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ABSTRACT 

The influence of spatial variance on rock strength and mechanism of failure 

Danqing Gao 

 

 The heterogeneity in the rock formation affects both rock behavior and the strength. The 

effect of heterogeneity is observed both at the laboratory scale and at the rockmass level. The 

mechanical properties of intact rock vary considerably at laboratory scale and often an average 

value is used for design purposes. Similarly, the values are arbitrarily scaled when used at 

rockmass level. In underground coal mines, the effect of variability of properties is often 

observed with the erratic roof failure events that occur throughout the mine. The approach often 

was to use the deterministic values from limited site data to estimate the rock strength and 

ignoring the inherent variability of rockmass properties. However, current numerical models 

have successfully captured the global behavior showing the effect of in-situ stress, geology, 

operational parameters, etc. This dissertation proposes a probabilistic approach that assumes that 

rockmass properties as random variables and examines its effect on underground coal mine. 

The effect of random properties was examined by comparing the deterministic and completely 

random models which showed the importance of using randomness factor in rocks. Subsequently 

a spatially correlated random model investigated the influence of rock heterogeneity on rock 

strength and failure propagation. A random field database with specific spatial correlation was 

created for each physico-mechanical property using laboratory data and Extreme Value 

stochastic model in MATLAB. Two scale-measured parameters defined the correlation length, 

which controls the spatially correlated random data. Then, to verify the importance of the four 

parameters, friction, cohesion, and correlation length along the horizontal and vertical axes, one 

hundred and fifty two random sample data are generated. The stress for each specimen is tracked 

at different loading steps with different spatial correlation factors. This approach determined the 

effect of material model parameters affect the internal stress distribution for intact rocks. The 

models were further validated by predicting the behavior of rocks from controlled triaxial tests. 

Results from the laboratory tests were matched the predicted behavior from numerical models 

verifying the proposed stochastic method. 



 
 

The stochastic method was then implemented in the three-dimensional numerical model to 

investigate a longwall mine operating in Pittsburgh seam. The influence of random field data on 

entry roof in the longwall mining system was investigated. Based on Extreme Value stochastic 

model, the realistic random field database added two scale-measured parameters from both 

horizontal and vertical directions to control the spatial correlation length. This model also 

considered a number of cutting sequences, for identifying the effect of the spatial variance on the 

roof behavior. Finally, the outcome of the dissertation was to use probabilistic approach for 

demonstrating the heterogeneous characteristic of rock and the influence of spatial variance on 

the failure mechanism of both intact rock and rockmass. 

 

Keywords 

Rock, heterogeneity, Extreme Value distribution, spatial variance, correlation, stochastic 

simulation
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CHAPTER 1   

INTRODUCTION 
 

1.1 Variation in mechanical properties of rocks 

In underground coal mines roof failure and rib deformation often contribute to numerous 

injuries and fatalities. The size and the scale of mining operations have increased tremendously 

and therefore the erratic nature of rock failure in both roof and pillar have followed similar 

behavior. For instance, in the Pittsburgh coal seam, roof control issues are quite common due to 

the presence of laminated shale. This particular rock type fails uniquely under a certain stress 

orientation that has been well documented and implemented in mine design. Using in-situ 

measurements, empirical models and calibrated numerical models a reliable methodology is 

commonly practiced in designing underground mines. However, the occurrence of roof, rib 

failures and the erratic nature of these roof falls seems to suggest that all factors are not always 

considered during mine modeling. One such parameter is the variability of the rock both at intact 

or laboratory scale level and rock mass level.  

Rock is heterogeneous by formation, indicating that the constituents at grain level are not in 

uniform distribution (Brown, 1974). In addition, the rock at large scale level often referred to as 

“rockmass” has significant level of breakage and separation known as discontinuity. The 

separation of rock free from any discontinuity is called “Intact Rock”. For both intact and rock 

mass, the strength is affected by heterogeneity of formation. In addition, at rockmass level the 

presence of discontinuity further reduces the strength. The approaches to bridge the two scales 

have often been difficult particularly at micro level.  
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Traditionally, the parameters such as the physico-mechanical behavior and strength and in-

situ stresses by have been estimated by using mean values from a limited number of samples 

from laboratory and field tests. For the last five decades, rock stability analysis was conducted 

using analytical and empirical solutions formulation  and in the last two decades numerical 

simulation  are used extensively (Bieniawski, 1968, Recio-Gordo, 2012 and Soltani, 2015). The 

deterministic approach is regularly used in mine design analysis.  

With a deterministic approach, the averaged values from the laboratory tests or site data are 

used for estimating the rock parameters for the design or safety assessment. The inherent 

variation in rock properties is often excluded from mine stability analysis which increases the 

potential for inaccurate estimation of rock strength. For instance, in pillar design the safety 

factors are commonly used for a quantitative assessment of state of pillars. They are calculated 

by using strength of the rock over the stress developed due to the design. When the rock strength 

is overestimated, larger pillars are designed which reduces the stability of the pillars based on the 

apparent strength causing the safety factor to be lower than a threshold value. (Deng, 2003). 

Underestimation of the strength will produce larger mine pillars making the mining operation 

uneconomical (Jade, 2003). Therefore, estimating accurate strength is the key for an optimized 

pillar design. However, the lack of widely accepted probabilistic methods that considered the 

variability of rockmass properties have restricted the application and development of stochastic 

methods (Fang, 2002; Kim & Gao, 1995; Mingli, 2000). Using stochastic/random approach may 

provide an accurate estimation of strength. 

The stochastic/random approach provides a unique method to include various ranges of 

properties from intact rock and then scale it to the behavior of rock mass. Numerical simulation 

coupled with stochastic properties provides an alternative approach to investigate the failure 
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process of rock materials. Traditionally, stochastic finite element method was extensively used 

for slope stability analysis. The focus has shifted to displacement discontinuity and finite 

difference methods. In addition, development of distinct element method has increased the 

research capabilities in the field of rock mechanics. Numerical methods also provide initial stress, 

strain fields, or the final stress state of a rock structure. With the improvement in the computing 

environment and practical demands in rock mechanics, rock failure analysis has changed from 

partial simulation to the entire structure.  

This research developed and showed application of stochastic analysis in mine design using 

combination of finite difference method and elastic damage mechanics. 

1.2 Statement of the problem 

Whether from a macroscopic or microscopic view, underground rockmass shows large 

inherent variation in its physico-mechanical properties. Including the thickness of the strata, the 

moisture content, the porosity, and the history of the depositions, all these factors influence the 

mechanical responses and failure behaviors of the underground rockmass significantly. 

Pillar stability is critical for mining operations. Room-and-pillar and in the gateroad section 

of the longwall mines pillars are the primary support for the overburden. Unstable pillars can 

lead to massive collapse of the panels, gate blockage, pillar bump, and subsidence (Mark, 1987). 

When coal pillars fail, the approach is to recalibrate the input properties of the model until the 

failure predicted in the model is in agreement with the ground condition. A drawback of this 

approach is the usage of deterministic values to represent the strength of the pillars, ignoring the 

inherent variability that exists in the properties of coal and the surrounding rockmass (Amusin, 

1979; Barton, 1974; Bieniawski, 1993; Brady and Brown, 1993). In order to analyze the 



4 
 

rockmass behavior, one must assess the inherent variability of rockmass mechanical properties, 

such as the strength and deformation properties for the entire mine. 

The main goal of this research is to suggest a realistic approach to simulate the inherent 

spatial variability of rockmass. This approach accounts for the uncertainties due to both the 

variability of the rock material properties and the spatial variance on rockmass. When describing 

the rockmass properties, friction and cohesion are the main factors and are considered random 

variables.  

This research aims to use the proposed probabilistic method for demonstrating the 

heterogeneous characteristic of rock from the perspective of material properties, observing the 

influences of spatial variance on failure mechanism for both rock specimen in laboratory and 

rockmass in the real site. This dissertation aims to understand these behaviors through the 

following steps: 

First, a comparative analysis will be conducted between the deterministic and completely 

random models. The main goal of this step will be to show the importance of considering the 

randomness factor of rock. 

Second, this research will consider one spatial correlated random model to investigate the 

influence of rock heterogeneity on the rock strength and failure propagation. The random field 

database will be created with specific spatial correlation for each physical-mechanical property 

through laboratory data and Extreme Value stochastic model in MATLAB. This database will be 

added to the two scale-measured parameters to define the correlation length, which controls the 

spatially correlated random data.  
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Third, to verify the importance of friction, cohesion, and correlation length along the 

horizontal and vertical axis respectively, this research will generate 152 random sample data. 

The stress will be tracked for each specimen at different loading steps and different locations. 

The main aim of this process will be to investigate the inherent material parameters affecting the 

internal stress for intact rocks.  

Fourth, in order to have confidence in the model extensive triaxial laboratory will be 

conducted. The real spatial variance distribution will be established through the experiments. 

Based on the mechanical parameters obtained from the laboratory, the proposed method will 

reproduce the material distribution of the intact rock block. If the results matched with each other, 

the proposed stochastic method would be appropriate.   

Finally, this research will conduct a three-dimensional longwall mine model analysis using 

the method proposed. The influence of the random field data on entry roofs in the longwall mine 

system is expected. This research will create realistic random field database based on the 

Extreme Value stochastic model, adding two scaler-measured parameters from both the 

horizontal and vertical directions to control the spatial correlation length. This model will also 

use few cutting sequences to observe if the spatial variance has any significant influence on the 

roof behavior.  

The proposed approach mentioned above assists in characterizing the nature of inherent 

variability of the mechanical properties of rockmass. It provides a method for assessing the 

variability of the rockmass properties, which cannot be obtained through in-situ measurements. 

These simulated rockmass characteristics could help rock engineers to achieve a more rational 

design of underground structures, compared to traditional design methods based on deterministic 

approaches. 
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Many fundamental principles and mechanical phenomena are repeated  by using FLAC; they 

then made comparisons of the numerical results with experimental results in order to validate the 

numerical model and analyze the intrinsic mechanism in rock mechanics and engineering 

throughout this dissertation. 

This research assigned mechanical properties throughout the specimens by following certain 

distribution functions, regarding heterogeneity in rocks to reflect the nonlinearity during rock 

failure process. Even through adopting a simple constitutive law in the numerical model, we can 

obtain various and complex macroscopic results. 
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CHAPTER 2  

LITERATURE REVIEW 
 

Rock, as a natural material, is discontinuous, inhomogeneous, anisotropic, and not elastic; 

this means that rock failure can manifest in many ways. There are many factors that influence the 

properties of rock, which includes anisotropy, cracks and fissures, pore pressure, rate of loading, 

time effects, and specimen size and shape (Bieniawski, 1968). The numerical simulation 

methods used for rock engineering design usually assume that the mean values of rockmass 

properties, measured or estimated, represent rockmass characteristics. Because of the random 

distributions of rockmass properties, this assumption can cause misrepresentative results.  

Given the inelastic nature of the in-situ rock together with its discontinuous, inhomogeneous, 

anisotropic and three-dimensional nature, it is not possible to analytically examine and evaluate 

the complete mechanical behavior of the rockmass, except as an approximate approach. The 

problem becomes even more intractable if gas or fluid is involved, as in coal and gas outbursts, 

hydraulic fracturing, etc. Various methods have been developed to estimate rockmass properties. 

2.1 The nature of randomness of rockmass 

Rockmass is an inhomogeneous and discontinuous medium. The determination of the 

mechanical properties of rockmass always involves a number of uncertainties. This is due to the 

variability of the rock material and the fracture patterns in rockmass. The results of the 

laboratory and in-situ tests are thus affected by both the chosen test locations and volumes of 

rocks involved in the tests. Rock engineers frequently resort to a simplifying assumption that the 

rockmass is a homogeneous and isotropic medium for designing rock structures. Rock is a 

naturally formed material, which has undergone geologic processes. Even a seemingly 
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homogeneous rockmass lacks consistency in its internal state. Rockmass, on an engineering scale, 

is a complicated natural composite material found in-situ consisting of rock material and 

structural discontinuities. Rock material is the solid part of the rockmass typically obtained in an 

unbroken drill core, usually called intact rock. Structural discontinuities include joints, bedding 

planes, partings, and shear zones. The use of this definition tends to imply something larger, less 

individualized and less distinct from its surroundings. Rockmass properties are complex 

functions of the properties of intact rock and discontinuities in rockmass. 

Rock engineers frequently encounter difficulties when handling the inherent variability of 

rockmass properties from the initial stage of site characterization to the final design. The 

computational methods used for rock engineering design typically assume that the rockmass is a 

homogeneous and isotropic medium. Then, the final design is adjusted according to the historical 

data by so-called expert judgements. These empirical formulas are developed from laboratory 

and field experiments. There are various types of uncertainties involved in the determination of 

rockmass properties and in-situ stresses. Therefore, design engineers have attempted to cope with 

these uncertainties by using safety factors. Even when using a very conservative safety factor in 

the design, failures of rock structures still occur. Therefore, the assessment of the variability of 

rockmass properties must be performed and incorporated in the design itself. 

The variability of mechanical properties of rockmass, such as the strength and the 

deformability, must be quantified and incorporated in design. Due to the complicated and 

lengthy geologic process, rock has become an extremely complicated medium and various 

uncertainties are involved in the determination of mechanical property parameters. Therefore, the 

inherent variability of mechanical properties of rocks must been characterized by employing the 
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concept of random variable. The engineering design can be performed realistically only if the 

variation of the mechanical properties of rocks is also incorporated realistically. 

2.2 Estimation of rockmass properties 

In order to supplement analytical modelling and to incorporate some of the rockmass 

idiosyncrasies, albeit indirectly, rockmass classification systems have been developed mainly to 

support rock-engineering design, the most well-known ones being the Rockmass Rating (RMR), 

the Quality (Q), and the Geological Strength Index (GSI). These systems are most useful for rock 

engineering, especially for estimating rock support. 

Bieniawski provided a useful method for estimating in-situ deformability of rockmass based 

on the geomechanics classification of rockmass (the RMR system) (Bieniawski, 1978): 

𝐸𝑀 = 2𝑅𝑀𝑅 − 100                                                          (2.1) 

where EM is the in-situ deformation modulus of rockmass (GPa); RMR is the rockmass rating (for 

RMR>50). 

The above correlation is valid only for RMR>50. Therefore, the value of EM ranges from 0 to 

100GPa as a result of the above correlation. 

