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Abstract 

Automated and Standardized Tools for Realistic, Generic Musculoskeletal Model 

Development 

Trevor Moon 

Human movement is an instinctive yet challenging task that involves complex interactions 
between the neuromusculoskeletal system and its interaction with the surrounding environment. 
One key obstacle in the understanding of human locomotion is the availability and validity of 
experimental data or computational models. Corresponding measurements describing the 
relationships of the nervous and musculoskeletal systems and their dynamics are highly variable. 
Likewise, computational models and musculoskeletal models in particular are vitally dependent 
on these measurements to define model behavior and mechanics. These measurements are 
often sparse and disparate due to unsystematic data collection containing variable methodologies 
and reporting conventions. To date, there is not a framework to concatenate and manage 
musculoskeletal data (muscle moment arms and lengths). These morphological measurements 
need to be assembled to manage, compare, and analyze these data to develop comprehensive 
musculoskeletal models. Such a framework would enable researchers to select and update the 
posture-dependent relationships necessary to describe musculoskeletal dynamics, which are 
essential for simulation of muscle and joint torques in movement. Analogous to all simulations, 
these models require rigorous validation to ensure their accuracy. This is particularly important 
for musculoskeletal models that represent high-dimensional, posture-dependent relationships 
developed from limited and variable datasets. Here, I developed a computational workflow to 
collect and manage moment arm datasets from available published literature for the development 
of a human lower-limb musculoskeletal model. The moment arm relationships from multiple 
datasets were then used to create complete moment arm descriptions for all major leg muscles 
and were validated within a generic musculoskeletal model. These developments are crucial in 
advancing musculoskeletal modeling by providing standardized software and workflows for 
managing high-dimensional and posture-dependent morphological data to creating realistic and 
robust musculoskeletal models. 
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Chapter 1 Introduction and Background 

Movement is a vital behavior that allows us to perform actions essential for survival. These 

movements can vary along a gradient of conscious involvement (e.g., balance and walking) may 

have a lower cognitive load than reaching or speech. All movements are achieved through the 

continuous coordination between the nervous and musculoskeletal systems to perform a 

movement with the desired speed and accuracy. As we age, increases in cognitive demand and 

muscle weakness (Hunter et al., 2016) decrease our systems operational efficiency, and with 

increasing life expectancies (Roser et al., 2020), these age-related deficiencies make it more 

difficult to maintain motor function. Likewise, traumatic loss of motor function from injury or 

disease can severely decrease a person’s quality of life, both physically and psychologically 

(Graczyk et al., 2018; Laurent et al., 2011). Progressing motor impairments, whether from natural 

or traumatic causes, can impede the execution of simple tasks and challenge independent living. 

With the harsh consequences of motor loss, the need to further develop resources to better study, 

restore, and maintain movement is crucial. 

A simple movement can involve one or more joints, each with one or more degrees of freedom 

(DOFs), and is achieved by selecting appropriate joint kinematics and dynamics to move each 

segment so that the limb endpoint reaches the desired/final position. This is also referred to as 

end-effector control. This type of control focuses on the movement goal and the corresponding 

series of postures (i.e., joint configurations) need to accomplish the task. These series of actions 

are generated from internal representations of body morphology, including physical limitations 

due to the range of motion (ROM) and dynamics, also called an internal model. However, limbs 

(artificial and biological) often have more joints than necessary to achieve desired movements, 

allowing the same movement to be executed in numerous ways. In motor control, this is often 

referred to as the degrees of freedom or motor equivalence problem (Bernstein, 1967). This 

problem encompasses not only kinematic redundancy but also the redundancy due to the larger 
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number of muscles than the number of joints they actuate. With the human anatomy containing 

over 600 muscles and about 250 DOFs, each joint is spanned and actuated by multiple muscles. 

So how is this task accomplished? One way this question has been studied over the years is 

through the development of biomechanical models based on experimental motor control studies. 

These models have been used to gain insight into neural control strategies as tools to help the 

interpretation of experimental measurements during movement. More notably, these 

biomechanical models can be used to study how damage to the neuromusculoskeletal system 

affects control strategies and better facilitate rehabilitation and restoration of motor function.  

One type of biomechanical modeling that has become a valuable resource for studying human 

locomotion is musculoskeletal modeling. These models are instrumental tools for understanding 

and simulating the transformation from muscle activations to limb dynamics. In other words, 

musculoskeletal models provide a means for interpreting and transforming our natural command 

signals to movement. This capability has enhanced our understanding of the underlying 

characteristics and principles responsible for human locomotion. However, the adoption of these 

tools outside of the research setting has been hindered by the ability to confidently validate the 

accuracy and reliability of these models (Boots et al., 2020). Moreover, the musculoskeletal 

datasets used to describe the underlying properties and mechanics of these models are sparse 

and disparate, which are vital to achieving accurate and robust simulations (Boots et al., 2020; 

Cook et al., 2014; Rajagopal et al., 2016). Although verification and validation are a common and 

necessary practice for computer simulations, there is no standard protocol for developing and 

validating biomechanical models. Likewise, there are large efforts to create standardized software 

and resources for expanding and maintaining biological datasets. Thus, developing accurate 

models must lead to the creation of vital tools for the study and rehabilitation of locomotion. I have 

developed an intuitive, step-by-step workflow with automated software tools to manage 

musculoskeletal datasets (see chapter 2) that is used to compare and analyze generic moment 



3 
 

arm relationships for the human lower-limb in current musculoskeletal models (see chapter 3). 

The following sections describe the applications, background, and validation of musculoskeletal 

models. 

