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ABSTRACT 

A Machine Learning and Data-Driven Prediction and Inversion of Brittleness: A Case 

Study in Southwest Pennsylvania, Central Appalachian Basin 

Tobi Ore 

In unconventional reservoir sweet-spot identification, brittleness is an important parameter that is 

used as an easiness measure of production from low permeability reservoirs. In shaly reservoirs, 

production is realized from hydraulic fracturing, which depends on how brittle the rock is–as it 

opens natural fractures and also creates new fractures. A measure of brittleness, brittleness index, 

is obtained through elastic properties of the rock. In practice, problems arise using this method to 

predict brittleness because of the limited availability of elastic logs.  

To address this issue, machine learning techniques are adopted to predict brittleness at well 

locations from readily available geophysical logs and spatially using 3D seismic data. The 

geophysical logs available as input are gamma ray, neutron, sonic, photoelectric factor, and density 

logs while the seismic is a post-stack time migrated data of high quality. 

Support Vector Regression, Gradient Boosting, and Artificial Neural Network are used to predict 

the brittleness from the geophysical logs and Texture Model Regression to invert the brittleness 

from the seismic data. The Gradient Boosting outperformed the other algorithms in predicting 

brittleness. The result of this research further demonstrates the application of machine learning, 

and how these tools can be leveraged to create data-driven solutions to geophysical problems. 

Also, the seismic inversion of brittleness shows promising results that will be further investigated 

in the future. 
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CHAPTER 1 – GENERAL OVERVIEW 

1.0 INTRODUCTION 

Advancement and sophistication of technology have significantly impacted the commercial 

production of hydrocarbons from unconventional reservoirs. Technologies such as horizontal 

drilling and multistage hydraulic fracturing (stimulation) have made the exploitation of previously 

untapped resources not only possible but profitable. Hydraulic fracturing is a technique in which 

fluids are injected at high pressure into the target formation to activate or create a fracture network, 

thereby increasing the ability for fluids to flow. These techniques have transformed the shale 

reservoirs into playing a major role in the oil and gas industry and also contributed to tremendous 

shale gas development and production, thus the shale boom. Shale has become an important 

reservoir rock, as opposed to the preconceived notion of it being a source rock. To better 

understand the reservoir properties, several studies have been carried out using various data types 

such as cores, well logs, seismic, etc. 

A useful parameter in unconventional resource (shale) exploration is the brittleness, as brittle rocks 

will most likely exhibit natural fractures with a high chance of induced fractures. Brittleness which 

is a function of mineralogy and elastic rock properties is the rock’s ability to fail under stress and 

maintain a fracture once the rock fractures (Rickman et al., 2008). This property is very crucial in 

the exploitation of unconventional oil and gas, as differentiating between ductile and brittle rocks 

has become key to stimulation success. The area with high brittleness can be drilling targets and 

candidates for hydraulic fracturing, as the injected proppant during stimulation will keep fractures 

open and also fill newly created fractures. However, ductile rocks are believed to deform 

plastically, therefore when stimulated, seal-off before the proppant can fill the created fracture 

inhibiting fluid flow.  
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The estimation of the brittleness of rocks is a contentious issue that has been up for debate over 

the decade. Several techniques have been proposed, but no one method is universally accepted. 

This may be due to the contrast between the mineralogy of the same type of rocks or the imminent 

geomechanical difference due to the rheology of the rocks. However, some of the proposed 

methods of estimation have theoretical justification and are therefore adopted as a generalization, 

but care must be taken. 

This research attempts to bridge the gap in estimating the spatial and temporal variability of 

brittleness by adopting a machine learning approach. The major focus is the Middle Devonian 

Marcellus shale which is part of the Hamilton group. It is located in the Appalachian basin which 

spans approximately 75,000 square miles in Pennsylvania, New York, Ohio, West Virginia, 

Virginia, and Maryland (EIA, 2017). The Marcellus shale is a carbonaceous, brittle, soft, and black 

unit with high pyrite content and beds of limestone. It has a low clay content, high quartz content, 

and total organic carbon (TOC) of 1-9% (Engelder, 2008).   

1.1 STATEMENT OF PROBLEM 

Hydraulic fracturing, which is a stimulation technique used to produce hydrocarbon from tight, 

unconventional reservoirs, depends on the brittleness of the target reservoirs. Brittleness, the 

ability of a rock to fail under stress, is thus an important parameter that is of high significance in 

the evaluation of unconventional reservoirs. It is usually estimated from cores and well log data. 

However, this method only provides estimates around the borehole not to mention the cost of 

acquiring the data. It is, therefore, imperative to develop a workflow that can effectively predict 

the brittleness for wells without the right data and away from the well location. This will aid in the 

optimization of fracture propagation during the stimulation process, and will also serve as an input 

for reservoir modeling. 
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1.2 AIM 

The goal of this research is to develop a workflow/template that can be adopted in basins with 

limited data where the brittleness estimation is an important parameter in the sweet spot 

identification. 

1.3 OBJECTIVES 

The objectives of this research are to: 

1).  Estimate the brittleness from the geomechanical information of the well using existing 

relationships. 

2). Develop a machine learning model that predicts the brittleness from other conventional 

well logs. 

3). Process the seismic cube through waveform spectral analysis to sample the reservoir signal 

at different frequencies to find a relationship between the seismic texture and the brittleness 

estimates. 

1.4 LITERATURE REVIEW 

Machine Learning techniques are being applied to solve numerous problems in geosciences. Its 

effectiveness stems from the fact that compared to conventional numerical models, they do not 

need to be explicitly programmed, but allow the use of basic mathematical operations such as 

additions and multiplications “to solve complex, mathematically ill-defined problems, nonlinear 

problems or stochastic problems” (Graupe, 2007). 

In the area of reservoir description, Salehi et al. (2017), Rolon et al. (2009), and Zhang et al. (2018) 

applied Artificial Neural Networks (ANN) in the generation of synthetic well logs. Tan et al. 

(2015) applied a support vector regression to predict the total organic carbon content of shale from 
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wireline logs further displaying the predictive capabilities of these algorithms when dealing with 

geological and geophysical data. 

A plethora of techniques exist for the estimation of brittleness. Some involve laboratory stress-

strain measurements using core, elastic properties, and mineral content analysis using well logs to 

estimate brittleness. Wang and Gale (2009) estimated brittleness using mineralogical techniques 

on core measurements. Grieser and Bray (2007) proposed a brittleness cut-off using Young's 

modulus and Poisson's ratio calculated from well logs. This method provides a fast and easy 

estimate because it is much more common to have log data covering the entire interval that will be 

hydraulically fractured and also widespread. Jarvie et al. (2007), Altindag (2003), Rickman et al. 

(2008), Goodway et al. (2010) have also attempted to estimate brittleness, but there is no 

universally accepted technique. 

Negara et al. (2017) applied support vector regression in the prediction of brittleness from 

elemental spectroscopy and petrophysical properties. They found that the laboratory-measured 

brittleness matched well with the support vector regression prediction. The result of the research 

proved that the support vector regression is promising in building a brittleness prediction model 

based on mineralogy logs and petrophysical logs. 

In this area of study, Donahoe and Gao (2016) used waveform regression attribute to enhance the 

visualization of subsurface structures by defining structural discontinuities and deformational 

fabrics from the seismic data that will be used in this proposed study. This technique was 

incorporated with variance and ant tracking to resolve a finer map of the fault and fracture network 

in the study area. This research observed a fore-thrust to back-thrust pattern and detachment faults 

within the Devonian intervals, including the Marcellus Shale. The primary stress orientation during 
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the Devonian was interpreted to be approximately 105°–120° azimuth, which may affect drilling 

orientations in the hydraulic fracturing process of the Marcellus gas shale reservoir. 

Utilizing the 3D seismic data from the study area, Gao et al. (2018) demonstrated that the structural 

style in the Devonian section is dominated by east-vergent folds and reverse faults, which contrasts 

with that in the Valley and Ridge Province where west-vergent folds and thrusts dominate. The 

Acadian hinterland-vergent faults were linked to the shale gas preservation through a detailed 

analysis of seismic structures and seismic facies.  

The development of the lower Marcellus shale has been very successful because of its siliceous 

nature which makes it brittle and easy to fracture, and because of its natural fractures (Sumi, 2008). 

There are two different types of natural fractures present in the Marcellus shale: J1 fractures with 

a strike of 60-75o and J2 fractures with a strike of 315-345o.  

Efforts have been made to expand the characterization of brittleness into three dimensions by the 

application of seismic data. Perez and Marfurt (2014) used prestack seismic inversion calibrated 

with a mineralogy-based brittleness template from elemental capture spectroscopy and elastic log 

measurements. Zhang et al. (2015) applied machine learning algorithms to obtain a classification 

pattern between elastic properties and brittleness index to generate 3D brittleness estimates 

through seismic inversion. 

Hermana et al. (2019) used a novel method that utilized the scaled inverse quality factor of P-wave 

(SQp) and scaled inverse quality factor of S-wave (SQs) attributes to estimate the brittleness of 

rocks. This technique, which was cross-validated with fracture density from formation-imager 

(FMI) log, showed that there is a significant correlation between brittleness estimated from elastic 

properties and fracture density. 
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In this research, for the spatial prediction of brittleness, I utilize a seismic texture analysis 

algorithm to qualitatively predict brittleness from the seismic signal (Gao, 2011). Seismic texture 

has several advantages over traditional seismic amplitude. Not only does the texture analysis 

increase the frequency of the seismic events, but also it involves a statistical filtering process that 

enhances the signal-to-noise ratio. Gao (2011) developed a texture model regression method, one 

of the machine-learning algorithms, to enhance the depositional and fracture facies and reservoir 

qualities related to reservoir brittleness. Since the brittleness is related to the fracture and 

depositional facies which can be feasibly derived from seismic texture, a correlation is 

hypothesized to exist between brittleness and seismic texture (Gao et al., 2020). 

I begin with a review of the geology of the Appalachian Basin. Next, I estimate the brittleness 

from the elastic property of the rock calculated from the well logs. I then use Support Vector 

Regression, Gradient Boosting, and Artificial Neural Network to predict the brittleness for wells 

without elastic properties. The brittleness at the well locations is then correlated with the seismic 

texture attribute for the qualitative characterization of the brittleness throughout the reservoir. 

1.5 GEOLOGY OF AREA 

The study area is located in Greene County, southwestern Pennsylvania, in the Appalachian 

Plateau (Figure 1). The Appalachian Plateau is associated with three different orogenies that have 

resulted in the present structural and stratigraphic configuration. These orogenic events initiated 

in the Ordovician and extended through the Pennsylvanian are the Taconic (Late Ordovician—

Early Silurian), Acadian (Middle Devonian—Early Mississippian) and Alleghenian (Late 

Mississippian—Late Permian) (Park et al., 2010). Paleozoic sediments were deformed as a result 

of these tectonic events. Underlying these sediments are basement-involved sequences initiated by 

the Grenville Orogeny (Kulander and Ryder, 2005) followed by the post–Grenville rifting and 
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thermal subsidence (Shumaker and Wilson, 1996). Therefore, the study area is marked by episodes 

of compression, extension, and subsidence accompanied by transpression and transtension, which 

occurred during sequential orogenic and quiescent periods. In the Middle Devonian, present-day 

West Virginia, Pennsylvania, and parts of New York, Virginia, Maryland, and Ohio was a nearly 

enclosed epicontinental sea (Figure 2) which created restricted marine circulation within the 

Appalachian Basin that resulted in the deposition of the Marcellus shale (Woodrow, 1985).  

