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Abstract

Video and Image Super-Resolution via Deep Learning with Attention Mechanism

Xuan Xu

Image demosaicing, image super-resolution and video super-resolution are three important
tasks in color imaging pipeline. Demosaicing deals with the recovery of missing color informa-
tion and generation of full-resolution color images from so-called Color filter Array (CFA) such
as Bayer pattern. Image super-resolution aims at increasing the spatial resolution and enhance im-
portant structures (e.g., edges and textures) in super-resolved images. Both spatial and temporal
dependency are important to the task of video super-resolution, which has received increasingly
more attention in recent years. Traditional solutions to these three low-level vision tasks lack gener-
alization capability especially for real-world data. Recently, deep learning methods have achieved
great success in vision problems including image demosaicing and image/video super-resolution.

Conceptually similar to adaptation in model-based approaches, attention has received increas-
ing more usage in deep learning recently. As a tool to reallocate limited computational resources
based on the importance of informative components, attention mechanism which includes channel
attention, spatial attention, non-local attention, etc. has found successful applications in both high-
level and low-level vision tasks. However, to the best of our knowledge, 1) most approaches inde-
pendently studied super-resolution and demosaicing; little is known about the potential benefit of
formulating a joint demosaicing and super-resolution (JDSR) problem; 2) attention mechanism has
not been studied for spectral channels of color images in the open literature; 3) current approaches
for video super-resolution implement deformable convolution based frame alignment methods and
naive spatial attention mechanism. How to exploit attention mechanism in spectral and temporal
domains sets up the stage for the research in this dissertation.

In this dissertation, we conduct a systematic study about those two issues and make the fol-
lowing contributions: 1) we propose a spatial color attention network (SCAN) designed to jointly
exploit the spatial and spectral dependency within color images for single image super-resolution
(SISR) problem. We present a spatial color attention module that calibrates important color infor-
mation for individual color components from output feature maps of residual groups. Experimental
results have shown that SCAN has achieved superior performance in terms of both subjective and
objective qualities on the NTIRE2019 dataset; 2) we propose two competing end-to-end joint op-
timization solutions to the JDSR problem: Densely-Connected Squeeze-and-Excitation Residual
Network (DSERN) vs. Residual-Dense Squeeze-and-Excitation Network (RDSEN). Experimental
results have shown that an enhanced design RDSEN can significantly improve both subjective and
objective performance over DSERN; 3) we propose a novel deep learning based framework, De-
formable Kernel Spatial Attention Network (DKSAN) to super-resolve videos with a scale factor
as large as 16 (the extreme SR situation). Thanks to newly designed Deformable Kernel Convolu-
tion Alignment (DKC Align) and Deformable Kernel Spatial Attention (DKSA) modules, DKSAN
can get both better subjective and objective results when compared with the existing state-of-the-art
approach enhanced deformable convolutional network (EDVR).
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Chapter 1

Introduction

Low-level vision problems such as image super-resolution, image demosaicing and video

super-resolution have been explored in the last decade. The traditional approaches usually based

on interpolation and modeling. Recently, thanks to the advance in more powerful computing re-

sources, deep learning techniques are rapidly developing. Convolutional Neural Networks (CNN)

play more and more important role to solve most of the computer vision tasks.

1.1 Motivation

1.1.1 Single Image Super-Resolution

Image super-resolution aims at increasing the spatial resolution of low-resolution LR images

and enhancing important structures (usually the high-frequency components such as edges and

textures) which is regarded as a challenging ill-posed problem (as shown in Fig. 1.1). It has been

widely applied to practical and real-world applications such as medical imaging [10], surveillance

and security [11].

Attention mechanism, that allows a network to concentrate its computational resources on

the most useful features and enhance the discriminative learning ability, originally inspired by the

Sec. 1.1.1,1.2.1, and 1 c©2019 IEEE. Reprinted, with permission, from X. Xu and X. Li, SCAN: Spatial Color
Attention Networks for Real Single Image Super-Resolution, 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), June 2019. The reference can be found in [8].

Sec. 1.1.2,1.2.2, and 2 c©2020 IEEE. Reprinted, with permission, from X. Xu, Y. Ye and X. Li, Joint Demosaicing
and Super-Resolution (JDSR): Network Design and Perceptual Optimization, IEEE Transactions on Computational
Imaging, June 2020. The reference can be found in [9].
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LR SR

Figure 1.1: The general procedure of single image super-resolution.

behavior and the neuronal architecture of primate visual systems [12,13], has received increasingly

more attention by computer vision and machine learning communities. Since the breakthrough in

machine translation application [14], attention has been found to be useful to many high-level

vision tasks including image captioning [15, 16], lip reading [17], image classification [18–20]

and image understanding [21, 22]. The success of attention mechanism is generally attributed to

prioritize the allocation of available processing resources towards the most informative components

(e.g., salient regions) in an image.

Until now, attention mechanism has been under-researched for low-level vision tasks. The only

few exceptions all deal with SISR (e.g., channel attention [2], channel-spatial attention [23], non-

local attention [24]). The common theme behind so-called spatial or channel attention mechanism

is to adaptively rescale each spatial-domain or channel-wise feature by modeling their interdepen-

dency, that will help networks pay more attention to specific features.

However, existing study about attention mechanism has not been extended for color images or

across spectral bands to the best of our knowledge. The only studies about color attention we can

find are [25, 26] which have focused on the application of object recognition for high-level vision

tasks. The issue of how to jointly exploit spatial and spectral dependencies [27] for low-level

vision tasks such as SISR seems to have not been addressed in the open literature. All previous

attention strategies for SISR have only considered to directly use R,G,B color channels as input

training data. In other words, the networks will simply treat all the color information among R,G,B

channels equally. One potential risk of this strategy is the lack of optimization - e.g., exploiting the

spectral dependency among color channels might benefit the task of deep residual learning.
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Color ImageBayer Pattern

Figure 1.2: The general procedure of single image demosaicing.

Figure 1.3: Comparison of JDSR output to separately demosaic-super-resolve output. Left to right:
a) HR image (ground-truth); b) 4× upscaling output by concatenating state-of-the-art demosaicing
method Flex [1] with SISR method RCAN [2] (separated approach); c) 4× upscaling output of our
proposed DSERN networks (joint approach).

1.1.2 Joint Image Demosaicing and Super-Resolution

Image demosaicing and single image super-resolution (SISR) are two important image pro-

cessing tasks in the pipeline of color imaging. Demosaicing is a necessary step to reconstruct full-

resolution color images from so-called Color filter Array (CFA) such as Bayer pattern(as shown

in Fig. 1.2). SISR is a cost-effective alternative to more expensive hardware-based solution (i.e.,

optical zoom). Both problems have been extensively yet separately studied in the literature - from

model-based methods [28–36] to learning-based approaches [2, 4, 5, 37–42]. Treating demosaic-

ing and SISR as two independent problems may generate undesirable edge blurring as shown in

Fig. 1.3. Moreover, the processes of demosaicing and SISR can be integrated and optimized to-

gether from a practical application point of view (e.g., digital zoom for smartphone cameras such

as Google Pixel 3 and Huawei P30).
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Inspired by the success of joint demosaicing and denoising [6], we propose to study the prob-

lem of JDSR in this dissertation and develop a principled solution leveraging the latest advances

in deep learning to computational imaging. We argue that the newly formulated JDSR problem

has high practical impact (e.g., to support the mission of NASA Mars Curiosity and smartphone

applications). The problem of JDSR is intellectually appealing but has been under-researched so

far. The only existing work we can find in the open literature is a recently published paper [43]

which contained a straightforward application of ResNet [44] and considered the scaling ratio of

two only.

1.1.3 Video Super-Resolution

Video Super-Resolution (VSR) aims to map LR videos to high-resolution HR videos with more

details especially edges and textures (as shown in Fig. 1.4). The same as image super-resolution,

VSR has also widely used in many practical applications such as surveillance [45] and HDTV.

More than that, VSR has great potential to be applied to video coding and video compression.

Video super-resolution can be mainly separated as two problems, video spatial super-resolution

and video temporal super-resolution. Video spatial super-resolution regards to super-resolve the

spatial resolution of the LR frame to HR frame to improve clarity of video; while video temporal

super-resolution refers to the generation of new frames between two neighboring frames to increase

the video frame rate and fluency. Different from SISR which only needs to consider the information

from spatial domain, both spatial and temporal information can be utilized to recover HR videos in

the task of VSR via multiple LR frames. Although single frame based video super-resolution is a

possible approach for VSR, ton of temporal information such as motion compensation among the

consecutive frames cannot be exploited.

In order to explore the potential benefit from temporal information of VSR, many existing ap-

proaches [46–49] conducted a sequence of consecutive LR frames including one reference frame

and several neighboring frames as inputs to reconstruct HR frame corresponding to reference LR

frame. One problem of this kind of methods is the camera or objects motion among different

frames. Therefore, to better exploit temporal information, the consecutive frames need to be

aligned before using to reconstruct HR frame. As the most famous motion estimation method,
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Figure 1.4: The general procedure of multi-frame video super-resolution.

optical-flow [50] is logically considered as motion estimator for several VSR approaches [51–53].

However, the disadvantages of the optical flow method are also obvious. For example, the flows

can be observed when the external illumination changes even if there is no movement. In addition,

the actual motion is often not observed in areas without sufficient variation of gray level. Con-

ducting with wrong motion compensation may generate undesired blurring and artifacts for HR

frames.

Recently, deformable convolution [54, 55] becomes more and more popular as an assistant

module for video frame alignment, such as [56–58] have already successfully applied for vary

forms of deformable convolution alignment module to temporally align neighboring frames with

reference frame and get the desired motion compensation compared with optical-flow-based meth-

ods. However, such the alignment modules still learn the offsets via several normal convolution

layers which may not extract the valuable information because of the fixed kernel configurations.

Alternatively, deformable kernels [59] can adapt effective receptive fields by weighting the contri-

bution of each pixel that can enhance the offset extraction compared with the normal convolution

does.

1.2 Problem Statement

In this dissertation, we mainly focus on solving three major challenging problems: 1) SISR; 2)

JDSR; 3) Multi-Frame Video Super-Resolution (MVSR).
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1.2.1 Single Image Super-Resolution

In this work, we propose to address the above issue (Sec. 1.1.1) by developing a new archi-

tecture named Spatial Color Attention Networks (SCAN). Conceptually similar to bilateral filter-

ing [60] in which spatial and color are treated as two independent domains, we treat spatial and

color features as two complementary channels. So instead of considering channel-wise and spatial

feature modulation in [23], we have developed a spatial color attention module (SCAM) to cal-

ibrate important color information from output feature maps of residual groups. Unlike existing

works which treat channel-wise features across spectral bands equally, we propose to make the

networks focus on informative features and exploit interdependencies among color channels. The

newly developed color attention mechanism enables the network to not only focus on recovering

spatially high frequency components (e.g., edges and textures) but also pay attention to vivid and

sharp color information (e.g., colorful flowers and texts) in the generated HR image.

1.2.2 Joint Image Demosaicing and Super-resolution

In the second work, the motivation behind our approach is mainly two-fold. On one hand,

rapid advances in deep residual learning have offered a rich set of tools for image demosaicing

and SISR. For example, DenseNet [61] has been adapted to fully exploit hierarchical features for

the problem of SR in SRDenseNet [62] and residual dense network (RDN) [42]; residual channel

attention network (RCAN) [2] allows us to develop much deeper networks (over 400 layers) with

squeeze-and-excitation (SE) blocks [19] than previous works (e.g., [4,63]). However, to the best of

our knowledge, the issue of spatio-spectral attention mechanism has not been explicitly addressed

for color images in the open literature. How to jointly exploit spatial and spectral dependency for

JDSR in network design deserves a systematic study.

On the other hand, we propose to optimize the perceptual quality for JDSR because that is what

really matters in real-world applications. Generative adversarial network [64] is arguably the most

popular approach toward perceptual optimization and has demonstrated convincing improvement

for SISR in SRGAN [5]. However, it has also been widely observed that the training of GAN suf-

fers from stability issue which could have catastrophic impact on reconstructed images. There has

been a flurry of the latest works (e.g., Relativistic average GAN (RaGAN) [65], enhanced SRGAN
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(ESRGAN) [41] and perception-enhances SR (PESR) [66]) showing the potential of relativistic

discriminator in stabilizing GAN and improving visual quality of SISR images. How to leverage

those latest advances to optimize the perceptual quality for JDSR has practical significance.

1.2.3 Multi-Frame Video Super-Resolution

In the final work, we propose a novel Multi-Frame based Deformable Kernel Spatial Atten-

tion Network (DKSAN) for video extreme super-resolution, the upscaling factor is 16. Different

from the traditional motion estimation based on optical flow [50], inspired by EDVR [56] who

applies deformable convolution [55] to temporally align neighboring frames with reference frame,

we designed a non-optical-flow based module, called Deformable Kernel Convolution Alignment

(DKC Align) module, to utilize deformable kernel [59] combined with deformable convolution to

extract not only global but also local edge and texture features to align neighboring frames with

reference frame. Moreover, we developed Deformable Kernel Spatial Attention (DKSA) module

to further enhance the spatial details of reconstructed feature maps. The advance of DKSA module

is that deformable kernel [59] can better represent the edge and texture features which are impor-

tant for super-resolution tasks compared with general convolution based spatial attention which

cannot represent local feature accurately.

1.3 Contributions

1. SISR

•We propose to address the issue of color attention for SISR and demonstrate it is supple-

mentary to the spatial and channel attention mechanisms studied in the literature;

• Our proposed Spatial Color Attention Module (SCAM) and Residual Channel-Spatial At-

tention (RCSA) can be easily integrated to most existing SISR networks;

• Experimental results have shown our SCAN can significantly outperform previous state-

of-the-art RCAN [2] on real SISR competition dataset.

