K € A, M c B,then K and M are
relatively thin.
4. If K, K, are quasi-compact subsets of X. Then ((K; ,K;)) isclosed inG.
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5. If K; and K, are quasi-compact subsets of X such that K; and K, are
relatively thin, then ((K; , K3)) iS quasi-compact.

6. If U isaneghborhood of x in X, then ((U, U)) isaneighborhood of the
identity element e in G. SO, if X is Cartan G-space, then it essential that G is
locally quasi-compact.

7. If A, and B are subsets of X, then ((4, B))™! = ((B, 4)).

8. If A, and B aresubsetsof X and g € G, then ((4,gB)) = g((4,B)) and

((4,9B)) = ((A,B))g™.

1.4.12 Definition. (Bourbaki Proper) Let G be atopologica group operating
(acting) continuously on atopological space X. G is said to operate (act) properly
on X if the mapping 0: (s,x) = (x,sx) of G X X into X X X is proper.
1.4.13 Proposition. [11] If atopologica group G operates properly on a
topological space X, then the orbit space X /G iST,.
1.4.14 Definition. (Palais Proper) A subset S of a G-space X isasmall subset of
X if each point of X has aneighborhood which isthin relativeto S. If G isalocally
compact (T, isincluded) and X is acompletely regular, then G acts properly on X
provided that every point x € X has small neighborhood.
1.4.15 Remark. If X isa G-space, in the sense of Palais, then the following hold:
1. For eachx € X, then Gx, orbit of x, isclosed in X.
2. The stabilizer subgroup G, is compact for every x € X.
3. Palaisproper is Bourbaki proper and Cartan.
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Limit and Strongly Limit Sets
VEK'S

Chapter Two

Limit and Strongly Limit Sets

2.1 Basic Concepts and Conver gence Techniques.

2.1.1 Definition. [11] A map f: X — Y of topologica spaces X and Y iscalled
guasi-compact if apreimage of every quasi-compact subset of Y is a quasi-compact
subset of X.

2.1.2 Definition. Let x, be anet in atopological space X. A subset clu(x,) of X is
the set of al limit points of subnets of the net x,,. If the net x, has no convergent

subnet, that is, x, — oo, thenisclear that clu(x,) = 0.

2.1.3 Proposition. If x, isanet in space X, then the set clu(x,) isaclosed subset
of X.
Proof. Take z € clu(x,), thereisanet z, € clu(x,) and z, = z. For each «,
thereisanet z;) — z,. Then thereis adiagonal subnet z},’ of the net z, which
convergesto z. therefore, z € clu(x,) and clu(x,) isclosed.m
2.14Theorem. Let f: X — Y beacontinuous mapping. Then the following are
equivalent:

() f isproper.

(i) If {x,}isanetin X and y isacluster point of anet f(x,), thenthereisa

point x in X such that x isacluster point of {x,} with f(x) = y.

Proof. If f isproper. Take {x,},ep @netin X and y isapointinY such that

f(x,) « y, wherethe notation o« meant that the net f(x,) hasy as cluster point.
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Put for every y € D asubset E,, = {x,| a = y }. It iseasy to check that the family

{E,},cp Satisfiesthe property of finite intersection. Since f is closed, we have

f(Ey) =f(E) fordla € D. Toshowthatforalla € D,y € f(E,).LetU bea
neighborhood of y and « € D. Thenthereisy € D suchthaty = a and f(x,) €

U.Since f(xy) € f(Ey). then f(E,)nU # @andhencey € f(E,) forala €
D.Forevery a € D, E, N f~1(y) is non-empty closed subset of f~1(y) whichisa

quasi-compact. The family {E, N f ™ (y)}qep Satisfies the finite intersection
property, thatis, N{E, N f~*(y)} =nE, n f~1(y) # @ . Thenthereisapoint
x € X suchthat x enE, andx € f~1(y). Weclamthat x, «< x. Take U to bea
neighborhood of x in X and § € D. Thenthereisa € D and @ = 6 suchthat E, N
U # @. Thus, thereist € D witht > aandx, € E, N U. Thereforex , « x and
f(x) = y. Conversdly, if the condition (ii) is satisfied, then f~1(y) is quasi-
compact for all y € Y, otherwisethereisanet {x,}in f~1(y) withx, - c and
f(x,) = y whichisacontradiction. To show that f is closed. Take aclosed
subset F of X andy € f(F), then thereisanet {x,} in F such that f(x,) — y. By
hypotheses {x, } has acluster point, say x € X suchthat f(x) = y. SinceF is
closed then x € F. Therefore, f(x) =y € f(F) and f is proper. m

Al Sarray M .J. in[1] has presented a characterization for a proper mapping
called an exceptional set for a map under the Hausdorff assumption on a codomain
spaceY.

2.1.5 Definition. [1] (Exceptional Set): Let f: X — Y beamap. We define the
Set:

Ef = {ycY:3anet{x, }inX withx, > oand f (x,) = y}.
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Wecall Ef the exceptional set of f.

2.1.6 Definition. [2] (Strongly Exceptional Set): Let f: X — Y beamap. We
define the set:

SEr = {ycY: 3 anet {x,}in X with f(x,) = y and cls(x,) N f~*(y) = ¢}
Wecall SEf the strongly exceptional set of f.
2.1.7 Remark. In general, Ef < SEf, with equality demonstrated in the following
proposition.
2.1.8 Proposition. Let f: X — Y beacontinuousmap and Y isT,. Then Ef = SEy.

Proof. It sufficesto show that SE; < E;. Take z € SEf, thenthereisanet x, in X
such that f(x,) = z and clu(x,) N f~1(z) = @. Suppose that thereis x €

clu(x,). Then thereis asubnet x, P of x, such that x, ; — Xx.By continuity of f,
we have f(x, 5) = f(x) and by T, property, we have f(x) = z. Thus, we have
x € f~1(z) whichisacontradiction. Therefore, clu(x,) = @ and x, - c.m

2.1.9 Proposition. Let f: X — Y be amap of topological spaces. Then the set E is
aclosed subset of Y.

Proof. Lety € E;. Thenthereisanet {y,},enm € Ef suchthat y, — y. For every
a € M, thereisanet {xz}gcy, in X Withxg — oo and f(xg) = y,. Thus, thereis
adiagonal net xg in X withxg — oo and f(xz ) - y. Thereforey € E; and Ef is
closed.m

2.1.10 Remark. In general, SEf is not closed. For example, let X = {a} and Y =

{1,2} with the indiscrete topology and let f: X — Y be defined by a — 1. Then,
E; = ¢ and SE; = {2} whichisnot closedinY.
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2.1.11 Theorem. [1] Let Y be Hausdorff. Then a continuous mapping f: X — Y of
X andY isproper if and only if Ef = @.

Proof. If f isproper, by the Bourbaki Theorem, it is easy to show that £, = @.
Conversely, assumethat Y is Hausdorff and the set Ef = @. Takey €

Y.Since Y is T, f~1(y) is closed subset of X. Supposethat f~1(y) isnot quasi-
compact. Then thereisanet x, — o in f~1(y) and hencein X. So, we have
f(xq) =y — y whichimpliesthat y € E;, whichisa contradiction. To show that
themap f isclosed. Take F isaclosed subset of X, and y € f(F). Then thereisa
net x, in F such that f(x,) € f(F) and f(x,) = y. SinceEr = @, the net x,,
must have a subnet Xq, CONVErgesto apointin X, say x. Since F isclosed, x is
alsoin F. So, by continuity of f, f(xq,)— f(x). SinceY isT,, f(x) = y € f(F).
Therefore, f(F) isclosed and f isaclosed map. m

2.1.12 Remark. The T, condition in first direction of the above theorem is not
necessarily, however if Y isnot T,, the second direction is not true. See the
example in the remark (21.10), it is obvious that every mapping from X into Y is

not proper, sinceit is not closed. Since X is compact, then E¢ = @.

2.1.13 Proposition. Every proper map is a quasi-compact map.

Proof. Let f: X — Y be acontinuous map. Assumethat f is proper. Take aquasi-
compact subset K of Y. Suppose that f ~1(K) is not quasi-compact, then thereis a
net x, in f~1(K) such that x, —» o. Then anet f(x,) € K has convergent subnet,
say itself. So, f(x,) — k € K. Since Ef = @, thisimplies that the net x, must
have a convergent subnet which is a contradiction.m

2.1.14 Theorem. [2] A continuous map f: X — Y isproper if and only if SE; = @.
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Proof. Assumethat SE; = @. To prove f is closed and quasi compact, if F isa
closed subset of X andy € f(F), thenthereisanet f(x,) in f(F) converging to
y.SE; = @ implies f~1(y) N clu(x,) # @. Thenthereisapointx € f~(y) N
clu(x,) and hence thereis asubnet x5 of x, suchthat x,5 — x € F. Since F is
closed, and f(x) = y € f(F). Therefore, f(F) isclosed. Now, if K isaquasi-
compact subset of Y and x, isanetin f~1(K), then thereisapoint y € K such
that f(x,) = y. SEf = @ impliesthat thereisapoint x € f~(y) N clu(x,) # 0.
Thus, thereis asubnet x4 of x, suchthat x,5 —» x € f~1(y) & f~1(K).
Therefore, f~1(K) is quasi compact. Conversely, assumethat f is closed and
f~(y) isquas compact for every y € Y. Suppose that thereisapoint y € SE;.
Then, thereisanet x, € X suchthat f(x,) — y and f~1(y) does not meet
clu(x,). Since f isclosed, then f~1(y) # @ and a quasi-compact then for every
point z € f~1(y) thereis an open set U, containing z and thereis a, such that
xq € U, for each a > a,. The collection {U,} -1, formsan open cover to
f~1(»), whichis quasi compact, thereis afinite subcover (U, ,U,,,U,,, ..., U, }
and anindex § suchthat xa ¢ U = U{L, U, foreacha > 6. PutV =

Y\ f (X\U). fisclosed, and V is open containing y. However, f(x,) &V for
each a > § which contradictsthat f(x,) convergestoy. Therefore SE; = @. m

2.2 Exceptional Setsin G-space Theory

Recall that if X is G-space, we say G acts properly (Bourbaki proper) on X if the
map 6:G X X - X X Xisgivenby (g,x) = (x, gx) isaproper mapping. So, if 6
IS proper, thenthe set Eg = @. Let us verify the definition of Eg in G-space
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notationsin more explicitly. By the definition of exceptiona set Ey, it equalsthe
Set:

{(x,y) e X xX:Tanet (x,,9,) = ©inG X X such that (xy, gox,) = (x,¥)}.
Sincethenet (x4, gaxq) = (x,y),then x, = x and g, x, = y. Also, (x4, go) —
oo impliesto g, — co. We can rewrite the above set as following:

{(x,y) EXxXxX:3anetx, - xinX A anetg, — o in G such that g,x, = y}.
Since the point x, the first coordinate of the above set, is determined by a net
convergestoit. Wemay put Eg = A(x) if x, = x or,ingenerd, Eg = J(x) if

X, # x. That means the sets A(x) and J (x) reflect the properties of the set Ej.
2.2.1 Definition. Let X bea G-space and x € X. We define the limit set and its
prolongation associated with the point x as following:

J(x) = {y<X:thereisanet{x,}in X and anet{g,}in G with x, —

x and g, — oosuchthatg,x, = y}.

