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ABSTRACT 

AN IN-DEPTH INVESTIGATION OF THE EFFECTS OF 
WORK-RELATED FACTORS ON THE DEVELOPMENT OF 

KNEE MUSCULOSKELETAL DISORDERS AMONG 
CONSTRUCTION ROOFERS 

 

Amrita Dutta 

Construction roofers have the uppermost likelihood of developing knee musculoskeletal 

disorders (MSDs). Roofers spend more than 75% of their total working time being restricted to 

awkward kneeling postures and repetitive motions in a sloped roof setting. However, the combined 

effect of knee-straining posture, roof slope and their association to knee MSDs among roofers are 

still unknown. This dissertation aimed to provide empirical evidence of the effects of two roofing 

work-related factors namely, roof slope and kneeling working posture, on the development of knee 

MSDs among construction roofers. These two factors were assessed as potential to increase knee 

MSD risks in roofing by evaluating the awkward knee rotations and heightened activation of knee 

postural muscles that might occur in sloped-shingle installation. Moreover, a novel ranking-based 

ergonomic risk analysis method was developed to identify the riskiest working phase in the sloped-

shingle installation operation. In addition, a data fusion method was developed for treating multiple 

incomplete experimental risk related datasets that would affect the accuracy of risk assessments 

due to human and technology-induced errors during experimental data collection.  

The findings revealed that roof slope, working posture and their interaction have significant 

impacts on developing knee MSDs among roofers. Knees are likely to have increased exposure to 

MSD risks during placing and nailing shingles on sloped roof surfaces. The established data fusion 

method has been proven feasible in handling up to 40% missing data in MSD risk-related datasets.  



The contributions lie in enhanced understanding of the physical risk exposures of roofers' 

knee MSDs and creation of the ranking-based ergonomic analysis method and the fusion method 

that will help improve the MSD risk assessment in construction. In the long run, these outcomes 

will help develop new knee joint biomechanical models, effective interventions, and education and 

training materials that will improve the workplace to promote health and safety of roofers. 
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CHAPTER 1: INTRODUCTION 
 

1.1. Background  

 Awkward kneeling posture is a common source of knee musculoskeletal disorders (MSDs) 

among construction roofers. As roofers spend more than 75% of their total working time being 

restricted to awkward kneeling postures and repetitive motions in a sloped roof setting, they 

become susceptible to knee MSDs (CPWR 2018). Shingle installation is a prolonged repetitive 

and awkward task that residential roofers commonly preform on the jobsite which may result in 

chronic knee pain, irritation in the knee joints (i.e., bursitis), and osteoarthritis (Dulay et al. 2015; 

Reid et al. 2010).  

 During shingle installation, roofers encounter awkward posture when their knees undergo 

significant amount of rotations beyond their tolerance limit. They are typically required to maintain 

an awkward posture due to deep flexed kneeling (>90°) with medial and lateral rotations in knee 

joints on the sloped rooftop during shingle installation. This awkward kneeling posture also makes 

the muscles of lower limb less efficient in producing the required amount of force to accomplish 

a task, which may result in higher muscle activation compared to a neutral posture and overload 

the muscle (Kaushik and Charpe 2008; Lunde et al. 2014). Roofers also experience greater 

discomfort and pain in their lower extremities with an increase in slope (Choi 2008). Statistics 

indicated that the median days away from work—a key indicator of severity of injuries and 

illnesses which is used to measure time loss resulting from injuries—due to knee injuries is 16 

days, which is the second highest (after shoulder injuries) by body parts among all the industries 

(BLS 2019). In the construction industry, the days away from work due to knee injuries account 

for 7.8% of the total days away from work resulting from nonfatal injuries, the fourth highest next 
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to back, hand and shoulder (CPWR 2018). Research has indicated that occupations with high 

kneeling requirements have the uppermost likelihood for the development of knee injuries (Porter 

et al. 2010). According to the Nonfatal Occupational Injuries and Illness report 2016, 38% of the 

total injuries involving lower extremities were located in the knees (BLS 2019). According to 

Wang et al. (2015), roofers’ MSD rate is 30% higher than the average MSD incident rate reported 

for the entire construction trades. In the state of Washington, the insurance premium composite 

base rate for roofers is the highest ($7.03) among all building construction trades (Washington 

DOL & I 2018). According to several survey studies done on musculoskeletal symptoms among 

construction workers in different construction trades, knee MSD incident rate is highest among 

roofers as their job involves frequent kneeling (Marras and Karwowski 2003). As a result, there is 

a pressing need to alleviate the ergonomic injuries and develop interventions for reducing knee 

MSD among construction roofers.  

 While a combination of biomechanical models and sensor technologies have been used to 

assess work-related MSDs by measuring body motions, tissue loading and knee joint contact stress 

(Chen et al. 2017; Lee et al. 2017; Valero et al. 2017), the slanted surface of rooftops diminishes 

direct application of these methods to roofing context. Safety and health organizations such as the 

Occupational Safety and Health Administration (OSHA) and the National Institute for 

Occupational Safety and Health (NIOSH) have promoted general ergonomic practices and 

guidelines to minimize the risk of developing work related MSDs among construction workers 

(Albers and Estill 2007; OSHA 2019). In spite of these developed ergonomic practices and 

guidelines, there is still a lack of proper practical intervention to prevent knee MSD among 

residential roofers because: 1) most of the guidelines are very generic and do not consider the 

variance of posture preferences in roofing operations and 2) the existing tools are designed for 
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tasks performed on flat ground and the consideration of tasks on slanted residential roof surfaces 

that may involve continuous kneeling and lead to development of knee injuries is not included. 

 Moreover, very limited research works assessed the MSD risk factors for residential 

roofers, let alone the knee MSD risk factors. Roof slope, working technique and working pace 

were assessed for low back disorders among roofers (Wang et al. 2017). Roof slope, visual cue, 

muscle fatigue and task performed were assessed for balance maintenance during roofing on 

sloped roof surface (Lu et al. 2015). Effects of cross-slope roof walking were measured on the 

lower extremity kinematics of roofers (Breloff et al. 2019b). Two interventions —knee pads and 

knee savers, were tested to see if they can minimize lower extremity kinematics when roofers work 

in a fully flexed kneeling posture on sloped roof surface (Breloff et al. 2019c). Although these 

studies have greatly advanced the understanding of roofers’ MSDs and the associated risk factors, 

they are not either specific to knee MSDs or did not consider the postural variances of dynamic 

kneeling posture that is involved in shingle installation roofing work. More specifically, the 

combined effects of constrained kneeling postures during shingle installation coupled with the 

slanted rooftop surfaces, and their association to knee MSDs among construction roofers have not 

been studied yet. Therefore, it is crucial to examine the roofing work-related factors that lead to 

the development of knee MSDs among construction roofers so that effective interventions, training 

program, safety strategies and ergonomic tools can be designed to reduce knee MSDs among them.   

 The accuracy of MSD risk assessments is often affected by the incompleteness in the risk 

exposure data when some data become missing due to technology- or human-induced errors during 

data collection. So proper treatment of those incomplete data is inevitable to ensure accurate and 

reliable assessment of the effects of the potential MSD risk factors on the imposed MSD risks. 
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However, such a method that can extrapolate the latent relationship between the risk factors and 

the risk indicators for replacing those missing data is lacking in the literature. 

1.2. Research Objectives 

 The overall objective of this research was to add new knowledge on the association of 

work-related physical hazards to the development of knee MSD among construction roofers by 

systematically evaluating the effects of roofing work-related factors on their biomechanical and 

psychophysical responses, so that, effective interventions can be developed to reduce knee MSDSs 

among roofers’ community. This research hypothesized that roofer knee MSD may directly or 

indirectly result from the exposure to the work-related physical hazards including sloped roof 

surface, awkward kneeling posture, prolonged working, and forceful actions or overexertion.  

To accomplish the overall objective of this research, the following five specific objectives 

were pursued: 

Objective 1: To assess the impacts of roofing-related factors, namely working posture 

and roof slope, on the knee joint rotation during repetitive sloped shingle installation task. 

The main hypothesis is that roof slope, kneeling posture, and their interaction would significantly 

impact the knee joint rotation during shingle installation and may lead to knee MSDs among 

construction roofers.  

Objective 2: To assess the impact of two residential roofing work-related factors —

roof slope and awkward kneeling posture — on the activation of knee flexor and extensor 

muscles during the repetitive sloped shingle installation task. The main hypothesis is that roof 

slope, kneeling posture, and their interaction would significantly impact he activation of the knee 

postural muscles during performance of roofing, which may lead to knee MSDs among 

construction roofers. 



5 
 

Objective 3: To develop a ranking-based ergonomic method for suggesting the 

potential risky phases in terms of awkward knee rotations and repetitive motions during 

shingle installation operations on slanted surfaces. The research questions are --- (i) which 

phase is the riskiest in a shingle installation task that yields the most awkward knee rotations and 

repetitions? (ii) what is the impact of each knee rotation on the imposed MSD risks? (iii) what is 

the relative contribution of each knee rotation to potential knee MSD risk measurement? 

Objective 4: To develop a method for treating multiple imperfect MSD risk related 

experimental datasets with missing values by fusing those datasets for ensuring reliable risk 

assessment in construction. The research questions are --- (i) how to treat multiple MSD risk 

related datasets that contain missing values? (ii) can data fusion be a feasible option for treating 

multiple MSD risk-related datasets with missing values? (iii) how to hold the latent relationships 

among multiple risk indicators and risk factors during the fusion so that a complete representation 

of the risk indicator values can be preserved in the fused data?  

Objective 5: To evaluate the numerical stability of Canonical Polyadic Decomposition 

(CPD) method in fusing multiple risk-related sparse datasets and hence the effectiveness of 

applying this technique for MSD risk assessment in construction when the quality of risk-

related datasets becomes degraded due to the presence of missing data. The research questions 

are --- (i) given a different portion of missing data in two sparse risk-related datasets, whether, at 

what portion of missing data, and to what extent, the fusion-based risk assessment outperforms the 

one with no fusion? (ii) Can CPD be useful as a data fusion technique for MSD risk assessment?  

1.3. Research Undertakings 

 To test the hypothesis of the specific objective 1, the effects of two roofing related knee 

MSD risk factors (namely roof slope and kneeling posture) were evaluated as potential knee MSD 
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risk factors in a laboratory setting. To indicate knee MSD risk, five awkward knee rotations were 

measured. The five awkward knee rotations were: flexion, abduction, adduction, internal rotation 

and external rotation. At different roof slope and kneeling posture, the changes in the above-

mentioned knee joint rotation angles were measured and compared. Using statistical methods, the 

effect of roof slopes and kneeling postures on the knee joint rotation angles were analyzed which 

can help understand if knees can be exposed to MSD risks during shingle installation on slanted 

rooftops. 

To test the hypothesis of the specific objective 2, the effects of kneeling posture and roof 

slope on the activation of major knee postural muscles during shingle installation were evaluated 

via a laboratory assessment. Maximum normalized electromyography (EMG) data were collected 

from five knee flexor and extensor muscles. The postural muscles were: Rectus femoris (RF), 

Vastus lateralies (VL), Vastus medialis (VM), Biceps femoris (BF) and Semitendinosus (S). At 

different roof slope and kneeling posture, the activation of the above-mentioned postural muscles 

was measured and compared to evaluate if postural variation due to awkward kneeling posture in 

a sloped working environment can overload the muscle tissue which can potentially lead to muscle 

fatigue. A systematic and statistical evaluation of knee flexor and extensor muscle activations 

associated with awkward kneeling roofing tasks performed on a sloped roof surface will be 

important to develop effective interventions and training materials to minimize muscle 

overloading. 

To answer to the research questions of the specific objective 3, time series knee joint 

rotation data (kinematics) were also analyzed for in-depth understanding of work-specific risk 

exposures to roofers’ knees during shingle installation. A ranking-based ergonomic method for 

suggesting potentially risky phases that may increase knee MSD risk during shingle installation 
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operations was developed. The entire shingle installation task was first segmented into multiple 

phases and five knee rotation angles—flexion, abduction, adduction, internal and external rotation 

were measured as risk indicators from a laboratory-based shingle installation simulation. The risk 

indicators were aggregated applying scoring models and phases were ranked according to the 

imposed risk of knee MSDs in terms of repetition, forceful exertions and prolonged kneeling to 

identify the riskiest phase for knee MSDs and the impact of each knee rotation on knee MSD. 

Using Spearman’s rank correlation test, the relative contribution of each knee rotation to the knee 

MSD risk measurement were statistically investigated. By assessing risk in an operation level, this 

study will reveal the unsafe working technique in roofing which can facilitate effective 

intervention strategies (education, training, and tools) for reducing knee exposure and hence 

minimizing knee injuries and disorders among construction roofers. 

To answer to the research questions of the specific objective 4, a data fusion method was 

proposed that applies Canonical Polyadic Decomposition (CPD) tensor decomposition to fuse 

multiple sparse risk-related datasets and fill in missing data in MSD risk assessment studies. The 

effectiveness of CPD in fusing multiple sparse risk datasets by leveraging the correlation among 

multiple risk indicators and the risk factors within those datasets were also analyzed. For different 

proportions of missing values, the performance of the proposed fusion method was investigated. 

To validate the proposed method, reconstructed fused data were statistically compared to the 

original data obtained from two roofing experimental studies. The risk assessment results obtained 

from the fused dataset were also compared to those obtained from the experimental datasets. The 

proposed method will be a new contribution to the field of occupational safety and health which 

will enable accurate and reliable assessment of work-related risk factors on the imposed risks by 

treating multidimensional imperfect and incomplete risk exposure datasets with missing values. 
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To answer to the research questions of the specific objective 5, risk assessment results 

obtained with fusion and without fusion was compared for different proportion of missing vales 

from the risk datasets. For evaluation, two knee MSD risk-related datasets collected from roofing 

experimental studies were fused applying CPD for different proportion of missing values. 

Consistencies of the risk assessment results obtained from fused and unfused sparse datasets were 

then compared to those obtained from the original experimental datasets. The findings of this study 

will help understand the numerical stability of fusion through CPD, i.e., despite of using 

malformed data as input, to what extent of missing values, data fusion can provide more accurate 

and reliable MSD risk assessment results than without fusion of missing data and hence, can be 

used as an alternative approach of replacing missing data in MSD risk assessment studies. 

1.4. Organization of Dissertation 

 In Chapter 1, the background, the overall objective, the specific objectives and the research 

undertakings have been discussed.  

 In Chapter 2, two roofing work-related factors namely roof slope and kneeling working 

posture have been assessed as potentials to increase knee MSD risks during roofing by evaluating 

the awkward knee joint rotations. 

 In Chapter 3, two roofing work-related factors namely roof slope and kneeling working 

posture have been assessed as potentials to increase knee MSD risks during roofing by evaluating 

the heightened activation of knee postural muscles. 

 In Chapter 4, a novel ranking-based ergonomic risk analysis method has been developed 

to identify the riskiest working phase of sloped-shingle installation operation that might yield the 

most awkward kneeling postures, prolonged working, forceful actions or overexertion, and 

repetitive motions.  
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In chapter 5, a data fusion method has been proposed and validated for treating multiple 

incomplete experimental risk-related datasets for robust risk assessment of MSDs in construction 

by applying Canonical Polyadic Decomposition (CPD) technique. 

In chapter 6, the numerical stability of fusion through CPD in risk assessment has been 

analyzed and discussed. 

In chapter 7, a general discussion based on the findings of the study and recommendations 

have been provided.  Limitations and future extensions are also discussed. 

Finally, in chapter 8, conclusion and key contributions of the study are discussed. 
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CHAPTER 2: ASSESSING WORK-RELATED RISK FACTORS 
FOR MUSCULOSKELETAL KNEE DISORDERS IN 

CONSTRUCTION ROOFING TASKS 
Abstract 

 Roofers often suffer from musculoskeletal disorders (MSDs) to their knees due to spending 

a large amount of time kneeling while performing work-related roofing activities on sloped 

rooftops. Several ergonomic studies have identified kneeling as a potential risk factor for knee 

injuries and disorders. Existing biomechanical models and sensor technologies used to assess 

work-related risk factors for different construction trades are not applicable in roof work settings 

especially on slanted rooftop surfaces. This work assesses the impacts of work-related factors, 

namely working posture and roof slope, on the potential risk of developing knee MSDs due to 

residential roofing tasks in a laboratory setting. Nine human subjects participated in the experiment 

and mimicked shingle installation on a slope-configurable wooden platform. Maximum angles of 

right and left knee flexion, abduction, adduction, and axial rotation (internal and external) were 

measured as risk indicators using a motion capture system under different roof slope settings. The 

results demonstrated that roof slope, working posture and their interaction may have significant 

impacts on developing knee MSDs during roofing activities. Knees are likely to be exposed to 

increased risk of MSDs due to working in a dynamic kneeling posture during shingle installation. 

In our study, flexion in both knees and adduction in the right knee were found lower in high-

pitched rooftops; however, abduction in the left knee and internal rotation in the right knee were 

found higher during shingle installation. Hence proper attention is needed for these situations. This 

study provides useful information about the impact of roof work settings on knee MSDs 

development, which may facilitate effective interventions such as education, training, and tools to 

prevent knee injuries in construction roofing tasks.  
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2.1. Introduction 

 Roofers often spend a large percentage of their daily working time in kneeling postures 

which has been considered a primary risk factor for knee disorders (Xu et al. 2017). While a 

combination of biomechanical models and sensor technologies have been used to assess work-

related musculoskeletal disorders (MSDs) by measuring body motions, tissue loading and knee 

joint contact stress (Chen et al. 2017; Li et al. 2017; Valero et al. 2017), the slanted surface of 

rooftops diminishes direct application of these methods to this specific context. Little work has 

assessed the knee MSD risk factors, specifically among residential roofers, due to their constrained 

kneeling postures coupled with the slanted rooftop surfaces. This study examines the impact of 

constrained kneeling posture and slanted roof surface—two common residential roofing work-

related factors, on knee MSDs. 

2.2. Severity of Occupational Knee Injuries 

 Knee injuries are common musculoskeletal disorders that involve chronic knee pain, 

discomfort, tingling and numbness, irritation of the fluid filled sacs in the knee joints (bursitis), 

meniscal lesions or tears, and osteoarthritis (Dulay et al. 2015; Reid et al. 2010). Statistics indicated 

that the median days away from work—a key indicator of severity of injuries and illnesses which 

is used to measure time loss resulting from injuries—due to knee injuries is 16 days, which is the 

second highest (after shoulder injuries) by body parts among all the industries (BLS 2019). In the 

construction industry, the days away from work due to knee injuries account for 7.8 % of the total 

days away from work resulting from nonfatal injuries, the fourth highest next to back, hand and 

shoulder (CPWR 2018). Research has indicated that occupations with high kneeling requirements 

have the uppermost likelihood for the development of knee injuries (Porter et al. 2010). It is echoed 

in the study analyzing the MSD claims data of coal miners, conducted by Gallagher et al. (2009) 
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and Porter et al. (2010), which revealed that the frequency of knee injuries is 1.7 times greater than 

low back injuries, which has incurred an average cost of $13,121 per knee MSD, comparable to 

the average cost per low back MSD ($14,378). Kneeling is a regular activity of construction roofers 

(Tennant et al. 2015). Due to the unique work environment (slanted rooftops), residential roofers 

spend more than 75% of their working time in crawling, and squatting, stooping and kneeling 

postures, and the cumulative effects of these awkward postures combined with repetitive motions 

have caused a high incident rate of MSDs (Wang et al. 2015; Wang et al. 2017) among roofers. In 

addition, the insurance premium composite base rate for the construction roofers is the highest 

($7.03) among all building construction trades, around 3 times as high as the average rate of all 

building construction trades (Washington DOL & I 2018). Knee awkward posture has been proven 

to be associated with knee MSDs (Hofer et al. 2011). As roofers encounter awkward posture while 

their knees undergo significant amount of rotations, sometimes even beyond their tolerance limit, 

during kneeling while performing roofing task; knee disorder is a common source of MSDs among 

construction roofers. In summary, construction roofers suffer from knee MSDs due to their unique 

harsh work conditions (Welch et al. 2009). There is an urgent need to examine the factors that lead 

to the development of knee MSDs among this population.   

2.3. State of Ergonomic Practices for Occupational Knee MSD Prevention 

 While not specific for knee MSD prevention, safety and health organizations such as the 

Occupational Safety and Health Administration (OSHA) and the National Institute for 

Occupational Safety and Health (NIOSH) have promoted general ergonomic practices to minimize 

the risk of developing work-related MSDs among construction workers. For example, NIOSH 

published a booklet titled Simple Solutions: Ergonomics for construction workers that suggests 

simple and inexpensive tools (e.g., using less labor-intensive and less time-consuming materials 
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and building components, auto-feed screw gun with extension, kneeling creeper and knee pads) to 

minimize the stress on knees during construction tasks that involve continuous kneeling (Albers 

and Estill 2007). OSHA has provided training programs (10-hour and 30-hour programs) and tools 

(eTools, eMatrix, v-Tools) which are intended to promote workplace safety and make workers 

more knowledgeable about the potential hazards in jobsites. In the OSHA eTool, kneeling for 

repetitive activities has been described as a risk factor for knee injuries and potential solutions 

have been provided using protective measures such as kneepads and power stretchers during work 

(OSHA 2019).  In addition, the Infrastructure Health and Safety Association (IHSA) in Canada 

has published three brochures that provide information on how to minimize MSD risks and 

develop hazard control plans based on threats associated with common residential roofing tasks 

(IHSA 2015a; IHSA 2015b; IHSA 2015c). These brochures provide general safety solutions to 

protect roofers from low back, shoulder and knee injuries (IHSA 2015a), heat stress  (IHSA 2015b) 

and fall hazards (IHSA 2015c). In spite of these developed ergonomic practices and guidelines, 

there is still a lack of proper practical intervention to prevent knee MSD among residential roofers 

because: 1) most of the guidelines are very generic and do not consider the variance of posture 

preferences in roofing operations and 2) the existing tools are designed for tasks performed on flat 

ground and the consideration of tasks on slanted residential roof surfaces that may involve 

continuous kneeling and lead to development of knee injuries is not included. 

2.4.To-Date Ergonomic Studies for Construction Roofers  

 Until recently, ergonomic studies on residential roofing construction have primarily 

focused on two areas: surveillance studies in prevalence of ergonomic injuries among roofers and 

work-related ergonomic MSD risks in the roof setting.  
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2.4.1. Surveillance studies in prevalence of ergonomic injuries among roofers 

 Fredericks et al. (2005) studied the statistical number of nonfatal occupational injuries 

involving days away from work by source of MSD. They reported that worker motion and position 

are two common sources of injuries for workers performing the residential roofing activities. The 

authors also reported that knee injuries contribute to 7% of the nonfatal injuries that involve days 

away from work – the third highest after low back injuries (21%) and finger injuries (9%). 

Repetition and awkward posture are common physical risk factors that may cause MSDs while 

performing roofing tasks (Jaffar et al. 2011). Musculoskeletal conditions among roofers are 

associated with work limitations, missed work and reduced physical functioning which result in 

early departure from the workforce and even disability (Welch et al. 2009; 2010; 2015). Roofing 

has the second highest work-related MSD incident rate (52%) among all construction tasks, which 

is more than 30% of the work-related MSD incidents reported in the whole construction industry 

(40%) (Wang et al. 2015). Roofers working for small employers often lack proper training (Moore 

and Wagner 2014). As a result, the MSD risks caused by the residential roofing tasks require more 

attention from safety and health regulators and researchers (Dai et al. 2016; Smith-Jackson et al. 

2011). 

2.4.2. Related works in assessing ergonomic MSD risks in construction roofing 

 In the research community, only a few efforts have assessed the work-related MSD risk 

factors for roofing activities. Wang et al. (2017) examined the influences of roof slope, working 

technique, and working pace in kneeling and stooped postures on development of low back 

disorders in roofing. However, the lower extremities were not systematically assessed in their 

study. It is unclear if knees are exposed to MSD risks due to their flexion, adduction, abduction, 

and/or rotation when roofers work on slanted rooftops with a posture preference of kneeling. 
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Breloff et al. (2019b) examined the lower extremity kinematics of roofers during traverse walking 

across sloped roof surfaces. Nevertheless, to date, no work has assessed roofing work-related knee 

MSD risk factors, such as, kneeling posture and roof slope, in construction roofing. Further 

assessment is necessary to identify the knee MSD risk factors involved in construction roofing 

activities so that efficient intervention tools can be developed to prevent knee disorders among 

roofers. 

2.4.3. Potential work-related knee MSD risk factors in roofing activities 

 Based on the findings by Wang et al. (2015), site visits, and literature review; the following 

potential work-related knee MSD risk factors in roofing activities are identified and presented 

below.  

2.4.3.1.Working posture 

Prolonged static kneeling posture alters subsequent gait stance-phase knee flexion and 

adduction moments, which have been identified as risk factors for developing knee osteoarthritis 

(Kajaks and Costigan 2015). Frequent and dynamic kneeling activities, where the lower legs often 

rotate internally or externally, can cause anterior cruciate ligament (ACL) disorder of knee 

(Sharrard and Liddell 1962). These findings are relevant to roofing operations, as during shingle 

installation roofers are typically required to maintain an awkward posture due to deep flexed 

kneeling (>90°) with medial and lateral rotations on the sloped rooftop. In spite of this, the 

relationship between the working posture undertaken by the roofers during shingle installation and 

knee MSD risks is yet to be investigated. 

2.4.3.2. Roof slope 

 Previous studies found evidence on association between surface slope and postural balance 

(Choi and Fredericks 2008; Wang et al. 2017). For kneeling posture, trunk flexion angle drops and 
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muscle activation increases as slope increases (Wang et al. 2017). Roofers also experience greater 

discomfort and pain in their lower extremities with an increase in slope (Choi 2008). This adds a 

motivation to quantitatively assess the impact of roof slope angles on lower extremities, 

specifically the knees, so as to identify risky work setting that may develop knee MSD during 

roofing construction. 

2.5. Problem Statement and Research Objective 

 Based on the above review, a systematic evaluation of residential roofing working 

conditions on roofers’ knee musculoskeletal MSD risks is lacking. More specifically, the 

combined effect of knee-straining posture of roofers, roof slopes and their association to knee 

MSDs resulting from awkward knee rotations is still unknown. Without such knowledge, it is 

difficult to develop effective interventions to prevent the awkward knee rotations and hence, MSDs 

among roofers. Therefore, the objective of this research is to assess the impacts of roofing-related 

factors, namely working posture and roof slope, as a potential to increase knee MSD risk during 

construction roofing tasks by evaluating the awkward knee rotations that might generate while 

kneeling on sloped roof surface. 

2.6.Experiment Design and Implementation 

2.6.1. Variables 

 This study evaluated two roofing related knee MSD risk factors in this experiment. They 

are: roof slope (0, 15 and 30 degree) and working posture (static kneeling and dynamic kneeling). 

These roof slopes were chosen to correspond to roof pitches that are commonly used in 

construction sites (Johnson 1976). Also, these slopes were used in a similar study on low back 

disorder of roofers at sloped roof surfaces (Wang et al. 2017). 
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 To assess the impact of working posture on the knee MSD risk, two typical kneeling 

scenarios in roofing practices were considered. The first scenario was the static posture which 

referred to a certain motionless body posture that occurs just after placing and right before 

installing shingles during shingles installation work. The participants adopt this technique when 

they flex their knees and the trunk so that they can put their non-nailing hand on the roof surface 

and hold the nail gun with their nailing hand. This way, their trunk stayed more inclined towards 

the roof surface and thereby the thigh remained in upright position. This working technique is 

referred to as static kneeling posture in this paper. This posture represents the general body 

orientation of the roofers during shingles installation task. In this motionless working posture (just 

after placing and right before affixing the shingles), the risk indicators of knee MSDs were assessed 

so that the potential of increasing knee MSD risk due to performing shingle installation in dynamic 

working posture could be evaluated.  

In the second scenario, the participants performed the entire shingle installation work. In 

specific, they lifted their trunk upward a little bit to reach for shingles first and placed shingles in 

front of them on the rooftop. Then, they grabbed the nail gun from aside and installed shingles side 

by side by nailing. After finishing the shingles nailing, they replaced the nail gun and returned to 

the upright position resting on their knees. This entire working technique is referred to as dynamic 

kneeling posture in this paper. This posture requires much lateral movement of the knees with 

respect to the midline of the body and the knee joints.   

To reflect the effects of the factors and indicate the knee MSD risk in construction roofing 

activities, this study measured five response variables.  They are: 1) Maximum knee flexion angle, 

2) Maximum knee abduction angle, 3) Maximum knee adduction angle, 4) Maximum knee internal 

rotation, and 5) Maximum knee external rotation. The knee flexion angle is the angle between 
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thigh and lower lag due to bending of knee from the upright standing position, i.e. the rotation of 

the lower leg about the medio-lateral axis that runs from left to right of the leg through the knee 

joint (Grood and Suntay 1983) (Figure 1). Deep flexion activities generate significant net 

quadriceps moments at the knee and increase the stress on the patellar tendon (Nagura et al. 2002).  