2. JDSR
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• Network design: we propose two networks for JDSR, Densely-Connected Squeeze-and-

Excitation Residual Network (DSERN) and Residual-Dense Squeeze-and-Excitation Net-

works (RDSEN). DSERN is novel Densely-Connection Squeeze-and-Excitation Residual

Block (D SERB) is designed to facilitate information flow in deeper and wider networks

by smooth activation, which can more effectively suppress spatio-spectral aliasing. RDSEN

concatenates a pre-demosaicing network (PDNet) and Residual-Dense Squeeze-and-Excitation

Networks (RDSEN). The former takes a model-based demosaicing result via Iterative-Residual

Interpolation (IRI) [67] as the surrogate target to facilitate deep residual learning for pre-

demosaicing. Then a novel concatenation of Residual-Dense Squeeze-and-Excitation Block

(RDSEB) modules is designed to facilitate information flow between the intermediate de-

mosaicing result and the final reconstruction.

• Perceptual optimization: we have leveraged the latest advance RaGAN [65] from SISR to

JDSR and studied the choices of perceptual loss function for JDSR. In addition to improved

stability, we have found that Texture-enhanced RaGAN (TRaGAN) with a before-activation

perceptual loss function can produce visually more pleasant results.

• Real-world application: we have applied the proposed RDSEN+TRaGAN solution to

raw Bayer pattern data collected by the Mast Camera (Mastcam) of NASA Mars Curios-

ity Rover. Our experimental results have shown visually superior HR image reconstruction

can be achieved at the scaling ratio as large as 4.

3. MVSR

•We propose a multi-frame based cascaded network called Deformable Kernel Spatial At-

tention Networks (DKSAN) to solve the video extreme super-resolution task (scale factor of

16).

•We designed a new deformable kernel [59] + deformable convolution [54,55] based module

to align the neighboring frames with the reference frame.

• Experimental results have shown our DKSAN can significantly outperform previous state-

of-the-art EDVR [56] on IntVID [68] dataset.



Xuan Xu Chapter 1. Introduction 9

1.4 Dissertation Structure

The rest of this dissertation is organized as follows:

• Chapter 2 reviews the state-of-the-art SISR approaches and introduces a novel network

Spatial Color Attention Networks (SCAN) to solve real world image super-resolution prob-

lem.

• Chapter 3 presents the JDSR problem and proposes two effective solutions via deep learning

architecture.

• Chapter 4 describes the proposed DKSAN network with DKSA and DKC Align modules to

solve video extreme super-resolution problem with a scale factor of 16.

• Chapter 5 presents the conclusions of this dissertation and plans the future works.
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Chapter 2

Single Image Super-Resolution

2.1 Related Work

2.1.1 Traditional Approaches

Traditional approaches towards SISR [32–36] suffer from notorious aliasing artifacts and edge

blurring. Here we reviewed a couple of state-of-the-art SISR approaches.

Chang et al. [33] proposed a patch-learning-based framework to utilize similar local geometry

from LR patches to reconstruct HR images. Yang et al. [35] introduced a novel sparse coding based

image super-resolution method which trained two dictionaries for LR and HR image patches jointly

to enforce the similarity between LR dictionary and HR dictionary based on sparse representations.

Therefore, the HR dictionary can guide LR patch image to reconstruct Super-Resolution (SR) im-

age through sparse representations. Bevilacqua et al. [32] presented a non-negative neighbor em-

bedding method which is also based on learning LR and HR dictionary. In particular, a dictionary

can be trained by the feature vector of LR patches which are represented via a weighted K nearest

neighbors combination; then, this trained LR dictionary can guide input LR patches to reconstruct

the corresponding HR patches. Timofte et al. [34] proposed fast SR method to speed-up learn-

ing dictionary based approaches without any compromise on being reconstructed super-resolved

images.

c©2019 IEEE. Reprinted, with permission, from X. Xu and X. Li, SCAN: Spatial Color Attention Networks
for Real Single Image Super-Resolution, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), June 2019. The reference can be found in [8].
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Figure 2.1: The overview of SRCNN [3] networks.

2.1.2 Deep Learning Approaches

Pre-upsampling SISR networks

Deep learning-based approaches toward single image super-resolution (SISR) have shown the

reliability and advantages compared with the traditional model-based methods. As a pioneer, SR-

CNN [3] first introduced CNN architecture to train SISR model with pre-upsampling LR images

because the mapping between low and high-dimensional space is difficult to learn directly. By

applying traditional interpolation algorithms such as Bicubic, SRCNN can be end-to-end trained

from LR (after upsampling) to HR image (as shown in Fig. 2.1). This training strategy significantly

reduces the learning difficulty which redefined the SR problem as an image coarse-to-fine process.

Although SRCNN firstly implements CNNs to SISR problem, it’s still only a three layer network

which limit to explore deeper features to reconstruct more detailed information. To address van-

ishing gradient problem when training deeper networks, VDSR [4] (shown in Fig. 2.2) utilized

the concept of deep residual networks [44] to build a 20-layer network to learn only the residual

between interpolated LR image and HR image, and significantly improved the results.

Post-upsamling SISR networks

Although pre-upsampling and long skip connection strategies overcome the difficulty of train-

ing, large size of input images (pre-upscaled LR images) consume a huge amount of GPU memory,

and slow down the training and test running time. Also image interpolation algorithms such as

Bicubic always amplifies noise and blurring.
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Figure 2.2: The overview of VDSR [4] networks, ⊕ denotes element-wise sum. The long connec-
tion between HR and LR images which can significantly reduce training complexity.

To avoid these issues and improve the computational efficiency, LapSRN [69] proposed to up-

scale low resolution image by a pyramid structure, this cascade of deep learning method not only

saved GPU memory but also reduced the gap among LR image and each corresponding scale of

HR image which has achieved a better performance on large scale factors (ex. 8×). EDSR [63]

and its derivative network MDSR firstly introduced to stack residual blocks to address SISR prob-

lem. Residual blocks utilized short skip connection to make information flow more smoothness.

Also, batch-normalization [70] layer which usually applied to reduce training difficulty and boost

convergence is discarded. There are two reasons: 1) batch-normalization is designed for high-level

vision problems such as classification, low-level vision problem needs the accuracy for each pixel

position which normalized layer may prevent the network to find the optimized solution; 2) re-

moving batch-normalization layer can save up to 40% GPU memory to extend a deeper and wider

networks and thus get a chance to boost the performance substantially. Most recent advances in-

clude SRDenseNet [62] which applied DenseNet [61] to reach a wider network to increase the

performance. Residual-Dense Networks (RDN) [42], which took the advantages of ResNet [44]

and DenseNet [61], proposed the stacked residual dense block (RDB) and through local and global

feature fusion to utilize deep and wide networks information to reconstruct HR images.
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Attention Mechanism based approaches

It is worth highlighting previous works on attention mechanism in the existing literature. Gen-

erally speaking, the common principle underlying various attention mechanisms is to bias lim-

ited computational resources based on the importance of informative components. For example,

channel attention [19] adaptively rescale the channel-wise feature by modeling their interdepen-

dency; channel-spatial attention addresses the issue of channel-wise and spatial feature modu-

lation [23]; non-local attention [24] attempts to simultaneously exploit the local and non-local

dependency within an image for the task of image restoration. Residual Channel Attention Net-

works (RCAN) [2] first introduced attention mechanism inspired by SENet [19] to calibrate feature

maps and proposed residual in residual structure to achieve a very deep convolutional networks

which achieved new state-of-the-art performance for SISR task.

To the best of our knowledge, the issue of color attention - i.e., the modeling of interdependency

across different spectral channels - had not been studied in the open literature. Therefore, we

propose to address this issue and develop specially tailored modules for color image restoration.

2.1.3 SISR with Generative Adversarial Network

Generative Adversarial Network (GAN), proposed by Goodfellow et al. [64], gives a new in-

sight for deep learning techniques. GAN based model usually includes two parts, generator and

discriminator. These two models cooperate in an adversarial manner, the generator tries to gen-

erate realistic synthetic image to fool discriminator and the discriminator works on distinguishing

the ground-truth image and the fake image, until the whole networks find a trade-off point where

the generator can synthesize most realistic fake image. GAN has been implemented to solve many

computer vision problems, such as image synthesis [71], image-to-image translation [72], denois-

ing [73], dehazing [74] and image super-resolution [5, 41, 66]. Here we only focus on reviewing

literature related to image super-resolution with GAN.

Most of existing non-GAN based SISR approaches operate with L1 or L2 (MES) as the loss

function which aims to optimize the measure index of Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index (SSIM). This guides the model to produce a smoother super-resolved

image which loses sharp and texture details. Besides objective measures such as PSNR/SSIM [75],
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Figure 2.3: The visual results comparison among GAN and non-GAN approaches [5]. The scale-
factor is 4.

SRGAN [5] introduced a novel GAN [64] based architecture and combined pre-trained VGGNet

[76] to extract high-level similarity features and optimize the perceptual quality of SR images.

Benefited by GAN, SRGAN can reconstruct more textures from LR images even when the measure

index of PSNR / SSIM is much lower compared with non-GAN approaches. As shown in Fig. 2.3,

the SRResNet has a better PSNR performance but SRGAN can generate a more realistic SR image.

Because of the loss function design, one issue of SRGAN has is to generate the artificial noise

when reconstructs to SR image. To solve this problem, an enhanced version of SRGAN named

ESRGAN [41] adopted Relativistic average GAN (RaGAN) which was developed in [65] as well

as [66]. The main difference between GAN and RaGAN is the adversarial loss function (feedback

to generator and discriminator). Unlike the traditional GAN tried to estimate the probability that

the image entered into the discriminator is real, RaGAN estimates the probability that the real

image is relatively more realistic than a fake image which is to encourage generator to generate

more realistic images.

2.1.4 Summary of SISR approaches

Table. 2.1 presents a summary of the state-of-the-art deep learning methods for the SISR task.
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Method Pre. Pos. Upsampling Res. CA SCA GAN

SRCNN [3] X Bicubic

VDSR [4] X Bicubic X

FSRCNN [77] X Deconv

LapSCN [69] X Bicubic X

DRRN [78] X Bicubic X

EDSR [63] X Sub-Pixel X

EnhancedNet [79] X Bicubic X

SRGAN [5] X Sub-Pixel X X

SRDenseNet [62] X Deconv X

DBPN [80] X Deconv X

RDN [42] X Sub-Pixel X

RCAN [2] X Sub-Pixel X X

ESRGAN [41] X Sub-Pixel X X

PESR [66] X Sub-Pixel X X

RNAN [24] X Sub-Pixel X

SCAN(ours) X Sub-Pixel X X X

Table 2.1: A summarry of previous works on SISR. The “Pre.”, “Pos.”, “Res.”, “CA,” and “SCA”
respectively represent pre-upsampling, post-upsampling, residual connection, channel attention
and spatial color attention.



Xuan Xu Chapter 2. Single Image Super-Resolution 16

Basic_RGM Basic_RGM Basic_RGM 

C
on

v

C
on

v

LR SR

C
on

v

SCAM

Figure 2.4: Overview of the proposed networks architecture, Basic RGM stands for the basic
residual group module which includes several residual groups, SCAM is the proposed spatial color
attention module where to generate R,G,B spatial color attention map (see 2.5 for more details), ⊕
denotes element-wise sum.

2.2 Proposed Approach of SISR

2.2.1 Network Design

We present the designed networks in the following hierarchy: SCAN (Fig. 2.4)→ Subnetwork

of SCAM and Basic RGM (Fig. 2.5)→ Residual Channel-Spatial Attention (RCSA, Fig. 2.6). It

should be noted that our SCAN and previous state-of-the-art RCAN [2] are similar at the coarsest

level. Both SCAN and RCAN are decomposed of the residual group (RG) and residual channel

attention block (RCAB). This is because we want to evaluate the validity of proposed SCAM (refer

to Sec. 2.2.2) and RCSA (refer to Sec. 2.2.3) modules under the same conceptual framework.

We are hoping that this way of presentation can facilitate our explanation about why SCAN

can outperform RCAN (similar to the popular ablation study) - i.e., without changing the overall

structure, we can still improve the performance of SISR by designing novel fine-scale modules

(SCAM and RCSA) in a plug-and-play fashion (e.g., the number of Basic RGM modules in Fig.

2.4 can be reduced as we will show in our ablation study in Table 2.3). Meanwhile, we will

focus on the key difference between the design of RCAN and SCAN - i.e., the desirable color

attention mechanism. Across different hierarchies (SCAN→SCAM→RCSA), we will show how

color attention mechanism is the theme unifying our network design and optimizing the task of

deep residual learning.
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Figure 2.5: The structure of proposed Basic RGM and SCAM modules. In the block of SCAM,
RCSA stands for proposed residual channel-spatial attention module (the details are demonstrated
in Fig. 2.6); ⊕ denotes element-wise sum, ⊗ denotes element-wise product, CAT denotes feature-
concatenation.

2.2.2 Spatial Color Attention Module (SCAM)

In SCAM module (see Fig. 2.5), we organize the input training data (LR images) into two

parts: 1) similar to the normal SISR architectures, the whole LR image is supplied as the input

to the main network (see Basic RGM block in Fig. 2.5); 2) the LR image is divided to R,G,B

channels separately, which then serve as the input to the proposed RCSA module for generating

spatial color attention maps XR, XG, XB, for R,G,B channels respectively. Note that the second part

(our new contribution) is absent in previous works on SISR because they treat all R,G,B channels

equally.

Let Fout denote the output feature maps of the Basic RGM block (see Fig. 2.5, the gray-colored

feature map with the dimension of H×W that contains C feature maps), which is generated from

the whole LR input image and fused all R,G,B information into each feature map. To re-calibrate

Fout , we apply element-wise product between each spatial color attention map XR, XG, XB and Fout .

The process of introducing color attention can be expressed as follows:

FR = Fout ·XR (2.1)

FG = Fout ·XG (2.2)

FB = Fout ·XB (2.3)
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where FR,FG,FB are the re-calibrated feature maps from Fout to represent spatial color information

for each R,G,B channel (e.g., FR represents the spatial information from red channel).

Next, to get the final output feature-map FBRGM with the dimension of H×W ×C, we first con-

catenate R,G,B feature maps and then use a 1×1 Conv layer to reduce the feature-map dimension

from 3C to C:

FBRGM = WD([FR,FG,FB]) (2.4)

where WD ∈ R1×1×C is a 1×1 Conv layer used for dimensionality reduction.