A(x) = {y<X:thereisanet{g,}in G with g, — ocoand g,x — y}.
2.2.2 Proposition. Let X bea G-spaceand x € X. Then,

(i) For every x in X, A(x), J(x) areinvariant setsunder G.

(ii) If anorbit Gx isclosed, then A(x) € Gx.

(iii) For every x in X, A(x), J(x) are closed.

(iv) Gx 2 Gx U A(x).

(v) y € J(x)ifandonlyif x € J(y).

(vi) If Xisthediscrete G- space, then A(x) = J(x) for all x in X.

(vii) If x € J(x),thenforeachy € Gx,y € J(x).

(viii) If y € J(x),thenforeachz € Gx,y € J(2).
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(ix) Forevery g€ Gand x € X, g A(x) = A(gx)= A(x) and

9J(x) =](gx) =] (x).
Proof. For i, lety € A(x) and g eG. Thenthereisanet {g,}in G withg, = o
and g,x = y. Itisclear that {gg,} isanetin G with gg, — oo, and by continuity
of the action (gg,)x = gy whichimpliesthat gy € A(x) and hence A(x) is
invariant. The proof for J(x) issimilar. For ii, let Gx isaclosed subset of X and
y € A(x). Thereisanet g, - o inG and g,x = y. Since Gx isclosed and
JaXx € Gx, theny € Gx. For iii. See proposition (2.1.11). For iv, the proof is
obvious. For v, lety € J(x). Thenthereisanet {g,}in G with g, — oo and there
iIsanet {x,} inXwithx, - x suchthat g,x, - y.Puty, = g,x, = y, thenit
isclear that g1 » . Wehave g1y, = 921 (gaxs) = x4 = x.Thusx € J(y).
For vi, vii, viii proofs are obvious. For ix, let y € gA(x),and let y = gz for some
z € A(x). Thenthereisanet g, — o suchthat g,x — z. By continuity of the
action, wehave gg,x —» gzandsincegg, = o,wehavey = gz € A(x).If y €
A(x),then g~y € A(x) forevery g € G andthus g(g~'y) € gA(x). Therefore,
gA(x) = A(x) for every g € G. Now, take y € A(x), thenthereisanet g, - o
such that g,x —» y. Since g,(g tg)x » yand g,g~1 - . Thus, y € A(gx). If
y € A(gx) for some g € G, thenthereisanet g, — o suchthat g,(gx) = y.
Jag — o impliesto y € A(x). Therefore, A(x) = A(gx) for every g € G. Proofs
for part for J(x) proofs are similar. For ix, the proof is obvious.m
2.2.3 Remark. The second sidein ii, and the quality in iv is not necessary. For
example, if G = {—1,1} with the discrete topology acts on the plane with the
indiscrete topology. It is obvious that for every x in X, A(x) =@ c Gx = {x, —x}
and Gx is not closed subset of X. Moreover, G, = X. However, if X isT, the

second sidein ii and the quality in iv hold.
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In this stage, we present some results that could be characterized by the above
Sets.

2.2.4 Theorem. [3] Let X beaT, space, and G acts continuously on X. The action
Is Bourbaki proper if and only if the/(x) = @ for every x € X.

2.2.5 Remark. It issuitable in this place to be referred that for x € X, the set
67'(x,x) ={(g,y) EGxX:0(9,y) =, 9y) = (x,x)}={g € G:gx =x} =
G, X {x}.That isan action G on aspace X is Bourbaki proper if and only if al
stabilizers G,, are quasi-compact andthemap 6: G X X - X x X, (g,x) = (x, gx)
IS closed.

2.2.6 Corollary. The condition x & J(x) (without T,) impliesto 8 ~1(x, x) be
guasi-compact.

2.2.7 Remark. The converse of the above corollary is not true. For example, an
action on R?\{0} by the discrete topologica group G = R, the group of the real
numbers, isgiven by t(x, y) = (xet, yet). In such G-space we have for every
point z = (x,y) intheplane 671 (z, z) = {0} x {z} which is quasi-compact.
However, (x,y) € J((x,y)). Taket, = % then for every (x, y) in the plane we

havet,(x,y) - (x,¥).

2.2.8 Corallary. If y = gx for some g € G, The condition x & J(x) (without T5,)
impliesto 671 (x, y) is quasi-compact.m

Proof. It is obvious and comes from property vii.m

2.2.9 Proposition. If the orbit space X /G iST,, then for every pair of pointsx,y €
X suchthatX # y,andy & J(x). Moreover, if X isT,, the converseisalso true.
Proof. Assume that the orbit space X /G isT, and x, y € X such that they satisfy as
above. To show that y & J(x). Supposethat y € J(x), thentheseanet g, — o in
G and anet x, — x in X suchthat g,x, — y. Take U, aneighborhood of x and I},

aneighborhood of y. Thereisad € D, such that x, € U, and g,x, €
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V, forevery a > 6. Thatisg, € ((Uy,V5)) for every a > 6, thisimpliesto U, N
173, # @. Since U, and V,, are arbitrary neighborhoods of x andy, we have that the
orbit spaceisnot T, whichisacontradiction. Therefore, y & J(x). Now assume
that X isT,, and every pair of pointsx,y € X withy + gx forevery g € G.
Suppose that the orbit spaceisnot T,.Then isapair of points X # y of X /G such
that there are not digjoint open setsin X /G separate them. So, every pair of

neighborhoods N, and N, of x € ¥ and y € ¥, then N, N N,, # @. Wecan
construct anet ¥, in X /G such that for everya € D, %, € N, n N,,. Moreover,

X, —» xand X, » y. Thenwefind netsz, € X, and g,z2, € X, such that z, =
z € Xand guz, > w € y.Sincey & J(x),thenw & J(z). So g, =

g for some g € G. The continuity of the action impliesto g,z, = gz and w. By
T, of X then we have gz = w which contradictsZ = X # y = w.Therefore X /G
IST,.m

2.2.10 Remark. If X isnot T,, the converse is not true in general (see the example
in the remark (2.2.3)).

2.2.11 Proposition. [3] For aG-space X and apoint x € X, x € A(x) impliesto
the stabilizer subgroup G, of G is quasi-compact.

2.2.12 Remark. In generd, if the stabilizer of apoint x is quasi-compact, thenitis
not necessarily that x & A(x), see the example in the remark (2.2.7).

2.2.13 Proposition. [3] If G is non-compact, then x ¢ A(x) impliesto that x is not
periodic point [= G, K + G for every compact subset K of G].
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2.3 Strongly Exceptional Setsin G-space

Let X beaG-space and let G act on X properly. Then, themap 8: G X X —
X X X suchthat (g,x) = (x, gx) isproper in the sense of Bourbaki. So, 6 is
proper if and only if the set SEy = @. Again, let us verify the definition of SEg in
G -spaces notations. By the definition of the strongly exceptional set SEj, it equals
totheset: {(x,y) € X X X: I anet (g, x,) in G X X such that (xy, goXgq) =
(x,y) and clu((g,,x,)) N 071 (x,y) = @}. Sincethe net (x,, gox,) —
(x,y),then x, = x and gox, = y. Also, clu((gq, xz)) N 07 (x,y) = @ implies
to either clu(g,) N (({x}, {y})) = @ or clu(x,) N {x} = @. Since x, — x, wecan
rewrite the above set as following:
{(x,y)EXxX:Janetx, »xinX A anetg, inG suchthatg,x, >y A
clu(gy) N (({x}, {¥})) = @}. Since the point x, thefirst coordinate of the above
set, is determined by a net convergesto it. We may put SEy = Ag(x) if x, = x or,
ingeneral, SEg = J¢(x) if x, # x. That means the sets A;(x) and Js(x) reflect the
properties the set SE,.
2.3.1 Remark. Itisobviousthat for every x € X then A(x) € Ag(x) andJ(x) S
Js(x) andif X isT,, thenwe have A(x) = As(x) and J(x) = Js(x).
We give some properties for these setsin an arbitrary G-space X.
2.3.2 Proposition. Let X bea G-spaceand x € X. Then

1. Js(x), Ag(x) areinvariant.
Gx = Gx U Ag(x).
Gx isclosed if and only if Ag(x) € Gx.
If y € Js(x) thenx € J5(y).
For every g € G, then gAs(x) = As(gx) = Ag(x).
For every g € G, then gJs(x) = Js(gx) = Js(x).

o g M WD
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7. If y € J¢(x) theny € Js(z) for every z € Gx.

8. If y € J¢(x) thenz € J4(x) for every z € Gy.
Proof. For 1, we shall show proof for the set /5(x) and the proof for Ag(x) is
similar. For invariance of Js(x), takeg € G and y € J;(x). Then thereis a net
X, » xinXandanet g, in G suchthat g,x, - y and clu(g,) N (({x},{y})) =
@.Sincegg,x, = gy and gg, isanetin G, then it suffices to show that
clu(gg,) N (({x},{gy})) = 0. Suppose that thereisapoint g; € clu(gg,) N
(({x},{gy})), then there is a subnet 9Yag of thenet gg, in G such that 9Gas = 91

and g x = gy. Thenwehave g,, > g~ 'g; and g~ 'g;x =y. Thusg~'g, €
clu(gq,) N (({x}, {y}) < cl(ga) N (({x}{y})) = @ whichisacontradiction.
Therefore, clu(gg,) N (({x},{gy})) = ® and gy € Js(x). For 2, it is obvious that
Gx U Ag(x) € Gx. Conversaly, take y € Gx. Thenthereisanet y, = g,x € Gx
and g,x — y. Either g, = oo, theny € A(x) € As(x) or g, hasacluster point g;,
thenif g,x = y € Gx and we are done. Otherwise, clu(g,) N (({x},{y})) = 0.
Thus, y € Ag(x). For 3, if Gx isclosed, then Gx = Gx. By 2, we have A¢(x) € Gx.
On the other hand, if Ag(x) € Gx, thenalsoby 2, Gx = Gx U As(x) = Gx.
Therefore, Gx isclosed. For 4, if y € J¢(x), thereisanet x, - xinX andanet g,
in G suchthat g,x, = y and clu(g,) N (({x},{y})) = 0. Puty, = g,x,. Then
Yy, = yisanetinX and g;lisanetin G suchthat gy, — x. It sufficesto show
that clu(gzt) N (({y}, {x})) = 0. Supposethat thereis g € clu(gz') N

(v} {x}). Then thereis asubnet g ; of gz* with gz; > g and gy = x. Thus,

9ay — g~ and g~'x = y. By continuity of the action, we have g, ,x, ~> g~ 'x =

y. Thus, g7 € clu(gq,) N (({x} {yD) S clu(ga) N (({x} {¥}) = @ whichisa

contradiction. Therefore, clu(gzt) N (({y}, {x})) = @ and x € Js(y). The proofs
for 7, and 8 comeimmediately from the property in 1, and the proof in5isa
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specia casein 6. For 6, let z € gJs(x), and let z = gy for somey € J¢(x). Then
thereisanet x, —» xinX andanet g, in G suchthat g,x, = y and clu(g,) N
(({x},{¥})) = 0. Consider anet g,g~ inG. Itisobviousthat (9,9 gx, = y
and gx, — gx. We want to show that clu(g,g™1) n ({gx},{y})) = @. Suppose
thereis g, € clu(g.g™") N (({gx}, {¥y})). Thenthereis asubnet g, ,g~* of

9ag~t Withg,, 97" > g1 and g1gx = y. Wehave g,, - g19, and then

JagXa = 919% = y. Thus, g19 € clu(ga,) N ({x}-{y}) & clu(ge) N
(({x},{¥})) = @. Which isacontradiction. Therefore, y € J¢(gx) and by 1, gy =
z € J¢(gx). By 1, itisobviousthat J¢(gx) = Js(x). We shall show that /;(x) S
gJs(x). Takez € J¢(x). Theng~1z € J¢(x) and againz = gg~1z € g/s(x).m
2.3.3 Theorem. [ Main Theorem] Let X be a G-space. Then G acts properly on X if
and only if for every point x € X, theset J(x) = @.

