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Abstract 

Comparative Study of Model-Based and Learning-Based Disparity 

Map Fusion Methods 

Douglas Kerr, Jr. 

Creating an accurate depth map has several, valuable applications including augmented/virtual 

reality, autonomous navigation, indoor/outdoor mapping, object segmentation, and aerial 

topography. Current hardware solutions for precise 3D scanning are relatively expensive. To 

combat hardware costs, software alternatives based on stereoscopic images have previously been 

proposed. However, software solutions are less accurate than hardware solutions, such as laser 

scanning, and are subject to a variety of irregularities. Notably, disparity maps generated from 

stereo images typically fall short in cases of occlusion, near object boundaries, and on repetitive 

texture regions or texture-less regions. 

Several post-processing methods are examined in an effort to combine strong algorithm results 

and alleviate erroneous disparity regions. These methods include basic statistical combinations, 

histogram-based voting, edge detection guidance, support vector machines (SVMs), and bagged 

trees. Individual errors and average errors are compared between the newly introduced fusion 

methods and the existing disparity algorithms. Several acceptable solutions are identified to 

bridge the gap between 3D scanning and stereo imaging. It is shown that fusing disparity maps 

can result in lower error rates than individual algorithms across the dataset while maintaining a 

high level of robustness.  
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1 

1 Introduction 

Many algorithms exist to interpret disparity from stereoscopic images and work well to 

accomplish this task. This is evidenced by the numerous, evaluated algorithms presented on the 

Middlebury website [1] [2] [3]. Middlebury provides datasets and ranks submitted algorithms 

based on several criteria. This work compares rankings after performing a variety of post-

processing techniques. 

The term “image fusion” is usually used to refer to the combining of images obtained from 

multiple, and possibly dissimilar, sensors to create a clearer or more reliable representation than 

any of the individual sensors alone. The following discussion is notably different in regard to the 

origin of the data to be fused. The length of the discussion is based on fusing results or outputs 

obtained from the application of different algorithms on sensor data as opposed to raw sensor 

data itself. Specifically, we are looking at unique, post-processed, disparity maps calculated from 

identically sourced, stereo images. New results are created either by patching select portions of 

inputs together or by interpolating entirely new data values from selected inputs.  

1.1 Application Analysis 

1.1.1 3D Scanning Hardware Replacement 

Applications for low cost, high quality disparity maps are plentiful. Disparity maps can be 

obtained through 3D scanning hardware such as LIDAR. LIDAR offers the highest quality map 

but is currently the least cost-effective solution. For example, the Velodyne hdl-64e LIDAR 

contains 64 lasers, providing the highest resolution at a cost of up to $85,000 [4]. The Velodyne 

vlp-16 is the least expensive model on the product line and contains 16 lasers, providing lower 

resolution but at a more affordable price of $8,000 [4]. Large-scale distribution in consumer 

products is impractical at these costs.  

Radar is another possible means of producing disparity maps. Radar is an order of magnitude 

less in price compared to LIDAR, ranging in the hundreds of dollars. However, radar does not 

provide the near-perfect maps accustomed to LIDAR. It is susceptible to echoing, which can 

create ghosting of objects, along with other distortions due to interference and noise.  
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Lastly, stereoscopic images can provide disparity maps at the lowest cost, but the algorithms 

used to calculate the maps can be inconsistent, as evidenced in this paper. The quality suffers in 

certain cases, as no single algorithm is both robust and accurate. Stereo matching is also subject 

to certain inherent faults such as occluded regions, reflection, differences between strong 

textured and texture-less regions, and object boundaries. The added benefit of this hardware is 

portability as demonstrated by the recent availability of two-camera configurations in high-end 

smartphones. 

While hardware costs are likely to continue a downward trend, there is currently no promise of 

further size reduction or price reduction below a certain point. A cost analysis of LIDAR, radar, 

and stereo imaging shows at least an order of magnitude between each technology. The relative 

cost-to-performance ratio between each will likely remain the same unless a fundamental 

breakthrough occurs in production means, material makeup, or functionality for any of these 

technologies. 

1.1.2 Augmented and Virtual Reality 

Applications for high quality, portable 3D mapping include improvements for augmented and 

virtual reality. For augmented reality to be truly immerse, object distances and boundaries must 

be clearly distinguished. It is often necessary for a virtual object to appear partially occluded as it 

would in the real world if another object passed in front of it. Early applications have not made 

use of this, or rather, have not been able to. Rendered objects are limited to clear, flat surfaces 

and only appear as an overlay on the image. These initial limitations were evident in popular 

mobile games, such as Pokémon Go, and social media platforms, such as Snapchat. Augmented 

reality platforms simply lack the ability to fully make use of 3D environments since they have 

few cues to perceive depth. Currently, the size of the rendered object can be scaled based on the 

intrinsic lens properties and motion-based sensors. There is also often an observable flickering 

effect when a surface is disrupted due to foreground objects. 

Virtual reality applications include being able to map portions of an environment at low cost with 

respect to hardware. This potentially allows for a more fluid virtual tour akin to Google Street 

View. 3D mapping could have a similar role in real-estate, allowing for an improved virtual 
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house tour. This would allow potential buyers to more accurately gauge the size of a home, 

quickly compare with other homes, and tour from a distance without any buying pressure or 

wasted time. 

3D scanning could allow an object to be scanned into virtual reality with a simple walk around. 

Simultaneous localization and mapping (SLAM) algorithms can become more accurate and 

useful with calibrated stereo cameras. ORB-SLAM2 and Stereo LSD-SLAM both detail ways of 

implementing stereo vision [5] [6]. Figure 1.1 provides examples of both full room virtualization 

as well as walk arounds of objects to create virtual objects. 

1.1.3 Robotics 

Stereo vision has proven useful in robotics for navigation purposes. NASA Mars exploration 

rovers Spirit and Opportunity used this technology for missions in 2004. Stereo vision was 

Figure 1.1 Instances of Pointcloud Reconstructions from Stereo Cameras. Adopted from [5] 



4 

 

 

beneficial because it relied on a passive sensor and no moving parts, limiting the risk of 

component failure. The cameras only needed to detect passive sunlight as opposed to LIDAR, 

which required light to be emitted before capturing its response. A software solution was deemed 

more power efficient for navigating complex environments. [7] 

 

The use of drones has been proposed as a solution to mapping environments that are otherwise 

inaccessible [8]. This can include unstable mining sites and radioactive sites. The same 

application of stereo SLAM algorithms as discussed in Section 1.1.2 is used. The only difference 

being the stereo camera collection is done remotely as opposed to handheld data aggregation. 

 

 

Figure 1.2 demonstrates work by Schmid et al. [8] to map both indoor and outdoor environments 

via a drone equipped with stereo cameras. This map was post-processed offsite to gain a higher 

resolution than onboard processing could accomplish.  

 

1.1.4 Object Segmentation 

Object segmentation implemented by traditional methods is subject to performance variations 

under fluctuating physical conditions. These limitations are apparent during illumination 

changes, ambiguous color overlap, and through motion in video. A patent by Y. A. Ivanov et al. 

Figure 1.2 Indoor/Outdoor Mapping via Drone. Adopted from [8]  
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[9] highlights the benefits of using stereo vision to overcome these restrictions. Their patent 

details a method of using calibrated cameras to segment a person’s gestures to interact with a 

dynamic projector as a form of control device.  

 

Combing stereo vision with object knowledge has been shown to increase accuracy of mapping 

by creating more plausible surfaces [10]. Using object-level knowledge diminishes or removes 

some of the limitations of disparity mapping, such as ambiguity caused by reflective and 

transparent surfaces. F. Güney and A. Geiger apply this method to automotive applications to 

more accurately recover vehicle geometry that is degraded by windows. They claim a 50% 

reduction in error in reflective and texture-less regions [10]. This can be more clearly seen in 

Figure 1.3. 

 

 

Sumi et al. propose a method to segment partially occluded, known objects, including free-form 

objects, using stereo vision [11]. After an object is recognized, boundary features are extracted 

from the stereo cameras and an estimate of the orientation of the object is derived from the 

Figure 1.3 Disparity Mapping Using Stereo Vision (Top); Disparity 

Mapping Combined with Object Knowledge (Center); Recovered Geometry 

(Bottom) Adopted from [10] 
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corresponding, established 3D model. A representation of this technique can be seen in Figure 

1.4.  

 

 

 

1.1.5 Aerial Topography 

A system has been proposed for the landing of unmanned aerial vehicles (UAVs) in ambiguous 

terrain which uses dense elevation mapping from stereo cameras along with motion estimation 

and other sensor information [12].   

 

1.2 Contributions 

Many different algorithms exist for stereo matching, each with a different degree of focus on 

improving and solving problematic areas. Three key difficulties are interpolating occluded 

regions, deciding object boundaries, and distinguishing fine-detailed or similarly textured 

objects. Assuming a selection of algorithms has enough diversity, each should have a unique 

combination of inherent strengths and weaknesses based on their underlying functional method 

of action. A set of proposed solutions from several, differing methods should, therefore, allow a 

consensus to be formed for a more robust, consistent, and accurate disparity map than any 

individual algorithm result. Several fusion methods are proposed to support this thesis. The 

methods that are proposed attempt to statically or adaptively select the best algorithm, or 

Figure 1.4 Mesh Model Segmenting Partially Occluded 

Object. Adopted from [11] 



7 

 

 

combination of algorithm traits, to achieve this outcome. To clarify, static methods imply that a 

simple operation is applied uniformly. Static methods rely on no other sources of information 

beside the corresponding pixel values at a given location. Adaptive methods consider certain 

situational factors or assume prior knowledge to determine weighted rules.  