The Q-system of rockmass classification was developed for assessing tunnel stability (Barton, 

1974). Barton supplemented the data of Bieniawski with his own results by the Q-system and 

found the following approximations (Bieniawski, 1978): 

𝐸𝑚𝑒𝑎𝑛 = 25𝑙𝑜𝑔𝑄                                                           (2.2) 

𝐸𝑚𝑒𝑎𝑛 = 40𝑙𝑜𝑔𝑄                                                            (2.3) 

 𝐸𝑚𝑒𝑎𝑛 = 10𝑙𝑜𝑔𝑄                                                             (2.4) 

where 
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Q is the value of Q in the Q-system; 

Emean is the mean value of the in-situ deformation modulus (GPa); 

Emin is the lower bound on the deformation modulus (GPa); 

Emax is the upper bound on the deformation modulus (GPa). 

Since the value of Q varies from 0.001 to 1000, the value of Emean ranges from 0 to 75 GPa. 

This approach is comparatively the same as Bieniawski’s, especially when using the following 

relationship: 

𝑅𝑀𝑅 = 9𝑙𝑛𝑄 + 44                                                       (2.5) 

The Geological Strength Index (GSI) provides a system for estimating the reduction in 

rockmass strength for different geological conditions as identified by field observations (Hoek, 

1994; Hoek & Kaiser, 1995; Hoek & Brown, 1997). The GSI system concentrates on the 

description of two factors, rock structure and block surface conditions. The guidelines given by 

the GSI system are for the estimation of the peak strength parameters of jointed rockmass. Using 

the GSI system, provided the UCS value is known, the rockmass deformation modulus Em for σci 

< 100 MPa is estimated in GPa from the following equation: 

𝐸𝑀 = √
𝜎𝑐𝑖

100
∗ 10(

𝐺𝑆𝐼−10

40
)
                                                     (2.6) 

where EM is the rockmass deformation modulus; σci is the uniaxial compressive strength; ans GSI 

is the Geological Strength Index. 

There are many empirical formulas in China for estimating rockmass properties for different 

rock types (Yu, 1983; Gao & Shen, 1987; Gu, 1979). One approach, for example, is to consider 
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half of the Young’s modulus of intact rock obtained from laboratory core test as the deformation 

modulus of rockmass. 

In the previous work, researchers developed these empirical formulas from extensive 

laboratory and field tests in coal mines; however, even though they validated and updated these 

formulas using field data, they are still localized and do not reveal the inherent variability. Some 

physical explanation of these relationships is necessary. Empirical formulas were developed in 

the former Soviet Union for metamorphic chlorite schists and gneiss crystalline schists (Gureev 

&Voronkov, 1974) respectively: 

 

 𝐸𝑚 = 7870𝐾𝑐𝑝
−0.475                                                            (2.8) 

𝐸𝑚 = 8550𝐾𝑐𝑝
−0.725                                                            (2.9) 

where Em is the deformation modulus of rockmass in MN/m2; Kcp is the area crack porosity 

coefficient (%), numerically equal to the area of joints per m2. 

However, the determination of each parameter above still involves uncertainties. 

Experiments developed these empirical formulas; however, they do not disclose the inherent 

variability of rockmass properties, and the many uncertainties involved in the determination of 

rockmass properties. Design engineers have been attempting to cope with these uncertainties by 

using safety factors. Even when a very conservative safety factor is used in design, failures of 

rock structures still occurs. As such, systematic approaches to assessing the variability of 

rockmass properties and incorporation of the variability in the design process have gained more 

attention in rock engineering.    
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2.3 Application of stochastic method on rock properties 

The rockmass is considered a random medium. The overall characteristics of the rockmass 

depend upon the random nature of intact rocks and the random nature of discontinuities in 

rockmass. All parameters describing rockmass properties can be considered random variables 

due to the random nature of the rockmass and the random combination of intact rocks and rock 

discontinuities. These random variables must be defined through their probability functions 

based on the results of experimental evidence. 

Weibull developed a statistical model to explain the inherent variability of the strength of 

materials (Weibull. 1939, 1952). He idealized a test sample under tension as an assemblage of 

elements with statistically independent element properties. He finally concluded that the tensile 

strength of material follows a probability distribution, which was later termed by his name. 

 𝐹(𝑥) = 1 − 𝑒
−(

(𝑥−𝜎𝜇)

𝛽
)

𝛼

                                                           (2.10) 

where α is the shape parameter of the distribution; σμ is the smallest strength; β is the scale 

parameter of the distribution. 

This is the well-known Weibull distribution, which shows how the distribution of the 

breaking strength of materials could be represented by a statistical distribution. This distribution 

is widely applicable in many fields, such as reliability, fatigue, and fracture mechanics. As such, 

more attention has been focused on probabilistic considerations for assessing the characteristics 

of rockmass. 
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Figure 2.1 Variation of tensile strength of Skin-Komatsu andesite determined by Brazilian method 

 (Yamaguchi, 1970) 

Figure 2.1 shows the failure of a tested sample, caused by a severe flaw in the sample as 

indicated by Weibull theory. The variation in the tensile strength can be explained as a direct 

consequence of the probabilistic nature of strength. The most severe flaw in each sample varies 

in weakening effect. As a result, specimens will show different strengths because they contain 

extreme flaws of different intensities. This explains the variation that occurs when repeating the 

same test many times. The variation of the tensile strength reveals the inherent variability of the 

weakest link in each sample, which is a natural phenomenon in nature. Therefore, the most 

meaningful task of rock engineers is to develop a probabilistic rock engineering design 

methodology. A piece of rock is a statistical ensemble of a very large quantity of primary 

elements; each element is to some degree responsible for the strength of the whole rock. When 

taking rock samples to test in the laboratory, one is sampling randomly from a large domain of 
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rocks. The weakest link governs the overall strength of each sample. Since the mechanical 

properties of the primary elements are random, the property of the whole sample possesses 

certain random characteristics. A rock engineering design essentially relies on the 

characterization of mechanical properties of rockmass. 

Similarly, on analysis of the distribution patterns of joints in rockmass it was found that the 

joints follow a Poisson’s process when a line-scan is performed (Priest & Hudson, 1981; Einstein, 

1983; La Pointe, 1985). Therefore, joint spacing follow an exponential distribution: 

𝐹(𝑥) = 1 − 𝑒−𝜆𝑥                                                        (2.11) 

where λ is the intensity parameter of the distribution. 

This observation was a great contribution to rock engineering for describing joints in 

rockmass statistically. In the real field, joints in rockmass are extremely difficult to characterize 

due to their complicated spatial distribution and large quantity in number. This model provides a 

practical statistical way to describe joints, revealing the inherent variability of joint distribution. 

The mechanical property data obtained from the laboratory core tests are also analyzed by 

using extreme value statistics (Gumbel, 1958) and concluded that the mechanical properties of 

intact rocks follow the third type asymptotic distribution of the smallest values (Yegulalp, 

1968,1994; Yegulalp & Mahtab, 1983). 

𝐹(𝑥) = 1 − 𝑒−(
𝑥−𝜀

𝜈−𝜀
)

𝑘

                                                      (2.12) 

where k is the shape parameter of the distribution; ε is the lower bound on X, and ν is the scale 

parameter of the distribution. 

The corresponding probability density function (PDF) is  
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𝑓(𝑥) =
𝑘

γ−ε
(

𝑥−𝜀

γ−𝜀
)

𝑘−1

𝑒
−(

x−𝛆

𝛄−𝛆
)

𝑘

,   𝑥 ≥ 𝜀                                         (2.13) 

It is notable that the Weibull distribution is a special case of this general form if expressing 

the term (v - ε) by one parameter. The limit boundary is zero for the Weibull distribution; this 

boundary is called the weakest link in Weibull’s theory. However, each real site data has its own 

lower threshold, and zero is not the corresponding threshold value in most cases. Unlike the 

Weibull distribution, the Type III Extreme Value distribution is derived under most general 

conditions, regardless of intended specific field of application. 

The concept of extreme values, to which the weakest-link model belongs, first appeared in 

Chaplin’s paper, which related the size effect to extremes (Chaplin, 1880). Griffith proposed a 

"weakest-link" or "largest flaw" theory, according to which the greatly reduced strengths of 

isotropic materials were the results of discontinuities, flaws, or defects spread at random 

throughout the material (Griffith, 1921). Griffith’s theory had a profound effect on the thinking 

of scientists and engineers in the study of material strength. Shortly after the appearance of 

Griffith’s theory, the beginning of the asymptotic behavior of sample extremes are been 

investigated. 

Other investigators have reported the applications of probabilistic methods to problems 

ranging from foundation design and damage mechanics problems to the assessment of the 

hydraulic conductivities in situ stresses (Beacher & Ingra, 1981; Bazant, 1990; Zhang, 1990; 

Bagtzoglou & Baca, 1993).  
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2.4 The influence of spatial variance on rockmass 

Random variables and deterministic variables are easily expressed in terms of mean and 

variance. The variable that is neither random nor deterministic will have a mean and a variance 

as well. Closely spaced points will have a correlation that is dependent, and the variance will be 

low (Matheron, 1971). Widely spaced points tend to be independent or random in Z value and 

will fall within the range predicted by the variance (Ledvina, 1991).  

Due to the long-term complex depositional process, the physical-mechanical properties of 

rockmass are neither deterministic nor completely random. They tend to be independent at 

outlying distances and correlated at relatively small distances (Ledvina, 1991). The mechanical 

behaviors of grain scaled material have some spatial continuities and correlations. The crosscut-

view plot shown in Figure 2.2 is an example of this correlation. The local spatial continuities 

exist inherently within the rock, which creates the physico-material properties in the adjacent 

area to be similar and spatially correlated; however, the material properties are different for those 

rocks that are located at some distance. 

 

Figure 2.2 Crosscut-view of the material distribution of one type of nature rock (the different colors 

represent different material properties) (Hubler, 2017) 

This phenomenon is spatial variation, defined as the changes that occur in a parameter when 

measured over distance and direction. This variation is divided into two categories: systematic 
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and random. Systematic variation in natural rocks is denoted by either gradual or abrupt changes 

in rock properties and is caused by the rock forming factors of relief, climate, organisms, time, 

and parent material. Random variation is not related to any known cause, occurs simultaneously 

with systematic variation, and may include unrecognized systematic variation (Wilding & Drees, 

1978). Processes that are neither deterministic nor random create these geologic materials (and 

thus their properties). The concept of the regionalized variable applies well to such variables. 

The theory of regionalized variables can estimate unknown values at points between known 

values, a very useful feature for geologic data at points separated by un-sampled and unknown 

areas. Such interpolation between knowns is the goal of geo-statistics. A secondary goal is the 

determination of the accuracy of these estimates.  

The proximity is only quantifiably useful if the variable is continuous across the space 

separating two points. The concept of continuity as applied to a geologic entity, such as a tabular 

rock unit, implies that the rock layer is mechanically continuous or unbroken over an area 

(Ledvina, 1991). 
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CHAPTER 3  

COMPARISON BETWEEN DETERMINISTIC AND RANDOM 

MODELS  
 

3.1 Background   

Heterogeneity affects the physico-mechanical behavior of rock. The inherent variability of 

rock is one of the major sources of uncertainty that is commonly observed in the strength 

variation from intact rock to rockmass. Currently, the deterministic approach in solving rock 

mechanics problems have been widely used, using single mean values of limited site data to 

estimate rockmass parameters such as strength, deformation modulus, and in-situ stresses 

(Amusin, 1979; Bieniawski, 1978; Hoek & Brown, 1978). However, the estimations are always 

questionable, as the deterministic methods ignore the inherent variation in rockmass.  

In order to deal with the difficulties of handling this inherent variability, researchers have 

been developing various methods to estimate rockmass properties (Fang, 2002; Kim, 1995; 

Mingli, 2000). With the deterministic method, the deterministic values from laboratory test 

results or site data are used in order to estimate rock parameters, such as strength and 

deformation modulus, for the design or safety assessment; the authors pre-define the mechanical 

parameters and the property distribution used in the numerical simulations, instead of 

determining them through laboratory tests. These studies usually ignore deviation in the 

parameters; therefore, they also ignore the inherent variation in rock properties, and as a result, 

they can overestimate or underestimate the rock strength. Overestimation of coal strength could 

lead to designing pillars that are smaller than needed, inducing further safety concerns (Deng, 

2003). Underestimation of the coal strength could result in too conservative a pillar design, 

wasting coal (Mark, 1987; Jade, 2003). These variables demonstrate the necessity of using a 
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stochastic method to investigate the stability of coal pillars and other rock mechanic problems. 

The results of a stochastic numerical simulation with mechanical parameters and property 

distribution determined from laboratory tests should be more realistic.  

The research in this chapter proposed a stochastic approach using the Extreme Value 

distribution for simulating laboratory tests and investigating the influence of rock heterogeneity 

on the behavior and strength of rock specimens. As the first step, laboratory compression tests 

were conducted on sandstone specimens to determine the mechanical parameters, followed by a 

statistical analysis. The results demonstrate that the Extreme Value distribution fits the 

parameters better than Weibull distribution. Secondly, a stochastic numerical simulation method 

simulated laboratory tests on rock specimen. Based on the laboratory test results and the Extreme 

Value distribution, MATLAB was able to generate a random mechanical parameters database. 

Then, a scripting fish function assigned the random parameters to the elements in 2D and 3D 

FLAC models. Finally, FLAC is used to numerically simulate a series of unconfined 

compression tests (Itasca, 2017), and the influence of heterogeneity was analyzed on rock 

behavior and strength. 

3.2 Laboratory test and statistical analysis 

3.2.1 Laboratory test and results 

This research conducted laboratory compression tests in the Rock Mechanics Laboratory at 

West Virginia University to study the variation in the mechanical parameters of rocks. In this 

study, we prepared and tested eighteen sandstone specimens. The rock core specimens are 4 

inches in length and 2 inches in diameter.  

Table 3.1 shows the mechanical properties result summary of the eighteen tests:  
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Table 3.1 Test results summary of the mechanical properties 

Test 

Number 

UCS 

(×103 psi) 

Young’s 

Modulus 

(×105 psi) 

Cohesion 

(×103 psi) 

Friction Angle 

(°) 

1 11.14 25.06 2.57 40.33 

2 16.12 38.18 2.17 42.78 

3 9.39 11.83 2.38 39.38 

4 8.02 11.95 1.90 43.87 

5 5.96 9.59 1.86 46.45 

6 8.87 15.11 4.16 46.75 

7 9.62 19.55 1.43 47.90 

8 10.98 14.67 3.06 44.09 

9 7.16 13.54 1.91 50.05 

10 7.70 15.03 2.38 34.80 

11 9.84 20.13 3.61 44.69 

12 8.26 14.89 1.98 43.49 

13 14.34 27.71 2.26 38.50 

14 8.73 17.19 1.88 44.43 

15 7.35 11.96 1.73 41.65 

16 4.74 6.51 2.02 43.00 

17 13.81 23.27 2.31 44.54 

18 8.08 16.74 3.61 46.48 

 

Table 3.2 Mean values and standard deviation of the mechanical properties 

Dimension 

(inch) 

UCS 

(psi) 

Young’s Modulus 

(psi) 

Cohesion 

(psi) 

Friction 

Angle (°) 

Length Diameter 𝜇𝑈𝐶𝑆  𝑆. 𝐷.𝑈𝐶𝑆  𝜇𝐸 𝑆. 𝐷.𝐸 𝜇𝑐 𝑆. 𝐷.𝑐 𝜇𝑓 𝑆. 𝐷.𝑓 

4.35 1.99 9,450.60 2,931.24 1.74×106 748,776.95 2,400.37 740.15 43 3.65 

Note: 

𝜇 is the mean value of each property; 

S.D. is the standard deviation of each property. 
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Table 3.2 summarizes the mean geometric specimen size values and gives standard 

deviations of four different material property parameters. There is high variation in the five 

mechanical parameters representing the strength and deformability of the rock specimens.  