Proof. The proof comesimmediately from the theorem (2.1.14) and from the fact
that J;(x) = SEg.m

2.3.4 Remark. Asresult that Bourbaki proper implies that the orbit spacesare T,.
2.35Corollary. Let X beaG-space. If Js(x) = @ for every x € X, then the orbit
space X /G is Hausdorff.

Proof. Let X,  be two distinct pointsin X /G. Suppose that every pair of open
neighborhoods Uy, Vj; of X, J respectively do not separate them. Then we may
construct a net from those intersections for every pair. That is, thereisanet X, €
U, NV, # @ such that ¥, convergesto both %, . Put x € #71(%,) andx2 €

n 1(%,) suchthat x} - x e r71(¥) andx2 - y € n~1(¥) and g,x} = x2. Since
Js(x) = @, then clu(g,) N (({x},{y})) # @ which contradictsthat ¥ # .
Therefore X /G isHausdorff. m
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2.4 Limit Setsand Proper actions

In this section, we shall present some interesting results using the limit set and
its prolongation set in their proofs as convergence technique and also, we show
how such these sets could be good keys to describe the behaviors of orbitsin orbit
spaces. First, we recall some well-known results have proved by limit sets under
certain conditions. Second, we present more results on G-space notions under
weaker conditions using our keys the sets A(x) and Ag(x), J(x) and Js(x). Ina
compact (T, axiom included) topological group acts on a Hausdorff space, thereis
concert relations between points and their stabilizers[9]. We shall review these
relations and then we give our proofs under weaker conditions. Finally, we give a

new proof for awell-known theorem “ Conjugacy Neighborhoods Theorem”.

2.4.1 Remark. From now on, a setting where G isalocally compact (T, is
included) acting on a completely regular space X is called a Palais setting (or
setting in the sense of Palais). In the rest, whenever we mention Cartan or Palais
proper G-space that we mean certainly ¢ and X endowed with these propertiesin.
this setting.

2.4.2 Proposition. [13] Let X be a G-space. X is Cartan G-space (in the sense of

Palais) iff x ¢ J (x) for each x € X.

2.4.3 Proposition. [26] Let X be a G-space, where X and G are merely Hausdorff.
Then X isBourbaki proper G-spaceif and only if J(x) = ¢ for each x € X.

Also, the author, in [3], has given several properties of limits setswhen G isa
locally compact and X is acompletely regular topological space and their relations
with small and thin notions. The following resultsin [3] could be proved in certain

weaker conditions.

32



Iimz't and dtron aly Iz’mz’t Dets

2.4.4 Proposition. Let X beaT, G-spaceand x € X. Then the orbit space X /G is
T, iff foreach x € X, J(x) isasubset of Gx.

Proof. If X/G isT,, then for every pair x and y in X /G withx # y wehavey €
J(x). For anarbitrary point x € X, if x € J(x),thenJ(x) = @ < Gx. Otherwise,
that isx € J(x), then by inveracity of /(x) we have Gx < J(x). From thefirst step
of the proof we have shown that for every y + gx forsomeg € G,y & J(x). Thus
J(x) isone component, that isJ(x) = Gx. Conversaly, let J(x) € Gx and suppose
that the orbit space isnot T,. Then thereisapair of two distinct points x and y in
X /G such that they could not be separated by two digoint open neighborhoodsin
X/G. Then we can construct anet x, in X/G such that x, - x and x, — y. Then
thereare netsx}, x2 in x, and anet g, in G suchthat x1 - x, x2 -» y and g,x1 =
xZ. Either g, » o or g, —» g for some g € G. For thefirst casewe havey €

J(x) € Gx andinthe other we have g, x. = x2 - gx = y wherethe quality is

hold if X isT,. Thus, both casesimpliesto a contradiction. Therefore, X /G iST,. m

2.4.5 Proposition. [3] Let X be aCartan G-space. Thenforeachx € X, A(x) =
.

2.4.6 Proposition. Let G be a locally quasi-compact group acting on aT, space X
and let x € X. Thenx ¢ J(x) if and only if there is a neighborhood U of x and a
compact neighborhood V of e, e is the identity element of G, suchthat gU N U =
@foreachg ¢ V.

Proof. If G is quasi-compact, the proof istrivial sincethen J(x) = @ for every x €
X and so one could take V' = G for the condition in the proposition. Let G be an
arbitrary locally quasi-compact. First, we assume that x ¢ J(x) for some x € X.

Suppose that if U is a neighborhood of x and V is a quasi-compact of the identity,
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thenthereisag ¢ Vand gU N U # @. Let {U,} be the neighborhood system of the
point x. Then for every a there a point g, € V and a point x, € U, such that
JaXqe € Uy,. Sincex, » xand g,x, - x and x & J(x), thereisag € G such that
Ja — 9. By the continuity of the action of ¢ and X isT,, wehave g,x, = gx = x.
Thereisno lossof generadity if weassumethat V be aneighborhood of the stabilizer
G, of x (actualy, it is because G, is quasi-compact when x & J(x)). Thus, the net
Jq 1S eventudly in V which contradicts that g, € V for every a. Therefore, the
condition of the proposition is true. For the other direction, suppose that x € J(x)
for some point x € X. Thereisanet x, - x in X and anet g, — o in G such that
JaXxq — x. By the condition, thereis aneighborhood U of x and a quasi-compact V
of the identity such that ((U,U)) € V. Since x, and g, x, are eventualy in U. We
have g, € ((U,U)) € V.V is a quasi-compact, then g, must have a convergent

subnet which isacontradiction. Therefore, x € J(x). m

Note. We could also prove the proposition (2.4.6) without T, condition on the space
X using only the set J,(x).

2.4.7 Corollary. Let X be aG-space as in the above proposition and x € X. Then

x € J(x)if and only if x has no thin neighborhood.

Proof. Assumethat x € J(x) for some x € X. Supposethere is athin neighborhood
U of x. Then the closure of the set ((U, U)) isquasi-compact. x € J(x) impliesthat
thereisanet x, - x inX and anet g, — o in G such that g,x, = x. Thus, g, €
((U,U)) and g, must have convergent subnet which contradiction. Conversdly,
assume that a point x € X has no thin neighborhood. Suppose that x ¢ J(x). Then
by proposition (2.4.6), thereis a neighborhood U of x and a quasi-compact V of the

identity ((U,U)) € V. SinceV is a quasi-compact, the its closure V is also a quasi-
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compact. Thus, ((U,U)) € V. Therefore, U is a thin neighborhood of x which

contradicts our assumption. m

2.4.8 Remark. By corollary (2.2.8), the condition y & J(x) implies to that a set

(({x},{y})) isaquasi-compact. Then we can put the following criterion.

2.4.9 Proposition. Let G bealocally quasi-compact group acting on T, space X and
let x, y be a pair of pointsinX.y & J(x) if and only if there is a neighborhood U
of x and a neighborhood W of y and a quasi-compact neighborhood V of the
({x},{y})) suchthat gUn W =0@if g ¢ V.

Proof. The proof is obvious if G is a quasi-compact. We assume that G be an
arbitrary locally quasi-compact. Take a pair of pointsx,y in X such that y & J(x).
Suppose that if U, W and VV are neighborhood of x, y and (({x}.{y})) respectively,
then thereisag ¢ VandgunW + @. Let {U,} and {W,} be the neighborhood
systems for x and y and let V be a quasi-compact of the identity. Then for every a
thereisag, ¢ V and g, U, N W, # @. Thus, for every a thereis x, € U, such that
JaXa EW,. Sincex, - x and g,x, —» yandy & J(x), thereisag € G such that
Jq — g- By the continuity of the action of ¢ and T, property of X, wehave g,x, —
gx=yand g € (({x},{y})) € V.V is a neighborhood of g, then the net g, is
eventualy in V which contradicts g, ¢ V for every a. Conversely, Suppose that
y € J(x). Thenthereisanet x, —» xinX andanet g, — o in G such that g,x, —
y. By hypothesis, there is a neighborhood U,, of x and a neighborhood W, of y and
V isaquasi-compact neighborhood of (({x},{y})) suchthat ((U,, W,)) € V. Then,
the nets x, and g,x, are eventudly in U, and W, respectively and g, €
((Uy, W) € V. That is, g, must have a convergent subnet which is impossible.

Therefore, y € J(x). m

35



Iimz't and dtron aly Iz’mz’t Dets

Note. In the above proposition we may drop the T, condition on the space X,
however, we must use the set /,(x) instead of the set J(x).

2.4.10 Corollary. Let X bea G-space. For each pair of pointsx,y in X thereisa
neighborhood U of x and a neighborhood W of y and there is a quasi-compact
neighborhood V of (({x},{y})) suchthat gu N W = @ for each g ¢ V if and only
if J(x) =@ foreachx € X.

Proof. The proof immediately comes from proposition (2.4.9). m

2.4.11 Proposition. Let X be a G-space and y be apoint in X. Then y has no small

neighborhood whenever y € J(x) for some point x € X.

Proof. Lety € J(x) for somex,y € X. If S isasmall neighborhood of y, thereisa
neighborhood U of x suchthataset ((U, S)) hasaquasi-compact closure. Sincey €
J(x), thereisanet x, - xinX and anet g, = o in G such that g,x, — y. Thus,
Ja € ((U, S)) whichisaquasi-compact whichimpliesto acontradictionsince g, =

co. H

2.4.12 Proposition. Let G be a locally quasi-compact group acting on T, space X.
ThenJ(x) = @ foreachx € X if andonly if every pair of pointsof X hasrelatively
thin neighborhoods.

Proof. For thefirst side, for every pair of pointsx,y € X. Sincey ¢ J(x) = 0, then
by proposition (2.4.9), there are neighborhoods U, , W, , and a quasi-compact
neighborhood V' satisfy the condition in the proposition. That is, ((U,, W,)) € V.
Since V/ is till quasi-compact, then ((U,, W,)) is quasi-compact. Therefore, x, y
have relatively thin neighborhoods. Conversely, for a pair of pointsx,y € X, Take
V =(UW)) where U and V relatively thin neighborhoods of x and y
respectively. We have ((U,W)) € V and V' is a quasi-compact neighborhood of a
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set (({x},{y})). By proposition (2.2.10), then y & J(x). Sincethepointsx and y are

an arbitrary. Therefore, J(x) = @ forevery x € X. m

2.4.13 Remark. In generdl, if for every pair of pointsof X, there are relatively thin
neighborhoods then for each x € X, J(x) = @. The converseisnot in general. For
example, the natural action of the group of rational numbers on itself. Also, if for
every pair of points of X, there are relatively thin neighborhoods, it does not imply
to that X is Palais proper. For instance, see the dynamical system in [7, pp. 46].
However, if X is alocally compact, the notions of Bourbaki and Palais proper are

equivalent.