By applying SCAM to the basic RGM, the networks can fuse channel attention (already con-

sidered in RCAN [2]) and spatial color attention (new module introduced by this work) to better

re-calibrate input feature maps based on the pair of training data. Note that the real SISR challenge

still belongs to strongly supervised learning; therefore the objective here is the same as the original

idea of applying ResNet [4] to SISR (i.e. to learn a more accurate residual representation). The

new insight we attempt to bring through this work is that residual representations across spectral

channels are not independent, which implies the potential of jointly learning them (as we will

elaborate next).

2.2.3 Residual Channel-Spatial Attention (RCSA)

To implement RCSA module (see Fig. 2.6), we have followed the basic structure of SENet [19]

and RCAN [2] which sets up a regular residual block including channel attention mechanism. More

specifically, we first squeeze input feature maps with global average pooling:

QC =
1

H×W

H

∑
i=1

W

∑
j=1

FC(i, j) (2.5)

where C is the number of feature maps, QC is the c-th element of Q∈RC, FC(i, j) is the pixel value

of the c-th feature at position (i, j) from input feature maps FRe′ ∈ RH×W×C. Then we propose to

implement a simple gating mechanism as adopted by previous works including SENet [19] and

RCAN [2]:

SE = σ(WE(δ (WS(Q)))) (2.6)

where σ refers to a sigmoid function, δ denotes the ReLU function, WS ∈ R1×1×C
r is the squeeze

Conv layers with weights and WE ∈ R1×1×C is the expand Conv layers with weights, r is the
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Figure 2.6: The structure of proposed RCSA module which includes the implementation of RG
and RCAB blocks. The two red blocks show the structures of channel and spatial attentions. ⊗
denotes element-wise product and ⊕ denotes element-wise sum.

reduction ratio to reduce the dimension of Q (the parameter r controls the trade-off between the

capacity and the complexity [19]). Finally, we can rescale the feature maps FRe by:

FCA = SE ·FRe′+FRe (2.7)

where FRe is the input feature map to RCAB block, FCA is the output from RCAB block which is a

rescaled feature maps by channel attention module (see Fig. 2.6). Note that Eq. (2.7) is different

from previous works such as RCAN because we will have a separate channel/spatial attention

mechanism for each R,G,B channel respectively.

Next, we can apply spatial attention to the rescaled feature map. Unlike previous works in

which R,G,B feature maps are treated equally, we note that the input of RCSA is a single channel

of RGB image. Therefore, our approach generates the output feature map (so-called spatial color

attention map) which focuses on re-calibrating single color channel information from the feature

maps of Fout . In this fashion, the outputs of SCAM module naturally fit the grey-colored feature
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map in Fig. 2.5 (refer to section 2.2.2). More specifically, we have

FSA = σ(WSA(δ (WSA(FRG)) (2.8)

where FSA is the output spatial color attention feature map which can be represented as XR,XG,XB

based on the corresponding R,G,B channels, WSA ∈R1×1×C is the Conv layer with weight, σ refers

to a sigmoid function, δ denotes the ReLU function. FRG is the output of RG (refer to Fig. 2.6).

In summary, newly designed spatial color attention map is expected to more effectively learn the

joint residual representations across spectral channels.

2.3 NTIRE2019 Real-World Dataset

Most of SISR methods are basically trained with synthetic dataset. Bicubic interpolation is the

most widely used downsampling method to syntheses LR images from original HR images. Many

state-of-the-art approaches such as EDSR [63], LapSRN [69], RDN [42], RCAN [2] etc. used this

way to generate different scale of LR images. One critical problem of this LR data generation

is that the mapping between low and HR data is fixed (Bicubic, Bilinear or any interpolation

methods). It means if the test data is not acquired by the certain interpolation method which used

to generate training dataset, the trained model will not super-resolve desired SR image.

In this SISR work, we have used the real-world paired image dataset provided by NTIRE2019

challenge. It includes 60 pairs of images for training, 20 pairs of images for validation and another

20 pairs of images for testing; both HR and LR images are collected by standard DSLR cameras,

which means the LR image is not synthetic but captured from the real-world (likely with a different

focal length). This is in sharp contrast with previous SISR challenges which generate LR images

from HR images (e.g., DIV2K [81]) using model-based methods (e.g., Bicubic interpolation). The

new real-world dataset is arguably more closely related to the real-world SISR tasks - e.g., the

scaling factors between LR and HR images are unknown (in theory it is determined by the ratio of

focal lengths). The sample images are shown in Fig. 2.7.

We also note that HR images for test data (i.e., the ground-truth) is not provided; therefore

LR images in test data have already been scaled to the same size/resolution as the corresponding

HR images by the competition organizer. Accordingly, we have opted to report our PSNR/SSIM
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Figure 2.7: The sample data from NTIRE2019 real-world dataset. The downsampling factor of LR
images are unknown.
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experimental results based on 20 paired validation data (for which ground-truth is available) and

report perceptual index (PI) score [82] based on 20 test data since PI is a no-reference image quality

metric (no HR image is needed).

2.4 Experimental Results

In this section, we demonstrate the network setting, training details, ablation study and experi-

mental results of proposed SISR problem.

2.4.1 Implementation details

In our proposed SCAN networks, we have set Basic RGM to 3, each Basic RGM includes 3

residual groups (RG). And every RG contains 20 RCAB blocks which is the same as the original

RCAN [2]. In RCSA module, we have used one RG with 6 RCAB blocks inside. Most of the

kernel size of Conv layers are 3× 3 with 64 filters (C = 64) except few exceptions as shown in

Fig. 2.6 (e.g., in the spatial attention block, the two Conv layers have only 1 filter that means

C = 1, and 1×1 of kernel size). In channel attention block, the reduction ratio is r = 16. The last

layer filter of the whole network is set to be 3 in order to output super-resolved color images. Note

that the original RCAN has 10 RGs; due to the limitation of GPU memory, we have only adopted

9 RGs in our current implementation of SCAN (3 Basic RGM, totally amount to 9 RGs).

In our training process, we first randomly crop both the input and ground-truth RGB images

with small patches such as 128 × 128, with a batch size of 16; then we augment the training

set by standard geometric transformations (e.g., flipping and rotation). Our model is trained and

optimized by ADAM [83] with β1 = 0.9, β2 = 0.999, and ε = 10−8. The initial learning rate

is set to 1×10−4, the decay factor is set to 5, which decreases the learning rate by half af-

ter [384k,576k,768k,883k,998k] steps; the MSE loss function is applied to minimize the error

between HR and SR images. All reported experiment results are trained by PyTorch [84] on 4

NVIDIA TITAN Xp GPUs. The total training time is around 35 hours.
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Patch size 48×48 96×96 128×128

PSNR 29.37 29.55 29.59

Table 2.2: The influence of different cropped patch-size used (48 × 48, 96 × 96 and 128 × 128)
for training process.

2.4.2 Effect of Patch Size for Training

We explored the effect of different patch-size cropped for the model training. Table 2.2 shows

the results of 48 × 48, 96 × 96 and 128 × 128 patch-size used. Note that all the training settings

are exactly same besides the patch size of training data. From the results we find that large patch

size leads a better PSNR performance. However, due to the constraint with limited GPU memory,

128×128 is the largest patch size we can train at this point.

2.4.3 Ablation Study

In order to better illustrate the benefit of spatial color attention map step by step, we have

compared different strategies to evaluate the validity of proposed SCAM. We have implemented

four competing models in our experiments (trained by the same dataset): 1) baseline RCAN [2]:

training without SCAM (all settings follow the original RCAN); 2) SCAN 1: training with only

one-time calibration with SCAM (one Basic RGM with 9 RGs inside); 3) SCAN 2: training with

two-times calibration with SCAM (two Basic RGM, first one has 5 RGs and the second one has 4

RGs); 4) SCAN 3: training with three-times calibration with SCAM (the proposed SCAN, please

refer to Fig. 2.4).

Table. 2.3 shows the results of the four strategies mentioned above. Without SCAM, the RCAN

can achieve the average PSNR of 29.31 dB; after adding SCAM, SCAN 1 can improve the initial

PSNR results to 29.49 dB (0.18 dB gained when compared with RCAN); keep increasing cali-

bration time to 2 and 3, we observe that the PSNR results are further improved. Finally, we have

achieved the best PSNR result of 29.59 dB with the proposed SCAN (i.e., SCAN 3 in Table 2.3).
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Method No. of RGs No. of SCAM calibration used PSNR SSIM

RCAN 10 N/A 29.31 0.8606

SCAN 1 9 1 29.49 0.8628

SCAN 2 9 2 29.52 0.8641

SCAN 3 9 3 29.59 0.8650

Table 2.3: Investigations of how to set spatial color attention modules (SCAM) .

2.4.4 Comparison Against State-of-the-Art

We have compared our proposed SCAN with current state-of-the-art SISR approach RCAN [2].

The original RCAN is trained to super-resolve LR image by a specific scale factor (i.e., 2×, 3×),

but the LR and HR image in the new real-world dataset from NTIRE2019 have the same size.

Therefore, we have to remove the upscale module from the original RCAN to make sure both the

input and the output have the same size. The comparison results in terms of PSNR are shown in

Table 2.4.

The baseline result is the average PSNR between the (scaled) LR images and the corresponding

HR images. The “+” in RCAN+ and SCAN+ stands for self-ensemble strategy used to further

improve results (similar strategies have been adopted in previous works [2, 42, 63, 85]). From

Table 2.4, our proposed SCAN and SCAN+ have the best PSNR/SSIM performance. When com-

pared with RCAN and RCAN+, our proposed SCAN+ can significantly improve the PSNR per-

formance by as much as 0.44 dB and 0.33 dB respectively. Even without activating the strategy of

self-ensemble, SCAN is still noticeably better than RCAN and RCAN+.

Beside quantitative PSNR/SSIM results, we have also included the subjective quality results

comparison in Fig. 2.8 and Fig. 2.9. For image “cam2 09” in Fig. 2.8, we can see that RCAN

suffers from severe edge blurring artifacts and text color distortions. Our proposed SCAN can re-

construct colorful texts with fewer blurring artifacts and less color distortion. For image “cam1 07”

in Fig. 2.8, our SCAN is capable of recovering more edge details than RCAN (e.g., the sharpness of

wall-pattern). For another image “cam2 05” in Fig. 2.9 (note that this example is really challenging

- even ground-truth HR image has suffered a little bit of edge blurring), our SCAN can reconstruct
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cam2_09
HR LR RCAN SCAN(ours)

29.21/0.8837 31.79/0.9363 32.51/0.9413

cam1_07

27.29/0.7874 29.78/0.8718 30.74/0.8880

PSNR/SSIM

PSNR/SSIM

HR LR RCAN SCAN(ours)

Figure 2.8: Visual results for validation data “cam1 07” and “cam2 09”.
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cam2_05
HR LR RCAN SCAN(ours)

25.54/0.7279 27.21/0.8074 27.71/0.8207PSNR/SSIM

cam2_04
HR LR RCAN SCAN(ours)

24.33/0.7954 25.71/0.8500 26.14/0.8578PSNR/SSIM

Figure 2.9: Visual results for validation data “cam2 05” and “cam2 04”.
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Baseline RCAN RCAN+ SCAN SCAN+

PSNR 27.78 29.31 29.42 29.59 29.75

SSIM 0.8163 0.8606 0.8632 0.8650 0.8687

Table 2.4: Quantitative results of PSNR and SSIM for all methods. The higher the value of the
metrics, the better performance is. Bold font indicates the best result and underline indicates the
second best result.

the large-scale building structure details much better (e.g., the horizontal roof structure above the

window and vertical edges on both sides of the window). For image “cam2 04” in Fig. 2.9, we can

see that the dots in ground-truth image contain solid color; while in RCAN reconstructed image,

they become hollow dots. One possible interpretation is that for fine structures like small dots, it

takes both spatial and color attention mechanism to ensure the structural consistency among them.

By contrast, our SCAN can still faithfully reconstruct those solid dots.

Finally, because the HR images for test data are not released, we cannot report the PSNR based

results on test data. Alternatively, to evaluate the quantitative results among our method, baseline

and RCAN on test data, we have used a new objective metric called Perceptual Index (PI) [82] (a

no-reference image quality metric) which was recently developed to measure perceptual quality

for SISR (e.g., the 2018 PIRM Challenge [86]). The PI score is defined by

PI =
1
2
((10−MA)+NIQE) (2.9)

where MA denotes a no-reference quality metric [87] and NIQE refers to Naturalness Image Qual-

ity Evaluator [88]. Unlike PSNR or SSIM [75], the lower PI score, the better perceptual quality.

Table 2.5 includes the PI comparison between ours and other competing methods. SCAN

reaches the lowest PI score, which implies the highest perceptual quality. Fig. 2.10 includes the

PI comparison among baseline (LR), RCAN and SCAN on images “cam1 07” and “cam2 04”

from test dataset (HR images are not released, so we will not be able to evaluate the fidelity or

accuracy of SR reconstruction). But it can still be observed that SCAN is capable of delivering

the most visually pleasant reconstruction of fine-detailed structures in basket on image “cam1 07”.

On another image “cam2 04”, our proposed SCAN can significantly reduce the blurring of white-

colored texts when compared with RCAN.
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LR RCAN SCAN(ours)

cam1_07

Perceptual Index

7.85 7.47 7.17

LR RCAN SCAN(ours)
cam2_04

Perceptual Index

6.73 5.97 5.83

Figure 2.10: The visual results for test data “cam1 07” and “cam2 04”. The results are based on
perceptual index (PI) score since the HR image is not available. The lower PI score indicates the
better perceptual quality.
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Baseline RCAN SCAN

PI Score 7.36 6.79 6.68

Table 2.5: Quantitative results of averaged perceptual index scores for all methods. The lower
score is better. Bold font indicates the best result.

2.5 Summary

This chapter provided a state-of-the-art approach SCAN to solve the problem of single image

super-resolution on real-world image dataset. The newly designed SCAM module can better uti-

lize the color information of R, G, B three channels and learn the color attention map to better

calibrate internal feature maps. Our proposed networks can significantly improve both objective

and subjective results compared with the previous state-of-the-art RCAN.
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Chapter 3

Joint Low-Level Vision Problems

3.1 Related Work

Both image demosaicing and super-resolution have been studied in decades in the open litera-

ture. In this section, we review image demosaicing and joint low-vision problems separately.

3.1.1 Image Demosaicing

Existing approaches toward image demosaicing also can be classified into two categories:

model-based methods [28–31] and learning-based methods [37, 38, 40].