3.2.2 Statistical analysis 

Statistical analysis determined the statistical distribution of these parameters. Weibull 

proposes a statistical approach using the weakest-link theory to explain the inherent variability in 

strength of structures (Weibull 1939). He finally concluded that the tensile strength of material 

follows a probability distribution, as shown in Figure 2.1, which was later named the Weibull 

distribution. Many fields quickly recognized and applied the benefits of this approach across 

many fields, such as reliability engineering, fatigue, and rock fracture mechanics (Priest & 

Hudson, 1976; Einstein, 1983; La Pointe, 1985). The probability density function (PDF) of 

Weibull distribution is expressed by, 

                                  𝑓(𝑥; 𝛾, 𝑘) = {(
k

𝛾
) (

x

𝛾
)

(𝑘−1)

 𝑒𝑥𝑝
−(

x

𝛾
)

𝑘

 𝑥 ≥ 0

0    ,                                   𝑥 < 0

                                          (3.1) 

where k is the shape parameter, and γ is the scale parameter of the distribution.  

From the probability distribution function of the Weibull distribution, zero is one of the 

boundaries; this boundary is the weakest link in Weibull’s theory. However, each site data has its 

own lower threshold, and zero is not the corresponding threshold value in most cases. Based on 

Weibull’s theory, Yegulalp and Kim analyzed Young’s modulus and Uniaxial Compressive 

Strength datasets and concluded that these mechanical properties followed Type Ш Extreme 

Value distribution of the smallest value (Yegulalp & Kim, 1992). The distribution revealed the 
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inherent variability in the mechanical properties of the intact rock. The probability distribution of 

Type Ш Extreme Value distribution of the smallest value can be written as (Gumbel, 1958): 

                              𝑓(𝑥; 𝛾, 𝑘, 𝜀) = {
𝑘

𝛾−𝜀
(

𝑥−𝜀

𝛾−𝜀
)

𝑘−1

𝑒𝑥𝑝
−(

𝑥−𝜀

𝛾−𝜀
)

𝑘

, 𝑥 ≥ 𝜀

0    ,                                       𝑥 < 𝜀

                                       (3.2) 

where ε is the characteristic smallest value of data set X. From Equations 3.1 and 3.2, it is notable 

that the Weibull distribution is a special case of Type III Extreme Value distribution. In other 

words, Type III Extreme Value distribution of the smallest value is a general form of the Weibull 

distribution. There are no limitations for the symbol of the smallest value of Type III Extreme 

Value distribution. For the Weibull distribution, the lowest bound is set to be zero. This is the 

prerequisite for the definition of Weibull distribution, which is not the case in the reality. 

Moreover, the theory of Weibull distribution is only suitable for the tensile strength. The 

distributions for other strength parameters are still uncertain. In 1994, as shown in Figure 3.1, 

Yegulalp and Kim performed laboratory tests and concluded that these mechanical properties 

perfectly fit the Type Ш Extreme Value distribution of the smallest value not only for the tensile 

strength, but also for the Young’s modulus and the Uniaxial Compressive Strength. Therefore, 

this study we considered using the Type III Extreme Value distribution as the statistical model in 

this research. The basic theory of the Extreme Value distribution is as follows:  
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Figure 3.1 Comparison for three different parameters between observed and theoretical extremal 

distributions (Kim, 1994) 

Let X be a random variable set with some known distribution function. If there exist n 

samples for the random variable X, then the extreme values of the samples can be defined, such 

as the minimum value Y1: 

                                                 𝑌1 = 𝑚𝑖𝑛 (𝑋1, 𝑋2, … , 𝑋𝑛)                                                        (3.3)  

If different sets of samples with the same size n are obtained for X, each set will have 

different minimum values. Using these sets, one can construct distribution functions for the 

minimum values. The cumulative distribution function (CDF) of the smallest value Y1 can be 

derived, as shown in Equation 3.4:  

𝑃(𝑌1 > 𝑦) = 𝑃(𝑋1 > 𝑦, … , 𝑋𝑛 > 𝑦) = 1 − 𝐹𝑌1
(𝑦)                                   (3.4) 

If all the data sets X1, X2, ... , Xn are assumed to be identically distributed and statistically 

independent from one another, Equation 3.4 becomes: 

                                               𝐹𝑌1
(𝑦) = 1 − [1 − 𝐹𝑋(𝑦)]𝑛                                                  (3.5) 
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The basic idea behind these derivations is that, if the smallest value Y1 is greater than some 

quantity y, all the samples X1, X2, up to Xn should be greater than y. As the sample size n grows 

larger and tends to infinity, the distribution of the smallest values will be asymptotically close to 

a mathematical distribution function in some cases.  

Gumbel classifies three types of asymptotic extreme value, labeling them as Type I, II, and 

III Extreme Value distributions (Gumbel, 2013). Each type is classified into two groups: one 

group for the largest value, and the other for the smallest value.  

The Type III Extreme Value distribution have been used commonly to describe the strength 

and time of failure of the specimen in mechanical devices and components (Hoek, 1980). This 

research uses the Type III Extreme Value distribution of the smallest value to evaluate the 

variation in the mechanical parameters of intact rocks. MATLAB fit the laboratory test results 

and generated both the random parameters and the Type III Extreme Value distribution of the 

smallest value (MathWorks, 2017), defined as: 

                                      𝑓(𝑥) =
1

𝜎
𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
) 𝑒𝑥𝑝 (−𝑒𝑥𝑝 (

𝑥−𝜇

𝜎
)) ,   𝑥 ≥ 𝜀                                  (3.6) 

where ε is the lower bound of X, σ is the scale parameter, and µ is the location parameter.  

Figure 3.2 shows several curves for Type III Extreme Value probability density function with 

different scale parameters. Parameter σ reflects the material uniformity of the structure for the 

statistical model. The shape of the statistical distribution changes from flat and wide to tall and 

narrow with change in σ. The intensity of the value tends to be uniform, and most of the cells are 

close to the given location parameter µ. In addition, due to the randomness character the sample 

values of the material properties generated each time are different, even with the same σ and µ 

values. 
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Figure 3.2 Probability density function curves for different indices 

In this research, three sets of Uniaxial Compressive Strength (UCS) experimental data 

obtained from the Pinewood mine were selected. Each data has a different roof depth range, 

which are:  

Group 1: 522.4′-532.35′, 18 specimens were tested; 

Group 2: 532.35′-542.51′, 19 specimens were tested; 

Group 3: 542.51′-552.41′, 20 specimens were tested. 

In order to find the final probability density function (PDF) for Uniaxial Compressive 

Strength,  

𝑓(𝑥) =
𝑘

γ−ε
(

𝑥−𝜀

γ−𝜀
)

𝑘−1

𝑒
−(

x−𝛆

𝛄−𝛆
)

𝑘

,   𝑥 ≥ 𝜀 

First, one must calculate the three values of ε, γ and k. 

The mean and variance of X are related to the parameters γ and k as follows: 
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𝜇𝑥 = 𝜀 + (𝛾 − 𝜀)Γ (1 +
1

𝑘
)                                                          (3.7) 

where μ_x is the mean value of X, and: 

𝜎𝑋
2 = 𝑉𝑎𝑟(𝑋 − 𝜀) = (𝛾 − 𝜀)2 [Γ (1 +

2

𝑘
) − Γ2 (1 +

1

𝑘
)]                           (3.8) 

Equation (4) and (5) can be used to show that 

1 + (
𝜎𝑋

𝜇𝑋−𝜀
)

2

=
Γ(1+

2

𝑘
)

Γ2(1+
1

𝑘
)
                                                                          (3.9) 

Figure 3.3 shows this information graphically. 

 

Figure 3.3 Relationship between the Mean and Variance of Yn (or Y1) and 1/k (Haldar, 2000) 

(Here, use Yn or Y1 instead of X, and Yn represents the largest value, Y1 represents the smallest value) 

Here, the first group is used as an example to show the calculation. Table 3.3 is the summary 

of its UCS. 4,735 is the obvious smallest value, which means the minimum value ε = 4,735. 
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Table 3.3 Uniaxial Compressive Strength (UCS) for the 1st group. (Unit: psi) 

No. 1 2 3 4 5 6 7 8 9 

UCS 11,141 16,120 9,391 8,024 5,961 8,868 9,616 10,975 7,160 

No. 10 11 12 13 14 15 16 17 18 

UCS 7,703 9,840 8,258 14,338 8,730 7,353 4,735 13,815 8,083 

 

Now, one can calculate the left-hand side of Equation (3.9) as 

1 + (
𝜎𝑥

𝜇𝑥 − 𝜀
)

2

= 1 + (
2,931.381

9,450.611 − 4,735
)

2

= 1.39 

Using Figure 3.3, one can obtain the value of 1/k=0.58, or k= 1.724138. Using Equation (3.7), 

𝜇𝑥 = 𝜀 + (γ − ε)𝛤 (1 +
1

𝑘
) 

9,450.611 = 4,735 + (γ − 4,735) × 0.891435 

γ=10,024.91 

Finally, the PDF function for the first group is obtained:  

𝑓(𝑥) = 0.000326 × (
𝑥 − 4,735

5,289.912
)

0.724138

× 𝑒𝑥𝑝 (− (
x − 4,735

5,289.912
)

1.724138

) 

Table 3.4 ε, γ and k values for the three groups. (Unit: psi) 

Number of 

Tests 

Roof Depth (ft.) 

522.4′-532.35′ 532.35′-542.51′ 542.51′-552.41′ 

1 11,141 10,811 4,688 

2 16,120 11,974 11,937 

3 9,391 9,802 12,692 

4 8,024 10,280 12,753 

5 5,961 6,225 11,045 

6 8,868 9,536 12,786 

7 9,616 7,226 5,249 

8 10,975 9,569 9,540 

9 7,160 9,615 15,502 
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10 7,703 9,477 11,791 

11 9,840 8,396 5,624 

12 8,258 10,990 4,931 

13 14,338 7,668 12,068 

14 8,730 10,824 9,026 

15 7,353 6,259 8,822 

16 4,735 11,783 13,391 

17 13,815 12,727 7,805 

18 8,083 14,088 10,999 

19 -- 6,876 5,851 

20 -- -- 6,260 

Mean 9,450.61 9,695.58 9,638 

Standard 

Derivation 
2,931.38 2,190.41 3,318.73 

γ 10,024.91 10,113.87 10,213.06 

k 1.72 1.69 1.61 

ε 4,735 6,225 4,688 

 

Similarly, for the second and third groups, one can obtain the values of ε, γ and k as well as 

the PDF for each group, as shown in Table 3.4 and Table 3.5.  

Table 3.5 Probability Density Function (PDF) function for the three groups 

Group 

Number 
Roof Depth (ft.) Probability Density Function (PDF) 

1 522.4′-532.35′ 𝑓(𝑥) = 0.000326 × (
𝑥 − 4735

5,289.91
)

0.724138

× 𝑒𝑥𝑝 (− (
x − 4,735

5,289.91
)

1.72

) 

2 532.35′-542.51′ 𝑓(𝑥) = 0.000436 × (
𝑥 − 6225

3,888.87
)

0.694915

× 𝑒𝑥𝑝 (− (
x − 6225

3,888.87
)

1.69

) 

3 542.51′-552.41′ 𝑓(𝑥) = 0.000292 × (
𝑥 − 4,735

5,525.06
)

0.612908

× 𝑒𝑥𝑝 (− (
x − 4688

5,525.06
)

1.61

) 

 

Figure 3.4 shows the fitting results of the test data with the Type III Extreme Value 

distribution of the smallest value. The obtained results were good fitting, demonstrating that the 
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distribution of the mechanical parameters obeys the Type III Extreme Value distribution of the 

smallest value. 

 

Figure 3.4 Probability density curves of properties of rock core samples 

This research uses the eighteenth test results from the first group as its research sample data. 

Table 3.6 lists the summary of the eighteenth test results for the four different parameters: Bulk 

modulus, Shear modulus, cohesion, and friction angle. It also includes the determined parameters 

for each distribution shown in Figure 3.4.  
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Table 3.6 Parameters of mechanical properties determined by Extreme Value distribution 

Bulk Modulus 

(×105 psi) 

Shear Modulus  

(×105 psi) 

Cohesion 

(×103 psi) 

Friction Angle 

(°) 

16.71 10.02 2.57 40.33 

25.45 15.27 2.17 42.78 

7.89 4.73 2.38 39.38 

7.97 4.78 1.90 43.87 

6.39 3.83 1.86 46.45 

10.07 6.04 4.16 46.75 

13.04 7.82 1.43 47.9 

9.78 5.87 3.06 44.09 

9.03 5.42 1.91 50.05 

10.02 6.01 2.38 34.8 

13.42 8.05 3.61 44.69 

9.93 5.96 1.98 43.49 

18.48 11.09 2.26 38.5 

11.46 6.88 1.88 44.43 

7.97 4.78 1.73 41.65 

4.34 2.60 2.02 43 

15.51 9.31 2.31 44.54 

11.16 6.70 3.61 46.48 

𝜇𝐾 𝜎𝐾 𝜇𝐺 𝜎𝐺  𝜇𝑐 𝜎𝑐 𝜇𝑓 𝜎𝑓 

14.27 5.99 8.56 3.59 2.64 0.65 45.4 2.82 

Note: 

 𝜇 is the location parameter of each property; 

 σ is the scale parameter of each property. 

 

3.3 Numerical simulation methodology 

Based on the conclusion in the previous study, the Type III Extreme Value distribution of the 

smallest value is a good fit for the mechanical parameters determined from laboratory 

compression tests, and for the associated parameters determined within MATLAB. This section 

proposes a stochastic numerical simulation methodology to simulate the rock specimens with 
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randomly generated mechanical parameters. The procedure includes generating random 

mechanical parameters, assigning the parameters to the elements of the specimen, and 

numerically simulating an unconfined compression test. In addition, this procedure considers 

varying element sizes in the simulation.  