 

Static methods include all the elementary statistical methods detailed in Section 3.1 except the 

weighted mean and weighted median. These approaches use a form of outside context to 

determine weights since they assume an approximation known to be close to the ground truth. 

The histogram method is also considered static since it is simply a voting method. The edge-

guided approach detailed in Section 3.3 is considered adaptive since edge information is selected 

and treated differently based on the corresponding RGB image. The learning approaches in 

Section 4 are also considered adaptive since they depend on weights learned from previous 

inputs.  

 

1.3 Structure of Problem Report 

Chapter 2 presents a comprehensive literature review. A formal structure for stereo-matching is 

thoroughly defined and current trends differing from the historical process are presented. All 

algorithms used for fusion are briefly reviewed.  

 

Chapter 3 explores model-based fusion methods. Simple statistical methods are outlined 

followed by more advanced approaches. A histogram-based fusion approach is detailed and a 

method to use edge extraction on RGB image data to guide algorithm selection. 

 

Chapter 4 shifts focus toward learning-based fusion methods. Several popular approaches are 

examined. Support vector machines (SVMs) and bagged decision trees are described. 

 

Chapter 5 introduces the dataset and the error metric used to evaluate all algorithms. It also 

discusses the reasoning for selecting the algorithms being compared. It continues to compare the 

results of the implementations of methods detailed in chapters 3 & 4.  

 



8 

 

 

Chapter 6 draws conclusions based on the results described in chapter 5. Limitations of fusion 

methods are discussed along with future areas of possible improvement.  
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2 Literature Review 

2.1 Stereo-Matching 

Historically, the most basic form of computational stereo-matching has roughly followed the same 

set of principles. These are outlined as follows [13]:  

 

• Image acquisition 

• Camera modeling 

• Feature acquisition 

• Image rectification 

• Initial distance determination 

• Interpolation between feature points 

 

First, a pair of images must be acquired. Depending on how this data is sourced, a large amount of 

variability may be introduced. Images that are not taken at approximately the same time are more 

likely to be subject to lighting and scenery changes. The degree of difference between viewing 

distances and viewing angles between the camera locations will also introduce irregularities. With 

this, the field of view also needs to be considered. The amount of useable information is limited to 

the overlap of stereoscopic images. The use of different cameras can present different photometry 

between images as well. This will change the relative brightness seen from each image acquisition 

point. Slight differences in image resolution can have an effect depending on the scene and amount 

of variance. [13] 

 

2.1.1 Camera Modeling with Epipolar Geometry 

At the heart of stereo-matching is the problem of finding corresponding feature points between 

images. To achieve an accurate map and reduce the outliers in the sets of corresponding points, it 

is necessary to have a proper camera model. This will map the geometry between physical camera 

locations and provide a narrow map in pixel space to search for corresponding feature points. The 

narrowed search region defined by epipolar geometry of the cameras is known as the epipolar 

constraint [14]. Figure 2.1 illustrates the epipolar constraint in a two-camera setup. X. Chai et al. 

[15] describe the geometry as follows: The point P is a scenery point in 3-D space. Points pl and 
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pr are projections onto image planes Il and Ir, respectively. Cl and Cr are the optical centers of each 

respective left and right camera. The base line connects the optical centers of each image. The 

epipolar plane π is defined by spatial points P, Cl and Cr. Any plane containing the base line is 

considered an epipolar plane since P is arbitrary. The intersection of an epipolar plane and an image 

plane is deemed an epipolar line. The epipolar line formed by epipolar plane π and image plane Il 

is denoted as lpl. The point pr corresponding to pl in image plane Il must fall along the epipolar line 

lpr. This limits the search for matching points to the epipolar lines if the camera model is known, 

thereby reducing search complexity and computational cost. In order to find the epipolar lines, lpl 

and lpr, and epipoles, el and er, the image planes must be aligned via matrix transformation.  

 

 

 

 

The essential matrix E contains the information to characterize the translation T and rotation R 

from the first image plane to the second, as shown in Figure 2.2 [16]. This gives the location of 

the second camera in terms of the first camera. The fundamental matrix F contains the same 

information as E but includes intrinsic properties of the camera as well [16]. This allows E to 

relate the image planes in pixel space as opposed to physical space. 

Figure 2.1 Visualization of Epipolar Geometry; Adopted from [15] 
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The following derivation of the essential matrix and fundamental matrix closely follow the work 

of Bradski and Kaehler published in [16]. Point P viewed from the right camera location in terms 

of the left camera location is given by Pr = R(Pl – T), where T is the origin of the other camera 

and R is the relative rotation. Next the epipolar plane needs to be introduced. All points x on a 

plane with normal vector n and passing through point a are constrained by: 

 

(𝑥 − 𝑎) ∙ 𝑛 = 0 2. 1 

 

The epipolar plane contains vectors Pl and T; We can use a vector perpendicular to both to 

represent n in the above equation. We also replace the dot product with matrix multiplication by 

the transpose of the normal vector. 

 

(𝑃𝑙 − 𝑇)𝑇(𝑇 × 𝑃𝑙) = 0 2. 2 

 

The relational equality defined earlier, Pr = R(Pl – T), can be rewritten as (Pl – T) = R-1Pr. 

Making this substitution and using the relation RT = R-1 yields: 

 

(𝑅𝑇𝑃𝑟)𝑇(𝑇 × 𝑃𝑙) = 0 2. 3 

 

Figure 2.2 Image Plane Transformation; Adopted from [16] 
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Now we re-write the cross product as a matrix multiplication and define matrix S. 

 

𝑇 × 𝑃𝑙 = 𝑆𝑃𝑙   
 

⇒   𝑆 = [

0 −𝑇𝑧 𝑇𝑦

𝑇𝑧 0 −𝑇𝑥

−𝑇𝑦 𝑇𝑥 0
] 2. 4 

 

Now making the substitution for the cross product, we have: 

 

(𝑃𝑟)𝑇𝑅𝑆𝑃𝑙 = 0 2. 5 

 

The product RS is what is defined to be the essential matrix E. We would rather relate the image 

planes to one another, as opposed to the camera locations. This can be done by substituting the 

projection equations pl = (fl Pl)/ Zl and pr = (fr Pr)/ Zr and then dividing the result by (ZlZr)/ (flfr). 

This leaves us with the final equation: 

 

𝑝𝑟
𝑇𝐸𝑝𝑙 = 0 2. 6 

 

To find the relationship between a pixel in one image and the corresponding epipolar line in the 

other image, we need to introduce the intrinsic camera parameters mentioned earlier. To do this, 

we introduce q and relate it to the pixel coordinate p by means of intrinsic matrix M, which 

contains the camera parameters. This can be written as q=Mp, or p=M-1q. Substituting this into 

the essential matrix equation, we are left with: 

 

𝑞𝑟
𝑇(𝑀𝑟

−1)
𝑇

𝐸𝑀𝑙
−1𝑞𝑙 = 0 2. 7 

 

The fundamental matrix is then defined as: 

 

𝐹 = (𝑀𝑟
−1)𝑇𝐸𝑀𝑙

−1 2. 8 

 

Simplifying this, we now have an equation of the same form as the essential matrix equation. 
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𝑞𝑟
𝑇𝐹𝑞𝑙 = 0 2. 9 

 

Figure 2.3 demonstrates the estimated camera models and epipolar lines in two images. The top 

image shows the scene from the perspective of the left camera. It shows an estimate of the 

vanishing point off screen where the right image epipole would be. The bottom image shows the 

opposite from the right camera’s perspective. 



14 

 

 

 

Figure 2.3 Estimated Epipolar Lines; Adopted from [14] 

 

2.1.2 Feature Point Acquisition and Matching 

Feature points must be determined between stereo images to estimate the fundamental matrix for 

the camera model. This, in turn, limits the number of feature points to the inliers of the epipolar 

constraint and increases the accuracy of disparity measurements [17]. Point-like features are 

usually used to obtain the camera model followed by more extensive feature matching once the 
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images are rectified [13]. Popular feature detection algorithms include Speeded Up Robust 

Features (SURF), Scale-Invariant Feature Transform (SIFT), and Oriented FAST and rotated 

BRIEF (ORB) due to their fast processing times and good matching rates [18]. Out of these 

algorithms ORB is shown to be the fasted while SIFT performs the best under most scenarios 

such as rotation, intensity, distortion, and shearing [18]. Current trends are relying on high 

resolution datasets that have minimal degrees of transformation between images and are already 

rectified. With this, research has transitioned to using deep learning to minimize cost functions 

and learn the correlation of features between images [19] [20] [21] [22]. SIFT and SURF are still 

popular feature extractors for image rectification in image processing toolkits such as MATLAB 

and OpenCV [17] [14]. Figure 2.4, below, shows epipolar constrained inliers calculated using 

SURF.  