2.4.14 Theorem. [3] Let X be a localy compact G -space. Under Palais setting,
Palais proper and Bourbaki proper are equivalent.

If G isacompact Lie group acting on T, space, thereis a relation between close
points and their stabilizers and there is also arelation between close orbits and their
kernels. One can show those interesting results in the version of compact Lie group
in Montgomery and Zippin [23] and [12]. Palais also has given anal ogous results for
more wider classes of G-spaces are called locally proper G-spaces (or Cartan G-
spaces) when G is an arbitrary T,-locally compact (Lie) group acting continuously
on completely regular space. In the next, we will review those results in both
versions and then we shall give our proofsfor the same propositionsto get the same

results using this convergence technique. We merely need the following definition.

2.4.15 Definition. [10] Let G be atopological group acting continuously on a space
X.and let x beapoint in X. The kernd of the action G on X is the subgroup

Nxex G, and the kernel of action of G on the orbit Gx isthe subgroup Ny egy Gy -
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2.4.16 Lemma. [9] (Close points have close stabilizers) Let G acts properly on a
space X, choose x € X and let U be aneighborhood of the stabilizers G, of x inG.
Then x has aneighborhood V such that for every y € V, then G, € U.

2.4.17 Proposition. Let G be an arbitrary topological group acting on T, space X.
If x & J(x) for some point x € X. Then for every neighborhood U of the stabilizer
G, of x in G thereisaneighborhood V of x such that for every y € V, then G,, <
U.

Proof. Suppose that the result is not true. That is, thereis a neighborhood U of the
stabilizer G, of x in G such that for every neighborhood V of x, thereis apoint

y € Vsuchthat G, ¢ U. Let {V,} be aneighborhoods system of the point x. Then
for every V, thereisapoint x, € V, suchthat thereisa g, € G,, and g, € U. Let
x, bethe net constructed by our choice of the family {V/,}, then the net x, — x.
Sinceg,x, = x4, 2> xandx & J(x). Wehaveg, —» g forsomeg € G. The
continuity of the action gives g,x, — gx and the T, property on X gives gx = x.
Thus, g € G, € U.Theng, € U for every a > a, for some a, which contradicts
our assumption. Therefore, the result istrue.m

2.4.18 Lemma. [9] (Close orbits have close kernels). Let G beaT, group acting
properly on a space X, choose apoint x € X, and let U be a neighborhood of the
kernel of the action G on the orbit Gx. Then x has a neighborhood V such that U
contains al kernels which correspond to orbits of pointsinV/.

2.4.19 Proposition. Let G be an arbitrary topologica group acting on T, space X,
let x in X and x € J(x). Then for every neighborhood U of the kernel of the action
G onthe orbit Gx, x has a neighborhood V' such that the kernels of the action of G
on all orbits through pointsin V contained in U.

Proof. Suppose that the result is not true, and there is aneighborhood U of the

kernel of the action G on Gx such that every neighborhood V' of x there a point
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y € VwithNyeq Gyy € U. Let {V,} be aneighborhoods system of the point x.
Then for every V, thereisapoint x,, € V, suchthat thereisag, € Nyes Ggx, aNd
Ja € U. Let x, bethe net constructed by our choice of the family {V,}, then net
X =2 xandletg € G. Thengx, = gx. Sinceg,(gx,) = gx, = gx and gx &
J(gx). We have g, = g, for some g, € G. The continuity of the action impliesto
9a(gxs) = g1(gx) = gx and g, € G,, forevery g € G. Thus g, €

Ngec Ggx, € U and g, € U eventualy which is acontradiction. Therefore, the

result istrue.m

Note. Propositions (2.4.17) and (2.4.19), we may drop the T, condition on the
space X using the condition x & J(x) instead of x & J(x).

According to the proposition (2.4.17), and the conjugacy theorem via Zippin and
Montgomery [23], if G isaLie group, then al stabilizer subgroups of points close
enough to the point x are conjugate to subgroups of G,.. Palais has given adirect
proof for this theorem using the notion of dlices[29]. We will apply convergence
techniques to obtain the same result but before taking up the proof, we need some

of the following background.

2.4.20 Definition. [16] A locally compact topological group is called having a
property (8) provided for every x # ein asufficiently small neighborhood U there

exists an integer n so that x2" ¢ U.
2.4.21 Theorem. [16] A locally compact group has a property (S) if it hasno

small subgroup.

2.4.22 Remark. Every Lie group has a property (S). [16]
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2.4.23 Theorem. Conjugacy neighborhood theorem using conver gence
techniques. Let X be a G-space where G is Hausdorff locally compact with
property (8) and let x ¢ J(x) for every x € X. Then for apoint x € X, thereisa
neighborhood U of x in X such that the stabilizers of pointsin U are conjugate to a
subgroup of G,.

Proof. Suppose that thereisapoint x € X such that for every neighborhood U of x
thereisy € U suchthat G, ¢ G,. We can choose the neighborhoods system U,, of
the point x in X. We can find for every a thereisapointx, € U, and g, €

Gy, such that g, € G,. Wehave g,x, = x, but g,x # x. By our choice of the
neighborhoods of x, we havex, — x and g,x, = x, = x. x &€ J(x) implies

that g, — g for some g € G. By the continuity of the action, we have g, x, — gx
and gx = x. Thus, g € G,.. Now g, — g so thatk, = g~1g, — e wheree isthe
identity element in G. Let V be a symmetric neighborhood of e in G with V is
compact. Since G has the property(S), we can construct a sequence of
neighborhoods {U,,} of e with U,, 2 U,,,.; and n U,, = {e}. On other the hand,
sincek, — e, it dlowsusto construct asequence y,, = k., # e withy, € U, for
every n. Let W be aneighborhood of e such that W2 c V. By our assumption, for

every n thereis an integer m,, suchthat y2" " ¢ W so we can consider m,, being
the smallest integer satisfies this property for every n. Now, the inequality

2ma=1 < 2Mn implies y2 " € W and y2 " y2 " = 92" e W2 c V. Since
the closure of V' is compact then there is a subsequence y,,. of y,, such that y,, =
y2™ - q in V. The condition y2"" & W impliesthata ¢ W anda # e. Let K be
the set of the existence limits of such subsequences. We claim that K is subgroup
of G. Picka, b € K, then a = limity2™" and b = limity2 ™ .Puts, = 2" —
2™ (mod 2™). Thenwe have s, < 2™ and limity," = e = ba™' € V. We

have ba™! € K and then K is a subgroup of G containing in V which contradicts
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that G has property (S). Therefore, thereis aneighborhood of x such that pointsin

it whose stabilizers are subgroups of G, m.
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Chapter Three

Weaker Forms of Proper Actions
3.1 ThreeKinds of Proper Actions

In the chapter two, we have stated two kinds of proper actions, Palais, and
Bourbaki proper. We have mentioned that Palais proper implies Bourbaki proper.
In general, the two actions are not equivalent. On the other hand, they have been
put in different settings. There is another action that has been presented by Baum,
Connes and Higson (the stronger one). The latter has been put in a setting different
than Palais . Biller in [8] has defined three weaker kinds of proper that are
increasingly strong. In [8], the author makes three kinds of proper actionsin
unambiguous directions. There the author also establishes aweaker form termed
Cartan depending on some of the properties of Palais' Cartan. In our view, the
convergence technique makes the relation between three kinds of proper clearer
and technique of proofs shorter and more understandable. Moreover, we shall show
that our weaker forms are weaker than Biller’s. In this way, we propose a new
insight into the study of wider classes of proper action that use only convergence
techniques. Before taking up those forms, we give Baum-Connes-Higson proper
definition.

3.1.1 Definition. [6] Let G be alocally compact and second countable (T,
included) and let G be act continuously on ametrizable space X. The action of X is

called proper if for every x € X thereisatriple (U, H, p) such that:

1. U isan open neighborhood of x, with gy € U for every (g,y) € G X U,
2. H isacompact subgroup of G,
3. p:U - G/HisaG-map from U to the homogeneous space G /H.
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3.1.2 Lemma. Let G beatopologica group and g isan element of G and V- bea
fundamental open neighborhoods system of the identity. Then for every V € WV,
thereis an open neighborhood U of g such that ((U,U)) ={g € G:gU N U #
Q}cV.

Proof. From topological group properties, especially for a fundamenta open
neighborhood system V' of the identity element in G, we have that every
elementV € IV, and any element g € G thereisan element N € IV suchthat N <
gVg~t. Thenwehave ((N,N)) € gVgtorg t((N,N))g €V, and

hence ((gN,gN)) € V.TakeU = gN.m

3.1.3 Definition. [3] Let X bea G-space. A subset S of X iscalled star if for every
x € X thereisag € G suchthat theset gx € S and if, additionally, S isaso small
thenitiscalled strong.

3.1.4 Remark. We have shown that the extended sets J (x) and J¢(x), from the sets
Ef and SE; respectively, are good keys as to whether an action is Bourbaki proper
or not. It isuseful in this stage that we give explanations that one may gain from
the set J(x). First, let us prove the following theorem that we have stated it in the
chapter two.

3.1.5Theorem. Let X beaT, space and let G be atopologica group acting
continuoudly on X. The action is Bourbaki proper if and only if the set J(x) =

@ for every x € X.

Proof. If the G acts properly on X, suppose that there are pointsy,x € X and y €
J(x). Thereisanet g, —» o in G and anet x, — x in X such that g,x, — y. That
IS(Xg, GaXa) = (x,¥). Since G acts properly on X, then thereisapoint (g, x) €
G x X suchthat (g4, x,) = (g,x). Thisimpliesthat g, - g whichisa
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contradiction. Therefore, since x, y are arbitrary, J(x) = @ for every x € X.
Conversdly, to show that the condition J(x) = @ for every x € X impliesthat the
map 6: (g,x) = (x, gx) isproper, takeapoint (x,y) € X x X, thenif y #

gx for every g € G, then8~1(x,y) = @ and hence it is quasi compact. Suppose
that y = gx for some g in G and 6 1(x,y) isnot quasi compact. Thereis anet
(garXq) = 0 in 871(x,y) and hencein G x X since 871 (x,y) isclosed subset
of G X X.Since8(gy Xq) = (Xg» Gaxa) = (x,¥) = (x,¥), then we have x, —
xand gaxg = Y. (garXq) = oo impliesthat g, — oo andy € J(x) whichisa
contradiction. Take F as aclosed subset of G x X and (x,y) € 6(F). Thereisanet
(G Xa) € F and 0(gq, Xo) = (Xa) GaXa) = (%, ¥). SOxq = x and goXxq, = y.
Since/(x) = @, the net g, must have a convergent pointinG, say g. Thatisg, —
gand x, = x or (gq, x,) = (g,x) € F, since F is closed. The continuity of 6
impliesto 6(g,, x,) = (x4, 9axa) = 0(g,x) = (x,gx) = (x,y) by T, condition
of X. Therefore 8(F) isclosedin X X X and 6 is closed map. m

3.1.6 Remark. If X isnot T, in the theorem (3.1.4), then the second direction may
not be true. For example, G = {41} with the discrete topology, and X = R? with
the indiscrete topology. Then G acts continuously on X by t(x,y) =

(x,ty) forevery t € G and (x,y) € X. Obvioudy, thenJ((x,y)) =

@ for every (x,y) € X. However, X/G isnot T, (not Bourbaki proper).