 Knee abduction and adduction is the rotation of lower leg with respect to the anterior-

posterior axis (Grood and Suntay 1983) (Figure 2.1). The anterior-posterior axis at the knee joint 

runs from the front of the leg to the back through the knee joint. Abduction is rotating away from 

the axis and adduction is rotating towards the axis. Higher knee adduction and abduction induces 

more stress and force on the medial compartment of the knee and increases the risk of developing 

osteoarthritis (Barrios et al. 2010).  

The other knee rotations in a kneeling posture are internal and external rotation of knee 

about the longitudinal axis (Figure 1) (Grood and Suntay 1983). In upright standing position, this 

axis passes vertically along the leg. During deep-knee flexion, external rotation of the tibia relative 

to the femur places additional stress on the knee joint ligaments, particularly the posterior cruciate 

ligament (PCL) and medial collateral ligament (MCL) (Hofer et al. 2011). Internal rotation of tibia 

places stress on the knee joints (Coplan 1989).  

 

Figure 2.1: Knee flexion, abduction-adduction and internal-external rotation 
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2.6.2. Participants 

A total of 9 healthy male volunteers [26.1 years (5.6 years), 180.2 cm (6.1 cm), and 99.7 

kg (27.6 kg)] participated in this experiment. Although the participants were not actual roofers, 

but they had experience in home remodeling work. 8 of 9 participants were right-handed. As over 

97% of roofers are male (BLS 2019), females were excluded from this study. No participant had 

any history of musculoskeletal or neurological disorders. The research protocol was approved by 

both the Institutional Review Board (IRB) of National Institute for Occupational Safety and Health 

(NIOSH) and West Virginia University. Before participating in the study, the subjects read and 

competed an informed consent form. 

2.6.3. Instruments 

The knee kinematic data (segment endpoint data from motion capture system) was 

collected using a VICON optical motion analysis system with 14 MX Vicon cameras (Oxford, 

U.K). 42 retroreflective motion capture markers were placed bilaterally on the participant’s hip 

joints, thighs, knee joints, shanks, ankles, toes, heels and feet, following the approach used in a 

similar study done by Pollard et al. (2011). As the participants were shod, the markers of the heels, 

feet and toes were attached to the shoes of the participants. The collected 3D coordinates of these 

markers were used to calculate the knee angles and determine the kneeling postures in the point 

cloud. The mathematical calculations of the knee angles using the markers were elaborated in the 

following “Data Processing” section. The kinematic data was recorded at 100 Hz. 

A 1.2 ×1.6 m custom-made adjustable wood platform was built to mimic the rooftop on 

which the simulated shingle installation was conducted. Two sets of wooden legs were bolted right 

next to each other to set the simulator at two different fixed slopes (15° and 30°) during the 

experiment. A battery powered lift with 25-inch adjustable forks would raise one side of the roof 
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simulator and depending on which angle was needed, one of the two sets of legs was chosen. Anti-

skidding tape was attached to the platform surface to increase the friction and avoid slips or falls. 

Eight markers were placed on this wooden platform to construct a roof specific rigid body for post-

processing. Figure 2.2 depicts the wooden platform along with a participant nailing shingles while 

kneeling on it at 0°, 15° and 30° slopes. 

 

Figure 2.2: Experimental setting for the shingle installation simulation (a) wooden platform, (b) 

at 0° slope, (c) at 15° slope, and (d) at 30° slope. 

2.6.4. Procedure 

 The experiment was performed in the NIOSH biomechanics laboratory. The experimental 

procedure was introduced to the participants upon their arrival to the lab. After the participants 

signed the informed consent forms, motion markers were placed on them for kinematic calibration 

and data collection. After that, the participants completed the static and dynamic trials. In static 

kneeling trials, the participants flexed the knee and trunk in a posture, so that they could rest their 
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‘non-nailing’ hand on the rooftop and hold a nail gun in the other hand. In dynamic kneeling trials, 

when the participants were instructed to start, they first reached for and placed the shingles and 

then picked up the nail gun from their right side and mimicked securing 6 nails (3 in each) into 

two shingles side by side on the roof segment. Once done, the participants replaced the nail gun 

and returned to their resting position. In summary, a complete dynamic trial consisted of 7 

phases—reaching for shingles, placing shingles, grabbing the nail gun, moving to first nailing 

position, installing shingles by nailing, replacing the nail gun, and retuning to upright position. 

Figure 2.3 depicts the time series plot of knee angles across different phases in a dynamic trial. 

 To reduce inconsistencies with the demarcation of the phases of shingling, only one human 

expert manually identified each transition point. The expert used videos of each trial and motion 

capture data of the right wrist (changes in direction) to fine tune the definitions of the shingling 

phases. All static and dynamic kneeling trials were completed on the roof simulator for three slopes 

angles — 0°, 15°, and 30° which resulted in total 6 (2×3) tasks for 2 postures and 3 slope angles. 

All conditions were randomized and due to the number of possible combinations, no subject 

preformed the testing conditions in the same order. Each participant performed each trial 5 times.  

2.6.5. Data processing 

This study calculated 5 knee rotational angle variables in Visual 3D (C-Motion, Inc.) using 

the kinematic data captured by the VICON optical motion analysis system. Each marker has x, y, 

z positions based on a calibrated origin. Using these positions, the segment local coordinates i.e., 

the vector components, are calculated and then transformed to the global 3D (XYZ) coordinate 

system. The marker positions along with the local and global coordinate systems of the right leg 

is depicted in Figure 2.4.  
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Figure 2.3: Time series plot of knee angles across different phases in a dynamic trial 

 

Figure 2.4: The markers set up in the hip joint, thigh, knee joint, shank, ankle, toes and foot for 

knee angles calculation. Only the markers of right leg are presented here. Total 42 markers were 

set up in both legs 

The local coordinate system of a segment is a reference system that is fixed within a 

segment but moves as the segment moves. This local coordinate system of one segment is oriented 
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relative to the local coordinate system of a second segment and the joint angles are those between 

the two segments (Robertson et al. 2013). Thus, from the 3D coordinates of the markers placed on 

the thigh (𝑥%,	𝑦%,	𝑧%), hip joint (𝑥+,	𝑦+,	𝑧+)	and knee joint (𝑥,,	𝑦,,	𝑧,), the vector components, i.e., 

the local coordinate system ( , , ), of thigh segment can be calculated. From the markers 

placed on the shank (𝑥-,	𝑦-,	𝑧-), ankle joint (𝑥.,	𝑦.,	𝑧.)	and knee joint (𝑥,,	𝑦,,	𝑧,), the vector 

components i.e., the local coordinate system ( , , ) of shank (lower leg) segment can be 

calculated. The above markers were used to track the motion of the thigh and shank. In addition, 

several virtual markers were employed to calculate the segment coordinate system. Virtual marker 

1 (V1) was considered in the midpoint of the distance between right medio ankle (RMA) and right 

lateral ankle (RLA) markers. Virtual marker 2 (V2) was considered in the midpoint of the distance 

between right lateral knee (RLK) and right medial knee (RMK) joint markers. Both of V1 and V2 

markers were used to calculate the local coordinate system of the shank segment. Virtual marker 

3 (V3) was considered in the hip joint center and calculated as ¼ of the intertrochanteric marker 

distance i.e., the distance between the left and right hip joint markers. Both V2 and V3 virtual 

markers were used to calculate the local coordinate system of the thigh segment. Combining these 

two local coordinate systems of the thigh and shank segments, a rotation transformation matrix 

was constructed which was further used to compute the knee abduction-adduction (about Y-axis) 

flexion (about X-axis) and axial rotation (internal-external) (about Z-axis) implementing the 

equations documented by Robertson et al. (2013). For dynamic trials, the 7 phases were segmented 

manually by watching the motion capture data and adding an event at the start and end of each 

phase in Visual 3D. The purpose of the study was to analyze the differences of knee angles in static 

and dynamic postures during shingle installation. As the static posture is a motionless work 

technique that roofers undertake just after placing and right before installing shingles, in the 

'i 'j 'k

"i "j "k
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dynamic trials, this study analyzed only the kinematics data of phase 3: grabbing the nail gun 

through phase 6: replacing the nail gun, excluding the data from phase 1 to phase 2 that involved 

placing shingles, and the data of phase 7 that involved returning to starting upright position for fair 

comparison. So, for dynamic trials, maximum knee angles were computed across phase 3 through 

phase 6. For static trial, the motion capture system was set to record the knee kinematics data for 

seven seconds. Data of the middle three seconds were extracted for analysis to avoid any artifact 

motion from the first and last two seconds. The maximum knee angles of the static trial were 

calculated from those extracted data. These maximum knee angles were used as the response 

variables for the statistical analysis described in the next section.  

2.6.6. Data analysis 

 Since there were more than one response variables in this study, multivariate ANOVA 

(MANOVA) was first applied to examine the impacts of the two factors (i.e., slope and posture) 

and their interaction on the all response variables. Then, univariate ANOVA was applied to 

measure the impacts of these factors and their interaction on each individual response variable. 

Prior to conducting the ANOVA, the assumptions of the ANOVA technique (normality of 

residuals, constant variance of residual and independence of observations) were evaluated using 

the graphical approach discussed in Freund et al. (2010). The normal probability plots and residual 

vs. fitted plots were drawn for each response variable to observe the residual’s variabilities. Once 

the assumptions were evaluated and satisfied, the ANOVA was applied. Following these, Tukey 

Post-Hoc analysis was performed on the factor (i.e., slope) with three levels to further analyze 

where the significant difference existed among different levels. The p-value was set as 0.05 for all 

tests. All tests were performed with Minitab 18 (Minitab, Inc.) and RStudio (RStudio, Inc.) 

software tools. 
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2.7. Results 

 Tables 2.1 and 2.2 showed the effects of the independent variables on the response 

variables for left and right knees. Here, Flexion_L, Abduction_L, Adduction_L, 

Internal_Rotation_L and External_Rotation_L refer to flexion, abduction, adduction, internal and 

external rotation of the left knee. Flexion_R, Abduction_R, Adduction_R, Internal_Rotation_R 

and External_Rotation_R means flexion, abduction, adduction, internal and external rotation of 

the right knee. As the influence of the independent variables were different for the two knees, the 

results were presented and discussed separately. 

 
Table 2.1: Effects of the factors and their interaction on the response variables for left knee 

Factors MANOVA 
ANOVA 

Flexion_ 
L 

Abduction_ 
L 

Adduction_ 
L 

Internal_ 
Rotation_L 

External_ 
Rotation_L 

Slope <0.001 
(10.3) * 

<0.001 
(24.9) * 0.11 (2.2) 0.088 (2.5) 0.5 (0.7) 0.79 (0.2) 

Posture <0.001 
(116.6) * 

<0.001 
(285.5) 

* 
0.33 (0.9) 0.041 (4.2) 

* 
0.008 (7.3) 

* 
0.014 (6.2) 

* 

Slope*Posture <0.001 
(4.2) * 

0.002 
(6.2) * 

0.042 (3.1) 
* 0.234 (1.5) 0.86 (0.2) 0.63 (0.5) 

Note: * indicates a significant p value. F-values are provided in the Parenthesis. 
 

Table 2.2: Effects of the factors and their interactions on the response variables for right knee 

Factors MANOVA 
ANOVA 

Flexion_ 
R 

Abduction_ 
R 

Adduction_ 
R 

Internal_ 
Rotation_R 

External_ 
Rotation_R 

Slope <0.001 
(14.2) * 

<0.001 
(29.9) * 0.13 (2.1) 0.002 (6.8) 

* 0.194 (1.7) 0.47 (0.8) 

Posture <0.001 
(114.8) * 

<0.001 
(319.3) 

* 

0.004 (8.5) 
* 

0.008 (7.3) 
* 

<0.001 
(19.8) * 0.75 (0.1) 

Slope*Posture 0.003 (3.3) 
* 

<0.001 
(9.1) * 0.47 (0.8) 0.59 (0.5) 0.041 (3.1) 

* 0.45 (0.8) 

Note: * indicates a significant p value. F-values are provided in the Parenthesis.  
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2.7.1. Interaction effects of roof slope and posture  

 As indicated in Tables 2.1 and 2.2, there were significant interactions effects of slope and 

posture on the mean change of the maximum flexion of both knees, maximum abduction of left 

knee and maximum internal rotation of right knee. Due to these findings, at each slope, maximum 

left and right knee flexion, maximum left knee abduction and maximum right knee internal rotation 

at static and dynamic postures were compared. For each posture, differences in between three 

slopes were compared as well. The interaction effects were plotted in Figs. 2.5, 2.6, 2.7 and 2.8. 

Here, ‘S’ indicates static and ‘D’ indicates dynamic posture. 

 At 0°, 15° and 30° slopes, maximum knee flexion in left and right knee in dynamic posture 

was significantly higher than that in static posture. In static posture, maximum flexion of left and 

right knee at 30° roof slope was significantly lower compared to 0° and 15° roof slopes. In dynamic 

posture, maximum left knee flexion at 0° slope was significantly higher than that in 30° slope. But, 

for right knee, no significant difference in maximum flexion was observed in between any roof 

slope for dynamic posture.  

 At 30° slope, maximum left knee abduction was significantly higher in dynamic posture 

than in static posture, but for 0° and 15° slopes, the difference in static and dynamic postures was 

not significant. In dynamic posture, maximum left knee abduction at 30° roof slope was 

significantly higher than that in 0° and 15° slope, but no significant difference was found in 

between any of the roof slopes for static posture.  
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Figure 2.5: Interaction effect of slope and posture on left knee flexion 

 
 

Figure 2.6: Interaction effect of slope and posture on right knee flexion 

Similarly, at 30° slope, maximum right knee internal rotation was significantly higher in 

dynamic posture than in static posture, but for 0° and 15° slopes, the difference in static and 

dynamic posture was not significant. In addition, for static posture, right knee internal rotation at 
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30° slope was significantly lower than in 15° slope. But no significant difference in internal 

rotation was found in between any of the roof slopes in dynamic kneeling posture. 

 
Figure 2.7: Interaction effect of slope and posture on left knee abduction 

 
Figure 2.8: Interaction effect of slope and posture on right knee internal rotation 

2.7.2. Main effects of roof slope  

 The significant main effect of slope was observed for the maximum knee flexion of left 

and right knee and adduction of right knee. The impact of slope on maximum knee flexion angle 
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implied that, with the increase in slope angle, the maximum knee flexion angle significantly 

decreased for left knee (Figure 2.9). From the Tukey post hoc analysis, we found significant 

differences in maximum knee flexion angles between three slopes for left knee. In Figure 2.9, we 

observed that, each of the three roof slopes (0°, 15° and 30°) was categorized in three different 

groups A, B and C. That means, each of these 3 roof slopes had significantly different impact from 

each other on the maximum knee flexion angle. On the other hand, for right knee, slopes 0° and 

15° were categorized in the same group (A) whereas slope 30° was in another group (B), which 

means the maximum knee flexion angle at 30° slope was significantly lower compared to that at 

0° and 15° slopes. However, there was no significant difference in maximum knee flexion between 

0° and 15° slope. 

 
Figure 2.9: Effect of slope on maximum knee flexion angle (both for left and right knee). All 

observations are categorized into 3 groups by the 3 roof slopes; the mean at each roof slope is 

expressed by a dot, enclosed by the 95% confidence interval 
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Similarly, the maximum right knee adduction at 0° slope was significantly higher than that 

at 15° and 30° roof slopes (Figure 2.10). Here, negative value indicates adduction. For comparison, 

the absolute values were considered.  

 
Figure 2.10: Effect of slope on maximum adduction of right knee 

No significant main effect of slope was found for the maximum abduction angles in both knees, 

maximum adduction angle in left knee and maximum internal and external rotations in both knees.  

2.7.3. Main effects of posture 

 The significant main effect of working posture was observed for the maximum knee 

flexions, adductions and internal rotations in both knees. Working posture was also found to be 

significantly associated with the abduction in right knee and external rotation in left knee. 

 From the group association of Tukey post hoc analysis in Figure 2.11, maximum left and 

right knee flexions were significantly higher in dynamic (D) posture than in static (S) posture.  

 Although no significant main effect of slope was observed in the maximum left knee 

abduction, for right knee, the maximum abduction was significantly higher in dynamic posture 

(Figure 2.12). 
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Figure 2.11: Effect of working posture in flexion angle 

 

 
Figure 2.12: Effect of posture on the maximum abduction of right knee 

On the other hand, maximum left and right knee adductions were significantly higher in 

dynamic posture (Figure 2.13) compared to the static posture (absolute values were considered for 

adduction).  
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Figure 2.13: Effect of posture on the maximum knee adduction 

For both knees, we found significantly higher maximum internal rotations in dynamic 

posture than in static posture (Figure 2.14). For left knee, external rotation was significantly higher 

in dynamic posture as well. Negative value indicates external rotation and for comparison, the 

absolute value was considered.  

 
 

Figure 2.14: Effect of posture on knee internal and external rotation 

 

2.8. Discussion  

 Our results demonstrated that roof slopes and working postures significantly impact knee 

rotational movement–flexion, abduction, adduction, internal and external rotation. As the slope 
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angle increases, the participants need to adjust their thighs to incline more towards the rooftop 

surface, which results in the decrease of the angle between the thigh and rooftop surface; that is, 

the knee flexion angle is decreased. This relationship is corroborated by our findings— as the slope 

increases, the knee flexion decreases. We found the lowest maximum flexion angle when the 

participants were working on 30° slope (left: 112.3°, right: 112.2°). Maximum flexion angles were 

greater in dynamic postures (left: 132.1°, right: 132.9°) compared to static posture scenarios (left: 

106.5°, right: 107.1°). This may be explained by a subtle difference in the trunk alignment and 

working technique undertaken by the participants between static and dynamic postures. In the 

static posture in our experiment, the participants put their non-nailing hand on the roof surface and 

grabbed the nail gun in their nailing hand to install shingles—this caused the trunk to stay more 

inclined towards the roof surface and thereby the thigh to be in more upright position. But in the 

dynamic posture, the participants started simulated nailing of shingles, lifting their trunk upward 

which caused the thigh to bend and thereby the knee flexion angle to increase. Also, we observed 

an interaction effect of slope and posture on knee flexion of both knees. For all three roof slopes 

(0°, 15° and 30°), while the participants were in dynamic posture, both knees flexed significantly 

higher (left: 136.5°, 131.1°, 128.8°, right: 134.9°, 134.4°, 129.4° respectively) compared to when 

they were in static condition (left: 113.9°, 110°, 95.8°; right: 113.7°, 112.8°, 95.1° respectively). 

 According to our results, slope did not have a significant impact on left and right knee 

abduction. However, for different working postures the abduction in the right knee changed 

significantly. The reason could be due to the nature of the postures. In the static posture, the 

participants had negligible movement in the lower limbs as they were in a static position. But in 

dynamic posture, they simulated nailing of shingles which involved greater movement among the 

lower limbs. In the protocol, the participants simulated nailing 2 shingles side by side (3 nails in 
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each, from left to right). During the shingle installation phase, right shank moved laterally away 

and left shank moved towards the knee joint and caused abduction and adduction in the right and 

left knee respectively. Similarly, due to continuous lateral movement of the lower limb, right shank 

moved towards and left shank moved laterally away from the knee joint that caused adduction and 

abduction in right and left knees respectively. Although the impact of posture on the right knee 

abduction was significant, the impact was non-significant in the left knee abduction. One reason 

may be that 8 out of 9 participants were right-handed and they used their right hand for nailing 

activity which caused more lateral movement on the right knee compared to the left knee. Our 

analysis showed that, in dynamic posture, maximum right knee abduction was significantly higher 

(6.8°) compared to static posture (5.1°). Although there appeared to be no significant impact of 

roof slope and working posture on the left knee abduction, we found a significant interaction effect 

of slope and posture on the left knee abduction. For high-pitched roof (30° slope), our result 

showed that maximum left knee abduction became significantly higher in dynamic posture (12.3°) 

than in static posture (8.3°) which eventually increases knee MSD risk. For dynamic posture, the 

adduction in the left and the right knee were significantly higher (6.2°, 7.8°) than that in static 

posture (4.7°, 6.5°). In terms of roof slope, maximum knee adduction in the right knee was 

significantly higher in 0° roof slope (8.4°) than in 15° (6.6°) and 30° slope (6.2°), while no 

significant main effect of roof slope was found to cause adduction on the left knee. 

 Both knees internally rotated more in dynamic posture during shingle installation than in 

static posture. Statistically, significantly higher internal rotation in the right knee (13.2°) was 

observed at 30-degree slope during shingle installation than static condition (2.5°). There appeared 

to be no significant interaction effect of slope and posture on internal rotation of the left knee. In 



35 
 

addition, roof slope did not seem to have any significant impact on the internal rotation of either 

of the knees.  

 The left knee significantly rotated away in dynamic posture (9.1°) compared to static 

posture (6.9°). On the other hand, we did not find any significant effect of posture on the right 

knee external rotation during shingle installation. No significant interaction among slope and 

posture was observed to cause external rotation in any of the knees. Pollard et al. (2011) quantified 

and calculated knee angles during kneeling and squatting and revealed that posture has a significant 

impact on knee flexion and internal rotation. Our experiment also observed a significant impact of 

posture on flexion and internal rotation for both knees which echoes that finding. 

 Overall, this study demonstrated that the participants become exposed to potential knee 

MSD risks during shingle installation on rooftop. As higher knee flexion, abduction, adduction 

and rotation are required in dynamic kneeling, additional stress and force is induced on the knee 

joint ligaments. Conversely, a relatively lower knee flexion angle is required on a high-pitch roof 

than a low-pitch roof, and knee adduction in the right knee is also the minimum in high slope roof. 

But in dynamic posture, high-pitch roof causes higher abduction in left knee and internal rotation 

in right knee and hence, proper intervention is essential to minimize these awkward rotations while 

installing shingles on sloped roof surface. Some of the possible solutions might be using wearable 

or external devices, such as, knee pads, knee supporting devices and knee savers that have been 

proven to be useful in minimizing knee flexion during kneeling and squatting postures as suggested 

in previous studies (Dooley et al. 2019; Gray et al. 2015; Pollard et al. 2011). However, the focus 

of the current study was only the knee kinematics during a shingling process. Though several 

interventions are available, we did not want to alter the kinematics due to these interventions and 

hence were not utilized. In the future, both wearable and external interventions should be studied 
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to observe how their addition can influence the lower extremity kinematics during a shingling 

process on sloped roof surface. Also, the high knee muscles activation and knee joint contact 

stress- two common sources of knee MSDs, were out of scope of this study and hence were not 

analyzed.  

This experimental study used nine participants to draw conclusions about the above 

findings. Typically, human musculoskeletal loadings are related to ergonomic injury risks and joint 

degeneration. The relationship between kinematics (i.e., joint angle measurements in this study) 

and the musculoskeletal loadings is modulated by biomechanics, not random. Such modulated 

relationship engenders that nine subjects are appropriate for this study and it is not necessary to 

have a large sample size to draw conclusions like those involving variables that are random. In 

fact, it is well accepted to validate biomechanical models using less than ten subjects in the 

research community. Besides, the kinematics data were collected from multiple trials for each 

subject to study the impact of slope, posture and their interactions on the response variables. 

Although from the statistical power analysis (G*Power, Franz Faul, Germany), some of the 

response variables statistical power might be low, but the statistical power does not diminish the 

clinical relevance. Moreover, the statistical power does not depend only on sample size but also 

on effect size of the factors which is calculated to understand the magnitude of the mean 

differences between different groups of the factors. If the effect size of a factor on the mean 

differences between two groups is large (Cohen's term d > 0.2), which was found in most of the 

mean differences in our study, it is possible to detect such an effect with small sample numbers 

(Sullivan and Feinn 2012). 

 In the process of selecting participants, this study did not control for handedness. 8 right-

handed and 1 left-handed subjects were involved in this study. As lefties make up about 10% of 



37 
 

the population, this study coincidently represented the population. Considering that our long-term 

goal would be to develop some standardized recommendations, having ~10% of the participants 

as lefties is good practice. That being said, the results would probably have changed with a 50/50 

split if there was more balance between left and right-handed individuals. Our first priority is to 

help with trainings and/or interventions. We could in the future develop an entire manuscript on 

the difference between the two handedness and determine if trainings/interventions need to be 

specialized depending on handedness.  

2.9. Limitations of the Study 

This study has several limitations. First, this study primarily focused on risks to knee injuries. 

As part of the lower extremity, the ankles may undergo excessive pressure while performing 

roofing activities in slanted roof settings. However, in this study associated risks to ankles were 

not examined. Second, maximum knee angles were used as a metric to assess the work-related risk 

factors of knee MSD in construction roofing works. Time series features of the knee angles data 

were not fully explored. Third, the participants in this study were not professional roofers. It is 

possible that professional roofers can adopt posture by optimizing the risks based on their years of 

experience and from the perspective of kinematics, there should be some differences between 

professional roofers and non-professional roofers. However, this study intended to identify the 

initial extreme posture individuals without any prior roofing experience encounter when they are 

first exposed to a sloped working environment, so that knowledge built upon the findings can be 

used to train new roofers and intervention development. 

2.10. Conclusion and Future Research 

 This study analyzed the impact of the unique sloped work setting—commonly encountered 

by residential roofers during performing construction roofing works—and different working 
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techniques for kneeling posture on knee MSD risks in roofing activities. It provided useful 

information to statistically understand the effects of work-related risk factors on knee MSDs while 

performing shingle installation on a sloped rooftop. For example, dynamic kneeling posture during 

shingle installation may generate significantly higher knee flexion, abduction, adduction, internal 

and external rotation compared to the knee rotations required to maintain a static posture, which 

provides the evidence of increased knee MSD risk in sloped shingle installation task. High-pitched 

roof can reduce knee flexion and adduction, but it may induce high knee abduction and internal 

rotation during dynamic shingle installation. Proper intervention is required during shingle 

installation and roof slope should be such that they induce minimum flexion, abduction and 

internal rotation of knee which is important to reduce knee MSD risk caused by construction 

roofing works.  

 Future studies on safety interventions will involve experiments in construction sites and 

participation of a larger number of professional roofers to provide more comprehensive 

understanding of work setting-related knee disorder risks among construction roofers. Moreover, 

work-related factors, such as different slope and posture will be assessed for knee MSDs observing 

the EMG signals of knee flexor and extensor muscles and knee joint contact stress. Also, by 

considering the spatiotemporal nature of the data set, cumulative effects of the knee bending angles 

will be analyzed and relative risks at different phases of the entire shingle installation task will be 

examined. The findings of this study advance the construction knowledge by providing insights of 

roof work-related conditions on knee MSD development and thereby helping reducing knee MSD 

risks of roofers through developing training and ergonomic solutions. 
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CHAPTER 3: EFFECTS OF WORKING POSTURE AND ROOF 
SLOPE ON ACTIVATION OF LOWER LIMB MUSCLES 

DURING SHINGLE INSTALLATION 
 
Abstract 

 Awkward and extreme kneeling during roofing generates high muscular tension which can 

lead to knee musculoskeletal disorders (MSDs) among roofers. However, the combined impact of 

roof slope and kneeling posture on the activation of the knee postural muscles and their association 

to potential knee MSD risks among roofers have not been studied. The current study evaluated the 

effects of kneeling posture and roof slope on the activation of major knee postural muscles during 

shingle installation via a laboratory assessment. Maximum normalized electromyography (EMG) 

data were collected from knee flexor and extensor muscles of seven subjects, who mimicked the 

shingle installation process on a slope-configurable wooden platform. The results revealed a 

significant increase in knee muscle activation during simulated shingle installation on sloped 

rooftops. Given the fact that increased muscle activation of knee postural muscles has been 

associated with knee MSDs, roof slope and awkward kneeling posture can be considered as 

potential knee MSD risk factors. 
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3.1.Introduction 

 Awkward kneeling posture is considered as a primary risk factor for musculoskeletal 

disorders (MSDs) among occupations that require frequent kneeling (Xu et al. 2017). Due to the 

unique work condition of slanted rooftops, residential roofers spend more than 75% of their 

working time in crawling, squatting, stooping and kneeling postures. The cumulative effects of 

these awkward postures combined with repetitive motions have, in large part, led to a high incident 

rate of MSDs among residential roofers (Dulay et al. 2015; Wang et al. 2015). Awkward postures 

during a task can lead to less efficient force production in skeletal muscle.  This decrease in muscle 

efficiency  may result in higher muscle activation and muscle overloading compared to a neutral 

posture (Kaushik and Charpe 2008). Cumulative muscle overloading coupled with repetitive 

motions without adequate recovery time may cause MSDs due to overexertion or imbalance (Hofer 

et al. 2011; Kumar 2001). According to Marras and Karwowski (2003), the incident rate of knee 

MSDs is the highest among residential roofers in comparison to other workers in construction.  

 Studies have been conducted on assessments of MSD risk factors for roofers. Lu et al. 

(2015) investigated the effects of roof slope, visual cue, muscular fatigue, and task performance 

on the lower limb postural muscle activation associated with balance maintenance. Wang et al. 