 

2.1.3 Image Rectification 

A rectification transform shifts all the matching feature points so that they appear in the same 

row. It changes the perceived camera perspectives to be parallel with one another on an equal 

Figure 2.4 Epipolar Constrained SURF Features; Adopted from [17] 
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vertical axis. Initial distance estimation is largely a matter of triangulation once the images are 

rectified and corresponding points are found. The rectified images in Figure 2.5 can be viewed 

with magenta-cyan filtered glasses to observe a 3D effect.  

 

 

 

It is worth mentioning Barnard and Fischler state that “error in stereo distance measurement is 

directly proportional to the positional error of the matches and inversely proportional to the 

length of the stereo baseline” [13]. A longer translational distance between cameras increases the 

complexity of feature matching but improves distance estimation [13].  

 

2.1.4 Initial Distance Determination and Interpolation 

Once the images are rectified, disparity can be estimated on a pixel-by-pixel basis or by block 

matching. Many methods exist to minimize the matching cost function. The most common cost 

function is the sum of absolute differences (SAD) [23]. This is a block matching method to find 

the most similar kernels between images. Block matching suffers from “speckle” near object 

boundaries due to the foreground and background falling in the same block [16]. This can be 

Figure 2.5 Rectified Stereo Images (Magenta-left, Cyan-right); Adopted from [17] 
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minimized via thresholding or filtering. More complicated methods have proposed maximization 

of mutual information and energy cost minimization [24].  

 

2.2 Descriptions of Algorithms Utilized in This Work 

Stereo matching is a well-studied issue in low-level computer vision; however, it is still 

challenging to produce accurate disparities in cases of occlusion, near object boundaries, and on 

repetitive texture regions or texture-less regions [25]. Numerous stereo matching algorithms have 

been proposed and researched to surmount these areas of shortcomings.  

 

2.2.1 3DMST 

L. Li et al. propose a stereo matching algorithm called 3D Minimum Spanning Tree (3DMST). 

Their algorithm offers a cost aggregation method that efficiently splices together minimum 

spanning tree (MST)-based support region filtering and PatchMatch-based 3D label search [21]. 

They use the raw matching cost from a matching cost with a convolutional neural network (MC-

CNN).  

 

2.2.2 JMR 

JMR is a hybrid model proposed by P. Knöbelreiter et al. [26]. Their model combines conditional 

random fields (CRFs) and CNNs. The CNN is used to determine feature points and distinct edges 

which are then used to compute unary and binary costs of the CRF [26].  

 

 

 

 

Figure 2.6 Architecture of JMR [26] 
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Figure 2.6 illustrates the unary CNN features of each image which are then compared in the 

correlation layer. From this, the matching cost becomes the unary cost of the CRF.  

 

2.2.3 MC-CNN-acrt 

MC-CNN Accurate Architecture, proposed by Zbontar and LeCun, uses a CNN on small patches 

with known disparity to learn the matching cost [22]. The left and right input are passed through 

several convolutional layers followed by rectified linear units (ReLU). The output of the CNN is 

a single number fed into a sigmoid nonlinearity to produce a similarity score between 0 and 1. 

The similarity score is then used to initialize the matching cost.  

 

 

 

A series of post-processing steps are included as follows: cross-based cost aggregation, 

semiglobal matching, a left-right consistency check, subpixel enhancement, a median, and a 

bilateral filter.  

 

2.2.4 LW-CNN 

H. Park and K.M. Lee propose a “look wide” CNN (LW-CNN) designed to mimic the way 

humans visually match two similar images [20]. They attempt to create a wider window for the 

Figure 2.7 Architecture of MC-CNN Accurate [22] 



19 

 

 

matching cost function that is intelligent enough to ignore irrelevant information around the 

target pixel. They claim the CNN’s per-pixel pyramid-pooling layer provides robustness against 

weak texture, depth discontinuity, illumination and exposure differences [20]. This work is built 

on the work of [22] by following the structure for foundational layers of the CNN as seen in 

Figure 2.7. 

 

2.2.5 MeshStereoExt 

Zhang et al. focus on interpolating areas of occlusion. Their algorithm, MeshStereo [27], creates 

a triangular mesh surface map to interpolate patches of occlusion. The steps can be seen with 

visualizations in Figure 2.8. 

 

 

 

From the stereo input images, 2D triangulations are created and split into a two-layer Markov 

random field (MRF) to handle vertices at discontinuities in the depth map. The upper layer 

models the splitting properties of the vertices and the lower layer optimizes region-based stereo 

matching [27]. The 3D mesh is lifted from the 2D triangulations according to piecewise planar 

disparity maps and splitting probabilities. Textures are then mapped to the meshes and new 

vantage points are synthesized. 

 

2.2.6 NTDE 

Non-textured Denoised Edges (NTDE) [25] proposes adaptive smoothness constraints using 

texture and edge information from the input image. NTDE determines non-textured regions and 

penalizes depth discontinuity while complementing CNN matching costs using color-based cost. 

From the two input images, edge maps are extracted and combined with a preliminary disparity 

Figure 2.8 Architecture of MeshStereo [27] 
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map to create denoised edges corresponding to depth discontinuities with high probabilities. 

Minor differences of neighboring disparities are penalized along denoised edges. [25] 

 

2.2.7 PMSC 

PatchMatch-Based Superpixel Cut (PMSC) [19] uses a two-layer matching cost with the goal of 

assigning 3D labels more accurately. The bottom layer measures the similarity between small, 

square patches locally by exploiting a pre-trained CNN. The top layer is developed to assemble 

the local matching costs in large, irregular windows induced by the tangent planes of object 

surfaces. Optimization stems from a multi-layer superpixel structure used to group preliminary 

label sets into candidate assignments, which can then be efficiently fused by α-expansion graph 

cut. [19] 

 

2.2.8 SNP-RSM 

Surface Normal Prediction Robust Stereo Matching (SNP-RSM) [28] proposes surface normal 

prediction through deep learning, overviewed in Figure 2.9. With a preliminary stereo matching 

disparity map and edge fusion strategy, the predicted surface normal map is converted to a 

disparity map by solving a least squares problem. The calculated disparity map is refined 

iteratively by bilateral filtering-based completion and edge feature refinement. [28]   
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2.2.9 APAP-Stereo 

As-Planar-As-Possible (APAP-Stereo) is a unique algorithm proposed by M.G. Park and K.J. 

Yoon [3]. They describe their work as “exploiting local and dominant plane hypotheses to 

estimate APAP disparity maps” [3]. There is no publication available for this algorithm, but it is 

worth mentioning based on the merit of its benchmark results.  

 

2.2.10 LPU 

LPU is another non-published work and is only described as a “3D labeling stereo matching with 

content aware adaptive windows” [1]. It is unclear what the abbreviation LPU signifies. 

 

Figure 2.9 Framework of SNP-RSM [28] 
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2.2.11 MC-CNN Layout 

Matching Cost Convolutional Neural Network (MC-CNN) Layout is an anonymous and 

unpublished algorithm that utilizes scene layout information to refine depth maps with positive 

results [2]. 
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3 Model-Based Fusion Methods 

3.1 Elementary Statistical Approaches 

For the methods described in this section, the images to be fused were stacked in a matrix 

configuration where each layer represented the result of a different stereo algorithm. 

Corresponding pixels from each layer were grouped in a set and analyzed using the methods 

described below to select or create a candidate element, where each candidate was used to form a 

new, fused image. Therefore, each calculated pixel only had access to information from the 

algorithm results at its corresponding location and did not infer anything from surrounding 

pixels.  

 

3.1.1 Mode 

Mode is defined as the value in a set that occurs with the highest frequency. This is determined 

by first sorting the set followed by finding the maximum frequency of occurrences.  

For this analysis the lowest valued mode was accepted. If no mode existed, the lowest valued 

element was accepted.  

 

3.1.2 Mean 

The statistical mean 𝑥̅ for a set {x1, x2, … , xn} with 𝑛 elements is defined as 

 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

3. 1 

Given a normal distribution, mean can be a strong predictor. However, it is naive to expect a 

normal distribution from the selection of algorithms without outliers skewing the mean toward 

results outside of a central grouping.  

 

3.1.3 Median 

The median is defined as the center element in an ordered set {𝑥1, 𝑥2, … , 𝑥𝑛} with 𝑛 elements. 

For an odd set, the index of the median is (𝑛 + 1)/2. For an even set, the mean of the values 

corresponding to the indices 𝑓𝑙𝑜𝑜𝑟(𝑛 + 1)/2 and 𝑐𝑒𝑖𝑙(𝑛 + 1)/2 is determined as the median. 

Median offers some protection against outliers, unlike statistical mean.  
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This is a well-tested technique used by photographers to remove outliers (tourists) from busy 

scenes of landmarks by using multiple shots [29] [30]. This idea can be applied to calculated 

disparity maps, given that there is a general consensus where more than half of the images are 

within an acceptable range or the outliers are balanced in either direction. 