The Marcellus shale is an organic-rich black shale that was deposited in a foreland basin during 

the Acadian orogeny in the Middle Devonian period. This Orogeny resulted in rapid subsidence 

toward the east near the Acadian mountains and uplift to the west caused by tectonic loading 

(Ettensohn, 1985). The tectonic loading and subsidence coupled with eustatic sea-level rise led to 

the accumulation of this organic-rich shale (Lash and Engelder, 2011). According to previous 

studies the primary minerals are 9% - 35% mixed-layer clays (more abundant in upper member); 

10% - 60% quartz, 0% - 10% feldspar, 5% - 13% pyrite (more common toward the base of the 

formation), 3% - 48% calcite, 0% - 10% dolomite (carbonate minerals much more abundant in the 

lower Marcellus member), and 0% - 6% gypsum (Avary and Lewis, 2008; Roen, 1984; 

Wrightstone, 2009). 

The Marcellus interval is divided into two members: the lower Marcellus/Union Springs Shale and 

the upper Marcellus/Oatka Creek Shale. This unit was deposited on the Onondaga Limestone and 

is overlay by the Mahantango Formation, which together is referred to as the Hamilton Group 

(Figure 3). The Marcellus exhibits several different pressure regimes across the Appalachian 

Basin. Generally, Marcellus is under pressure to the southwest and normal-pressured to potentially 

overpressured to the northeast, with a transitional area in between (Zagorski et al., 2012). 
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Figure 1. Location map of the study area. 

 
Figure 2. Paleogeography of the study area in the middle Devonian (385Ma) (Modified from 

Blakey (2010)). 

 
Figure 3. Stratigraphic column of the Appalachian Basin showing the interval of focus. 

(Modified from Milici and Swezey, 2006) 
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CHAPTER 2 – WORKFLOW FOR PREDICTION OF BRITTLENESS FROM 

GEOPHYSICAL LOGS 

2.0 INTRODUCTION 

In the oil and gas industry, one of the common tasks in the exploration of hydrocarbon is reservoir 

description. Rock properties, e.g., porosity, permeability, lithology, and formation pressure, are 

sought to be understood in terms of their spatial distribution and variability. A high-level 

description of the said reservoir rock is achieved by utilizing geophysical logs, seismic signals, 

cores, outcrops, and well testing. 

A plethora of geophysical logs are in existence and the subsurface information obtained–as stand-

alone or in combination with other logs–is enormous. Therefore, these logs are acquired to aid 

hydrocarbon resource evaluation. However, often, these logs contain incomplete information 

because of cost limitations and/or borehole problems. Due to the importance of these well logs, a 

robust workflow needs to be adopted to compensate for missing or incomplete readings. 

With the advent of machine learning and sophisticated high-performance computing, a data-driven 

approach is now being adopted for the prediction of well log measurements. This data-driven 

approach utilizes the power of machine learning and its capability to solve complex problems 

without explicitly programming or assuming any initial and boundary conditions of subject matter 

in physics space. These techniques are fast becoming widely accepted and are now being applied 

to various aspects of the petroleum industry.  

Numerous machine learning algorithms have been widely used in many areas of science. In this 

study, Support Vector Regression (SVR), Gradient Boosting (XGBoosting), and Artificial Neural 

Networks (ANN) are used in the prediction of brittleness from geophysical logs. These three 



10 
 

techniques were selected out of a host of others because of its history in modeling similar problems, 

not to forget the computational constraints that have to be factored in when selecting suitable 

algorithms for a task.  

The purpose of this study is to test and select the most effective machine learning workflow to 

predict the brittleness from geophysical logs. The resulting model is then used to forecast the 

unknown brittleness for other wells with the known geophysical logs. Our concept and workflow 

have general applicability to derive any unknown reservoir property logs through machine learning 

from available logs. 

2.1 DATASET 

There are 6 wells available in the seismic survey area of this research. These wells have 

geophysical logs that vary in availability. Geophysical logs are measurements of the physical 

properties of rock formations in the subsurface. The design of this project is greatly affected by 

the availability of logs in the wells (Table 1), as only logs present in all wells are used for the 

research. This is due to the nature of the model structure. To bridge the gap of increasing the dataset 

to train an unbiased model, 2 wells outside the seismic survey area with full sonic-wave log suites 

are included. These wells shown in figure 4, are the MIP3H well (20 miles from Whipkey well) 

and the Boggess well (15 miles from Whipkey well). Lateral correlation of the lithology using the 

Gamma Ray log also confirms the physical relationship between the different wells, and that these 

new two wells will act as new reliable data to train the model (Figure 5). 
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Table 1. Crossmatch table showing the availability of geophysical logs in the wells. 

Well Name Gamma 

Ray 

Density Photoelectric 

Effect 

Neutron Sonic 

(Compressional) 

Sonic 

(Shear) 

St Whipkey       

MIP 3H       

Boggess       

Cree       

37-059-24212       

Corry       

Mohr       

V Virgili       

 

These geophysical logs were selected to serve as a basis to predict the brittleness because of their 

ability to reflect geomechanical properties variation in the rocks.  

A gamma-ray log records the natural radioactivity of a formation and is used primarily as a 

lithology identifier. The geomechanical properties of a rock depend on the mineralogical 

constituents which are in turn reflected as a variation in lithology.  

The density log is a measurement of the rock’s bulk density. It is proportional to porosity, shale 

content, and the matrix rock type and serves as an important component in most geomechanical 

calculations. 

Photoelectric factor logs are important mineralogy identifiers. They are acquired based on the 

principle that the photoelectric absorption properties of various elements are different, and can   
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thus serve as a lithology identifier also. 

Neutron log's main use is in the determination of porosity, and this is due to the sensitivity of the 

logs to hydrogen atoms in the formation. The logs are measurements from the interactions of a 

neutron flux from a source with the rocks and fluids. 

Sonic logs provide the formation’s interval transit time, which is a measure of the formation 

capacity to transmit seismic waves. This capacity is also related to the formation’s lithology, 

porosity, and texture.  

 

Figure 4. A base map that shows the relative location of all the wells used in this study. 
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Figure 5. A well correlation pane of the eight wells showing the lateral continuity of the lithology. 
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2.2 BRITTLENESS ESTIMATION 

Brittleness is the measurement of stored energy in rock before failure. It is a function of rock 

strength, lithology, texture, effective stress, temperature, fluid type (Handin and Hager, 1957, 

1958; Handin et al., 1963; Davis and Reynolds, 1996), diagenesis and total organic carbon (Wells, 

2004). Typically, brittle rocks fail under a certain level of differential stress which creates planes 

of weakness. They have a large region of elastic behavior but only a small region of ductile 

behavior (Figure 6). This is very important in hydraulic fracturing because these planes of 

weakness are then kept open by the injected proppant, causing secondary permeability in the rock. 

In contrast, malleable rocks deform plastically and can undergo significant strain before fracture. 

This causes the fractures in plastic rocks to close about the proppant, resulting in the sealing of 

pathways to fluid flow (Perez and Marfurt, 2013). 

Rocks with high brittleness usually possess natural and hydraulically induced fractures. However, 

brittle rocks may lack natural fractures entirely if the loading history is insufficient to drive fracture 

growth (Gale et al., 2007). Generally, the design and implementation of the hydraulic stimulation 

of the well will determine if the rocks will exhibit hydraulically induced fractures. 

There are many techniques used in estimating brittleness, due to the ambiguity in the definition 

and relativity in the estimation of brittleness. This has led to no standardized universally accepted 

brittleness concept or a measurement method defining or estimating the rock brittleness (Altindag 

and Guney, 2010). The two techniques that have been widely applied in the literature to estimate 

the brittleness is described below. The first method utilizes the mineral composition of the rocks, 

while the second uses the elastic properties. 
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The estimation of brittleness from the mineral content depends on the fact that the presence of 

quartz minerals in a rock increases the brittleness while clay minerals do the opposite. Also, rock 

physics gives a justification for why these two methods have been relatively accepted. It shows 

that the mineral composition of rocks determines the elastic properties of rock.  

The concept of the estimation of brittleness as the “Brittleness Index” (BI) was first proposed by 

Jarvie et al. (2007). They defined the BI as the ratio of quartz to the sum of quartz, clay, and calcite 

(Equation 1). Following the work of Wells (2004) that showed that the presence of dolomite tends 

to increase the brittleness of shale and organic matter tends to increase ductility, Wang and Gale 

(2009) included dolomite and TOC in the relationship (Equation 2). 

𝑩𝑰𝒋 =
𝑸𝒕𝒛

𝑸𝒕𝒛 + 𝑪𝒂𝒍 + 𝑪𝒍𝒚
                            (1) 

𝑩𝑰𝒘 =
𝑸𝒕𝒛 + 𝑫𝒐𝒍

𝑸𝒕𝒛 + 𝑫𝒐𝒍 + 𝑪𝒂𝒍 + 𝑪𝒍𝒚 + 𝑻𝑶𝑪
 (2) 

Where BI is the Brittleness Index, Qtz is the quartz content, Cal is the calcite content, Cly is the 

clay content by weight in the rock, and TOC is the total organic carbon content. 

 

Figure 6. Brittle versus ductile behavior of rock samples as seen on a stress-strain graph 

(Chopra and Sharma, 2015). 
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As two important elastic properties, Young’s modulus and Poisson’s ratio are here used to 

differentiate ductile rocks from brittle rocks in a relationship called the brittleness average 

proposed by Rickman et al. (2008). The brittleness average is calculated by first normalizing 

Young’s modulus and Poisson’s ratio by their ranges, to produce a scaled elastic parameter, and 

their average values. It is believed that ductile rocks exhibit a low Young’s modulus and high 

Poisson’s ratio, whereas brittle rocks exhibit a moderate to high Young’s modulus and low 

Poisson’s ratio (Grieser and Bray, 2007; Rickman et al., 2008).  

Young’s modulus and Poisson ratio are estimated from sonic and density log measurement. It 

follows from the wave equation (Equations 3 & 4) that the speed of wave propagation is related to 

the moduli of the material. 

𝑽𝒑 = √
𝑴

𝝆
  (3) 

𝑽𝒔 = √
𝑮

𝝆
   (4) 

Where Vp is the P-wave velocity (m/s), Vs is the S-wave velocity (m/s), M is the Compressional 

modulus (Pascals), G is the shear modulus (Pascals) and ⍴ is the bulk density (kg/m3). 