Muscle Recruitment 

When we decide to move, cortical commands descend the spinal cord to the neural circuitry that 

generates motor outputs to muscles. The output cells are called motoneurons; they innervate 

muscle fibers within a muscle. Multiple muscle fibers innervated by the same motoneuron are 

called a motor unit, and numerous motor units innervate each muscle. These units can be 

categorized into two different groups based on the number and type of muscle fibers they 

innervate. The first group is the motor units that innervate Type I (i.e., slow-twitch) muscle fibers. 

These slow-twitch fibers are slow contracting and produce weak forces; however, they are fatigue 

resistant due to their aerobic behavior. The second group of motor units innervates Type II (i.e., 

fast-twitch) fibers. These fast-twitch fibers are often divided into two groups: Type IIa and Type 

IIb with a range of contraction speed and force production. These fibers are, however, fast 

fatigable. It is not surprising then that the system activates different unit types following a 

recruitment order that balances the trade-off between force production and muscle fatigue. This 

order is formulated as Henneman’s size principle, which describes the gradual recruitment from 

slow to fast motor units (Henneman, 1957). The recruited motor units also undergo modest 

changes in the firing rate to increase force generation. This recruitment order allows the central 

nervous system to efficiently generate force to match task demands. In musculoskeletal modeling, 

muscle recruitment is often represented by via electromyography (EMG). These signals are 

usually band-pass filtered to remove nonphysiologically low and high frequencies, rectified, low-

pass filtered, and normalized (e.g., EMG linear envelope). This signal is further used to simulate 

force generation with Hill-type muscle models within feedforward or inverse dynamics simulations 

(Erdemir et al., 2007; F.E. Zajac, 1989). 
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Muscle Models 

Musculoskeletal models represent musculotendon systems within body segmental mechanics. 

These muscle force generation models are used with the equations of motion to evaluate system 

state. The description of muscle force generation is founded on years of experimental paradigms 

and observations, which have led to several iterations or types of muscle models over the years. 

In biomechanical analyses, Hill-type muscle models are the most common (Romero & Alonso, 

2016). The classical work by A.V. Hill (Hill, 1938) expanded the Kelvin structural model by adding 

a “contractile” element in series with the viscoelastic element (Romero & Alonso, 2016; 

Yamaguchi, 2001). The added contractile element accounted for the force produced by the sliding 

interactions of myofilament proteins (e.g., actin and myosin) within the sarcomere described by 

sliding filament theory (Huxley, 1957). Briefly, Huxley’s theory describes force-generation at the 

level of actin-myosin interactions within a muscle fiber unit, called a sarcomere. The binomial 

distribution of force-generation is relative to the overlap of actin and myosin proteins and the 

formed actin-myosin complexes (i.e., cross-bridges). The number of cross-bridges formed during 

contraction is directly related to the force produced and is determined by the number of available 

actin-myosin binding sites and the speed of cross-bridge attachment and detachment. The time 

constants of the attachment and detachment process (i.e., cross-bridge cycle) define the muscle 

force-velocity relationship. The muscle force-length characteristic arises from the overlapping of 

actin and myosin filaments, which is dependent on sarcomere length. The remaining mechanical 

elements of the Hill-type muscle model account for the passive forces produced by stretched 

connective tissue and the tendon connecting muscle to bone. Depending on the simulated task, 

the tendon could be assumed to be infinitely stiff (i.e., tendon compliance) to simplify 

computational load without loss of accuracy (F.E. Zajac, 1989). Each musculotendon can then be 

defined by the selection of appropriate morphological measurements that describe and/or define 

the force-length and force-velocity relationships. For example, the assumption that all muscle 
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fibers are the same length and type simplifies the parameters needed to define the muscle force-

generation capacity; the maximum isometric force a muscle produces can be estimated as the 

product of physiological cross-sectional area (PCSA) and specific tension. By normalizing these 

relationships for the muscle and tendon’s operational ranges, the force-length and force-velocity 

characteristics become dimensionless and be scaled by measurements to represent specific 

musculotendon dynamics. The selection of these parameters and their assumptions provide the 

structural and dynamic differences seen across individual muscles and published muscle models 

(Millard et al., 2013; Thelen, 2003; van Soest & Bobbert, 1993; F.E. Zajac, 1989). 

Muscle Geometry 

In conjunction with muscle recruitment, muscle geometry plays an equally crucial role in muscle 

dynamics. Regarding Hill-type muscle models, muscle geometries would define musculotendon 

parameters such as muscle fiber orientation (i.e., pennation angle) and PCSA. These specific 

values would define the maximum amount of force a given muscle could produce with the given 

muscle morphology and size. Muscle geometry also refers to the defined muscle paths that 

describe the length of the musculotendon actuator for any given posture. These paths are 

represented in three-dimensional space with a set of points placed relative to anatomical bone 

landmarks that wrap and slide over joint-specific geometries. These points also describe the 

effective attachment sites (e.g., muscle origin and insertion locations) and geometry around 

neighboring muscle, tendon, and joints. Moreover, these points inherently determine the length 

of the musculotendon in each posture and therefore indicate where on the muscle model’s force-

length and tension-length curves the muscle is operating.  