3.3.1 Generation of random mechanical parameters 

Figure 3.5 shows the procedure to generate random mechanical parameters in MATLAB. 

From the test data, one can determine the smallest value ε, the scale parameter σ, and the location 

parameter µ for the distribution. MATLAB can then generate the random parameters, which are 

a sequence of independent and identically distributed random variables. The number of the 

property database must be equal to the number of the elements, ensuring the satisfaction of each 

element by the Type III Extreme Value distribution of the smallest value. 

 

Figure 3.5 Steps to generate database in MATLAB 
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Figure 3.6 Bulk Modulus database generation and filtration in MATLAB 

It is important to note that the procedure includes a filter process in order to eliminate the 

invalid parameters. Figure 3.6 shows a screenshot of the database for Bulk modulus generated in 

MATLAB. Type III Extreme Value distribution limits the distribution for the lowest value, 

which can take positive or negative values. Due to this property, the database generated here also 

includes negative values, which is not realistic. Therefore, it is crucial to filter the invalid values 

(the values marked with red rectangles) before inputting the data into the numerical models. 

3.3.2 Numerical simulation method 

FLAC conducts numerical simulations with a stochastic method. FLAC uses an explicit finite 

difference method to capture the complex behaviors of models that consist of several stages, 

show large displacements and strains, exhibit non-linear material behavior, or are unstable. This 

includes cases of yield or failure over large areas or total collapse. This process uses Mohr-

Coulomb criterion as the failure criterion, which means that the elements demonstrate perfect 

plastic behaviors when failure occurs.  

Figure 3.7 shows the geometry of the model in 2D and 3D. The figure shows the model in an 

isometric projection, indicating the 3D shape. The 2D model is 4 inches in length and 2 inches in 
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width. The 3D model is 4 inches in length and 2 inches in diameter. The dimensions of the model 

remain constant in the entire modeling effort. 

 
Figure 3.7 Dimensional sketch for the numerical models 

Table 3.7 summarizes the peak strengths with three different methods: Type III Extreme 

Value distribution, Weibull distribution, and the traditionally deterministic method. Figure 3.8 

shows the corresponding plot of the peak strengths for those three methods. From the table and 

figure, the results show the peak value increases as the element number increases; the larger the 

element number, the more the peak strengths are close to the laboratory results. Here, the 

laboratory test result of peak strength is 72,046.18psi.  

Table 3.7 Peak strengths of rock specimens for different distributed material properties (Unit: psi) 

Element 

Number 

Type III 

Extreme Value 

distribution 

Weibull 

distribution 

Average 

distribution 

27,000 32,983.28 30,183.34 36,902.82 

125,000 40,376.74 37,025.92 46,751.49 

216,000 43,565.76 39,770.03 51,124.53 

729,000 55,921.75 52,689.68 68,593.97 
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Moreover, if the model is under the same element number condition, peak strength obtained 

by Type III Extreme Value distribution is relatively closer to the average distributed model than 

the Weibull distributed model. The Weibull distribution method used to make the stochastic 

analysis is still a little too conservative; as such, Type III Extreme Value distribution is an 

optimal choice for this case. 

The simulations use a series of 2D and 3D model configurations, as follows: 

a) The first group includes four models with same element numbers: the simulation assigns 

one of the four models with deterministic mechanical parameters and assigns the other 

three models with random mechanical parameters. There are 800 elements for the 2D 

model and 64,000 elements for the 3D model. 

 

 

Figure 3.8 Peak strengths of rock specimens for different distributed material properties (Unit: psi) 

100

10100

20100

30100

40100

50100

60100

70100

80100

0 100000 200000 300000 400000 500000 600000 700000 800000

P
ea

k
 S

tr
en

g
th

 (
p

si
)

Element Number

Type III Extreme Value distribution Weibull distribution

Average distribution Laboratory Result



36 
 

b) The second group includes three models with different element numbers: 600, 800, and 

1,000 for the 2D models, and 64,000, 144,000, and 400,000 for the 3D models. The 

random mechanical parameters are the same for all the models in this group. 

The program randomly generates mechanical parameters based on the statistical distribution 

and determined distribution parameters for a large number of elements. Therefore, a written 

FISH function assigns the random parameters to the elements in the numerical models.  For each 

parameter, the program stores the random data generated and filtered in MATLAB into a .txt file; 

later, the Fish function reads this data. In other words, the program stores the random data into an 

array defined in the Fish function. The Fish function then assigns this data to the elements based 

on the element number. Figure 3.9 shows the cohesion distribution in FLAC8.0 program and 

Bulk modulus distribution in FLAC3D as examples. The program randomly generates the 

property with the Type III Extreme Value distribution of the smallest value.  

 

Figure 3.9 Randomly distributed property schematic diagrams in 2D (cohesion) and 3D (Bulk modulus) 

models.  

Applying velocity to the top of the specimens simulates the unconfined compression test 

after generating the model and assigning the constitutive model and random properties. The 

velocity applied to the top of the model is 9.810-7 inch/sec. The 2D models have the top of the 
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model boundary fixed in the X direction and the bottom boundary fixed in both the X and Y 

directions. The 3D model has the model fixed in the X and Y directions on the top and in the X 

and Z directions on the bottom boundary. The model is free to move in the Y direction. When the 

model is running, the program monitors the force applied to the specimen and the specimen 

displacement.  

3.4 Results and discussions 

3.4.1 Influence of heterogeneity on rock behavior 

Rock heterogeneity affects the deformability of the rock specimen. Figure 3.10 shows the 

stress-strain curves of the 2D and 3D models with deterministic and stochastic properties. From 

Figure 3.10(a), relationships at pre-failure situation were similar, but slight differences still exist.  

 
Figure 3.10 Stress-strain curves for 2D and 3D models in same element number conditions 

(Note: Random Value-1, Random Value-2, and Random Value-3 represent three random models 

assigned with three different random mechanical parameters. The other conditions, like the element 

numbers, are stochastic parameters for each mechanical property and are kept the same.) 

 

The slope of the curves before the yield point should be same, as the Young’s modulus is 

constant theoretically. Because of this error between the numerical model and theoretical model, 

it is necessary to build the 3D models. Figure 3.10(b) shows the force-displacement curves in 
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FLAC8.0. The slopes for force and displacement curves are obtained that they are the same in 

the elastic part. The reason for the difference in the 2D models is mainly due to ignoring the 

dimension in the Z direction, which played a significant role in the rock’s deformation behavior. 

With an increasing load applied onto the specimens, the difference between stress-strain 

curves shown in Figure 3.10 becomes larger and larger, demonstrating that there is a difference 

in the deformability of the specimen. Due to the heterogeneity in the Bulk and Shear modulus, 

the displacement distribution within the specimen is inhomogeneous. Some areas within the 

specimen could have lower modulus and are easier to deform, while others are more difficult to 

deform. When applying a load onto the specimen, this heterogeneity can induce inhomogeneous 

deformation within the specimen, which changes its overall deformability.  

In addition, the heterogeneity affects the failure process of the specimens. Figure 3.10 shows 

that the stress-strain curves for the specimens with deterministic properties are almost linear in 

the pre-failure region. When the load increases to a specific value, all the elements become 

plastic at the same time. However, the failure of the heterogeneous specimens is different. As 

seen in Figure 3.10(a), the stress-strain curve is linear at the beginning and gradually becomes 

nonlinear with increasing load. This phenomenon is the result of the heterogeneity of strength, 

which induces the progressive failure process.  

Figure 3.11 shows the plot of the element state for the specimens with a deterministic 

property and random values when the applied load is 5000 psi.  

Similarly, failed state in 3D shows the random failure distribution in the simulated specimen 

(Figure 3.12). At the same load level, combining  



39 
 

Figure 3.11(b) and Figure 3.12, there is no failed element in the specimens with a 

deterministic property, while some elements have already failed in the specimens with a 

stochastic property. With increasing load, more and more elements in the specimens with a 

stochastic property fail, resulting in progressive failure of the specimen and increasing 

deformability.   

 

Figure 3.11 Plot of element state with different properties 

 

Figure 3.12 Plot of element state with stochastic properties in a three-dimensional rock specimen 

Table 3.8 Peak strength for 2D and 3D models with same element number conditions. 

(Unit: psi) 

 2D Model 3D Model 

Deterministic 10,950.37 11,254.95 
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Random-1 9,202.66 8,249.76 

Random-2 8,689.23 8,219.30 

Random-3 7,689.91 8,168.54 

 

Finally, the property affects the peak strength of the specimens. Table 3.8 summarizes the 

peak strength of the 2D and 3D specimens. For the 2D models, a significant decrease in peak 

strength occurs when using a stochastic property rather than a deterministic property. In addition, 

the peak strengths are different when assigning different random properties. For the 3D models, a 

decrease in peak strength also occurred, but the difference between different random properties 

was negligible. Therefore, the peak strength for the specimens with a stochastic property is lower 

than that of the specimens with a deterministic property, whether it is a 2D or 3D condition.  

3.4.2 Sensitivity analysis of element size on the simulation 

The sensitivity of the element size could possibly affect the simulation results in this research. 

The simulation can simulate different numbers of elements for one rock specimen, which 

introduces different element sizes. This process randomly generates the strength and 

deformability of each element, meaning that they are different from one another. The failure of 

one element or difference in the deformability of one element, when compared to the 

surrounding elements, can change the stress distribution for the local area within the specimen. If 

the sizes of the elements are different, the affected area can be different as well; as a result, the 

overall response of one specimen to the increasing load can be different. Thus, it is necessary to 

conduct a sensitivity analysis to analyze the influence of element size on the simulation result.  
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Figure 3.13 Stress-strain curves for 2D and 3D models in different element number conditions 

(Note: ** Elements in this figure represent that six different random models were created with 600, 800, 

and 1,000 element numbers in FLAC8.0 and 64,000, 144,000, and 400,000 in FLAC3D respectively. 

The stochastic parameters for each mechanical property are kept the same.) 

 

Table 3.9 Peak strength for 2D and 3D models with different element number conditions 

(Unit: psi) 

2D model 
600 Elements 800 Elements 1000 Elements 

8,447.01 7,689.91 5,462.13 

3D Model 
64,000 Elements 

144,000 

Elements 
400,000 Elements 

8,262.81 8,207.70 8,183.04 

 

Section 3.3.2 discussed the different numbers of elements used in the numerical simulation of 

a rock specimen 4 inches in length and 2 inches in diameter. Figure 3.13 shows the stress-strain 

curves for the 2D and 3D models with different element sizes, and Table 3.9 summarizes the 

peak strengths. For the 2D models, the influence of element size on rock behavior is significant. 

With an increasing element number or decreasing element size, the slope of the overall stress-

strain curve decreases; this indicates an increase in the deformability. In addition, the peak 

strength decreases with an increasing element number. This demonstrates that the element size 

significantly influences the simulation results in the 2D model; as such, the model should be 
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calibrated carefully before simulation. However, the element size has a negligible influence on 

the simulation results in the 3D model, which is notable in the stress-strain curves and peak 

strengths.   

3.5 Conclusions  

The focus of this chapter was to demonstrate that heterogeneity and discontinuity 

significantly affect rock strength. Therefore, it is important to use a stochastic analysis in order to 

determine rock strength. The Type III Extreme Value distribution of the smallest value is the 

primary methodology. The conclusions of this research are as follows: 

➢ Use of the deterministic method results in a conservative estimation of rock strength. Use 

of the deterministic method overestimates the rock strength by 50%. The peak strength 

decreases as the element number of the random model increases. 

➢ For the deterministic model, the failure always behaves like a double pyramid type of 

failure. The yield zones are relatively concentrated. For the stochastic models in this 

research, researchers can monitor both the macro-cracks and the micro-cracks. Each 

micro-crack will cause stress redistribution and propagate, which will in turn cause a 

severe failure. As such, the failure pattern for rock specimen with stochastic analysis is 

less predictable. 

➢ The residual strength for the intact rock varies extensively with the grid number. The 

optimum grid number is unknown, and researchers will investigate this number in the 

future for more realistic mechanical behaviors of intact rock. 

➢ The stochastic models produce more realistic rock behavior. The yield state shows that 

random failure forms in the stochastic models, which is different from the traditional 



43 
 

deterministic method. In addition, while strengthening random density, the randomness of 

the failure element appears more obviously, revealing the nature variability of rocks.  
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CHAPTER 4  

EFFECT OF SPATIAL VARIANCE FACTOR ON RANDOM 

MODEL  
 

4.1 Introduction 

In rock engineering, accurate strength prediction of rockmass is imperative for a successful 

design, especially for an underground structure. Complex depositional activity in the rock 

formation process causes the rock to be heterogeneous. Heterogeneity affects the physical-

mechanical behavior of rock. The inherent variability of rock is one of the major sources of 

uncertainties, commonly observed in the strength variation of intact rocks. The deterministic 

approach is widely used in solving rock mechanics problems. The single mean values of limited 

site data have been used to estimate the intact rock parameters such as the strength and 

deformation modulus (Amusin, 1979; Bieniawski, 1978; Hoek, 1980). However, the estimations 

are always questionable, as the deterministic methods ignore the inherent variation in the intact 

rock.  

In structures of rocks, the weak formation, the area, which has lower material properties, 

interacts on a different spatial correlation length. However, few research efforts have focused on 

the influence of the spatial variance on the stress field investigation and failure procedure of the 

materials. For example, the strength of pillars in underground mines is critical for mining 

operations in underground coal and hard rock mines. However, only a unit value is usually 

considered when performing stability calculations. A significant research effort in past studies 

examined pillar stability and design using theoretical formulation (Bieniawski, 1968), numerical 

simulation (Recio-Gordo, 2012), and empirical method (Soltani, 2015). The problem is that these 

studies always used deterministic strength values to represent the coal strength of the whole 
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pillars, ignoring the inherent variability that exists in rockmass properties. In order to analyze 

rockmass behavior, one must probabilistically assess the inherent variability of rockmass 

mechanical properties, such as the strength, deformation properties, and in-situ stresses, for the 

whole area. 

In the past few years, random field theory to model the inherent rock variability have been 

increasingly used in order to reduce uncertainty in rock characteristics. Several researchers such 

as Weibull used weakest-link theory to explain the inherent variability of a material (Weibull, 

1939). Salamon, Peng, and Scovazzo used finite element method, which included variable 

material properties, on applications such as the pillar design in underground mining (Salamon, 

1967; Scovazzo, 1992; Peng, 1992). Priest, Hudson, etc. discovered that the distributions of 

joints in rockmass follow the exponential distributions (Einstein, 1983; La Pointe, 1985; Priest, 

1976). Griffiths used finite element method in Monte Carlo framework and combined the 

Uniaxial Compressive Strength and spatial correlation to analyze the mine pillar stability 

(Griffiths, 2002). Yegulalp and Kim showed that the mechanical properties of intact rock match 

the Type III Extreme Value distribution of the smallest value (Yegulalp & Kim, 1994). The grain 

sized rock material properties are typically assigned with random models. However, due to the 

geology and history of deposition in rock laminations, the formation of rockmass necessitates the 

random distributions of each physical indicator to be spatially correlated, where the physical-

mechanical properties of rockmass are neither deterministic nor completely random. Few studies 

have considered the spatial correlation factor combined with random rock material properties.  