These wave velocities are used to estimate Young’s modulus and Poisson’s ratio using equations 

5 & 6: 

𝑬 = 𝝆𝑽𝒔
𝟐 [

(𝟑𝑽𝒑
𝟐 − 𝟒𝑽𝒔

𝟐)

(𝑽𝒑
𝟐 − 𝑽𝒔

𝟐)
]    (5) 

𝒗 = 𝟎. 𝟓 [
(𝑽𝒑

𝟐 − 𝟐𝑽𝒔
𝟐)

(𝑽𝒑
𝟐 − 𝑽𝒔

𝟐)
]     (6) 
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Where 𝐸 is Young’s Modulus and 𝑣 is Poisson’s ratio 

The calculated 𝐸 and 𝑣 are then normalized by a technique previously described using equation 7 

& 8 before applying it to estimate the brittleness with equation 9: 

𝑬𝒃𝒓𝒊𝒕𝒕𝒍𝒆𝒏𝒆𝒔𝒔 =
𝑬 − 𝑬𝒎𝒊𝒏

𝑬𝒎𝒂𝒙 − 𝑬𝒎𝒊𝒏
           (7) 

𝒗𝒃𝒓𝒊𝒕𝒕𝒍𝒆𝒏𝒆𝒔𝒔 =
𝒗 − 𝒗𝒎𝒊𝒏

𝒗𝒎𝒂𝒙 − 𝒗𝒎𝒊𝒏
           (8) 

𝑩𝑨 =
𝑬𝒃𝒓𝒊𝒕𝒕𝒍𝒆𝒏𝒆𝒔𝒔 + 𝒗𝒃𝒓𝒊𝒕𝒕𝒍𝒆𝒏𝒆𝒔𝒔

𝟐
   (9) 

Where 𝐸𝑚𝑖𝑛  is the minimum Young’s Modulus, 𝐸𝑚𝑎𝑥  is the maximum Young’s Modulus, 𝑣𝑚𝑖𝑛  is 

the minimum Poisson’s ratio, 𝑣𝑚𝑎𝑥 is the maximum Poisson’s ratio and 𝐵𝐴 is the brittleness 

average 

This research focuses on the brittleness estimated from the elastic properties. One drawback of this 

technique is that the P-wave and S-wave velocities are required to estimate the elastic properties. 

These velocities are obtained from a Full-waveform and dipole logging tool. Unfortunately, these 

tools are not always used in boreholes and when they are used it is generally deployed in the 

intervals of interest. There always seems to be ample P-wave sonic and density logs, but not S-

wave sonic logs. To bridge this gap, three machine learning algorithms are selected and utilized to 

build the most effective predictive models on a comparative basis. 

2.3 MODEL BUILDING 

Due to the unavailability of data, the brittleness can only be estimated for one well in the seismic 

survey. This is greatly due to the cost of acquisition of full-waveform sonic log among other 
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reasons. Therefore, a template needs to be created to predict the brittleness from other readily 

available logs in wells without a full-waveform sonic log. This, previously, was a challenge due 

to the non-linear relationships between these logs. Not forgetting the number of mathematical 

simplification and assumptions needed to properly model the predicted property. With the 

proliferation of several machine learning techniques, this has become a problem of the past. The 

model in the research is developed using a support vector regression (SVR), gradient boosting 

(XGBoosting), and artificial neural network (ANN) architecture. 

2.3.1 Support Vector Regression 

The support vector regressor uses the same principles as the support vector machine (SVM) with 

the only difference being that the SVR is used as an estimator while the SVM is a classifier. The 

principle behind SVM is that in an N-dimensional space, a hyperplane can be drawn to distinguish 

the different classes. 

Given a training input x with corresponding target values y, the support vector regression looks for 

a function 𝒇(𝒙) = (𝒘, 𝜱(𝒙)), with 𝑤 and 𝛷(𝑥) being vectors that minimize the regularized risk 

(Cortes and Vapnik, 1995): 

𝑹[𝒇] =
𝟏

𝟐
‖𝒘‖𝟐 + 𝑪 ∑ 𝑳(𝒚, 𝒇(𝒙)),

𝒎

𝒊=𝟏

       (10) 

The constant C determines the trade-off between the flatness of f and the amount up to which 

deviations larger than ϵ are tolerated. 𝑳(𝒚, 𝒇(𝒙)) is either the linear ϵ-insensitive loss (L1-SVR) 

function defined by equation 11 

𝑳(𝒚, 𝒇(𝒙)) = |𝒚 − 𝒇(𝒙)|𝛜 = 𝐦𝐚𝐱(𝟎, |𝒚 − 𝒇(𝒙)| − 𝛜),        (11) 
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Or quadratic ϵ-insensitive loss (L2-SVR) defined by equation 12. 

𝑳(𝒚, 𝒇(𝒙)) = |𝒚 − 𝒇(𝒙)|𝛜
𝟐.            (12) 

The optimization problem of minimizing the loss function is solved by setting up a dual problem 

and using Lagrange multipliers. The formulation is beyond the scope of this research, but the 

method will be adopted in the algorithm used in training the SVR. 

2.3.2 Gradient Boosting 

This is a machine learning technique that produces a predictive model by combining several weak 

decision trees in a process called an ensemble. It builds the model in a sequential, stage-wise 

fashion allowing for the optimization of a suitable cost function. The decision trees go from input 

features of the data, represented in the branches, to the target/output feature, represented in the 

leaves. In Gradient Boosting, the subsequent decision tree learns from the mistake of the previous 

branch, combining the results with an appropriate weight. This model is made up of three 

components; a loss function, a weak prediction model, and an additive model to combine the weak 

models (Brownlee, 2016). 

Assume that a weak model Fm exists at the first iteration of training which can predict the mean of 

the target, the gradient boosting algorithm improves on Fm by constructing a new model that adds 

an estimator h to create a better model Fm+1. h is referred to as the residual of the previous model. 

To describe what the gradient boosting algorithm does, consider a training set {𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑛 , a 

differentiable loss function 𝐿(𝑦, 𝐹(𝑥)), according to Hastie et al. (2009); 

Initialize model with a constant value: 

𝑭𝟎(𝒙) = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝜸

∑ 𝑳(𝒚𝒊, 𝜸)

𝒏

𝒊=𝟏

   (13) 
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For m=1 to M where M is the number of iterations: 

 Compute the pseudo-residuals: 

  𝒓𝒊𝒎 = − [
𝝏𝑳(𝒚𝒊,𝑭(𝒙𝒊))

𝝏𝑭(𝒙𝒊)
]

𝑭(𝒙)−𝑭𝒎−𝟏(𝒙)
  𝑓𝑜𝑟 𝒊 = 𝟏, … , 𝒏. 

 Fit a weak learner hm(x) to pseudo-residuals 

 Compute multiplier 𝜸𝒎 by solving 𝑭𝟎(𝒙) = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝜸

∑ 𝑳(𝒚𝒊, 𝑭𝒎−𝟏(𝒙𝒊) + 𝜸𝒉𝒎(𝒙𝒊))𝒏
𝒊=𝟏  

 Update the model 

  𝑭𝒎(𝒙) = 𝑭𝒎−𝟏(𝒙) + 𝜸𝒎𝒉𝒎(𝒙) 

Output the trained model 𝑭𝑴(𝒙) 

In this research, a popular implementation of the gradient boosting, called Extreme Gradient 

Boosting (XGBoost) will be used. The XGBoost, developed by Chen and Guestrin (2016), is 

widely adopted because of its scalability, handling of missing data, and clever penalization of trees. 

2.3.3 Artificial Neural Network 

The concept behind the ANN was inspired by the neurons in the human body. These neurons are 

interconnected and transfer information from one cell body to another through the synaptic 

connections at the end of the axon (Figure 7). Each neuron consists of hundreds of synapses which 

results in the complex, highly connected nature of the neural network system of the human body 

(Graupe, 2007). 

In the 1940s, Warren McCulloch and Walter Pitts proposed a simplified mathematical model of 

the biological neurons and showed that, in principle, they can compute any arithmetic or logical 

function (McCulloch & Pitts, 1943). In the field of neural networks, they are generally regarded 

as pioneers as the future advancement was motivated by their proposal. This led to the development 
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of the perceptron algorithm by Rosenblatt (1957). Rosenblatt proved that a perceptron can separate 

the input into classes provided they are linearly separable. A limitation of this single layer 

perceptrons was published in a book called “Perceptrons” by Marvin Minsky and Seymour Papert 

(Minsky and Papert, 1969). They showed that elementary calculations such as simple “exclusive 

or” (XOR) problems cannot be solved by single layer Perceptrons. These claims by Minsky and 

Papert resulted in a waning effect on the acceptance and adoption of neural networks. It was not 

until Hopefield’s work on new learning algorithms such as back-propagation, neural networks hit 

the ground running again. The growth of neural network research and applications has been 

phenomenal since this revival. 

Artificial Neural networks, as described above, mimics the biological nervous system. They are 

made up of several elements working together interconnectedly (Figure 7). These neurons receive 

inputs from other sources, perform a generally nonlinear operation on them, and then output the 

results. 

 

Figure 7. General representation of a single neuron of an ANN and the comparison with a 

biological nerve. 



 
22 

 

A typical ANN consists of three main parts: an input layer, a hidden layer(s), and an output layer 

(Figure 8). The input layer in this network is the leftmost layer, and the neuron with the layer is 

called input neurons. The rightmost layer is called the output layer (with the output neuron(s)) and 

the middle layer is called the hidden layer(s). 

 

Figure 8. Generalized ANN architecture. 

These parts are connected by a set of synapses that have individual weights. A signal xj at the input 

of synapse j connected to neuron k is multiplied by the synaptic weight wkj. The weighted signals 

are then summed and a bias (bk) is introduced before operating by an activation function to 

introduce non-linearity into the output of the neuron. 

Mathematically, the neuron can be expressed as: 

𝒛𝒌 = ∑ 𝒘𝒌𝒋𝒙𝒋 + 𝒃𝒌

𝒏

𝒋=𝟏

         (14) 

𝒚𝒌 = 𝝈(𝒛𝒌)                            (15) 

Where 𝑥𝑗 is the input signal, n is the number of input, 𝑤𝑘𝑗 is the weight of neuron k, 𝑧𝑘 is the linear 

output of the input signal, 𝑏𝑘 is the bias, 𝜎(x) is the activation function, and 𝑦𝑘 is the output signal 

of the neuron. 
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In literature, these neurons have been combined in various ways resulting in several types of 

architecture. Some of these architectures are recurrent neural networks, multilayer feedforward 

neural networks, convolutional neural networks, and generative adversarial networks. These 

algorithms have been applied to a wide range of problems, and the selection of the architecture to 

adopt for a project depends on the nature of the data, the objective of the project and experience. 

In this research, the multilayer feedforward neural networks (MLP) is adopted because of the wide 

acceptance of its capability to solve similar problems, not to mention the extensive application of 

MLP in the field of geosciences and petroleum engineering.  