The known muscle lengths and force-generation capacity of muscle are then scaled by the 

muscle’s moment arm defined by the path geometry around the joint to produce the posture-

dependent torques during movement. Thus, it is of high importance to carefully consider the 

effects of selecting these geometric features and parameters. Typically, measurements are 
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performed on cadavers (e.g., Haugstvedt et al., 2001; Loren et al., 1996). These efforts aim to 

benefit musculoskeletal modeling by providing additional information about inter-individual 

anatomical variability. Recently, these efforts have employed modern imaging and simulation 

techniques (e.g., Monte Carlo Analysis) to better explore and quantify anatomical variability in 

several parameters like attachment sites and the number of via (intermediate) points used to 

define muscle paths (Bujalski et al., 2018; Carbone et al., 2012; Duda et al., 1996; van der Helm 

& Veenbaas, 1991). Likewise, the introduction of statistical or probabilistic modeling has 

expanded this area of musculoskeletal modeling by identifying expected observed variations in 

anatomical features among individuals (Nolte et al., 2016), which can be used to better generate 

subject-specific models. Furthermore, one less studied component is the overall effect these 

changes impose of computed moment arms, despite quantifying the effect on overall model 

predictions (e.g., joint torques). Due to the direct relationship of moment arms on simulated 

torques, it is imperative to accurately model underlying moment arm relationships by ensuring the 

muscle paths defining them are physiologically valid. Yet, there is limited available data describing 

the necessary moment arm relationships needed to compare and validate simulated values.  

Anatomical Datasets 

The outcome of musculoskeletal modeling predictions is crucially dependent on the morphological 

datasets defining the underlying fundamental model parameters and dynamics. One inherent 

challenge is composed of the nature of musculoskeletal modeling, which aims to model and 

simulate a biological system that contains inherent variability amongst individuals (Cook et al., 

2014). Therefore, it is expected that these data describing biological parameters and relationships 

are, in general, highly variable. Furthermore, experimentally determined data are incredibly 

sparse and disparate, leading researchers to combine select datasets to fully-describe 

musculoskeletal dynamics that could contain physiological non-linearities (Goislard De Monsabert 

et al., 2018). Additional variability in these experimental datasets are attributed to the innate 
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differences in experimental paradigms and methodologies, which alone can lead to large errors 

reported within and across datasets. In the context of muscle moment arms, several factors 

contribute to these differences. 

One source of error between moment arm data is the measurement technique. There are several 

different methods for calculating or measuring moment arms (see reviews in (An et al., 1984; 

Klein et al., 1996). One method is the center of rotation (COR) or graphical method (Reuleaux, 

1876). This approach is based on geometric measurements of 2D digital scans from computed 

tomography (CT), ultrasound, or magnetic resonance imaging (MRI). These scans are used to 

define the muscle’s line of action and the joint’s COR to reconstruct the 3D moment arms. This 

method has been used in cadaveric (Dostal et al., 1986; Walter Herzog, 1992; Spoor & van 

Leeuwen, 1992) and in vivo specimens (Constantinos N. Maganaris, 2004; Constantinos N. 

Maganaris et al., 1998; Constantinos N Maganaris et al., 1999; Nemeth & Ohlsen, 1985, 1989; 

Rugg et al., 1990; Wretenberg et al., 1996). However, determining the line of action in large 

tendons and the orientation of the joint’s axis of rotation can be difficult (Klein et al., 1996). 

Furthermore, this method is limited by the resolution and cost of operation of medical imaging 

devices.  

An alternative is direct load measurements, which use the principle of moment equilibrium around 

a joint. By applying an external force of known magnitude to the muscle of interest (typically done 

in cadavers) and measuring the resistive force at the distal point on the segment, the moment 

arm is calculated from fulcrum equations (An et al., 1984). This methodology is suitable for simple 

joints (e.g., knee) that can be easily isolated and externally loaded (i.e., the quadriceps) 

(Draganich et al., 1987; Grood et al., 1984; Visser et al., 1990; Yamaguchi & Zajac, 1989). Like 

the graphical approach, this method suffers from errors if the axis of rotation is not accurate.  

The last, and perhaps most popular, method commonly used to determine moment arms is the 

tendon excursion (TE) or joint displacement method (An et al., 1983; Landsmeer, 1961). Based 
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on the principle of virtual work, this approach defines the moment arm as the slope of tendon 

excursion (i.e., displacement) and joint displacement. In other words, given some applied external 

moment to the distal segment, the resulting tendon displacement is assumed to be caused by the 

rotation of the joint, and the moment arm for the specific posture would become the change in 

tendon and joint displacement (i.e., slope) (An et al., 1983). The advantage of this method is that 

it does not require determining the location or orientation of the axis of rotation like alternative 

methods and can be performed easily for the muscle’s entire range of motion; however, the major 

drawback is that this method is only capable of measuring in-plane moment arms. Nonetheless, 

the popularity of this method is likely due to its simplicity for not requiring the axis COR and has 

been used to measure moment arms at every joint in the human lower extremity (A. S. Arnold et 

al., 2000; A. S. Arnold & Delp, 2001; W.L. Buford et al., 1997; Scott L. Delp et al., 1994; Scott L 

Delp et al., 1999; Klein et al., 1996; McCullough et al., 2011; Spoor et al., 1990).  

It is becoming increasingly common to compare several of these methods within the same study, 

which allows more reliable comparisons between selected techniques (Fath et al., 2010; 

Constantinos N. Maganaris, 2004); moreover, the inclusion of additional measurement conditions 

(e.g., maximum voluntary contraction trials) assist in determining how moment arms change with 

different levels of effort (Ito et al., 2000; Lee & Piazza, 2008; Constantinos N. Maganaris, 2004). 

Still, these data only account for the necessary moment arm relationships that should be 

represented by muscle path geometry to compute muscle torques. 