Li [30] proposed iterative demosaicing algorithm with a spatially adaptive stopping criterion

to prevent color misregistration and reduce artifacts. Zhang and Wu [28] presented a demosaicing

method to optimize directional filtering of the green-red and green-blue difference signals by linear

minimum mean square-error. Ye and Ma [31] introduced an iterative residual interpolation strat-

egy instead of color-component difference fields to all R,G,B three channels to reconstruct color

images.

Model-based approaches rely on hand-crafted parametric models which often suffer from lack-

ing of the generalization capability to handle varying characteristics in color images (i.e., the po-

tential model-data mismatch). Recently, deep learning methods showed the advantages in image

demosaicing field. Inspired by single image super-resolution model SRCNN [3], DMCNN [89]

c©2020 IEEE. Reprinted, with permission, from X. Xu, Y. Ye and X. Li, Joint Demosaicing and Super-Resolution
(JDSR): Network Design and Perceptual Optimization, IEEE Transactions on Computational Imaging, June 2020.
The reference can be found in [9].
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utilized super-resolution based CNN model and ResNet [44] to investigate image demosaicing

problem. CDM-CNN [90] introduced to apply residual learning [44] with a two-phase network

architecture which firstly recovers green channel as guidance prior and then uses this guidance

prior to reconstruct the RGB channels.

3.1.2 Joint Low-Level Vision

In addition to exploring image demosaicing methods only, there are several works studying

Joint Demosaicing and Denoising (JDD) problem to jointly address demosaicing and denoising

together with end-to-end optimization. Dong et al. [91] developed a deep neural network with

GAN [64] and perceptual loss functions to solve JDD problems. Inspired by classical image regu-

larization and majorization-minimization optimization, Kokkinos and Lefkimmiatis [39] proposed

a deep neural network to solve JDD problem. Deep learning based image demosaicing techniques

have shown convincingly improved performance over model-based ones on several widely-used

benchmark dataset (e.g., Kodak and McMaster [6]). However, the issue of suppressing spatio-

spectral aliasing has not been addressed in the open literature as far as we know and the problem

of JDSR has been under-researched so far with the only exception of [43], the potential benefits of

JDSR are still worth to be further explored.

3.2 Proposed Approach of JDSR V1 – DSERN

The hierarchy of JDSR network design goes like: DSERN (Fig. 3.1) → D RG subnetwork

(Fig. 3.2a)→ D SERB module (Fig. 3.2b)→ DSE block (Fig. 3.3).

3.2.1 DSERN: Deeper and Wider are Better

Channel attention mechanism has been successfully applied in both high-level (e.g., SENet [19]

and LS-CNN [92]) and low-level (e.g., RCAN [2]) vision tasks. A channel attention module first

squeezes the input feature map and then activates one-time reduction-and-expansion to excite the

squeezed feature map. Such strategy is not optimal for recovering missing high-frequency infor-

mation in SISR when the network is very deep; meanwhile, JDSR problem requires simultaneous
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Figure 3.1: Overview of the proposed DSERN network architecture, the generator is shown in (a),
D RG stands for Dense Residual Group and ⊕ denotes element-wise sum; (b) is the structure of
discriminator used (s is the stride and c is the number of feature maps).
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Figure 3.2: Structure of (a) D RG subnetwork and (b) D SERB module where⊗ denotes element-
wise product and ⊕ denotes element-wise sum respectively.

recovery of incomplete color information across R, G, B bands, which requires extra attention to-

ward the dependency among spectral bands. How to generalize the channel attention mechanism

from spatial-only to joint spatio-spectral serves as the key motivation behind our approach.

As discussed in [2], high-frequency components often correspond to regions in an image such

as textures, edges, corners and so on. Conventional Conv layers have limited capability of exploit-

ing contextual information outside the local receptive field especially due to missing data in Bayer

pattern. To overcome this difficulty, we propose to design a new Densely-Connected Squeeze-and-

Excitation Residual Block (D SERB) as shown in Fig. 3.2b and Fig. 3.3. The proposed D SERB

is designed to implement a deeper and wider spatio-spectral channel attention mechanism for the

purpose of more effectively suppressing spatio-spectral aliasing in LR Bayer pattern.

Unlike SENet [19] and RCAN [2] (using one-time reduction-and-expansion), D SERB uses

multiple expansion modules after reduction to assure more faithful information recovery when the

network gets deeper and wider. As shown in Fig. 3.2, we have kept both long skip and short skip

connections like RCAN in order to make the overall training stable and facilitate the information

flow both inside and outside the D SERB modules. Although similar idea of local feature fusion

existed in residual dense block of RDN [42], our hybrid design - i.e., the Dense SE (DSE) block

combining the ideas in RDN and RCAN - is novel from the perspective of achieving joint spatio-

spectral attention for JDSR. Spatio-spectral channel attention mechanism in the proposed D SERB
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Figure 3.3: Flowchart of Dense Squeeze-and-Excitation (DSE) block (⊗ denotes element-wise
product).

module can help to recalibrate input features via channel statistics [19] across spectral bands. In

SISR, one-time reduction-and-expansion operation might be sufficient for capturing channel-wise

dependencies for LR color images; however our JDSR task aims at recovering two-third of missing

data in spectral bands in addition to high-frequency spatial details, which calls for the design of

deeper and wider networks.

3.2.2 Dense Squeeze-and-Excitation Residual Block

The key to deeper and wider networks lies in the design of D SERB module - i.e., how to use

multiple expansions after reduction to assure more faithful information recovery both inside and

outside D SERB modules? As shown in Fig. 3.2b), we propose a Dense Squeeze-and-Excitation

(DSE) block in which the channel size can be expanded step by step (see Fig. 3.3). The key ad-

vantages of this newly designed DSE block include: 1) the reduced channel descriptor can be

smoothly activated multiple times and therefore more faithful information across spatio-spectral

domain is accumulated; 2) dense-connection can increase the network depth and width without

running into the notorious vanishing-gradient problem [93]; 3) both information flow and network

stability, which are important to a principled solution to JDSR, can be jointly improved by intro-

ducing dense connections to SE residual blocks (so we can train even deeper than RCAN [2]).

More specifically, to implement the DSE block, we first apply global average pooling to

squeeze input feature maps. Let us denote the input feature maps by U = [u1,u2, ...,uC], which

contains C feature maps with the dimension of H ×W . Then the global average pooling output
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z ∈ RC can be calculated by:

zC =
1

H×W

H

∑
i=1

W

∑
j=1

uC(i, j) (3.1)

where zC is the c-th element of z, uC(i, j) is the pixel value of the c-th feature at position (i, j)

from input feature maps. Then we propose to implement a simple gating mechanism as adopted

by previous works including SENet [19] and RCAN [2]:

s = σ(WE(δ (WS(z)))) (3.2)

where σ refers to a sigmoid function, δ denotes the ReLU function. Note that both WS and WE

are Conv layers with weights WS ∈ R1×1×C
r and WE ∈ R1×1×C, r is the reduction ratio to reduce

the dimension of z (details about this hyperparameter controlling the tradeoff between the capacity

and the complexity can be found in SENet [19]).

In order to achieve deeper and wider channel attention, we propose a novel strategy of acti-

vating the reduced features step by step (instead of one-shot) with dense connections. As shown

in Fig. 3.3, after reducing z by a factor of r, we can gradually expand (i.e., smooth activation) the

feature map N times where N = r−1. The detailed procedure of our proposed DCA module can

be written as:

X0 = δ (WS(z)), (3.3)

Xi = δ (Wi(Xi−1)), where i ∈ [1,N] (3.4)

ŝ = σ(WE([X0,X1,X2, ...,XN ])) (3.5)

where σ , δ , WE , WS are the same as Eq. (3.2), Wi ∈ R1×1×C
r and [X0,X1,X2, ...,XN ] refers to the

concatenation of feature maps by each DSE layer.

Finally, we can rescale the input feature map by

Û = ŝ ·U (3.6)

With the new DSE block, we can train even deeper network than RCAN [2] thanks to the improved

information flow.



Xuan Xu Chapter 3. Joint Low-Level Vision Problems 36

Figure 3.4: The general process to generate low-resolution training data. First to downsample HR
image to LR image with desired scale-factor (ex. 2, 3, 4) by Bicubic interpolation, then generate
mosaiced image with RGGB Bayer filter by padding zero for missed color pixels.
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3.3 Dataset Setup

DIV2K dataset [81] is widely used as training dataset in single image super-resolution (SISR)

methods. It includes 800 2K-resolution RGB images with a large diversity of contents for training,

100 2K images for validation and 100 images for testing. For our proposed JDSR approach, we

only use 800 images to train.

For testing, we have generally evaluated both popular image super-resolution benchmark datasets

including Set5 [32], Set14 [94], B100 [95], Urban100 [96], and Manga109 [97], and popular image

demosaicing datasets such as McMaster [98] and Kodak PhotoCD. Also to verify the effectiveness

of our proposed networks, we then have evaluated the challenging patches database provided by [6]

where they detected and cropped very challenging patches from the web for demosaicing perfor-

mance test.

To pre-process training and testing data, we downsample original HR images by a factor of 2×,

3×, 4× using Bicubic interpolation then generate the ‘RGGB’ Bayer pattern as shown in Fig. 3.4.

Based on previous work [89] and our own study (refer to next paragraph), supplying three-

channels separately as the input (instead of the mosaicked single-channel composition) works bet-

ter for the proposed network architecture.

Note that we have to be careful about four different spatial arrangements of Bayer patterns [99])

in our definition of feature maps. One can either treat the Bayer pattern like a gray-scale image

(one-channel setting) which ignores the important spatial arrangement of R/G/B; or take spatial

arrangement as a priori knowledge and pad missing values across R,G,B bands by zeroes (three-

channel setting). As shown in Fig. 3.5, the former has the tendency of producing color misregis-

tration artifacts, which suggests the latter works better. Our experimental result has confirmed a

similar finding previously reported in [89].

3.4 Experimental Results and Limitation

In this section, we demonstrate the network setting, training details, ablation study and experi-

mental results of proposed JDSR problem.



Xuan Xu Chapter 3. Joint Low-Level Vision Problems 38

HR 1 Channel Input 3 Channel Input

Figure 3.5: Visual comparison of training data effect, the bottom images, from left to right, are HR
image, SR image generated by one-channel feature map (raw Bayer-pattern), SR image generated
by three-channel feature map (Bayer-pattern with zero padding).

3.4.1 Implementation Details

In our proposed DSERN networks, we have kept the basic setting same as RCAN [2]: D RG

is set to 10 and every D RG contains 20 D SERBs. All kernel size of Conv layers is 3×3 with 64

filters (C = 64) except the Conv layers in our DSE modules. The reduction ratio is r = 16. The

upscale module we have used is the same as [100]. The last layer filter is set to 3 in order to output

super-resolved color images.

In our PyTorch implementation of DSERN, we first randomly crop the 3-channel Bayer pat-

terns as small patches with the size of 48 × 48, and crop the corresponding HR color images, with

a batch size of 16; then we augment the training set by standard geometric transformations (flip-

ping and rotation). Our model is trained and optimized by ADAM [83] with β1 = 0.9, β2 = 0.999,

and ε = 10−8. The initial learning rate is set to 1×10−4, the decay factor is set to 5, which de-

creases the learning rate by half after [80k, 120k, 150k, 180k] steps; the L1 loss function is applied
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Manga109 (2x):
TotteokiNoABC

Flex+RCAN
31.98/0.9459

RDSR
39.31/0.9791

RCAN
39.93/0.9819

Dense_RCAN
40.16/0.9826

HR
PSNR/SSIM

Figure 3.6: Visual results among competing approaches for Manga109 dataset at a scaling factor
of 2.

to minimize the error between HR and SR images.

Because the codes of RDSR [43] are not publicly available, we have tried our own best to

reproduce RDSR using PyTorch while keeping the batch size (16), patch size (64×64) and number

of residual blocks (24) the same as the original work [43]. The learning rate and decay steps in

RDSR implementation are the same as those in our DSERN. This way, we have striven to make

the experimental comparison against RDSR [43] as fair as possible.

3.4.2 PSNR/SSIM Comparisons

It is convenient to further improve the performance of our DSERN by a so-called self-ensemble

strategy (as done in previous works [2,42,63,85]). The improved results are denoted as “DSERN+”.