(2017) examined the influences of roof slope, working technique, and working pace in kneeling 

and stooped postures on the development of low back disorders to roofers. The effects of roof 

slope and kneeling posture on the knee kinematics of roofers were investigated by Breloff et al. 

(2019a). The impacts of traverse walking across a sloped roof surface on lower extremity 

kinematics of roofers were examined by Breloff et al. (2019b). Risky phases in terms of awkward 

knee rotations and repetitive motions during shingle installation were assessed by Dutta et al. 

(2020a). These studies have greatly advanced understanding of MSD risks in roofing by examining 
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the association of the roofing work-related factors to the potential MSD development among 

roofers.  

 Working posture has been identified as a vital mechanical variable to account for 

occupational safety and used to compute muscle activation and joint loads (Tennant et al. 2018; 

Tennant et al. 2014). Residential roofers typically kneel on the sloped rooftop during roofing work. 

These awkward kneeling postures are associated with an increased risk of knee MSDs such as 

meniscal disorders and knee osteoarthritis (Canetti et al. 2020; Gallagher et al. 2011). However, 

the effect of such constrained awkward kneeling postures on the peak muscle activation of lower 

extremities in residential roofing and their association to knee MSDs has not been studied. 

Furthermore, increasing the inclination of working surface has been identified as a contributing 

factor for muscular loading in the lower limb muscles (Lu et al. 2015). In a kneeling posture, while 

it was revealed that lumber spine-muscle activation increases at a higher-pitched roof surface 

during roofing (Wang et al. 2017), the impact of roof slope on the activation of knee postural 

muscles during roofing is still unknown. Despite the advances in the previous studies on MSDs in 

the residential roofing work-related factors, there is limited knowledge regarding the activation of 

associated muscles of the lower limbs during kneeling in residential roofing on a sloped surface, 

which are associated to the osteoarthritis of knee joints. 

 The objective of the current study was to assess the impact of two residential roofing work-

related factors —roof slope and awkward kneeling posture — on the activation of knee flexor and 

extensor muscles during the repetitive shingle installation task. This study hypothesized that roof 

slope, kneeling posture, and their interaction would significantly impact the activation of the knee 

postural muscles during performance of roofing, which may lead to knee MSDs among 

construction roofers. 
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3.2.Methods 

3.2.1. Participants 

The participants were the same as mentioned in Chapter 2. However, only valid EMG data 

from seven out of the nine participants were available and used for this analysis. The protocol was 

approved by both the Institutional Review Boards (IRBs) of West Virginia University (WVU) and 

National Institute for Occupational Safety and Health (NIOSH).  

3.2.2. Instruments 

Muscle activation signals were recorded using a surface electromyography (EMG) system 

(Noraxon Desktop Direct Transmission System with myoMUSCLE Master software, Arizona, 

USA). According to the instructions outlined in Reichert and Stelzenmueller (2011), surface EMG 

Ag/AgCl electrodes were placed bilaterally on the palpated muscle bellies of each of three extensor 

muscles [rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM)] and two flexor 

muscles [biceps femoris (BF) and semitendinosus (S)]. The EMG data were collected at a rate of 

1,000 Hz.  

Knee kinematics data (segment endpoints) were also collected using the VICON optical 

motion analysis system with 14 MX Vicon cameras (Oxford, UK). Retroreflective motion capture 

markers were placed in participants’ hip and knee joints, thighs and lower legs to capture their 

three-dimensional (3D) coordinates and derive knee flexion angles (Breloff et al. 2019a).  

Simulated shingle installation was conducted on the same wooded platform that was 

depicted in Figure 2.2 in Chapter 2.  
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3.2.3. Experimental design  

The experimental design was comprised of two independent variables: roof slope and 

kneeling posture. The roof slope included three levels: 0°, 15° and 30°. The kneeling posture 

included two levels: static posture and dynamic posture. 

The static posture is a deep-flexed kneeling position where the roofers flex their knees and 

trunk, place their non-nailing hand on the rooftop, and hold the nail gun with the opposite hand 

with negligible movement in their lower limbs. This posture represents the general body 

orientation of the roofers during shingle installation. It can be considered as a non-working 

condition considering that they neither place nor nail shingles in this posture.  

The dynamic posture is a working technique that involves generating cyclic muscle 

contraction and relaxation as the residential roofers perform the entire shingle installation task. 

First the residential roofers reach for and grasp the shingles by lifting the trunk slightly upward. 

Then they place the shingles on the rooftop. Next, they pick up the nail gun from the side and begin 

nailing the shingles side by side. Following nailing, the nail gun is returned to its starting position; 

and finally, the roofers return to the upright position resting on their knees. 

The dependent variables were peak normalized EMG of the aforementioned ten muscles.  

3.2.4. Procedures 

The experiment was performed at the biomechanics laboratory, NIOSH (Morgantown, 

WV). The experiment procedure was introduced to the participants upon their arrival and they read 

and signed the informed consent forms. The EMG electrodes and motion markers were then placed 

on the designated locations of the participants. The skin areas for the EMG electrodes were shaved 

and cleaned before the placement of the electrodes. After that, the participants mimicked the 
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shingling task on the wooden platform using different combinations of postures and slopes (2 

postures × 3 slopes = 6 scenarios). In the static kneeling, all participants placed their left hand on 

the wooden platform and held the nail gun with their right hand. In the dynamic kneeling, they 

secured six nails (three in each) into two shingles side by side on the roof segment with a pneumatic 

nail gun (weight 5.8 pounds). The six scenarios were randomized by slope and then posture for 

each participant. For each combination of the randomized slope and posture, each participant 

performed five repeated trials. 

3.2.5. Data processing 

Collected EMG signals were preprocessed using Visual 3D (C-Motion, Inc). First, the raw 

EMG signals were filtered using a 2nd order Butterworth high-pass filter with a cutoff frequency 

of 20 Hz and a low-pass filter with a cutoff frequency of 500 Hz. Then, the signals were rectified 

by a full-wave rectifier. Next, short-term fluctuations were removed from the signals with a 

moving average filter that had a three data point window. The value of the resulting signal at each 

point was the average of the values in the window of three data points. 

Following these, the preprocessed EMG signals were normalized with respect to a reference EMG 

measurement for each participant to ensure fair comparison. This was done using the method 

suggested by Chapman et al. (2010) and described as below. 

Let the EMG signal of certain muscle of the left or right knee observed for participant 𝑖 at slope 𝑠, 

posture 𝑝, trial 𝑗, and time 𝑡 be represented as 𝐸5,6,7,8(𝑡),  

where 𝑖	 ∈ {1, 2, 3, 4, 5, 6, 7} representing each one of the participants, 

          𝑝	 ∈ {1, 2} with 1 and 2 representing the static and dynamic postures, respectively, 

          𝑠	 ∈ {1, 2, 3} with 1, 2 and 3 representing 0°, 15° and 30° slopes, respectively, and 
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          𝑗	 ∈ {1, 2, 3, 4, 5} representing each one of the trials. 

For participant 𝑖, the reference EMG measurement was calculated using the following equation: 

𝑅5 =
∑ ∑ ∑ IJK(

L
MN,O,P,Q(R)	)

S
QTU

V
PTU

W
OTU

X
  ………………………………………… (3.1) 

where 𝑁 is the total number of trials for each participant. In this study, 𝑁 = 30 for the three slopes 

and two kneeling postures with five repeated trials for each combination.  

Consequently, the normalized EMG signal of certain muscle for participant 𝑖 at slope 𝑠, posture 𝑝, 

trial 𝑗, and time 𝑡 was computed using the following equation: 

						𝑁𝐸	5,6,7,8	(𝑡) = MN,O,P,Q(R)	
ZN

   ………………………………………… (3.2) 

For each participant, the maximum value of the normalized EMG signal within each trial was 

selected as the dependent variable. 

3.2.6. Data analysis 

 The assumptions of analysis of variance (ANOVA) (i.e., constant variance of residuals, 

normality of residuals, and independence of observations) were examined before analyses using a 

graphical approach (Freund et al. 2010). Multivariate ANOVA (MANOVA) was then applied to 

evaluate the effects of the two independent variables (i.e., roof slope and posture) and their 

interaction on all the dependent variables. The independent variables that demonstrated significant 

effects were further analyzed using univariate ANOVA. Tukey post-hoc analysis was performed 

for any independent variable with three or more levels (i.e., slope) to explore the effect differences 

between levels. The p-value was set as 0.05 for all tests. All tests were performed in Minitab 19 

(Minitab, Inc.) 
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3.3.Results 

 Tables 3.1 and 3.2 show the p-values illustrating the bilateral effects of the working 

conditions on the muscle activation. As the effects of the working conditions were different for 

both knees, the results were presented and discussed separately. Here, LBF, LRF, LS, LVL and 

LVM denoted the BF, RF, S, VL and VM muscles of the left knee, respectively. RBF, RRF, RS, 

RVL and RVM denoted the BF, RF, S, VL and VM muscles of the right knee, respectively. 

Table 3.1: The resulting p-values for the left knee 

Independent variables MANOVA 
ANOVA 

LBF LRF LS LVL LVM 

Slope <0.001 0.343 0.001 0.011 <0.001 <0.001 

Posture <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Slope*Posture <0.001 0.121 0.676 0.091 0.118 0.019 

Note: Bold font indicates a significant effect. 

Table 3.2: The resulting p-values for the left knee 

Independent variables MANOVA 
ANOVA 

RBF RRF RS RVL RVM 

Slope <0.001 0.007 0.684 0.776 0.007 <0.001 

Posture <0.001 <0.001 <0.001 <0.001 <0.001 0.056 

Slope*Posture <0.001 0.002 0.718 0.015 0.107 0.160 

Note: Bold font indicates a significant effect. 

3.3.1. Main effects of roof slope 

The p-values obtained from the ANOVA test implied that slope had a significant impact 

on the maximum normalized activation of the LRF, LS, LVL and LVM muscles and the RBF, 

RVL and RVM muscles (Tables 3.1 and 3.2). Tukey post-hoc analysis results plotted in Figure 3.1 

illustrates that for the LRF muscle, the 0° slope was categorized in one group (denoted as group 

A) and the 15° and 30° slopes were categorized in another group (denoted as group B). This meant 
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that the effect at 0° roof slope (group A) on the maximum normalized muscle activation (MNMA) 

was significantly different from the effect at 15° and 30° slopes (group B). From the trend of the 

graph for the LRF muscle, the MNMA at 15° and 30° slopes was significantly higher than that at 

0° slope. The levels of the independent variable sharing a common group (e.g., 15° and 30° slopes 

in group B for LRF) indicated that there was no significant difference in their effects on the 

dependent variables (i.e., MNMA). For the RBF muscle, the only significant difference that existed 

was between 15° (group A) and 30° slopes (group B) where the MNMA at 30° slope was 

significantly higher than that at 15° slope. Slope did not have any significant effect on the MNMA 

of the LBF and RRF muscles. 

 
Figure 3.1: Average maximum normalized EMG signals of the LBF, LRF, RBF and RRF 

muscles with 95% confidence intervals. Results were averaged by the three roof slopes. Here, 

‘A’ and ‘B’ illustrate significant and non-significant effect differences between levels of slope. 

For the LVM and RVL muscles, the MNMA at 30° slope (group B) was significantly 

higher than that at 0° slope (group A) (Figure 3.2). For the LVL muscle, the MNMA at 30° slope 

(group B) was significantly higher than that at 0° and 15° slopes (group A). For the RVM muscle, 
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the MNMA at 15° and 30° slopes (group B) was significantly higher than that at 0° slope (group 

A).  

 
Figure 3.2: Average maximum normalized EMG signals of the LVL, LVM, RVL and RVM 

muscles with 95% confidence intervals. Results were averaged by the three roof slopes. Here, 

‘A’ and ‘B’ illustrate significant and non-significant effect differences between levels of slope. 

 
Figure 3.3: Average maximum normalized EMG signals of the LS and RS muscles with 95% 

confidence intervals. Results were averaged by the three roof slopes. Here, ‘A’ and ‘B’ illustrate 

significant and non-significant effect differences between levels of slope. 
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For the LS muscle, the MNMA at 30° slope (group B) was significantly lower than that at 

15° slope (group A). For the RS muscle, no significant difference was observed between any two 

of the roof slopes (all in group A) (Figure 3.3). 

3.3.2. Main effects of posture 

For both knees, the MNMA of all muscles but RVM was significantly associated with 

posture. For all muscles, the MNMA was significantly higher in the dynamic posture than in the 

static posture. It indicates that higher muscle recruitment was required during shingle installation 

than what was required to maintain a static flexed kneeling posture. The effect of posture on 

different postural muscles are depicted in Figures. 3.4, 3.5 and 3.6. 

 

Figure 3.4: Average maximum normalized EMG signals of the LBF, LRF, RBF and RRF 

muscles with 95% confidence intervals. Results were averaged by the two kneeling postures. 

Here, ‘A’ and ‘B’ illustrate significant and non-significant effect differences between level of 

posture. ‘D’ and ‘S’ denote dynamic and static postures, respectively. 
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Figure 3.5: Average maximum normalized EMG signals of the LS and RS muscles with 95% 

confidence intervals. Results were averaged by the two kneeling postures. Here, ‘A’ and ‘B’ 

illustrate significant and non-significant effect differences between levels of posture. ‘D’ and ‘S’ 

denote dynamic and static postures, respectively. 

 
Figure 3.6: Average maximum normalized EMG signals of the LVL, LVM, RVL and RVM 

muscles with 95% confidence intervals. Results were averaged by the two kneeling postures. 

Here, ‘A’ and ‘B’ illustrate significant and non-significant effect differences between levels of 

posture. ‘D’ and ‘S’ denote dynamic and static postures, respectively.  
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3.3.3. Interaction effects of roof slope and posture 

 As indicated in Tables 3.1 and 3.2, there was significant interaction effects between slope 

and posture on the MNMA of the LVM, RBF and RS muscles. Due to these results, at each slope, 

the maximum normalized EMG signals in the static and dynamic postures were compared for these 

muscles. For each posture, differences between any two of the three slopes were compared as well.  

 In Figure 3.7, at 0°, 15° and 30° slopes, the MNMA in the dynamic posture was 

significantly higher than that in the static posture for the RBF muscle. In the dynamic posture, the 

MNMA at 30° slope was significantly higher than that at 0° and 15° slopes. No significant 

difference was observed between any two slopes in the static posture.  

 
Figure 3.7: Interaction effect of slope and posture on the maximum normalized activation of the 

RBF muscle. Here, ‘D’ and ‘S’ denote dynamic and static postures, respectively. ‘*’ indicates 

statistical significance. 

 In Figure 3.8, for the RS muscle, at 15° and 30° slopes, the MNMA in the dynamic posture 

was significantly higher than that in the static posture. In the dynamic posture, the MNMA at 30° 
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slope was significantly higher than that at 0° slope. No significant difference was observed 

between any two slopes in the static posture.  

 
Figure 3.8: Interaction effect of slope and posture on the maximum normalized activation of the 

RS muscle. Here, ‘D’ and ‘S’ denote dynamic and static postures, respectively. ‘*’ indicates 

statistical significance. 

 
Figure 3.9: Interaction effect of slope and posture on the maximum normalized activation of the 

LVM muscle. Here, ‘D’ and ‘S’ denote dynamic and static postures, respectively. ‘*’ indicates 

statistical significance. 
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 In Figure 3.9, for the LVM muscle, at each slope, the MNMA in the dynamic posture was 

significantly higher than that in the static posture. During shingle installation in the dynamic 

posture, the MNMA at 30° slope was significantly higher than that at 0° and 15° slopes. No 

significant difference was observed between any two slopes in the static posture. 

3.4.Discussion  

 The current study assessed the effects of roof slope and kneeling posture on the maximum 

normalized activation of knee postural muscles in sloped residential roof shingle installation. Both 

the static and dynamic kneeling postures were studied as potential knee MSD risk factors because 

the peak activation of the muscle can be obtained in either of these scenarios (Andriacchi and Favre 

2014). The five bilateral muscles were included in the current study, as they are responsible for 

the flexion and extension of each knee joint during kneeling and the increased activation of these 

muscles is potentially associated with MSD developments (Kingston et al. 2016).  

3.4.1. Effects of roof slope 

In general, at a high-pitched roof (30°), the knee extensor muscles of the left knee (LRF, 

LVL, LVM) and the right knee (RVL and RVM) exhibited a statistically significant increase in 

the maximum normalized activation. The possible reason for higher muscle activation during 

shingle installation on a sloped surface could be explained by the muscle length-tension 

relationship (Gordon et al. 1966), which relates the isometric contraction force to the muscle 

length, at which the contraction occurs. According to this relationship, muscles operate with high 

active tension when close to the optimal resting length (or a posture around 90° of knee flexion). 

But when the muscle is lengthened too much (e.g., flexion greater than 140°) or shortened too 

much (e.g., flexion less than 80°), the isometric active tension generated in the muscle decreases 

because the less than optimal force is produced due to the insufficiency of the actin-myosin 
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filament overlap and binding site availability within the muscle. When residential roofers knelt on 

the sloped surface during shingle installation, it was observed that the knee flexion angle, on 

average, ranged from ~110° to 125°, and with the increase in roof slope (between 0° to 30°), the 

flexion angle decreased by 12° to 15°. Due to the decrease in knee flexion, the knee extensor 

muscles might contract concentrically and the flexor muscles might contract eccentrically as 

residential roofers tended to incline a bit to the roof surface to maintain balance (Kennedy and 

Cresswell 2001). As the length of the muscles deviated from the optimal resting length during 

shingle installation on the sloped roof surface, the ability of producing the maximum active tension 

in the muscles decreased. In this situation, the muscle activation was triggered by the nerve 

simulation, which promoted the recruitment of more motor neurons that, in turn, stimulated the 

muscle fibers and resulted in the generation of the required muscle force to perform the shingle 

installation task. 

For the knee flexor muscles, although the maximum normalized activation of the RBF 

muscle significantly increased at high-pitched roof, the maximum normalized activation of the LS 

muscle decreased. According to the length-tension relationship, tension development in a muscle 

increases as the resting length of the muscle increases up to an optimal length. Tension 

development then decreases with further increase in the muscle length. Although the length of the 

knee flexor muscle LS increased at high-pitched roof due to decrease in knee flexion, it might be 

possible that the muscle was still within the range of optimal resting length when the active tension 

generation capability of the muscle increased and hence the activation decreased (since the muscle 

had the required active tension available to perform the task). Another possible reason was that all 

the participants were right-handed and they used their right hands for grasping the nail gun, 

reaching for shingles, placing and nailing them. This might have caused more repetitive lateral 
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movement of the right knee compared to the left knee and contributed to higher cyclic muscle 

contraction and elongation of the right knee flexor muscle (RBF). Onishi et al. (2002) studied the 

differences in activities among three flexor muscles during maximum voluntary isometric and 

isokinetic knee flexion and reported that the activation of the S muscle decreased, and the BF 

muscle increased as flexion decreased, which corroborated our findings. However, further 

investigation is needed to substantiate the explanation. 

3.4.2. Effects of posture 

For most of the muscles tested in this study, higher muscle recruitment was required during 

shingle installation than what was required to maintain a static flexed kneeling posture. The 

possible reason could be explained by the knee flexion angles generated in the static and dynamic 

postures. It was observed that the knee flexion in the dynamic posture was higher (~132°) than 

that in the static posture (~106°). This might cause concentric contractions to the flexor muscles 

as the muscles were shortened due to increased flexion during shingle installation. Meanwhile, 

eccentric contractions were generated to the extensor muscles as they were lengthened. Thanks to 

this deviation from the ideal or optimal resting length, the ability to produce the maximum active 

tension by these muscles decreased leading to possible requirement for more muscle recruitment 

during shingle installation. Our findings matched with the findings from Kingston et al. (2016), 

who measured the peak activation of lower limb muscles during high flexion static kneeling and 

troweling movements in kneeling postures and reported significant increase in muscle activation 

during the movement task. 

3.4.3. Interaction effects of roof slope and posture 

 For low to high-pitched rooftops (0°, 15° and 30°), the maximum normalized activation of 

the LVM, RBF and RS muscles was significantly higher in the dynamic kneeling posture than in 
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the static kneeling posture. In addition, the maximum normalized activation of these muscles was 

significantly higher at high-pitched roof slope (30°) compared to two other roof slopes (0° and 

15°) at the dynamic kneeling posture. The possible reason for the higher muscle activation during 

shingle installation on high-pitched rooftop could be the extra effort required to maintain balance 

on the high-pitched rooftop by accounting for the postural variances involved in the dynamic 

posture. Also, the instability caused by the dynamic posture and the reduction of the base of support 

with increase of roof slope might be a potential reason for heightened muscle activation, because 

more work by the muscles was required to stabilize the trunk. In addition, simultaneous contraction 

of knee flexor and extensor muscles to help with knee joint instability on sloped-surface might 

contribute to the heightened muscle activation during sloped-shingle installation. Nevertheless, 

further studies are required to investigate the exact muscle physiology and their association to 

heightened muscle activation during sloped-shingle installation. 

3.5.Limitation of Study  

 As with all laboratory studies, there are limitations which are important to note.  First, the 

experiment was conducted with seven participants. Typically, muscle activation is associated with 

the generation of joint contact forces, and thereby is relatable to MSDs. There are biomechanical 

reasons behind the association between muscle activation and the musculoskeletal loadings. Based 

on this reasonable association, seven subjects are appropriate for this study and it is not necessary 

to have a large sample size to draw the conclusion like those from random variables. Historically, 

biomechanical models have been validated using less than ten subjects in literature (Ha and Han 

2017; Lay et al. 2007; Li et al. 2017).  

Second, all the shingles were initially placed at the right side of the participants. They 

reached for those shingles first and then placed them in the front. Next, they grabbed the nail gun 
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from their right side and nailed shingles. Once done, they replaced the nail gun to their right side. 

Therefore, it could be expected that the right knee muscles did more work. Since there is no 

standard procedure for shingle placement, and most people tend to be right hand dominant, 

shingles were placed on the dominant side on an account that it is what most roofers would do in 

the workplace. 

 Third, the participants were not professional roofers. From the perspective of 

biomechanics, there should be differences in the kinematics between professional roofers and non-

professional roofers that can impact the muscle activation. While differences exist, knee MSD 

incident rates are the highest among construction roofers. By studying the effects of the work-

related factors on the muscle activation of novice workers, this study intended to know the initial 

risk that a roofer without any prior experience could get exposed to during sloped shingle 

installation. The findings of this experimental framework can be used to develop investigations for 

training new roofers and/or interventions, so that the heightened muscle activation can be 

minimized, and MSD risks can be reduced in roofing activities. For example, knee flexion has 

impacts on the muscle contraction and thereby on the muscle activation. So, roofers should adjust 

their knee flexion (not less than 80° and not greater than 140°) during shingle installation on sloped 

roof surfaces. Using knee savers and knee pads might be helpful in this regard because they can 

reduce the peak lower extremity kinematics during sloped shingle installation (Breloff et al. 

2019c). Moreover, knee savers can reduce cumulative muscular effort and fatigue during 

prolonged kneeling (Pejhan et al. 2019).  A known level of knee-muscle activation at different 

work settings and kneeling postures will also help understand the mechanism related to the onset 

of knee MSDs (Nagura et al. 2006) and develop knee joint biomechanical models for computing 

in-vivo muscle and contact forces in different occupational tasks (Lin et al. 2010). 
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3.6.Conclusion and Future Research 

 This study examined the impact of roof slope and awkward kneeling posture — two 

common residential roofing work-related factors — on the peak normalized activation of knee 

flexor and extensor muscles as potential risk factors of knee MSDs among construction roofers. 

The findings suggested that roof slope, awkward kneeling posture, and their interaction all have 

an association with the peak normalized activation of the knee postural (flexor and extensor) 

muscles, implying that they are potential risk factors of knee MSDs. The findings also suggested 

that roofers become exposed to a greater risk of developing knee MSDs with the increase of roof 

slope during shingle installation as the dynamic kneeling posture during shingle installation on 

high-pitched rooftops requires significantly higher muscle loading for task performance compared 

to a static flexed kneeling posture. Therefore, the heightened muscle activation while kneeling 

during shingle installation on high-pitched rooftop should be given particular attention. 

 In the future, to provide more comprehensive understanding of knee MSD risks among 

construction roofers, assessments of roofing-related factors will be performed by observing the 

knee joint contact force and the ground reaction force captured by force plate. Future studies will 

also include testing of potential interventions such as knee pads and roofing footwear on the muscle 

activation with the participation of professional roofers in a real construction site. 
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CHAPTER 4: IDENTIFYING POTENTIALLY RISKY PHASES 
LEADING TO KNEE MUSCULOSKELETAL DISORDERS 

DURING SHINGLE INSTALLATION OPERATION 
 
Abstract 

 Repeated and prolonged awkward kneeling can result in musculoskeletal disorders (MSD) 

in construction roofers. However, task-specific risk assessment for roofers’ knee injuries is still 

missing in the literature. This study identified a ranking-based ergonomic method for suggesting 

potentially risky phases that may increase knee MSD risk during shingle installation operations. 

On a slope-adjustable wooden platform in a laboratory setting, nine subjects performed shingle 

installations that included seven phases: i) reaching for shingles, ii) placing shingles, iii) grabbing 

the nail gun, iv) moving to first nailing position, v) nailing shingles, vi) replacing the nail gun, and 

vii) returning to upright position. Flexion, abduction, adduction, internal and external knee 

rotations were measured to assess relative risks of these phases by ranking them using a scoring 

model. The ranking results revealed that the phases of placing shingles and nailing shingles lead 

to the most knee MSD risk exposure, and awkward flexion, abduction and adduction involved in 

these phases can significantly contribute to the potential knee MSD risk measurement. Using the 

ranking-based method, this study suggested that certain phases of the shingle installation process 

may increase knee MSD risk, which is useful for developing effective interventions to reduce knee 

MSD risk exposures from roof shingle installation. 
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4.1. Introduction 

 Shingle installation is a prolonged repetitive and awkward task that residential roofers 

commonly preform on the jobsite. Shingle installation involves awkward crawling, stooping or 

kneeling postures and repetitive motions that result in roofers’ knee MSD including chronic knee 

pain, knee joint irritation (i.e., bursitis), and osteoarthritis (Dulay et al. 2015). As roofers spend 

more than 75% of their total working time being restricted to awkward postures and repetitive 

motions in a sloped roof setting, they suffer from a high incidence rate of MSD (CPWR 2018). It 

has been shown that knee awkward postures and repetitive motions are associated with knee MSD 

(Hofer et al. 2011). Nevertheless, it is still unknown which phases of the shingle installation 

operation might yield the most awkward postures and repetitive motions that result in potentially 

the greatest knee MSD risk on slanted roof surfaces. A detailed ranking of the typical kneeling 

shingle installation phases based on the awkward postures and repetitive rotations can provide 

insights about the association of these phases with the knee MSD risk development. Although 

ranking-based methods were applied to study risks in construction, associated with schedule delays 

(Bagaya and Song 2016), life-cycle of green buildings (Qin et al. 2016), and highway construction 

projects (El-Sayegh and Mansour 2015), they are yet to be applied in investigations of work related 

MSD risks. It would be helpful to rank the phases in a sloped kneeling shingle installation process 

based on the MSD risk caused by the awkward postures and repetitive motions. Such a ranking 

could reveal the shingle installation phases which pose the greatest risk of knee MSD, improving 

the focus and development of new intervention methods. 
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4.2. Background 

4.2.1. Prevalence of knee injuries among roofers 

According to the Nonfatal Occupational Injuries and Illness report 2016, 38% of the total 

injuries involving lower extremities were located in the knees (BLS 2019). According to Wang et 

al. (2015), roofers’ MSD rate is 30% higher than the average MSD incident rate reported for the 

entire construction trades. In the state of Washington, the insurance premium composite base rate 

for roofers is the highest ($7.03) among all building construction trades (Washington DOL & I 

2018). It is apparent that there is a pressing need to alleviate the ergonomic injuries and develop 

interventions for reducing knee MSD among construction roofers. 

4.2.2. State of practice in ergonomics to prevent knee MSDs among roofers 

To protect the roofers from knee MSD, some generic solutions suggested in the existing 

literature include the use of powered mechanical caulk and seam welding equipment, and wearing 

knee pads while kneeling and installing new roofs (Spielholz et al. 2006). To reduce the risk of 

resulting MSD among construction workers, safety and health organizations have recommended 

general ergonomic practices and guidelines. For example, a booklet titled Simple Solutions: 

Ergonomics for construction workers published by the National Institute for Occupational Safety 

and Health (NIOSH) suggests using knee supporting devices such as kneeling creeper and knee 

pads that may prevent additional stress on knees in construction work that requires kneeling 

(Albers and Estill 2007). Similar protective devices such as knee pads and power stretchers for 

kneeling are suggested in e-tools promoted by the Occupational Safety and Health Administration 

(OSHA) (OSHA 2019). However, these protective measures are generic and even if they are able 

to prevent knee injuries, they are designed for work on flat surfaces. Guidelines are still lacking 

for tasks performed on slanted rooftops for knee MSD prevention for roofers. 
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4.2.3. State of ergonomics research on MSD among roofers 

Previous ergonomic studies mainly focused on severity, prevalence, and causes of 

ergonomic injuries among roofers. In a survey study, motion/position and overexertion were 

revealed as the two most prevalent sources of nonfatal injuries to roofers (Fredericks et al. 2005). 