Validation of Musculoskeletal Models 

Valid musculoskeletal models that accurately and robustly simulate the human 

neuromusculoskeletal system has been the focus of recent research. These models provide a 

non-invasive alternative for simulating varying pathological abnormalities and conditions to design 

better treatment and rehabilitation techniques. While the volume of computational and treatment 

studies continues to increase, standardized validation metrics and processes have yet to be 
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developed. Other intensive computational and simulation-based disciplines have well-established 

protocols for developing and verifying model accuracy (e.g., biomechanics of heart muscles); yet, 

musculoskeletal modeling has to develop the same computational standards (Hicks et al., 2015). 

The main limitation of progress is the availability of the experimental morphological datasets 

containing the structural and functional relationships used to develop these models. Currently, 

there are no rigorous validation benchmarks to ensure that the underlying, posture-dependent 

relationships are physiologically appropriate when simulating movement. 

Thesis Outline and Contributions 

Here, I developed a computational workflow to collect and manage moment arm datasets from 

available published literature for the development of a human lower-limb musculoskeletal model. 

The moment arm relationships from multiple datasets were then used to create complete moment 

arm descriptions for all major leg muscles and were validated within a generic musculoskeletal 

model. My work aimed to develop automated and standardized tools to acquire and manage the 

high-dimensional, posture-dependent moment arm datasets used to develop and validate 

generalizable musculoskeletal models. 

In chapter 2, I describe the main limitations of musculoskeletal datasets, specifically moment 

arms, and the lack of standardized tools and procedures used to collect and manage these 

datasets for musculoskeletal models. The goal was to create tools that would allow users to easily 

and quickly generate a database for musculoskeletal datasets. Here, I developed an intuitive step-

by-step process for extracting moment arm relationships from scientific literature and automated 

tools to create custom, relational databases from extracted datasets. The main contribution of this 

work is a standardized computational workflow (with automated tools) that allows users to extract 

and manage musculoskeletal datasets for comparison and analysis. 

In chapter 3, the goal was to generate generic moment arm profiles to develop and validate a 

generalizable musculoskeletal model. I utilized multiple moment arm datasets from a custom 
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database to create generic muscle-DOF relationships for the human lower-limb. The created 

moment arm profiles were used in a validation process to evaluate structural and functional errors 

in moment arms and muscle paths for a musculoskeletal model (Boots et al., 2020). Also, I 

compared the simulated moment arm profiles of several other published OpenSim 

musculoskeletal models. The impact of this work was the use of generic moment arm 

relationships to assess structural and functional errors in current lower-limb musculoskeletal 

models, as well as highlight and recommend areas of future work to move towards fully-described 

and validated lower-limb models. 

In chapter 4, I present a general discussion overviewing chapters 2 and 3 and future work.  

In chapter 5, I review the overall contributions of the thesis and present concluding remarks. 
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Chapter 2 Musculoskeletal Moment Arm Toolbox 

2.1 Abstract 

Human movement is a challenging task determined by the complexity of the musculoskeletal 

system and its interactions with the environment. The key obstacle in our theoretical 

understanding of the body’s control mechanism is the lack of valid models describing the realistic 

mechanical actions of muscles. The corresponding empirical measurements of muscle 

mechanics are sparse and distributed through a body of scientific literature with varied 

methodologies, limb morphologies, and reporting conventions. Here, we developed a 

computational framework to assist in the development and comparison across published datasets 

for the description of muscle moment arms, which are essential posture-dependent parameters 

for estimating muscle torques. The solution is a combination of tools that digitize and collate 

disparate measurements within a relational database. This framework is an essential tool for 

improving the quality of musculoskeletal modeling. 

2.2 Introduction 

The desire to understand the human anatomy and physiology and its role in movement has 

spanned dozens of generations in the medical and scientific community. Previous efforts in these 

fields have gathered invaluable insights and data about the fundamental principles governing 

locomotion. In particular, the progression of musculoskeletal modeling, the branch of modeling 

muscular and skeletal dynamics and morphology, has largely benefited as a result. These models 

have been used to simulate muscle coordination during gait (A. S. Arnold et al., 2007), joint 

contact forces (DeMers et al., 2014; Modenese et al., 2018; Richards et al., 2018), balance 

(Chvatal & Ting, 2013), and propulsion (Hamner et al., 2010; Neptune et al., 2001). These models 

also provide a non-invasive alternative to better study underlying muscle properties and 

architecture that are not generally accessible. Expanding on the simulations of normal and healthy 
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conditions, these models are easily modifiable to simulate pathological conditions seen in cerebral 

palsy (A. S. Arnold & Delp, 2001) or muscle weakness in elderly adults (van der Krogt et al., 

2012). Likewise, they can serve as an invaluable tool for clinicians and surgeons to help diagnosis 

and develop treatment plans (Scott L. Delp et al., 1994; Magermans et al., 2004; Piazza et al., 

2001), restoration of lost limb function through muscle reinnervation (He Huang et al., 2008; 

Kuiken, 2009), and real-time human-machine interfaces (Boots et al., 2020; Crouch & Huang, 

2016; Durandau et al., 2018; Sartori et al., 2018). The rapid development of musculoskeletal 

models has been attributed to their nature to model the relationships necessary to describe 

movement and the further development of standardized software tools. 