 

3.1.4 Weighted Mean 

The weighted mean 𝑥̅ of a set of elements {𝑥1, 𝑥2, … , 𝑥𝑛} with respective weights {𝑤1, 𝑤2, … , 𝑤𝑛} 

is defined as 

 

𝑥̅   =  
{ ∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1 }

{∑ 𝑤𝑖
𝑛
𝑖=1 }

 3. 2 

 

The set of weights were determined by first choosing the median as a surrogate for the ground 

truth. A set of residual errors {𝑟1, 𝑟2, … , 𝑟𝑛}  were calculated as the absolute value of the 

difference between the set of elements {𝑥1, 𝑥2, … , 𝑥𝑛} and the surrogate. The set of corresponding 

weights were then calculated as 

 

𝑤𝑖 = 𝑒−𝑟𝑖 3. 3  

 

3.1.5 Weighted Median 

Weighted median differs from median in the sense that its goal is to determine the element that 

most evenly balances the weights of ordered elements rather the raw count of ordered elements. 

Generally, given a set of ordered elements {x1, x2, … , xn} with respective weights 

{w1, w2, … , wn} that satisfy 

 

∑ 𝑤𝑖

𝑛

𝑖=1

= 1 3. 4 

 

the weighted median is the element 𝑥𝑘 that satisfies the following conditions: 
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∑ 𝑤𝑖

𝑘 − 1

𝑖 = 1

≤  1/2 3. 5 

∑ 𝑤𝑖

𝑛

𝑖=𝑘+1

≤ 1/2 3. 6 

 

More specifically, the weighted median can be realized as a lower-weighted median or an upper-

weighted median if either of the above conditions are equal to 1/2. The lower-weighted median, 

originally proposed by Edgeworth [31], is defined by the conditions: 

 

∑ 𝑤𝑖

𝑘 − 1

𝑖 = 1

<  1/2 3. 7 

∑ 𝑤𝑖

𝑛

𝑖=𝑘+1

= 1/2 3. 8 

 

Conversely, the upper-weighted median is defined by the conditions: 

 

∑ 𝑤𝑖

𝑘 − 1

𝑖 = 1

=  1/2 3. 9 

∑ 𝑤𝑖

𝑛

𝑖=𝑘+1

< 1/2 3. 10 

 

The set of weights were chosen using the same process described in Section 3.1.4 for weighted 

mean. If both the lower-weighted median and the upper-weighted median existed, the mean was 

determined and assigned a weight of zero. This new value was accepted as the weighted median 

since it equally pivots the total weights on either side of the ordered element, making it a true 

median. The basis for this method is that it will always produce the same value as the median 
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given equally distributed weights. Weighted median offers a similar robustness against outliers as 

median. 

 

3.2 Histogram 

Histograms follow a basic rule that organizes a given number of elements, n, into a set number of 

bins, k. The number of observations in each bin, mi, are totaled in the form of a bar graph. This 

rule is written as follows: 

𝑛 = ∑ 𝑚𝑖

𝑘

𝑖=1

3. 11 

 

This method provides a simple way for algorithms to vote on which range of values each pixel 

should be in. This is also an effective way to remove outliers since it is a majority voting scheme. 

The difficulties are determining the proper number of bins to provide useful insight. If the bin 

size is too large, it may not remove outliers. If the bin size is too small, the ranges may be too 

specific and not form any consensus.  

 

Since the useful number of bins may be different depending on the range of the set, it was 

decided to set the size of the bin instead of the number. This was done by finding the maximum 

value in the stack of images and dividing it by the desired size of each bin. This is presumed to 

be more useful because the level of agreement between algorithms is similar regardless of the 

range of the disparity data.  

 

The values in the largest bin are extracted for each pixel location. The mean of these values is 

used to interpolate a new value and create a fused disparity map based on majority voting. 

 

3.3 Edge-guided 

This method is unique in its approach since it uses outside information to guide the fusion. More 

specifically, the RGB input from the left camera is used to clean up the disparity result. This is 

done by applying edge map information to the disparity map.  
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Sobel edge detection was used for finding edge maps on each of the disparity results and on the 

left RGB camera input. Simple AND logic was used to find where the RGB edge mask, ERGB, 

aligned with each of the disparity result edge masks, Ei, in image stack I. If there was no overlap 

found between the RGB edge mask and any of the other edge masks, the median was taken 

between all algorithms for that point. If there were matching edges, only those algorithms were 

used to determine the composite disparity map at those points. The points with overlap were 

assumed to be close enough in agreement, due to common edges, that the mean would suffice as 

a fusion device. These operations are described in the two equations below with the mean and 

median taken along the third dimension, iterated by i.  

 

𝑚𝑒𝑎𝑛{𝐼𝑖(𝐸𝑅𝐺𝐵 ∧ 𝐸𝑖), 𝐼𝑖+1(𝐸𝑅𝐺𝐵 ∧ 𝐸𝑖+1), … , 𝐼𝑒𝑛𝑑(𝐸𝑅𝐺𝐵 ∧ 𝐸𝑒𝑛𝑑)} 3. 12 

 

𝑚𝑒𝑑𝑖𝑎𝑛{𝐼𝑖(¬(𝐸𝑅𝐺𝐵 ∧ 𝐸𝑖)), 𝐼𝑖+1(¬(𝐸𝑅𝐺𝐵 ∧ 𝐸𝑖+1)), … , 𝐼𝑒𝑛𝑑(¬(𝐸𝑅𝐺𝐵 ∧ 𝐸𝑒𝑛𝑑))} 3. 13 

  

A median filter was used to remove any speckle noise created by the new edge boundaries and 

from error caused by matching edges that did not provide disparity separation boundary 

information. These were false edges found within textures on flat surfaces or that were part of the 

same plane in the RGB image.   
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4 Learning-Based Fusion Methods 

The inputs used for learning-based methods were approximately 150,000 sets of 55 features. 

Features were chosen from a simple patch comprised of the top, bottom, left, and right pixels 

with respect to the center pixel to be interpolated. This scheme was created to account for small 

vertical and horizontal offsets of information. These pixel values were gathered from each of the 

11 algorithms to make a predictor vector. Patches were chosen from random locations within a 

test image. Points that fell within the occlusion mask were not used for training since they could 

not be reliably determined from the stereo images. 

 

4.1 Support Vector Machines 

At their root, support vector machines (SVMs) decide classification boundaries by maximizing 

the marginal distance between data points. SVMs can be used for regression with a few 

modifications. This is sometimes referred to as Support Vector Regression (SVR) [32]. Here we 

use an epsilon-intensive loss function, meaning the cost of all training points within the 

boundaries of the epsilon band is zero. Figure 4.1 shows a two-dimensional, linear example of 

the epsilon band and cost of points outside the band.  

 

 

 

Figure 4.1 SVR Example with Epsilon Band [33] 
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The center of the band is denoted: 

 

𝑦 = 𝑤𝑥 + 𝑏 4. 1 

 

Where w is a list of coefficients and b is the intercept. The goal of SVR is to find the solution 

that minimizes: 

 

1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)

𝑚

𝑖=1

 4. 2 

Where 𝜉𝑖,𝜉𝑖
∗ are the deviations above and below the epsilon band, respectively. 

Under the constraints: 

 

𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 +  𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0

 4. 3 

 

Both 𝜉𝑖
  and C may be optimized using gird search [32].  

 

For a non-linear SVR a kernel is used to map features to a higher dimensional space, so linear 

operations can then be performed. A positive definite kernel, called a Radial Basis Function 

(RBF) was used. This kernel mapping function, 𝐾(𝑥𝑖 , 𝑥𝑗) , 

is a gaussian kernel taking the form [32] [33] [34]: 

 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒𝑥𝑝 (
−‖𝑥𝑖 − 𝑥𝑗‖

2

2𝜎2
) 4. 4 

Where  𝜎 is the standard deviation of the gaussian distribution. 

After applying the kernel, the transformed linear equation becomes the following: 

 

𝑦 = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑖 , 𝑥𝑗) + 𝑏

𝑚

𝑖=1

 4. 5 
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Where m is the number of points in the training data and 𝛼𝑖, 𝛼𝑖
∗ are associated costs for each 

point above or below the epsilon band, respectively. 𝛼𝑖, 𝛼𝑖
∗>0 for points outside the epsilon band 

and 𝛼𝑖 , 𝛼𝑖
∗=0 for points within the epsilon band. 

For this implementation, epsilon was determined automatically via MATLAB optimization. A 

very fine gaussian kernel was implemented by setting the kernel scale factor to 

 

 
1

8
√𝑃 4. 6 

 

where P is the number of predictors or features. 

 

The model was trained using five-fold cross-validation. Principle component analysis (PCA) was 

also used in the training. This was set to account for 97% of the variance. This reduced training 

times and error between cross-validation. The data was also standardized to have mean zero and 

standard deviation one.  

 

4.2 Bagged Trees 

Decision trees offer some distinct advantages that make them appealing regression learners. They 

are fast predictors and offer insight into the strongest predicting features [35]. They are 

considered a “white box” model, meaning the decision-making logic can easily be viewed and 

interpreted after training [36]. 

 

Bagging, or bootstrap aggregation, averages trees created from many samples of data to lower 

variance and, in effect, smooth decision boundaries. Minimum leaf size was determined by 

evaluating the mean squared error (MSE) of several sizes over 50 trees as seen in Figure 4.2 

below. The bagged tree model was implemented with 300 learners and a minimum leaf size of 

one. 
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Figure 4.2 Mean Squared Error of Various Leaf Sizes 
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5 Experimental Results 

5.1 Dataset 

The dataset used for this work is a combination of three datasets from Middlebury [37] [23] [38]. 