A laboratory assessment done by Choi (2008) found that roofers experience greater pain in their 

lower extremities during shingle installation on sloped roof surfaces compared to flat surfaces. 

Roofers’ MSD has been identified as a possible cause of reduced physical functioning and 

disability in workplaces (Welch et al. 2010). In a pilot study conducted by Lee et al. (2017), 

feasibility of wearable sensors such as activity trackers and physiological monitors were assessed 

in facilitating data collection about roofers’ heart rate, energy expenditure, metabolic equivalents, 

and sleep efficiency. Wang et al. (2017) examined the work-related risk factors of roof slope, 

working technique, working pace, and posture to the development of low back disorders among 

roofers and found significant association of these factors to cause low back disorders among 

roofers. A similar study assessed the effects of roof slope and kneeling posture as two potential 

risk factors to knee MSD development in sloped kneeling shingle installation task (Breloff et al. 

2019a). Lower extremity kinematics of roofers at cross-slope roof walking were investigated by 

Breloff et al. (2019b), leading to establishment of their associations to MSD.   

4.3. Problem Statement and Research Objective 

Based on the review, in-depth insights on work-specific risk exposures for roofers’ knees 

during shingle installation are still lacking. As roofers frequently perform shingle installation, the 

required constant awkward and extreme kneeling posture causes bending of their knees, sometimes 

exceeding their normal range of motion for a prolonged time. It has been proven that knee awkward 

rotations and repetitive motions can lead to knee MSD (Hofer et al. 2011). A ranking of the 
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kneeling shingle installation phases based on the MSD risk caused by the knee awkward rotations 

and repetitive motions might suggest the phases that potentially lead to the greatest knee MSD 

risk. These findings could be vital to the development of targeted interventions to prevent the knee 

MSD of roofers. However, such a ranking is still missing. Therefore, the objective of this study is 

to identify a ranking-based ergonomic method for suggesting the potential risky phases in terms 

of awkward knee rotations and repetitive motions during shingle installation operations on slanted 

surfaces. 

4.4. Methodology 

Figure 4.1 provides the schematic overview of the methodology, according to which time-

series knee kinematics data in terms of five knee rotation angles—flexion, abduction, adduction, 

internal and external rotation are used to compute 15 risk indicators for each phase of the shingle 

installation process. Using these risk indicators, the phases are then ranked by all five and 

individual knee rotations, respectively. In ranking phases by all five knee rotations, total 15 risk 

indicators are combined to generate a risk score for each phase, which is considered as the measure 

of the risk to rank the relative risk of the phases based on awkward and extreme knee rotations. In 

ranking phases by individual knee rotation, only 3 risk indicators associated with each individual 

knee rotation (e.g., flexion) are combined to generate a risk score of each phase for risk ranking. 

Based on the resulting rankings, lastly, the relative contribution of each knee rotation to the knee 

MSD risk measurement is analyzed by correlating the rankings generated from each knee rotation 

with the ranking generated from all knee rotations. The following presents the methodology in 

detail. It first defines the shingle installation phases. This is followed by selection of the risk 

indicators. Next, the steps involved in the workflow of this methodology are elaborated.  
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4.4.1. Shingle installation phases definition 

 In a typical shingle installation process, roofers typically place and install shingles by 

nailing with a pneumatic nail-gun. Specifically, roofers start this process by reaching for shingles 

first and then placing them facing forward on the roof surface. Next, they grab the nail gun from 

aside and become ready to start nailing the shingles. After that, they nail the shingles side by side. 

They finish the shingle installation process by replacing the nail gun and returning to their initial 

upright position. As a result, seven phases were defined in this study (Figure 4.2) and the 

kinematics data were subsequently segmented for analysis according to these phase definitions. 

 

Figure 4.1: Methodology overview. 

4.4.2. Risk indicator selection 

During the shingle installation process, the repeated deep kneeling posture encountered by 

the roofers will increase the risk of knee MSD due to the extreme and awkward position of the 

knee joint. Repeated and high contact stress at the knee joint contributes to knee MSD such as 

knee osteoarthritis and damage of articular cartilage of the knee joint (Kajaks and Costigan 

2015). Knee with a deep flexed position (beyond 90°) produces large forces and moments that 

may result in high contact stress in the knee joint surface (Nagura et al. 2002).  A significant 
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increase (by over 80% ) in the knee joint contact stress was observed with an increase in knee 

flexion from 15.5° to 90° (Thambyah et al. 2005). These findings represent a strong association 

between knee rotations and knee joint contact stress which can relate to knee MSD. As the knee 

rotations undergo larger awkward posture during shingle installation and impose the knee joint to 

more awkward positions, thereby increasing knee joint contact force, knee MSD risk is considered 

to increase. Awkward knee posture is considered as a deep flexed position of the knee (>90°) 

accompanied by medial and lateral rotations that cause increased amount of joint contact stress. 

Hence, this study defines risk as an increase in awkward knee rotations that may increase the knee 

joint contact stress. 

 

Figure 4.2: Defined seven phases of a shingle installation trial. 



66 
 

To assess the impact of awkward kneeling postures and repetitive motions at different 

kneeling shingling installation phases, five knee rotations – flexion (about the medio-lateral axis), 

abduction and adduction (about the anterior-posterior axis), internal and external rotation (about 

the longitudinal axis) were measured (Figure 4.3). Deep flexion activities produce large force and 

moment on the knee joint (Nagura et al. 2006). High knee adduction and abduction impose stress 

on the knee joint and increase the risk of developing knee osteoarthritis (Barrios et al. 2010). 

Internal and external rotation of the tibia relative to the femur place additional stress on the knee 

joints ligaments  (Coplan 1989; Hofer et al. 2011). As the shingle installation is a dynamic process, 

three metrics including maximum, cumulative, and average measurements of the above five knee 

rotations were extracted from the time series kinematic data as risk indicators. These metrics have 

been found to have significant associations with the MSD risk to upper and lower limbs (Gyemi 

et al. 2016; Hatfield et al. 2015; McClellan et al. 2009; Zampporri and Aguinaldo 2017). In a 

particular trial, the maximum knee rotation value for a phase refers to the peak knee rotation angle 

within that phase. As the extreme and awkward postures are associated with MSD, it is 

advantageous to evaluate the maximum knee rotation which could relate to the extreme rotation of 

knees due to forceful exertion in the shingle installation operation. Knee MSD risks can increase 

when roofers work in an awkward posture for a long period of time without adequate recovery 

time. The cumulative knee rotation value is the summation of the knee rotation angles across that 

phase. It represents the risk due to maintaining an awkward knee rotation angle over time. The 

average knee rotation value for a phase represents the mean knee rotation within that phase. It 

accounts for the risk due to knee repetitive motions. If the roofers perform the same task which 

involves rotations in their knees repeating every few seconds even under their tolerance limit, it 

can still develop knee MSD. Therefore, these metrics (maximum, cumulative, and average 



67 
 

measurements) of the five knee rotations (flexion, abduction, adduction, internal and external 

rotation) were selected, resulting in a number of 15 risk indicators at each phase.  

 

Figure 4.3: Illustration of five knee rotation angles. 

 
4.4.3. Workflow details 

4.4.3.1. Calculating risk indicators  

The calculation of the risk indicators for each phase follows the below procedures. Since 

the calculation procedure for each knee rotation is the same, the flexion angle calculation is shown 

as an example.   

Let the flexion angle of the certain knee (i.e., left or right) observed for subject 𝑥 at trial 𝑡, phase 

𝑝, and time 𝑖 be represented as 𝐹	\,R,7,5. 

Then, the maximum flexion for subject 𝑥 at trial t, and phase p will be:  

𝐹\,R,7_`\	= max
5
(𝐹	\,R,7,5	) ……………………………………… (4.1) 

The cumulative flexion for subject 𝑥 at trial t, and phase p will be:  

𝐹\,R,7de_= ∑ 𝐹	\,R,7,5	5 …………………………………………… (4.2) 

The average flexion for subject 𝑥 at trial t, and phase p will be: 

𝐹\,R,7
`fg= avg

5
(𝐹	\,R,7,5	)  ……………………………………… (4.3)           
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These values are then averaged over all the subjects and the trials to compute the risk indicators. 

So, using equations (4.1), (4.2), and (4.3), three risk indicators associated with the flexion at phase 

p will be derived as: 

j𝐹7_`\	, 𝐹7de_, 𝐹7
`fgk = lavg

\
[avg

R
n𝐹\,R,7_`\o] , avg

\
[avg

R
n𝐹\,R,7de_o] , avg

\
[avg

R
n𝐹\,R,7

`fgo]q …………. (4.4) 

Similarly, the above equations were used to compute the risk indictors at phase p for the abduction, 

adduction, internal and external knee rotations. Given 𝑝 ∈ [1, 7], a total number of 105 risk 

indictors were obtained for all seven phases. Both the left and right knees’ risk indictors were 

computed. 

4.4.3.2. Ranking phases by all knee rotations 

The seven shingle installation phases were first ranked considering the set of all knee 

rotations. To this end, the 15 risk indicators – maximum, cumulative, and average angles of all 

five knee rotations are combined by applying a scoring model to generate a risk score for each 

phase. The resulting risk scores were then compared for ranking the phases. The phase that has the 

highest score is considered potentially riskiest for the knee MSD. The resulting ranking is referred 

to as multi-angle based ranking in this study as it accounts for the contributions of all five knee 

rotations to the measurement of the risk scores, and the ranking represents the knee MSD risk 

associated with multiple awkward knee rotations. Due to the dynamic nature of the shingling 

process—the multi-angle based rankings are computed for the left and right knees separately.  

4.4.3.3. Ranking phases by individual knee rotation 

 The seven phases were then ranked based on each individual knee rotations to help 

understand the impact of each individual knee rotation on the imposed risks. For this, instead of 

using the 15 risk indicators, only the 3 risk indicators (i.e., maximum, cumulative and average 

angles) of certain knee rotations are considered. For example, to assess the risk due to flexion, only 
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the 3 risk indicators of the flexion rotation were used to generate the flexion-based phase ranks by 

applying the scoring model. These rankings computed based on individual knee rotations are 

referred to as single-angle based rankings as they account for the contribution of individual knee 

rotations to the measurement of the risk scores and represent the knee MSD risk associated with 

that individual knee rotation of interest. A total of five single-angle based rankings were generated 

for the seven phases. Similar to the multi-angle based ranking, the single-angle based rankings 

are analyzed for each knee separately. 

4.4.3.4. Assessing the relative contribution of each knee rotation to potential knee MSD risk 

measurement 

To analyze which angle significantly contributed to the knee MSD risk measurement, 

associations between the multi-angle based ranking and the five single-angle based rankings of the 

phases were further analyzed by computing Spearman’s rank correlation coefficient using the 

equation: 1–r∑s
V

XWtX
, where d is the difference in rankings and N is the number of variables (phases 

= 7) (Rosso 1997). The Spearman’s rank correlation coefficient indicates the strength of 

association between two rankings. The higher the value (approaching to 1), the stronger the 

association between the rankings. The rotation angle with the highest coefficient value is deemed 

to have the strongest influence on the multi-angle based ranking that relates to the potential knee 

MSD risk measurement associated with the multiple knee rotations.  

4.5. Implementation and Results 

4.5.1. Participants 

 This study included the same nine participants as detailed in Chapter 2. The research 

protocol was approved by both the Institutional Review Boards (IRB) of the National Institute for 

Occupational Safety and Health and West Virginia University.  
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4.5.2. Instruments 

A VICON optical motion capture system equipped with 14 MX Vicon cameras (Oxford, 

UK) was used to collect the segment endpoint data of the participants. Forty-two (42) 

retroreflective markers for motion capture were placed bilaterally on the lower extremities of the 

participants including feet, heels, toes, ankles, shanks, knee joints, thighs, and hip joints, as 

illustrated in Figure 4.4. The collected three-dimensional (3D) coordinates of these markers by 

VICON were used to calculate the knee angles. The kinematic data were recorded at 100 Hz.  

 

Figure 4.4: Marker positions. 

To mimic the roof surface for shingle installation, the same wooden platform displayed in 

Figure 2.2 in Chapter 2 were used.  

4.5.3. Procedure 

The experiment was conducted in the biomechanics laboratory at NIOSH. Upon arrival to 

the lab, the participants were placed with motion markers for kinematic calibration and data 

collection. They were in a deep kneeling posture on the roof simulator prior to the start of data 

collection. When instructed to begin, the participants first reached for and placed two shingles in 

front of them. Then they picked up the nail gun from their right side and mimicked affixing six 

nails (three in each) into the two shingles side by side on the roof simulator, starting on the left 
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and moving to the right of the shingle. Once finishing, the participants replaced the nail gun and 

returned to their resting/starting position. To sum, the participants performed the seven phases of 

the shingle installation task as one continuous activity. Each participant performed the simulated 

shingle installation task on the roof simulator at three slopes — 0°, 15°, and 30°. At each slope, 

the task was performed five times by each one of the participants. This resulted in a total of 45 

trials data (5 trials × 9 participants) at each of the slope angles.  

4.5.4. Data processing 

 Using the coordinates of the markers captured by VICON, the five knee rotations were 

computed in Visual 3D (C-Motion, Inc., Germantown, MD) using the method provided by 

Robertson et al. (2013). These knee rotations data were collected at a rate of 100 data points per 

second during each trial resulting in a huge set of data points. From these data points, the 

maximum, cumulative and average of the five knee rotations for each phase were computed for a 

certain knee (left/right) on each slope. This way, for a certain knee at each slope, 315 (9 participants 

× 5 trials × 7 phases) data points of maximum, cumulative, and average of the five knee rotations 

were obtained, respectively. These knee rotations were then used to formulate the risk indicators 

necessary for the subsequent analysis.  

4.5.5. Risk indicators  

Tables 4.1 and 4.2 present the 15 risk indicators— the maximum (Max), cumulative 

(Cum.), and average (Avg.) of the five rotations averaged over all subjects and trials, across seven 

phases on three slopes for the left and right knees, respectively. 
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4.5.6. Multi-angle based ranking  

 This study implemented two types of scoring models – an aggregation-based scoring 

model and a multiplication scoring model for the multi-angle based ranking, both of which have 

been proven to be useful in ranking tasks with multiple criteria (El-Sayegh and Mansour 2015; 

Tofallis 2012; Tofallis 2014).  

Typically, the aggregation-based scoring model includes three steps: 1) data 

normalization, 2) indicator weighing, and 3) weighted indictor aggregation to generate an overall 

risk score for ranking. For the data normalization, the following methods were tested for each risk 

indicator in this study:  

 1) Dividing by maximum: It converted the value of a risk indicator (e.g., Max Flex.) for a 

certain phase as proportion of the maximum (e.g., maximum of Max Flex.) among the seven phases 

as: 

 𝑌 = v
vwxy

  ………………….…………………………….(4.5) 

 2) Dividing by sum: It converted the value of a risk indictor (e.g., Max Flex.) for a certain 

phase as proportion of the sum (e.g., sum of Max Flex.) across the seven phases as: 

 𝑌 = v
∑v

   ………………………………………………… (4.6)  

 3) Range normalization: It scaled the value of a risk indicator for a certain phase to [0, 1] 

in regard to the maximum and minimum values of the risk indicator among the seven phases as: 

 𝑌 = vt	vwNz
vwxyt	vwNz

 ………….…………..…….………………. (4.7) 

In the above equations, X represents the value of a risk indicator for a certain phase; ∑𝑋 is 

the sum of the values of that risk indictor across all the seven phases; 𝑋_`\ and  𝑋_5| are the 
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highest and lowest values of that risk indicator among the seven phases, respectively; and Y is the 

normalized value of X.  

After normalization, weights were assigned to each risk indicator. As no literature that 

exists reveals the relative contribution of each knee rotation to the knee MSD risk measurement 

and all the five knee rotations observed in this study are biomechanically responsible to cause knee 

MSD, this study assumed that all risk indicators have equal contribution to the knee MSD risk and 

hence have been assigned equal weights. Finally, all the weighted indicators were summed to yield 

an overall risk score for each phase by:  

Risk Score (Aggregation-based) = 𝑤.𝑌.+ 𝑤,𝑌,+ 𝑤-𝑌-+…+𝑤|𝑌|   …………..(4.8) 

where 𝑌5		(𝑖 = 1, 2, …𝑛)	is the normalized value of a risk indicator for a phase and 

𝑤5	(𝑖 = 1, 2, …𝑛) is the weight assigned to each indicator. 

Alternatively, the multiplication scoring model does not require normalization. The risk score of a 

phase for a set of risk indicators was calculated by: 

Risk Score (Multiplication) =  𝑋.�U 𝑋,�V 𝑋-�W…𝑋|�z   ………………. (4.9) 

where 𝑋5		(𝑖 = 1, 2, . . 𝑛)	is the value of a risk indicator for a phase and 𝑤5	(𝑖 = 1, 2, …𝑛) is the 

weight assigned to each indicator. In this study, 𝑤5	(𝑖 = 1, 2, …𝑛)	was set to 1 for both of the 

scoring models and 𝑛 = 15, the total number of the risk indicators. 

In both aggregation-based and multiplication scoring models, the phase with the highest score was 

ranked first (1). Applying these scoring models, this study generated the risk scores for multi-angle 

based ranking at different roof slopes, which was provided in Table 4.3.  

Based on Table 4.3, the multi-angle based ranking of the phases were computed at each slope as 

shown in Figure 4.5.  
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Figure 4.5: Multi-angle based ranks of the seven phases (a) 0° slope (left knee); (b) 0° slope 

(right knee); (c) 15° slope (left knee); (d) 15° slope (right knee); (e) 30° slope (left knee); (f) 30° 

slope (right knee). 
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4.5.6.1. Consistency analysis for scoring model selection 

As this study was to identify the riskier phases that might involve comparatively higher 

awkward rotations of knees and repetitions in any roof setting and therefore could potentially 

contribute to the knee MSD, it was important to select the scoring model that would provide the 

most consistent rankings across the three roof slopes. For that reason, the scoring model to be used 

in the subsequent risk assessment was selected based on the consistency of the multi-angle based 

rankings across different roof slopes. Spearman’s rank correlation test was used to analyze the 

association of the multi-angle based rankings between every two slopes. This approach was used 

to identify which scoring model provides the maximum number of strongest associations and 

hence consistency of rankings across different roof slopes. A coefficient close to one (1) suggests 

a strong association. 

Table 4.4: Spearman’s correlation coefficients between 2 slopes by different ranking models 

Slope 
Multiplication Divide by max Range 

normalization 
Divide by sum 

Left Right Left Right Left Right Left Right 
0°-15° 0.929 0.857 0.857 0.929 0.286 0.786 0.893 0.929 
0°-30° 0.929 0.964 0.679 0.929 0.571 0.714 0.821 0.929 
15°-30° 0.893 0.893 0.893 0.893 0.536 0.857 0.857 0.893 

The results of Spearman’s correlation for testing the rank association between slopes are 

provided in Table 4.4. For the left knee, the strongest association of ranks between 0° and 15° and 

between 0° and 30° slopes were obtained by the multiplication scoring model (0.929). Between 

15° and 30° slopes, the strongest association was obtained by both the multiplication and 

aggregation-based scoring models when normalization was done via dividing by max (0.893). For 

the right knee, the strongest rank association between 0° and 15° slopes was obtained by the 

aggregation-based model when normalization was done via dividing by max and dividing by sum 

(0.929). Between 15° and 30° slopes, the strongest associations were observed for both the 
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multiplication and aggregation-based scoring models while normalizing by dividing by maximum 

and dividing by sum (0.893). Finally, between 0° and 30° slopes, only the multiplication scoring 

model provided the strongest rank association (0.964). Based on these results it is noticeable that 

the multiplication scoring model could compute the most consistent ranks among different roof 

slopes and hence was used for the subsequent risk analysis. For both knees, the achieved powers 

of the consistency analysis between different slopes ranged from 72% to 99%, which was 

acceptable to demonstrate an association or causal relationship between two variables (Cohen 

2013). 

4.5.6.2. Multi-angle based risks 

According to Table 4.3 and Figure 4.5, for the left knee, at all three slopes, Phase 2 scored 

the highest, Phase 5 scored the second highest, and thus were ranked first and second respectively. 

The next riskiest phases were Phase 7 (ranked fourth at 0°, third at 15° and 30° slopes) and Phase 

1 (ranked third at 0°, fourth at 15° and 30° slopes).  

 For the right knee, Phase 2 scored the highest and was ranked first at all three slopes. The 

next riskiest phases were Phase 5 (ranked second at 0° and 30°, fourth at 15° slopes) and Phase 1 

(ranked second at 15°, third at 0° and 30° slopes). The least risky phases for both knees were 

Phases 4, 6, and 3.  

4.5.7. Single-angle based rankings by the multiplication scoring model 

Table 4.5 shows the phase rankings for each individual knee angle. The resulting single-

angle based rankings demonstrated a certain pattern of risk at the seven phases across three slopes, 

but not quite consistent. Therefore, averaging the ranks across three slopes were performed, and 

the results are presented in Table 4.6. From Table 4.6, it is evident that Phase 2 involved the highest 
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flexion, abduction, adduction, internal, and external rotations for the left knee at all three roof 

slopes and hence, could be deemed as the riskiest phase in terms of awkward knee rotations during 

slope shingle installation. As to flexion, abduction and external rotation, the next riskiest phase 

was Phase 5, when the participants faced extreme adduction as well. According to the ranking 

results, the next riskiest phases were Phases 1 and 7 because Phase 1 was ranked third in terms of 

flexion, abduction and adduction; and Phase 7 was ranked fourth in terms of flexion, internal and 

external rotation, second in terms of adduction and third in terms of abduction. Similarly, for the 

right knee, at Phase 2, the participants experienced the highest amount of flexion, adduction and 

internal rotation which was turned out to be riskiest. The next riskiest phases were Phases 1 and 5. 

Phase 1 generated the highest amount of abduction and external rotation and Phase 5 was ranked 

second in terms of flexion, adduction, internal and external rotations. After Phases 2, 5 and 1, the 

next riskiest phase for the right knee was Phase 7 that was ranked second in terms of abduction 

and third in terms of external rotation. The ranking results revealed that, in terms of awkward knee 

rotations, Phases 4, 6, and 3 were the least risky phases for both knees. 

4.5.8.  Spearman’s correlation test result to assess relative contributions of each angle  

Table 4.7 presents the level of association between the multi-angle and single-angle based 

rankings at each slope. For the left knee, the flexion based ranking was most significantly 

associated with the multi-angle based rankings at 0° and 30°slopes (r = 0.964, p value= 0.003), 

whereas the abduction based ranking was most significantly associated at 15° slope (r = 0.964, p 

value= 0.003). For the right knee, the flexion based ranking was most significantly associated with 

the multi-angle based ranking at 0° slope (r = 1, p value= 0.000). At 15° slope, the abduction based 

ranking (r = 0.929, p value= 0.007) and at 30° slope, both the flexion and adduction based rankings 

were most significantly associated with the multi-angle based ranking (r = 0.964, p value= 0.003). 
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These results implied that, flexion, abduction and adduction most significantly contributed to the 

MSD risk measurement. 

Table 4.5: Ranks of the 7 phases for each knee angle 

Angle Phases 
Ranks 

Slopes (Left knee) Slopes (Right knee) 
0° 15° 30° 0° 15° 30° 

Flex. 

1 3 4 3 3 4 3 
2 1 1 1 1 1 1 
3 7 7 7 7 7 7 
4 5 5 5 5 5 5 
5 2 2 2 2 2 2 
6 6 6 6 6 6 6 
7 4 3 4 4 3 4 

Abd. 

1 3 3 4 1 1 2 
2 2 1 2 2 2 3 
3 7 6 7 7 6 7 
4 6 7 3 5 7 6 
5 4 2 1 4 4 4 
6 5 5 6 6 5 5 
7 1 4 5 3 3 1 

Add. 

1 4 5 3 5 4 3 
2 2 3 1 1 1 1 
3 6 6 7 4 7 7 
4 7 7 5 3 5 5 
5 1 1 4 2 2 2 
6 3 2 6 6 6 6 
7 5 4 2 7 3 4 

Int. Rot. 

1 4 2 2 3 3 3 
2 2 1 1 1 1 1 
3 6 6 6 7 6 6 
4 7 4 5 4 5 5 
5 1 5 4 2 4 2 
6 3 7 7 6 7 7 
7 5 3 3 5 2 4 

Ext. Rot. 

1 3 5 7 1 1 3 
2 2 1 1 4 3 4 
3 7 3 6 7 7 7 
4 5 4 3 6 6 6 
5 1 2 2 3 4 1 
6 6 7 4 5 5 2 
7 4 6 5 2 2 5 
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Table 4.6: Averaged single-angle based phase ranks over three slopes 

4.6. Discussion 

The goal of this study was to apply ranking methods to a shingle installing process to 

determine if the methods could provide useful risk rankings for potential knee MSD. Fifteen (15) 

risk indicators of knee MSD associated with awkward knee rotational angles were combined using 

a scoring model to generate risk scores of the phases that led to a ranking of the phases.  

Among the two scoring models explored in this study for ranking, the aggregation-based 

scoring model showed some inconsistencies in the ranking depending upon the selection of the 

normalization process. The multiplication scoring model generally overcomes this kind of 

inconsistency as this model does not need any normalization. For datasets where indicators have 

different numerical scales, the multiplication scoring model presents better performance, grounded 

that rescaling of any particular indicator generates no impacts on the ranking outcome in this model 

(Tofallis 2012). Among the three metrics considered in this study, the cumulative angle values 

were much greater than the maximum and average angle values. The multiplication scoring model 

thus minimized the chances of the cumulative angles, even without any normalization, influencing 

the ranks. To assure the consistencies of the ranks across different roof slopes, Spearman’s rank 

correlation test was used. The result showed that the multiplication scoring model was more 

Rank  

Phases 
Left Right 

Flex. Abd. Add. Int. Rot Ext. Rot Flex. Abd. Add. 
Int. 
Rot Ext. Rot 

1 2 2 2, 5 2 2 2 1 2 2 1 
2 5 5 6, 7 1 5 5 2, 7 5 5 5 
3 1 1, 7 1 5 4 1 5 1 1 7 
4 7 4, 6 3, 4 7 1, 7 7 6 4 7 2 
5 4 3  4 3 4 4 7 4 6 
6 6   6 6 6 3 6, 3 3 4 
7 3   3  3   6 3 
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consistent in generating ranks across different roof slopes and hence was found more suitable for 

this study. At all three roof slopes, though the measured individual knee rotation angles varied, the 

ranking results presented similar risk patterns. The variation in the individual knee rotations due 

to slope change could slightly change the resulting risk scores of the phases, but it did not influence 

their overall risk pattern across different slopes. In other words, the comparative risks among the 

phases were not substantially affected across different slopes. Nevertheless, such observation 

should be further confirmed. 

Table 4.7: Level of association between the multi-angle and single-angle based phase ranks 

Angle  Spearman correlation 
(r) p value Slope 

(°) Knee 

Flex. 0.964 0.003 

0° 

Left 

Abd. 0.75 0.750 
Add. 0.821 0.034 

Int. Rot. 0.821 0.034 
Ext. Rot. 0.929 0.007 

Flex. 0.893 0.012 

15° 
Abd. 0.964 0.003 
Add. 0.714 0.088 

Int. Rot. 0.536 0.236 
Ext. Rot. 0.429 0.354 

Flex. 0.964 0.003 

30° 
Abd. 0.821 0.034 
Add. 0.893 0.012 

Int. Rot. 0.821 0.034 
Ext. Rot. 0.607 0.167 

Flex. 1.00 0.000 

0° 

Right 

Abd. 0.821 0.034 
Add. 0.536 0.234 

Int. Rot. 0.964 0.003 
Ext. Rot. 0.643 0.139 

Flex. 0.821 0.034 

15° 
Abd. 0.929 0.007 
Add. 0.821 0.034 

Int. Rot. 0.857 0.023 
Ext. Rot. 0.893 0.012 

Flex. 0.964 0.003 

30° 
Abd. 0.679 0.109 
Add. 0.964 0.003 

Int. Rot. 0.893 0.012 
Ext. Rot. 0.643 0.138 

Note: Bold numbers indicate the most significant r and p values 
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Based on awkward knee rotations, the multi-angle based ranking suggested both knees 

were exposed to the greatest potential knee MSD risk while placing shingles (Phase 2). The next 

suggested riskiest phase was nailing shingles (Phase 5). One possible reason for this result might 

be that these two phases of the shingle installation operation required more repetition of extreme 

and awkward movement of the knees for placing and installing shingles compared to the other 

phases. In these phases, the participants encountered larger awkward knee rotations multiple times 

while leaning forward to grasp the shingles and moving backward for placing and nailing them. 