The increase of musculoskeletal modeling is in large part to the contribution of open-source 

modeling and simulation software such as OpenSim (Scott L. Delp et al., 2007; Seth et al., 2018), 

SIMM (Scott L. Delp & Loan, 1995), and AnyBody (Damsgaard et al., 2006). These tools provide 

an instrumental framework for designing custom musculoskeletal models and simulations that 

promote a shared distribution of tools through plug-ins and extensions. Software for processing 

motion capture data (Burger & Toiviainen, 2013; Mantoan et al., 2015), rapid prototyping of 

subject-specific models (Valente et al., 2017), finite element analysis (Maas et al., 2012), and 

optimization solvers (Pizzolato et al., 2015) are common additions to existing musculoskeletal 

tools; however, there are less open-source tools catered to musculoskeletal model development 

and validation. Such tools include scaling musculoskeletal models to subject-specific parameters 

(Winby et al., 2008) or using non-invasive imaging techniques (e.g., MRI, ultrasound) to determine 

these specific parameters (Nolte et al., 2016). Consequently, the accelerated growth of these 

tools has overshadowed the lack of standardized verification and validation procedures 

(Henninger et al., 2010; Hicks et al., 2015; Lund et al., 2012).  

A substantial consideration when developing musculoskeletal models is their crucial dependency 

on anatomical and physiological data used to describe their underlying relationships. These data 



13 
 

are often sparse and variable in and across scientific literature (Goislard De Monsabert et al., 

2018), which is commonly observed when modeling biological systems (Cook et al., 2014). 

However, it has been only recently that some of these datasets have become more 

comprehensive and suitable for generic musculoskeletal modeling. Moreover, these data are 

often not readily available and only attainable from the available scientific literature. Acquiring 

adequate literature sources containing the necessary muscle model (Handsfield et al., 2014; 

Ward et al., 2009) or muscle geometry (Carbone et al., 2015) data (e.g., muscle moment arms) 

to describe neuromusculoskeletal dynamics is inefficient and a significant limitation in the time 

required to develop these models. Additionally, manual digitalization of these data can be tedious 

and susceptible to errors (i.e., manually extracting data points from a line plot). To overcome 

these issues, one must use additional digitization software tools (Huwaldt, 2018; jiro, 2020; 

Rohatgi, 2019) to extract data from scanned images (e.g., literature figures) to store and use the 

data. Then, it would be recommended to store the digitized data into some structured file 

hierarchy, flat files (e.g., tables) or relational database for convenient access to the data. Although 

there are several solutions for each aspect of the described process, we currently have not 

identified a complete and integrated framework for musculoskeletal datasets. 

In our study, we developed a data collection and validation framework streamlined to generate a 

posture-dependent dataset of musculoskeletal measurements for the development of accurate 

biomechanical models. We have combined and developed open-source tools for the digitization 

of published relationships and a custom relational database to accumulate and compare these 

measurements. Here, we demonstrate the use of this computational pipeline for the generation 

of human lower-limb models. 
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2.3 Methods 

Overview 

The musculoskeletal datasets for biomechanical models are published in multiple sources with 

reported measurements collected with variable methods and over limited and varied posture 

domains. These diverse and sparse measurements are notoriously difficult to work with. For this 

reason, we have developed the full process of dataset generation outline in four consecutive steps 

(Figure 2.1): 1) data acquisition and storage, 2) dataset processing, 3) database creation, and 4) 

standardization (muscle naming and posture conventions), comparison across sources, and 

analysis. The moment arm database package was developed to provide tools to interact with 

digitized moment arm data to create a database. The package includes several MATLAB-

implemented classes to automate the conversion of exported WebPlotDigitizer files and auto-

generate metatables containing the moment arm relationships. These data files are stored in a 

series of parent-child directories containing individual moment arm “datasets” describing various 

muscle-DOF relationships (see Step 1 and Step 2). Extracting all these data into structured 

datasets is achieved by iterating all the file directories and parsing the data into unique muscle-

DOF relationships based on the moment arm data and associated metadata (Step 3). The 

resulting unique moment arm datasets may then be exported as metatables to a custom relational 

database (see Step 4). 
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Figure 2.1. Schematic of the computational workflow. A. General tasks in the processing workflow. B. Specific 
tasks in the processing pipeline. C. The list of software for each general and specific task(s). 

Step 1. Data acquisition and Storage. Database Building Blocks 

Importing 
Moment arm data is often presented in literature figures which are not readily analyzable and 

must be digitized to a usable format before any analyses can be conducted. We used 

WebPlotDigitizer, an available open-source tool (Rohatgi, 2019), to accurately digitize the 

relationships between moment arms and limb posture. This software supports automatic scaling 

for various axes types used for storing moment arm data (e.g., 2D line and bar plots). With 

automatic and manual detection tools, extracted data points are exported as common data files 

(e.g., JavaScript Object Notation (JSON) or Tape Archive (TAR)). The developed package 

includes standalone functions and classes to import and edit these data relationships. Importing 

the data into the workspace can be done with functions readjson and readtar for each data file 
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type. These functions create a custom dataset struct variable in the MATLAB workspace with 

fields corresponding to the organization in the exported JSON and TAR files. The dataset 

structure has four fields containing the following details: 1) axes scaling and type (axesColl), 2) 

empirical data (datasetColl), 3) additional measurements (measurementColl), and 4) software 

version (version). These fields are classes containing the data and meta information for the 

scanned image’s axes, extracted pairs of moment arm and posture values, additional 

measurements (e.g., the distance between points), and version, respectively. An additional option 

is to load the data file as a wpd object, which is a composition class comprised of axesColl, 

datasetColl, measurementColl, and version objects. The collection objects are instances (i.e., 

specific implementations) of the abstract collection class that accesses individual axes, dataset, 

and measurement objects extracted from the scanned image. Each collection class also includes 

appropriate methods for accessing and computing extracted data and metadata. For moment 

arms, this enabled us to automatically extract posture-dependent values from dataset objects 

and match these data to their corresponding DOF joint angles and sign conventions (e.g., hip 

flexion is a positive value) stored in axes objects. 
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Figure 2.2. Schematic of data digitization and file storage description. A. The process of scanning source images 
and converting them to JSON, TAR, and CSV files. B. The organization of files for a given source. The names in 
parenthesis indicate the corresponding MATLAB classes created in Step 2. 