In this chapter, a probabilistic approach is proposed by using Extreme Value distribution and 

spatial correlation factor, which will assess the variability of the rockmass mechanism. This 

method treats rockmass properties as spatially correlated random variables. This chapter studies 
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three different laboratory scaled models to demonstrate the necessity of considering the spatial 

correlation factor.  

4.2 Methodology 

Weibull is the first person to propose a statistical approach, using the weakest-link theory to 

explain the inherent variability in strength of structures; this has been widely applied in the 

random field analysis for rockmass (Einstein, 1983; Fang, 2002;, Kim & Gao, 1995; Potvin, 

2012). Based on Weibull’s research, Yegulalp and Kim concluded that Young’s modulus, shear 

modulus, and Uniaxial Compressive Strength of rock followed the Type Ш Extreme Value 

distribution of the smallest value better than Weibull’s distribution (Yegulalp & Kim, 1992). 

Type III Extreme Value distribution is the general form of Weibull distribution (Gao, 2020). 

Previous research has analyzed the inherent variability of the material property in rocks. 

However, these researchers only considered the mean value and standard deviation in rock 

strength, ignoring the effect of spatial correlation. Due to the geology and history of deposition 

in rock laminations, spatial variability is a significant factor in the mechanical investigation of 

rocks. The properties of the adjacent areas correlate with each other.  

The traditional Extreme Value distribution models only consider the randomness attributes of 

rockmass. However, due to the geology and history of deposition in rock laminations, the 

physico-mechanical properties tend to be independent at far distances and correlated at relatively 

small distances (Ledvina, 1991). The mechanical behavior of a rock at a close distance always 

shows some spatial continuities and correlations; as such, the spatial variability is a significant 

factor in the mechanical investigation of rocks. The front view shown in Figure 4.1 is an example 
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of this correlation. The local spatial continuities exist inherently within the rock, causing the 

physical-material properties in adjacent areas to be similar and spatially correlated.  

 

Figure 4.1 Existence of spatial variance in different types of rock specimens (Recio-Gordo, 2012) 

Spatial correlation measures the correlation of a variable through space. It is an index value 

revealing the points, which are significantly correlated within some specific distance, which 

names the correlation. Figure 4.2 represents one strength variation at different depths. �̅� is the 

mean value. μ(zj) is the actual strength value at the specific depth. σμ is the standard deviation for 

all strength data. δμ is the correlation length, which is the distance of both the two points above 

or below the mean value  �̅�. 

For example, as shown in Figure 4.2, take two rock specimens selected at far apart locations. 

One is from circle A, and one is from circle B, which are separated by a larger distance than the 

measured correlation length. These two specimens may possess less correlated material 

properties (Einstein, 1983; Villaescusa, 1990; Yu, 1993).  
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Figure 4.2 Representation of one strength variation at different depths (Vanmarcke, 1977) 

Therefore, in order to illustrate the degree of local spatial continuity of rocks and to 

investigate the influence of the spatial correlation factor on rock behavior, this chapter proposes 

a method based on the Type III Extreme Value distribution, introduced in Chapter 3, by adding 

the spatial correlation function.  

One form of covariance called a semi-variogram γ(t) can define the spatial correlation (Chen, 

2012; Ledvina, 1991). The semi-variogram is equal to half of the variance between two random 

locations separated by distance t, as shown in Equation 4.2: 

γ(𝑡) =
1

2
𝑉𝑎𝑟[𝑍(𝑢) − 𝑍(𝑢 + 𝑡)]                                                         (4.2) 

where Z(u) is the random distribution of Gaussian variable at the location u. The distance value t 

is a scalar parameter, including both the spacing value and orientation. It is calculated as shown 

in Equation 4.3: 

t = √(
𝑡1

𝑎
)

2

+ (
𝑡2

𝑏
)

2

                                                                 (4.3) 
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where t1 and t2 are the spatial interval values along the field’s major and minor axes, and a and b 

are the parameters that show the speed at which the spatial dependence decreases along the two 

principal axes. 

This research assumes that the distribution of the stochastic model is Gaussian. If the initial 

distribution is non-Gaussian, it is necessary to transfer the distribution to Gaussian distribution. 

The conversion process will not change the shape of the initial distribution. If the shape of the 

initial distribution is significantly different from Gaussian distribution, then this approach may 

not be suitable.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Steps to generate the spatial correlated database in MATLAB 

The flow chart shown in  
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Figure 4.3 is the demonstration of the data generating process. The initial probabilistic model 

can be established by one sample which satisfies Type III Extreme Value distribution with given 

parameters k, σ and μ, and the space of the sample includes N numbers, which is the same as the 

element numbers of our numerical model. Then, based on the characteristics of the intact rock 

material properties, the spatial correlation is added to generate the objective correlated random 

field, which will finally satisfy the Type III Extreme Value distribution. 

4.3 Numerical simulation and results discussion  

In this chapter, the commercial geotechnical code FLAC8.0 performed the stochastic 

numerical simulation. This research used an explicit finite difference method to capture the 

complex behavior of rock excavation using numerical steps. The models show large 

displacements and strains and exhibit non-linear material behavior. This includes cases of yield 

or failure over large areas or total collapse. This simulation used Mohr-Coulomb criterion as the 

failure criterion where the elements show perfect plastic behavior on the occurrence of failure.  

4.3.1 Model description  

In order to study the influences of randomness and spatial correlation on rock mechanical 

behavior, this research created three different types of two-dimensional (2D) models (Figure 4.4) 

which are models with deterministic material, completely random material, and the spatial 

correlated random model. Here, only cohesion and friction are assumed to satisfy the Type III 

Extreme Value distribution. Table 4.1 shows the mean values for all the material properties 

defined in the rock specimens. 
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Model dimensions remain constant in the entire modelling effort. Figure 4.4 shows the 

geometry of the model in 2D. The model is 4 inches in length and 2 inches in width. In addition, 

the element size is set as 0.2 inch × 0.5 inch. 

 
Figure 4.4 The geometry of FLAC8.0 model 

 

Figure 4.5 Material distributions for three representative models 

Table 4.1 Mean values for the material properties used in the rock specimens 

Bulk modulus 

(×106psi) 

Shear 

modulus 

(×106psi) 

Cohesion 

(psi) 

Friction 

(degree) 

0.2 inches 

0
.2

 i
n

ch
es
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11,907.62 10,993.88 7,720.37 44 

 

For the spatial correlated random model in Figure 4.5, the angle of the principal axis is set at 

45 degrees from the horizontal axis. The principal axis is a line associated with the correlated 

circle or ellipse, which generates the major and minor axes mentioned in Equation 4.3, with two 

black dash lines shown in Figure 4.5. The adjacent correlation for the two major axes in this case 

is strongly different. The spatial dependence reduction is set at 10 inches along the major axis 

and 2 inches along the minor axis, which means the spatial dependence along the major axis is 5 

times larger than along the minor axis. 

4.3.2 Comparison among traditional deterministic model, completely random 

model, and random model with spatial correlation  

Table 4.2 and Figure 4.6 show the safety factor summaries for each grid for the three models 

defined in Figure 4.6. The grid number for each model is 800. From the statistical summary 

in Table 4.2Table 4.2 Summary for safety factors of the three different models 

, the safety factor for the deterministic varies from 0 to 1.5; while for the other two random 

models, the ranges of the safety factor are from 0 to 5. For the standard deviation, the random 

model with correlation factor is 0.595, which is higher than the other two models. The skewness 

value for the model with correlation factor is 0.9952, which is close to unity. The shape of the 

distribution is very similar to the Normal distribution, which matches the rule of large samples in 

statistical theory that the distribution of one population should behave like a Normal distribution 

when the number of sample data approaches infinity. 

Table 4.2 Summary for safety factors of the three different models 

Safety 

Factor 

range 

Deterministic 
Random without 

correlation 

Random with 

correlation 

Frequency Relative Frequency Relative Frequency Relative 
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Frequency Frequency Frequency 

<1 759 0.95 2 0.0025 0 0 

1.0-1.5 41 0.05 91 0.11 5 0.00623 

1.5-2.0 0 0 257 0.32 210 0.26 

2.0-2.5 0 0 253 0.32 309 0.39 

2.5-3.0 0 0 162 0.20 142 0.18 

3.0-3.5 0 0 29 0.04 85 0.11 

3.5-4.0 0 0 4 0.005 34 0.04 

4.0-4.5 0 0 2 0.0025 14 0.018 

4.5-5.0 0 0 0 0 1 0.0013 

Mean 1.000094 2.12 2.41 

STDV 0.00049 0.52 0.60 

Skewness ---- 0.34 0.9952 

 

 

Figure 4.6 Histogram for the safety factor of the three different models 

(Note:   Ran. no corr.— represents completely random model without spatial correlation. 

             Ran. corr.— represents random model with spatial correlation.) 
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Figure 4.7 shows the stress-strain curves for the three models in Figure 4.5. The peak 

strengths for models with deterministic material, completely random material and spatial 

correlated random model are 9.88×103, 1.32×104 and 1.12×104 psi respectively. The strength of 

the spatial correlated random model is in the middle. 

 

Figure 4.7 Stress-strain curves for the three representative different models 

Due to the geology and history of deposition in rock laminations, the properties of the 

adjacent areas correlate with each other. Therefore, the random model with correlation factor is 

the closest model to the rockmass.  All the above results also verified that the spatial correlated 

model is the optimal approach to estimate for rockmass strength. The traditionally deterministic 

method overestimated the strength of the intact rocks, and the completely random model with no 

correlation underestimated the strength of intact rocks.  
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4.3.3 Results discussion for the random model with spatial correlation factor 

Figure 4.8 shows the vertical stress variations along a vertical cross-section of the specimen 

(shown in a red dashed line in Figure 4.9). The failed state of the homogeneous rock specimen is 

shown in Figure 4.9. The same conditions are set for all the specimens except for the spatial 

dependences (values of a and b in Equation 4.3). The specimens yield around step 3000; 

therefore, this step is assumed to be the point where the specimens began to fail. Before the yield 

point, the specimens were still in elastic state, and therefore the distribution of the vertical stress 

along the central axis is identical. This is independent of the spatial correlation. However, after 

the yield point, when the specimens enter elastic-plastic state, the distributions of the vertical 

stress along the central axis are significantly dependent on the spatial correlation. 

From Figure 4.9 the contours at the first row represent the correlated materials with different 

spatial dependence along the two main axes. The dark blue color shows the relatively weak 

zones, and the yellow color indicates the strong zones. Crack initiations usually occur in weak 

zones. Further, as the stress redistribution occurs in the specimen, the cracks propagate to the 

adjacent area. 
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Step 1000 Step 1830 Step 3000 

   

Step 4000 Step 5000 Step 6000 

 

Figure 4.8 Vertical stress variations along the central axes of the specimens 

In addition, the spatial correlation is an index of both the correlation and continuity for one 

random field. As the spatial dependence decreases at a low value, the mechanical behavior of the 

rock specimen in the adjacent area will correlate less. The change gradient of the mechanical 
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response is comparatively larger, and vice versa. Therefore, from Figure 4.8, when a=2 and b=2, 

the spatial dependence is relatively low, and the yield state randomness increases with additional 

run. On the other hand, when the values of a and b are increased, the spatial dependence 

increases, and the yield states are more stable. 

 

Figure 4.9 Yield state for rock specimen with different spatial dependence 

4.4 Sensitivity analysis for four different parameters:  

friction, cohesion, correlation length along horizontal and vertical axis  

During the research in the previous two sections, in both the complete random model and the 

spatial correlated random model, randomness slightly influencing the intact rock strength is 

discovered, and yet significantly influences the final failure mode for rock specimen. The 

strength of the rock specimen with random material properties is somewhat different from the 
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model with deterministic material properties. However, the failure procedure for the model with 

spatial variance is strongly different from the deterministic model. The micro-cracks are always 

initiated by the area, which has relatively lower mechanical property values. This phenomenon 

matches the weakest-link theory concluded by Weibull. 

In order to verify the importance of four different parameters (friction, cohesion, and 

correlation length along horizontal and vertical axes respectively), this research will generate 152 

random sample data. The stress for each specimen at different loading steps and different 

locations were tracked. The aim is to discover how the inherent material parameters affect the 

internal stress for intact rocks. 

Here four different groups for friction’s sensitivity analysis are summarized as: 

(1) Group One: 

Sensitivity analysis for parameter “b” (correlation length along horizontal direction) 

a. Constant value: cohesion, mean value of friction, a/L (a=2, 4, 6, 8) 

Valuable value: "b” (spatial parameter along horizontal direction)  

b. Constant value: friction, mean value of cohesion, a/L (a=2, 4, 6, 8) 

Valuable value: “b” (spatial parameter along horizontal direction)  

(2) Group Two: 

Sensitivity analysis for parameter “a” (correlation length along vertical direction) 

a. Constant value: cohesion, mean value of friction, b/L (b=4, 8, 12, 16) 

Valuable value: “a” (spatial parameter along vertical direction)  

b. Constant value: friction, mean value of cohesion, b/L (b=4, 8, 12, 16) 

Valuable value: “a” (spatial parameter along vertical direction)  

(3) Group Three: 
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Sensitivity analysis for friction  

Constant value: cohesion, mean value of friction, “a, b”                   

Valuable value: standard deviation of friction  

(COVφ =0.01/0.1/0.02/0.04/0.08/0.12/0.14/ 0.16/0.18) 

(4) Group four: 

Sensitivity analysis for cohesion 

Constant value: friction, mean value of cohesion, a, b                   

Valuable value: standard deviation of cohesion  

(COVc =5/10/20/30/40/50/60/70/80/90) 

Figure 4.9 clearly shows that the yield state contours, which happened at the failure onset 

point, always have the same distribution of the friction angle distribution (marked by the red 

dash rectangle). Therefore, the initial failure for the heterogeneous models may depend on the 

distribution of the friction initially defined. It was also found that whether it is the complete 

random model or the spatial correlated random model, the randomness always slightly influences 

the intact rock strength and significantly influences the final failure mode for rock specimen. The 

strength of the rock specimen with random material properties is slightly different from the 

model with deterministic material properties. However, the failure procedure for the model with 

spatial variance is strongly different from the deterministic model. The micro-cracks are always 

initiated by the area, which has relatively lower mechanical property values. This phenomenon 

matches the weakest-link theory concluded by Weibull. 
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Figure 4.10 Friction, cohesion contours vs. yield state contours with different loading steps 

For the sensitivity analysis, as shown in the plots in Figure 4.10, the mean value for the 

friction angle remains constant in the entire modeling effect this time. Figure 4.10 lists the 

sensitivity analysis for the friction angle. The constitutive model used here is Mohr-coulomb 

model. 