A sample of the dataset with the left camera image on top and the corresponding ground truth 

beneath it is shown in Figure 5.1. 

 

 

 

Using a laser scanner can limit the coverage of a scene and suffer calibration issues when 

relating the ground truth to the input images [38]. For this reason, it is not the best solution to use 

a separate device to achieve a ground truth. D. Scharstein et al. [38] build on the ideas proposed 

by D. Scharstein and R. Szeliski [39] to achieve a disparity directly from input views and 

illumination disparities in half-occluded regions. 

 

Standard checkerboard calibration schemes were used to acquire calibration images. Coded 

images were created from the stereo cameras and projected Gray codes on the scene. The 

correspondence of the coded images was used to find 2D view disparities that were then used to 

Figure 5.1 Sample of Dataset with Ground Truth 
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rectify the images. They were cycled back through the pipeline to create the 1D view disparities. 

Merging these disparities allowed for the creation of 1D illumination disparities to calibrate the 

projector and lead to a final, subpixel-accurate disparity. Each disparity pair was in agreeance of 

within 0.5 pixels. D. Scharstein et al. report an accuracy of 0.2 pixels for most surfaces. [38]  

 

A broader overview of the pipleline can be seen in Figure 5.2. Slightly warped calibrations and 

disparites were created to demostrate how quickly large errors can occur when imperfect settings 

are used with stereo algorithms. 

 

 

 

The Middlebury dataset provided full-resolution, half-resolution, and quarter-resolution images. 

Each pair of images was obtained from a six-megapixel DLSR camera [38]. The half-resolution 

images used in this evaluation were not all equal. The maximum resolution was 994 x 1482. 

While most other images were close to this size, two images mixed in from an older dataset were 

about half this size. For reference, these images are entitled “ArtL” and “Teddy.” Images in the 

dataset varied in size primarily due to necessary cropping that was performed to eliminate 

erroneous edges resulting from the image rectification transform. 

 

Figure 5.2 Pipeline of Ground Truth Derivation. Adopted from [38] 
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5.1.1 Description of Error Metrics 

As standard convention, disparity maps were calculated from the perspective of the left image, 

and error was calculated from that perspective. There are four levels of benchmarking to gauge 

the number of erroneous pixels. These are determined by hard limits. The error is defined by the 

percentage of pixels whose absolute difference from the ground truth is greater than the 

threshold. The threshold allowances in order of strictness are 0.5, 1, 2, and 4 units. For the sake 

of data reduction, results are shown for strict thresholds of pixels whose error is greater than 0.5 

and for a more lenient middle ground of errors greater than 2. Occlusion masks were provided 

for each image so that only the nonoccluded area was compared against the ground truth when 

calculating error. 

 

A weighted average is used to benchmark the overall performance of an algorithm. Each pair of 

images is given an equal weight of eight percent except for three pairs that introduce 

irregularities, such as difference lighting conditions; these are discounted to half the normal 

weight – four percent. The weights of all benchmarked disparity maps sum to one hundred 

percent.  

 

One caveat of this work is that all benchmarked algorithms are based off training data that has 

the ground truth publicly available. This is the only way to be able to measure the performance 

of fusion methods against the algorithms in a fair, relative manner. Using results from training 

data should not have any effect on the outcomes of fusion methods since these are post-

processing steps that do not directly gather any information from the ground truth but rather look 

for a consensus in the data.  

 

The range of ground truth values for each scene is different, as it is dependent on the situation. 

This may cause visualizations to be slightly misleading. Each visualization is normalized by its 

highest value. This was done in order to provide the highest contrast in each image. While this is 

more visually appealing, it is more difficult to see any possible effect that the range of values has 

on algorithm performance. Normalizing each image by the highest overall value may offer more 

insight into whether there is a degradation on scenes with high disparity vs low disparity, but this 

insight is better achieved with residual error maps.  
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5.1.2 Selection of Algorithms 

Eleven algorithms were selected based on their performance on the loosest error threshold. This 

was done to remove the most serious outliers and guarantee most of the error was contained 

within a threshold of four. Certain revised algorithms were removed in order to remove 

redundancy. It would not be possible to obtain an even spread of strengths and weaknesses if 

multiple algorithms were based on the same technique. Figure 5.3 shows sorted algorithm 

performance that was used to determine the cutoff point. “LPU” was the last accepted algorithm 

since it appeared at the end of a short plateau. The algorithms that were utilized were current as 

of March 2017.  

 

 

 

Due to the overwhelming number of algorithms with top-performing results available for half-

resolution images, that resolution was chosen for analysis. This also helped save on compute 

time for image manipulation and training; however, it should be noted that Middlebury upscales 

all results to full-resolution when scoring [40]. Therefore, it is possible that very small 

discrepancies may be seen in Table 5.1 and Table 5.2 as they were scored based on their current 

half-resolution to avoid any further information changes due to upsizing an image. 

Figure 5.3 Sorted Error of Algorithms 
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In order to provide insight and verify how useful each selected algorithm was the best 

performing algorithms were selected on a pixel-by-pixel basis relative to the ground truth and 

then visualized over a sample image. This also provided a way to visualize and possibly identify 

which areas algorithms were well-suited for. Each algorithm was assigned an indexing number, 

as seen in Table 5.1 and Table 5.2, and color-coded by column for better visualization. Figure 5.4 

shows a visual representation of which algorithm had the lowest error in each pixel.  

 

Weighted 

Average' Adirondack' ArtL' Jadeplant' Motorcycle' MotorcycleE' Piano' PianoL' Pipes' Playroom' Playtable' PlaytableP' Recycle' Shelves' Teddy' Vintage'

Algorithms / Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

1  '3DMST' 38.04% 24.27% 49.35% 45.04% 38.00% 31.38% 35.72% 45.36% 36.41% 48.21% 27.91% 25.20% 34.72% 60.25% 47.42% 34.31%

2  'APAP-Stereo' 49.39% 42.76% 50.89% 54.07% 55.63% 53.67% 40.85% 47.11% 50.63% 56.10% 39.75% 34.45% 51.54% 62.03% 51.85% 57.17%

3  'LPU' 40.80% 25.80% 45.95% 38.52% 49.03% 37.42% 39.44% 53.55% 26.73% 52.97% 46.23% 24.77% 42.44% 67.11% 43.74% 52.42%

4  'LW-CNN' 39.89% 32.85% 43.82% 41.90% 35.59% 29.41% 43.32% 53.38% 32.08% 51.93% 35.65% 32.43% 39.33% 60.63% 43.92% 46.33%

5  'MCCNN_Layout' 39.28% 28.34% 47.44% 39.94% 38.55% 28.22% 39.82% 50.69% 26.38% 52.73% 38.51% 36.52% 35.30% 57.66% 43.32% 54.70%

6  'MC-CNN-acrt' 39.92% 30.19% 46.60% 39.96% 38.84% 28.60% 41.14% 50.23% 24.27% 54.92% 38.84% 36.97% 35.81% 60.65% 43.88% 60.91%

7  'MeshStereoExt' 41.47% 28.50% 48.83% 51.09% 42.84% 35.48% 37.62% 49.06% 37.70% 47.57% 32.36% 29.40% 42.75% 59.89% 49.08% 41.41%

8  'NTDE' 41.22% 34.96% 45.26% 41.82% 34.99% 32.27% 43.64% 53.15% 29.32% 53.97% 45.63% 36.85% 38.41% 62.12% 44.39% 51.78%

9  'PMSC' 39.48% 25.45% 47.27% 44.00% 39.22% 32.13% 37.36% 48.87% 38.29% 50.64% 29.94% 27.55% 36.11% 60.84% 48.33% 45.37%

10  'JMR' 56.16% 50.56% 63.23% 70.09% 49.05% 46.18% 51.80% 60.70% 45.41% 60.03% 50.62% 48.41% 53.99% 73.72% 61.80% 78.00%

11  'SNP-RSM' 41.25% 31.85% 50.11% 45.37% 39.39% 31.00% 41.56% 50.26% 27.96% 55.74% 39.67% 37.45% 36.63% 60.84% 44.06% 54.04%

Table 5.1 Algorithm-Image Pairs with Error Threshold of 0.5 

Weighted 

Average' Adirondack' ArtL' Jadeplant' Motorcycle' MotorcycleE' Piano' PianoL' Pipes' Playroom' Playtable' PlaytableP' Recycle' Shelves' Teddy' Vintage'

Algorithms / Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

1  '3DMST' 7.28% 1.57% 5.59% 10.94% 4.09% 4.40% 10.12% 15.69% 5.15% 9.93% 5.73% 5.29% 6.51% 29.98% 3.20% 6.95%

2  'APAP-Stereo' 7.88% 3.07% 7.56% 13.85% 4.59% 4.78% 10.75% 16.12% 5.54% 10.25% 8.68% 8.14% 7.83% 12.39% 4.70% 7.93%