Dataset Nomenclature 

Individual muscle-DOF relationships extracted from WebPlotDigitizer were given custom labels 

that associated the data with corresponding meta information. For example, a scanned image 

could not only generate the average and/or individual profiles for different postures but also the 

relevant statistics (i.e., standard deviation). Since multiple profiles could be extracted from a single 

source image, a unique string label was required to reference individual measurements within a 

given source and/or muscle. The unique label contained the muscle name followed by additional 

meta labels separated with an underscore. The additional meta labels can represent individual 

muscle compartments or trial conditions (e.g., measurements during maximum voluntary 

contractions). For example, the label GLUTMAX_ANTERIOR_MVC30 corresponds to data for the 

anterior compartment of gluteus maximus during a 30% maximal voluntary contraction trial. This 

identifier associated both measurements and the corresponding meta information (see Step 2). 

The portion of the label describing the muscle matched the original used in the source. Differences 

in this part of the label were reconciled after importing the data into the relational database (see 

Step 4). 
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Directory File Organization 

Digitized moment arms were stored in a hierarchy of parent-child file directories with the highest 

level (Database) containing all the measurements (see Figure 2.2B). The next level (Reference) 

stored the data for each DOF from scanned source figures and tables. Each DOF was uniquely 

identified with a custom label for each source study (like the labels used for muscles) and were 

consistent with those used in Step 4. Each DOF directory contained measurements (TAR files), 

source images (PNG file in TAR archive file, see Figure 2.2A), or source tables (CSV file). Each 

source could provide one or multiple DOF directories from scanned figures, with each figure 

capable of containing multiple moment arm profiles shown in Figure 2.2A. The output from 

WebPlotDigitizer was a TAR file. Although WebPlotDigitizer can also export CSV or JSON files, 

we implemented our solution around the TAR file because it contains all the necessary images 

and data needed to share the extracted contents. Moreover, the exported JSON and TAR files 

are easily incorporated into automated workflows with standard programming software (e.g., 

MATLAB and JavaScript). This organization allowed us to effortlessly import extracted datasets 

from multiple sources into a relational database. 

Step 2: Data Parsing into Database Records 

Directories 

The directory file organization was described using four classes. One generic class 

(database.directory) described all the methods and properties used in the three specific classes 

(Fig. 2.2B). These subclasses described the following file hierarchical levels: 1) top-level file 

directory (dbdir), 2) source (refdir), 3) DOF information (dofdir). The abstract superclass was 

used to define common directory operations like finding child directories and files. In addition to 

basic directory operations, the class also included methods and properties associated with the 

dataset class so that the implemented directory objects could modify the field names and 

properties used in the returned dataset. Each specific database.directory subclass (dbdir, 

refdir, dofdir) implemented a getData method that was responsible for retrieving the moment 
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arm data from its respective level in the file directory hierarchy. The getData method operates on 

the DOF level (dofdir.getData) to recursively collect all available relationships. For example, 

refdir.getData would locate the first DOF directory under the “Reference” directory and call 

dofdir.getData, which would return a dataset object containing all the extracted muscle-DOF 

relationships. The refdir.getData method repeats this process for every other DOF directory 

until all directories were collected and concatenated in dataset. 

Dataset Class Implementation 

The dataset class was implemented with fields corresponding to six required dataset properties: 

1) muscle label (sMuscle), 2) DOF angle value (nDOF), 3) moment arm value (nMA), 4) standard 

deviation (nSD), 5) unique DOF name (sDOF), and 6) the source reference (sRef). Additional 

data fields were used for metadata and were often generated when parsing the meta labels. A 

dataset object is like a metatable that can be manipulated to add, remove, and edit rows and 

additional meta columns. The implementation provides a standardized data structure for 

concatenating multiple measurements and preparing them for parsing and database importing 

procedures. 

Table 2.1. Description of dataset parsing group labels and meta labels. The label groups are used to parse various 
label types and generate Database Fields. Each label group contains a customized parsing action shown in Label 
Parsing Action. 

Label Group Label Description Label Parsing Action Database Fields  

sd standard deviation 
value 

Transfers sd data to the 
corresponding records nSD field 

NA 

general non-specific label Creates a field with ‘b’ + the 
label name in all uppercase 

Boolean field 

compartment muscle compartment Creates fields ‘b’ and ‘s’ + 
‘COMPARTMENT’. The label 
name is placed in 
‘sCOMPARTMENT’ 

Boolean and string 
fields 

count the label contains 
numeric data or 
specifier (e.g., subject 
1) 

Creates fields ‘b’ and ‘n’ + the 
label name in all uppercase 

Boolean and numeric 
fields 

dof the label specifies 
moment arm data is 

Creates fields ‘b’, ‘n’, and ‘s’ + 
‘OUTDOF’. The label name is 

Boolean, numeric, 
and string fields 
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not measured DOF 
neutral (0 deg.) 
position 

placed in ‘sOutDOF’ and 
numeric data (if any) in 
‘nOutDOF’ 

scaling simulated moment arm 
from a scaled model  

Creates fields ‘b’ and ‘s’ + 
‘SCALED’. The label name is 
placed in ‘sSCALED’ 