3.1.7 Proposition. [27] Let X be a Cartan G-space (in the sense of Palais) and x be
apointinX. If U isaneighborhood of G,, then thereis aneighborhood V of x such
that ((V,V)) € U.
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3.2 Biller’'sCartan Action and Weaker Cartan Actions

3.2.1 Definition. [8] Let X be atopological space and G be atopological group. An

action of G on X issaid to be Cartan if the following two conditions are satisfied:

1. All stabilizers are quasi compact.
2. If x € X,and V;_is anieghborhood of G,, there is aneighborhood U, of

x such that ((Uy, Uy)) < Vs,
3.2.2 Proposition. Cartan action in the sense of Biller implies to the condition
that x € J(x) for every x € X.

Proof. Assume that the two conditions of Biller be satisfied. Suppose that thereis a
point x € X such thatx € J(x). Thentheseanet g, - o inG andanet x, — x in
X suchthat g,x, — x. For each g € G, thereis, since g, — =, §, €

D and V, is a nieghborhood of g such that g, € V, for every a = §,. The
collection { V;} forms an open cover of G, which is a quasi-compact, then thereisa
finite sub-collection {V, };_, covering G,. Thenwefind § € D suchthat g, & V,,
foreverya = §,and i € {1,2,3,...,n}. PutV =Ui_, V. then V isaneighborhood
of G, and g, & V for every a@ = §. By the second condition of Biller, theseisa
neighborhood U, suchthat ((U,,U,)) € V. Sncex, - x and g,x, — x, then
thereisp € D suchthat x, € U, and gax, € Uy or g, € ((Uy, U,)) for

every a > 8. Choosey = 8 and y = &, then we have g,, € ((U,,U,)) €V and
Ja &V for every a = y which a contradiction, x isan arbitrary point in X and

hencex & J(x) foreveryx € X.m
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3.2.3 Remark.

e The converse of the above proposition is not true in general. For example,
consider the action t(x, y) = (x, ty) by the discrete topologica group G =
{+1, —1} acting on the plane with the indiscrete topology. Take apoint x =
(2,3) inthe plane, then G,, = {1}. Thesubset V = {1} of G isan open
neighborhood of G,.. However, thereis a unique neighborhood U = R? of x
and ((U,U)) ={-1,1} ¢ V. Itisobviousthat x & J(x).

e Under the second condition of definition of Biller Cartan action, the first

condition is equivaent to the condition x € A(x) for every x € X.

In this stage, we have shown that there is a convergence condition that is
weaker than Biller conditions. A fortiori one could define aweaker form of Cartan
action by using such convergence techniques. We will call our version weak

Cartan or just w-Cartan.

3.2.4 Definition. (New version of Cartan action) Let X be topological space and
G be atopologica group acts continuously on X. The action of G on X issaid to be
w-Cartan if the following conditionis satisfied: V x in X, x & J(x).

3.2.5 Proposition. In the sense of Palais, Cartan and w-Cartan coincide [see,

proposition (2.4.2)].

3.2.6 Proposition. Let X beaT, w- Cartan G-space and x apoint in X. Then the
map g = gx isan open map from G onto Gx.

Proof. Let V be an open neighborhood of ein G. To show Vx isan openin Gx.
Supposeitisnot. Thereisanet g,in G with g,x isnot eventually in Vx but it
convergesto x. If g, — oo, then x € A(x) < J(x) which contradictsthat X isw-

Cartan. So, g, —» g forsomeg € G. Then g,x —» gx = x and hence g € G,.
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However, g,x & Vx isequivaent to g, € VG, whichisaneghborhood of g. This
contradiction proves the proposition.m

3.2.7 Proposition. Let X be aw- Cartan G-space and x apoint in X. Then the map
G /G, — Gx isahomeomorphism.

Proof. It is obvious that the map is a bijection map, and it is also equivariant. Let U
be an open subset of G /G,, then =1 (U) = UG, isopenin G where r isthe
canonical map from G onto G /G,.. By the above lemma, Ux isopenin Gx.m

3.2.8 Example. Let G=Q be the group of rational numbers with usual addition
operation and the relative topology of the usual topology on R, and let G act on
itself by the usual trandations. That is, the action (g,x) - g + x foreach g,x €
Q. Then G acts continuously on itself. Also, the orbit spaceisjust one point. Now
for every net g, — oo then either g, goesto +oo or g, convergesto an irrationa
number r, and in the both casesif thereisanet x, —» x € Q, theng, + x, — 0.
Sox & J(x) foreachx € Q. Thisaction isnot Cartan in the sense of Palais
because 0 € Q and for any neighborhood IV of 0, the set ((V,V)) has not compact

closurein Q.

3.2.9 Definition. (New versions of w-proper actions) Let X be atopological
space and G be atopological group and let G acts continuously on X. Then the

action G on X issaid to be:

I- w-proper action if is w-Cartan and the orbit space X /G is Hausdorff.

li- w-Palais proper if it isw-Cartan and the orbit space X /G isregular (T, is
included).

lii-w-strongly proper if it is w-Cartan and the orbit space X /G is paracompact (
T, isincluded).
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3.2.10 Remark. It is obvious that every w-strongly proper action isaw-Palais
proper action and the latter is a w-proper action. A good universal example for
converse sidesis given by Biller in [8] asfollowing; Let G be atopologica group
and X isatopological space. Let G actsonthespace G X X by g(t,x) = (gt, x)
for every g,t € G and x € X. To show this action isw-Cartan. Take apoint z =
(t,x) € G X X. Supposethat Z € J(2), thereisanet (t,, x,) = (t,x) inG X X and
anet g, — oo suchthat g, (t,, x,) = (gate xo) — (t,x). Then we have that
Jata = t and x, = x. By the previous lemma (3.1.2), if V isaneighborhood of
e, thereis aneighborhood U of ¢ such that ((U,U)) € V. Since g, — o, thereis
6 € D suchthat g, € V foreverya = §. Snceg,t, = t,and t, =t thereis

B € D suchthat g,t, € U,and t, € U foreverya = . So,fora = § and a = B,
we have g, € ((U,U)) and g, & V isimpossible. Therefore, Z & J(Z) for every
point Z = (t,x) € G X X and the action is w-Cartan. Moreover, the orbit space of
this action is homeomorphic to X, as aresult there is w-proper action which is not

w-Palais proper and w-Palais proper which is not w-strongly proper.

3.2.11 Proposition. w-proper action is equivalent to the Bourbaki proper if X, in
addition, isT,.

Proof. Bourbaki proper impliesthat /(x) = @ for every x € X. That is, x & J(x)
and hence w-Cartan. Also, the condition implies that for every pair of pointsx,y €
X,wehavey ¢ J(x) whichimpliesto X/G isT, whenever X isT,. Conversdly, if
X isaw-proper, then x ¢ J(x) and since the orbit spaceisT,. The conditiony &
J(x) for every pair of pointsx,y € X with Gx # Gy impliesthat /(x) = @ for
every point x € X, and the latter impliesthat X is Bourbaki proper whenever X is

T,.m
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3.2.12 Proposition. In the Palais setting, that is, G isalocally compact (T,
included) and X is acompletely regular (T ,1 ), Palais proper and w-Palais proper

coincide.

Proof. If X isaw-Palais proper, then it isaw-Cartan which is under Palais setting
X isaso Pdais Cartan action from the previous proposition. Moreover, X /G is
regular by the definition of w-Palais proper. Thus, X isPalais proper (since Cartan
with regularity of the orbit space is equivalent to Palais proper). The proof of the

other sideisobvious.m

3.2.13 Proposition. If X isaT, G-space, A is an open thin subset of X, then GA is
w-proper (also Bourbaki) G-space (= J(x) = @, for every x € GA).

Proof. To show that the action G X GA — GA isw-proper. It must be w-Cartan G-
space and the orbit space GA/G isHausdorff. To show that for every point x €
GA,x & ]J(x). Suppose that is not true. That is, thereisapoint g x € GA,but g x €
J(gx).Then3x, > gxinGAand3 g, > o in G suchthat g,x, - g x in GA.
Since x € Aand g ~'g,x = x, thenthereis 6 € D suchthat g ~*g,x € A for
everya > 8,50 g "'g, € ((A, A)) which has a quasi-compact closure. Then there
isag € Gandg ~'g, — g or g, — g g whichisacontradiction. Therefore, for
every x € GA,x & J(x). Toshow that GA/G iST,. Suppose that thereare x, y €
GA/G suchthat x # yandy € J(x) wherex € x and y € y, then there are

9,91 €EGsuchthata, =gx € Aand a; = g,y € A. Sinceye J(x),thena; €
J(a,), thenthereareanet g, » o and x, — a, suchthat g,x, _, a,. A isopen,
thenthereis§ € D suchthat x, € A and g,x, € A for each @ = §. Thismeans
that g, € ((4, A)) whichis quasi compact. So g, — g for someg € G whichisa

contradiction. Therefore, GA/G is T,, and the action is w-proper. m

49



W eaker Forms of gfroper %’bz’on&

3.2.14 Corollary. In the Palais setting, for aw-Cartan G-space X, every point has a
neighborhood N such that GN is Palais proper.

Proof. It follows from the fact that Cartan and w-Cartan coincide in the Palais
Setting.m

3.2.15 Remark. If X isa G-space and A is aclosed thin subset of X, then GA isnot

necessarily to be closed in X. For example, a subset

A={(x,y) € R?>:(x —16)%? + y? < 1} isaclosed thinin the G-space R?, where
G isthe set of real numbers with the usual topology acts on R? by the formula
t(x,y) = (xe~t, ye'). However, GA isnot closed. That is, m(A4) isnot closed in
the orbit space X /G. If A isasmall subset of aT, G-space, then we can obtain the

following results.

3.2.16 Proposition. Let A be asmall subset of aT, G-space X, then G actson GA

w- properly.

Proof. First, we show J(x) = @ for every x € GA. Suppose there are points

X =g,a4,y = g,a, € GAsuchtha y € J(x). Thenthereisanet g,a, = g.a, In
GA andanett, —» oo suchthat t,g,a, = g.a,. Take U be aneighborhood of a,
in X such that aset ((4, U)) has a quasi-compact closure. Since gy tg,a, — a,and
a, € A,thusgitg, € ((4,U)) whichimpliesto thereisag € G such that

9itg. = g or g, — g19. Similarly, thereis aneighborhood V of a, in X such that
((4,V)) has aquasi-compact closure. Then, we have g5 t, g, € ((4,V)) which
impliesto thereisat € G suchthat g5 't,g, — t or t, = g,tg,g Whichisa
contradiction. Since x, y are arbitrary pointsin GA, therefore, /(x) = @ for every

X € GA. Itisobviousthat GA isasubspace of T, space. Therefore, GA isaT, and
w-proper G-space.m
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3.2.17 Proposition. [4] If A isasmall subset of a G-space X, then A isalso small.
Moreover, if f: X — Y isamorphism (G-map) of G-spacesY and X, then f~1(4) is
asmall subset of Y.