We have compared our methods against two benchmark methods: a separated (brute-force) ap-

proach Flex [1] + RCAN [2], recently published in the literature RDSR [43]. To evaluate the

results of Flex [1] + RCAN [2] approach, we first demosaiced the LR mosaiced images by using

Flex to get LR color images, then super-resolved them by applying a pre-trained RCAN model.
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Urban100 (3x):
img_062

HR
PSNR/SSIM

Flex+RCAN
22.84/0.8329

RDSR
23.88/0.8804

RCAN
24.03/0.8882

Dense_RCAN
24.67/0.8947

B100 (4x):
253027

HR
PSNR/SSIM

Flex+RCAN
22.31/0.6582

RDSR
22.56/0.6847

RCAN
22.48/0.6885

Dense_RCAN
22.76/0.6926

Figure 3.7: Visual results among competing approaches for Urban100 and B100 datasets at a
scaling factor of 3 and 4.
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Method Scale
Set5 Set14 B100 Urban100 Manga109 McM PhotoCD

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

FlexIPS [1]+RCAN [2] x2 35.18/0.9387 31.24/0.8776 31.00/0.8647 31.23/0.9119 30.32/0.9199 34.80/0.9301 43.02/0.9610

RDSR [43] x2 36.29/0.9485 32.56/0.9008 31.56/0.8850 31.20/0.9148 36.14/0.9625 35.90/0.9423 43.74/0.9655

RCAN [2] x2 36.54/0.9499 32.74/0.9032 31.68/0.8878 31.74/0.9200 36.65/0.9643 36.18/0.9445 43.91/0.9661

DSERN (ours) x2 36.55/0.9500 32.71/0.9031 31.70/0.8879 31.78/0.9207 36.72/0.9652 36.23/0.9448 43.90/0.9661

DSERN+ (ours) x2 36.62/0.9504 32.80/0.9041 31.73/0.8884 31.94/0.9221 36.89/0.9658 36.33/0.9456 43.92/0.9661

FlexISP+RCAN x3 31.21/0.8731 28.55/0.7884 27.31/0.7310 25.68/0.7800 27.58/0.8647 31.25/0. 8661 40.32/0.9402

RDSR x3 33.05/0.9103 29.54/0.8211 28.61/0.7859 27.64/0.8375 31.69/0.9225 32.21/0.8842 40.90/0.9458

RCAN x3 33.24/0.9125 29.67/0.8241 28.69/0.7882 27.90/0.8436 32.06/0.9267 32.42/0.8874 41.11/0.9469

DSERN (ours) x3 33.27/0.9127 29.67/0.8240 28.70/0.7884 27.92/0.8439 32.06/0.9268 32.41/0.8875 41.10/0.9469

DSERN+ (ours) x3 33.35/0.9134 29.73/0.8251 28.74/0.7892 28.05/0.8462 32.27/0.9286 32.52/0.8888 41.13/0.9471

FlexISP+RCAN x4 29.57/0.8376 26.94/0.7177 26.68/0.6896 25.29/0.7503 26.69/0.8427 27.78/0.7651 38.28/0.9201

RDSR x4 30.87/0.8712 27.91/0.7589 27.16/0.7151 25.65/0.7695 28.86/0.8800 30.10/0.8328 38.81/0.9258

RCAN x4 31.04/0.8746 27.98/0.7613 27.20/0.7175 25.91/0.7784 29.12/0.8856 30.24/0.8367 39.01/0.9271

DSERN (ours) x4 31.02/0.8747 27.99/0.7620 27.20/0.7177 25.92/0.7788 29.13/0.8857 30.25/0.8368 39.02/0.9273

DSERN+ (ours) x4 31.12/0.8761 28.06/0.7635 27.24/0.7188 26.05/0.7819 29.36/0.8888 30.35/0.8387 39.08/0.9277

Table 3.1: PSNR/SSIM comparison among different competing methods. Bold font indicates the
best result and underline the second best.
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Method Scale
Set5 Set14 B100 Urban100 Manga109 McM

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

ResNet x2 36.48/0.9498 32.71/0.9030 31.67/0.8876 31.65/0.9201 36.48/0.9642 36.11/0.9443

RCAN x2 36.54/0.9499 32.74/0.9032 31.68/0.8878 31.74/0.9200 36.65/0.9643 36.18/0.9445

DSERN (ours) x2 36.55/0.9500 32.71/0.9031 31.70/0.8879 31.78/0.9207 36.72/0.9652 36.23/0.9448

Table 3.2: Ablation study for ResNet, ResNet with CA (RCAN) and ResNet with proposed
DSERN. Bold font indicates the best result.

Note that we have used the pre-trained RCAN weights provided by the authors on GitHub.

Table 3.1 shows PSNR/SSIM comparison results for scaling factors of 2×, 3× and 4×. It

can be seen that our DSERN+ method perform the best for all datasets and scale factors. Even

without self-ensemble, the performance of DSERN still leads all of datasets and scaling factors.

We observe that moderate PSNR/SSIM gains (0.2− 0.5dB) over previous state-of-the-art. Since

PSNR/SSIM metrics do not always faithfully reflect the visual quality of images, we have also

included the subjective quality comparison results for image “TotteokiNoABC” in Fig. 3.6. It can

be readily observed that for the top of the pink sock, only our DSERN can faithfully recover stripe

patterns; both the brute-force approach (Flex+RCAN) and RDSR have produced severe blurring

artifacts. Taking another example, Fig. 3.7 shows the comparison at two other scaling factors

(3× and 4×). For “img 062”, we observe that all approaches contain noticeable visual distor-

tion, but our DSERN method can recover more shape details than other competing approaches;

for “253027”, zebra pattern recovered by DSERN appears to have the highest quality. For more

visual comparison, see Fig. 3.8 and Fig. 3.9 which show more visual comparison among various

competing approaches (please zoom in for a detailed comparison).

3.4.3 Ablation Studies

To demonstrate the effect of proposed DSE module, we study the networks: 1) only based on

ResNet; 2) ResNet with channel attention module (RCAN); 3) ResNet with proposed DSE module

(DSERN). All three networks are trained under same setting for fair comparison. The general SR

benchmark datasets are used, scale factor is 2. From Table 3.2, we have found that ResNet has

similar performance on Set5, Set14 and B100 to more advanced RCAN and DSERN. But when



Xuan Xu Chapter 3. Joint Low-Level Vision Problems 43

M
an
ga
10
9	
Ya
m
at
oN

oH
an
e_
x4

M
an
ga
10
9	
Yo
uc
hi
en
B
ou
ei
gu
_x
4

HR Flex+RCAN RDSR RCAN DSERN

34.81/0.9643

31.82/0.9697

33.61/0.9570 34.26/0.9616

31.03/0.964031.00/0.9626

PNSR/SSIM 28.50/0.9048

PNSR/SSIM 26.84/0.9197

Figure 3.8: Visual quality comparison of JDSR results among competing approaches at a scaling
factor of 4.
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Figure 3.9: Visual quality comparison of JDSR results among competing approaches at a scaling
factor of 3 or 4.
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Figure 3.10: Performance comparison during training to valid the efficiency of the proposed DSE
module on McM dataset. The scale factor is 4.

compared on Urban100, Manga109 and McM, RCAN and DSERN have better performance than

ResNet; and the proposed DSERN has the best performance on most benchmark datasets.

Also in Fig. 3.10, it shows the comparison of training process between RCAN with or without

DSE module. At first 400 epochs, DSE module did not show advantages, but after that, especially

at the end of training, DSE module helped to improve the whole network performance, because

DSE can reconstruct deeper information which benefit by deeper and wider networks design.

3.4.4 Limitation

Although our proposed DSERN network shows some reliable results, there remain some limi-

tations that need to be addressed. First of all, training and testing processes are slow, because of the

network complexity, which limits its practical application; secondly, it is difficult to directly learn

mapping between a mosaiced image and a high-resolution RGB color image because mosaiced
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image lost 2/3 of information.

3.5 Proposed Approach of JDSR V2 – RDSEN

To tackle the limitation of DSERN, we re-design a JDSR network, called RDSEN to boost

the running time of training and testing. The hierarchy of our network design is described by

the following flow diagram: Overview of the proposed network (Fig. 3.11)→ PDNet subnetwork

(Fig. 3.12)→ RDSEN (Fig. 3.13)→ RDSEB with channel attention (Fig. 3.14).

3.5.1 Pre-demosaicing Network

One challenging issue in JDSR is that not only high-frequency components but also two-third

of color pixels are missing. This issue can lead to undesirable distortion or artifact in the recon-

structed full-resolution color image. Inspired by recent work CBDNet [101], we have designed a

pre-demosaicing network (PDNet) for initially demosaicing the Bayer pattern as a pre-processing

step to reduce the gap between LR CFA data and HR color image. As shown in Fig. 3.11 before

the RDSEN module, we have adopted a model-based demosaicing method called iterative-residual

interpolation (IRI) [67] to generate an intermediate demosaicing result, which will be used as the

input to the refinement module. This intermediate demosaicing results will be refined by PDNet

as shown in Fig. 3.12 (conceptually similar to ResNet [44]). In the PDNet, we opt to separately

process Red, Green, and Blue channels. For Red and Blue channel, we use a convolution layer

with stride of 4 to shrink the corresponding Bayer pattern and then upscale them with a factor of 2;

for Green channel we shrink it by a convolution layer with stride of 2. This is because the Red and

Blue channels each contains one-fourth information and G channel contains one-half information.

Then we concatenate RGB feature maps and fuse them with a 1× 1 kernel of convolution layer.

Finally, we upscale the fused feature maps back to the same size as input CFA data.

3.5.2 Residual-Dense Squeeze-and-Excitation Network

Unlike DSERN using a multiple expansion attention strategy to smoothly conduct informa-

tion flow, which is missing to utilize global important features thus inefficient, we propose a new
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PDNet IRI

RDSEN

Figure 3.11: Overview of the proposed RDSEN with PDNet network architecture, ⊕ means
element-wise sum.
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Figure 3.12: Structure of PDNet, ‘CAT’ is feature concatenation.



Xuan Xu Chapter 3. Joint Low-Level Vision Problems 49

Figure 3.13: Structure of RDSEN, ‘CAT’ is feature concatenation and ⊕ denotes element-wise
sum respectively.

Residual-Dense Squeeze-and-Excitation Network (RDSEN) as shown in Fig. 3.13 and Fig. 3.14

to overcome the limitation of DSERN. RDSEN includes a couple of RDSEB blocks attempts to

fuse both local and global information to achieve more efficient deeper and wider networks by

exploiting both local and global attention features. The same as DSERN and [2], both long skip

and short skip connections are used to make sure the training stable and information conduction

between deep and front layers (as shown in Figs. 3.13 and 3.14). The RDSEB block combining the

ideas from RDN [42] and RCAN [2] is novel because it represents an alternative approach to strike

an improved tradeoff between cost (in terms of network parameters) and performance (in terms of

visual quality).

Our design of concatenating RDSEB modules also has its merit from the perspective of ex-

ploiting joint spatio-spectral attention for JDSR. We have experimentally verified that such design

of deeper and wider networks [102] based on concatenation of multiple RDSEB modules indeed

helps the boosting of our JDSR performance.

3.5.3 Residual-Dense Squeeze-and-Excitation Block

Different from Densely-Connected Squeeze-and-Excitation Residual Block (DSERB) blocks

based on multi-expansion for channel attention mechanism, which inefficiently enhance local in-

formation only to help recover high-frequency components, as shown in Fig. 3.14, the newly de-

signed RDSEB blocks exploit short skip connection and multiple concatenations after channel

attention mechanism to fuse local and global information. The main advantage of RDSEB is that

DSERB extends and concatenates features at the channel attention level (see Fig. 3.2) but RDSEB
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Figure 3.14: Flowchart of Residual-Dense Squeeze-and-Excitation Block (RDSEB) and Channel
Attention (CA) module (⊗ denotes element-wise product).

does this at the feature level (see Fig. 3.14) which can acquire richer information under less model

complexity compared with DSERB.

To implement RDSEB, we first apply the same CA block as described in Sec. 3.2.2. Then, in

order to achieve more efficient deeper and wider channel attention than DSERB, we conduct a new

strategy of connecting each output of channel attention block not only with short skip connection

(residual) but also dense-connection as shown in Fig. 3.14. To formalize this problem, define U as

the input feature map to CA module, the rescaled input feature map Û can be expressed as:

Û = s ·U (3.7)

where ‘·’ stands for element-wise product.

Finally, to implement dense-connection, we define M1 as the input feature map of RDSEB

block. Then the output feature map M̂ can be written as the following equations:
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Mi = Ûi−1 +M1, where i ∈ [2,n] (3.8)

M̂ = [M1,M2, ...,Mn] (3.9)

where [M1,M2...Mn] refers to the concatenation of feature maps, Ûi−1 is the corresponding output

of CA module at the i−1-st stage as shown in Fig. 3.14. With the new RDSEB block, we can train

a deeper and wider network thanks to the improved information flow.

3.6 Perceptual Optimization: Relativistic Discriminator and

Loss Function

3.6.1 Texture-enhanced Relativistic average GAN (TRaGAN)

The discriminator D in standard GAN [64] only estimates the probabilities of real/fake im-

ages, and the interaction between generator and discriminator is interpreted as a two-player min-

imax game. It can be expressed as D(x) = σ(C(x)), where σ is sigmoid function, C(x) is non-

transformed layer, x is the input image. Such idea has been successfully applied to the problem of

SISR such as SRGAN [5] in which the super-resolved image (fake version) is compared against

the ground-truth (real version). In other words, discriminator D serves as a judge for perceptual

optimization of generator (as shown in Fig. 3.1(b)).

Unlike standard GAN, relativistic average GAN (RaGAN) [65] can make the discriminator D

to estimate the probability based on both real and fake images, making a real image more realistic

than a fake one (on the average). According to [65], RaGAN can not only generate more realistic

images but also stabilize the training progress. Recently, the benefit of RaGAN over conventional

GAN has been demonstrated for SISR in [41] and [66]. Here we propose to leverage the idea of Ra-

GAN to JDSR and demonstrate how relativistic discriminator can work with the proposed RDSEN

(generator) for the purpose of perceptual optimization (overlooked in RDN [42] and RCAN [2]).

To implement RaGAN, we represent the real and fake images by xr and x f respectively; then
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we can formulate the output of a modified discriminator D̂ for RaGAN by:

D̂(xr) = σ(C(xr)−Ex f [C(x f )]) (3.10)

D̂(x f ) = σ(C(x f )−Exr [C(xr)]) (3.11)

where Ex f and Exr are the expectation functions. It follows that the discriminator loss function

LRaGAN
D and adversarial loss function LRaGAN

G can be written as:

LRaGAN
D =−Exr [log(D̂(xr)]−Ex f [log(1− D̂(x f ))] (3.12)

LRaGAN
G =−Exr [log(1− D̂(xr))]−Ex f [log(D̂(x f )] (3.13)

It has been observed that the class of texture images is often more difficult for SISR due to spa-

tial aliasing [66]. One way of achieving better texture reconstruction is through attention mecha-

nism at the image level - i.e., to emphasize (i.e., increase the weight) difficult samples and overlook

(i.e., down-weighting) easy ones. Such idea of weighting can be conveniently incorporated into

the RaGAN package because the PyTorch implementation allows an optional weight input. More

specifically, we propose to consider the following weighted function with a new hyperparameter γ

tailored for Texture enhancement:

LT RaGAN
G =−∑

i
(D̂(xr))

γ log(1− D̂(xr))

−∑
i
(1− D̂(x f ))

γ log(D̂(x f ))
(3.14)

3.6.2 Perceptual Loss Function

We have implemented the following perceptual loss function based on [5, 41, 66, 103]. With

a pre-trained VGG19 model [76], we can extract high-level perceptual features of both HR and

SR images from the 4-th convolutional layer of VGG19 before the activation function is applied.