Boolean and string 
fields 

region non-standard deviation 
error or bound value 

Calculates standard deviation 
from upper and lower bound 
values and places them in the 
corresponding records nSD field 

NA 

delete remove label Removes the label name NA 

 

Dataset Parsing 

The dataset class typically contains additional meta-information within unique muscle labels that 

require parsing before importing to the database. These provide supplementary information about 

the type of experimental conditions or specific measurements within sources. This additional 

information is extracted using a labelparser class that uses a lookup table for all encountered 

labels. The labels are sorted into groups with different parsing actions. Simple groups (e.g., 

compartment) indicate a specific muscle compartment. Different groups required different field 

types to be used within the database and are described in the column Database Fields (Table 

2.1). The existence of metadata (or meta label) is indicated by a Boolean field (with ‘b’ character 

attached to the label or group name). A string field (indicated with an ‘s’ character) contains the 

description of the additional meta information. Numeric label groups ‘count’ and ‘dof’ create a 

numeric field that contains any numeric metadata (e.g., joint angle, subject number). For example, 

the meta label ‘COR’ belongs to the ‘general’ group, indicating that the center of rotation method 

was used in the source. This creates a field bCOR=true only. Another label ‘DISTAL’ is in the 

‘compartment’ group. This would create the fields bCOMPARTMENT=true and 

sCOMPARTMENT=’DISTAL’.  

The storing of meta information with labels was a necessary and convenient method to add 

relevant user-defined information to extracted moment arm relationships and records (i.e., entries) 
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in the database. The corresponding label groups allowed parsing dataset labels by categories 

that could encompass countless custom labels without defining how each created meta label is 

handled during processing. These meta labels can be created during the digitization step and use 

pre-defined groups described in a standard spreadsheet (Table 2.1). Additional groups can also 

be created. This would require a new entry in Table 2.1 and a corresponding parsing function 

defined in the labelparser class. For example, a new group label 'mylabel' would need a handler 

function (e.g., 'label2mylabel') to be added to the class. The last parsing step is to flatten the 

measurements into unique datasets using all the extracted meta information in the previous step. 

For example, this step separates datasets collected with different methods and in different 

subjects.  

Step 3: Relational Database in MATLAB 

Overview 

A relational database is an essential tool for managing moment arm relationships because of the 

large variation in measured morphometry and experimental conditions. The parsed datasets are 

imported into a relational database in MATLAB with a custom import function. Metatables are 

extracted and imported alongside the numerical relationships, which are passed to the database 

object. The simple relational database in our study uses a set of tables (i.e., metatable) to create 

relationships or links between common fields (usually a unique id or name) across tables. 

Currently, there is not an inclusive MATLAB package that has built-in querying and does not 

require SQL programming experience. To create a relational database, there were two options: 

1) create a standalone database class that uses existing data types or 2) create a database class 

that utilizes the developed metatable class (see below). We selected the second option because 

it closer to the true essence of relational databases, and it enables the database to be a simple 

composition and manager of independently linked metatables. 

Metatables 
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The metatable class was implemented as a dynamicprops class, a specific MATLAB handle class, 

so that modifications to the metatable would alter the object’s state without explicitly declaring a 

modified copy of the metatable as an output, eliminating the need for persistent or global 

variables. The dynamicprops behavior also allows the user to dynamically add or remove 

properties without needing to pre-define them in the class. This feature was used to create and 

remove fields like MATLAB’s struct and table class. These fields can be queried (qry) using 

standard key-value argument pairs (e.g., “name” = “john”), also known as keyword arguments. 

This feature is a structured search or look-up of database entries based on their attribute values. 

The metatable class is transparent and accessible, and it can be treated as other standard 

MATLAB data types (e.g., cell, struct, table). 

Generic Database Class 

We developed a database class like the metatable class. It is also a subclass of dynamicprops. 

The database can import sets of metatables from file or metatable-like inputs in the form of 

structure or table MATLAB variables. Besides the addition or removal of metatables, the database 

class serves as a container or wrapper for a set of required and optional metatable objects. This 

flexible implementation does not require additional memory management; all datasets are loaded 

into memory. For example, 32 scanned data sources with 392 unique datasets for the human 

lower-limb model required about 500 KB, which is a modest memory requirement. However, the 

extension of this structure beyond the described data classes may require an additional memory 

management algorithm for large datasets. With minimal file and memory management 

requirements, the current implementation of the database class behaves like a generic relational 

database framework that can be expanded and customized to include more data and features. 
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Figure 2.3. Metatables used within the relational database. The metatables shown in green are the required 
metatables for the database. The moment arm relationships and their meta information are stored in metaDataset and 
the digitized data are in metaData. The relationship between meta information is shown with a line connecting their 
common field(s). The fields listed in black are required and those in gray are some commonly added fields. The 
transparent metatables are some of the optional tables that can be used in the database. 