These repetitive motions along with awkward rotations might lead to extra stress and force 

sustained by the knee joint ligaments; these operations turned out to be potentially risky phases for 

knee MSD. Another reason could be that the duration of these two phases were also relatively 

longer which contributed to the higher cumulative awkward knee rotations for extended periods 

of time. In this study, the risk scores computed using the scoring model took into account the 

maximum, cumulative and average of the knee rotation angles (risk indicators in this study) which 

represented the risk of extreme knee rotation due to forceful exertion, prolonged and repeated 

awkward kneeling respectively — the knee MSD risk factors. As these two phases involved more 

repetition of extreme and awkward knee rotations for a longer duration compared to the other 

phases, the risk scores were also probably higher in these two phases.  

On average, the single-angle based rankings demonstrated a risk pattern similar to the 

multi-angle based ranking. Among all the 7 phases, the placing shingle (Phase 2) and nailing 

shingle (Phase 5) phases were found to be potentially the riskiest phases with extreme awkward 

knee rotations. The ranking results demonstrated that these two phases were ranked either first or 

second for a majority of the individual knee rotation angles. For example, for the left knee all five 

knee rotations and for the right knee, flexion, adduction and internal rotation were extreme in 
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Phase 2. Although during reaching for shingles (Phase 1) the subjects seemed to experience 

extreme abduction and external rotation in the right knee (ranked first for abduction and external 

rotation in right knee), overall, the awkward knee rotations imposed by all other lower ranked 

phases were less extreme than that imposed by placing and nailing shingles phases. One possible 

reason could be the higher postural sway, required during placing and nailing shingles on sloped 

rooftops. The subjects needed to maintain the balance on the inclined roof surface by raising the 

body’s center of mass which might force the knees to rotate more awkwardly and repeatedly, 

sometimes more than the normal tolerance limit. In all other phases, the participants either leaned 

forward to reach for shingles and moved backward to return to the resting position or used their 

nailing hand to grab and replace the nail gun. These phases required very few rotation movements 

in the knees and hence imposed less postural awkwardness. 

 Spearman’s correlation test result to assess the relative contributions of each knee angle 

demonstrated that, for the left knee, flexion and abduction, and for the right knee, flexion, 

abduction and adduction significantly contributed to the potential knee MSD risk measurement. 

However, further biomechanical studies are needed to investigate the impacts of these knee 

rotations on knee MSD. To the best of the authors’ knowledge, so far, no publications available 

have measured the knee MSD risk by exploiting the relative contribution of the knee rotation 

angles. This finding can be used as a guide in identifying which knee rotations might be prioritized 

for developing knee MSD risk assessment tools and effective interventions to prevent knee injuries 

among roofers.  

Based on the above discussion, it is evident that special considerations such as knee 

interventions and protective measures are essential so that knee flexion, abduction and adduction 

can be minimized during awkward kneeling while placing and nailing shingles at slanted roof 
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surfaces. Possible interventions include wearing knee protecting devices such as knee pads or knee 

savers while kneeling which can minimize the impact on knees. However, these interventions were 

not tested in this study. As the goal was to suggest the risky phases in terms of awkward knee 

rotation, this study did not use any interventions (wearable or external) as that could have altered 

the knee rotations.  Also, the participants were not professional roofers and there might be some 

postural variations between professional and non-professional roofers based on their working 

techniques, which might impact the knee rotations. Hence, further biomechanical assessment is 

needed to understand those variations in the knee kinematics between professional and non-

professional roofers, and the impact of knee protecting devices are needed to be examined.  

 This study used nine participants’ knee kinematics data to compute the risk indicators. 

Typically, the relationship between kinematics (i.e., knee rotational angles) and musculoskeletal 

loadings, which is associated to MSD, is influenced by biomechanics, not random. This 

relationship warrants the sample size of nine subjects appropriate for this study and a large sample 

size is not necessary. In the research community, it is well accepted to use less than ten subjects 

for risk analysis with biomechanical models. 

4.7. Study Limitations 

First, the experiment was completed in a controlled laboratory setting rather than a 

construction site to minimize the possible risk. Although the experiment was designed based on 

the common site practices and the participants simulated the shingle installation task to capture the 

real scenario of the construction site, further assessment in a real work setting is still needed to 

justify the findings. Second, none of the study participants were experienced roofers. But they 

were physically active and had working experience with home remodeling projects. From the 

biomechanical perspective, there should be some difference between novice and experienced 
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roofers, but in this study novice roofers were chosen to identify the risk that an individual without 

any prior roofing experience may face when they first get exposed to slanted roof top during 

shingle installation. This study presumed considerably similar biomechanical reactions of the 

participants and professional roofers. However, if professional roofers were used, it could have 

altered the individual knee rotations to some extent. Therefore, further assessment is necessary to 

justify such premise. The goal of this study was to identify an ergonomic method for suggesting 

the risky phases in the shingle installation process, and the subject tests only served to demonstrate 

the procedure and the framework. Third, this study only focused on risks to knee MSD, excluding 

associated risks to other lower extremities such as ankles that may undergo excessive pressure 

during shingle installation. Finally, this study identified risky phases only based on knee rotations. 

Other indicators (e.g., muscle activations and joint loadings) for knee MSD risks would be 

complementary but were not assessed in this study.  

4.8. Conclusion and Future Extension 

This study identified an ergonomic method for ranking the relative risks of the shingle 

installation phases to knee MSD development. The results suggested that the phases including 

placing and nailing shingles are the riskiest phases in terms of awkward rotation and repetition; 

and the awkward flexion, abduction and adduction can potentially contribute the most to the knee 

MSD risk measurement.   

All of the findings have been drawn based on the experimental study done with non-

professional roofers in this study and hence might not be generalizable. Future work will include 

professional roofers to study knee MSD risk in shingle installation including starter and ridge cap 

shingles. Moreover, effective knee interventions (wearable and external) will be tested and 

developed with their participation in real work settings. EMG signals of thigh muscles and knee 
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joint loadings will be observed and analyzed to assist such process. This study provided a method 

that may generate useful information on the unsafe condition of shingle installation operations to 

facilitate effective intervention strategies (education, training, and tools) for reducing knee 

exposure and hence minimizing knee injuries and disorders among construction roofers. 
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CHAPTER 5: FUSING IMPERFECT EXPERIMENTAL DATA 
FOR RISK ASSESSMENT OF MUSCULOSKELETAL 

DISORDERS IN CONSTRUCTION USING CANONICAL 
POLYADIC DECOMPOSITION 

 
Abstract 

 Field or laboratory data collected for work-related musculoskeletal disorders (MSDs) risk 

assessment in construction often becomes unreliable as a large amount of data go missing due to 

technology-induced errors, instrument failures or sometimes at random. Missing data can 

adversely affect the assessment conclusions. This study proposes a method that applies Canonical 

Polyadic Decomposition (CPD) tensor decomposition to fuse multiple sparse risk-related datasets 

and fill in missing data by leveraging the correlation among multiple risk indicators within those 

datasets. Two knee work-related MSD risk-related datasets—3D knee rotation (kinematics) and 

electromyography (EMG) of five knee postural muscles—collected from previous studies were 

used for the validation and demonstration of the proposed method. The analysis results revealed 

that for a large portion of missing values (40%), the proposed method can generate a fused dataset 

that provides reliable risk assessment results highly consistent (70%-87%) with those obtained 

from the original experimental datasets. This signified the usefulness of the proposed method for 

use in work-related MSD risk assessment studies when data collection is affected by a significant 

amount of missing data, which will facilitate reliable assessment of work-related MSD risks among 

construction workers. In the future, findings of this study will be implemented to explore whether, 

and to what extent, the fused dataset outperforms the datasets with missing values by comparing 

consistencies of the risk assessment results obtained from these datasets for further investigation 

of the fusion performance. 
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5.1.Introduction 

 Work-related musculoskeletal disorders (MSDs) are one of the most common causes of 

days away from work and physical disabilities in the construction industry (BLS 2019). An 

increased exposure to risk factors in the workplace can enhance the likelihood of work-related 

MSDs; hence, proper identification of possible risk exposures and developing MSD prevention 

strategies are essential to alleviate work-related MSDs.  

Collecting risk exposure data with human subject involvement is most often accepted as 

the gold standard for understanding risky behaviors and conditions that may expose workers to 

MSD risks on construction sites (David 2005). Generally, these data are collected in laboratory 

settings or real construction sites by technologies such as optical motion capture systems or surface 

electromyography sensors. However, data collected from these technologies often suffer from 

‘drop out’, a phenomenon in which data is missing due to technology-induced errors (e.g., 

disconnection of sensors, errors in communicating with the database server, instrument failures), 

human-induced errors (e.g., accidental human omission) or other unknown reasons (Data 2016). 

The result is incompleteness of the collected risk exposure data that may lead to invalid 

conclusions on the effects of the potential work-related MSD risk factors. Missing data is a 

common problem associated with data collection in ergonomic risk assessment using technologies, 

regardless of the quality of the research design (Young et al. 2011). Therefore, it should be 

carefully handled. In doing so, reserving the interrelation among the potential risk factors and the 

risk indicators across multiple datasets is necessary. Among several benefits of data fusion, one is 

revealing the latent pattern of the data and leveraging collaborative relationships among various 

factors within multiple datasets based on that pattern. This benefit can be utilized to reserve the 

interrelation among different factors and the risk indicators across the datasets to fill in the missing 
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data. This study proposes a method for dealing with multiple imperfect and incomplete datasets 

by applying a Canonical Polyadic Decomposition (CPD) technique to treat the imperfect data for 

work-related MSD risk assessment. CPD decomposes the incomplete datasets based on the latent 

relationship among different risk factors and the risk indicators, then reconstructs a new dataset 

through fusion as a high-order tensor (Rabanser et al. 2017). This newly reconstructed dataset is 

referred to as fused dataset, which can then be used for assessing the risk of work-related MSDs. 

To validate the effectiveness of the CPD-based method in assessing work-related MSDs, two 

work-related MSD risk-related datasets collected from prior experimental studies (original 

datasets) were intentionally modified to represent incomplete datasets. Then CPD was applied for 

fusion and to reconstruct the fused datasets. The risk assessment results obtained using the fused 

datasets were further compared to those obtained by using the original datasets to evaluate the 

performance of the fusion treatment.  

5.2.Background 

5.2.1. Importance of research 

Missing data is a common problem in research studies that involve human subjects and 

technologies for data collection.  They can reduce statistical power of a study and lead to erroneous 

conclusions (Lin et al. 2012). To potentially mitigate this issue, the sample size for data collection 

is typically increased. However, this is not always possible due to research design, limitations in 

budget and human resources. It is not always feasible to regenerate the data by repeating the 

experiment, as it can be costly and time-consuming. There are existing methods of handling 

missing data in literature such as simply omitting observations with the missing data (Kang 2013), 

regression imputation (Button et al. 2013), mean substitution (Malhotra 1987), replacing the 

missing data with the last observed values (Hamer and Simpson 2009), and estimating the missing 
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data using conditional distribution of the other variables (Gelman and Raghunathan 2001). While 

useful, these methods may not be optimal for tackling data missing in work-related MSD risk 

assessment. Simply omitting observations with missing data typically decreases the sample size 

and may adversely affect the statistical power (Kang 2013). Regression imputation predicts a 

missing value from other variables, but it barely adds any new information except increasing the 

sample size and compromising the standard error (Button et al. 2013). If there is a great inequality 

in the proportion of missing values of different variables, mean substitution may lead to 

inconsistent biases and underestimation of errors (Malhotra 1987). Replacing missing data with 

the last observed values assumes that there will be no changes in the outcome (Hamer and Simpson 

2009). Using conditional distribution of the other variables becomes inappropriate when a large 

amount of data is missing, as in this situation, the relationship among the variables needs to be 

properly computed (Gelman and Raghunathan 2001; Kang 2013).  

Moreover, in real life scenarios, a phenomenon can be described and characterized with a 

set of factors. Each of these factors is referred to as the ‘dimension’ of that phenomenon (Lahat et 

al. 2015). When a research problem includes multiple dimensions, it is considered 

‘multidimensional’. This is often the case in work-related MSD risk studies, in which risk exposure 

data can be collected in terms of different measurements, often referred to as risk indicators, and 

working conditions for the purpose of in-depth understanding of risks. The working conditions 

may include various work settings and postures, and the risk indicator measurements may include 

kinematics, kinetics and electromyography (EMG) measurements. Quite often, multiple risk 

indicators can provide a more detailed insight into the worker’s risk-inducing behavior, compared 

to what a single risk indicator can provide as these multiple risk indicators may be correlated. In 

work-related MSD risk studies that involves analyzing the effects of working conditions on risk 
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indicators, the working conditions and the risk indicators can be termed as a ‘dimension’ of the 

risk phenomenon. This type of data can be considered as high-dimensional data. When data is 

missing in multiple high-dimensional risk-related datasets, the existing methods will not be 

suitable as the interrelation among different risk indicators and potential risk factors across 

multiple datasets may not be well captured. Fuzzy modeling has been used in multidimensional 

missing data imputation (Amiri and Jensen 2016). However, for high-dimensional datasets where 

capturing the latent relationship among various dimensions is essential during imputation, the 

performance of Fuzzy algorithms degrades (Luengo et al. 2012; Winkler et al. 2011). Besides, the 

performance of Fuzzy models in dealing with multiple datasets is yet to be tested. In contrast, data 

fusion can be an efficient method in this regard that integrates information based on the 

interrelation among the factors and risk indicators in such a way that it can produce a more 

complete representation of the measurements of the risk indicators, compared to that of an 

incomplete dataset (Castanedo 2013).  

5.2.2. State of research on data fusion in construction 

 In the construction industry, data fusion methods have been used for automated 

identification, location estimation, dislocation detection of construction materials in jobsites 

(Razavi and Haas 2010; Razavi and Haas 2011), automated progress tracking of construction 

projects (Shahi et al. 2012), structural health monitoring (Soman et al. 2018), and damage 

identification of civil structures (Anaissi et al. 2018). In construction ergonomics, a 

computationally efficient approach using data fusion was developed to recognize construction 

workers’ awkward postures (Chen et al. 2017). Fusion of data from continuous remote monitoring 

of construction workers' location and physiological status was used to identify safe and unsafe 

behaviors of construction workers (Cheng et al. 2012) . Fusion of spatiotemporal and workers' 
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thoracic posture data has been done for understanding the worker's activity type for productivity 

assessment (Cheng et al. 2013). A position and posture data fusion method was proposed for 

evaluation of construction workers' behavioral risks (Chen et al. 2019) . However, no study has 

been done that uses data fusion of incomplete risk-related datasets for assessing work-related MSD 

risks.  

5.2.3. State of research on tensor decomposition for data fusion 

To integrate multidimensional data, it is essential to learn the relationships between those 

dimensions to understand the multidimensional nature of a phenomenon (Lahat et al. 2015). There 

are currently several existing approaches for analyzing multiple datasets. Zheng et al. (Zheng 

2015) summarized the methods of fusing multiple datasets into three categories. The first category 

is stage-based fusion methods, where different datasets are used at different stages of data mining 

tasks (Zheng et al. 2011 ). The second category is deep learning-based fusion methods that use a 

neural network to extract original features from multiple datasets and learn a new representation 

of those features for classification and prediction purposes (Wen et al. 2016). The third category 

is semantic meaning-based fusion methods that identify the association between different features 

across multiple datasets and carry the semantic meaning, i.e., the latent relationship between the 

features during fusion (Zheng 2015). Similarity-based data fusion is one type of the semantic 

meaning-based fusion methods, in which similarity between the features are measured from 

multiple datasets. These similarities can leverage the correlation among the features collectively 

and help obtain any missing information of a feature based on the information available for another 

feature. Based on the similarities, different datasets can be fused (Zheng 2015). This study is 

interested in fusion of risk-related datasets containing different features that represent work-related 

MSD risk factors in construction and are inherently related to each other. Understanding the latent 
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relationship between different features across multiple datasets plays a vital role in proper fusion. 

Also, learning the similarities between those features is useful to impute the missing values. As a 

result, the similarity-based data fusion methods lend themselves well to tackling the fusion 

problem in this study.  

 Tensor decomposition is one type of similarity-based data fusion methods (Sorber et al. 

2015). Tensors are generalizations of matrices to higher dimensions, and are powerful to model 

multidimensional data (Papalexakis et al. 2017). Tensors are multidimensional arrays of numerical 

values that are widely used in different applications in data analysis and machine learning, 

including filling in missing values (Dauwels et al. 2012), anomaly detection (Xie et al. 2017), 

object profiling (Charlier et al. 2018), discovering patterns (Xiong et al. 2010), and predicting 

evolution (Dunlavy et al. 2011). Matrix factorization was previously used in filling out missing 

data (Žitnik and Zupan 2014); however, it only works with two-dimensional data and may not be 

applicable to high-dimensional data like those used in work-related MSD risk studies. Tensor 

decomposition is a useful tool to deal with high-dimensional datasets. It accurately extracts the 

correlations among various dimensions from different datasets and learns the latent structures and 

collaborative relationships among the dimensions to approximate the pattern of the data (Kolda 

and Bader 2009).  

 With increases in dimensions of the datasets, the number of the elements in a tensor also 

increases. This increase in elements make the dataset difficult to deal with in terms of 

computational and memory requirements. By decomposing the high-dimensional data presented 

in form of a tensor, the problems associated with high-dimensionality can be alleviated or even 

removed (Vervliet et al. 2014). Also, tensor decomposition can be used as an efficient tool for 

missing value prediction (Acar et al. 2011; Asif et al. 2016). Though tensor decomposition has 
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been abundantly applied in areas such as scientific computing, signal processing, and social media 

data analysis, its use in construction industry-related datasets is limited. One application of tensor 

decomposition with construction datasets was concerned with awkward posture recognition in 

which worker’s motion data was presented as high order tensor (Chen et al. 2017). However, this 

technique has yet to be established as an alternative method of treating imperfect experimental 

data to provide meaningful and accurate risk assessment results in general work-related MSD risk 

assessment studies.  

 The two most widely used tensor decomposition algorithms are canonical polyadic 

decomposition (CPD) and Tucker decomposition (TD). CPD is generally advised for use with 

latent parameter estimation, while the TD is suggested in use of subspace estimation, compression, 

and dimensionality reduction (Rabanser et al. 2017). As the objective of this study is to fuse two 

incomplete datasets based on the latent correlations among all dimensions of those datasets, CPD 

is more suitable than TD in fulfilling the purpose of this study. Moreover, CPD is very effective 

in capturing the interactions among various dimensions of a high-dimensional datasets and 

therefore, it can effectively be used for imputing missing data (Dauwels et al. 2012). Considering 

many other tensor decomposition techniques are based on CPD and TD and CPD is more suitable 

for this study, the following subsection will only discuss CPD for tensor decomposition. 

5.2.3.1.Canonical polyadic decomposition (CPD) 

In order to impute missing data, CPD extrapolates the latent structures and collaborative 

relationships among different dimensions, such as rows and columns of a tensor. The CPD method 

factorizes a tensor into a sum of component rank-one tensors (Kolda and Bader 2009). For 

example, in CPD, a given three-dimensional tensor 𝑌	∈ ℝ�×�×� can be written as:  

Y	≈	∑ 𝒂� 	∘ 	𝒃� 	∘ 	𝒄�Z
��. ≡ 	 ⟦𝑨, 𝑩, 𝑪⟧			……………………………………………………….	(5.1) 
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Where R	is a positive integer, which is referred to as the rank of a tensor. The rank of tensor Y  = 

R can be defined as the smallest number of rank-1 tensor that is required to represent the tensor Y		

as their sum (Rabanser et al. 2017) (Figure 1);  Rank-1 tensor is defined as a decomposition of an 

N-dimensional tensor into one outer product of N vectors. R is also called latent factor. I, J and K 

are the sizes of the dimensions of the tensor Y	where, 	𝒂� ∈ 	ℝ�, 𝒃� ∈ ℝ� and 𝒄� ∈ ℝ� for r	=	

1…R.		‘∘’	indicates the vector outer product.	𝒂� 	∘ 	𝒃� 	∘ 	𝒄�	∈ ℝ�×�×�  is an outer product of three 

vectors 	𝒂�, 	𝒃� and 	𝒄� and is referred to as a rank-1 tensor. A, B	and C are the factor matrices 

obtained for each dimension after decomposition of the tensor Y and are referred to as the 

combination of the vectors from the rank-1 components. Here, the factors matrices A=	

[𝒂., 𝒂,,…,	𝒂Z]	∈ 	ℝ�×Z,	B	=	[𝒃., 𝒃,,…,	𝒃Z]	∈ 	ℝ�×Z		and	C	=	[𝒄., 𝒄,,…,	𝒄Z]	∈ 	ℝ�×Z.	Their column 

vectors are expressed explicitly as: 𝒂�= [𝑎.�, 𝑎,�, 𝑎-�, … , 𝑎��]T	,	𝒃�= [𝑏.�, 𝑏,�, 𝑏-�, … , 𝑏��]T	,	𝒄�= 

[𝑐.�, 𝑐,�, 𝑐-�, … , 𝑐��]T	.		

Elementwise, equation (5.1) can be expressed as: 

Yijk	≈ ∑ 𝑎5�𝑏8�𝑐¥�Z
��. 	for i	=	1…I;	j	=	1…J; k	=	1…K.		…………………………………… (5.2)	

CPD of a 3-dimensional tensor can be formalized as follows: 

𝑚𝑖𝑛
𝒀©

∥ 𝒀-	𝒀	© ∥;	Where, 𝒀© = ∑ 𝒂� 	∘ 	𝒃� 	∘ 	𝒄�Z
��. ≡ 	 ⟦𝑨, 𝑩, 𝑪⟧  …………………………… (5.3) 

Where Y  is the original tensor and 𝒀© is a low rank approximation of tensor Y.		CPD of a tensor is 

typically computed using the alternating least square (ALS) algorithm where each factor matrix is 

iteratively solved using a least square method. This algorithm fixes all factor matrices, except one, 

to optimize for the non-fixed matrix and then repeats this procedure for each matrix repeatedly 

until it converges (Kolda and Bader 2009; Kolda and Sun 2008).  

The CPD of a three-dimensional tensor is illustrated in Figure 5.1. 
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Figure 5.1: CPD tensor decomposition 

5.3.Problem Statement and Research Objective 

 For assessing work-related MSD risks among construction workers, human-based data can 

potentially suffer from missing data points due to dropout from the data collection technology. 

However, an in-depth method in handling multiple imperfect datasets for assessing work-related 

MSD risks is missing in the existing literature. Tensor decomposition-based data fusion can be 

potentially useful in this regard. It may help understand the data distribution of each dataset and 

consider the correlation among risk indicators captured at multiple work settings or conditions to 

fill in the missing data points. Therefore, the objective of this research is to develop a method that 

applies CPD tensor decomposition techniques to fuse multiple imperfect datasets and replace 

missing data by considering the correlation among the risk indicators for assessing the work-

related MSD risks among construction workers.  

5.4.Proposed Method 

 Figure 5.2 provides a schematic overview of the proposed method. First, multiple risk-

related incomplete datasets captured in multiple experimental settings are represented as high-

dimensional tensors. Then these tensors are fused by applying the CPD tensor decomposition. The 

CPD first decomposes these tensors into factor matrices that represent the latent structures and 

collaborative relationships among all dimensions. Based on the correlation among different 

Rank-1 tensor 
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dimensions, the CPD then reconstructs a new dataset with all missing values filled. This fused new 

dataset is ready to be used for subsequent risk assessments. In the following subsections, the steps 

of the proposed method are described in detail. 

 

Figure 5.2: Overview of Proposed Method  

5.4.1. Incomplete datasets for MSD risk assessment 

 For work-related MSD risk assessment in construction, the effects of various work-related 

factors on specific risk indicators are often measured. Therefore, a typical work-related MSD risk-

related dataset contains information such as work settings/experimental conditions and specific 

risk indicators. Often, a work-related MSD risk may not be characterized with a single type of risk 

indicator and in that case, multiple types of work-related MSD risk indicators are measured, e.g., 

kinematics (flexion, abduction/adduction, internal/external rotation), muscle activity data recorded 

by EMG, and kinetic data recorded by force plates, and can be available in multiple datasets. 

 To describe the proposed method, consider two datasets DS1 and DS2 (denoted for 

Incomplete Dataset 1 and Incomplete Dataset 2 in Figure 5.2). Each dataset contains two different 

types of work-related MSD risk indicators collected from several subjects, investigating various 

work-induced risks for a number of work settings (e.g., working technique, working posture, 

working condition). This is common practice of work-related MSD risk assessment studies in 

construction, where different types of risk indicators are often measured from the same group of 

people and the same work settings for an in-depth understanding of a specific type of risk. In this 

case, a data value in DS1 or DS2 represents a value of a risk indicator measured from a subject at 
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certain work settings. For example, to measure the knee work-related MSD risk, two common 

types of risk indicators are measured – awkward knee rotations and maximum EMG of knee 

postural muscles. Awkward knee rotations may include flexion, abduction/adduction, and 

internal/external rotations. Maximum EMG of knee postural muscles may include measurements 

of maximum flexor and extensor muscle activations. The datasets can be represented in a tabular 

form as shown in Table 5.1. 

Table 5.1: Formats of DS1 and DS2 

Dataset (DS) Tabular Format   
DS1 subject, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔., 𝑠𝑒𝑡𝑡𝑖𝑛𝑔,, …, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔, 𝑖𝑛𝑑.., 𝑖𝑛𝑑.,, …, 𝑖𝑛𝑑._ 
DS2 subject, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔., 𝑠𝑒𝑡𝑡𝑖𝑛𝑔,, …, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔, 𝑖𝑛𝑑,., 𝑖𝑛𝑑,,, …, 𝑖𝑛𝑑,| 

 In Table 5.1, each dataset contains a type of risk indicator measurements collected for 

several subjects at a number of work settings. The column subject contains subjects’ IDs. The 

columns 𝑠𝑒𝑡𝑡𝑖𝑛𝑔., 𝑠𝑒𝑡𝑡𝑖𝑛𝑔,, …, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 contain arrangements of q work settings at which 

measurements of m risk indicators in columns 𝑖𝑛𝑑.., 𝑖𝑛𝑑.,, …, 𝑖𝑛𝑑._ are collected in DS1, and n 

risk indicators are collected in columns 𝑖𝑛𝑑,., 𝑖𝑛𝑑,,, …, 𝑖𝑛𝑑,| in DS2. For example, the 

column	𝑠𝑒𝑡𝑡𝑖𝑛𝑔. can represent working postures that have two arrangements – static and dynamic. 

The column	𝑠𝑒𝑡𝑡𝑖𝑛𝑔, can represent slopes of the working site that have three arrangements – 

0°,15° and 30°. So, in the column 𝑠𝑒𝑡𝑡𝑖𝑛𝑔., the values are either ‘static’ or ‘dynamic’ and in the 

column 𝑠𝑒𝑡𝑡𝑖𝑛𝑔,, the values are either ‘0°’, ‘15°’ or ‘30°’. If a study involves only these two 

settings, then the value of q will be 2. Similarly, the columns 𝑖𝑛𝑑.., 𝑖𝑛𝑑.,, …, 𝑖𝑛𝑑._ can contain 

kinematics measures (flexion, abduction/adduction, internal/external rotation) and 𝑖𝑛𝑑,., 𝑖𝑛𝑑,,, …, 

𝑖𝑛𝑑,| can contain EMG measures of several muscles. To be more specific with an example, in 

DS1, a value of any of the m risk indicator columns can be a certain measurement value of a risk 

indicator (e.g., flexion) captured for certain subject at certain arrangements of q work settings.  
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Note that in both datasets, the values of columns of subject and 𝑠𝑒𝑡𝑡𝑖𝑛𝑔., 𝑠𝑒𝑡𝑡𝑖𝑛𝑔,, …, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 

are identical; the only difference is the measurements of the risk indicators. These datasets become 

incomplete when a significant amount of risk indicator measurements is not captured during data 

collection process. 

5.4.2. Tensor construction 

 Since the datasets contain multiple risk indicator measurements for the same combination 

of subjects and settings, the risk indicator measurements from both datasets are concatenated, 

yielding a new dataset (DS3) as illustrated in Table 5.2. This process is called early integration 

data fusion (Žitnik and Zupan 2014).  

Table 5.2: Format of DS3 

 In Table 5.2, each risk indicator measurement in DS3 is collected for certain subject at 

different arrangements of q work settings. Thus, ‘subject’ and each ‘work setting’ are considered 

as dimensions of each risk indicator, resulting in a total of (1+q)	dimensions. For multiple risk 

indicators, this method allows datasets to be represented as a ‘multi-dimensional’ or ‘multi-modal’ 

tensor, where each cell of the tensor contains a value of a certain risk indicator, measured for a 

subject at certain arrangements of q	work settings.  In this study, the ‘subject’, each ‘work setting’, 

and the entire set of ‘risk indicators’ can be considered as dimensions of the tensor which has a 

total of (1+	q	+	1) dimensions.  