Inspired by [41], we propose to extract high-level features before the activation function layer

because it can further improve the performance. Let’s define perceptual loss as Lvgg and L1-norm

distance as L1. Then the total loss for our generator LG can be formulated as follows:

LG = Lvgg +λ1LT RaGAN
G +λ2L1 (3.15)

where coefficients λ1 and λ2 are used to balance different loss terms. The term of Lvgg denotes

Lvgg = Φ( f (SR), f (HR)). Φ denotes the mean-squared error function (MSE), f (SR) and f (HR)
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Method Scale
Set5 Set14 B100 Manga109 McM PhotoCD

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

FlexIPS [1]+RCAN [2] x2 35.18/0.9387 31.24/0.8776 31.00/0.8647 30.32/0.9199 34.80/0.9301 43.02/0.9610

DemoNet [6]+RCAN [2] x2 35.92/0.9458 32.27/0.8971 31.38/0.8823 35.50/0.9590 35.34/0.9362 43.53/0.9642

RDSR [43] x2 36.29/0.9485 32.56/0.9008 31.56/0.8850 36.14/0.9625 35.90/0.9423 43.74/0.9655

RCAN [2] x2 36.54/0.9499 32.74/0.9032 31.68/0.8878 36.65/0.9643 36.18/0.9445 43.91/0.9661

DSERN (ours) x2 36.55/0.9500 32.71/0.9031 31.70/0.8879 36.72/0.9652 36.23/0.9448 43.90/0.9661

DSERN+ (ours) x2 36.62/0.9504 32.80/0.9041 31.73/0.8884 36.89/0.9658 36.33/0.9456 43.92/0.9661

RDSEN (ours) x2 37.40/0.9575 32.91/0.9128 32.00/0.8972 36.86/0.9716 37.38/0.9565 44.70/0.9716

FlexISP+RCAN x3 31.21/0.8731 28.55/0.7884 27.31/0.7310 27.58/0.8647 31.25/0.8661 40.32/0.9402

DemoNet+RCAN x3 32.16/0.9030 29.24/0.8137 28.42/0.7801 30.75/0.9112 31.65/0.8739 40.74/0.9445

RDSR x3 33.05/0.9103 29.54/0.8211 28.61/0.7859 31.69/0.9225 32.21/0.8842 40.90/0.9458

RCAN x3 33.24/0.9125 29.67/0.8241 28.69/0.7882 32.06/0.9267 32.42/0.8874 41.11/0.9469

DSERN (ours) x3 33.27/0.9127 29.67/0.8240 28.70/0.7884 32.06/0.9268 32.41/0.8875 41.10/0.9469

DSERN+ (ours) x3 33.35/0.9134 29.73/0.8251 28.74/0.7892 32.27/0.9286 32.52/0.8888 41.13/0.9471

RDSEN (ours) x3 33.75/0.9218 29.91/0.8337 28.84/0.7993 32.14/0.9330 33.21/0.9032 41.60/0.9521

FlexISP+RCAN x4 29.57/0.8376 26.94/0.7177 26.68/0.6896 26.69/0.8427 27.78/0.7651 38.28/0.9201

DemoNet+RCAN x4 30.33/0.8596 27.58/0.7488 26.94/0.7081 27.81/0.8590 29.49/0.8187 38.67/0.9243

RDSR x4 30.87/0.8712 27.91/0.7589 27.16/0.7151 28.86/0.8800 30.10/0.8328 38.81/0.9258

RCAN x4 31.04/0.8746 27.98/0.7613 27.20/0.7175 29.12/0.8856 30.24/0.8367 39.01/0.9271

DSERN (ours) x4 31.02/0.8747 27.99/0.7620 27.20/0.7177 29.13/0.8857 30.25/0.8368 39.02/0.9273

DSERN+ (ours) x4 31.12/0.8761 28.06/0.7635 27.24/0.7188 29.36/0.8888 30.35/0.8387 39.08/0.9277

RDSEN (ours) x4 31.63/0.8863 28.26/0.7725 27.39/0.7284 29.28/0.8903 30.74/0.8523 39.41/0.9317

Table 3.3: PSNR/SSIM comparison among different competing methods. Bold font indicates the
best result and underline the second best. Note that DSERN and DSERN+ are the results of JDSR
V1.

are the high-level features extracted from VGG19-54 layer. Note that although similar loss func-

tions were considered in previous studies including [41] and [66], their experiments include syn-

thetic LR images only. In this dissertation, we will demonstrate the effectiveness of the proposed

perceptual optimization for JDSR on real-world data next.
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3.7 Experimental results

3.7.1 Implementation details

In our proposed RDSEN networks, we set the number of RDSEB blocks as 16; and each block

includes 6 residual-dense SE modules. Most kernel size of Conv layers is 3× 3 with 64 filters

(C = 64) except those described in particular: the Conv layers in CA modules and Conv layers

marked as ‘1×1’ with a 1×1 kernel size. The reduction ratio is r = 16. The upscale module we

have used is the same as [100]. The last layer filter is set to 3 in order to output super-resolved

color images. For the discriminator setting, we have implemented the same discriminator network

structure as SRGAN [5]. All kernel size of Conv layers is 3×3.

PyTorch implementation is still used in this experiment. Note that we configured all training

setup the same as Sec. 3.4.1 for generator training. To train GAN-based networks, we have used the

trained RDSEN to initialize the generator of GAN to get a better initial SR image for discriminator.

The same learning rate and decay strategies are adopted here. λ1 and λ2 in Eq. (3.15) are set to

5×10−3 and 1×10−2 respectively as [41].

3.7.2 Training Dataset

In this experiment, we still used DIV2K dataset [81] as the training set, which includes 800

images (2K resolution). For testing, we have evaluated both popular image super-resolution bench-

mark datasets including Set5 [32], Set14 [94], B100 [95], and Manga109 [97], and popular image

demosaicing datasets such as McMaster [98] and Kodak PhotoCD. To pre-process training and

testing data, we downsample original HR images by a factor of 2×, 3×, 4× using Bicubic interpo-

lation then generate the ‘RGGB’ Bayer pattern. All experiments are implemented using PyTorch

framework [84] and trained on NVIDIA Titan Xp GPUs. As an indicator of the overall computa-

tional complexity, the training time of our RDSEN lies somewhere between that of RDN [42] and

RCAN [2] as shown in Table. 3.4. We have verified for all competing networks, it takes around

1000 epochs to reach the convergence.
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Flex+RCAN RDSR RCAN RDSEN HR

25.03/0.7667 26.19/0.8067 26.40/0.8136 27.01/0.8372 PSNR/SSIM

Manga109 (x4):
BurariTessen

25.46/0.7824

DemoNet+RCAN

Flex+RCAN RDSR RCAN RDSEN HR

20.94/0.5854 21.38/0.6247 21.40/0.6347 22.05/0.6814 PSNR/SSIM

Manga109 (x4):
MiraiSan

21.12/0.0.6058

DemoNet+RCAN

Figure 3.15: Visual results among competing approaches for Manga109 dataset at a scaling factor
of 4.
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Method RDN RCAN RDSEN

Time (s) 128 160 130

Table 3.4: Training time compassion of RCAN, RDN and proposed RDSEN, per epoch.

Flex+RCAN RDSR RCAN RDSEN HRDemoNet+RCAN

26.34/0.7387 27.32/0.7848 27.36/0.7877 28.91/0.8385 PSNR/SSIM26.85/0.7677

McM (x3):
16

28.34/0.8400 29.17/0.8654 29.29/0.8689 30.55/0.8987 PSNR/SSIM

McM (x2):
1

28.69/0.8521

Flex+RCAN RDSR RCAN RDSEN HRDemoNet+RCAN

Figure 3.16: Visual results among competing approaches for McM atasets at a scaling factor of 2
and 3.
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Flex+RCAN RDSR RCAN RDSEN HR

27.47/0.8005 28.49/0.8317 28.50/0.8341 29.77/0.8656 PSNR/SSIM27.91/0.8154

DemoNet+RCAN

Set14 (x3):
flowers

Flex+RCAN RDSR RCAN RDSEN HR

34.64/0.9019 35.24/0.9113 35.48/0.9137 35.62/0.9176 PSNR/SSIM

B100 (x2):
37073

DemoNet+RCAN

34.87/0.0.9063

Figure 3.17: Visual results among competing approaches for Set14 and B100 datasets at a scaling
factor of 3 and 2.
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PhotoCD (x4) 
IMG0019

HRRDSEN_TRaGANRDSEN_GANRDSEN

6.55 4.49 3.59 PI

Figure 3.18: Visual comparison results among competing approaches for PhotoCD dataset at a
scaling factor of 4.
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Set5 (x3) 
baby

HRRDSEN_TRaGANRDSEN_GANRDSEN

HRRDSEN_TRaGANRDSEN_GANRDSEN

5.61 4.16 3.31 PI

5.95 3.64 2.77 PI

Set14 (x3) 
zebra

Figure 3.19: Visual comparison results among competing approaches for Set5 and Set14 datasets
at a scaling factor of 3.
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3.7.3 PSNR/SSIM Comparisons

We have compared our methods against four benchmark methods: separated (brute-force)

approaches Flex [1] + RCAN [2] and DemoNet [6] + RCAN [2], recently published literature

RDSR [43], and state-of-the-art SR approach RCAN [2]. To evaluate the results of DemoNet [6]

+ RCAN [2] approach, we first demosaiced the LR mosaiced images by using a pre-trained de-

mosaicing network DemoNet to get LR color images, then super-resolved them by applying a

pre-trained RCAN model. Note that we have used the pre-trained DemoNet and RCAN weights

provided by the authors on GitHub.

The quantitative results are shown in Table 3.3 with the scaling factors of 2×, 3× and 4×. It

can be easily observed that our RDSEN method perform the best for most of datasets and scale

factors. We observe that significant PSNR/SSIM gains (up to 1.2dB) over previous state-of-the-

art. Here we need to point that, not like DSERN, the upgraded version of RDSEN method did

not apply any ensemble strategies, that is why on Manga109 dataset, RDSEN is not the best ap-

proach. As mentioned in Sec. 3.4.2, PSNR/SSIM metrics cannot always reflect the real visual

quality of images, we have also included the subjective quality comparison results for images “Bu-

rariTessen” and “MiraiSan” in Fig. 3.15. For the first row of Fig. 3.15, it can be readily observed

that for the top of the letters, only our RDSEN can faithfully recover text details; brute-force ap-

proaches (Flex+RCAN and DemoNet+RCAN), RDSR and RCAN have produced severe blurring

artifacts; for the second row, only our method can reconstruct the yellow stars faithfully. Tak-

ing another example, Fig. 3.16 shows the comparison at two other scaling factors (3× and 2×).

For “McM(x3) 16”, we observe that all approaches contain color artifacts between the flower and

grass, but our RDSEN method can recover more realistic details than other competing approaches;

for “McM(x2) 1”, pattern recovered by RDSEN appears to have the highest quality and most de-

tailed textures. For more visual comparison, see Fig. 3.17 which shows more convincing visual

comparison among various competing approaches (please zoom in for detailed evaluation).
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3.7.4 Perceptual Index (PI) Comparisons

Most recently, a new objective metric called Perceptual Index (PI) [82] has been developed for

perceptual SISR (e.g., the 2018 PIRM Challenge [86]). The PI score is defined by

PI =
1
2
((10−MA)+NIQE) (3.16)

where MA denotes a no-reference quality metric [87] and NIQE referred to Natural Image Quality

Evaluator [88]. Note that the lower PI score, the better perceptual quality (i.e., contrary to SSIM

metric [75]). Objective comparison of competing JDSR methods in terms of PI is shown in Ta-

ble 3.5. We have observed that GAN-based methods produce the lowest PI scores for all datasets

and scaling factors. Fig. 3.18 provides the visual comparison with image ”IMG0019” (4×). It

can be observed that GAN-based methods can recover sharper edges and overcome the issue of

over-smoothed regions. Additionally, TRaGAN is capable of achieving even lower PI scores than

the standard GAN. Fig. 3.19 shows two more results to demonstrate the advanced ability to recover

texture details of GAN based methods, especially of TRaGAN.

3.7.5 Challenging dataset evaluation

In [6], the authors argue that the existing benchmark datasets are lacking of challenge. To make

the demosaicing performance convincing, they proposed challenging patches where they detected

and cropped the challenging patches from web images for image demosaicing tasks.

In our tasks, we first generated the Bayer patterns, then tested them with scale factor of 4

(demosaiced and super-resovled by 4 ×). From Fig. 3.20, we can see that comparing with the sep-

arated method which have severe blurring and aliasing issues, our RDSEN can better reconstruct

both the textures and edges and avoids aliasing issues.

3.7.6 Ablation Studies

Similar to Sec. 3.4.3, we conduct another ablation study shown in Table 3.6 to demonstrate the

effect of proposed RDSEB module. We can find that our RDSRN has the best performance on all

benchmark dataset.
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Methods Scale Set5 Set14 B100 Manga109 McM PhotoCD

FlexISP [1]+RCAN [2] x2 4.16 4.14 3.34 4.97 3.51 5.42

DemoNet [6]+RCAN [2] x2 4.13 3.76 3.31 3.99 3.48 5.59

RDSEN (ours) x2 4.17 3.81 3.28 4.07 3.27 5.65

RDSEN GAN (ours) x2 3.41 2.95 2.34 3.53 2.59 4.85

RDSEN TRaGAN (ours) x2 3.06 2.90 2.35 3.45 2.52 4.72

FlexISP [1]+RCAN [2] x3 6.98 5.70 6.18 5.43 5.14 6.42

DemoNet+RCAN x3 6.31 5.18 4.97 4.63 5.19 6.61

RDSEN (ours) x3 5.71 4.74 4.48 4.53 4.57 6.52

RDSEN GAN (ours) x3 3.78 2.94 2.39 3.44 2.60 4.96

RDSEN TRaGAN (ours) x3 3.58 2.81 2.36 3.37 2.44 4.78

FlexISP [1]+RCAN [2] x4 7.42 6.63 6.30 5.28 7.15 6.88

DemoNet+RCAN x4 7.21 6.23 6.28 5.43 6.22 7.04

RDSEN (ours) x4 6.18 5.94 5.92 5.00 5.68 6.87

RDSEN GAN (ours) x4 4.50 3.31 2.84 3.65 2.84 5.01

RDSEN TRaGAN (ours) x4 4.24 3.11 2.55 3.45 2.72 4.44

Table 3.5: Objective performance comparison among different methods in terms of Perceptual
Index (the lower the better). Bold indicates the best result and underline the second best.