3.2.18 Proposition. Let X beaT, G-space and let S be a strong subset of X, then X

ISw-proper.
Proof. From the proposition (3.2.16), GS = X isaw-proper.m

3.2.19 Proposition. Let X beaT, G-space and A be a closed small subset of X,

then:

a) Therestriction map p of the actionon G X A into X is aproper map.

b) The restriction map ¢ of the orbit map on A into X /G is aproper map.

Proof. For (a), to show p isaproper map, it suffices to show that its exceptional
set E,, isempty. Suppose that thereisapoint x € E,, then thereisanet (gq, ag) —
o inG X A suchthat g,a, = x. Since A issmall, thereis aneighborhood U, of x
such that the set ((4, U,.)) has quasi-compact closure. g,a, — x € U,, thenthere
isé € D suchthat g,a, € U, forevery a > § that implies, sincea, € A,t0 g, €
((A, U,)) which has quas compact closure, sothereis g € G such that g, = g
andtheng,! - g tand g;1(g.a,) = a, = g 1x € A, since A isclosed. We
havethat (g,,a,) — (g,9 *x) whichisacontradiction and E, = ¢.SinceX is
T,, then p is proper. To prove (b), first we show that GA isclosed in X. Take x €
GA. Thenthereisanet g,a, — x and g,a, € GA. Since A issmall, thereisa
neighborhood U of x in X such that the set ((U, A)) has quasi-compact closure.
Since g, a, € U forsomea > 6 and g;*(g9,a,) = a,. Thus, gzt € ((U,A)) and
thereisag € G such that g, — g. Also,wegeta, » g 'x € Asincedis

closed. Therefore g(g~1x) = x € GA and GA isclosed in X. GA is G- invariant
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and hence GA/G isclosed in X /G. Now, suppose that SE, # @, that is, thereis a
point X in SE,,. Thus, thereisanet a, in A suchthat a, - X and clu(a) N

@ 1(X) =0inA.Since ¢ 1(%) = ((4,{x})) x whichisclosed since A is closed
and quasi-compact since A issmall. X isT,, thereis aneighborhood U of ¢ ~1(%)
which does not meet clu(a,) thisimpliesto a, - X and acontradiction.
Therefore, SE, = ¢.m

w-Action by locally quasi-compact groups

Our aim isto put the three kinds of proper actionsin clear implications under
suitable conditions. Palais setting is reasonable, so we shall not go away form those
conditions. The following shows the analogous properties that are still true for our

forms of w-actions and we need G isalocaly quasi-compact and X iST,.
3.2.20 Lemma. Let G be atopological group. Then

a) For every quasi-compact subset of G its closureis still a quasi-compact,
b) if G isalocaly quasi compact and K is a subset of G, then K is aquasi-
compact if and only if K contained in a quasi-compact closed neighborhood.

Proof. The proof for (a), it isfollowsthat if K isaquasi-compact, then K = {elK
[19] which is aquasi-compact, e isthe identity elementin G. For (b), it is obvious
that if K € V, where V is closed quasi-compact neighborhood of K, thenK € V,
and then K is quasi-compact. Conversely, if K has quasi-compact closure, then for
every g € K there is quasi-compact neighborhood V; and hence by (a), thereisa
quasi-compact V. So K € UgerV,,, then thereis afinite set gy, ..., g, such

that K U}, V.. Choose V = U}, I/,.. Then V is aquasi-compact closed
neighborhood of K .m
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3.2.21 Proposition. Let G be alocally quasi- compact topological group acts
continuoudly on X, and for every x € X the subspace Gx iST,. Then the action of G

on X isw-Cartan if and only if for every point x € X has athin neighborhood.

Proof. Assume that the action is w-Cartan. Since x ¢ J(x), then by proposition.
(2.4.6) there isaneighborhood U of x and a quasi-compact neighborhood V' of the
identity such that ((U, U)) € V which is aquasi-compact, that is x has athin

neighborhood. The converse is obvious. =

3.2.22 Example. Let G = {1, —1} be agroup with discrete topology and let X be
the plane with atopology structureisidentified by open sets @, X, U, U, where U,
Is open upper half of the plane and U, is the open lower half of the plane. Then a
map G X X = X isgiven by theformula+1. (x,y) = (x, y) isan action. The
continuity of the map come from that the inverseimage of U;, i = 1 or 2 isthe set
{{1} x U;} u {1} x U;} whichisopenin G x X, wherej = 1 if i = 2 and vice
versa. X isnot T, but every orbit isT, space of X. Also, every point hasathin
neighborhood since G is compact. X is not Cartan G-space in the sense of Palais
since U, isthinbut GU; = X\ L isnot Palais proper, where L isthe set of points on

x-axis. By proposition (3.2.21), X isw-Cartan.

3.2.23 Theorem. (w-proper actions by locally quasi-compact groups) Let G be
alocally guasi-compact group acts continuously on aT, topological space X. Then

theactionis:

I- w-proper if and only if every pair of points of X has relatively compact
neighborhoods.
li- w-Palais proper if and only if X isregular and each point has small

neighborhood.

53



W eaker Forms of gfroper %’bz’on&

lii-w-strongly proper if and only if X is paracompact and there is an open
strong subset of X.

Proof. For (i), assume that the second sidein (i) is satisfied. Suppose that there a
pair of pointsx,y € X suchthaty € J(x). Thenthereisanetx, —» xinX anda
net g, = o in G suchthat g,x, — y. By the assumption, there are neighborhoods
U,V of x,y respectively, such that ((U, V)) has aquasi-compact closure. Also,
sincex, - x and g,x, = y thereisé € D suchthat x, € U and g,x, €V or
9q € (U, V)) forevery a = 6. Theset ((U,V)) has aguasi-compact closure, so
thereisg € G and g, — g whichisacontradiction. Thus, J(x) = ¢ for every x €
X. Thelast result with our assumption that X is T, impliesto that the action is
Bourbaki proper. By proposition (3.2.11), X isw-proper. Conversely, assume the
action isw-proper and again by proposition (3.2.11), that means J(x) = @ for
each x € X. Suppose that thereisapair of points x, y € X such that every pair of
neighborhoods U, and U,, of x, y respectively, the set ((Uy, U,)) hasno aquasi-
compact closure. SinceJ(x) = @, thenthe set (({x}, {y})) isaquasi-compact. Let
V be aquasi-compact neighborhood of the set (({x}, {y})) and then V is till quasi-
compact by lemma (3.2.20). Then, by our hypothesis, ((Uy, U,)) & V for every
pair of neighborhoods of x, and y. We can construct anet x, — x in X and anet
gq inG suchthat g,x, » yand g, € V. SinceJ(x) = @, then g, -
g for some g € G. By the continuity of the action and X isT,, then we have
JaXe = gx =y and g € (({x},{y})) €V and hence g, € V € V whichisa
contradiction. Therefore, the statement istrue. For (ii), assume that the action is
w-Palais proper. To show that every point in X has small neighborhood,
takex € X. SinceJ(x) = @, x has thin neighborhood, say U,., andthen GU,, isa
neighborhood of Gx. By regularity of the orbit space, thereis an invariant closed
neighborhood W of Gx in X/G suchthatx e W € GU,.. PutS = U, n W.We
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claim that the subset VV isa small neighborhood of x in X. If y isan arbitrary point
inX, theneithery e GU, ory e X\ GU,.Ify e GU,,say y € gU, forsome g €
G , then gU, isaneghborhood of y and ((gU,,S)) <€ ((gU,, U,)) wherethe
latter has a quasi-compact closure. If y € X \ GU,, then X \ W is a neighborhood
of y and ((X \ W, S)) = (. S0, in either case y has aneighborhood whichisa
relatively thinto S. Thus S isasmall neighborhood of x. Since x isan arbitrary
point in X, every point in X has small neighborhood. Now, pick apoint x € X and
let S be asmall neighborhood of x. Then the closure S is also small neighborhood
of X. By proposition (3.2.19, b), the map S — X /G is proper, so S isregular since
theinverse image of regular spaceis regular under proper map and the domain
spaceisT,. We have that every point in X has a closed neighborhood which is
regular subspace of X. Therefore, X isregular [11, |, prop.13]. Conversdly, if every
point has a small neighborhood then J(x) = @ for every x € X and hence every
point has a small closed neighborhood K which is regular and admits a proper map,
by proposition (3.2.19, b), onto the orbit space X /G. Therefore, X /G isregular.

For (iii), the proof of thefirst part, we adapt it from Abel [4, prop.1.8]. Since X is
w-Palais proper, thereis aclosed small subset S of X from part ii. Now for every

x € X thereis an open neighborhood U, suchthat A n GU,, < U,.. The open cover
7 (Uy), x € X hasalocaly finite open refinement {V,_} such that V,, < m(Uy).
Set W, = U,, n =" (V). Then the family {W,} isalocally finite of small subsets
of X. Then F =uU W, isan open small star subset of X. Moreover, the product

G X F isaquasi-regular and a quasi-paracompact. By proposition (3.2.19, a), the
map G X F — X issurjective proper, then X is aquasi-paracompact. X isT, and
hence X is also paracompact. For the other side, assume that X is paracompact and
F is an open strong subset of X, thenamap F — X /G is proper, proposition
(3.2.19, b). Since F is paracompact, then X /G is also paracompact. Being thereis a
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strong subset of X impliesto every point in X has athin neighborhood proposition

(3.2.19), and hence x ¢ J(x). Therefore, the action is strongly proper.m

The following facts in [4] then become results following from theorem (3.2.23).
We sum them up in the following corollary.

3.2.24 Corollary. Let G be alocally quasi-compact group acts continuously on T,

space X and the action of G isw-Cartan proper. Then

a) If X/G isaparacompact, X has a strong set.
b) X has aparacompact (closed) strong set if and only if X /G is paracompact.
c) If X/G isparacompact, then X is paracompact.

3.2.25 Proposition. Let G be alocally compact acting w-strongly properly on a
metrizable space X. Then then X /G is metrizable.

Proof. It follows from proposition (3.2.19) and theorem (3.2.23, iii) that thereisa
strong (also closed) subset S of X and there is a surjective proper mapping from S
onto the orbit space X /G. Metrizability is aproper map invariant.m

3.3 Application

In this section, we show an application for limit sets, especially the weaker
forms of w-actions in another topic that are related to the theory of G-spaces. It is
well-known that if X isatopologica group and G isasubgroup of X, thereisa
natura action of G on X isgivenby g xx = x x g~ forevery g € G, and x € X.
In [5], the author has answered the following open problem:
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Let G be alocally compact group. Then the orbit space X /G of any
paracompact proper G-space X is paracompact.
The author in that work has solved the above problem in a specific case, when a
space G is atopologica subgroup of X. We shall show how our technique could be
agood way to describe the above problem. Before we take up the main proof of the
open problem, the following results can be established for an arbitrary case.
3.3.1 Proposition. Let G be atopologica subgroup of agroup X, and let G act on
X naturaly. For x € X, x & J(x).
Proof. Suppose thereisapoint x € X and x € J(x). Thenthereare nets g, —
o in G and x, - x in X suchthat g, * x, = x4.9,~* = x in X. By continuity of
multiplication law of the group X, thenx, ! > x 'inXand g, =

Xy Y%y 9, ) > x Lx=einXorg, - einXandthenin Gwhichisa

contradiction. Since the point x is an arbitrary point in G, we havex & J(x) for

every pointx € X. m
3.3.2 Remark. One can deduce that every natural action is w-Cartan.