3  'LPU' 10.55% 3.28% 7.02% 11.88% 6.03% 6.51% 13.69% 26.16% 7.66% 15.56% 9.79% 6.61% 10.81% 36.10% 3.64% 21.77%

4  'LW-CNN' 8.56% 2.89% 6.04% 13.24% 3.28% 3.41% 11.81% 17.46% 3.85% 12.05% 10.41% 9.70% 7.08% 30.63% 3.23% 14.31%

5  'MCCNN_Layout' 9.73% 3.58% 8.36% 14.81% 4.13% 4.37% 12.71% 15.62% 4.80% 12.46% 14.91% 12.87% 7.93% 25.08% 5.05% 18.02%

6  'MC-CNN-acrt' 10.42% 3.42% 8.51% 16.41% 3.91% 3.92% 12.67% 18.54% 4.49% 14.70% 15.14% 13.39% 7.05% 30.63% 4.57% 24.85%

7  'MeshStereoExt' 9.58% 3.59% 6.91% 18.39% 5.48% 5.97% 8.90% 13.83% 8.27% 11.21% 8.88% 8.29% 10.64% 31.38% 4.50% 12.19%

8  'NTDE' 10.21% 4.58% 7.38% 16.03% 4.15% 4.49% 13.38% 19.38% 5.35% 14.48% 12.10% 11.77% 8.46% 33.58% 3.35% 17.81%

9  'PMSC' 8.39% 1.50% 4.62% 11.47% 3.81% 4.12% 11.98% 18.25% 5.41% 12.61% 8.02% 6.90% 7.67% 31.72% 3.22% 17.74%

10  'JMR' 10.96% 5.36% 6.77% 16.78% 4.26% 4.45% 14.30% 21.92% 5.61% 15.14% 11.28% 9.27% 8.02% 35.81% 4.93% 30.32%

11  'SNP-RSM' 11.23% 5.57% 11.94% 19.88% 5.63% 4.99% 12.66% 16.95% 6.10% 15.32% 14.86% 12.80% 7.71% 31.30% 4.54% 18.59%

Table 5.2 Algorithm-Image Pairs with Error Threshold of 2 



37 

 

 

 

Different algorithms perform the best between regions of object separation. These discontinuities 

make it possible to distinguish objects when only looking at color-coded algorithms. Also note 

that each algorithm appears in small clusters that are distributed throughout the image. These 

clusters get much smaller on textured objects such as the towel draped over the arm of the 

Adirondack as seen above. 

 

Error was calculated for each of the composite images made up of the best performing algorithm 

per pixel. Table 5.3 provides the maximum score possible if the best algorithm could be correctly 

picked for any given circumstance. Error rates were cut substantially in both cases showing that 

it is possible to achieve marginally better results given a proper selection mechanism. This 

provides a reasonable upper bound for how well a combination of algorithms could potentially 

work. However, this does not reflect the improvement possible if new values are interpolated 

between algorithms.  

 

Figure 5.4 Color-Coded Selection of the Top-Performing Algorithm per Pixel 
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From the color-coded images, histograms were produced to show the number of “best” pixels 

contributed by each algorithm. This does not guarantee that they are within an acceptable range 

of error, only that they have the minimum possible amount with respect to the select of algorithm 

results. Figure 5.5 shows a collection of histograms for the first four images. 

 

 

An algorithm that contributed a large number of pixels closest to the ground truth does not 

necessarily mean it scored the best when calculated for error. It is important to remember that it 

was possible for an algorithm to have more pixels that fall within the error threshold but not 

contribute many pixels with the best absolute error. An algorithm that contributed the most pixels 

with the lowest absolute error may still have a considerable number of pixels that fall outside of 

Weighted 

Average' Adirondack' ArtL' Jadeplant' Motorcycle' MotorcycleE' Piano' PianoL' Pipes' Playroom' Playtable' PlaytableP' Recycle' Shelves' Teddy' Vintage'

Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

Error Threshold 0.5 8.49% 2.61% 11.15% 11.08% 7.18% 5.87% 8.29% 14.42% 5.01% 9.90% 7.04% 5.33% 7.82% 23.71% 10.49% 7.62%

Error Threshold 2 1.68% 0.18% 1.52% 2.65% 1.16% 1.17% 2.40% 4.84% 1.14% 1.79% 1.47% 1.11% 1.60% 5.96% 0.59% 0.88%

Table 5.3 Error of Composite Images Using Best Known Values 

Figure 5.5 Histograms of Contributed Pixels per Algorithm 
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the error threshold. This can be seen when comparing the tenth algorithm of “ArtL” in Figure 5.5 

with the results in Table 5.1. The highest contributor was the worst scoring. In other words, the 

tenth algorithm, JMR, was extremely accurate for many pixels, but well outside the error 

threshold for the remaining pixels. This insight into its imbalance made it a promising candidate 

for fusion with other algorithms. Removing outliers from JMR and keeping its accurate pixels 

for consensus permitted good results discussed near the end of Section 5.2.4.  

 

5.2 Model-Based  

A summary of all model-based results can be seen in Table 5.4 and Table 5.5, below. Weighted 

mean shows very consistent performance across all images for both error thresholds. Conversely, 

mean is among the worst in individual error rates and the worst in overall performance for both 

error thresholds. Weighted median is a close second in overall performance if mode is 

disregarded. Mode has the lowest weighted average when measuring with the strictest error 

threshold. This is wholly due to two images that it performs exceptionally well on, thereby 

skewing the average. Results are discussed in greater detail for each model-based fusion method 

in the remainder of this section. 

 

 

 

 

Weighted 

Average' Adirondack' ArtL' Jadeplant' Motorcycle' MotorcycleE' Piano' PianoL' Pipes' Playroom' Playtable' PlaytableP' Recycle' Shelves' Teddy' Vintage'

Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

Mode 33.70% 24.32% 25.68% 38.17% 35.88% 29.43% 37.87% 47.28% 27.40% 49.66% 32.38% 28.40% 34.32% 57.63% 26.22% 40.22%

Mean 37.35% 23.14% 47.53% 41.70% 37.62% 27.48% 36.16% 49.47% 27.48% 47.58% 33.65% 30.02% 33.30% 59.04% 44.03% 47.22%

Median 34.04% 21.29% 43.94% 35.15% 35.17% 25.65% 34.03% 44.56% 23.00% 45.76% 29.28% 26.03% 31.75% 56.75% 42.68% 37.34%

Weighted Mean 33.74% 20.89% 44.09% 34.43% 35.39% 25.20% 33.43% 43.66% 22.40% 45.02% 28.61% 25.49% 31.44% 56.39% 42.90% 38.48%

Weighted Median 33.88% 21.22% 43.73% 34.98% 35.07% 25.55% 33.91% 44.38% 22.88% 45.49% 28.96% 25.72% 31.68% 56.49% 42.61% 37.01%

Histogram 34.39% 21.78% 44.57% 35.29% 35.89% 25.51% 33.67% 44.06% 22.87% 45.11% 29.50% 26.44% 32.37% 56.77% 43.18% 41.19%

Edge Guided 34.12% 21.33% 44.01% 35.21% 35.24% 25.73% 34.10% 44.58% 23.09% 45.90% 29.44% 26.26% 31.78% 56.76% 42.69% 37.33%

Table 5.4 Model-Based Fusion with Error Threshold of 0.5 

Weighted 

Average' Adirondack' ArtL' Jadeplant' Motorcycle' MotorcycleE' Piano' PianoL' Pipes' Playroom' Playtable' PlaytableP' Recycle' Shelves' Teddy' Vintage'

Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

Mode 7.36% 2.06% 5.05% 10.21% 3.37% 3.53% 10.96% 15.31% 3.84% 11.20% 9.18% 7.39% 6.61% 26.55% 2.77% 10.25%

Mean 11.35% 3.18% 10.75% 21.32% 5.72% 6.08% 12.89% 20.81% 10.72% 14.14% 11.98% 9.71% 7.64% 31.70% 4.61% 19.99%

Median 6.73% 1.79% 5.80% 9.62% 3.35% 3.48% 9.72% 14.29% 3.83% 9.74% 6.64% 5.47% 5.95% 26.66% 2.90% 7.02%

Weighted Mean 6.57% 1.67% 5.75% 9.34% 3.26% 3.41% 9.59% 13.93% 3.76% 9.40% 6.32% 5.29% 5.76% 26.31% 2.91% 6.68%

Weighted Median 6.69% 1.80% 5.67% 9.49% 3.31% 3.44% 9.79% 14.16% 3.81% 9.72% 6.56% 5.48% 5.89% 26.56% 2.88% 7.06%

Histogram 6.71% 1.79% 5.47% 9.71% 3.28% 3.37% 9.75% 14.16% 3.66% 9.69% 6.94% 5.73% 6.03% 26.34% 2.96% 7.14%

Edge Guided 6.80% 1.86% 6.00% 9.73% 3.40% 3.52% 9.76% 14.31% 3.88% 9.81% 6.78% 5.60% 5.98% 26.69% 2.94% 7.00%

Table 5.5 Model-Based Fusion with Error Threshold of 2 
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5.2.1 Mode 

For determining image pixel values, mode is among the least consistent for establishing a 

consensus. The values produced by each algorithm result are extremely specific and there are a 

relatively small number of algorithm results compared here. This makes the likelihood of 

agreement extremely low, as each algorithm can take any number of values. 