To illustrate this tensor representation with a simplified example, consider only one work 

setting (e.g., working postures) denoted by ‘setting’. In this case, DS3 can be represented as a 

three-dimensional tensor (subject × risk indicators × setting) (𝑴5,8,¥) ∈ 	ℝ6×�×R (Figure 5.3), where i, 

j and k correspond to dimensions ‘subject’, ‘risk indicators’ and ‘setting’ respectively; and s, r and 

Dataset (DS) Format   
DS3 subject, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔., 𝑠𝑒𝑡𝑡𝑖𝑛𝑔,, …, 𝑠𝑒𝑡𝑡𝑖𝑛𝑔, 𝑖𝑛𝑑.., …, 𝑖𝑛𝑑._, 𝑖𝑛𝑑,., …, 𝑖𝑛𝑑,| 
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t are their sizes where iÎ{1,2,…s},  jÎ{1,2,…r} and kÎ{1,2,…t}. Each slice along the setting 

axis in Figure 5.3 represents a matrix (𝑴5,8) ∈ ℝ6×� given a setting arrangement k.  

 

Figure 5.3: Schematic representation of DS3 as a 3D tensor M 

5.4.3. Tensor decomposition 

 Following tensor construction, CPD is applied to decompose the tensor into factor 

matrices. As mentioned earlier, CPD learns the latent structures and collaborative relationships 

among the dimensions of a tensor. Thus, each factor matrix represents the latent relationships 

between the corresponding dimension and all the other dimensions captured by latent factor R	

(previously discussed in Section 5.2.3.1). Before applying CPD, the latent factor R should be 

computed properly to ensure unique mapping of the original tensor to the decomposed tensor in 

the form of factor matrices. In the above example, (𝑴5,8,¥) ∈ 	ℝ6×�×R is associated with three 

dimensions – ‘subject’, ‘risk indicators’ and ‘setting’; hence, three factor matrices are obtained 

after decomposition, denoted as 𝑭𝑴𝟏 ∈ 	ℝ6×Z, 𝑭𝑴𝟐 ∈ 	ℝ�×Z, 𝑭𝑴𝟑 ∈ 	ℝR×Z, as shown in Figure 5.4. Here, 

the factor matrix 𝑭𝑴𝟏 obtained for the dimension ‘subject’ represents the latent relationships 

between the subject and the risk indictors collected at different arrangements of the setting. 𝑭𝑴𝟐 is 

obtained for the dimension ‘risk indicators’ and represents the latent relationships between the risk 

indicators and the subjects at different arrangements of the setting for which those risk indicators 

were collected. 𝑭𝑴𝟑 is obtained for the dimension ‘setting’ and represents the latent relationships 

between different arrangements of the setting and the risk indicators collected for the subjects at 
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those arrangements of the setting. CPD leverages all the inter-dimensional correlations among all 

the dimensions of a tensor and performs data fusion based on those correlations to create a 

reconstructed tensor. The structures of the factor matrices and the method of computing R will be 

discussed further in “Implementation and Results”. 

 

Figure 5.4: Schematic illustration of CPD decomposition of the 3D tensor M 

5.4.4. Tensor reconstruction 

 After tensor decomposition, the resulting factor matrices are used to reconstruct a new 

fused tensor where the missing values are filled, and values of the MSD risk indicators are fused 

based on the inter-dimensional correlations. In the prior example, such tensor can be denoted as 

(𝑴′5,8,¥) ∈ 	ℝ6×�×R, which is computed using the following equation: 

𝑴′5,8,¥= ∑ 𝑭𝑴𝟏� 	∘ 	𝑭𝑴𝟐� 	∘ 	𝑭𝑴𝟑�
Z
��.   ………………................…………… (5.4) 

 Where 𝑭𝑴𝟏�, 𝑭𝑴𝟐�, 𝑭𝑴𝟑� are the column vectors of 𝑭𝑴𝟏, 𝑭𝑴𝟐 and 𝑭𝑴𝟑 respectively, R is the 

latent factor and ‘∘’	is the vector outer product. Using the newly reconstructed tensor, values of the 

MSD risk indicators for different subjects at different settings are extracted and reorganized into a 

tabular form, readily available for risk	assessment. 

5.5.Implementation and Results 

5.5.1. Original datasets collected from previous experiments 

 The current study considered two risk-related datasets that were collected from the authors’ 

prior human subject laboratory experimental studies. These studies assessed work-related factors 
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for knee MSDs among residential construction roofers who work on sloped environments. One 

dataset contains calculated knee rotation (kinematics) data, representing five knee rotational angles 

– flexion, abduction, adduction, internal and external rotation (Breloff et al. 2019a). The second 

data set contains EMG data, describing muscle activation of five knee postural muscles – biceps 

femoris, rectus femoris, semitendinosus, vastus lateralis and vastus medialis (Dutta et al. 2020b). 

Awkward knee rotations and maximum muscle activation have been identified as two quantitative 

risk indicators of work-related MSDs in low extremities (Hofer et al. 2011; Kingston et al. 2016). 

The five knee rotation angles represent the MSD risk associated with awkward and extreme 

kneeling postures, while the EMG data represent the MSD risk associated with heightened 

activation of knee postural muscles that might cause knee joint overloading. Both types of data 

were collected from the previous experimental study in which 9 subjects simulated the shingle 

installation roofing task at three roof slopes (0°, 15° and 30°) with two kneeling postures (static 

and dynamic). Each participant performed the task for five trials. Although the experiment was 

designed and implemented carefully, both datasets initially collected from the experiment had 

missing values. About 2% data were missing in the knee rotation dataset and about 20% data were 

missing in the EMG dataset at random. In this study, observations with missing data were 

intentionally removed from the initial datasets for the sake of obtaining complete datasets for 

evaluation. In the knee rotation dataset, each data point represents the maximum angle value of a 

knee rotation for a certain subject at a specific slope, posture and trial. In the EMG dataset, each 

data point represents the maximum normalized EMG value of a knee postural muscle of a certain 

subject at a specific slope, posture and trial. Since only maximum measurements in both datasets 

were collected as risk indicators, the two datasets could be easily synchronized. 
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5.5.2. Imperfect (or incomplete) datasets construction (datasets with missing values) 

 To evaluate the performance of the proposed method in dealing with missing data, this 

study was designed to fuse knee rotation and EMG datasets for different proportions of missing 

values using the CPD method. A proportion of data was randomly removed from both knee 

kinematics and EMG datasets with percentages of missing data as shown in Table 5.3. Therefore, 

fourteen incomplete datasets—seven for knee rotations and seven for EMG—were constructed 

with different portions of missing values. 

Table 5.3: Proportion of missing data 

5.5.3. Tensor construction 

 The incomplete rotation and EMG datasets were then used for tensor construction. As the 

knee rotation and EMG data were collected from the same subjects at the same work settings (i.e., 

roof slope, working posture, and trial), they could be combined by the early integration method 

(Pavlidis et al. 2002). In this method, the columns of these two types of risk indicators were 

concatenated to form a single set of length ten vectors which was referred as ‘risk indicators’ in 

this study. For tensor construction, forty-nine incomplete datasets as shown in Table 5.4 were 

considered. One sparse rotation dataset and one sparse EMG dataset were selected according to 

the combinations of missing proportions specified in Table 5.4.  

 An N dimensional tensor TN ∈ ℝ�U×�V×…….×�¹ has size (TN) = 𝐼. × 𝐼, × …… .× 𝐼X , where, 

𝐼5  is the size of its 𝑖R» dimension (Dauwels et al. 2012). As the risk indicators were measured from 

multiple subjects at different working postures, roof slopes and multiple trials, the collected data 

Datasets Missing proportion (%) 

Knee kinematics data 10 20 30 40 50 60 70 
Knee EMG data 10 20 30 40 50 60 70 
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could be represented as a five-dimensional sparse tensor 𝜯 ∈ ℝ�U×�V×�W×�½×�S, where I1	= No. of 

subjects (total 9), I2	= No. of risk indicators [EMG and kinematics; total 10 (5 knee rotation angles 

and 5 knee muscle EMG)], I3	= No. of trials (total 5), I4	= No. of postures [total 2 (static and 

dynamic)],  I5	= No. of slopes [total 3 (0°,15°,30°)]. In short, the tensor T maps the knee rotations 

and EMG measurements of nine subjects, obtained from five trials, performed on three roof slopes, 

using two postures. Tensor T was referred to as ‘incomplete tensor’ in this study. 

Table 5.4: Incomplete datasets for tensor construction 

Missing proportion 
from kinematics data 

(%) 
Missing proportion from EMG data (%) 

10 10 20 30 40 50 60 70 
20 10 20 30 40 50 60 70 
30 10 20 30 40 50 60 70 
40 10 20 30 40 50 60 70 
50 10 20 30 40 50 60 70 
60 10 20 30 40 50 60 70 
70 10 20 30 40 50 60 70 

 For a certain posture and slope, the sparse tensor T is denoted as 𝜯5,8 which represents the 

values of the risk indicators obtained from five trials performed by each subject at that roof slope 

and posture. In 𝜯5,8 , 𝑖 ∈ {1,2},	with 1 and	 2 representing the static and dynamic postures 

respectively; 𝑗 ∈ {1,2,3},		with 1, 2 and 3 representing the 0°, 15° and 30° slopes respectively. 

Then, the five-dimensional tensor 𝜯 can be illustrated in Figure 5.5. 

 Similarly, the original datasets collected from the previous experiments were constructed 

to a five-dimensional tensor 𝑿 ∈ ℝ�U×�V×�W×�½×�S as the benchmark data, which was referred to as 

the “original tensor” in this study and was used for validation of performance of the fusion method. 
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Figure 5.5: Representation of the five-dimensional tensor Τ  

5.5.4. Tensor decomposition 

 Once a tensor T  was constructed, the CPD tensor decomposition was applied to decompose 

the tensor T into five factor matrices, representing information in each dimension. The factor 

matrices were represented as matrices A,	B,	C,	D, and E,	providing latent information in dimensions 

of subjects, risk indicators, trials, postures, and slopes, respectively.  

CPD factorizes the five-dimensional sparse tensor 𝜯 ∈ ℝ�U×�V×�W×�½×�S as:  

T	≈	∑ 𝒂� 	∘ 	𝒃� 	∘ 	𝒄� ∘ 𝒅� ∘ 𝒆�Z
��. ≡ 		 ⟦𝑨, 𝑩, 𝑪, 𝑫, 𝑬⟧		……………………………… (5.5) 

Where 𝒂� ∈ 	ℝ�U, 𝒃� ∈ ℝ�V, 𝒄� ∈ ℝ�W, 𝒅� ∈ 	ℝ�½, 	𝒆� ∈ 	ℝ�S, for r	=	1,	…,	R. Factor matrix A=

[	𝒂., 𝒂, 		………		𝒂Z] ∈ ℝ�U×Z, B	= 	 [	𝒃., 𝒃, 		………		𝒃Z] ∈ ℝ�V×Z, C	= 	 [	𝒄., 𝒄, 		………		𝒄Z] ∈

ℝ�W×Z, D	= [	𝒅., 𝒅, 		………… . 	𝒅Z] ∈ ℝ�½×Z, and E	= 	 [	𝒆., 𝒆, 		………… . 	𝑒Z] ∈ ℝ�S×Z are 

collections of all R vectors of 𝒂�, 𝒃�	, 𝒄�, 𝒅�, 𝒆� respectively. 

Figure 5.6 illustrates the process of the CPD tensor decomposition. 
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Figure 5.6: CPD tensor decomposition of tensor T 

Equation (5.5) can be represented as: 

T	≈	∑ 𝑨�	 ∘ 	𝑩�	Z ∘ 	𝑪� ∘ 𝑫� ∘ 𝑬�						…………………………………………… (5.6) 

Factor matrices A,	B,	C,	D and E	are computed by solving the following optimization equation: 

arg	min ∥T-	∑ 𝑨�	 ∘ 	𝑩�	Z ∘ 	𝑪� ∘ 𝑫� ∘ 𝑬� ∥			……………………………………………………	(5.7)	

To solve Equation (5.7), the alternating least squares algorithm was applied using an optimization-

based program cpd_als in Tensor Toolbox from MATLAB (Bader and Kolda 2019).  

5.5.4.1.Selection of R (number of rank-1 tensors) for CPD 

 Before applying CPD, a proper R	needs to be selected to guarantee a unique mapping of 

the original tensor to the decomposed tensor. To determine the smallest number of rank-1 tensors 

required for CPD, the core consistency diagnostic method (CORCONDIA) described in (Bro and 

Kiers 2003) was applied with the N-way toolbox of MATLAB (Andersson and Bro 2000).  In this 

method, a Tucker core is used for assessing the appropriateness of a CPD model. Tucker core 

array, when presenting the coordinates of the parts of the multi-dimensional array within the 

subspaces, is considered as the regression of a multi-dimensional array onto the subspaces 

characterized by the factor matrices (Bro and Kiers 2003). In the CONCORDIA method, to signify 

an optimal representation of the multi-dimensional array with respect to the subspaces defined by 
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the factors, a parameter called “core consistency” is measured.  A core consistency value close to 

100% indicates an appropriate CPD model that can properly represent the variability of the factors. 

With the increase of the number of components (R), the core consistency value typically increases 

up to a certain point and then decreases. To apply CPD in this study, one component model (R =1) 

was first attempted and then different values of R were tried by gradually increasing the number 

of components until the core consistency value reached close to 100%. Those values of R with the 

highest core consistencies were considered for CPD application. 

5.5.5.  Tensor reconstruction (fused dataset for risk assessment) 

 Once the tensor was decomposed into factor matrices, these factor matrices were used to 

reconstruct a new tensor from its decomposed state. This reconstructed tensor is an approximate 

mapping of the sparse tensor T, which was referred to as ‘fused tensor’ and represented as 𝜯′ ∈

ℝ�U×�V×�W×�½×�S, calculated by:	

𝜯Æ = ∑ 𝑨� 	∘ 	𝑩� 	∘ 	𝑪� ∘ 	𝑫� ∘ 	𝑬�Z
��. …………………………………………………… (5.8) 

 In this tensor,	all the missing values were imputed, and the risk indicator values were 

reconstructed. Tensorlab (a MATLAB package for tensor computation) was used for the 

imputation and reconstruction (Debals et al. 2019) . Note that the factor matrices computed by 

Equation (5.7) ensured the minimal reconstruction error during the imputation and reconstruction 

of the risk indicators. The reconstructed risk indicators were then extracted to a spread sheet, 

readily for use in work-related MSD risk assessment.  

 To allow for reliable observations, the procedures in subsections 5.5.2 to 5.5.5 (except for 

construction of the five-dimensional tensor X from the original datasets) were repeated three times. 

In each repeat, the random removal of certain portion of data as designed earlier led to different 
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preservation in each dataset. Three repeats ensured a two-thirds (67%) probability that the 

averaged results were more accurate than a single experiment while maintaining time-efficiency 

in implementation.  

5.5.6.  Performance analysis of the data fusion 

 The performance of the data fusion method was evaluated by comparing the reconstructed 

data to the original data using two statistical measures—root mean square error (RMSE) and mean 

absolute error (MAE). RMSE and MAE were used to measure the standard error and average 

magnitude of the error of the fused tensor, respectively (Alimuddin et al. 2012; Ng and Kantor 

2000).  

 The RMSE was calculated using the following equation: 

RMSE = È.
X
É∑ ∑ ∑ ∑ ∑ n𝑋5U,5V,5W,5½,5S − 𝑇′5U,5V,5W,5½,5So

,�S
5S�.

�½
5½�.

�W
5W�.

�V
5V�.

�U
5U�.

Ì………………… (5.9) 

Here, 𝑋5U,5V,5W,5½,5S is an element (a value of a risk indicator of a certain subject at a certain slope, 

posture and trial) in the original tensor 𝑿 and 𝑇′5U,5V,5W,5½,5Sis an element in the re-constructed tensor 

𝜯Æ (fused dataset). 𝑁 is the total number of cells of the tensor which was computed as 𝑁 =

	𝐼. × 𝐼, × 𝐼- × 𝐼+ × 𝐼%. 

The MAE was calculated using the following equation: 

MAE =	.
X
É∑ ∑ ∑ ∑ ∑ Ín𝑋5U,5V,5W,5½,5S − 𝑇′5U,5V,5W,5½,5SoÍ

�S
5S�.

�½
5½�.

�W
5W�.

�V
5V�.

�U
5U�. Ì………………….. (5.10) 

The performance of the data fusion method was also evaluated by comparing the risk 

assessment results obtained from tensor 𝑻Æ to those obtained from tensor X collected in previous 

experimental studies. In this comparison, consistency of the effects of roof slope and working 
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posture on five knee rotation angles and five knee postural muscles’ EMG between the original 

and fused datasets were considered as a performance metric. In previous studies, the authors 

explored if the work-related factors (i.e., roof slope and working posture) are associated with knee 

MSDs among construction roofers (Breloff et al. 2019a; Dutta et al. 2020b). Those studies 

considered the original tensor (X) for risk assessments, whereas in this study, the fused tensor (𝑻Æ) 

was considered for assessing the similar risk to see if the risk assessment results were consistent. 

This way, the performance of the fusion method could be evaluated. 

The consistency (Con) was computed using the following equation: 

Con =	∑ Ð(_N,_ÆNÑ
NTU )

Ò
	× 100 ………………………………………………………. (5.11) 

Where, P = Total number of possible effects of roof slope, working posture and their interactions 

on five knee rotation angles and EMG of five knee postural muscles [total 30 = 3 factors (slope, 

posture, slope-posture interaction) ×10 response variables (5 knee rotations and 5 EMG 

measurements)].  

𝑚5 denotes the effects of the factors (slope and posture) on the response variables obtained from 

the original tensor X. 

𝑚′5 denotes the effects of the factors (slope and posture) on the response variables obtained from 

the fused tensor 𝑻Æ. 

𝑓(𝑚5,𝑚Æ
5) = Õ .,			5Ð	_N�	_N

Ö	
×	,			5Ð		_N	Ø	_N

ÖÙ. 

All the resulting measurements of the performance metrics were averaged over the three trial 

repetitions. 
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5.5.7. Results 

 Table 5.5 summarizes the results, including the RMSE, MAE, consistency (Con), number 

of rank-1 tensors R (latent factor) and core consistency values computed for the knee rotation and 

EMG datasets with different proportions of missing values. 

Table 5.5: Summary of Results 

Missing Proportion (%) 
RMSE MAE Con 

(%) R 
Core 

consistency 
(%) Knee Rotation EMG 

10 10 1.39 0.69 80 17 98 
10 20 1.38 0.8192 80 14 96.5 
10 30 1.39 0.818 80 15 97 
10 40 1.4 0.8412 80 14 96 
10 50 1.44 0.805 77 14 96.5 
10 60 1.57 0.9597 77 12 95 
10 70 2.34 1.47 74 10 94.67 
20 10 1.67 0.9791 80 12 97 
20 20 1.73 1.04 80 11 97 
20 30 1.78 1.04 80 11 95.6 
20 40 1.75 1.06 77 12 94.8 
20 50 1.79 1.08 74 13 94 
20 60 1.83 1.09 74 13 93 
20 70 2.45 1.25 70 10 92.7 
30 10 1.82 1 77 13 97 
30 20 2 1.14 74 11 95.6 
30 30 2.14 1.17 74 11 96 
30 40 2.19 1.25 74 10 95 
30 50 2.26 1.29 74 10 95.7 
30 60 2.32 1.24 74 10 93.5 
30 70 5.6 3.4 57 11 94 
40 10 2.11 1.11 87 12 96.5 
40 20 2.95 1.32 74 10 94 
40 30 2.98 1.31 74 10 95 
40 40 2.52 1.24 74 12 93.7 
40 50 2.83 1.3 74 12 92.76 
40 60 2.7 1.39 74 11 93 
40 70 2.77 1.51 70 13 92 
50 10 4.9 1.69 80 22 93 
50 20 5.11 1.81 80 31 93 
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50 30 5.28 1.99 80 29 92.6 
50 40 6.19 2.24 77 34 92 
50 50 6 2.4 77 43 91.5 
50 60 6.5 2.7 77 40 92 
50 70 6.8 3.8 60 10 91 
60 10 3.38 1.45 84 12 93 
60 20 4.4 1.76 77 15 93.6 
60 30 4.63 1.8 77 13 92 
60 40 5 2 77 13 92.8 
60 50 5.32 2.08 74 10 93 
60 60 5.39 2.16 70 16 92 
60 70 5.6 2.2 70 11 91 
70 10 6.7 2.7 77 20 90 
70 20 7.7 3.2 74 17 89 
70 30 7.5 3 74 12 91.5 
70 40 7.54 3.38 70 10 90 
70 50 8 3.3 70 11 92.4 
70 60 8.29 3.4 70 11 90 
70 70 8.8 3.67 67 12 88 

5.5.7.1.RMSE curves for datasets with different proportions of missing values 

 Figure 5.7 displays the RMSE curves for different proportions of missing data from the 

knee rotation and EMG datasets. In Figure 5.7, rot-DS and EMG-DS means the rotation dataset 

and EMD dataset respectively. 

 Generally, the RMSE curve demonstrated an increasing trend with the increase of missing 

values in both rot-DS and EMG-DS. It was graphically observed that, for up to 40% missing data 

from rot-DS and up to 60% missing data from EMG-DS, the RMSE values displayed a small 

variation from 1 to 3. When the proportion of the missing data from rot-DS increased to 50%, the 

RMSE value increased drastically for different proportions of missing values in EMG-DS. The 

RMSE curves for 50%, 60% and 70% missing data from the rot-DS shifted slightly upward, 

indicating that with the increase of missing values in rot-DS, the RMSE values generally increased. 

From 50% to up to 70% missing values from rot-DS and up to 70% missing values from EMG-
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DS, the RMSE values varied considerably from 3.5 to 9. These results suggested that with the 

increase in missing values in both datasets, the performance of the fusion method decreased. The 

variation in RMSE values was small for up to 40% missing values in rot-DS and up to 60% missing 

values in EMG-DS. However, with further increase of missing values in both datasets, RMSE 

values varied considerably. 

  

Figure 5.7: RMSE curves for 10%, 20%, 30%, 40%, 50%, 60% and 70% missing data from 

rotation dataset  
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5.5.7.2.MAE curves for datasets with different proportions of missing values 

 Figure 5.8 shows the MAE curves for different proportions of missing data from the knee 

rotation and EMG datasets. In Figure 5.8, rot-DS and EMG-DS means the rotation dataset and 

EMD dataset respectively. 

 

Figure 5.8: MAE curves for 10%, 20%, 30%, 40%, 50%, 60% and 70% missing data from 

rotation dataset 

 The MAE curves demonstrated similar patterns to the RMSE curves. In general, the MAE 

curves demonstrated an increasing trend with the increase of missing values in both datasets. It 

was observed that, for up to 40% missing values from rot-DS and up to 60% missing values from 
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EMG-DS, the variation of the MAE values was between 0.6 to 1.5. When missing values in EMG-

DS were further increased (up to 70%), a sharp increase in MAE curve was observed when 30% 

data were missing in rot-DS. When the proportion of missing values in rot-DS was further 

increased to 50%, MAE values also tended to increase. Similar to the RMSE curves, for 50%, 60% 

and 70% missing data in rot-DS, the MAE curves shifted slightly upward, indicating that with the 

increase of missing values in rot-DS, MAE values also increased. In general, from 50%-70% 

missing values in rotation dataset and up to 70% missing values in EMG dataset, the values of 

MAE varied considerably from 1.5-4. These results indicated that with the increase in missing 

values in both datasets, the performance of the fusion method tended to decease as MAE values 

increased. The variation in MAE values was small for up to 40 % missing values in rot-DS and up 

to 60 % missing values in EMG-DS. However, with further increase of missing values in both 

datasets, the MAE values varied considerably. 

5.5.7.3.Consistency curves for datasets with different proportions of missing values  

 Figure 5.9 shows the consistency curves for different proportions of missing data from the 

knee rotation and EMG datasets. In Figure 5.9, rot-DS and EMG-DS means the rotation dataset 

and EMD dataset respectively. 

 The consistency curves generally demonstrated a decreasing trend with the increase of 

missing values in both datasets. It was observed that for up to 70% missing values from rot-DS 

and up to 60% missing values from EMG-DS, the consistency values varied to a small extent from 

87% to 70%. However, for 70% missing values in EMG-DS, the consistency value decreased 

considerably for several configurations, particularly for 30%, 50% and 70% missing values in rot-

DS. These results indicated that with the increase in missing values in both datasets, the 

performance of the fusion method decreased in general.  
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Figure 5.9: Consistency curves for 10%, 20%, 30%, 40%, 50%, 60% and 70% missing data 

from rotation DS 

5.6.Discussion and Study Limitations 

 To ensure reliable risk assessment of work-related MSD, proper data collection is crucial. 

However, human-based data can potentially have missing data points due to dropout from the data 

collection technology. Moreover, risks sometimes cannot be fully quantified with a single risk 

indicator and thus multiple heterogeneous risk indicators are often collected for risk assessment. 
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As a result, a viable method is needed that reserves the interrelation among multiple risk indicators 

and potential risk factors during rectification of these multiple imperfect and incomplete datasets. 

 This research proposed the use of a CPD tensor decomposition-based data fusion method, 

which fuses multiple imperfect datasets in order to replace missing data. The proposed method 

generates a fused dataset by learning the latent structures and collaborative relationships among 

the potential risk factors and the risk indicators captured in multiple work settings. By learning 

their correlations, this proposed method replaces the missing values in the multiple incomplete 

datasets with minimum artifacts. The sample analysis results demonstrated that for up to a 

significant portion of missing values from both datasets, the proposed method can generate a fused 

dataset, by which reliable risk assessment results can be obtained consistent to those obtained from 

the original datasets to a great extent (87% to 70%). The possible reason for some inconsistencies 

in the risk assessment results may be attributed to the presence of significant amount of missing 

values in the individual datasets. In spite of this, for the specific datasets used in this study, the 

proposed method performed consistently up to 40% of missing data in the original datasets and 

could be reasonably applied to those datasets. The RMSE and MAE values demonstrated that the 

reconstruction errors in fusion were very small up to this range of missing data. This suggests that 

the reconstructed fused values of the risk indicators in the new dataset are close to those in the 

original, unaltered experimental datasets and hence, a good fusion performance. Although there is 

no standard threshold for good or bad RMSE and MAE values, low values of RMSE and MAE 

(within 10% of the range of the reference values) are preferable. RMSE should be less than 10% 

of the range of target property value (Alexander et al. 2015). In the current study, for different 

portions of missing values, the obtained RMSE values ranged from 0.74% to 5% relative to the 

difference between the minimum and maximum values of the risk indicators in the original dataset. 
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Additionally, for up to 40% missing values from the knee rotation dataset and 60% missing values 

from the EMG dataset, the RMSE values were within 15% of the average value of the risk 

indicators in the original dataset. Similarly, the MAE values were within 10% of the average value 

of the risk indicators in the original dataset. However, for the specific datasets used in this study, 

the RMSE and MAE values varied considerably as the proportion of missing data increased to 

50% and 70% in the rotation and EMG datasets respectively. The possible reason might be the 

presence of significant amount of missing values in the individual datasets that drastically 

deteriorated the performance of the fusion method in reconstruction of the data and therefore 

negatively affected the RMSE and MAE values. 

 Apart from the previous three performance metrics, the performance of the present method 

can be further validated by the ‘core consistency’ values obtained when measuring number of rank-

1 tensors R (latent factor) for CPD. For different R values presented in Table 5.5, the ‘core 

consistency’ values ranged from 88% - 98%, indicating that the CPD tensor decomposition is able 

to represent the variability of the multi-dimensional EMG and rotation data in the subspace 

substantially, thus providing a good fusion result. Overall, the findings suggest that the proposed 

method can handle up to 40% missing data and can reasonably be applied in work-related MSD 

risk assessment studies. The performance of this method was evaluated based on: a) how close a 

reconstructed fused dataset was to the original dataset, and b) how consistent the risk assessment 

results from a fused dataset were to those from the original dataset.  

 Although the proposed method has been proven successful in generating a fused dataset 

for used in risk assessment studies, there are still some limitations that are worth further 

investigation. First, in this study, only the maximum knee rotation angles and maximum 

normalized muscle activity measurements were considered for fusion. It would be interesting to 
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explore a detailed time series dataset instead of an aggregated metric such as maximum. Although 

data fusion is known to provide deeper and more accurate insights than those obtained from 

individual single data source (Khaleghi et al. 2013), another limitation of this work is the 

performance of the data fusion was only assessed by comparing the risk assessment results 

obtained from the fused datasets to the original dataset. The fused datasets were proven to be 

statistically similar to the original dataset, indicating that the fusion method was successful in 

reconstruction of a dataset when a significant amount of data is missing. Yet, how a fused dataset 

outperforms the individual incomplete datasets by which the fused dataset is constructed in terms 

of performance of risk assessment has not been measured.  

5.7.Conclusion and Future Extension 

 The current research proposed a method that applies the CPD tensor decomposition 

technique to fuse multiple imperfect and incomplete datasets, as well as replacing missing data for 

assessing work-related MSD risks among construction workers. The proposed method helps not 

only in replacing missing values, but also holds the correlation among the potential risk factors 

and the risk indicators during replacement. The method was validated by comparing the risk 

assessment results obtained from the fused datasets to those from the original experimental dataset. 