Here, eight different groups for friction sensitivity analysis are summarized as: 

friction 

cohesion 

 Step 6000 

 Step 5000 

 Step 4000 

 Step 3000 
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(1-4) Constant value: cohesion, mean value of friction, a/L (a=2, 4, 6, 8) 

    Valuable value: b (spatial parameter along horizontal direction)  

(5-8) Constant value: cohesion, mean value of friction, b/L (b=4, 8, 12, 16) 

    Valuable value: a (spatial parameter along vertical direction)  

The geometry and loading condition are kept the same as in the previous analysis. For the 

spatial correlation definition, two parameters, a and b, are used to control correlation length h. 

These two parameters signify how quickly spatial dependence decreases along those axes. When 

a does not equal b, this means the sample is heterogeneous. 

 

(1) Set cohesion as constant; set friction as a variable value, a/L (a=2) as constant value 
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(2) Set cohesion as constant; set friction as a variable value, a/L (a=4) as constant value 

 

(3) Set cohesion as constant; set friction as a variable value, a/L (a=6) as constant value 
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(4) Set cohesion as constant; set friction as a variable value, a/L (a=8) as constant value 

 

(5) Set cohesion as constant; set friction as a variable value, b/H (b=4) as constant value 
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(6) Set cohesion as constant; set friction as a variable value, b/H (b=8) as constant value 

 

(7) Set cohesion as constant; set friction as a variable value, b/H (a=12) as constant value 
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(8) Set cohesion as constant; set friction as a variable value, b/H (a=16) as constant value 

Figure 4.11 Sensitivity analysis for the friction angle parameter 

From Figure 4.11, the state failure represents the initial damage that occurred in the sample 

as load was applied and incremented in steps. It is observable that the yield state contours, which 

happened at the failure onset point, always have the same distribution of the friction angle 

distribution. The initial failure for the heterogeneous models may depend on the distribution of 

the friction initially defined. All the distributions of the failure zone for each sample that 

happened after the yield point are almost the same as the distribution of the friction defined 

previously. This may represent that the friction angle is the primary factor causing damage to the 

rock sample. After that, the spatial correlated friction angle combined with the spatial correlated 

cohesion value to influence the following failure process. 

4.5 Conclusions 

The focus of the research in this chapter was to demonstrate that spatial correlation 

significantly affects rock strength and failure propagation. Conclusions are summarized as 

follows: 
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➢ Based on one type of stochastic model, this research improved the conventional Type III 

Extreme Value distribution by adding the spatial correlation factor. The spatial correlation 

revealed both the correlation and continuity that exists inherently in rock. The numerical 

simulation results show that the spatial correlated random model can estimate the rock 

strength in a relatively more realistic way. 

➢ For the spatially correlated random model, the small cracks normally initiate at the 

relatively weak zones. As the spatial dependence increases, the failure state of the rock 

specimen changes from random to a relatively stable state. 

➢ Friction angle is the primary factor that causes damage to the rock sample. After initial 

failure happens, the spatial correlated friction angle will combine with spatial correlated 

cohesion value to influence the following failure propagations. 

These results show the significant influence of the spatial correlation on the strength and 

mechanical response of rock. 
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CHAPTER 5  

CALIBRATION STUDY THROUGH TRIAXIAL TEST 
 

5.1 Introduction 

In order to have confidence in the previous model results, some form of calibration of the 

model with the Hoek-Cell triaxial laboratory test must be significant. The test involves confining 

a cylindrical sandstone specimen in a pressurized cell, which can simulate a stress condition, and 

then shearing to failure. In order to determine the shear strength properties of the sample, this 

research performs triaxial tests for each specimen under different confinement conditions. 

This research performed the sandstone triaxial testing using the Hoek Cell, designed to 

determine the triaxial strength of diamond drill cores of rock. The first step is to fill a stainless-

steel chamber with oil for the application of confining pressure through a rubber-sealing sleeve. 

Axial and radial strain measurements are taken by using electric strain gauges glued directly onto 

the cylindrical specimen. At the end of the assembly, the cell on the compression machine platen 

for cohesion and internal friction determination will be placed. 

Experiments can establish the real spatial variance distribution; on the other hand, based on 

the mechanical parameters obtained from the laboratory, the method proposed above are used to 

reproduce the material distribution of the intact rock block through MATLAB. Finally, the whole 

rock block model was created by using FLAC8.0, applying the material properties generated in 

MATLAB on the whole block. This method will have the specimens be randomly excavated 

from the large block, which have the same locations as in the laboratory.  

The main objective of this chapter is to check the strength difference between laboratory test 

and numerical simulation. If the results match each other as expected then the model results 
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obtained from the numerical models are acceptable, verifying that the proposed stochastic 

method is appropriate for this research.     

5.2 Comparison between laboratory tests and numerical simulations 

5.2.1 Model design for Hoek-cell triaxial laboratory tests 

The laboratory test in this chapter is based on a typical triaxial test; this process involves 

confining a cylindrical sandstone specimen in a pressurized cell, which will simulate a stress 

condition, and then shearing to failure. In order to determine the shear strength properties of the 

sample, this research performed the triaxial tests for each specimen under different confinement 

conditions. 

The test was conducted on high-quality undisturbed sandstone specimens. Fifty specimens 

were drilled from one same large rock block, shown in Figure 5.1. 

                                                   

 

                       

Figure 5.1 Sandstone block before and after drilling 
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The dimensions for the whole block are 14" for width, 16" for length, and 9" for height. The 

height to diameter ratio for the all the rock specimens is 2 (Height = 4 inches, Diameter=2 

inches). 

Here, tests ran on two samples for each drill hole (shown in Figure 5.1) under different 

confining pressures, which determined the parameters as follows: 

1) The strength and elastic properties. 

2) Shear strength at different confining pressures. 

3) Angle of shearing resistance and cohesion. 

Because of the nonlinearity of center coordinates, AutoCAD were used to capture all the 

coordinates of the center for each drill hole, as listed in Table 5.1. The cohesion and friction 

values for all the specimens were then calculated from the laboratory tests.   
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Table 5.1 Summary of center coordinates for each drill hole 

Number 
1 2 3 4 5 

1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2 

X 1.1316 2.8366 5.813 7.3834 9.1184 

Y 8.2815 8.401 8.476 8.4608 8.3263 

Number 
6 7 8 9 10 

6-1 6-2 7-1 7-2 8-1 8-2 9-1 9-2 10-1 10-2 

X 1.4407 3.2105 5.5587 7.2488 8.9538 

Y 6.6673 6.727 6.8317 6.8915 6.6374 

Number 
11 12 13 14 15 

11-1 11-2 12-1 12-2 13-1 13-2 14-1 14-2 15-1 15-2 

X 1.46 3.39 5.54 7.26 8.91 

Y 4.93 4.87 5.13 5.16 5.04 

Number 
16 17 18 19 20 

16-1 16-2 17-1 17-2 18-1 18-2 19-1 19-2 20-1 20-2 

X 1.34 3.29 5.68 7.40 9.22 

Y 3.22 3.24 3.33 3.42 3.29 

Number 
21 22 23 24 25 

21-1 21-2 22-1 22-2 23-1 23-2 24-1 24-2 25-1 25-2 

X 0.99 2.94 5.99 7.86 9.72 

Y 1.17 1.32 1.57 1.53 1.65 

 

After obtaining these 25 cylindrical sandstone specimens, we confirmed that the height of 

each specimen is 4 inches and the diameter is 2 inches. As the ratio requirement of height and 

diameter for Hoek-cell triaxial test is two, the separation of each cylindrical sandstone into two 

small rock specimens is necessary.  
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The triaxial cell consists of a hollow steel cylinder with threaded removable ends, shown in 

Figure 5.2 (a). A urethane rubber sleeve incorporating U-shaped seals to form a pressurization 

chamber for the hydraulic fluid is mounted within the cell. Inside the cell is a quick-connect inlet 

and an outlet with a plug for saturation of the pressurization chamber. At each end of the cell is a 

spherical seat, which will apply an axial load to the flattened ends of the sample. After grinding 

the rock specimens flat and saturating the pressurization chamber, the cylindrical rock sample 

into the chamber within the confining membrane was inserted. Figure 5.2(b) shows the two 

spherical seats, which are positioned so that the rock core lies centrally in the triaxial chamber. 

After applying a small confining pressure to hold the rock core in place, the cell with its 

spherical seats in a loading frame was placed and a small axial load to hold the system was 

applied firmly in place. The triaxial tests ran after an adjustment of the confining pressure to the 

required value. Figure 5.2(c) shows two of the confining pressure conditions for each drill hole 

through the machine. 

 
(a) 
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                                       (b)                                                                                         (c) 

Figure 5.2 Schematic diagram for the Hoek-cell Triaxial experimental equipment 

This experiment considers two different confining pressure conditions for each drill hole, 

which is 200 psi for the specimen in the above layer and 500 psi for the specimen in the bottom 

layer. Table 5.2 contains the summary of minimum principal stresses for each specimen. After 

knowing the minimum and maximum principal stresses for each drill hole, the friction and 

cohesion values is calculated through RocLab (Rocscience, 2020).  
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Table 5.2 Summary of minimum principal stress for each specimen under different confining 

pressures (Unit: psi) 

Number 
1 2 3 4 5 

1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2 

σ3  200 500 200 500 200 500 200 500 200 500 

σ1  13,637 16,848 13,033 16,086 13,804 17,081 12,604 14,388 12,112 15,042 

Number 
6 7 8 9 10 

6-1 6-2 7-1 7-2 8-1 8-2 9-1 9-2 10-1 10-2 

σ3 200 500 200 500 200 500 200 500 200 500 

σ1 13,748 17,088 13,318 16,517 12,993 16,007 13,459 15,743 13,147 15,319 

Number 
11 12 13 14 15 

11-1 11-2 12-1 12-2 13-1 13-2 14-1 14-2 15-1 15-2 

σ3  200 500 200 500 200 500 200 500 200 500 

σ1  12,946 16,938 13,358 15,401 12,692 15,181 14,613 16,977 13,542 17,201 

Number 
16 17 18 19 20 

16-1 16-2 17-1 17-2 18-1 18-2 19-1 19-2 20-1 20-2 

σ3  200 500 200 500 200 500 200 500 200 500 

σ1  14,372 14,913 13,843 15,953 14,256 18,110 13,338 14,734 13,288 13,448 

Number 
21 22 23 24 25 

21-1 21-2 22-1 22-2 23-1 23-2 24-1 24-2 25-1 25-2 

σ3  200 500 200 500 200 500 200 500 200 500 

σ1 14,382 15,894 13,034 16,557 13,350 17,032 14,642 17,519 14,561 18,550 

 

5.2.2 Model descriptions for numerical simulations 

Due to the computing limitation of the codes, which generated the spatial correlated random 

database, only two-dimensional numerical simulation was considered for the large rock block 

calibration. Numerical model was developed using a finite difference software, FLAC8.0. As 
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shown in Figure 5.3, the dimensions of the simulation were 140 inches × 160 inches with a total 

of 22,400 zones.  

 

Figure 5.3 Schematic diagram of the large rock block created in FLAC8.0 

Table 5.3 lists the laboratory results of the cohesion and friction angle values located in 

twenty-five different locations in the large rock block. Upon knowing the information listed in 

the table, the correlation length from both horizontal and vertical directions can be calculated 

through the methodology introduced in Chapter 4. Based on these two parameters, MATLAB 

can reveal the inherent material property inside the rock block realistically. Here, we assumed 

there are no discontinuities existing in the rock block. The spatial variance’s existence is only 

due to the material property. 
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Table 5.3 Summary about friction angle and cohesion values for each specimen 

Number 1 2 3 4 5 6 7 8 9 

Cohesion 

(psi) 
736.36 692.70 749.4 587.55 631.50 747.96 715.91 688.79 675.15 

Friction 

( ̊ ) 
38.82 38.3 39.05 31.71 38 39.31 38.85 38.14 34.57 

Number 10 11 12 13 14 15 16 17 18 

Cohesion 

(psi) 
649.48 705.75 650.1 646 745.2 742.9 421.3 681.68 795.1 

Friction 

( ̊ ) 
34.01 42.03 33.24 35.7 34.84 40.59 16.72 33.57 41.1 

Number 19 20 21 22 23 24 25   

Cohesion 

(psi) 
577.3 359.3 641.79 706.34 730 782.5 818.6   

Friction 

( ̊ ) 
28.73 13.67 29.6 40.22 40.7 37.23 41.49   

 

Due to the computational resource limitation and the fact that the code used to generate the 

random data is only suitable for the two-dimensional model, here only the cohesion and friction 

angle were set in spatially correlated random condition to be in the two-dimensional condition. 

Figure 5.4 shows a realization of a random field for both cohesion and friction. 
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Figure 5.4 Random field’s distributions for two parameters: cohesion and friction angle 

Then the triaxial compression test on the specimens was performed. First, they selected 

specimens randomly from the large rock block assigned with random parameters generated with 

correlation length. Areas were selected within the large rock block to extract specimens, such as 

specimens with diameters of 2 inches and 4 inches, shown in Figure 5.5. Fourteen specimens 



77 
 

were tested with specimens of 2 inches in diameter and 4 inches in length. Based on the cohesion 

contour and the specimen locations, the specimens were selected with different mechanical 

properties from the block. 

 

Figure 5.5 Schematic diagram for each specimen 

5.2.3 Results discussion 

The plots listed in Figure 5.6 and Figure 5.7 show the different failure pattern in 200 psi and 

500 psi confining pressures respectively. Although all the conditions are kept the same, the 

failure patterns still propagate in many different ways in both Figure 5.6 and Figure 5.7. These 

phenomena also verified that the spatial variance exists in reality. There were different relatively 

weak zones present in different locations.  
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Figure 5.6 Failure pattern for each specimen under 200psi confining pressure 
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11-2-500 12-2-500 13-2-500 14-2-500 15-2-500 

     
16-2-500 17-2-500 18-2-500 19-2-500 20-2-500 

     
21-2-500 22-2-500 23-2-500 24-2-500 25-2-500 

 

Figure 5.7 Failure pattern for each specimen under 200psi confining pressure 

Figure 5.8 and   
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Table 5.4 show the strength comparison between laboratory test and numerical simulation for 

the 50 sandstone specimens drilled from the large rock. For both the specimens under 200 psi 

and 500 psi confining pressure, Slight difference showed up between laboratory tests and 

numerical simulation for strength. From the linear regression analysis (the trendline is y≈x), the 

coefficient of determination for these two groups are 0.9962 and 0.9899 respectively, which 

means the results obtained from the laboratory tests agree with the numerical models perfectly. 