The feedforward systems operate in two steps. The first step involves training the neural network 

with the input. Here the weights for each synapse are randomly set and the input from the input 

layer is transferred to the hidden layer(s) then to the output layer. The second step is the application 

of a learning algorithm called backpropagation. In this step, the desired output is compared with 

the predicted output by the network and an error is estimated. This error is propagated backward 

from the output layer to the input layer and the weights of each synapse are adjusted. This general 

process is iterative, and it stops when the error generated becomes considerably small, thus 

referring to the system as a trained neural network. Feedforward networks have no connections 

that loop making them relatively easy to implement. 
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2.4 CORRELATION BETWEEN FEATURES 

The strength of association between the input features and the output feature is analyzed to observe 

any linear or non-linear relationships. This is carried out by utilizing statistical techniques for 

bivariate analysis. The value of correlation ranges from +1 to -1, where a value of ± 1 indicates a 

perfect degree of association between the two variables and the strength of the relationship between 

the variables reduces as the correlation coefficient tends to 0. Also, the sign of the coefficient 

signifies the direction of the relationship; a “+ sign” indicates a positive relationship, and a “– 

sign” indicates a negative relationship. In this research, two types of correlation will be measured; 

Pearson correlation and Spearman correlation. 

Pearson correlation is the most widely used correlation statistics to measure the degree of the 

relationship between linearly related variables. It is based on the method of covariance and gives 

information about the magnitude of the association as well as the direction of the relationship. 

Equation 16 is used to calculate the Pearson correlation: 

𝒓𝒙𝒚 =
𝒏 ∑ 𝒙𝒊𝒚𝒊 − ∑ 𝒙𝒊 ∑ 𝒚𝒊

√𝒏 ∑ 𝒙𝒊
𝟐 − (∑ 𝒙𝒊)𝟐√𝒏 ∑ 𝒚𝒊

𝟐 − (∑ 𝒚𝒊)𝟐

             (16) 

Where 𝑟𝑥𝑦 is the Pearson correlation coefficient between x and y, 𝑛 is the number of observations, 

𝑥𝑖 is the value of x for the ith observation, and 𝑦𝑖 is the value of y for the ith observation. 

Spearman rank correlation is a non-parametric test that is used to measure the degree of monotonic 

association between two variables.  The Spearman rank correlation test does not carry any 

assumptions about the distribution of the data and is the appropriate correlation analysis when the 

variables are measured on a scale that is at least ordinal. 

Equation 17 is used to calculate the Spearman rank correlation: 
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𝝆 = 𝟏 −
𝟔 ∑ 𝒅𝒊

𝟐

𝒏(𝒏𝟐 − 𝟏)
                 (17) 

Where 𝜌 is the Spearman rank correlation, di is the difference between the ranks of corresponding 

variables, and 𝑛 is the number of observations. 

2.5 DATA PREPROCESSING 

It is common practice in the machine learning realm to preprocess the raw data, therefore, 

transforming it into a format that will produce a more efficient and accurate model. Typically, the 

data is partitioned into three segments: training, calibration, and validation. The training dataset is 

the set of data used to train the model and create a relationship between the input and output 

variables.  

The calibration dataset serves as an over-watch for the training process. It determines the quality 

of the different epochs. After every epoch of training, the weights are saved and the network is 

tested against the calibration dataset to see if the neural network is learning and getting better. This 

performance is measured by using one or more metrics such as Mean Square Error, R2 score, etc. 

The calibration dataset also serves as a means to prevent overtraining. 

The validation or test dataset plays an important role in accessing the generalization capabilities 

of the trained neural network. They are the subset of the data that the neural network has not seen 

and was not involved in the training process of the model. 

2.6 DATA NORMALIZATION 

This is an important step before building and training machine learning models. It involves 

normalizing the range of independent features of the data. This is important in improving the 

performance of machine learning algorithms where the range of values of raw data varies widely. 
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There are several normalization/scaling techniques available to preprocess data. In this research, I 

utilize the MinMaxScaler which transforms each feature to a specific range. For each value in a 

feature, the MinMaxScaler subtracts the minimum value in the feature and is then divided by the 

range. The range is the difference between the original data maximum and the original data 

minimum (equation 18).  

𝒙̂ =
𝒙 − 𝒎𝒊𝒏(𝒙)

𝒎𝒂𝒙(𝒙) − 𝒎𝒊𝒏(𝒙)
             (18) 

Where 𝑥 is the original value, and 𝑥̂ is the normalized value. 

This normalization technique scales and translates each feature individually such that it is the range 

of 0 and 1. This scaling doesn’t change the shape of the original distribution, therefore, doesn’t 

meaningfully change the information embedded in the original data. 

2.7 HYPERPARAMETER TUNING 

Hyperparameters are parameters that are not directly learned within the model. They are passed to 

the model during development and determine the performance of the model. These parameters 

need to be tuned for several reasons, some of which are: 

● Bias and variance trade-off: the complexity and depth of a machine learning model 

determine how well the model will generalize. A bias model is developed when the model 

is built in such a way that it has high accuracy on the training set, but poorly on the test set. 

While the variance is affected by restricting the model complexity to avoid memorization, 

the model will perform poorly on the development set. A sweet spot exists between these 

two scenarios and it can be achieved by tuning the hyperparameters, as every 

hyperparameter affects the bias and variance. 
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● Convergence and or speedup learning: In the context of machine learning, convergence is 

the point when the training process stops because no better model can be trained. How fast 

the training approaches this convergence is controlled by the hyperparameter called the 

learning rate.  

● Saddle points and local minima: saddle points and local minima are bottlenecks when 

training neural networks. They have a gradient of zero, therefore making the model stuck 

without room for improvement. Tuning hyperparameters such as learning rate and 

momentum will prevent this from happening. 

Hyperparameters considered in this research: 

Support Vector Regression 

1. C: This is the regularization parameter and it determines the strength of the regularization 

as it is inversely proportional to C. 

2. Gamma: Kernel coefficient. 

Gradient Boosting 

1. Max_depth: This is the maximum number of nodes allowed from the root to the farthest 

leaf of a tress. The ability for the model to learn complex relationship depends on the depth, 

however, deeper trees are susceptible to overfitting. 

2. Min_child_weight: This is the minimum weight required for a new node to be created in 

the tree. More branches are created in the tree if the min_child_weight is small, but the 

problem of overfitting can also arise. 

3. N_estimator: this is the number of gradients boosted trees which is equivalent to the 

number of boosting rounds. 
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4. Learning_rate: this is related to the weights of the nodes and determines how fast the 

boosting learning will reach a minimum. 

Artificial Neural Network 

1. Number of hidden layers:  The robustness of the data and nature of the problem sought out 

to be modeled must be considered when selecting the appropriate number of hidden layers. 

Also, as described above, when too small they lead to high bias and when too large lead to 

the problem of overfitting. 

2. Number of hidden units per layer: These also have to be tuned to find the perfect 

combination that will result in a network properly trained with output in between high bias 

and high variance. 

3. Solver: This is the algorithm the neural network will use to update the weights of every 

layer after each epoch. Some popular algorithms which will be tested are; stochastic 

gradient descent, Adam and lbfgs (Limited-memory Broyden-Fletcher-Goldfarb-Shanno). 

Describing how these algorithm works are beyond the scope of this research. 

4. Activation Function: This function defines the output of the node in the layer of the neural 

network.  The popular choice which will be used are ReLU (𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)),  tahn 

(𝒇(𝒙) = 𝒕𝒂𝒏𝒉(𝒙)) and logistic sigmoid (𝒇(𝒙) =
𝟏

(𝟏+𝒆−𝒙)
). 

5. Learning Rate: As discussed in the importance of hyperparameter tuning, the learning rate 

is a core hyperparameter that must be properly tuned for optimum performance of the 

model. Values that will be tested are between 10-3 and 1 with an increment in the power of 

10. 

6. Number of iterations: This is a hyperparameter that defines the number of times the 

learning algorithm will train over the entire training dataset. That is, one iteration/epoch 
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means that each sample in the training dataset has had a chance to update the internal model 

parameters (weight). This plays an important role in how well the model fits on the training 

dataset. This is usually tuned based on computational power and time. 

Cross validating the models for different hyperparameters manually is a nightmare as the 

combinations usually lead to hundreds or thousands of distinct models. Also, it may lead to 

variance problems where the accuracy obtained on one test is very different to the accuracy 

obtained on another test set using the same algorithm.  

A more efficient way to train the model and tune the hyperparameter is using Grid Search Cross-

Validation. The grid search is the process of performing hyperparameter tuning to determine the 

best hyperparameter combinations to optimize the model. While the cross-validation is a solution 

to the variance problem, where the data is divided into K folds. Out of the K folds, the first set is 

used for training while the remaining set is used for testing. This process is repeated K times, with 

every iteration using a new set for training. Figure 9 shows 5-fold cross-validation where 5 models 

are fitted on distinct yet partly overlapping training sets and evaluated on non-overlapping 

validation sets. The performance is computed as the arithmetic mean of all the 5 performance 

estimates from the validation sets. 

 

Figure 9. Schematic diagram of the structure of 5-fold cross-validation. 
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2.8 ESTIMATING MODEL PERFORMANCE 

There exist a lot of statistical techniques used to evaluate the performance of a model. They are 

based on some sort of relationship that measures the error between the observed values and the 

predicted values. Some of these metrics are: Root mean squared error, R-squared score, Mean 

squared error, and Mean absolute error. Throughout this research, the R-squared score will be used 

as the error metrics for model performance. 

The R-squared (R2) or the coefficient of determination is the proportion of the variance in the 

dependent variable that is predictable from the independent variable. The closer the value of the 

R2 is to 1 the more accurate the model is at predicting the variables. The R2 score is calculated 

using equation 19: 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒚𝒊 − 𝒚̅𝒊)𝟐𝑵
𝒊=𝟏

            (19) 

Where 𝑁 is the number of observations in the data set, 𝑦𝑖 is the observed/measured value, 𝑦̂𝑖 is the 

predicted value, and 𝑦̅𝑖 is the mean of the observed value (𝒚̅𝒊 =
𝟏

𝑵
∑ 𝒚𝒊 

𝑵
𝒊=𝟏 ). 

2.9 RESULTS AND DISCUSSION 

2.9.1 Elastic Based Brittleness Estimation 

The brittleness of the interval of interest was estimated using the technique described in the 

previous section. A display of the result is shown in Figures 10, 11, and 12 along with the plot of 

the other wells used in the machine learning prediction. As expected, the sonic is related to the 

mineralogy of the formation and is in turn shown by the inverse relationship with the brittleness.  

It can be seen that calcite greatly increases the brittleness and reduces the sonic response of the 

formation. When compared to the overlying and underlying formations, the Marcellus shale 
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relatively has low brittleness. However, there is also a variation in brittleness within the Marcellus 

itself. This is due to the heterogeneity of the Marcellus shale and the presence of calcite. 

Figures 10, 11, and 12 further show visually how all the selected geophysical logs are related and 

how they are a good fit to serve as the input features for the prediction of brittleness. 

 

 

Figure 10. Geophysical logs and estimated brittleness display for the Boggess well.  
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Figure 11. Geophysical logs and estimated brittleness display for the Whipkey well. 