3.3.3 Proposition. The natural action of G on X isw-Palais proper if and only if G
Is closed subgroup of X.

Proof. If the action isw-Palais proper, then the orbit space X /G isT, and this
equivalent to G isclosed. Conversely, if G isaclosed subgroup of X, then X /G is
T, and henceit is also regular. By the proposition (3.3.1), we have x & J(x) for

every point x € X. Therefore, the action isw-Palais proper.m

3.3.4 Remark. One can deduce that the natural action is also w-proper when G is

closed subgroup of X.
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3.3.5 Proposition. Let X be a Hausdorff topological group and G be a closed
subgroup of X, the natural action of G on X is Bourbaki proper.

Proof. This follows from remark (3.3.4) and proposition (3.2.11).m

3.3.6 Proposition. Let H be asubgroup of G. Then the natural action, t(gH) =
tg(H),of G onG/H isaw-Cartan if and only if H isaquasi-compact subgroup of
G.

Proof. Since the action of G on G /H istransitive, then A(x) = J(x) for every x €
G/H.Thus, H ¢ A(H) impliesthat the stabilizer subgroup of H € G /H under G,

thatisGy = {g € G: gH = H} = H isquasi-compact. Conversely, if H isquasi-

compact, suppose that the action is not w-Cartan. Then thereisapoint gH inG/H
suchthat gH & J(gH), then by proposition (2.4.6) there is aneighborhood U, of
gH in G/H and a quasi-compact neighborhood V' of the identity element in G such
that (( Uy, Ugy)) € V. Then gH € J(gH) impliesthat thereisanet g, — w0 inG
andanett,H — gH inG/H suchthat g,t,H — gH. Thus, g, € ((Uyy, Ugy)) E

¥ which means the net g, must have convergent subnet which is a contradiction. m
3.3.7 Remark.

1. If X isaHausdorff topological group and G isalocally compact subgroup of
X, then the natural action of G on X has Palais setting because X is
completely regular (T, included) and G isalocaly compact group.
2. Corallary (3.3.8) provides an argument for theorem (1.1) in [5].
3.3.8 Corallary. If X isaT, topological group and G isalocally compact

subgroup of X, the natural action of G on X isPalais proper.

Proof. It follows from remark (3.3.7, 1), proposition (3.3.3), and proposition
(3.212).m
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Now let us give a sketch for the proof of the suggested open problem using our
notions. Under assumptions of theorem (3.2.23, iii), we have that if X is
paracompact and it has an open strong subset, then it is equivaent to the action
being w-strongly proper. That is, X is w-Cartan and the orbit space is paracompact.
Therefore, under the open problem assumption, the orbit space is paracompact if
and only if X has closed strong subset. The last claim always holds for alocally
compact subgroup G of T, group X acting naturally on X [5, Th., 1.2]. We can

summarize the above discussion by the following proposition.

3.3.9 Proposition. Let G be alocally compact subgroup of T, group X, and let G
act naturally on X. Then X is paracompact if and only if the action is w-strongly

proper.
Proof. It follows from theorem (3.2.23, iii) and the above proof sketch.m

Finally, it is also interesting to refer in this stage to the advantage of the existence
of aclosed strong subset A of G-space X. Proposition (3.2.19, b) admits a
surjective proper map A — X /G. Moreover, it iswell-known that proper mapping
and its inverse could be preserve many topological properties such as, for example,
compactness, para-compactness, metrizability, and so on. In the following, we state

more general result that it holds whenever a G-space has a strong subset.

3.3.10 Proposition. Let P be atopological property preserved under proper maps
and inherited by closed subsets. Assume that X is atopological group with the
property P and let G be alocally compact subgroup of X. Then the orbit space X /G
of the natural action also has the property P.

Proof. It follows from the fact that the natural action has closed strong set and
proposition (3.2.19, b).m
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Chapter Four

Convergence Techniques for Slices

The existence of dlicesin G-spaces has the advantage that it supports additional
theorems in transformation group action theory. For example, the Conjugacy
Theorem due to Montgomery, the Equivariant Embedding Theorem [27, 28, 29],
and some other notions. In this Chapter, we discuss a dlice theorem in the theory of
G -spaces, especially the enough slice notion that has been presented by Biller in
[8]. The convergence technique is used to verify the notion of enough slice with
weaker forms of w-actions. We show that if G isan arbitrary locally compact
group acting on acompletely regular G-space X , then the existence of enough slice
at each point is equivalent to X being w-Cartan. Moreover, Biller in [9] has defined
an H-slicewhere H is a closed subgroup of an arbitrary locally compact group
acting on a completely regular space. Also, the author gives a characterization for
the existence H-dlice without assumption of Lie group on G. In thefirst section, we

give helpful motivation for slicein an arbitrary G-space.

Motivation for slices
Let G be atopological group and H be asubgroup of G and A be a H-space.
Then atwisted product of afiber A isthe orbit space G X, A of an H-action 8 on
the space G x A given by h(g,a) = (gh™1, ha). The H-orbits are denoted by
H(g,a) or [g, a], and the canonical quotient map isdenoted by q: G X A -
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G Xy Aisgivenby (g,a) = [g,a]. Itisclear that q isan open map. The orbit
space may be considered as a G-space and takestheform g[g,, a]l = [g 91, al.
Then g may be considered as H-map. Take S = q(e, A). Then S satisfiesthe
following natural three properties[21].

1. ((5,5)) =H.

2. Sisan H- invariant.

3. Themap G xS - G Xy A, givenby (g,s) — gs, isopen.
Let usnow call S an H-dlicein G X A. On the other hand, a natural question may
arise concerning the conditions under which an arbitrary G-space X can be written
asG Xy A where A isan arbitrary H-space. In this case, one may construct, in a
natural way, an H-dlice S in X. Let X be a G-space and A is asubset of X such that
((A,A)) A= A, then ((4,4)) isasubgroup of G, say H. Also, we can easy
construct the twisted product G X A with fiber A and aquotient map q: G X A -
G Xy A. Also, onecan consideramap G X A — X isgiven by (g, a) — ga which
isaredtriction of the G-actionon G x A and it is aways considered as an H-map.
Moreover, we can construct a map from the two previous maps, say 7: G Xy A - X
givenas|g,a] - ga, whichisawaysinjection, that makes the following diagram

IS commutative.

GXA-X

Ry

G xy A

According to our aim, if themap G x A — X isan open (or closed), thenthe map t

is an embedding onto an open subspace of X. Since the diagram commutes, we
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havethat G Xy A = GA € X. Inthiscasethesubset S = t(q(e,A)) € GAisan H-
dlicein GA whichisopenin X, and so S isalso an H-dicein X. On the other hand,
suppose thereisaG-map f: X - G/H of G-spacesX and G/H. Take S = f~1(H).
Then S isan H-space and the twisted product G X S with fiber S exists. By the
same procedure, and because the map z, in this case, is even onto (since f isaG-
map), then it is ahomeomorphism onto X whenever themap G X S — X isopen or

closed and sowehave S isan H-sliceinX and X = GS = G Xy S.

4.1 Slices

There are several definitions for the slice notion in the G-space theory, and here
we recall the most well-known ones. In general, they are not equivalent, but if G is
alocally compact group acting on T, space, then they coincide.

4.1.1 Definition. (Slicein Palais Sense). Let G be alocally compact group acting
on acompletely regular space X and let H be a closed subgroup of G. A subset S of
X issaid to be an H-dlice provided that GS isopenin X and thereis G-map
f:GS - G/H suchthat f~1(H) = S. By asliceat x wemean aG,-dicein X
which contains x.
4.1.2 Proposition. [29] Let X be a G-space and let H be a closed subgroup of G.
Then the following are equivalent:
a) H iscompact and S isan H-dlicein X.
b) S hasthe following properties:
1.Sisclosed in GS,and GS openin X,
2. S iIsH-invariant,
3.((5,8)) =H,
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4. S has athin neighborhood in GS.

4.1.3 Theorem. (Palais Slice Theorem). Let G bealLiegroup. If X isaCartan
G-space (in the sense of Palais), then there existsadlice at each x in X.

4.1.4 Lemma. [9] Let G bealocally compact group acting on a Hausdorff space X
and let H be a closed subgroup of G. We call anonempty subset S € X an H-dlice
in X for the action of G if any one of the following equivalent conditionsis
satisfied:

1. ThereisaG-invariant open subset U S X that admits a G-equivariant map
@:U > G/H suchthat S = ¢~1(H). (Notethat U = GS, and ¢ is
determined uniquely by S because ¢(gs) = go(s)).

2. Thereisan H-space A and a G-equivariant open embedding y: G Xy A = X
such that ¥ ([e, A]) = S.

3. Thesubset S isinvariant under H, the subset GS < X isopen, and

X:G Xy S — GSisgivenby [g,s] = gs isahomeomorphism.

Before taking up the enough slice notion [8], we shall review some natural
properties of twisted product.
4.1.5 Proposition. The action H on G X A isfree and the map 6 is proper
whenever H is quasi-compact.
Proof. Takeh € H,and (g,a) € G X Aandlet h(g,a) = (g,a). Then
(gh™1, ha) = (g, a) whichimpliesto gh™! = g and hence h = e. Assume H is
guasi-compact. Suppose that thereisapoint (g, a) € SEy. Thenthereisanet
(hy, (g ay)) inH X (G x A) such that (g, h,t, haa,) = (g,a). SinceH isa

quasi-compact, then h, — h for some h, and o0 g, — gh and a, » h™'a. Since
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h(gh,h ta) = (g,a), then (gh,h ta) € 671(g,a) N cls ((ha, (ga,aa))) =0Q
which is a contradiction. Therefore, SE; = @ and 6 is proper.m

4.1.6 Corollary: Themap 6 isclosed.m

4.1.7 Proposition. Let G be atopologica group and H be a closed subgroup of G.
Then for every H-space A the action of H on G X A isw-Cartan. Moreover, if G
and A areT,, then the action is also w-proper ( G Xy A is Hausdorff).

Proof. We shall provethat /(g,a) = @ for every (g, a). Supposethat (g,,a;) €
J(g,a) forsome(g,,a,) € G X A. Thentherearenetsh, —» o in H and

(9 Aa) = (g, @) suchthat (gahg*, heas) = (g1, a1). Then g hgt -

g. and h;' - g~lg, . Since H isaclosed, we have a contradiction. Therefore,
J(g,a) =0 .If G X AisT,,thend isw-proper.m

4.1.8 Proposition. Let K be a quasi-compact subset of T, topological group G, and
H be aclosed subgroup of G. Thenfor aT, H-space A, the restriction of quotient
mapq: K X A - G Xy AisSproper.