Method Scale
Set5 Set14 B100 Manga109 McM

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

ResNet x2 36.48/0.9498 32.71/0.9030 31.67/0.8876 36.48/0.9642 36.11/0.9443

RCAN x2 36.54/0.9499 32.74/0.9032 31.68/0.8878 36.65/0.9643 36.18/0.9445

RDSEN (ours) x2 37.40/0.9575 32.91/0.9128 32.00/0.8972 36.86/0.9716 37.38/0.9565

Table 3.6: Ablation study for ResNet, ResNet with CA (RCAN) and ResNet with proposed RD-
SEN. Bold font indicates the best result.
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Figure 3.20: Visual quality comparison of JDSR results among challenging patches provided by
[6].
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Figure 3.21: Fixed-focal length Mastcams [7].

3.7.7 Performance on the Real-world Data

Finally, we have tested our proposed JDSR technique on some real-world data collected by

the Mastcam of NASA Mars Curiosity (as shown in Fig. 3.21). The raw data are ‘RGGB’ Bayer

pattern sized by 1600× 1200. Due to hardware constraints, the left camera and the right cam-

era of Mastcam have different focal lengths (the left is about 3 times weaker than the right). To

compensate such a “lazy-eye” effect on raw Bayer patterns, it is desirable to develop a joint demo-

saicking and SR technique with at least a scaling factor of 3 (in order to support high-level standard

stereo-based vision tasks such as 3D reconstruction and object recognition). Our proposed JDSR

algorithm is a perfect fit for this task, which shows the great potential of computer vision and deep

learning in deep space exploration.

The visual comparison results are shown in Fig. 3.22 for a scaling factor of 4. It can be seen

that the brute-force approach (Flex+RCAN) suffers from undesired artifacts especially around the

edge of rocks. Our proposed RDSEN method can overcome this difficulty but the results appear

over-smoothed. RDSEN GAN improves the visual quality to some degree - e.g., more fine de-

tails are present and sharper edges can be observed. Replacing GAN by TRaGAN can further

improve the visual quality not only around the textured regions (e.g., roads and rocks) but also in

the background (e.g., terrain appears visually clearer and sharper). Let’s take two more visual re-

sults, Fig. 3.23 and Fig. 3.24 among Flex+RCAN, RDSEN, RDSEN GAN and RDSEN TRaGAN

approaches, the proposed RDSEN TRaGAN always lead to the best visual qualities.
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Flex+RCAN RDSEN RDSEN_TRaGANRDSEN_GAN

Figure 3.22: Visual quality comparison of JDSR results on real-world Bayer pattern collected by
NASA Mars Curiosity (4×).
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Flex_RCAN RDSEN RDSEN_GAN RDSEN_TRaGAN

Figure 3.23: More visual quality comparison of JDSR results on real-world Bayer pattern collected
by NASA Mars Curiosity.
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Flex_RCAN RDSEN RDSEN_GAN RDSEN_TRaGAN

Figure 3.24: More visual quality comparison of JDSR results on real-world Bayer pattern collected
by NASA Mars Curiosity.
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3.8 Summary

In this chapter, we proposed two networks to study JDSR problem, DSERN and RDSEN.

The proposed DSERN includes the Dense Squeeze-and-Excitation (DSE) block that can smooth

the information flow by the channel descriptor. As an upgraded version, RDSEN can not only

improve the both objective and subjective performance, but also has lower complexity compared

with DSERN. Both frameworks can get better subjective and objective results compared with

state-of-the-art approaches.
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Chapter 4

Video Super-Resolution

4.1 Related Work

Different from image super-resolution which only needs to care about reconstructing spatial

domain, video super-resolution regards to not only reconstruct the high-frequency components

(spatial domain) but also need to consider the motion offset between the adjacent frames (temporal

domain). In this section, we review video super-resolution approaches based on multi-frame such

as [53, 56–58, 104, 105], optical flow [50] alignment and deformable convolution [55] alignment.

4.1.1 Video Super-Resolution

As the pioneers to apply optical-flow to VSR problems in order to utilize temporal and spatial

information, Liao et al. [106] introduced a draft-ensemble strategy to use two robust optical flow

methods, TV-l1 flow and the motion detail preserving (MDP) flow to overcome large motion vari-

ation and then combine SR drafts via the deep convolutional neural network to generate the final

SR result. Kappeler et al. [107] proposed to use optical-flow to estimate motion compensation of

consecutive LR frames and wrapped them as inputs of the CNN to generate SR frames. Those

two-stage approaches are not optimal solutions since they separate the motion compensation from

frame reconstruction. To explore potential benefits of end-to-end learning architecture for VSR

problem, Caballero et al. [53] proposed efficient sub-pixel convolutional neural network (ESPCN),

a novel end-to-end deep CNN to jointly train the estimation of optical flow and spatio-temporal

networks. Tao et al. [108] introduced a new layer called sub-pixel motion compensation (SPMC) to
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handle inter-frame motion alignment, applied a ConvLSTM [109] architecture for reconstruction

and testing. Haris et al. [110] proposed a recurrent back-projection network (RBPN) with encoder-

decoder mechanism to extract spatial and temporal information. Most recently, Isobe et al. [105]

proposed a novel temporal group attention (TGA) framework to group the input frames (7 frames)

as three groups then generate temporal spatial attention maps to reconstruct the missing details

in the reference frame. Xue et al. [111] proposed to learn self-supervised motion representation,

task-oriented flow (TOFlow), instead of fixing optical flow as the motion compensation module

for VSR problem. Jo et al. [112] represented a dynamic upsampling filters (DUF) to avoid the use

of the explicit motion compensation by computing pixels of local spatio-temporal neighbors of LR

frames to learn the implicit motion compensation.

4.1.2 Deformable Convolution

The inherent limitation of traditional CNN is the ability to model geometric transformations

because of the fixed kernel shape. Although dilated convolution can alleviate this limitation, it is

still difficult for normal kernels to find the key points on the input images or features. To solve

this problem, Dai et al. [54, 55] first proposed a deformable convolution networks to improve the

ability of modeling geometric transformations for traditional CNN by adding learnable offsets to

acquire information from other field rather than fixed local area.

Deformable convolution networks have been widely used on high-level vision tasks such as

object detection [113] and segmentation [54]. Inspired by [55], Tian et al. [57] firstly proposed a

temporally-deformable alignment network (TDAN) to adapt deformable convolution to align the

consecutive LR input frames at the feature level. Wang et al. [56] designed a more aggressive

alignment approach, PCD align module, to align the neighboring LR frames at different scale

levels; also they proposed a temporal and spatial attention fusion module to future enhance impor-

tant features. Xiang et al. [104] proposed a novel space-time video super-resolution framework

to utilize deformable convolution and deformable ConvLSTM module to achieve temporal and

spatial super-resolution at the same time. Wang et al. [58] introduced another deformable convolu-

tion based VSR framework called deformable non-local network (DNLN) with non-local attention

module and hierarchical feature fusion block to enhance the global details between neighboring
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Method Optical-flow DConv. DKern. CA SA ConvLSTM

Liao et al. [106] X

Kappeler et al. [107] X

ESPCN [53] X

SPMC [108] X

TGA [105] X

TOFlow [111] X

TDAN [57] X

EDVR [56] X X

Xiang et al. [104] X X

DNLN [58] X

DKSAN(ours) X X X X

Table 4.1: Previous work comparison on VSR. The “DConv.”, “DKern.”, “CA”, “SA” and “ConvL-
STM” respectively represent deformable convolution, deformable kernel, channel attention, spatial
attention and convolutional LSTM.

frames and references. Those deformable alignment based methods show better performance than

optical-flow based networks.

4.1.3 Summary of VSR approaches

Table. 2.1 presents a summary of the state-of-the-art deep learning methods for the VSR task.

4.2 Dataset Setup

In this work, we use Vid3oC [68] as the training dataset. Vid3oC dataset has a large diversity

of contents and become more and more popular for video enhancement and super-resolution tasks.

It includes 50 videos in total for training, 16 sequences with 120 frames each for validation and 16

sequences with 120 frames each for testing. Note that the ground-truth validation and testing data

are not released. All the videos are 1080p with 30 frames per second. The length of video time is

varied. The sample frames are shown in Fig. 4.1 and Fig. 4.2.

Because the authors haven’t released the testing dataset, in the meantime, we use IntVID [68]
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Figure 4.1: The sample of HR patches from Vid3oC dataset.
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Figure 4.2: The sample of low-resolution patches from Vid3oC dataset.
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dataset as an alternated test dataset to evaluate the performance of our proposed approach. IntVID

dataset is released by the same authors of Vid3oC dataset that includes 60 videos for training, 16

videos for validation and 16 videos for testing. The same as Vid3oC, the ground-truth of validation

and test videos are not released. Therefore, we select the last ten training videos and extract 14

consecutive frames from each video as test dataset.

To pre-process training and test data, we first extract the frames from the original videos via

FFmpeg, then we crop 4 border pixels on top and bottom of each frame to make sure the cropped

frame can be divided by 16. Finally, we downsample the cropped frames by a factor of 16×

using Bicubic interpolation to generate LR frames. After the whole pre-process procedure, we

have 69,496 LR frames in total and the corresponded 4th frame of HR frames (9,928 in total) for

training, 140 frames for testing.

4.3 Approach

The hierarchy of DKSAN network design goes like: DKSAN (Fig. 4.3) → DKC Align sub-

network (Fig. 4.4)→ reconstruction module (Fig. 4.5).

4.3.1 Overview: Deformable Kernel Spatial Attention Networks

For multi-frame based video super-resolution, first, given a 2N + 1 consecutive LR frames

ILR
T = {ILR

r−N , . . . , I
LR
r−1, I

LR
r , ILR

r+1, . . . , I
LR
r+N}, where ILR

r is denoted as the center frame or reference

frame and ILR
r−N or ILR

r+N are the neighboring frames of ILR
r . The goal of multi-frame based video

super-resolution is to reconstruct HR frame Ŷr from the consecutive sequence of ILR
T by utilizing

both the spatial and temporal information. The overall pipeline of proposed networks DKSAN is

shown in Fig. 4.3. It mainly includes four parts, feature extractor, DKC Align module, reconstruct

module and upscale module. Different from the traditional deep learning based multi-frame video

super-resolution architecture, this work aims to super-resolve the extreme LR videos (with the up-

scale factor of 16), therefore, it is difficult to upscale the extreme low-resolution feature maps to

the target high-resolution one directly (one time upscale such as [56, 57, 105]), undesired blurring

and artifacts may be generated in this procedure. To solve this issue, we introduce a cascade up-

scale solution to super-resolve the low-resolution features several times (four times in this work) to
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Figure 4.3: Overview of DKSAN.
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smooth the information conduction in upscale module. Benefit by the cascade upscale architecture,

the LR frames can be super-resolved smoothly to reconstruct more desirable HR frames compared

with other approaches.

The whole problem can be formulated as follows:

Ŷr = F(ILR
T ) (4.1)

where ILR
T denotes the consecutive LR frames and Ŷr denotes the super-resolved reference frame

ILR
r . In particular, we extract the preliminary features of all input frames through the feature extrac-

tor which is stacked by several resblocks [56] without batch normalization layers. This procedure

can be represented as follows:

Ff ea = Eres(ILR
T ) (4.2)

where Eres denotes the preliminary feature extractor, the output Ff ea is the extracted feature maps

for all input frames. Let define Fn is the neighboring feature, and Fr is the reference feature sep-

arated from Ff ea. To align the neighboring feature and the reference feature with the proposed

DKC Align module EDKC Align, we have

FAlign = EDKC Align(Fn,Fr) (4.3)

Ff usion = WE(FAlign) (4.4)

where n ∈ [t−N, t +N] and n 6= r, FAlign is the concatenated aligned feature maps for each neigh-

boring frame feature with reference frame feature. The details are demonstrated in section 4.3.2;

WE ∈ R1×1×C a 1×1 Conv layers. Then in the reconstruction period, the aligned feature FAlign is

entered to reconstruction module and upscale module for the first level upscaling operation:

Ŷ level1
r =U1(ERecon1(Ff usion))+B2×(ILR

r ) (4.5)

where ERecon1 denotes the first level reconstruction module, U1 is the first level upscaling module

and B2× stands for the Bicubic interpolation with scale factor of 2; Ŷ level1
r is the 2× SR frames.

Finally, to get the extreme super-resolved frame Ŷr, we repeat another 3 times of reconstruction
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operation:

Ŷ level2
r =U2(ERecon2(E2(Ŷ level1

r ))+B2×(Ŷ level1
r ) (4.6)

Ŷ level3
r =U3(ERecon3(E3(Ŷ level2

r ))+B2×(Ŷ level2
r ) (4.7)

Ŷr =U4(ERecon4(E4(Ŷ level3
r ))+B2×(Ŷ level3

r ) (4.8)

where E2,E3,E4 are the preliminary feature extractors for each level; U2,U3,U4 denote the upscal-

ing module for each corresponding level, respectively. The details are described in section 4.3.3

including DKSA module which is not discussed here.

4.3.2 Deformable Kernel Alignment Module

Different from the previous VSR works which applied optical flow to align neighboring frames

with reference frame, [57] and [56] introduced to utilize modulated deformable convolution [55]

to temporally align the given consecutive frames in order to add temporal information to VSR

frameworks.