 
Figure 12. Geophysical logs and estimated brittleness display for the MIP3H well. 
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2.9.2 Feature Selection 

The result of the Pearson's correlation shows that the brittleness estimate has a large association 

with the sonic (-0.7096), Gamma ray (-0.5364) and Neutron (-0.5162) but with the other variables, 

it had a low correlation (Density (+0.3759) and Photoelectric Factor (+0.0349)). Also, Neutron, 

Gamma ray, and Sonic showed an intrinsic large linear relationship (Figure 13a). 

These features were selected intuitively because of their inherent properties that are related to the 

brittleness of the formation. However, the Photoelectric Factor in which response is related to 

mineralogy showed low correlation which is not in agreement with the definition of brittleness, as 

related to mineralogy. To this end, to further investigate the non-linearity in the relations of the 

input features and the output, the spearman rank correlation was calculated. This further hinted 

that there might exist an apparent relationship between the brittleness estimation with Photoelectric 

Factor (Figure 13b). 

 

Figure 13. Heat map showing the (a) Pearson correlation and (b) Spearman rank correlation 

between the input and output features. 

(b) (a) 
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To visualize the relationship between these features and brittleness, cross-plotting was utilized. 

Also, these cross-plots were used to ocularly identify outliers, given the strain it imposes on model 

performance. Figure 14 shows the trend of how brittleness is changing with respect to other 

features. 

Figure 14. A crossplot of all the geophysical features with an overlay of the estimated 

brittleness. 
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2.9.3 Data Preprocessing 

Comparing the statistics of the features as shown in table 2 shows that the range of the features is 

of different magnitude; the range of gamma ray is 756, density is 0.82, neutron porosity is 0.38, 

photoelectric factor is 7.51, and sonic is 105 and brittleness average is 0.74. Also, the standard 

deviation indicates that using these raw features without normalization will have an adverse effect 

on the performance of the machine learning model. Scaling input and output variables is a critical 

step in using machine learning models. In practice, it is nearly always advantageous to apply pre-

processing transformations to the input data before it is used to train a machine learning model. 

Table 2. Dataset summary before normalization. 

 GR RHOB NPHI PEFZ DT BA 

count 5990 5990 5990 5990 5990 5990 

mean 137 2.67 0.17 4 72 0.42 

std 63 0.07 0.08 0.69 11 0.12 

min 24 2.29 -0.01 2.27 49 0.03 

25% 103 2.62 0.14 3.52 68 0.34 

50% 143 2.68 0.20 3.79 73 0.44 

75% 164 2.73 0.22 4.04 79 0.51 

max 781 3.12 0.38 9.78 105 0.77 

The MinMaxScaler is used to normalize the range of all the features to 1. Also, this normalization 

changes the standard deviation of the dataset to the same magnitude, thereby making them more 

suitable for the model consumption for optimal performance. A summary of the new data statistics 

is shown in table 3. 
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Table 3. Dataset summary after normalization. 

 GR RHOB NPHI PEFZ DT BA 

count 5990 5990 5990 5990 5990 5990 

mean 0.15 0.46 0.45 0.20 0.42 0.53 

std 0.08 0.09 0.20 0.09 0.19 0.16 

min 0 0 0 0 0 0 

25% 0.10 0.39 0.37 0.17 0.34 0.41 

50% 0.16 0.47 0.52 0.20 0.42 0.55 

75% 0.18 0.53 0.58 0.24 0.53 0.65 

max 1 1 1 1 1 1 

Contrary to the conventional partitioning of the data into three subsets; training, calibration, and 

testing, the dataset was first divided into two (training and testing). This is due to the nature of the 

training algorithm, which utilizes a cross-validation training scheme. Having an explicit 

validation/calibration dataset will be counterintuitive. 

The dataset is made up of 5,990 records. After splitting into training and test set using a 70%-30% 

scheme, the training set now contains 4,193 records while the test set has 1,797 records.  

2.9.4 Model Results 

The machine learning models were built in the python programming language utilizing the Scikit-

learn library (Appendix I). This library is well-maintained and popular because of its ease of use, 

and the wide range of already programmed machine learning modules.  

The Support Vector Regressor (SVR) exists as an estimator in the Support Vector Machines 

module of sklearn, the artificial neural network (ANN) was built using the MLPRegressor( ) model 

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html
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in the neural network module, while the gradient boosting (XGBoosting) was built using an 

efficient, and stable gradient boosting algorithm that exists in the XGBOOST library. 

Scenario 1 

Support Vector Regression 

The SVR was built and trained using gridsearch cross-validation. The parameters which were 

tuned are the regularization parameter (‘C’) and the kernel coefficient (‘gamma’). After 5-fold 

cross-validation, it was found that the best parameter combination was {'C': 10, 'gamma': 10}. The 

best score for the cross-validation is 0.76 with an average fit time of 3.3 seconds. After deployment 

of the model, the training score was 0.78 and the testing score was 0.77 with the result of the 

predicted and estimated brittleness shown in figure 15.  

 

Figure 15. A crossplot showing the relationship between the predicted brittleness using the 

SVR model and the estimated brittleness from the elastic property 

https://xgboost.readthedocs.io/en/latest/python/python_api.html
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Gradient Boosting 

The Gradient Boosting algorithm utilized decision trees as the estimators. The parameters which 

were tuned are the number of estimators (‘n_estimator’), the learning rate, the minimum child 

weight (‘min_child_weight’), and the maximum depth (‘max_depth’). After a 3-fold cross-

validation, it was found that the best parameter combination was {‘max_depth’: 8, ‘n_estimators’: 

100, ‘learning_rate’: 0.07, ‘min_child_weight’: 6}. The training score was 0.95 while after 

deployment of the model, and the testing score was 0.85 with a crossplot of the predicted and 

actual brittleness in figure 17. 

This model result displayed improved performance in predicting the brittleness as compared to the 

SVR model. Another added advantage of using gradient boosting is that the decision tree can easily 

be visualized. Also, the importance of each of the features in building the model can be 

investigated. This importance provides a scoring metric to show how valuable each feature was in 

the construction of the model as the more an attribute is used to make key decisions within the 

decision tree, the higher its relative importance. The importance is calculated for a single decision 

tree by the amount that each attribute split point improves the performance measure, weighted by 

the number of observations the node is responsible for, and then averaged across all the decision 

trees within the model. Figure 16 shows that Sonic has the most influence in deciding how the 

trees were built. This is expected as the brittleness estimate is closely related to the sonic as the 

elastic properties, calculated from the sonic, served as the basis for the estimation of the brittleness. 

It is worthy to note that the photoelectric factor showed little to no correlation with the brittleness 

estimate in the initial feature correlation. However, it was the second most important feature. 
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Figure 16. A histogram showing the significance of each feature in training the decision tree. 

 

Figure 17. A crossplot showing the relationship between the predicted brittleness using the 

XGBoost model and the estimated brittleness from the elastic property. 
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Artificial Neural Network 

The ANN model was built with caution, as they are very susceptible to overfitting. The majority 

of the publications available in this domain with high accuracy are a product of this effect because, 

given the right combinations of parameters, a neural network can model any problem. Therefore, 

the predictive ability of this model depends on whether the model is learning or just memorizing 

the data. Due to the limited number of features and records, the number of neurons in the hidden 

layer was trained with several numbers not exceeding 20 where 15 was found to be the best 

parameter, with a maximum iteration of 500 and a tolerance of 0.0001. The best score from the 3-

fold cross-validation of this model is 0.7561 with a test score of 0.7524 on redeployment on the 

training set and 0.7428 on the blind set. A linear trend can be seen in figure 18 which a crossplot 

of the predicted and actual brittleness. 

 

Figure 18. A crossplot showing the relationship between the predicted brittleness using the 

ANN model and the estimated brittleness from the elastic property. 
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The SVR, ANN, and XGBoost performed relatively well in modeling the brittleness. However, 

the models appeared to be affected in regions with low gamma ray. This might be due to training 

data bias, as the majority of the training sample is representative of formation response with high 

gamma ray. The effect of the gamma ray with regards to the model performance can be seen in 

figure 19. 

 

Figure 19. A display of all the different model results and the actual brittleness with reference 

to the gamma ray. 

Scenario 2 

After setting a baseline for the models using the available geophysical logs in the training data, a 

second scenario was modeled with only logs in all the wells. These logs were gamma ray, neutron, 

and density. The same step as before was carried out, however, deployment of the model cannot 

be verified as there are no brittleness estimations in all the wells. 
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The SVR model was trained with the best parameter for ‘C’ and ‘gamma’ being 10 and 100 

respectively. The best score for the cross-validation is 0.63 and after deployment, the training score 

was 0.67 and the testing score was 0.63. 

The best parameters for the XGBoosting model were ‘max_depth’ of 5, ‘min_child_weight’ of 6 

and ‘n_estimators’ of 100 with the Gamma Ray log being the most influential feature. The cross-

validation best score was 0.66 while the training score was 0.75 and the test score was 0.65. 

A one hidden layer ANN was trained with 20 neurons in the hidden layer. The cross-validation 

best score was 0.59, training score 0.60, and test score of 0.59. 

When comparing the results, though the three models have relatively close and good R2 scores, 

their prediction quality on the other wells not used in the training varies (Figure 20). The evaluation 

of this result in terms of the prediction quality is sensitive because there are no actual brittleness 

values for the other wells. Therefore, this is done on a basis of comparison with the other wells 

with the estimated brittleness and if the prediction makes actual geological sense. 

On this basis, the ANN and SVR model appears to fail. Though the SVR model performs well on 

the 3 wells used for training (Figure 20), on the other wells, it doesn’t make sensible predictions 

(Figure 21). This maybe is due to, in parts, the algorithm not finding suitable relationships between 

the features due to limited training data. Also, the ANN model had some negative predicted values. 

This doesn’t make physical sense as the brittleness estimate is between 0 and 1. Therefore, moving 

forward, with the availability of more data, the xgboost would be the algorithm of choice to model 

similar problems. 
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2.10 CONCLUSION 

Brittleness–which is a function of mineralogy and elastic properties–is a very useful parameter in 

unconventional resource exploration as areas with high brittleness can be candidates for hydraulic 

fracturing. The estimation of the brittleness of rocks is a contentious issue that has been debated 

over the decade, and several techniques have been proposed. In this research, the elastic property 

approach is adopted to estimate brittleness as this bears a more physical relationship. 

Support Vector Regression, Gradient Boosting, and Artificial Neural Network are applied to 

predict brittleness for wells without elastic logs. These algorithms present an opportunity for a 

more robust characterization of brittleness from geophysical logs. Gamma ray, density, neutron, 

photoelectric, and sonic logs are the selected logs used for the building and training of the 

predictive models based on preliminary feature selection which showed their correlation and 

relationship with brittleness. To extend this research to calibrating the 3D seismic data for a spatial 

brittleness estimation, the brittleness of the other wells in the seismic block was estimated using 

the three algorithms. However, the input features were affected by the availability of logs. The 

input features used were gamma ray, density, and neutron. 