RMSE and MAE values were also computed to compare the performance of the fusion method 

with the increase of missing values. The validation results suggest that the reconstructed fused 

datasets were statistically similar to the original experimental datasets and therefore able to provide 

consistent risk assessment results up to a significant amount of missing values. This method can 

be used as an alternative risk assessment method when data collected from experimental studies 

or real construction sites are incomplete due to missing data points. The findings will help enable 

accurate assessment of work-related risk factors for work-related MSDs among construction 
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workers. Although the proposed method only used two sparse datasets for fusion, it can be 

extended to fuse more datasets. In future, this method will be explored in fusing imperfect and 

incomplete multiple time series datasets. The performance of the fusion will also be further tested 

by comparing consistencies of the risk assessment results to those obtained from datasets with 

missing values.  
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CHAPTER 6: APPLICATION OF DATA FUSION VIA 
CANONICAL POLYADIC DECOMPOSITION IN RISK 

ASSESSMENT OF MUSCULOSKELETAL DISORDERS IN 
CONSTRUCTION: PROCEDURE AND STABILITY 

EVALUATION 
 

Abstract 

 Missing data is a common problem in data collection for work-related musculoskeletal 

disorder (MSDs) risk assessment studies. It can cause incompleteness of risk indicators leading to 

erroneous conclusion on potential risk factors. Previous study suggested that data fusion is 

potentially a way to solve this issue. This research evaluated the effectiveness of a data fusion 

technique using canonical polyadic decomposition (CPD) for work-related MSD risk assessment 

in construction. Two knee MSD risk-related datasets—3D knee rotation (kinematics) and 

electromyography (EMG) of five knee postural muscles—collected from previous studies were 

fused for the evaluation. By comparing the consistency performance with and without data fusion, 

it revealed that, for all low to high proportion of missing data (10%-70%) from both kinematics 

and EMG datasets, the work-related MSD risk assessment using fused datasets outperformed using 

unfused kinematics datasets. For large proportion of missing data (>50%) from both kinematics 

and EMG datasets, better performance was observed by using fused datasets in comparison with 

unfused EMG datasets. These findings suggested that data fusion using CPD generates a more 

reliable risk assessment and therefore is an effective approach for remedying missing data in work-

related MSD risk evaluation. 
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6.1.Introduction 

 Missing data is a common problem associated with data collection in work-related 

musculoskeletal disorder (MSD) risk assessment studies (Young et al. 2011). Data collected for 

assessing risk, either from the laboratory or construction site, often suffer from irregular spatial 

and temporal resolution. Among multiple trials of experiments, data of a specific trial can be 

missing due to an instrument failure, human-induced error or at random. Therefore, missing data 

can occur in almost all research that involves data collection even the study is well-designed and 

conducted in a controlled environment (Brown and Kros 2003). Missing data can cause 

incompleteness and misrepresentation of the risk indicators, leading to less statistical power, 

biased and invalid conclusions on the effects of the potential risk factors on the assessed work-

related MSD risk. Data fusion has been found to be potential in dealing with incomplete datasets 

used in work-related MSD risk assessment by replacing the missing data reserving the interrelation 

among different factors and the risk indicators across multiple datasets. In the authors’ previous 

study, a data fusion method was created to treat imperfect MSD risk assessment data using a 

canonical polyadic decomposition (CPD) tensor decomposition (Dutta et al. 2020c). However, the 

numerical stability of the CPD fusion has not been evaluated comprehensively. When MSD risks 

need to be characterized and quantified by multiple risk indicators, how these risk indicators will 

interact with each other for risk assessment if some of their proportions become missing is still 

unknown. Also, whether the CPD fusion is numerically stable to reconstruct a new dataset by 

fusing those risk indicators and imputing the missing values to provide more accurate and reliable 

risk assessment results compared to the unfused sparse datasets has not been studied. This research 

evaluated the numerical stability of the data fusion via CPD for MSD risk assessment in 

construction when the quality of risk-related datasets becomes degraded due to the missing data in 
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multiple inputs. To this end, this research compared the risk assessment results resulting from the 

fused datasets to those resulting from multiple unfused sparse datasets. CPD was applied to fuse 

the sparse datasets with different portions of subsets intentionally removed from two real work-

related MSD risk-related datasets, referred to as “original experimental datasets” that have been 

collected from previous experimental studies. The risk assessment results obtained from the fused 

and the unfused sparse datasets were then compared to those obtained from the original 

experimental datasets to elucidate the performance of the present technique. 

6.2.Background 

6.2.1. Problems with missing data 

 The problem associated with missing data is relatively common in almost all research. 

Studies that involve human subjects and technologies for data collection can have missing data for 

various reasons including technology-induced errors (e.g., disconnection of sensors, errors in 

communicating with the database server, instrument failures), human-induced errors (e.g., 

accidental human omission) or other unknown reasons (Data 2016). Missing data can have 

significant effects on the conclusions that can be drawn from the data. The absence of data reduces 

statistical power which refers to the possibility that the analysis results will reject the null 

hypothesis when it is false (Kang 2013). In work-related MSD risk studies, missing data can cause 

incompleteness and misrepresentation of the risk indicators, leading to inconsistent, biased 

estimation of the effects of the potential risk factors on the risk indicators which can lead to 

erroneous conclusion. For this reason, missing data should be dealt with carefully to ensure reliable 

risk assessment. 
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6.2.2. Research works in addressing missing data problems 

 There is a diversity of methods to handling missing data in existing literature. Some 

common methods include: simply omitting observations with the missing data (Kang 2013), 

regression imputation (Button et al. 2013), mean substitution (Malhotra 1987), replacing the 

missing data with the last observed values (Hamer and Simpson 2009), and estimating the missing 

data using conditional distribution of the other variables (Gelman and Raghunathan 2001). These 

methods have been proven useful in handling missing data in many research works. However, they 

have some limitations for application to impute missing data in work-related MSD risk assessment 

studies. In methods of omitting observations, that the observations with missing data are simply 

removed decreases the sample size and adversely affects the statistical power. In regression 

imputation methods, a missing value is predicted from other variables, but it does not add any new 

information except increasing the sample size and compromising the standard error. Mean 

substitution methods may cause inconsistent biases if there is a great inequality in the proportion 

of missing values of different variables. Methods by replacing missing data with the last observed 

values assume that there will be no changes in the outcome. For a large proportion of missing data, 

methods using conditional distribution of the other variables may provide inconsistent bias as the 

relationship among the variables needs to be properly computed. Moreover, the “high-

dimensionality” or “multimodality” nature of work-related MSD risk-related data where risk 

exposures can be obtained in form of different risk indicators collected at different working 

settings (often referred to as risk factors) and from different subjects limit the applicability of the 

above-mentioned methods in missing values imputation in that the latent relationship among the 

risk indicators and the factors cannot be well captured (Gebregziabher and DeSantis 2010). Quite 

often, multiple risk indicators data are collected for in-depth understanding of risks and workers’ 
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risk-taking behaviors. Data fusion can be an efficient method in this regard as by this method risk-

related information are integrated from multiple datasets based on the latent relationship among 

the risk factors and risk indicators such that a more complete representation of the measurements 

of the risk indicators can be produced, as compared to what can be represented in incomplete and 

unfused datasets (Lahat et al. 2015). 

6.2.3. Tensor decomposition-based data fusion 

 Tensor decomposition can accurately extract the interrelations among various features 

from multiple datasets and learn the latent structures and collaborative relationships among those 

features to approximate the pattern of the data during fusion. Therefore, this can be a useful tool 

for fusion of high-dimensional datasets (Kolda and Bader 2009). Tensors are generalizations of 

matrices to higher dimensions and are a very powerful tool to model multidimensional data (De 

Lathauwer et al. 2000). Tensor decomposition was previously used for anomaly detection (Xie et 

al. 2017), object profiling (Charlier et al. 2018), pattern recognition (Xiong et al. 2010), filling in 

missing values (Dauwels et al. 2012), and evolution prediction (Dunlavy et al. 2011), and posture 

recognition (Chen et al. 2017).  

 Canonical polyadic decomposition (CPD) is one of the most widely used tensor 

decomposition techniques, which is generally suggested to estimate latent parameters among 

different features within a dataset (Rabanser et al. 2017). CPD can effectively be used for imputing 

missing data as it captures the interactions among various features of a high-dimensional datasets 

during imputation (Dauwels et al. 2012). CPD has also been found to be effective in fusing multiple 

incomplete datasets and filling out missing data  in signal processing and machine learning 

(Sidiropoulos et al. 2017).  
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 CPD factorizes a tensor into a sum of component rank-one tensors (Carroll and Chang 

1970; Hitchcock 1927). For example, in CPD, a given three-dimensional tensor X	∈ ℝ�×�×� can 

be written as:  

X	≈	∑ 𝒂� 	∘ 	𝒃� 	∘ 	𝒄�Z
��. ≡ 	 ⟦𝑨, 𝑩, 𝑪⟧			……………………………………………………….	(6.1) 

Where R	is a positive integer, which is referred to as the rank of a tensor. The rank of tensor X  = 

R can be defined as the smallest number of rank-1 tensor that is required to represent the tensor X		

as their sum (Rabanser et al. 2017); Rank-1 tensor is defined as a decomposition of an M-

dimensional tensor into one outer product of M vectors. R is also called latent factor. I, J and K are 

the sizes of the dimensions of the tensor X		where, 	𝒂� ∈ 	ℝ�, 𝒃� ∈ ℝ� and 𝒄� ∈ ℝ� for r	=	1…R.		

‘∘’	indicates the vector outer product.	𝒂� 	∘ 	𝒃� 	∘ 	𝒄�	∈ ℝ�×�×�  is an outer product of three vectors 

	𝒂�, 	𝒃� and 	𝒄� and is referred to as a rank-1 tensor. A, B	and C  are the factor matrices obtained 

for each dimension after decomposition of the tensor X,	and are referred to as the combination of 

the vectors from the rank-1 components (Kolda and Bader 2009). Here, the factors matrices A	∈

	ℝ�×Z,	B	∈ 	ℝ�×Z		and	C	∈ 	ℝ�×Z.		

More details on CPD were previously discussed in section 5.2.3.1 in Chapter 5. 

6.2.4. Applications of data fusion in construction 

 In construction, data fusion has been used to improve the quality of building cooling load 

measurement of building automation systems and for efficient and effective management 

knowledge discovery (Huang et al. 2009; Soibelman et al. 2004). Some of other applications of 

data fusion in construction included automated identification, location estimation, dislocation 

detection of construction materials in jobsites (Razavi and Haas 2010; Razavi and Haas 2011), 

automated progress tracking of construction projects (Shahi et al. 2012), structural health 
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monitoring (Soman et al. 2018), damage identification of civil structures (Anaissi et al. 2018) and 

constriction productivity monitoring (Pradhan et al. 2011). In construction ergonomics, a 

computationally efficient approach using tensor decomposition was developed to recognize 

construction workers’ awkward postures (Chen et al. 2017). Fusion of data from continuous remote 

monitoring of construction workers’ location and physiological status was used to identify safe 

and unsafe behaviors of construction workers (Cheng et al. 2012). Fusion of spatiotemporal and 

workers’ thoracic posture data has been done for understanding the worker's activity type for 

productivity assessment (Cheng et al. 2013). A position and posture data fusion method was 

proposed for evaluation of construction workers’ behavioral risks (Chen et al. 2019). A framework 

for location data fusion and pose estimation of excavators have been developed by Soltani et al. 

(2018). Dutta et al. (2020c) proposed a method of fusing multiple sparse risk-related datasets that 

applies CPD to fuse and fill in missing data by leveraging the correlation among multiple risk 

indicators within those datasets.  

6.3.Problem Statement and Research Objective  

 Missing data can lead to misrepresentation of the risk indicators and underpowered 

analyses which can provide erroneous conclusions on the contribution of potential risk factors on 

the imposed work-related MSD risk. Representation of high dimensional MSD risk-related data as 

a multimodal tensor and use of the tensor for fusion of those data available in multiple risk-related 

datasets can fill in the missing values by reserving the interrelationship among different risk 

indicators and the risk factors across the datasets and hence, ensure complete representation of 

risk-related data and accurate risk assessment. In the authors’ prior work, CPD has been found to 

be promising in fusing multiple incomplete high-dimensional risk-related datasets and filling out 

missing data within those datasets based on the latent correlations among the risk factors and risk 
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indicators (Dutta et al. 2020c). Yet, when applying the technique of data fusion with CPD, one 

additional question has not been answered. That is, given a different portion of missing data in two 

sparse risk-related datasets, it is still unknown whether, at what portion of missing data, and to 

what extent, the fusion-based risk assessment outperforms the one with no fusion. This knowledge 

is important to understand the effect of such tensor decomposition-based data fusion to enhance 

risk assessment when data collected from experimental studies or real construction sites are 

incomplete due to missing data points. Therefore, the objective of this research was to evaluate the 

usefulness of applying CPD for work-related MSD risk assessment in construction by comparing 

the consistencies of the risk assessment results obtained from fused and unfused datasets to those 

obtained from the original experimental datasets. 

6.4.Experimental Design and Implementation 

 The experimental design included the procedures depicted in Figure 6.1. First, two risk-

related datasets were collected from authors’ previous human subject laboratory experimental 

studies. These datasets were considered as original experimental datasets. One experimental 

dataset (DS1) contained calculated knee rotation (kinematics) data, representing five knee 

rotational angles – flexion, abduction, adduction, internal and external rotation collected at 

different roof slopes and working postures. The second experimental dataset (DS2) contained 

EMG data, describing muscle activation of five knee postural muscles – biceps femoris, rectus 

femoris, semitendinosus, vastus lateralis and vastus medialis collected at the same roof slopes and 

working postures. As awkward knee rotations and heightened muscle activation have been 

identified as two quantitative risk indicators of work-related MSDs in lower extremities and the 

roof slope and the working posture are two work-related MSD risk factors, these datasets were 

representatives of work-related MSD risk-related datasets and therefore used in this study (Breloff 
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et al. 2019a; Dutta et al. 2020b; Kingston et al. 2016). Then, different proportions of missing values 

were intentionally removed from both experimental datasets to construct two sparse unfused 

datasets (SDS1 and SDS2). After that, both original experimental datasets and sparse unfused 

datasets were constructed to high dimensional tensors. The tensors constructed from the original 

experimental datasets and sparse unfused datasets were referred as “original tensor” and “sparse 

unfused tensor” respectively in this study. Next, CPD tensor decomposition was applied to the 

sparse unfused tensor for fusion of the knee kinematics and EMG data and filling out the missing 

data within those datasets. CPD first decomposed the sparse unfused tensor into factor matrices 

based on the latent relationship among different risk factors and the risk indicators. The factor 

matrices were then used to reconstruct the kinematics and EMG data through fusion as a high-

order tensor. This newly reconstructed tensor was referred to as “fused tensor”. The data 

represented in the fused tensor and the sparse unfused tensor were subsequently analyzed to 

produce the risk assessment results. Finally, the risk assessment results obtained from the fused 

and sparse unfused tensors were compared to those obtained from the original tensor to evaluate 

whether the fused datasets outperformed the sparse unfused datasets in risk assessment.  

 

Figure 6.1: The procedures of the experimental design 
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6.4.1. Risk-related original experimental data collection 

 The knee rotation (kinematics) and the EMG datasets collected from the authors’ prior 

human subject laboratory experimental studies described in Chapters 2 and 3 were used as risk-

related data (original experimental datasets). The instrumentation, experimental set up, data 

collection procedures and formats of the datasets are discussed in Chapters 2 and 3 in more details.  

6.4.2. Multiple sparse datasets construction (Data removal)  

 A proportion of data was intentionally removed from both knee kinematics and EMG 

datasets collected from the previous studies to represent them as sparse datasets. The data was 

removed at random. The proportions of the missing data from both datasets were provided in Table 

6.1. This way, fourteen sparse datasets, seven for knee kinematics and EMG data each, were 

constructed with different portions of missing values. 

Table 6.1: Proportion of missing data 

Datasets Knee kinematics knee EMG 

Missing proportion 
(%) 

10 10 
20 20 
30 30 
40 40 
50 50 
60 60 
70 70 

6.4.3. Fusion of the datasets using CPD tensor decomposition 

 The resulting kinematics and EMG datasets were then used for fusion. As the knee 

kinematics and EMG data were collected from the same subjects at the same work settings (i.e., 

roof slope, working posture, and trial), they were first combined by the early integration data fusion 

method (Žitnik and Zupan 2014). In this method, the column vectors of these two types of risk 

indicators were concatenated to form a single set of length ten vectors which was referred as “risk 
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indicators” in this study. For tensor construction, a sparse rotation dataset and a sparse EMG 

dataset were selected according to the combinations of missing proportions specified in Table 6.2. 

Table 6.2: Datasets with missing values for tensor construction 

Missing proportion from 
kinematics data (%) 10 20 30 40 50 60 70 

Missing proportion from 
EMG data (%) 

10 10 10 10 10 10 10 
20 20 20 20 20 20 20 
30 30 30 30 30 30 30 
40 40 40 40 40 40 40 
50 50 50 50 50 50 50 
60 60 60 60 60 60 60 
70 70 70 70 70 70 70 

 
As the risk indicators were measured from different subjects at different working postures, 

roof slopes and multiple trials, the data were then represented as a five-dimensional sparse tensor 

𝜯 ∈ ℝ�U×�V×�W×�½×�S, where, I1	= No. of subjects (total 9), I2	= No. of risk indicators [kinematics 

and EMG: total 10 (5 knee rotation angles and 5 knee muscle EMG)], I3	= No. of trials (total 5), I4	

= No. of postures [total 2 (static and dynamic)],  I5	= No. of slopes [total 3 (0°, 15°, 30°)]. In short, 

the tensor 𝜯 maps the knee rotation and EMG measurements of nine subjects obtained from five 

trials performed on three roof slopes using two postures. Tensor T was referred to as sparse unfused 

tensor in this study. 

In the similar way, the original datasets were also constructed to a five-dimensional tensor 

𝒀 ∈ ℝ�U×�V×�W×�½×�S as ground truth, which was referred to as original tensor in this study and was 

used later for validation of the fusion method. 

 Once a tensor T was constructed, CPD tensor decomposition was applied to decompose 

the tensor T into five factor metrics, representing information in each mode or dimension. The 

factor matrices were represented as matrices A,	B,	C,	D and E,	providing latent information in modes 
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of subjects, risk indicators, trials, postures, and slopes respectively, where factor metrics A	∈

ℝ�U×Z,  B	∈ ℝ�V×Z, C	∈ ℝ�W×Z, D	∈ ℝ�½×Z, E	∈ ℝ�S×Z. Each factor matrix represented the latent 

relationship between the corresponding dimension and all the other dimensions captured by latent 

factor R. A proper R values ensures a unique mapping of the original tensor to the decomposed 

tensor. In this study, R	value was computed applying the core consistency diagnostic method 

(CORCONDIA) method	described in Bro and Kiers (2003). 

Factor matrices A,	 B,	 C,	 D and E	were then computed by solving the following optimization 

equation: 

arg	min ∥T-	∑ 𝑨�	 ∘ 	𝑩�	Z ∘ 	𝑪� ∘ 𝑫� ∘ 𝑬� ∥			…………………………………………………………… (6.2)	

To solve Equation (2), the alternating least squares algorithm was applied using an optimization-

based program cpd_als in Tensor Toolbox from MATLAB (Bader and Kolda 2019). 

 The reconstructed tensor 𝜯′ ∈ ℝ�U×�V×�W×�½×�S	was	 then computed	 using the following 

equation: 

𝜯Æ = ∑ 𝑨� 	∘ 	𝑩� 	∘ 	𝑪� ∘ 	𝑫� ∘ 	𝑬�Z
��. …………………………………………………………… (6.3)	

 This reconstructed tensor was an approximate mapping of the sparse tensor T which was 

referred to as fused reconstructed tensor and represented as 𝜯′ ∈ ℝ�U×�V×�W×�½×�S.	In this tensor,	

CPD imputed missing values and reconstructed the risk indicator values minimizing the 

reconstruction error. For this reconstruction, Tensorlab (a MATLAB package for tensor 

computation) was used (Debals et al. 2019). The reconstructed risk indicators were then extracted 

to a spread sheet to generate the risk assessment results.  
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6.4.4. Performance evaluation of data fusion 

 To examine the performance of fused and unfused sparse datasets in risk assessment, the 

following four consistency measures were computed as performance metrics: a) consistency of the 

effects of roof slope and working posture on five knee rotation angles between the original and 

fused datasets (ConRot_f), b) consistency of the effects of roof slope and working posture on five 

knee postural muscles’ EMG between the original and fused datasets (ConEMG_f), c) consistency 

of the effects of roof slope and working posture on five knee rotation angles between the original 

and sparse unfused datasets (ConRot_s), d) consistency of the effects of roof slope and working 

posture on five knee postural muscles’ EMG between the original and sparse unfused datasets 

(ConRot_s). 

ConRot_f was computed using Equation (6.4): 

ConRot_f  =	
∑ Ð(_N,_ÆNÑ
NTU )

Ò
	× 100 …………………………………………………………………………… (6.4)	

Where, P is the total number of possible effects of roof slope, working posture and their 

interactions on five knee rotation angles [total 15 = 3 factors (slope, posture, slope-posture 

interaction) ×5 knee rotation angles]. 𝑚5 denotes the effects of the factors (slope and posture) on 

the response variables (five knee rotation angles) obtained from the original experimental dataset; 

𝑚′5 denotes the effects of the factors (slope and posture) on the response variables (five knee 

rotation angles) obtained from the fused dataset; and  𝑓(𝑚5,𝑚Æ
5) = Ú .,			5Ð	_N�	_N

Ö	
×	,			5Ð		_N	Ø	_N

ÖÛ. 

ConEMG_f was computed using Equation (6.5): 

ConEMG_f  =	
∑ Ð(|N,	|ÆN
Ü
NTU )

Ý
	× 100 …………………………………………………………. (6.5) 
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Where, Q is the total number of possible effects of roof slope, working posture and their 

interactions on EMG values of five knee postural muscles [total 15 = 3 factors (slope, posture, 

slope-posture interaction ×5 knee postural muscles]. 𝑛5 denotes the effects of the factors (slope 

and posture) on the response variables (EMG values of five knee postural muscles) obtained from 

the original experimental dataset; 𝑛′5 denotes the effects of the factors (slope and posture) on the 

response variables (EMG values of five knee postural muscles) obtained from the fused dataset; 

and 𝑓(𝑛5, 𝑛Æ5) = Ú .,			5Ð	|N�	|N
Ö	

×	,			5Ð		|N	Ø	|N
ÖÛ. 

ConRot_s was computed using Equation (6.6): 

ConRot_s =	
∑ Ð(_N,Ñ
NTU 	¥N)

Ò
	× 100 ………………………………………………………… (6.6) 

Where, P is the total number of possible effects of roof slope, working posture and their 

interactions on five knee rotation angles [total 15 = 3 factors (slope, posture, slope-posture 

interaction) ×5 knee rotation angles]. 𝑚5 denotes the effects of the factors (slope and posture) on 

the response variables (five knee rotation angles) obtained from the original dataset; 	𝑘5 denotes 

the effects of the factors (slope and posture) on the response variables (five knee rotation angles) 

obtained from the sparse unfused dataset; and 𝑓(𝑚5, 𝑘5) = Ú .,			5Ð	_N�		¥N	
×	,			5Ð		_N	Ø		¥N

Û. 

ConEMG_s was computed using Equation (6.7): 

ConEMG_s  =	
∑ Ð(|N,	àN
Ü
NTU )

Ý
	× 100 …………………………………………………………. (6.7) 

Where, Q is the total number of possible effects of roof slope, working posture and their 

interactions on EMG values of five knee postural muscles [total 15 = 3 factors (slope, posture, 

slope-posture interaction ×5 knee postural muscles]. 𝑛5 denotes the effects of the factors (slope 
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and posture) on the response variables (EMG values of five knee postural muscles) obtained from 

the original experimental dataset. 𝑙5	denotes the effects of the factors (slope and posture) on the 

response variables (EMG values of five knee postural muscles) obtained from the sparse unfused 

dataset; and  𝑓(𝑛5, 	𝑙5) = Ú .,			5Ð	|N�		àN	×	,			5Ð		|N	Ø		àN
Û. 

6.5.Results 

6.5.1. Consistency curves of rotation for different proportions of missing values  

 Figure 6.2 shows the consistency curves of rotation for different proportions of missing 

values from both datasets. Each plot shows two consistency curves. One (continuous line) is for 

the fused rotation values which were in the fused dataset generated by the fusion of rotation and 

EMG datasets for different proportion of missing values. The other (dash line) is for the unfused 

rotation values, i.e., the rotation values that were initially in the datasets generated by removing 

different proportions of data from the kinematics dataset before fusion (sparse unfused datasets 

described in Table 6.2). In general, for different proportions of missing data in both datasets, values 

in the fused datasets provided more consistent risk assessment results than those in the datasets 

with missing values, although for some proportions of missing values (e.g., 10% and 20% missing 

data from the rotation dataset with 60% and 70% missing data from the EMG dataset, 30% missing 

data from the rotation dataset with 30% to 50% missing data from the EMG dataset), both unfused 

and fused-based assessment results demonstrated the similar consistencies. These findings 

suggested better performance in risk assessment by the fused datasets that might provide more 

consistent risk assessment results than the unfused datasets with missing values. 
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Figure 6.2: Consistency curves of rotation for different proportions of missing values from 

rotation (kinematics) dataset: (a) 10%; (b) 20%; (c) 30%; (d) 40%; (e) 50%; (f) 60%; (g) 70%. 

6.5.2. Consistency curves of EMG for different proportions of missing values  

 Figure 6.3 shows the consistency curves of EMG for different proportions of missing 

values from both datasets. Similarly, each plot shows two consistency curves. One (continuous 

line) is for the fused EMG values which were in the fused dataset generated by fusion of rotation 

and EMG datasets for different proportions of missing values. The other (dash line) is for the 

unfused EMG values, i.e., the EMG values that were initially in the datasets generated by removing 

different proportion of data from the EMG dataset before fusion (sparse unfused datasets described 

in Table 6.2). For 10% to 40% missing values in rotation datasets and 10% to 60% missing values 

in EMG datasets, the performance of the fusion method was poor where the unfused EMG values 

in the datasets with missing values provided better consistency results than the fused EMG values 

in fused datasets. However, with the increase of the missing data in rotation datasets (from 50% to 

70%) and for a large percentage of missing values in EMG datasets (50% - 70%), the fusion 

method demonstrated better performance. In general, for EMG data, the fused datasets 

demonstrated higher consistencies when large proportion of data (>50%) were missing in both 
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datasets. These findings indicated that the fused datasets performed better in risk assessment than 

the unfused sparse datasets even when a large proportion of data were missing. 
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Figure 6.3:  Consistency curves of EMG for different proportions of missing values from 

rotation (kinematics) dataset: (a) 10%; (b) 20%; (c) 30%; (d) 40%; (e) 50%; (f) 60%; (g) 70% 

6.6. Discussion  

 Data collection for work-related MSD risk assessment either from laboratory experiments 

or from construction sites can potentially have missing data due to dropout – a phenomenon when 

data get missing due to any technology or human induced error. Quite often, risks cannot be fully 

quantified with a single risk indicator and thus multiple heterogeneous risk indicators data are 

collected for risk assessment. Our previous study indicated that data fusion by applying CPD can 

be efficient to fill in missing data in such datasets as the latent relationship among different risk 

factors and risk indicators available in those datasets are reserved. This research evaluated the 

numerical stability of data fusion in work-related MSD risk assessment that applies CPD to fuse 

multiple risk-related datasets and fill in missing data. More specifically, in spite of using 

malformed experimental data with missing value as input, if and to what extent fusion through 

CPD was numerically stable to provide more reliable risk assessment result compared to unfused 

sparse datasets was analyzed in this study. For that purpose, two risk-related datasets containing 

roofers’ knee kinematics and EMG data collected from the authors’ previous experimental studies 
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were used for fusion. The effects of roof slope and working posture on five knee rotation angles 

and five knee postural muscles’ EMG were measured as risk assessment results. Different 

proportions of data were intentionally removed from those datasets to make them sparse. CPD was 

thus applied to fuse those sparse datasets. Risk assessment results were computed from the 

original, sparse, and fused datasets. The performance of the fusion was evaluated based on how 

consistent the risk assessment results obtained from the fused and unfused sparse datasets were to 

those obtained from the original experimental dataset. For this purpose, four consistency measures 

– consistency of the effects of roof slope and working posture on five knee rotation angles between 

the original and fused datasets, consistency of the effects of roof slope and working posture on five 

knee postural muscles’ EMG between the original and fused datasets, consistency of the effects of 

roof slope and working posture on five knee rotation angles between the original and sparse 

datasets and consistency of the effects of roof slope and working posture on five knee postural 

muscles’ EMG between the original and sparse datasets were computed as performance metrics. 