Deformable Convolution and Deformable Kernel

Inspired by [56, 59], we propose a new alignment module, DKC Align, to combine the de-

formable kernel [59] and deformable convolution [55] as shown in Fig. 4.4. First, let Fn and

Falign
n denote the input and output feature maps (not the reference frame feature), Wk represents

the weight kernel and pk is the pre-specified offsets for the k-th location (K is the total sampling

location), then the modulated deformable convolution can be described as follows:

Falign
n (p) = ∑

k∈K
Wk ·Fn(p+ pk +∆pk) ·∆mk (4.9)

where Falign
n (p) and Fn(p) indicates the feature location p from Falign and Fn, ∆pk and ∆mk stand

for the learnable offset and the modulation scalar, respectively. With ∆pk and ∆mk, the convolution

will get the ability to be irregularly dilated. To get ∆pk and ∆mk and align the neighboring feature

with reference feature in particular, we first concatenate the neighboring frame feature and the ref-

erence frame feature then fuse them with one Conv2D layer and fed them into several deformable

kernel layers:

∆Pn,∆Mn = D( f ([Fn,Fr])),n ∈ [t−N, t +N],n 6= r (4.10)



Xuan Xu Chapter 4. Video Super-Resolution 78

Conv

DKC

DKC

Concat

Reference
Feature maps

Unaligned
Feature maps

DefConv

Aligned
 Feature maps

Figure 4.4: Overview of DKC Align module.
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Figure 4.5: Overview of reconstruction module; DKCA is deformable kernel spatial attention mod-
ule shown in (b); (c) is a light version of DKCA which is applied to the first level reconstruction.
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Figure 4.6: The details of upscale module, the last Conv layer has only 3 feature maps output in
order to generate RGB color frame.

where f denotes the one Conv2d layer to fuse Fn and Fr, D represents the deformable kernel

convolution layer. To express deformable kernel convolution layer D, let ∆k denote a learnable

offset of the kernel W, then deformable kernel convolution layer can be formulated as:

D= ∑
k∈K

Wk+∆k · f ([Fn,Fr])(p+ pk +∆pk),n ∈ [t−N, t +N],n 6= r (4.11)

The newly designed DKC Align module can better adapt both the theoretical and effective recep-

tive fields though deformable convolution and deformable kernel to explore the important offset

feature to improve the alignment accuracy.

4.3.3 Reconstruction Module

To get the super-resolved frame Ŷr, the output Ff usion from DKC Align module is fed into the

reconstruction module. The reconstruction module includes several stacked RCAB blocks and the

DKSA module (see Fig. 4.5 (a)):

Frecon = EDKSA(ERCABs(Ff usion))+Ff usion (4.12)

where Frecon is the final reconstruction features to be fed into upscale module (the architecture

of upscale module is shown in Fig. 4.6 which includes several Conv layers, PixelShuffle and
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LeakyReLU), ERCABs and EDKSA denote the RCAB blocks and DKSA module. As discussed in

Chapter 3, attention mechanism has been proven as an efficient way to help high and low-level

vision problems. In our proposed reconstruction module (see Fig. 4.5), we implemented both

channel attention and spatial attention (Fig. 4.5 (b)) modules. Please refer Chapter 2 and Chapter

3 for more details of RCAB block and channel attention mechanism.

Deformable Kernel Spatial Attention Module

In order to further calibrate output feature maps, we proposed to use Deformable Kernel based

Spatial Attention (DKSA) module instead of traditional spatial attention mechanism. As shown

in Fig. 4.5 (b), in DKSA, we first use one Conv layer to extract the output of the stacked RCAB

blocks, then we use a couple of stacked Deformable Kernel Convolution (DKC) layers to further

extract key features from the naive feature map. As discussed in section 4.3.2, deformable kernel

can better measure the effective receptive field than normal convolution kernel. Therefore, DKSA

can generate better spatial attention map to let networks pay more attention on important features

such as edges and textures than the traditional one. Note that Fig. 4.5 (c) shows a light version of

DKSA which is used in the level 1 reconstruction module.

4.4 Experimental Results

In this section, we demonstrate the network setting, training details, ablation study and experi-

mental results of proposed video extreme super-resolution problem.

4.4.1 Implementation Details

In the proposed DKSAN networks, to compare with EDVR, we set the kernel size as 3×3 for

most of Conv layers, all deformable kernel layers and all deformable convolution layers with 128

filters. The kernel size of feature fusion layers is 1× 1. The reduction ratio for channel attention

module is still r = 16. The upscale module is PixelShuffle layer [100]. The last layer filter is set to

3 in order to output color frames.

In particular, we randomly crop the 7 LR frames as small patches with the size of 32× 32,

and crop the corresponding 4th HR frames with the size of 512× 512. The batch size is 16. We
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augment the training set by random flips and rotations. The optimizer we used is ADAM [83] with

β1 = 0.9, β2 = 0.999. The initial learning rate is set to 4×10−4. The total training step is 115k.

The loss function we used is adapted Charbonnier penalty function [69]. The loss can be defined

as 4.13 shown as follows:

Loss =
√
||Ŷr−Yr||2 +ξ 2 (4.13)

where ξ = 1e−3, Ŷr is super-resolved frame and Yr is target frame (ground-truth). All experiments

are trained on 4 NVIDIA Titan Xp GPUs with PyTorch framework Implementation.

Note that for fair comparison, we retrain EDVR with same dataset (Vid3oC) and keep most of

EDVR setting as the same as the original implementation except setting the upscale module from

factor 4 to factor 16 in order to make sure EDVR can generate extreme super-resolved frames.

4.4.2 Comparisons

Because few existing works related to video extreme super-resolution (with a scale factor of

16), in this work, we have compared our proposed network against with Bicubic interpolation and

state-of-the-art EDVR.

Table 4.2 shows PSNR comparison results of our approach with the competing methods, Bicu-

bic interpolation and EDVR with the scaling factor of 16. It can be seen that our DKSAN method

has the best PSNR scores for all ten testing videos. We observe that significant PSNR gains (up

to 4dB) over previous state-of-the-art method EDVR. As discussed in previous Chapters, PSNR

metrics sometimes cannot reflect the real visual quality of images, therefore, we also demonstrate

the subjective quality comparison. In Fig. 4.7, “050 0010”, we can easily observe that our pro-

posed DKSAN can better reconstruct the structure of car tail; the results of Bicubic and EDVR are

suffering from severe artifacts and blurring. Taking another example, “054 0007” in Fig. 4.8, our

DKSAN can recover rich details of the face compared with Bicubic and EDVR which suffering

from blurring and distortion. More subjective results can be find in Fig. 4.74.84.9, please zoom in

for a better detailed comparison.
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Figure 4.7: Visual comparison results among competing approaches for IntVID dataset (video 050,
051, 052) at a scaling factor of 16.
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Figure 4.8: Visual comparison results among competing approaches for IntVID dataset (video 053,
054, 055) at a scaling factor of 16.
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Figure 4.9: Visual comparison results among competing approaches for IntVID dataset (video 057,
058, 059) at a scaling factor of 16.
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Video Name Scale
Bicubic EDVR DKSAN (ours)

PSNR (dB) PSNR (dB) PSNR (dB)

050 x16 21.56 21.81 23.06

051 x16 23.02 24.13 24.92

052 x16 29.56 29.33 31.87

053 x16 24.05 24.51 25.09

054 x16 31.34 33.15 36.18

055 x16 24.39 25.01 26.88

056 x16 31.16 31.93 34.22

057 x16 34.35 35.20 39.75

058 x16 36.00 37.36 38.15

059 x16 30.49 31.37 34.17

Average x16 28.59 29.38 31.43

Table 4.2: Quantitative comparisons among Bicubic interpolation, EDVR and proposed DKSA on
IntVID dataset (10 videos) for scaling factor of 16. Bold font indicates the best result.

4.4.3 Ablation Studies

To investigate the effect of proposed DKC Align module and DKSA module, we have con-

ducted different strategies to remove the certain components from the final framework DKSAN. In

particular, we have implemented three competing models for our ablation studies: 1) training with

only resblocks, without channel attention, alignment and DKSA; 2) training without DKC Align

and DKSA module; 3) training with DKC Align module but without DKSA module; 4) training

with all modules (proposed DKSAN). Note that all experiments are trained under same dataset and

conditions for fair comparison.

Table. 4.3 shows the results of all four strategies mentioned previously with PSNR scores

of each video and average. The backbone result is running only based on resblock, no channel

attention, alignment and DKSA applied. From the results, we can see that the backbone has the

worst performance; adding channel attention module but without DKC Align and DKSA modules,

the result is only 31.27 dB; after adding DKC Align module, the result is improved to 31.32 dB;

finally, we observe that after adding DKSA module (the full version of DKSAN), the result is

further improved to 31.43 dB (0.4dB and 0.16dB gained when compared with backbone and w/o
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Video Name
Backbone w/o Alignment & DKSA w/o DKSA Module DKSAN (ours)

PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

050 22.80 22.98 22.87 23.06

051 24.72 24.89 24.89 24.92

052 31.65 31.75 31.85 31.87

053 25.05 25.07 25.18 25.09

054 35.30 35.73 35.86 36.18

055 26.52 26.89 26.69 26.88

056 33.79 33.92 34.33 34.22

057 38.97 39.13 39.27 39.75

058 38.09 38.21 38.30 38.15

059 33.38 34.15 34.16 34.17

Average 31.03 31.27 31.32 31.43

Table 4.3: Ablation Studies for DKSAN on IntVID dataset for scaling factor of 16. Backbone
means only resblocks are applied, channel-attention, alignment and DKSA modules are not ap-
plied; w/o Alignment & DKSA means DKC Align and DKSA Module are not applied; w/o DKSA
means only the DKSA module is not applied. Bold font indicates the best result.

Alignment & DKSA respectively) because of the effective module DKSA. Note that, as the PSNR

scores shown in Table. 4.3, we can find that for some cases such as video “058”, the DKSAN cannot

deliver a convincing result. The main reason is video “058” has very small motions compared with

other subjects, which our designed DKSA and alignment modules cannot reconstruct them very

well.

4.5 Summary

In this Chapter, we reviewed the recent state-of-the-art approaches related to multi-frame video

super-resolution, and proposed a novel Deformable Kernel Spatial Attention Network (DKSAN)

to solve the video extreme super-resolution task (with the scale factor of 16). Our experimental

results indicate that our method can achieve both the higher PSNR scores and better visual quality

compared with previous state-of-the-art method EDVR [56].
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Chapter 5

Conclusions and Future Work

In this dissertation, we have mainly studied three low-level vision problems: 1) single image

super-resolution; 2) joint demosaicing and super-resolution; 3) multi-frame video super-resolution,

to demonstrate the efficient of proposed attention mechanisms (spatial-spectral attention, color

attention and deformable kernel spatial attention).

5.1 Single Image Super-Resolution

In this work, we developed a spatial color attention networks (SCAN) to tackle the problem of

single image super-resolution based on real-world image dataset from NTIRE2019 challenge. The

newly designed spatial color attention module (SCAM) can enable the networks to learn the joint

representations across spectral channels and better calibrate the feature maps with R,G,B spatial

color attention maps. When compared with start-of-the-art RCAN, our method SCAN can signif-

icantly improve both objective (including PSNR/SSIM/PI) and subjective results. Meantime, the

designed SCAM module can easily be integrated with other existing super-resolution networks.

Under the framework of NTIRE challenge, one issue that remains to be addressed is the model-

ing/learning of real-world degradation (the forward process). We expect that exploiting a priori

Sec. 5.1 c©2019 IEEE. Reprinted, with permission, from X. Xu and X. Li, SCAN: Spatial Color Attention Net-
works for Real Single Image Super-Resolution, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW), June 2019. The reference can be found in [8].

Sec. 5.2 c©2020 IEEE. Reprinted, with permission, from X. Xu, Y. Ye and X. Li, Joint Demosaicing and Super-
Resolution (JDSR): Network Design and Perceptual Optimization, IEEE Transactions on Computational Imaging,
June 2020. The reference can be found in [9].
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information about the degradation process can offer new insight to the problem of real SISR.

5.2 Joint Image Demosaicing and Super-Resolution

In this work, we proposed to study the problem of joint demosaicing and super-resolution

(JDSR) - a topic has been underexplored in the literature of deep learning. Our solution in-

cludes two networks design: 1) DSERN; 2) RDSEN. DSERN consists of a new densely-connected

squeeze-and-excitation residual network for image reconstruction. Compared with naive network

designs, our proposed network can stack more layers and be trained deeper by newly designed

DSE block. This is because DSE makes multiple expansions on a reduced channel descriptor to

allow more faithful information flow. As an updated version, RDSEN has newly designed PDNet

and RDSEB block to reduce the computational complexity of DSERN and further improve both

objective and subjective performance.

Additionally, we have studied the problem of perceptual optimization for JDSR. Our experi-

mental results have verified that TRaGAN can generate more realistically-looking images (espe-

cially around textured regions) and achieve lower PI scores than standard GAN. Finally, we have

evaluated our proposed method (RDSEN TRaGAN) on real-world Bayer patterns collected by the

Mastcam of NASA Mars Curiosity Rover, which supports its superiority to naive network design

(e.g., Flex+RCAN) and the effectiveness of perceptual optimization. Another potential application

of JDSR in practice is the digital zoom feature in smartphone cameras.

5.3 Multi-Frame Video Super-Resolution

In this work, we proposed a multi-frame based cascade VSR network DKSAN for extreme

low-resolution videos. The novel temporal alignment module, DKC Align, can help the networks

to better learn and align the detailed features under both local and global fields between reference

frame and its neighboring frames. Furthermore, the DKSA module calibrated the reconstructed

complementary features to further enhance the edges and textures at the spatial domain. Thanks

to the newly designed DKC Align and DKSA modules, the proposed architecture can reconstruct

high-quality HR frames from extreme LR frames and significantly improve both objective and



Xuan Xu Chapter 5. Conclusions and Future Work 90

subjective results when compared with state-of-the-art approach EDVR.

5.4 Future Works

Although in Chapter 2, we proposed a possible solution for real world image super-resolution,

it still requests paired high and low resolution images as training data. The limitations of this data

collection way are that: 1) request accurate alignment method to align paired images; 2) because

of the difficulty of collection data, it’s almost impossible to collect a large dataset to improve the

network generalization ability. To solve these limitations, an unpaired approach for SISR is worth

to be explored.

Furthermore, Graph Convolutional Networks (GCN) recently has been noticed by computer

vision society, and it has been applied for many low-level vision tasks such as depth completion

[114] and super-resolution [115]. Inspired by [115], we consider studying a more efficient solution

for JDSR tasks to better trade-off network complexity and reconstruction quality in order to apply

it in practice.

Finally, in modern life, people are looking not only for video clarity such as 1080p, 2K, 4K

even 8K, but also for the fluency of video (from 30 f ps to 60 f ps even 90 f ps), such the demand

like this will result in insufficient bandwidth. Therefore, the Joint Video Spatial and Temporal

Super-Resolution (JSTSR) for extreme low-resolution videos is a valuable open topic to study to

help video coding, compression etc. In the future work, we plan to explore an efficient solution to

utilize Conv3D layer and Recurrent Neural Networks (RNN) for JSTSR.
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