From the summary in   
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Table 5.4, the mean values for the laboratory tests and numerical simulations under 200 psi 

confining pressure are 13,522.79 psi and 13,908.68 psi respectively; the mean values for the 

laboratory tests and numerical simulations under 500 psi confining pressure are 16,181.06 psi 

and 16,162.08 psi respectively. The maximum error between these two models is only around 

3%.   

 

 

 

Figure 5.8 Strength comparison between laboratory test and numerical simulation (Unit: psi) 
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Table 5.4 Strength comparison between laboratory test and numerical simulation 

Confining 

pressure 

(psi) 

Mean value (psi) Standard deviation 

Laboratory 

test 

Numerical 

simulation 

Laboratory 

test 

Numerical 

simulation 

200 13,522.79 13,908.68 668.11 545.60 

500 16,181.06 16,162.08 1,204.64 974.94 

 

For the standard deviation in   
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Table 5.4, the results obtained from the numerical simulations are much smaller than the 

results obtained from the laboratory test. The reason for this is that, for the mathematical model, 

no discontinuities in the rock block were assumed. The spatial variance’s existence is only due to 

the material property. However, many other factors can influence the strength in a real case. 

Therefore, the variance is much higher in laboratory than in the ideal numerical models. 

5.3 Conclusions 

The main goal of this chapter was to study the strength difference between laboratory test 

and numerical simulation. Conclusions are summarized as follows: 

➢ The different failure patterns obtained from laboratory tests showed that different weak-

links exist in different locations, which verified Weibull’s weakest-link conclusion and 

verified the inherent existence of spatial variance. 

➢ The comparison results between the laboratory tests and numerical simulations match 

each other in a good way; the maximum error of the mean values for the laboratory tests 

and numerical simulations is only around 3%, which is acceptable per this research’s 

expectation.  

➢ Due to the assumption that there are no discontinuities existing in the rock block, the 

spatial variance’s existence is only due to the material property; the difference of standard 

deviations for laboratory tests and numerical simulations are strongly present. However, 

the standard deviation value of numerical simulations is lower than the values of 

laboratory tests, which is reasonable given that the other factors were ignored that may 

cause the strength to be unstable. 
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CHAPTER 6  

CASE STUDY: PROBABILISTIC EXAMINATION OF SPATIAL 

VARIANCE EFFECTS ON THREE DIFFERENT FIELD 

SCALED MODELS 
 

6.1 Introduction 

Rock that is heterogeneous in formation significantly influences the failure of rock. Both 

macroscopic and microscopic heterogeneity influences the physical-mechanical behavior. At the 

microscopic level, the grain size and shape distribution cause the specimen to show non-linear 

behavior. At the macroscopic level, heterogeneity affects the strength of the rock. For example, a 

coal mine entry using a single material property will produce inaccurate safety factors (Kim & 

Gao, 1995; Tang, 1997). Similarly, rockmass strength is inherently weaker than intact rock, 

which is due to the heterogeneous distribution of rock.  

In rock structures, the weak formation interacts on a different scale and is extremely complex 

in its formation. However, research efforts have focused on stress field investigation and failure 

criterions of materials. For example, the strength of pillars is critical for mining operations in 

underground coal and hard rock mines. However, a unit value is often only considered when 

performing a stability calculation. A significant research effort within these past studies has 

focused on pillar stability and design using theoretical formulation (Bieniawski, 1968), 

numerical simulation (Recio-Gordo & Jimenez, 2012), and empirical method (Soltani, 2015). 

The problem is that these studies always use deterministic strength values to represent the coal 

strength of the whole pillars, which ignores the inherent variability in rockmass properties. In 

order to analyze rockmass behavior, the inherent variability of rockmass mechanical properties, 
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such as the strength and deformation properties, must be assessed probabilistically for the whole 

area.  

Several researchers such as Weibull used weakest-link theory to explain the inherent 

variability of a material (Weibull, 1939). Salamon, Peng, and Scovazzo used finite element 

method, including variable material properties, on applications such as pillar design in 

underground mines (Peng, 1992; Salamon & Munro, 1967; Scovazzo, 1992). Priest, Hudson, etc. 

discovered that the distributions of joints in rockmass follow exponential distributions (Einstein, 

1983; La Pointe, 1985; Priest & Hudson, 1976). Yegulalp and Kim showed that the mechanical 

properties of intact rock matches the Type III Extreme Value distribution of the smallest value 

(Yegulalp & Kim, 1994). The grain sized rock material properties are typically assigned with 

random models; however, the process of formation of rockmass necessitates the random 

distributions of each physical indicator to be spatially correlated. Few studies have considered 

the spatial correlation factor combined with random rock material properties.  

In the methodology introduced previously, Chapter 4 proposed one probabilistic approach by 

using Extreme Value distribution and spatial correlation to assess the variability of rockmass 

mechanical properties. This method treats rockmass properties as spatially correlated random 

variables. The study in this chapter focuses mainly on the following three field scaled models: 

(1) One two-dimensional finite difference longwall mine model, which was analyzed by 

using the random method. The main goal of this field scaled model is to verify the 

necessity of using the stochastic method in longwall mining system. 

(2) Another three-dimensional longwall mine model, which was analyzed by using the 

proposed approach mentioned above. There is an expected influence of random field 

data with spatial correlation factor on entry roofs in the longwall mine system. 
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(3) One pillar scaled model, which was created in this chapter to only consider the 

immediate roof and coal seam parts in completely random conditions. This is to extract 

several laboratory-scaled specimens from the pillar, which is in preparation for future 

stochastic analysis for laboratory scaled models. 

6.2 Case one:  Longwall panel model 

6.2.1 Model description 

In the previous sections, the application of statistics mainly focused on the sample scaled 

rocks. The previous studies already concluded that the random model has an advantage in 

estimating the failure types of rocks, especially considering the correlation factor. In this section, 

extending this statistical theory into one three-dimensional longwall panel model was considered.  

Due to the symmetric characteristic and the limitation of the computer calculation, the study 

here only created one-quarter of the longwall panel with three layers. This included a sandstone 

layer on the top, siltstone layer on the bottom, and one coal seam in the middle. As seen in 

Figure 6.1, the room and pillar geometries are not very complex. The series of pillars are in a 

regular rectangular pattern. The details of the geometry and dimensions are as follows: 

 

Figure 6.1 Geometry for the longwall panel model 

Note: 

Panel𝐿𝑤𝑖𝑑𝑡ℎ = 80 𝑓𝑡. Pillar𝐿𝑙𝑒𝑛𝑔𝑡ℎ = 80 𝑓𝑡. 

Panel𝑅𝑤𝑖𝑑𝑡ℎ = 420 𝑓𝑡. Panel𝑅𝑙𝑒𝑛𝑔𝑡ℎ = 780 𝑓𝑡. 
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Entry Width = 20 𝑓𝑡. Crosscut = 40 𝑓𝑡. 
Height𝑚𝑎𝑖𝑛 𝑟𝑜𝑜𝑓 = 50 𝑓𝑡. Height𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑟𝑜𝑜𝑓 = 50 𝑓𝑡. 

Height𝑐𝑜𝑎𝑙 𝑠𝑒𝑎𝑚 = 9 𝑓𝑡. Height𝑓𝑙𝑜𝑜𝑟 = 100 𝑓𝑡. 

  
 

Table 6.1 Strata material properties 

Rock 

strata 

H 

(inch) 

ρ 

(snails/in3) 
ν 

K 

(×106psi) 

G 

(×104psi) 

c 

(psi) 

φ 

(°) 

σt 

(psi) 

Main 

Roof 
600 0.0002337 0.15 1.43 130 1562 35 130 

Immediate 

Roof 
600 0.0002337 0.15 0.95 87 1562 35 130 

Seam 108 1.31e-4 0.25 0.33 20 433 30  

Floor 1200 0.0002337 0.15 1.19 1.09 2681 35 200 

Note: H is the height of each layers, inch;  

ρ is density, snails/in3; 

ν is Poisson’s ratio; 

K is Bulk modulus, psi; 

G is Shear modulus, psi; 

σt is Tensile strength, psi; 

c is cohesion, psi, and; 

φ is friction angle, degree. 

 

Figure 6.2 shows the roller boundary conditions assigned at the side and bottom of the model. 

The three loads applied to this longwall panel model are as follows: 

a) Gravitational acceleration (386 in/sec2) applied to all the elements; 

b) The overburden load applied to the top surface, which has been equivalent to a static 

pressure σv0 (200 psi); 

c) The vertical stress σv and horizontal stress σh applied to each layer, with the relationship 

between them is described as: 

𝜎ℎ =
𝜈

1−𝜈
𝜎𝑣                                                            (6.1) 

 

Figure 6.2 Boundary condition for the longwall panel model 
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6.2.2 Result discussions 

After applying the development load onto the longwall panel, most of the high stress 

concentration occurred near the entries and crosscuts. In order to prove the feasibility of this 

model, a comparison of the vertical stresses between FLAC3D (Figure 6.3a) and LAMODEL 

(Figure 6.3b) was considered.  

The maximum stress for the adjacent area of pillars is around 25 psi in FLAC3D and 26 psi 

in LAMODEL. The values are slightly different, but otherwise quite close to each other. 

Therefore, the model is acceptable for performing the future stochastic analysis. 

 
(a) zz-stress for the coal seam area in FLAC3D (Unit: psi) 

 
(b) zz-stress for the coal seam area in FLAC3D (Unit: psi) 

Figure 6.3 Comparison of vertical stress between FLAC3D and LAMODEL 
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Figure 6.4 shows the simulation of the comparison between the deterministic and stochastic 

models. From the literature review, we discovered that most fatal accidents occur in the 

immediate roof and coal seam. As such, they only set the immediate roof and coal seam layers 

into normal distribution, shown in Figure 6.4(b). In order to track the vertical stress in different 

steps, this study set eleven grid points along the Y axis for four pillars ordered into A B C D, 

shown in Figure 6.4(c).  

 

 

Figure 6.4 Schematic diagram for quarter part of one longwall panel 

In Figure 6.5, the orange dots show the vertical stresses tracking from the different grid 

points. Solid lines represent the pillar with uniform property; the dashed lines represent the 

pillars with random values, which have normal distributions. After fitting the curve, we noted 

that all the curves were identical. The right corner plot in Figure 6.5 is the enlarged view 

obtained from JMP software, a suite of computer programs for statistical analysis developed by 

SAS Institute. The green boxes are the mean value and standard deviation for each location. 

(a) Laminations for longwall model 

(b) Material property distribution example for stochastic model 

(Unit: psi) 

(c) Crosscut section for coal seam layer 
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Although the mean value curve fitting is almost the same for each situation, the differences 

between the models with deterministic and random values for each pillar and each location are 

randomly distributed; these behave like “sin” or “cos” waves, but not exactly with the same 

shapes. This field scaled model only considered the random material properties without the 

spatial correlation factor. 

 

Figure 6.5 Difference of stress distribution along each pillar between deterministic and stochastic 

model 

6.3 Case two: Longwall mine model study 

6.3.1 Model description 

The mine extracts 7 ft. thick Pittsburgh coal seam by longwall mining method. The depth of 

cover in the area is 833 ft. The measured in-situ maximum and minimum horizontal stresses are 

3,080.6 psi and 2179.92 psi, respectively. The in-situ maximum horizontal stress is oriented at 

30 ̊ to the longitudinal axis of the longwall panel. As shown from the representative lithology 



93 
 

shown in Figure 6.6, the thickness of the immediate roof is 3 ft. The thickness of the floor is 260 

ft, which is a combination of shale, claystone and sandy shale. 

The numerical model was developed using a finite difference software, FLAC3D. As shown 

in Figure 6.6, the model boundaries were placed at the center of the panel along its width and at 

an enough distance along the panel length to have negligible impact on the results obtained in the 

area of interest. The final dimensions were 3,559 ft × 820 ft × 498 ft. A total of 1,596,540 zones 

was generated in this simulation. As limited computing resources are available, only part of the 

overburden has been modelled in the mesh. The pressure, which equals the gravity of the 

remaining covers, is applied on the top layer.  

 

 

 

 

 

 

 

 

 

Figure 6.6 Representative lithology used in the FLAC3D model 

Table 6.2 lists the laboratory material properties of rocks. The strength of intact rock 

obtained from experimental data is conservative to estimate the strength of rockmass directly. 
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Therefore, consideration of the strength reduction factor from intact rock to real rockmass is 

necessary (Hoek, 1983). Here, this study estimates the rockmass compressive and tensile 

strengths by using the corresponding laboratory values listed in Table 6.2 multiplied by the 

reduction factor. 

To study the influence of the spatial variance on the field scaled model, this research 

considers two different approaches for this model: 

(1) Traditionally deterministic method, and  

(2) Extreme Value stochastic method, including the spatial correlation factor.  

Table 6.2 Laboratory material properties 

Rock Type 
E 

(×105psi) 
ν 

UCS 

(psi) 

τ 

(psi) 

Limestone 74.26 0.26 22,131.35 1,759.31 

Claystone 13.83 0.3 4,709.38 398.85 

Sandy shale 24.19 0.3 7,275.11 1,096.49 

Shale 

(lower roof) 
14.25 0.3 4,372.90 52.21 

Shale 

(upper roof) 
13.34 0.3 7,159.08 704.88 

Rider coal 5.80 0.39 2,104.50 292.98 

Coal seam 6.82 0.39 4,313.43 321.98 

Shale or Claystone 

(in the floor) 
13.78 0.3 5,949.46 335.04 

Note: 

E- Young’s Modulus;          ν -Poisson’s Ratio; 

τ -Tensile Strength;             H-Height for each layer. 

 

Table 6.3 gives all the unique material property values used in the model for both approaches. 

For the model with spatial correlated random parameters, cohesion and internal friction are the 

primary factors that affect failure propagation and are randomly assigned to the model. Because 
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of the difficulties of performing data collection in the real site, we assumed the standard 

deviation σ and correlation parameters a and b were assumed here; however, the mean value µ 

applied on the model is still based on the laboratory test. 