The Gradient Boosting outperformed the Support Vector Regressor and Artificial Neural Network 

in terms of accuracy on predicting the blind/test set. Also in the second scenario, the Gradient 

Boosting was the best algorithm when comparing the quality of the prediction. The result of this 

research further emphasizes that neural networks are not a panacea of all modeling problems, and 

other algorithms should be explored before accepting the results. 
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CHAPTER 3 – WORKFLOW FOR INVERTING BRITTLENESS FROM SEISMIC 

TEXTURES 

3.1 INTRODUCTION 

3D seismic data have proven to be an effective tool in the exploration and development of oil and 

gas as it has been used to understand subsurface geology, and also recognize various stratigraphic 

and structural features. These features have been generally enhanced by the use of attributes. Over 

the past years, several workers have developed attribute extraction algorithms that have proven to 

be useful and widely applied by geophysicists. 

Seismic responses are affected by the properties of the rock in the subsurface, such as porosity, 

fluid saturation, and texture. Also, fractures in rocks significantly affect the seismic response as 

they facilitate compressibility which lowers the velocity and impedance. Therefore, brittleness is 

physically linked to the seismic signal texture. Seismic texture analysis has been proven to be 

useful in enhancing interpretation capabilities and in extracting quantitative information in 

subsurface reservoirs (Chopra, 2005; Gao, 2004, 2008). 

Gao (2011) described an algorithm that carries out a complex trace analysis for reservoir property 

prediction, thereby, treating the seismic amplitudes as analytic signals and classifying the seismic 

signal texture for each sample of the seismic data. This seismic texture has conceptually been 

evolved and extended from the texture analysis of seismic data first introduced by Love and 

Simaan (1984) where the seismic texture is referred to as the lateral and vertical changes in 

amplitude and waveform. The algorithm, referred to as the Texture Model Regression (TMR), is 

utilized in this research to predict the brittleness of the Marcellus shale reservoir interval in 

untested areas away from the well location (Gao, 2011; Gao et al., 2020). 
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3.2 DATASET 

The dataset utilized is a 3D seismic data and the brittleness estimation at the well location from 

the previous chapter. The 3D post-stack seismic data is approximately 25 mi2 in Greene County, 

southwest Pennsylvania acquired with a lateral resolution (bin size) of 110 ft, dominant frequency 

of 25 Hz, and a vertical sampling rate of 2 ms. There are 332 inlines and 296 crosslines in the 

survey. The survey encompasses a group of wells variably spaced (Figure 22). 

1
1

101
101

201
201

301
301

1
1

1
0

1
1
0

1

2
0

1
2
0

1

37-059-24212

Corry

Cree

Mohr

V. Virgili

St Whipkey 1

0 2500 5000 7500 10000 12500ftUS

1:89641  

Figure 22. Basemap of the seismic survey with well locations. 
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3.3 METHODOLOGY 

3.3.1 Preliminary Structural Interpretation 

The preliminary structural interpretation of seismic data involves basic evaluation by mapping 

some subsurface reflectors and faults. This gives a general indication of the tectonic regime in the 

area and serves as a basis for more detailed studies. Typically, the major steps involve the 

correlation of horizons, picking the faults, and generation of several types of maps for describing 

the general geology. 

Horizon correlation involves interlinking a particular event from one seismic line to another, 

making sure the stratigraphic surface followed is the same over the area. This correlation is based 

on the reflection character, which includes amplitude, phase (peak, through or zero-crossing), 

frequency, and waveform. Reflections that appear to be continuous and extensive, known as 

markers, are usually the first candidate to be mapped. Also, the horizons are first picked on dip 

lines where the lateral continuity of the events is more visible.  

Faults are identified on seismic data as breaks in the continuity of seismic horizons. Depending on 

the scale of the faults and the quality of the seismic data, care has to be taken in the interpretation 

of subtle faults. A gradational grayscale is utilized to enhance the terminations of low amplitude 

events as suggested by Brown (2011). To further investigate the structural grains and fluid flow 

pathways of the reservoir interval of the study area, a seismic attribute called ant tracking is 

utilized. They are used for subsurface structural analysis to detect faults and fractures and their 

directional (lateral and vertical) connectivity. 
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3.3.2 Well log conditioning 

Well to seismic tie 

This a critical and important step in seismic interpretation. It is used to correlate the well logs to 

the 3D seismic lines which will enable comparison between the two data types. The density and 

sonic logs are combined into the acoustic impedance which is then used to calculate the reflectivity 

using the relationship in equation 20 & 21: 

𝒁 = 𝝆𝑽                   (20) 

𝑹𝑪 =
𝒁𝟐 − 𝒁𝟏

𝒁𝟐 + 𝒁𝟏
       (21) 

where 𝑍 is the acoustic impedance, 𝑍1 is the acoustic impedance for layer 1, 𝑍2 is the acoustic 

impedance for layer 2 and 𝑅𝐶 is the reflectivity. This reflectivity is convolved with a zero-phase 

wavelet, which in this research, a Ricker wavelet is used. The result of this is a synthetic 

seismogram for the well. This synthetic seismogram is compared with the extracted seismic trace 

along the well path and the matching quality is accessed. The synthetic seismogram can be aligned 

to match the seismic trace either by shifting the synthetic seismogram up or down or by selecting 

specific zones to stretch or squeeze. 

Upscaling of Well logs 

Well log data are acquired at a higher resolution compared to the seismic data. This disparity in 

resolution brings about a major challenge when correlating the two datasets. Also, the high-

frequency noise from the logs can obscure variations in the property at the seismic scale. One way 

to bridge this gap is to upscale the high-resolution data. 
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In this research, a running weighted average of the brittleness is estimated based on the pixel of 

the seismic data. The result of this step is a smooth brittleness log with a resolution comparable to 

that of the seismic data. 

3.3.3 Seismic Brittleness Prediction 

In the area of reservoir property prediction from seismic data, several techniques have been 

adopted. The most widely used being statistical inversion methods and multi-attribute supervised 

classification. While these methods have been successful in some cases, they are computationally 

expensive and typically produce results that are biased and have little to no relevance to the 

prediction of the reservoir property. 

In this research, a novel technique proposed by Gao (2011) is utilized. This method entails directly 

extracting the waveform at the well location that is directly related to the reservoir property and 

then calculating the correlation between each of the seismic waveform and the model waveform 

extracted at the well location. This results in a 3D cube intrinsically related to the property that is 

sought to be predicted. 

This method, referred to as the Texture Model Regression (TMR), is based on a dynamic model 

with variable amplitude, frequency, phase, and dimension. This is a data-driven, trial-and-error 

process that keeps fitting different model combinations until an optimum model is achieved that 

has a high correlation with the reservoir property. This algorithm uses a predefined texture model 

as a reference to evaluate the similarity of seismic texture/waveform at each data location relative 

to the model via linear least-squares regression analysis. The similarity is evaluated from the 

perspective that is defined by a specific model composed of n amplitude samples. The reference 
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model (𝑴𝒊) is defined by a full wavelength of the trigonometric sine function with a variable phase 

using equation 22: 

𝑴𝒊 =
𝟏

𝟐
(𝟏 + 𝑨 𝐬𝐢𝐧(𝟐𝝅𝝎𝒊 𝒏⁄ + ∅))       (22) 

where A is an amplitude scaling constant, 𝜔 is the frequency in hertz, n is the number of samples 

defining the size of the model, ∅ is the phase variable and i is a natural variable denoting the ith 

sample ranging from 1 to n. 

The model 𝑴𝒊 is initialized with an amplitude equal to that of the seismic data, the frequency same 

as the dominant frequency of the seismic data in the interval of interest and a full wavelength with 

a specific phase. At the well locations, the algorithm retrieves a segment of data-trace defined by 

n amplitude samples, which in this case is a 1D wavelet that is equivalent to 4n ms at a 4-ms 

sampling rate. Then, the algorithm performs least-squares linear regression using the two sets of 

amplitude samples, reference waveform samples xi, and data trace samples yi, on the x-y crossplot. 

Before applying this algorithm, a reliable time-depth conversion needs to exist and the top and 

base of the interval of interest be defined. Then, at all the well locations in the zone of interest, the 

algorithm iteratively updates the model by changing the parameters defined in equation 3 as 

necessary until an optimal match is realized for all the wells in the reservoir interval. At that point, 

the final model is used to create a thematic volume that is optimally calibrated to a specific 

reservoir property observed from all the wells. 

Generally, the workflow consists of 5 steps. 

I) Construction of a mini-volume model 𝑴𝒊(𝑖 = 1, 2, … , 𝑛) consisting of n amplitude 

samples. 
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II) Retrieval of mini-volume data (texture element) 𝑫𝒊(𝑥, 𝑦, 𝑧)(𝑖 = 1, 2, … , 𝑛) consisting of n 

amplitude samples centered at a location (x, y, z) in 3D amplitude volume. 

III) Linear least-squares regression between the mini-volume model 𝑴𝒊 and the mini-volume 

data (texture element) 𝑫𝒊(𝑥, 𝑦, 𝑧). 

IV) Output the regression gradient at each location 𝑔(𝑥, 𝑦, 𝑧), correlation coefficient 𝑟(𝑥, 𝑦, 𝑧), 

and intercept 𝑖(𝑥, 𝑦, 𝑧). 

V) Repeat steps 2 through 4 at all the sample locations until a high correlation with well data. 

This algorithm calculates the regression gradient (g), correlation coefficient (r), and intercept (i) 

by performing linear-squares regression between the model and amplitude data using equations 

23, 24, and 25: 

𝒈 =
∑ (𝑴𝒊−𝑴̅)(𝑫𝒊−𝑫̅)𝒏

𝒊=𝟏

∑ ((𝑴𝒊−𝑴̅))
𝟐𝒏

𝒊=𝟏

     (23) 

𝒓 =
𝟏

𝒏
∑ [𝑫𝒊 − 𝑫̅ + 𝒈((𝑴𝒊 − 𝑴̅))

𝟐
]𝒏

𝒊=𝟏   (24) 

𝒊 = 𝑫̅ − 𝒈𝑴̅      (25) 

where 𝑫̅ and 𝑴̅ denote the mean values of the element 𝑫𝒊 and 𝑴𝒊, respectively, and n is the number 

of amplitude samples of the model. 

3.4 RESULTS 

3.4.1 Well to seismic tie 

The synthetic seismogram generated from the forward modeling process of the sonic and density 

log shows a good match with the seismic data. This indicates that the well data are located 

accurately on the seismic section and can be confidently extrapolated outwards. Also, they provide 

a means of correctly identifying the horizons to pick in the seismic data (Figure 23). 
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Figure 23. Seismic to well tie display with the well cross-referenced with inline 291. 

3.4.2 Log Upscaling 

Upscaling of the brittleness log reduced the frequency and also resulted in a smooth log that 

averaged the measurement for each pixel, considering a total of 21 pixels with the Marcellus shale 

at the center (Figure 24). This upscaled brittleness estimate is used in the seismic inversion of 

brittleness. 