 The consistency results demonstrated that for significant portions of missing values from 

both datasets, the fused datasets could provide more reliable risk assessment results than the sparse 

unfused datasets. The risk assessment results obtained from the fused datasets were more 

consistent to those obtained from the original experimental datasets when compared to unfused 

datasets with missing values. For example, for 10%-70% missing data in both kinematics and 

EMG datasets, more consistent risk effects on the knee rotations were obtained when rotation and 

EMG datasets were fused rather than from the unfused sparse rotation dataset. The better 

consistency by the fused datasets is an indicator of good fusion performance of the CPD tensor 

decomposition-based data fusion.  Previous study done by the authors also found that fusion 
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through CPD could provide reliable risk assessment results 87% to 70% consistent to those 

provided by the original experimental datasets for up to 40% missing data (Dutta et al. 2020c).  

 For 10%-40% missing data from kinematics dataset and 10%-60% missing data from EMG 

dataset, the fused datasets did not outperform the unfused sparse datasets when the risk effects 

were analyzed on muscles’ EMG. However, with further increase of the missing data from 50% to 

70% in both datasets, the fused dataset started showing better consistency than the unfused sparse 

EMG dataset, although the authors’ previous study showed that, for more than 50% missing data, 

the performance of the fusion method started to decrease (Dutta et al. 2020c). Despite the 

degradation of the fusion performance, in this study the fused datasets performed better compared 

to unfused sparse datasets with 50% to 70% of missing data. The possible reason can be attributed 

to the significant amount of missing data in the unfused datasets which could not capture the effects 

of the risk factors on the imposed risk, but due to comparatively small reconstruction errors in the 

fusion, the fused dataset performed better in risk assessment. Overall, for the specific datasets used 

in this study, the fusion-based risk assessment outperformed the one with no fusion, even when a 

large proportion of data (>50%) were missing. The findings suggested that, applying data fusion 

through CPD can be a better alternative and effective approach for work-related MSD risk 

assessment in construction rather than using datasets with missing values when the data collection 

is badly affected due to the presence of missing data.  

 Nevertheless, there are some limitations in this study. First, ground truth data were 

collected from an experimental study performed in a controlled laboratory setting, not from real 

construction site. Second, only an aggregated metric, maximum knee rotation and normalized 

muscle activity measurement were considered for fusion, detailed time series features were not 

analyzed. The synchronization of multiple time series datasets with different time stamps and 
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sampling rates and the corresponding data processing during fusion are worthwhile for further 

investigation. 

6.7. Conclusion and Future Extension 

 This research evaluated the numerical stability of fusion through canonical polyadic 

decomposition (CPD) for work-related MSD risk assessment in construction when the data 

collected suffer from missing data. The findings of this study suggested that CPD was numerically 

stable to generate a fused dataset based on the interrelations among the risk factors and the risk 

indicators that outperformed the unfused datasets with missing values in work-related MSD risk 

assessment. This signifies the effectiveness of using data fusion through CPD as an alternative 

approach of filling out missing data in work-related MSD risk assessment studies. The fused 

dataset was found to be more consistent to the original experimental dataset than the unfused sparse 

dataset in terms of generating risk assessment results. Even for a large proportion (>50%) of 

missing data, the fused dataset provided more reliable risk assessment results than the unfused 

sparse dataset. These findings ensure that data fusion through CPD can help enable accurate and 

reliable assessment of work-related risk factors for work-related MSDs among construction 

workers when the data collection is affected by missing data. In the future, the method of fusion 

of multiple MSD risk-related datasets by representing those datasets as high-dimensional tensor 

and then decomposing them to reconstruct a fused dataset can be expanded to explore similar 

studies related to other body parts, such as low back, feet and shoulder injuries of construction 

workers including roofers. Moreover, the experiment will be conducted in a real construction site 

involving the participation of professional roofers and data will be collected onsite using an inertial 

measurement units (IMU) based motion capture system. This will enable to explore the 

performance of the proposed fusion method to handle possible challenges involved in data 
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collection in a real construction site including missing data, noise, occlusion and sunlight issue for 

accurate and reliable risk assessment.  
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CHAPTER 7: DISCUSSION AND FUTURE EXTENSION 
 

7.1. General Discussion, Recommendations and Limitations 

  This research provides empirical evidence that unique sloped work setting and different 

working techniques for kneeling posture can significantly contribute to the development of knee 

MSDs among construction roofers. Roofers get exposed to potential knee MSD risks when they 

undertake shingle installation in a dynamic posture on rooftop. The findings of this research show 

that higher knee flexion, abduction, adduction and rotation is required in dynamic kneeling during 

sloped shingle installation. Activation of the knee extensor muscles are also highly increased 

during shingles installation on sloped rooftops which indicates muscle overloading and hence, 

represents knee MSD risks. The ranking-based ergonomic risk analysis method proposed in this 

research is implemented to analyze different phases of the dynamic shingle installation operation. 

Findings suggest that roofers experience the greatest risk of developing knee MSDs during placing 

and nailing shingle phases as in these phases they encounter the knee MSD risk factors including 

repetitions, forceful exertions and prolonged kneeling. Awkward flexion, abduction, adduction, 

internal and external rotations are also the highest in these two phases. Spearman’s correlation test 

result to assess the relative contributions of each knee angle demonstrate that awkward flexion and 

abduction and adduction significantly contribute to the potential knee MSD risk measurement. 

These awkward and extreme rotations should be prioritized for developing knee MSD risk 

assessment tools and effective interventions to prevent knee injuries among roofers.  

 To minimize knee MSDs among roofers, awkward postures should also be modified with 

ergonomic modifications that maintains joint range of motion to accomplish work tasks within the 

mid-range of motion positions for vulnerable joints. For example, knee flexion can impact the 
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cyclic contraction and elongation of the lower limb postural muscles and thereby the muscle 

activation. So, roofers should adjust their knee flexion (not less than 80° and not greater than 140°) 

during shingle installation on sloped roof surfaces so that cumulative muscular effort and fatigue 

during prolonged kneeling can be reduced. Employers must protect roofers from the recognized 

work-related hazards by implementing other types of controls such as engineering or 

administrative controls and by ensuring that roofers wear appropriate personal protective 

equipment (PPE). Using knee savers might be helpful to reduce extreme posture because they can 

minimize the peak lower extremity kinematics during sloped shingle installation. Knee pads can 

also help protect the knees during prolonged kneeling by distributing body weight over a larger 

surface area and reducing the force passed on to the knee cap. Knee creepers can reduce stress on 

the knees and can help prevent serious muscle and joint problems. Roofers can use nail guns with 

extension for securing shingles. It will allow roofers to work in standing upright position and hence 

reduce awkward postures, minimize strain and muscle fatigue. However, further research is 

necessary to investigate the impact of prolonged standing on lower extremity disorders such as 

ankle and foot pain. Proper ergonomic tools should be utilized that allow workers to maintain 

optimal joint positions. Eliminating excessive force and awkward posture requirements will reduce 

worker fatigue and allow high repetitive tasks to be performed without a significant increase in 

MSD risk for residential roofers. Using mechanical assists, counterbalance systems, powered 

equipment and ergonomic tools will reduce work effort and muscle exertions. An ergonomic 

control to reduce roofers MSDs and fall from height due to instability caused by muscle fatigue 

can be that, roof slope had better be less than 30°. It will reduce both falls from height, low back 

pains and muscle overloading during roofing task as suggested by Choi and Fredericks (2008) and 
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(Wang et al. 2017). However, this will need approval from architects, engineers, building owners 

and general contractors.  

 As data collection for MSD risk assessment involving human subjects often get affected 

by the incompleteness in the risk indicator datasets due to missing data, this research has proposed 

a data fusion method to treat those malformed and imperfect datasets which has been found useful 

to provide reliable risk assessment results consistent to those obtained from experimental datasets. 

The numerical stability of CPD tensor decomposition which was used for method development 

was also analyzed. Results suggest that in spite of using malformed datasets as inputs, fusion 

through CPD is numerically stable to generate a fused dataset based on the interrelations among 

the risk factors and the risk indicators that outperformed the unfused datasets with missing values 

in work-related MSD risk assessment. 

 Although this study provided empirical evidence for the association of certain work-related 

factors to knee MSDs among construction roofers, a several limitations are noteworthy. First, the 

participants in this study were not professional roofers. From the perspective of kinematics, which 

have proven to be in correlation with MSDs, there should be differences between professional 

roofers and non-professional roofers. Nevertheless, all subjects involved in this study were 

physically active and have experience in works such as home remodeling. It is postulated that their 

biomechanical reactions in the experiments are to a large extent similar to those of professional 

roofers. However, scientific evidence still needs to be explored to justify such premise. It is 

possible that professional roofers, based on years of experience, have adopted postures that would 

mitigate or reduce the risk of knee injuries. However, given all of their training and experience, 

roofers still have the 2nd highest rate of MSDs in the construction sector. Moreover, this study 

employed young participants although the working roofers have a larger age range and according 



148 

to BLS (2019), roofers suffer most of the injuries at the age range of 18-24. This study chose 

novice individuals because it intended to observe what initial extreme postures individuals 

encounter when first exposed to a sloped working environment and without much roofing 

experience, individuals take on what works best for them. While the study is not there yet, this 

type of approach with novice individuals will allow us to use this experimental framework to 

develop new ideas for training and/or interventions to alleviate these awkward postures and 

hopefully reduce MSD risk in roofing activities. Moreover, several biomechanical studies were 

found in the previous literature where nonprofessional and novice participants were employed for 

risk assessment purposes. 

 Second, three slopes (0º, 15º and 30º) were considered for assessing MSD risk in this study 

which were selected based on the common site practice in the United States residential 

construction and for the sake of safety of the participants. Although any roof slope higher that 18º 

can be considered as ‘high-pitched roof’ according to the definition provided by OSHA, roof slope 

can be higher than 30º. Hence, further assessment of MSD risks via observation of prolonged static 

and dynamic shingle installation trials performed on steep rooftops exceeding 30° is required.  

 Third, knee joint rotation and EMG signals of muscle activation data were collected from 

the experiment as time series data. But only the maximum measurements within a trial from the 

knee joint rotation data; and the maximum, cumulative and average measurements of different 

phases within a trial from the EMG data were extracted for risk assessment. The time series 

features were not fully analyzed. Although these metrics are well established to represent MSD 

risk in the area of biomechanics, further analysis on the time series features of the risk-related 

dataset can provide more in-depth understanding of the relevant risk, specifically the changes of 
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knee joint rotation and postural muscle activation with different working conditions and duration 

that can be associated with prolonged kneeling and repetitions. 

Finally, all the assessments and validation in this research were done based on an 

experimental study performed in a controlled laboratory setting due to strict protocol in human 

subject research. For the sake of the safety of the human subjects, a controlled setting is always 

needed to be maintained. For this reason, the environmental impact has not been extensively 

studied in this study. Only the work-related factors including roof slope and wring posture have 

been assessed. Temperature is one of the most encountered stressful factors in the environment 

(Ahmed 2006). Long term exposure to high and low temperatures affects the human skeletal 

(joints, muscles and bone) and biological system. This research has identified the potential effects 

of high and low temperature on human skeletal and biological system and their association to knee 

MSDs and fatal injuries (FI) among residential construction roofers based on the existing literature 

review.  

7.2. Effects of Temperature on Human Skeletal and Biological System 

 In the following section, the effects of external temperature on human skeletal and 

biological system and their association to roofers MSDs and FI are discussed. 

7.2.1. Effects of high temperature on the bones, joints, muscles 

High temperatures for a long duration and a frequent period of time of heating may result 

in greater occupational heat stress which can lead to heat related illness. According to workers’ 

compensation claims data, roofers have the highest rates of heat related illness (BLS 2019; 

Bonauto et al. 2007). Occupational heat increases the risk of heat stroke, which can be fatal 

(Bouchama and Knochel 2002) and also can reduce productivity. In this situation, body becomes 

unable to control its temperature and the body’s temperature rises rapidly, the sweating mechanism 
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fails, and the body is unable to cool down (Hifumi et al. 2018). When human bones are subjected 

to gradual or sudden heating up to different temperatures repeatedly, bones become brittle, 

although without any considerable changes in the surface features (Hiller et al. 2003).  

 For proper physiological and cellular function, human body is designed to maintain a core 

temperature of 98°F (Pušnik and Miklavec 2009). But during summer, sometimes roofers are 

subjected to work for 6~8 hours in high temperature up to 120°F.  Exposure to this increased 

temperature can also result in reduced cognitive function of the body and increased risk of MSD 

such as fall from height. Due to an excessive loss of the water and salt from the body, roofers may 

face heat exhaustion through excessive sweating (Kenny et al. 2018). In this situation, roofers may 

suddenly feel cramps in their postural muscles of upper and lower extremity due to sudden and 

involuntary contraction. Muscle cramps can make it temporarily impossible to use the affected 

muscle and decreases the productivity of the work. Muscles are the greatest contributor to peak 

joint contact forces (Kingston et al. 2016) which can contribute to musculoskeletal disorders in the 

joint. For example, high knee joint contact force is associated with knee joint degeneration or 

osteoarthritis (Andriacchi and Favre 2014). Muscle cramps can cause severe pain while being used 

for shingling during roofing task and repetitive exertion with a painful muscle may produce high 

contact force in the joint the muscle is passing through and overload the joint. 

Heat can also increase the risk of injuries in workers as it may result in sweaty palms, 

fogged-up safety glasses, and dizziness. In roof setting, when roofer sweat a lot during strenuous 

and repetitive activity, they can be affected by heat cramp. This sweating decreases the body’s salt 

and moisture levels. Low salt levels in muscles causes painful cramps. Sweating may also affect 

in roofing activities requiring grip such as placing shingles, grabbing nailing guns and installing 

shingles-- which requires manual performance by roofers. Heat cramps may also be a symptom of 
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heat exhaustion. Painful muscle cramp can alter the force that the muscles are normally able to 

generate, which can further overload the muscle and lead into MSDs generated by heightened 

muscular activation. Cumulative muscle overloading coupled with repetitive motion without 

adequate recovery time may cause MSDs due to overexertion or even imbalance (Kumar 2001). 

Another form of medical condition associated with heat stress and prolonged physical 

exertion is Rhabdomyolysis (Yoshizawa et al. 2016). In this condition, roofers face rapid 

breakdown, rupture, and death of muscle cells, tissues and fibers. When muscle tissue dies, 

electrolytes and large proteins are released into the bloodstream that can cause irregular heart 

rhythms and seizures and damage the kidneys as well. They can cause unconsciousness to the 

roofers and induce fall related FIs to them. 

Heat exposure has also been shown to produce other effects on workers, such as physical 

discomfort, reduced vigilance and increased fatigue, which could lead to accidents and injuries 

(Varghese et al. 2018).  

In human muscle, optimal muscle performance (or less fatigue) can be obtained at 77–86°F 

and the extent of fatigue becomes greater and faster at around 100°F (Roots et al. 2009). Without 

adequate heat dissipation, short-term acute heat exposure can cause a rise in core body temperature 

and may result in direct heat illnesses including cardiovascular diseases (Vangelova et al. 2006). 

High increase in temperature and dehydration might have had negative behavioral effects such as 

physical fatigue, irritability, lethargy, impaired judgment, vigilance decrement, loss of dexterity, 

coordination and concentration among roofers which can potentially lead to a compromise of 

occupational safety (Kjellstrom et al. 2009; Xiang et al. 2013). 
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7.2.2. Effects of high temperature on human biological system 

 Generally, in hot weather during burning sunlight, as body temperature increases, the 

chance of observing abnormalities in the biological effects also increases (Ahmed 2006). Extended 

temperature and sunlight may cause hyperthermia—a condition of having a body temperature 

greatly above normal level (Simon 1993). Hyperthermia cause defects in central nervous system 

in all species and cell death (Upfold et al. 1989). This may cause pain in the skeletal muscles, 

makes the muscle rigid or sometimes disable to perform tasks (Rock and Kono 2008). In residential 

roofing, roofers spend most of their working time in awkward kneeling posture which involves 

cyclic contraction and relaxation of the knee postural muscles. More workload in a rigid knee 

flexor or extensor muscle and frequent change in knee joint rotation during shingle installation 

enhance the muscular demand and contribute more to the knee joint compressive force causing 

knee MSDs, such as knee joint degeneration, patellofemoral pain and osteoarthritis (Xu et al. 

2017). 

Heat causes a transient depression in overall protein synthesis (Plesofsky-Vig and Brambl 

1985) -- a biological process at which cell produces protein. Moreover, heat shock can reduce 

normal protein synthesis of mammalian brain Edwards et al. (2002). Insufficient protein in cell 

reduces lean body mass (the difference between total body weight and body fat weight), muscle 

strength, and muscle function (Cava et al. 2017), which in turn causes cramping, soreness and 

fatigue to the muscles. Muscle fatigue is also dependent on temperature (Roots et al. 2009). When 

roofers work in real sites, they may be subjected to work at a temperature up to 120 degrees and 

have to work up to 6~8 hours per day which can easily cause muscle fatigue. In a fatigued condition 

roofer may lose their balance which can cause fall from height and death.  
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Heat stress results in alterations in the metabolic process of the human body (Kay and 

Marino 2000). Higher environmental temperature is also associated with decreased metabolic rate 

(Wilmore et al. 1975).  Nilsen (1984) recorded that the hyperthermia distorts the small vessels and 

also produces irregularities of the microvascular pattern. The distortion in blood vessels may cause 

the impairment of the metabolic processes (carbohydrates genesis) and thus, may reflex some 

delaying in the growth of the cellular processes. Poor body metabolism causes soreness and 

weakness in the muscles which may be associated to metabolic muscle disorders (Phillips and 

Haas 2008). In shingle installation, roofers face the most awkward rotation, forceful exertion and 

repetition during placing and installation shingle phases  (Dutta et al. 2020a). During these phases, 

using a sore and week muscle may further deteriorate the muscle condition and may overload the 

muscle tissues, at times exceeding the maximum strength that the muscle is able to generate, which 

can potentially lead to muscle fatigue. Cumulative muscle overloading coupled with repetitive 

motion without adequate recovery time  may cause MSDs due to overexertion or even imbalance 

(Kumar 2001). 

7.2.3. Effects of low temperature on the bones, joints, muscles 

Working in cold temperature can put strain on the body. Temperature can also affect 

muscles contraction. In colder weather, the rate of oxygen release from hemoglobin to the muscle 

becomes slower which makes it difficult for muscles to contract in cold weather as opposed to 

warmer conditions. In this situation, less oxygen is available in the muscle, which causes muscle 

stiffness and as a result, roofers can overly exert to perform the shingle installation and can cause 

MSDs such as low back pain, knee disorders, shoulder MSD, muscles numbness etc. 

Low temperatures cause blood vessels and arteries to narrow, restricting blood flow and 

reducing oxygen to the heart. In this situation, heart pumps harder to circulate blood through the 
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constricted blood vessels. As a result, the blood pressure and heart rate increase. A poor or less 

blood circulation through the joints in the body such as, knee and shoulder joint causes numbness 

and tingling in the parts connected to the joints, muscle cramps and swellings (Nunes and Bush 

2012). When the blood does not circulate correctly, oxygen and nutrients cannot reach tissues 

effectively, which can result in stiffness and cramping (Parisi et al. 2003). In roofing task that 

involves dynamic motion of the lower limbs, especially knee, during placing and nailing shingles; 

stiff thigh muscles can contribute to excessive knee joint compressive load and overload due to 

forceful exertions (Kurita et al. 2012). Restricted blood flow may cause bones ache in cold weather 

(Robertson 2017).  

7.2.4. Effects of low temperature on human biological system 

Excessive cool temperature may cause Hypothermia, which is a disorder where body core 

temperature in human decreases below 35 °C, and the body fails to produce the required amount 

of heat to maintain thermal balance, due to an excess heat loss (Brown et al. 2012). As hypothermia 

progresses, there is an increasing decrease in cardiac output, heart rate and blood pressure (Beker 

et al. 2018).  

As hypothermia continues, there is a progressively decrease in oxygen consumption by the 

brain which can cause sudden brain MSD and death. The blood consumption by spinal cord might 

decrease in low temperature. In residential roofing task, roofer most often have to maintain a 

stooped posture during shingle installation. Due to low blood circulation in the spinal cord, the 

low back muscles may become overloaded and provide feeling of numbness and tingling as the 

contraction will be limited due to less oxygen availability (Richardson et al. 2006). 
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7.3. Future Extension 

From the above discussions, it can be understandable that there are certain areas in the risk 

assessment studies for roofers MSD that need further attention. First, high and low outdoor 

temperature can have some unavoidable impacts on human musculoskeletal and biological system. 

But these impacts cannot be observed during experiments in the lab setting. Although, it is well 

accepted to validate biomechanical models based on laboratory based experimental studies in the 

research community, for in-depth understanding and characterization of MSDs and FIs among 

roofers, conducting the roofing experiment in real construction site is necessary. This will allow 

to analyze the effects of different work-related factors such as roof setting, working posture on the 

change of skeletal joint movement with varying temperatures. The effect of the variation of 

temperature on muscle physiology and the activation of the postural muscles should also be 

explored further to study muscle fatigue in roofing. These types of studies will provide knowledge 

on the correlation of temperature variation to MSDs and FIs among residential roofers so that, 

effective interventions, training and ergonomic solutions can be developed for the sake of reducing 

MSDs and traumatic injuries in roofing community. Interventions, such as, thermal safety vest, 

water resistant insulated coat/jacket, insulated gloves and boots, ear covering hats, cooling vests, 

moisture-absorbing vest-- should be developed and tested to understand their effectiveness in 

protecting residential roofers during hot and cold weather. 

Second, there is no study in the existing literature that represents the variation between the 

biomechanical reactions of experienced and novice roofers for understanding the effect of 

experience on posture optimization and risk-taking behavior.  Roofing experiments should also be 

conducted involving both professional and novice roofers to see if experienced roofers can 

optimize their posture and hence can be less susceptible to MSDs. The variation in the 
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biomechanical reactions and postural preferences between the professional and novice roofers 

should also be studied to quantify the postural optimization with and without experience in roofing 

which will allow to identify the correlation between experience and MSD risk perception in 

roofing. 

Third, as the work environment exposes roofers to both FIs and MSD risks, the imbalance 

measurement can be studied along with knee joint rotation and muscle activation for developing 

risk assessment methods and interventions. To facilitate the risk measurement for imbalance, tasks 

performed on steep rooftops exceeding 30°, which was not included in this study, can be studied 

with fall protection measures in the future. 

Finally, all the assessments in this study were performed based on the general definition of 

awkward posture provided in the existing literature which suggests that the postures that result in 

increased risk of fatigue, pain or skeletal joint degeneration when are used repetitively or for 

prolonged periods. Generally, awkward posture is defined as the deviation of a body part from its 

natural or ‘neutral’ position while job tasks are being performed. However, there is no threshold 

of the deviation from the neutral position that can conclude if a posture is awkward or not.  

Frequent and high contact stress at knee joint is associated with knee osteoarthritis and damage of 

articular cartilage of the knee joint — two common forms of knee disorders. A previous study 

showed that, with an increase in knee flexion from 15.5° during walking to 90° during squatting 

posture, the contact stress in knee joint increased significantly by over 80% (Thambyah et al. 

2005).  Knee flexion beyond 90° generates larger moment and forces which results in high stress 

in the knee joint (Nagura et al. 2002). These indicate a strong association between knee rotational 

angle and knee joint contact stress which relates to knee MSDs. Therefore, in this study, potential 

knee MSD risk is defined as an increase in knee rotations that creates high contact stress in the 
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knee joint. Knee MSD risk is considered to increase as the knee rotational angles encounters larger 

awkward postures. Awkward posture is thus considered as a deep flexed posture of knee (>90°) 

with medial and lateral rotation leading to increased amount of stress in the knee joint. However, 

further biomechanical studies on the correlation between the knee joint contact stress and the 

physical structures of knee joint skeletal components, such as, tibia, femur, patella, tendon and 

ligaments with varying knee joint rotation and the knee postural muscle activation are required to 

measure the threshold of knee joint rotation and muscle activation that can be defined as ‘awkward’ 

and hence, can be identified as ‘risky’ for knee MSDs such as knee osteoarthritis and knee joint 

degeneration. 
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CHAPTER 8: CONCLUSION AND KEY CONTRIBUTIONS 
 

8.1. Conclusion 

 This empirical study analyzed the effects of the unique sloped work setting and different 

working techniques for kneeling posture on knee MSD risks in roofing activities. A set of 

programed experiments were conducted to investigate the association of these factors to the 

development of knee MSDs in residential roofing. The participants were asked to simulate shingle 

installation task on a slope-configurable wooden platform. They mimicked placing and nailing 

shingles for three different roof slopes (0, 15 and 30 degree) and two different kneeling posture 

(static kneeling and dynamic kneeling) which were selected based on site practices, experimental 

safety and feasibility. To indicate knee MSD risk, knee kinematics data and bilateral knee postural 

muscle activation signals were measured using VICON optical motion analysis and surface 

electromyography (EMG) system respectively. 

 Research findings demonstrated that roof slopes, working postures and their interactions 

significantly impact knee rotational movement–flexion, abduction, adduction, internal and 

external rotation. Roofers become exposed to higher knee MSD risks during shingle installation 

compared to while in a static kneeling posture on high-pitched rooftop as higher knee flexion, 

abduction, adduction and rotation are required in dynamic kneeling posture. They have also been 

found to be significantly associated with the peak normalized activation of the knee postural 

(flexor and extensor) muscles. Specifically, roofers become exposed to a greater risk of developing 

knee MSDs with the increase of roof slope during shingle installation as the dynamic kneeling 

posture during shingle installation on high-pitched rooftops requires significantly higher muscle 

loading for task performance compared to a static flexed kneeling posture. Therefore, the awkward 
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knee joint rotation and the heightened muscle activation while kneeling during shingle installation 

on high-pitched rooftop should be given particular attention for effective intervention 

development.  

 A ranking-based ergonomic method has been developed and applied to identify the shingle 

installation phase with the greatest potential knee MSD risk. Aggregation-based and multiplication 

scoring models have been used to develop the risk assessment method.  Roofers’ knees are exposed 

to the greatest potential knee MSD risk while placing shingles and nailing shingles as roofers face 

forceful exertion, prolonged and repeated awkward kneeling movements in these phases. As these 

phases involve extreme awkward rotations in knee joint, the can potentially be considered as the 

riskiest phases in shingle installation operation. Awkward flexion, abduction and adduction should 

be prioritized for developing knee MSD risk assessment tools as they significantly contribute to 

the potential knee MSD risk measurement. 

 Although, risk exposure data collection with human subject involvement is essential for 

understanding construction worker’s behaviors and conditions that may expose them to work-

related MSD risks on construction sites, the accuracy of risk assessments is often affected by 

incompleteness in the risk exposure datasets when some data becomes missing due to human and 

technology-induced errors. To treat these imperfect MSD risk-related datasets, a data fusion 

method has been proposed using canonical polyadic decomposition which can help not only in 

replacing missing values, but also holds the correlation among the potential risk factors and the 

risk indicators during replacement. Numerical stability evaluation of fusion through CPD for work-

related MSD risk assessment also suggested that in spite of using malformed experimental data 

with missing value as input, CPD is numerically stable to provide more reliable risk assessment 

result compared to unfused sparse datasets. To enable accurate assessment of work-related risk 
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factors, the proposed method can therefore be used as an alternative risk assessment method when 

data collected from experimental studies or real construction sites are incomplete due to missing 

data points.  

8.2. Key Contributions 

The outcome resulting from this research will greatly enhance the understanding of the 

physical hazard exposures, improve their risk assessment methods, and help develop more 

effective intervention methods to minimize the risks of knee MSDs in roofing construction 

industry substantially reducing work efficiency or productivity. The findings of this research 

provide useful information to statistically understand the effects of work-related risk factors: roof 

slopes and kneeling working postures, on knee MSDs while performing shingle installation on a 

sloped rooftop. For example, by knowing the changes in knee joint rotation at different roof slope 

and working kneeling posture, interventions such as, wearable or external devices, knee pads, knee 

supporting devices and knee savers can be tested and developed for preventing awkward knee 

rotation in sloped-shingle installation. A known level of knee-muscle activation at different work 

settings and kneeling postures also help understand the mechanism contributing to the onset of 

knee MSDs (Nagura et al. 2006) and develop knee joint biomechanical models for computing in-

vivo muscle and contact forces in different occupational tasks (Lin et al. 2010). The ergonomic 

method proposed for detailed risk analysis of the shingle installation task may generate useful 

information on the unsafe conditions of shingle installation operations to facilitate effective 

intervention strategies (education, training, and tools) for reducing knee exposure and hence 

minimizing knee injuries and disorders among construction roofers. This research will advance the 

construction knowledge by providing insights of roofing work-related conditions on knee MSD 

development and thereby helping reducing knee MSD risks of roofers through developing training 
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and ergonomic solutions. Also, the data fusion method proposed in this research can be used for 

treating imperfect risk related datasets which can also be used as an alternative risk assessment 

method when data collected from experimental studies or real construction sites are incomplete 

due to missing data points. The findings will help enable reliable assessment of work-related risk 

factors for work-related MSDs among construction workers. 
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