Table 6.3 Random values for the model with spatial variance 

 

Rock Type 

Cohesion (psi) Internal friction angle 

(degree) 

𝝁𝒄 𝝈𝒄 𝒂𝒄 𝒃𝒄 𝝁𝒇 𝝈𝒇 𝒂𝒇 𝒃𝒇 

Immediate roof 1,562 15.6 2 4 35 0.35 2 4 

Coal seam 433 4.3 2 4 30 0.3 2 4 

 

This research created the realistic random field database based on the Extreme Value 

stochastic model, adding two scaler-measured parameters from both horizontal and vertical 

directions to control the spatial correlation length (Equation 4.3). This model considers a few 

cutting sequences to investigate the influence of spatial variance over the roof behavior. The total 

excavation depth used here is 50 ft. 

Due to computational resource limitations, this study only set the immediate roof layer in the 

spatially correlated random condition. Figure 6.7 shows a realization of a random field for both 

cohesion and friction.  

In the correlation parameters listed in Table 6.3, for both the cohesion and friction 

distributions, high values mix randomly with lower values, and the values in adjacent areas 

process more correlated material properties than the values in distant areas. The spatial 

correlation parameters for cohesion and friction are kept constant; therefore, the correlation 

characteristic of these two parameters is kept the same. The angle of the principal axis is set to 

zero degrees, which is a line associated with the correlated circle or ellipse. Therefore, the 

direction of the correlation area for this model is horizontal.  
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Random field for the cohesion parameter (Unit: psf) 

 

Random field for the friction angle parameter (Unit: degree) 

Figure 6.7 Random field’s distributions for the two parameters 

6.3.2 Result discussions 

In order to simulate the extraction from the actual field scaled model, this research 

established the in-situ stress field in the model as shown in Figure 6.8. The maximum stress for 

this model was 1,235.72 psi. The global height of this model was 1160 ft; as such, the 

overburden stress for the whole model is 1.1 psi/ft × 1,160 ft × 144 =183,744 psf. For 

verification purposes, the in-situ stresses obtained from numerical simulation matched with the 

values obtained from theoretical estimation. The minor difference is due to the approximate 

solution of numerical analysis. Therefore, it is reasonable to use these input parameters to assess 

the mechanical behavior of this model.   
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Figure 6.8 Vertical stress contour for the global model (Unit: psf) 

Figure 6.9 shows the vertical stress contours in the immediate roof section under two 

different material property conditions. There is little difference shown in the vertical stress 

(along z direction) contours. The maximum stress for the deterministic model above the entry 

and crosscut positions is 5,541.89 psi, which is 45% higher than the random model with spatial 

variance. 
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Figure 6.9 Vertical stress contours for the immediate roof section (Unit: psf) 

Figure 6.10 shows comparisons of the minimum principal stress for these two different 

models. The main differences concentrate on the positions above the pillars. The yellow color in 

the deterministic model and the green color in the random model represent high stress 

concentration areas. For the deterministic model, only the intersection of the entry and crosscut 

shows a relatively high-stressed area. However, for the random model, all the areas above the 

right and left gate roads are green in color. In addition, besides these two locations, the locations 

close to the rib of the pillars had more areas enter the high stress state for the random model than 

the deterministic model. 
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Figure 6.10 Minimum principal stress contours for the immediate roof section (Unit: psf) 

Figure 6.11 represents the failure state contours for these two different models. Three 

different phenomena can be observed:  
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Firstly, for the correlated random model, red, red-violet, and green colors show up 

simultaneously at the locations above the entry, crosscuts, and ribs of the pillars. However, for 

the deterministic model, only green and red colors appear in the same locations. Moreover, in the 

tailgate area, some areas in the deterministic model are still in elastic condition, while they 

already entered shear failure state in the spatial correlated random model.  These results imply 

that, although these two models are set in the same loading conditions and the average values for 

each parameter are kept the same, the shear failure occurred earlier in the spatial correlated 

random model due to the only different random characteristic.  
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Figure 6.11 Failure state contours for the immediate roof section. (Five excavations) 

As the cutting sequences occur in the model, both the shear and tension failures are observed 

in the correlated random model. However, the deterministic model only produced shear failures. 

Additionally, for the correlated random model, most of the roof above the gob area entered 

the shear state. For the intersection between gob area and left gate road, the shear-n state 
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occurred, which was different from the same location in the deterministic model. Moreover, 

more area entered shear-n and shear-p state in the correlated random model than the 

deterministic model. All these phenomena verify that it is conservative to use the uniform 

material property to estimate the stability of the mine area. 

6.4 Case three: Gauss distribution used in one pillar scale model 

6.4.1 Model description 

There are many factors that influence the properties of coal seams, which includes anisotropy, 

behavior of cracks, pore pressure, rate of loading, time effects, and specimen size and shape. The 

laboratory result tests on coal can hardly be a proper representation of the in-situ strength data. 

When researchers perform experiments, all the tests should be performed in an underground 

environment, not in a laboratory. The influence of the environment is a key point, which cannot 

be neglected in the rock strength evaluation. 

This model included nine rock layers. The layers consisted mostly of four different rock 

types: silt shale, sandstone, gray clay shale, and coal. All the parameters in this model used the 

imperial system of units in inches, shown in Table 6.4. 
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Figure 6.12 Mine layout for the quarter pillar 

Table 6.4 Geological material properties for the pillar 

Rock Type 

Specific 

Gravity 

(lbs/ft3) 

Poisson’s 

ratio 

Thickness 

(ft.) 
z coordinates 

Bulk 

Modulus 

(psi) 

Shear 

Modulus 

(psi) 

Silt shale 160 0.2 5 60 1.66×106 1.24×106 

Sandstone 167 0.15 52 684 1.41×106 1.28×106 

Silt shale 170 0.2 8 780 1.66×106 1.24×106 

Gray clay 

shale 
166 0.27 2 804 4.93×105 2.68×105 

Freeport seam 88 0.34 6.5 882 3.75×105 1.34×105 

Gray clay 

shale 
166 0.27 5 942 4.93×105 2.68×105 

Silt shale 164 0.27 5 1,002 1.66×106 1.24×106 

Silt shale 160 0.2 50 1,602 1.66×106 1.24×106 

Sandstone 167 0.15 50 2,202 1.41×106 1.28×106 

Rock Type 

Tension 

Modulus 

(psi) 

Cohesion 

(psi) 
Friction (°) 

Vertical stress 

(psi) 

Horizontal 

stress (psi) 

Horizontal 

gradient 

(lbs/in3) 

Silt shale 193 523 33 1,085.42 271.35 0.02 

Sandstone 325 846 35 1,145.72 202.19 0.02 
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Silt shale 193 523 33 1,155.17 288.79 0.02 

Gray clay 

shale 
120 354 29 1,157.47 428.11 0.04 

Freeport seam 90 2 28 1,161.44 598.32 0.03 

Gray clay 

shale 
120 354 29 1167.21 431.71 0.04 

Silt shale 193 523 33 1,172.90 433.81 0.04 

Silt shale 193 523 33 1,228.46 307.11 0.02 

Sandstone 325 846 35 1,286.44 227.02 0.02 

 

This study applied the roller boundary condition for the lateral faces, and the fixed boundary 

condition for the bottom face. The vertical stress applied on the first layer “silt shale” was equal 

to the pressure, caused by the gravity of the overburden layers. The relationship between vertical 

stress σv and horizontal stress σh is expressed as: 

𝜎ℎ =
𝜈

(1−𝜈)
× 𝜎𝑣                                                        (6.1) 

where ν is the Poisson’s ratio. 

The immediate roof and coal seam parts were randomly material distributed layers, which 

satisfied Gauss distribution. The other layers were defined as uniform material stratum, as shown 

in Figure 6.13. 
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Figure 6.13 Quarter pillar with stochastic material definition (Unit: psi) 

6.4.2 Result discussions 

The purpose of this model is to summarize the stresses around a specific rock specimen, 

extract groups of specimens out of the pillar in random locations and compare the peak strength 

versus the dimensions of specimens based on stochastic theory. After the regression analysis, the 

peak strength will approach an asymptotic value as the size of the specimen increases. As such, 

the strength for both rock specimen and rockmass could be estimated in a more realistic situation.  
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(a) Minimum principal stress (Unit: psi) (b) Yield state distribution 

Figure 6.14 Result contours for the quarter pillar 

Here, the advantage of considering rock specimens in this method is that the influence of the 

environment can be eliminated as they move the specimens from site to the laboratory. The 

specimens always sit in their original field positions and take pressure as in their initial situations. 

From Figure 6.14, the minimum principal stress contour shows that tension area occurred in 

both roof and floor, especially in the corner of the intersection. Rock has much lower tension 

bearing capacity than compression, which means rock material is very sensitive to tension force. 

Therefore, in this case, failure is probable to occur in roof and floor parts. This inference also is 

true in the yield state contour; while some tension failure states show in both roof and floor, 

more tension failure happened in the roof than in the floor. The mean values of the materials for 

the immediate roof and floor are the same, the only difference being that the material for the roof 

part is in random condition, while the material for floor is in uniform condition. The reason for 

the failure happening earlier in the immediate roof than the floor is due to the peak strength value 

of traditional determination calculation being higher, which is conservative to the future safety 

factor calculation. 
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6.5 Conclusions  

At rockmass level, the material properties of rock are neither deterministic nor completely 

random. The random model with spatial correlation is much closer to the case in the field. The 

focus of this research is to demonstrate that heterogeneity and discontinuity significantly affect 

rock strength and failure process in the field-scaled model. Conclusions are summarized as 

follows: 

➢ Based on the improved the conventional Type III Extreme Value distribution by adding 

the spatial correlation factor, the spatial correlation revealed both the correlation and 

continuity that exists inherently in rock. The numerical simulation results show that the 

spatial correlated random model can estimate the rock strength in a relatively more 

realistic way. 

➢ More high stress concentration area occurs around the rib of the pillars in the random 

model with the spatial variance factor than the completely deterministic model.  

➢ As the cutting sequence progressed, the tensile failure occurred in locations above the gob 

area and gate roads. 

➢ Based on the vertical stress of the deterministic model being around 45% higher than the 

spatially correlated random model observed in this research, we can conclude that the 

deterministic method used to estimate the stability of roof parts in real longwall mine is 

conservative.  

Based on the discussions summarized in the earlier sections, the research showed that the 

traditionally deterministic method is conservative to some extent. Exclusively for roof stability 

analysis, the spatial variance is a significant factor, which cannot be ignored.   
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CHAPTER 7  

CONCLUSIONS  
 

The primary objective of this dissertation was to use the revised probabilistic method to 

demonstrate the heterogeneity characteristic of rock from the perspective of material properties, 

as well as to observe the influences of spatial variance on the failure mechanism for both rock 

specimens in laboratory and rockmass in the real field site.  

The primary methodology was the Type III Extreme Value distribution of the smallest value 

by adding the spatial correlation factor. The entire process of this research can be summarized 

through the following steps: 

First, this study made comparisons between the deterministic and completely random models 

based on the laboratory tests. The main goal of this step was to show the importance of 

considering the randomness factor of rocks.  

Second, this research considered one spatial correlated random model to investigate the 

influence of rock heterogeneity on the rock strength and failure propagation. Random field 

database was created with specific spatial correlation for each physical-mechanical property 

using the rough laboratory data and Extreme Value stochastic model in MATLAB. They also 

added two scale-measured parameters to define the correlation length, which could control the 

spatially correlated random data.  

Third, in order to verify the importance of four parameters, friction, cohesion, and correlation 

length along horizontal and vertical axes respectively, this research generated 152 random 

sample data. Stress for each specimen at different loading steps and different locations. The aim 
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of this process was to find out how the inherent material parameters affect the internal stress for 

intact rocks.  

Fourth, in order to have confidence in the model results, some form of calibration of the 

model with the Hoek-Cell triaxial laboratory test was necessary. The real spatial variance was 

established distribution through experiments. Based on the mechanical parameters obtained from 

the laboratory, the proposed method reproduced the material distribution of the intact rock block. 

The two results above match with each other, which verified that the proposed stochastic method 

is appropriate for this research.   

Finally, two three-dimensional longwall mine models were analyzed using the proposed 

method. The influence of random field data on entry roofs in the longwall mining system is 

expected. This research created the realistic random field database based on the Extreme Value 

stochastic model, adding two scale-measured parameters from both horizontal and vertical 

directions to control the spatial correlation length. This research considered a few cutting 

sequences in this model, which could be used to observe if the spatial variance had any 

significant influence over the roof behavior.  

This dissertation draws the following conclusions from the studies performed throughout this 

process: 

➢ Use of the deterministic method results in a conservative estimation of rock strength. Use 

of the deterministic method overestimates the rock strength by 50%. The peak strength 

decreased as the element number of random models increased. 

➢ For the deterministic model, the failure always behaves like a double pyramid type of 

failure. The yield zones are relatively concentrated. For the stochastic models in this 
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research, both the macro-cracks and micro-cracks both can be monitored. Each micro-

crack will cause stress redistribution and propagate, which in turn will cause a severe 

failure. As such, the failure pattern for rock specimen with stochastic analysis is less 

predictable. The residual strength for the intact rock varies extensively with the grid 

number.  

➢ Based on one type stochastic model, this research improved the conventional Type III 

Extreme Value distribution by adding the spatial correlation factor. The spatial correlation 

revealed both the correlation and continuity that exists inherently in rock. The numerical 

simulation results show that the spatial correlated random model can estimate the rock 

strength in a relatively more realistic way. 

➢ For the spatial correlated random model, the small cracks normally initiate at relatively 

weak zones. As the spatial dependence increases, the failure state of the rock specimen 

changes from random to a relatively stable state. 

➢ Friction angle is the primary factor causing damage of the rock sample. After initial 

failure happens, the spatial correlated friction angle will combine with spatial correlated 

cohesion value to influence the following failure propagation. 

➢ More high stress concentration area occurred around the rib of the pillars in the random 

model with the spatial variance factor than in the completely deterministic model for the 

longwall mine.  

➢ For the longwall mine, as the cutting sequence progressed, the tensile failure occurred in 

locations above the gob area and gate roads. 

➢ Based on the vertical stress of the deterministic model being around 45% higher than the 

spatially correlated random model observed in this research, we concluded that the 
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deterministic method used to estimate the stability of roof part in real longwall mine is 

conservative.   

RECOMMENDATIONS FOR FUTURE RESEARCH 

The stochastic model with spatial correlation factor can represent the behavior of rock 

material realistically, especially in the post-failure region in this research. The revised Extreme 

Value distribution applied in the triaxial model indicates that the results between laboratory test 

and numerical simulation are consistent with each other. Therefore, the new stochastic model 

with the addition of the spatial correlation factor model may be a better option to represent the 

real mechanical behavior of rockmass. However, this research only considered two scaled 

parameters for the correlation factor. In the future, studies could also incorporate the third scaled 

parameter to simulate the random field characteristic of rockmass.  In addition, this research only 

considered the calibration work for the laboratory scaled model. More field observations or 

measurements will further refine and validate the model  
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