 

Figure 24. A plot of the actual and upscaled brittleness estimate. 
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3.4.3 Surface maps 

Preliminary studies of the structure maps and the seismic cross-sections indicate that the folds in 

the Devonian section are dominantly east verging bounded reverse faults (Figure 25). A more 

detailed structural analysis was carried out by Donahoe (2011). Three major northeast-trending 

reverse faults were interpreted to cut through the Marcellus formation. However, several similar 

types of faults occur in the sequence below and above. This fault development and reactivation are 

linked to the Rome Trough. 

The structural complexity of this area will adversely affect the prediction of brittleness from the 

3D seismic data, as the algorithm relies on comparison on the adjacent seismic traces to establish 

a meaningful relationship, not forgetting the limited well control available in the area. As such, the 

initial result from this research will be of low confidence and more of a theoretical display of the 

algorithm. 
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Figure 25. Sequential cross-sections of processed seismic volume with interpretations. The 

black lines are listric detachment faults. The Salina salt is highlighted as the primary basal 

detachment horizon. Color lines are eight mapped stratigraphic horizons of interest. (1) Elk, (2) 

Tully, (3) Mahantango, (4) Marcellus, (5) Onondaga, (6) Oriskany, (7) post-Salina, and (8) pre-

Salina (Gao et al., 2018). 
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3.4.4 Comparison of seismic amplitude with geophysical logs 

An investigation of how the seismic amplitude is related to the geomechanical estimations was 

carried out. The reference horizon shown in figures 26, 27, and 28 is the Marcellus shale. A closer 

look at these logs shows a distinct trend when compared to the seismic amplitudes. This is true 

because the seismic events are direct representations of the subsurface lithology which in turn has 

varying geomechanical properties.  

The rationale behind using the 3D seismic data to predict geomechanical properties is more 

intuitive than physical. 3D seismic data have been successfully used in the estimation of properties 

such as porosity, fluid saturation, and lithology. This is possible because seismic amplitude which 

is a measure of acoustic contrast between layers is directly affected by these properties. Also, the 

geomechanical property of the layer plays a role in the variation of the seismic amplitude, thus 

making it suitable for the spatial prediction of this property. 

St Whipkey 1

213
291

211
291

209
291

208
291

206
291

204
291

202
291

200
291

199
291

197
291

195
291

193
291

XLine 197

XL
IL

W E

-1080

-1100

-1120

-1140

-1160

-1180

-1200

-1220

-1240

-1260

-1280

-1300

-1320

-1340

-1360

-1380

 

Figure 26. Young’s Modulus estimated brittleness juxtapose on the seismic amplitude. 
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Figure 27. Poisson Ratio estimated brittleness juxtaposed with the seismic amplitude. 
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Figure 28. Estimated brittleness juxtaposed with the seismic amplitude. 
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3.4.5 Spectral Texture Analysis 

The post stacked time migrated 3D seismic data contains numerous spectral information which is 

utilized in this research. As described in the methodology, the algorithm extracts the texture 

information for a variety of frequency and phase and matches it to the log information. The starting 

point of this is the dominant frequency of the seismic data which is 25 Hz as seen in figure 29. 

 

Figure 29. Spectral frequency analysis of the seismic data. 

3.4.6 Inversion result 

Implementation of the techniques described in previous sections to invert brittleness from seismic 

texture yielded a positive result (Figures 30 & 31). These results are preliminary, as the verification 

has not been carried out with the other wells in the seismic survey. Also, the inversion result will 

be used qualitatively as the seismic response produced is related to the correlation with the 

brittleness of the rocks and not an actual measure of brittleness. 

The result of the data-driven seismic inversion is, therefore, qualitatively compared with the 

seismic amplitude and ant tracking (Figure 32). This is to evaluate the suitability of this approach 
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before carrying out a more constrained inversion with the well control in the area, which will 

increase the accuracy and confidence of the result. 

 

Figure 30. A cross-section of inline 291 showing the seismic brittleness inversion result. 

 

Figure 31. A cross-section of crossline 197 showing the seismic brittleness inversion result. 

The first observation of the algorithm is how the presence of large scale faults affects the results. 

This adversely affects the result as the inversion depends on the seismic signal texture. Therefore, 

the application is limited to areas with limited faulting with adequate well control. A possible 

solution to this problem is to calibrate the seismic on both sides of the faults. This will increase 

the confidence level of the algorithm, and therefore perform better in regions with major faults. 
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Figure 32b shows the ant tracking image for a time slice at 1114ms close to the Marcellus shale 

horizon. This shows the fault and fracture network which is used as a qualitative measure of 

brittleness. Brittle regions will exhibit a higher degree of faulting and fracturing and vice versa. 

Comparison of figures 32b and 32c, the black ellipse shows a region with low brittleness while the 

red square shows a region with high brittleness.  
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Figure 32. A time slice at 1114 ms of the (a) seismic amplitude, (b) ant tracking, and (c) 

seismic brittleness inversion. 
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3.5 CONCLUSION 

It is important to integrate 3D seismic data with geophysical logs in the characterization of 

unconventional reservoirs. 3D seismic data was used in the characterization of brittleness, which 

is an important reservoir property for sweet spot identification in unconventional reservoirs. A 

novel approach (Gao, 2011) that utilizes the spectral component of the seismic traces provides a 

seismic texture analysis tool for a machine learning-based, data-driven approach to reservoir 

brittleness characterization from seismic texture analysis (Gao et. al., 2020).  

Preliminary results from the texture-based data-driven inversion process show a promising future 

for using the seismic texture as an indicator for brittleness and for using texture spectral analysis 

algorithm to invert brittleness spatially. More wells are required to laterally sample and calibrate 

the seismic responses to the log responses. The algorithm offers a workaround to the paucity of 

wells with relevant geophysical logs by vertically sampling and calibrating the seismic response 

to the log responses, making it possible to invert brittleness even with one well only (Gao et al., 

2020). Such a workaround can apply to horizontal wells given its dense lateral sampling along the 

reservoir. The workflow used to execute the prediction of brittleness from the seismic data can be 

extended to predict other reservoir properties, such as porosity, that has a physical or sensible 

relationship with seismic amplitude responses. 

3.6 FUTURE WORK 

To properly demonstrate the application of the algorithm, it will be applied to seismic data that 

have more well control. This will reduce the bias in the machine learning process, and produce a 

more robust, well-trained inversion result. Also, it is suggested that the brittleness estimated using 

the elastic properties be calibrated by using cores in the laboratory. 
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4.2 APPENDIX  

Python Code 

# -*- coding: utf-8 -*- 

""" 

Created on Sun Mar  1 12:43:15 2020 

@author: tmo0005 

""" 

import numpy as np    #numpy package 

import pandas as pd   #panda package 

import matplotlib.pyplot as plt   #package to make plots 

import plotly.graph_objects as go 

import pickle 

from sklearn import metrics 

from sklearn.svm import SVR 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import GridSearchCV, train_test_split 

from xgboost import XGBRegressor 

import seaborn as sns 

from sklearn.neural_network import MLPRegressor 

#%% #load the training and testing data used to build the model 

directory = r'C:\Users\Tobi\Desktop\Thesis work\Wells'  #the path of the directory containing the 

log data in csv format 
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df1 = pd.read_csv('{}\{}.csv'.format(directory,"whipkey_edited")) 

df2 = pd.read_csv('{}\{}.csv'.format(directory,"MIP3H_edited")) 

df3 = pd.read_csv('{}\{}.csv'.format(directory,"boggess_edited")) 

data = df1.append([df2,df3]) 

data.dropna(inplace=True) 

 

#%% A general summary of the data 

summary = data.describe() 

summary.to_csv('{}\{}.csv'.format(directory,"basic_statistics"))   #save the summary 

 

#%% Feature Selection 

data_corr = data.loc[:,['GR','RHOB','NPHI','PEFZ','DT','BA']]  #select the input features 

correlation = data_corr.corr(method ='pearson')  

correlation1 = data_corr.corr(method ='spearman') 

  

fig, ax = plt.subplots(nrows=1, ncols=2,figsize=(10,4)) 

sns.heatmap(correlation, vmin=-1, vmax=1, cmap='RdGy', annot=True, ax = ax[0]) 

ax[0].set_title('Pearson Correlation') 

 

sns.heatmap(correlation1, vmin=-1, vmax=1, cmap='RdGy', annot=True, ax = ax[1]) 

ax[1].set_title('Spearman Rank Correlation') 

 

fig.savefig('{}\{}.png'.format(directory,"feature_correlation"), dpi=400) #save the image 
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#%% Matrix Scatter Plot 

fig = go.Figure(data=go.Splom( 

                dimensions=[dict(label='Gamma Ray', 

                                 values=data['GR']), 

                            dict(label='Density', 

                                 values=data['RHOB']), 

                            dict(label='Neutron', 

                                 values=data['NPHI']), 

                            dict(label='PE factor', 

                                 values=data['PEFZ']), 

                            dict(label='Sonic', 

                                 values=data['DT'])], 

                showupperhalf=False,  # remove plots on diagonal, 

                diagonal_visible=False, 

                text=data['BA'], 

                marker=dict( 

                    opacity=0.4, 

                    color=data['BA'], 

                    showscale=True, 

                    colorscale='Inferno', 

                    colorbar=dict( 

                        title='BA' 

                    ), 
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                ), 

                )) 

 

fig.update_layout( 

    title='Matrix Scatter Plot', 

    width=950, 

    height=900, 

) 

 

fig.write_image('{}\{}.jpeg'.format(directory,"matrix_scatter_plot")) 

#%% #splitting the data into training and test set 

scaler = MinMaxScaler() 

 

X = data.loc[:,['GR','RHOB','NPHI']] 

y = data.loc[:,['BA']] 

 

X_norm =  scaler.fit_transform(X) 

y_norm = scaler.fit_transform(y) 

 

X_train, X_test, y_train, y_test = train_test_split(X_norm,y_norm, test_size=0.3, random_state = 

42) 

 

#%% 
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data_norm = scaler.fit_transform(data) 

summary = pd.DataFrame(data_norm).describe() 

 

summary.to_csv('{}\{}.csv'.format(directory,"basic_statistics_after_norm")) 

 

#%% training the SVR 

#hyper_parameters =  {'C': np.logspace(-3,10, num=13),  

#                     'gamma': np.logspace(-9,3, num=13)} 

hyper_parameters =  {'C': [10,100],  

                     'gamma': [ 1,10,100]} 

 

gs = GridSearchCV(SVR(), param_grid=hyper_parameters,  

                  cv=5, scoring='r2', verbose=1, n_jobs=-1) 

 

gs.fit(X_train,y_train) 

 

#%% 

y_train_pred = gs.predict(X_train) 

R2_train = metrics.r2_score(y_train,y_train_pred) 

 

y_blind_pred = gs.predict(X_test) 

R2_blind = metrics.r2_score(y_test,y_blind_pred) 
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y_total_pred = gs.predict(X_norm) 

R2_total = metrics.r2_score(y_norm,y_total_pred) 