Proof. To show that E, = @, suppose that thereisapoint [g, a] € E,. Then there
isanet (k,,a,) > 0 inK X A suchthat [k,,a,] = [g,a]. Wehavek, - g A
a, — a which contradicts our assumption. Therefore, E, = @. Since K X AisT,, q
IS proper.m

4.1.9 Corollary. Themap A — [e, A] isa G- map and an embedding from A into
the orbit space G X A.

Proof: It isarestriction of the quotient map g on {e} x A whichis proper (closed)
by proposition (4.1.8).m

4.1.10 Remark.
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1. Since G Xy S isconsidered a G-space by theformulag[g’,s] = [gg’, s],
then every G- orhit [g, s] can be written as G[e, s] where e is the identity
element.

2. IfseSand g € G, then Gy = H;. If g € G5y and g[e, s] = [e, s], then
[ge,s] = [g,s] = [e, s] thisimpliesto that there existsan h € H such that
g =eh™land hs =s. Thusg = h and g € H,. Onthe other hand, if h €
H,, then hle, s] = [h,s] = [hh™", hs] = [e, s]. Therefore, Gy = Hs.®

3. 1f 1,9, € G and sy, s, € S, thenthe set (([gy, 51), [92, 52])) =

g2(({s1}. {52 ugi". Take g € (([g1, 511, [92,52)). then [ggy, 51] =
[g2, s,]. By the definition of action, thereisanh € H suchthat gg,h™! =
g, and hs; = s,. Thus, h € (({s1},{s,}))y and g = g,hg;* €

g2(({s1}, {s2D)ng1 " Conversely; if g € g,(({s1}, {s2))ngr ' theng =
g.hgi! forsomeh € (({s1},{s,}))y. Since hs; = s,, then we have
g(g:h™") = g, or (gg1)h™" = g,. Therefore, [ggy, 511 = glg1, 1] =
[92,52] and g € (([g1,51], [92,52]))-m

4.2 Slicein w-Actions

In this section, we shall follow the definition of Biller for slice. However, we
will not consider separation axiom propertieson G and X.
4.2.1 Definition. Let G be atopologica group that acts continuously on a space X
and let H be a closed subgroup of G. An H-dlicein X for the action of G isan H-
invariant subset S € X such that the continuous G-invariant map G Xy S —» X

whichisgiven by [g,s] = gs isan open embedding. Moreover, the action said to
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be having enough sliceif for each point x € X, thereis a closed quasi-compact
subgroup K of G such that x is contained in a K-dlice.
4.2.2 Remark. Taking the definition (4.2.1), it isobviousthat GS isopenin X.
Consider amap GS — G /H whichtakes gs — gH. It iswell-defined sinceif
151 = g5, then g51g,s; = s, and because S isonly invariant under H, then
g;1tg, € Hand g,H = g,H. Itisclear the map is an equivariant and a surjection.
Its continuity comes from the continuity of themap ¢ X, S — G /H and the
openness and surjection of themap G x5 S — GS. We have that the definition
(4.2.1) impliesthe Palais (definition 4.1.1). Therefore, in the Palais setting the two
definitions are equivalent (lemma 4.1.4).

The following result comes already from our sense of w-Cartan action.
4.2.3 Proposition. If G isatopologica group and S isan H-space where H isa
subgroup of G, then the action of G on G Xy S isw-Cartan if and only if the action
of H on S isw-Cartan.
Proof: Assumethat S is a Cartan H-space. Suppose thereiss € Sand g € G such
that [g, s] € J([g,s]). Thenthen thereisanet g, — « inG and [g,, S.] = [9, 5]
suchthat ;94 Sel = (9494 Se] = [9,s]- Thisimpliesthat g, — g and
Ja9e — g and s, — s. By the definition of the twisted product, let h, € H bea
netin H suchthat g/, g,h,* - g and h,s,.— s. Sinces & J(s), then we have
h, » h € H.Thus g, — ghg™! € G whichisacontradiction. Conversely,
suppose that thereisapoint s € S suchthat s € J(s). Then thereisanet h, —»
iInH andanets, » sinSwithh,s, - s. Sincethemap G XS - G Xy Sis
continuous and (e, h,s,) isanetin G x S convergesto (e, s), then [h,,s,] =
hqle, sq] = [e, haSe] = [e,5]ING Xy S thismeansthat [e, s] € J([e, s]) which

contradictsthat G X, S isw-Cartan. Therefore, the propositionistrue.m
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4.2.4 Proposition. Let G be atopologica group, and H be a closed subgroup of G
which actson H. Then there is a homeomorphism g fromS/H — (G x4 S)/G.
Proof. It follows from the composition of induced maps from compaosition maps u

such that the following diagram is commutative,

u:H xS - GEGXS§ - G Xy S
) ) )

ES/H=HxyS— GxuyS— (GxyS)/G
and is determined by the maps (h, s) — (h,s) — [e, s], and then i(Hs) = G|e, s]
which is a continuous bijection. To show j isopen, take US/H and open S/H, then
itsimage under 1 is exactly the image of the subset G x U under g o u whichis
open where q is the canonical quotient map.m
4.25 Corollary. If G isatopologica group and S isan H-spacewhere H isa
subgroup of G. Thentheactionof G on G Xy S isw-proper ( w-strongly proper) if
and only if the action of H on S isw-proper (w-strongly proper).
Proof. It follows immediately from the previous proposition.m
4.2.6 Proposition. If X isaT, G-space and X has enough dlice, then X isw-Cartan.
Proof. Assume that the action has enough slice. To show that for every point x €
X the condition x & J(x), pick apoint x € X. Then there is a closed quasi-compact
subgroup H such that x contained in H-dliceS € X. That is,themap p: G Xy S ~
X isan open embedding. Since H is quasi-compact and S is an H-space, then the
action of H on S isw-Cartan, that isx & J(x) with respect to this H-space S. By
proposition (4.2.3). the G-actionon G Xy S isw-Cartan. Sincethemap p :
[g,s] = gs isan open embedding, then gx & J(gx) and hencex & J(x) inthe G-
space GS which is an open subset of X. Therefore, x € J(x) in the G-space X and

theaction of G on X isw-Cartan.m
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4.2.7 Remark. For the slice theorem in the Palai s setting we know that w-notions
and Palais’ notions coincide. We may also then give the inverse of the other
direction of the above proposition, but we need the following facts.

4.2.8 Definition. A locally quasi-compact group is called almost connected
provided that the orbit space G /G, is quasi-compact (and hence compact since
every totally disconnected topological group isT,).

4.29 Lemma 1. If G islocaly quasi-compact, and H is a closed subgroup of G,
then H islocally quasi-compact and the orbit space G /H islocally compact.

Proof. It isobvious.m

4.2.10 Lemma. [23] If G islocally quasi-compact, then G /G, contains arbitrarily
small compact open subgroups and corresponding to these groups, G contains open
subgroups G~ such that G/ G, is compact.

4.2.11 Remark. According to lemma 2, every locally compact group contains an
arbitrary open subgroup which is amost connected.

4.2.12 Lemma. [15] If the component G, of the identity element of alocally
compact group has a compact factor group G /G., then every neighborhood of the
identity of G contains a compact normal subgroup N suchthat G/N isaliegroup.
4.2.13 Lemma. [9] Let G be alocally compact group acting properly on a
completely regular space X. If x € X and N isacompact normal subgroup of G
such that G /N isalLiegroup, then x is contained in aG, N-slice for the action of G
onX.

4.2.14 Theorem. An action of alocally compact group K on a completely regular
space X has enough diceif and only if it isw-Cartan.

Proof. Thefirst direction of the proof comes immediately from the proposition
(4.2.6). Assume that an action of alocally compact group K on X isw-Cartan.

Since K isalocally compact, then K contains an arbitrary open almost connected
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subgroup K~ by lemma (4.2.10) such that G = K /G, is compact. By lemma
(4.2.12), every neighborhood of the identity element e in K contains a compact
normal subgroup N such that K'/N isaLiegroup. Since X is aw-Cartan G-space,
every point x € X hasathin (open) neighborhood U on which G actsw-Palais
proper. Then by lemma (4.2.13), x contained in K, N-slice S with respect to the
actionof G on X.m

According to our aim, namely putting the three actions in clear arrangement, we
return to Baum-Connes-Higson proper, definition (3.1.1). We shall show the | atter
proper is just strongly proper under its assumption. The three conditions of the
definition (3.1.1) are equivaent to that X isw-Cartan.

4.2.15 Proposition. Under the assumption of the definition (3.1.1), the three

conditions of the definition are equivalent to that X is w-Cartan.

Proof. Assume the three conditions of the definition (3.1.1) are satisfied. By
proposition (3.2.11), it suffices to show every point has athin neighborhood. Take
apoint x € X, thereisatriple (U, H, p) such that the three conditions are satisfied.
PutS = p~1(H),and p(g~1x) = H forsome g € G. ThenS isan H-invariant
closed subset of U. Since G isalocally compact and H is compact, then thereisa
compact neighborhood V of HinG/H. Let W =uU {#: 7 € V}. Then W isa
compact neighborhood H inG. V = p~1(V7) isaneighborhood of S in U. It is easy
toseethat g~'x € S € V and ((V,V)) = W, that is g~1x has athin neighborhood
I in U that is equivalently x has athin neighborhood gV in U and hence it is open
in X. Therefore, X is w-Cartan. Conversely, by theorem (4.2.14) if x € X, then x
iIscontained in H-dlice, say S. Put (GS, H, p) wherep(gv) = gH forevery g € G
andv € V. Thetriple (GS, H, p) satisfiesthe three conditions of the definition
(3.11).m
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4.2.16 Corollary. Let G be alocally compact and second countable (T, included)
and let G act continuously on a metrizable space X. Then the following are

equivalent.

1. X isaw-strongly proper G-space.

2. X isaBa-Co-Hi proper G- space.
Proof. (2 — 1) follows from proposition (4.2.15), X is paracompact and hence
X/G isaswell. For (1 = 2), itisimmediately implied by proposition (4.2.15).m
4.2 17 Remark. Palais has presented many results using the dice theorem. Here
we aso confirm some of the results in the context of an arbitrary locally compact
(non-necessary Lie) group.
4.2.18 Corollary. Let S be H-dlice at apoint x in X. Then there is aneighborhood
V of x suchthat y € V implies G,, is conjugatein G to asubgroup of H. Moreover
If 0 isany neighborhood of e € G, then VV can be chosen so that in fact for
eachy € V wehaveG, € gHg™' forsome g € 0.
Proof. Takex € X and S be a H-slice containing x. Then thereisaG-map f: GS —
G /H. Take an open neighborhood of the identity element e inG, say N. Put U =
f~Y(NH/H), then U is an open neighborhood of x in GS and hencein X. For
every u = nhinU, thenwehave G, € G¢) = Gpy = nHn™'.m
4.2.19 Corollary. Let S bean H-dliceat apoint x in X. If K isany closed subgroup
of G whichincludes H, then KS isaK-dlicein X containing x.
Proof. Let f: G Xy S — G /H bethe G-map that associated with the H-dlice S.
SinceH < G, thereisacanonical map g: G/H = G/K givenby gH — gK. The
composition of thetwoisamap G Xy S = G/K.Since G Xg (K Xy S) =G Xy S

and (K Xy S) = KS since S is H-slice under the subgroup K. Therefore, the
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compositionisthe G-map G Xx KS = G /K and hence KS is K-dlice containing

x.n
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