 

 In order to reach an agreement, values were rounded to the nearest quarter. This was determined 

to be enough to reach a consensus while limiting the introduction of artificial error. Increasing 

the order of magnitude or the number of results would increase the likelihood of consensus and 

therefore allow a smaller degree of rounding. This still is not especially useful from an 

application point-of-view since it would require significantly more pre-processing.  

 

It can be concluded that mode is unlikely to improve troublesome areas since it is a majority 

voting method and many algorithms will fall short in the same areas but to a slightly different 

degree. The poor consistency is likely explained by the lack of finding matching values. 

Consequently, the minimum value was accepted to be the mode by default, which does not offer 

any benefits.  

 

Interestingly, mode performs exceptionally well for two images, “Teddy” and “ArtL.” This is 

possibly coincidental, and these are definite outliers when comparing other algorithms and 

methods. It may be worth investigating these cases further, but it should be noted that these were 

two images mixed in from an older dataset. They used a less reliable ground truthing mechanism 

and are comparably smaller in size.  
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The residual error in Figure 5.7 shows a mix of misinterpreted object boundaries as well as some 

shifting on object surfaces. This further illustrates that mode does not perform well on 

troublesome areas because it needs at least a small level of agreement to make a decision.  

Figure 5.6 Mode Disparity 
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5.2.2 Mean 

Mean performs poorly as a method to interpolate new disparity values from the data. It is 

consistently the lowest performing fusion method. It likely falls short due to outliers causing 

skewness. Mean alone has no way of discounting outliers. It is worth noting that, although 

overall performance is comparably poor, this is one of the few disparities that provide a fully 

connected handle on the coffee mug.  

Figure 5.7 Mode Disparity Residual Error 
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The residual error of the mean is unique, as it shows no extreme points of error, but rather, lower 

and smoother error regions. This seems to make the image more visually appealing in some cases 

such as the previously mentioned, finer details of the mug. The visual appeal of this method is 

due to the bimodal distribution near object boundaries. One peak represents the foreground 

object and the other represents the background. Taking the mean of these two peaks creates a 

smooth transition gradient and minimizes the absolute error in these transition regions, but 

unfortunately stretches these uncertain regions, creating more error overall. Therefore, Figure 5.9 

does not show very many, if any, points of extreme error. 

Figure 5.8 Mean Disparity 
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5.2.3 Median 

Median is somewhat robust to outliers and therefore displays the best results out of the three 

most basic statistical methods. It works well to find a central grouping of values and outliers 

often cause minimal shifting. 

Figure 5.9 Mean Disparity Residual Error 
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Most residual error is narrowly concentrated along object boundaries. This is discernably 

different from the residual error of the mean disparity, which appears hazier and extends away 

from boundaries. 

Figure 5.10 Median Disparity 
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5.2.4 Weighted Mean 

After examining the results of the mode, mean, and median approaches, it was determined that 

median would be the best surrogate for the ground truth to determine weights for each algorithm 

result. A surrogate is necessary since the ground truth would not be available in a real-world 

situation. Instead the ground truth is approximated as closely as possible.  

 

To further increase the reliability of the approximated ground truth, an exhaustive computation 

was performed across a list of all algorithm combinations to find which combination yielded the 

lowest, weighted average error. This was computed using median for each error threshold with 

top performing results shown in Table 5.6. A combination of five algorithms was found to 

provide the lowest error; these algorithms were as follows: 3DMST,  APAP-Stereo, LW-CNN, 

MeshStereoExt, and JMR. 

 

Figure 5.11 Median Disparity Residual Error 
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Since median offers some robustness to outliers, this trait now carries over to the determined 

weights. This allows mean to operate with less emphasis on extremities by normalizing the 

distribution with weights. The result is a new value closer to median which utilizes information 

from all algorithm values. 

 

Weighted mean has the lowest overall weighted error and highest performance consistency of all 

model-based fusion methods, excluding mode, which has previously been discussed and 

discounted for its outliers. The error is also notably lower than any individual algorithm.  

 

 

There is slightly less residual error seen near the edge boundaries of foreground objects when 

compared to other algorithms. This may be key to its high scoring nature. Incorrect assessment of 

foreground and background elements accounts for most of the error.  

Weighted 

Average' Adirondack' ArtL' Jadeplant' Motorcycle' MotorcycleE' Piano' PianoL' Pipes' Playroom' Playtable' PlaytableP' Recycle' Shelves' Teddy' Vintage'

Error Threshold 0.5 32.61% 18.49% 43.04% 34.44% 34.45% 24.84% 31.39% 42.36% 23.50% 43.21% 26.57% 22.74% 30.30% 55.61% 42.81% 35.50%

Error Threshold 2 6.00% 1.42% 4.64% 9.23% 3.10% 3.30% 8.10% 12.92% 3.76% 8.02% 5.42% 4.88% 5.58% 23.67% 2.80% 6.37%

Table 5.6 Lowest Weighted Average from Exhaustive Search of All Algorithm Combinations 

Figure 5.12 Weighted Mean Disparity 
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5.2.5 Weighted Median 

Weighted median exhibits similar outcomes in comparison to weighted mean. The main 

difference is the weighted median is choosing an existing algorithm value for most scenarios. 

Occasionally, it is taking the mean of two algorithm values to interpolate a new value. Weighted 

median inherits the same outlier robustness from the assigned weights as weighted mean. 

However, this is redundant in the sense that weighted median is an extension of median. This 

additional check for outliers could cause skewness in data that is already relatively clean.  

 

 

Figure 5.13 Weighted Mean Residual Error 
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The resulting residual error of weighted median does not differ significantly from weighted 

mean. There is a slight increase in residual error near the right side of Figure 5.15, but the two 

methods are otherwise consistent in error intensity and placement. 

 

Figure 5.14 Weighted Median Disparity 
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5.2.6 Histogram 

Histograms do not have an ideal number of bins or bin size since the spread of datapoints can 

vary greatly. It is possible for the boundary to evenly divide a small cluster of points, in which 

case useful information may be lost since only one bin is chosen. If the bins are too small, there 

may not be enough points that fall within any bin to make it the largest. Large bins run the risk of 

capturing too broad of a range of points and watering down the precision of tight clusters.  

 

 A bin size of three was determined to be the best size to minimize average weighted error. The 

mean of the values in the first, largest bin was taken to decide the disparity value for each pixel. 

This means the background was favored in circumstances of arbitrary object boundaries. The 

range within a bin is small enough to disallow substantial deviations, so mean was deemed 

acceptable to represent an overall value for each bin.  

 

Figure 5.15 Weighted Median Residual Error 
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Histogram-based fusion produced very similar results to median. This is to be expected, as both 

methods have a similar level of robustness to outliers. However, there is slightly more visible 

residual error in the mid-ground for histogram-based results and this is a more expensive task 

than simply taking the median.  

 

Figure 5.16 Histogram Disparity 
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5.2.7 Edge-Guided 

Edge-guided results are not significantly different from the median results that they are meant to 

improve upon. This is likely due to detected edges introducing more error than they clean up. 

When an incorrect edge is detected, it then mistakenly uses a poor combination of algorithms to 

select a value along that edge. These isolated cases can be smoothed out with a median filter to 

appear visually better, but error is still introduced.  

 

Sobel edge detection was chosen over Canny due to the amount of background noise being 

picked up and misinterpreted as proper boundaries. The basis of this technique is demonstrated in 

Figure 5.18, comparing the overlap of ground truth edges with edges from 3DMST algorithm 

results.  

Figure 5.17 Histogram Residual Error 
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The ground truth edges appeared to line up well with the edges from the 3DMST algorithm result 

and most important edges were detected. In practice, however, using the RGB image as the 

ground truth for edges is very different and resulted in poor edge detection performance. For an 

RGB image, edges were detected mostly in textured regions and were not picked up on some 

more desirable object boundaries. Figure 5.19 demonstrates these shortcomings. 

 

Figure 5.18 Ground Truth Edges (Blue) and 3DMST Edges (Red) 
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A median filter was necessary to remove some extreme outliers on separation boundaries, yet 

inconsistencies along certain edges can still be seen in Figure 5.20. This can also be seen in 

Figure 5.21, which appears slightly hazy in some areas due to the error introduced during the 

filtering step. 

 

Figure 5.19 RGB Image Edges (Blue) and 3DMST Edges (Red) 



55 

 

 

 

Slightly less extreme points of error are seen in Figure 5.21when compared to median residual 

error in Figure 5.14. This demonstrates that taking the mean around the edges can be effective at 

reducing error on object boundaries. Though, this is not a perfect implementation due to edges 

not always being correctly detected or overlapping as expected. 

 

Figure 5.20 Edge-Guided Disparity 
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5.3 Learning-Based 

Approximately 150,000 random patches were sampled from the “Vintage” image to be used as 

training data. The actual number of patches was slightly smaller after removing noisy areas that 

fell within the image mask. This training image was selected due to its large range and high 

variance to ensure a robust set of features since the amount of data was limited. 

 

A summary of all learning-based results are presented in Error! Reference source not found. 

and Error! Reference source not found., below. The SVM model is essentially useless, 

considering its weighted average is at best ~97% and ~89% accurate, respectively, for error 

thresholds of 0.5 and 2. It is unable to mark any improvement over the individual algorithm 

results from its input. While it still provides a coherent disparity result, it is unable achieve an 

acceptable result even on its training data.  