 

gs.best_score_ 

#%% 

y_pred = scaler.inverse_transform(y_total_pred.reshape(-1, 1)) 

data['BA_svr']=y_pred 

#%% saving the model 

filename = '{}\{}.sav'.format(directory,"svr_scenario2") 

pickle.dump(gs, open(filename, 'wb')) 

 

#%% 

fig, ax = plt.subplots(figsize=(10,8)) 

fig.suptitle("Crossplot of predicted brittleness and estimated brittleness", fontsize=16) 

fig.subplots_adjust(top=0.95) 

ax.scatter(y_norm, y_total_pred) 

fig.savefig('{}\{}.png'.format(directory,"svr_scenario2_cross_plot"), dpi=400) 

 

#%% training the XGB 

hyper_parameters =  {'n_estimators' : [100, 300, 500], 

                     'min_child_weight': [6], 

                     'max_depth' : [5, 8, 15] 

                     } 
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gs = GridSearchCV(XGBRegressor(), param_grid=hyper_parameters,  

                  cv=3, scoring='r2', verbose=1, n_jobs=-1) 

 

gs.fit(X_train,y_train) 

#%% 

y_train_pred = gs.predict(X_train) 

R2_train = metrics.r2_score(y_train,y_train_pred) 

 

y_blind_pred = gs.predict(X_test) 

R2_blind = metrics.r2_score(y_test,y_blind_pred) 

 

y_total_pred = gs.predict(X_norm) 

R2_total = metrics.r2_score(y_norm,y_total_pred) 

 

#gs.best_score_ 

#%% 

y_pred = scaler.inverse_transform(y_total_pred.reshape(-1, 1)) 

data['BA_xgb']=y_pred 

 

#%% 

fig, ax = plt.subplots(figsize=(10,8)) 

fig.suptitle("Crossplot of predicted brittleness and estimated brittleness", fontsize=16) 
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fig.subplots_adjust(top=0.95) 

ax.scatter(y_norm, y_total_pred) 

fig.savefig('{}\{}.png'.format(directory,"xgb_scenario2_cross_plot"), dpi=400) 

 

#%% saving the model 

filename = '{}\{}.dat'.format(directory,"xgb_scenario2") 

pickle.dump(gs, open(filename, 'wb')) 

 

#%% feature importance 

fig, ax = plt.subplots() 

ax.bar(['GR','RHOB','NPHI'], (gs.feature_importances_)*100, color='black') 

ax.set_ylabel('Percentage (%)') 

ax.set_title('Feature Importance', fontsize=16) 

ax.grid(True,alpha=0.5) 

fig.savefig('{}\{}.png'.format(directory,"xgboost_feature_importance_scenario2"), dpi=400) 

 

#%% training the Neural Network 

hyper_parameters =  {'hidden_layer_sizes': [(10,),(15,),(20,),(25,)], 

                     'tol': [0.0001,0.00001,0.001]} 

gs = GridSearchCV(MLPRegressor(max_iter=1200,solver = 'lbfgs'), 

param_grid=hyper_parameters,  

                  cv=3, scoring='r2', verbose=1, n_jobs=-1) 
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gs.fit(X_train,y_train) 

 

#%% 

fig, ax = plt.subplots(figsize=(10,8)) 

fig.suptitle("Crossplot of predicted brittleness and estimated brittleness", fontsize=16) 

fig.subplots_adjust(top=0.95) 

ax.scatter(y_norm, y_total_pred) 

fig.savefig('{}\{}.png'.format(directory,"ann_scenario2_cross_plot"), dpi=400) 

 

#%% saving the model 

filename = '{}\{}.dat'.format(directory,"ann_scenario2") 

pickle.dump(gs, open(filename, 'wb')) 

 

#%% 

y_train_pred = gs.predict(X_train) 

R2_train = metrics.r2_score(y_train,y_train_pred) 

 

y_blind_pred = gs.predict(X_test) 

R2_blind = metrics.r2_score(y_test,y_blind_pred) 

 

y_total_pred = gs.predict(X_norm) 

R2_total = metrics.r2_score(y_norm,y_total_pred) 
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gs.best_score_ 

#%% 

y_pred = scaler.inverse_transform(y_total_pred.reshape(-1, 1)) 

data['BA_ann']=y_pred 

#%% 

data.to_csv('{}\{}.csv'.format(directory,"data_with_predicted_values_scenario2")) 

 

#%% 

#%% load the models to deploy it 

filename = '{}\{}.dat'.format(directory,"svr_scenario2") 

svr_model = pickle.load(open(filename,'rb')) 

 

filename = '{}\{}.dat'.format(directory,"xgb_scenario2") 

xgb_model = pickle.load(open(filename,'rb')) 

 

filename = '{}\{}.dat'.format(directory,"ann_scenario2") 

ann_model = pickle.load(open(filename,'rb')) 

 

#%% load all the wells in the other wells 

df1 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis 

work\Wells\{}.csv'.format("whipkey_edited")) 

df2 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis work\Wells\{}.csv'.format("MIP3H_edited")) 

df3 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis work\Wells\{}.csv'.format("boggess_edited")) 
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df4 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis work\Thesis\Wells\{}.csv'.format("37-059-

24212")) 

df5 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis work\Thesis\Wells\{}.csv'.format("375924716 

- Cree")) 

df6 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis work\Thesis\Wells\{}.csv'.format("Corry")) 

df7 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis work\Thesis\Wells\{}.csv'.format("Mohr")) 

df8 = pd.read_csv(r'C:\Users\Tobi\Desktop\Thesis 

work\Thesis\Wells\{}.csv'.format("V_Virgili")) 

 

#%% select the traget zone in the wells 

df4 = df4[df4['DEPT']>=6000].loc[:,['DEPT','GRGC','DEN','NPHI']] 

df5 = df5[df5['DEPT']>=6000].loc[:,['DEPT','GRGC','DEN','NPHI']] 

df6 = df6[df6['DEPT']>=6000].loc[:,['DEPT','GRGC','DEN','NPHI']] 

df7 = df7[df7['DEPT']>=6000].loc[:,['DEPT','GRGC','DEN','NPHI']] 

df8 = df8[df8['DEPT']>=6000].loc[:,['DEPT','GR','RHOB','NPHI']] 

#%% 

df4.rename(columns={'GRGC':'GR','DEN':'RHOB'}, inplace=True) 

df5.rename(columns={'GRGC':'GR','DEN':'RHOB'}, inplace=True) 

df6.rename(columns={'GRGC':'GR','DEN':'RHOB'}, inplace=True) 

df7.rename(columns={'GRGC':'GR','DEN':'RHOB'}, inplace=True) 

 

df1.dropna(inplace=True) 

df2.dropna(inplace=True) 
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df3.dropna(inplace=True) 

df4.dropna(inplace=True)  

df5.dropna(inplace=True)  

df6.dropna(inplace=True)  

df7.dropna(inplace=True)  

df8.dropna(inplace=True)  

#%% deploy models 

scaler = MinMaxScaler() 

 

X1 = df1.loc[:,['GR','RHOB','NPHI']] 

X1_norm =  scaler.fit_transform(X1) 

 

X2 = df2.loc[:,['GR','RHOB','NPHI']] 

X2_norm =  scaler.fit_transform(X2) 

 

X3 = df3.loc[:,['GR','RHOB','NPHI']] 

X3_norm =  scaler.fit_transform(X3) 

 

X4 = df4.loc[:,['GR','RHOB','NPHI']] 

X4_norm =  scaler.fit_transform(X4) 

 

X5 = df5.loc[:,['GR','RHOB','NPHI']] 

X5_norm =  scaler.fit_transform(X5) 
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X6 = df6.loc[:,['GR','RHOB','NPHI']] 

X6_norm =  scaler.fit_transform(X6) 

 

X7 = df7.loc[:,['GR','RHOB','NPHI']] 

X7_norm =  scaler.fit_transform(X7) 

 

X8 = df8.loc[:,['GR','RHOB','NPHI']] 

X8_norm =  scaler.fit_transform(X8) 

#%% 

y1_svr = svr_model.predict(X1_norm) 

y2_svr = svr_model.predict(X2_norm) 

y3_svr = svr_model.predict(X3_norm) 

y4_svr = svr_model.predict(X4_norm) 

y5_svr = svr_model.predict(X5_norm) 

y6_svr = svr_model.predict(X6_norm) 

y7_svr = svr_model.predict(X7_norm) 

y8_svr = svr_model.predict(X8_norm) 

 

y1_xgb = xgb_model.predict(X1_norm) 

y2_xgb = xgb_model.predict(X2_norm) 

y3_xgb = xgb_model.predict(X3_norm) 

y4_xgb = xgb_model.predict(X4_norm) 
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y5_xgb = xgb_model.predict(X5_norm) 

y6_xgb = xgb_model.predict(X6_norm) 

y7_xgb = xgb_model.predict(X7_norm) 

y8_xgb = xgb_model.predict(X8_norm) 

 

y1_ann = ann_model.predict(X1_norm) 

y2_ann = ann_model.predict(X2_norm) 

y3_ann = ann_model.predict(X3_norm) 

y4_ann = ann_model.predict(X4_norm) 

y5_ann = ann_model.predict(X5_norm) 

y6_ann = ann_model.predict(X6_norm) 

y7_ann = ann_model.predict(X7_norm) 

y8_ann = ann_model.predict(X8_norm) 

#%% 

df1['BA_svr']=y1_svr 

df1['BA_xgb']=y1_xgb 

df1['BA_ann']=y1_ann 

 

df2['BA_svr']=y2_svr 

df2['BA_xgb']=y2_xgb 

df2['BA_ann']=y2_ann 

 

df3['BA_svr']=y3_svr 
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df3['BA_xgb']=y3_xgb 

df3['BA_ann']=y3_ann 

 

df4['BA_svr']=y4_svr 

df4['BA_xgb']=y4_xgb 

df4['BA_ann']=y4_ann 

 

df5['BA_svr']=y5_svr 

df5['BA_xgb']=y5_xgb 

df5['BA_ann']=y5_ann 

 

df6['BA_svr']=y6_svr 

df6['BA_xgb']=y6_xgb 

df6['BA_ann']=y6_ann 

 

df7['BA_svr']=y7_svr 

df7['BA_xgb']=y7_xgb 

df7['BA_ann']=y7_ann 

 

df8['BA_svr']=y8_svr 

df8['BA_xgb']=y8_xgb 

df8['BA_ann']=y8_ann 

#%% save the result 
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df1.to_csv('{}\{}.csv'.format(directory,"whipkey_predicted")) 

df2.to_csv('{}\{}.csv'.format(directory,"MIP3H_predicted")) 

df3.to_csv('{}\{}.csv'.format(directory,"boggess_predicted")) 

df4.to_csv('{}\{}.csv'.format(directory,"37-059-24212_predicted")) 

df5.to_csv('{}\{}.csv'.format(directory,"375924716 - Cree_predicted")) 

df6.to_csv('{}\{}.csv'.format(directory,"Corry_predicted")) 

df7.to_csv('{}\{}.csv'.format(directory,"Mohr_predicted")) 

df8.to_csv('{}\{}.csv'.format(directory,"V_Virgili_predicted")) 
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