 

The bagged tree model performs well compared to the SVM model. It is inferred that bagged 

trees show favorable results as a method to reduce error from a pool of erroneous algorithm 

Figure 5.21 Edge-Guided Residual Error 
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results. Bagged trees are able to establish a path to accurate results on the training image 

“Vintage.” This scales reasonably well to the other images in the dataset when considering the 

ratio of training to testing data. More training data is likely to provide more scalable results. 

 

 

 

5.3.1 Support Vector Machines 

Support Vector Regression displays poor performance. Many object boundaries are estimated to 

be farther into the foreground than the object itself. Some of this error may be explained because 

of the lack of training data. While parts of Figure 5.22 appear to be visually consistent, it is clear 

that the model did not generalize as well. 

Weighted 

Average Adirondack ArtL Jadeplant Motorcycle MotorcycleE Piano PianoL Pipes Playroom Playtable PlaytableP Recycle Shelves Teddy Vintage*

Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

SVM 97.27% 96.86% 99.17% 96.76% 97.33% 98.61% 97.71% 98.01% 97.76% 97.53% 98.18% 98.24% 95.57% 95.16% 95.02% 96.81%

BaggedTree 63.12% 62.04% 68.42% 69.76% 65.22% 59.09% 67.71% 72.18% 60.27% 66.54% 62.37% 58.44% 61.91% 70.30% 65.83% 29.16%

Table 5.7 Learning-Based Fusion with Error Threshold of 0.5 

Weighted 

Average Adirondack ArtL Jadeplant Motorcycle MotorcycleE Piano PianoL Pipes Playroom Playtable PlaytableP Recycle Shelves Teddy Vintage*

Weights 8% 8% 8% 8% 8% 8% 4% 8% 4% 4% 8% 8% 4% 8% 4%

SVM 88.91% 87.72% 95.13% 88.85% 89.32% 91.25% 87.27% 87.56% 88.97% 89.29% 91.56% 90.93% 85.82% 83.26% 86.40% 87.69%

BaggedTree 17.14% 22.23% 11.81% 31.45% 13.44% 14.91% 18.59% 23.89% 15.70% 22.75% 15.92% 13.08% 12.37% 34.89% 10.11% 3.72%

Table 5.8 Learning-Based Fusion with Error Threshold of 2 
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The residual error in Figure 5.23 shows that any object boundary with a reasonably large 

disparity is extremely misinterpreted. Again, these are finer details that could not be captured and 

generalized with the limited training set. Object surfaces, although appearing uniform, are also 

misestimated to a lesser degree. This is most apparent in the background where these values stray 

further from the ground truth. 

Figure 5.22 SVR Disparity Map 



59 

 

 

 

 

5.3.2 Bagged Trees 

Bagged trees did not show very promising results when the model was applied to test images. 

Performance was greatly improved compared the SVM model, but there are still clear problems 

around object boundaries.  

Figure 5.23 SVR Residual Error 
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More error can be seen along object boundaries when compared with previous model-based 

methods. Much of the background is also skewed by some amount and appears as a light haze in 

Figure 5.25 

Figure 5.24 Bagged Tree Disparity 
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The bagged tree model suffers from the same incorrect shift of background values. Object 

surfaces appear to have less overall error, but they exhibit less uniformity than expected. Stripes 

can be seen along the Adirondack surface in Figure 5.25, as these specific depths were not 

correctly learned.  

 

  

Figure 5.25 Bagged Tree Residual Error 
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6 Conclusions 

This work presented a balance of different methods to fuse several erroneous disparity maps into 

a more accurate representation. Several statistical methods achieved this goal by producing maps 

with lower error on a per image basis, or in most cases, a lower overall weighted average error. It 

is shown that median, weighted mean, weighted median, and histogram approaches are all 

sufficient at the task of removing outliers in the algorithm results. Edge-guided results also fared 

well. Mode and mean did not offer any improvements and were found to be regressive in most 

cases.  

 

Learning-based approaches compared in this work suffered from limited data. This was required 

in order to provide a fair comparison. Support vector regression was not able to infer accurate 

values even on the image it was trained on. Bagged trees showed potential and scaled relatively 

well compared to support vector regression. The bagged tree model was able to learn strong 

predictors on the training image. It would seem that with a more inclusive range of data, bagged 

trees could perform well across new images. Despite generally poor performance, the results for 

both learning-based models are still visually consistent. This demonstrates that they have a sense 

of linearity but with poor bias. More data is needed to create a successful model. 

 

When looking at the results of limited algorithm combinations discussed in Section 5.2.4, it 

becomes clear that the correct balance of algorithms is essential and more algorithms is not 

necessarily better. Comparing the results of weighted mean and weighted median in Table 5.4 

and Table 5.5 with Table 5.6 shows that no improvement was found by applying these methods. 

The median of five algorithms in Table 5.6 provides the best fusion. 

 

Other considerations in this process have been explored as well. It may have been better to 

choose initial algorithms based on their average weighted error results across all four error 

thresholds as opposed to just one. The best scoring algorithms do not remain consistent across 

each error threshold due to their unique performance imbalances as discussed near the end of 

Section 5.1.2.  
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It may also have helped to select algorithms if they performed exceptionally well for one case. 

These approaches could have warranted a wider range of performances under different 

circumstances. This would build on the idea that an intelligent selector would be able to choose a 

high performing algorithm, or combination of algorithms, for any given case. 

 

6.1 Limitations 

The majority of algorithms suffer from poor context, or lack thereof, when determining proper 

decision boundaries between foreground and background objects. They fall short in their ability 

to recognize and segment objects at a level near human capability. This may be considered a 

chicken-and-egg problem in the sense that proper segmentation may be extremely useful to 

achieve fully accurate disparity mapping under all conditions; but robust, accurate disparity 

mapping could help to achieve much better object segmentation. The combination of 

segmentation and disparity has been demonstrated in [10] with promising results. This is a 

slightly more complex version of the edge-guided fusion introduced in Section 3.3. Both 

segmentation accuracy and edge detection accuracy limit how accurate a resulting disparity 

fusion can be near object boundaries. 

 

The use of all proposed methods is dependent on the results of several other algorithms often 

doing redundant work. This is not feasible for real-world applications that often need real-time 

computations in order to serve their overarching purpose. Therefore, approaches demonstrated in 

this work are unfortunately limited to applications that are not time sensitive. There is currently a 

large trade-off between computation time and the gains in consistency and accuracy. While this 

trade-off restricts this work to a post-processing step, it does not make its results any less valid 

and it retains several use cases. 

 

Model-based methods may be limited in some regards. Simple statistical methods follow very 

basic rules for every pixel location which does not offer flexibility. Mode is a primary example 

of not reaching its full potential. When a consensus cannot be reached, the first result in a sorted 

array is preferred. This favors the smallest disparity or background location.  
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Learning methods are limited due to the amount of training data available. There are not enough 

images to demonstrate the power of a neural network. Even results of simple regression learners 

do not translate well to new scenarios. There is also a limit on the amount of processing power 

and time it takes to train full images. Constructing half resolution images using a trained model 

can currently take tens of hours with parallel processing. 

 

Bagged trees appeared to show signs of overtraining on the limited data. Using a selection of 

pixels over different images would certainly be more insightful. This was not deemed useful in 

this work a few reasons. The training time would have been too high, and the overall weighted 

average error would not have been valid since it includes trained data. It also makes it difficult to 

draw comparisons between other methods. For bagged trees to be investigated further, outside 

training data is necessary. 

 

6.2 Future Work 

This work demonstrates the strong points of a variety of algorithms, showing that together they 

can be more robust in their overall accuracy than any individual algorithm. As mentioned, this is 

not practical in an application sense. It has been shown that very good results can be realized 

using the combination of five algorithms. Future exploration has several imaginable areas of 

research to lead to improved disparity mapping. The first may be further limiting the number of 

algorithms required to create a new map while maintaining the overall level of robustness that 

has been demonstrated. It may be possible to find two algorithms with completely opposite 

strengths and weaknesses that do not achieve strong results independently.  

 

It is likely possible to find a more intelligent method of correctly determining and selecting 

algorithm strengths and resolving object boundaries. A strong segmentation network may be able 

to provide a correction mechanism capable of producing visually better and nearly equivalent 

results with minimal dependence on the starting algorithm. This is one conceivable way to create 

a correction filter that could be further integrated if successful. 

 

To further the idea of intelligent selection, there is likely more to be done with simple statistical 

approaches. From the results discussed in Section 3.1, there were apparent strengths and 
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weaknesses for mean, median, and mode. Analyzing the distribution peaks before selecting one 

of these methods may be beneficial. Mean appears to be the best solution for evenly distributed 

peaks where the object boundary is arbitrary, while median works well overall for most object 

surfaces. Mode could also be made to be more robust. If there is no consensus, defaulting to the 

previously mentioned approach could yield much lower error. 

 

The opportunities for learning-based algorithms are still plentiful. Given sufficient data, insight 

into the cruxes of depth approximation may be identified and avoided. Isolating reflective 

textures and refining them as smoothed objects is an example of an issue that requires a higher 

level of insight.  
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