Database 

Our database is comprised of six main metatables that describe the minimal set of fields or 

parameters necessary to identify and parse unique datasets (see Figure 2.3). These tables 

capture the main attributes needed for the description of posture-dependent moment arm 

relationships. These relationships are expressed as records (i.e., rows) in metaDataset with the 

digitized data stored in metaData. The corresponding numeric data are stored in the nDOF, nMA, 

and nSD fields of metaData, where the attached information is linked to idDataset. The identifier 

field, idDataset, is used as the primary link or pointer to other stored metatables and their 

corresponding meta information in the database. The metatable metaDataset contains all the 

meta information in the primary dataset fields (e.g., idMuscle, idDOF, idRef) and the fields 

generated from parsing meta labels during Step 3. Information stored in these fields describe all 

the muscles, DOFs, sources (references), and optional user-defined attributes. These data are 

then retrieved with simple query commands to select appropriate dataset(s). 
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[output name] = db.(metatable name).qry({field name,field value,…},{output field 

name}); 

For example, if the user wanted to obtain the data for rectus femoris (RFEM) from (W.L. Buford 

et al., 1997), they would first query to find the corresponding id fields in metaMuscle and metaRef. 

idMuscle = db.metaMuscle.qry({‘sMuscle’,‘RFEM’},‘idMuscle’); 

idRef = db.metaRef.qry({‘sRef’,‘Buford1997’},‘idRef’); 

Here, we query the metatables metaMuscle and metaRef with requests to find the corresponding 

records (idMuscle and idRef) whose fields contain the specified values (‘sMuscle’ = ‘RFEM’ and 

‘sRef’ = ‘Buford1997’). The returned information, along with other optional meta information (e.g., 

idDOF), is then used to find the corresponding dataset (idDataset) to retrieve the moment arm 

data stored in metaData. 

idDataset = db.metaDataset.qry({‘idMuscle’,idMuscle,‘idRef’,idRef}, ‘idDataset’); 

Data = db.metaData.qry({‘idDataset’,idDataset},{‘nDOF’,‘nMA’,‘nSD’}); 

Here, the requested moment arms are returned as a struct with fields (nDOF, nMA, nSD) 

containing numeric arrays of double values. These values can be obtained independently (i.e., 

query each output field separately) or together (shown above) depending on preference. The 

relationships between limb posture (Data.nDOF) and moment arm value (Data.nMA) can then be 

plotted (see Figures 2.5 and 2.6). Moment arm data can also be acquired using other available 

meta information contained in metaDOF, metaSignal, and metaPosture, which contain 

information describing the DOFs and postures the data were measured (e.g., joint configuration) 

or in- and out-of-plane. The relationships between these variables are further plotted and 

analyzed. 

Step 4: Standardization and Comparison 

Manual Inspection for Digitization Errors 
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While publications generally follow standard biomechanical and physiological conventions, 

reporting methods may still vary considerably. This requires a manual inspection for various 

digitization (e.g., flipped moment arm signs) and parsing errors (e.g., incorrectly identifying and 

modifying other muscle-DOF data) after import. Digitization errors are readily identified when 

muscle-DOF relationships are plotted. Figure 2.4 shows an example of a common error in the 

DOF direction sign for the sartorius data plotted in red. Here, the disagreement in the DOF 

direction is identified when comparing all the extracted datasets and is easily corrected. These 

inconsistencies can be introduced during the digitization step and are the most common error in 

digitizing source moment arm data. This is due to the innate differences in sign conventions used 

across literature for the same DOF, e.g., hip abduction-adduction can be represented with 

different signs. Standardizing sign conventions for muscle-DOF relationships reduce these 

common errors. For the lower limb, the most common DOF direction sign conventions (from 

negative to positive) are: 1) hip extension to flexion, 2) hip abduction to adduction, 3) hip external 

rotation to internal rotation, 4) knee extension to flexion, 5) ankle plantarflexion to dorsiflexion, 6) 

ankle eversion to inversion, and 7) toe extension to flexion. We used these conventions for all 

datasets in the database. 

Dataset Comparison 

The naming of muscles and DOFs are also different. Although these naming conventions are 

often consistent between groups of researchers and collaborators, these subtle differences make 

it less convenient to compare different datasets describing identical muscle-DOF relationships; 

therefore, we adjusted the muscle names and DOFs to match the style used in most other 

datasets. For example, gluteus muscles are often labeled as ‘GMAX’ or ‘GLUTMAX’. Moreover, 

muscles that have large/several attachment locations are commonly divided into multiple 

compartments, which further increases the variability in naming. This is attributed by selecting a 

different number of compartments to describe the muscle and naming of each compartment (e.g., 

anterior to posterior or proximal to distal). For these occurrences, we also renamed the 
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compartments to follow most datasets, or whose data is most alike (same magnitude). To enforce 

consistency among the collected datasets, we adopted the DOF naming convention that reflected 

the DOF direction sign convention described previously. Once these differences were corrected, 

muscle-DOF relationships were easily compared through visualizations (see Figure 2.4) and can 

be used to conduct analyses or the creation of “artificial” relationships. 

 

Figure 2.4. Standardizing datasets and checking for errors. A. The imported datasets for the moment arms of 
sartorius for the knee flexion-extension DOF. Each line color corresponds to an individual source and each marker 
corresponds to an individual dataset within the source. The error in the DOF direction is visible (red lines) when 
compared to other datasets. B. The same relationships are plotted with the appropriate correction for the imported 
values. 

2.4 Results 

Case Study: Experimental Data for Moment Arm Validation 

Musculoskeletal models heavily rely on the data that is used to create them. Moment arm (muscle-

DOF relationships) datasets are often disparate and highly variable due to the inter-subject and 

study variabilities. With the key role these relationships have in muscle and joint torque generation 

capacity, the selection of these datasets is equally crucial. Here, we demonstrate the utility of our 

moment arm relational database to capture the accuracy and variability of measured moment 
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arms by creating several comprehensive muscle-DOF relationships for select muscles spanning 

the ankle (achilles) and knee (rectus femoris, sartorius, semimembranosus, and semitendinosus). 

We collected several moment arm datasets for muscles spanning the ankle (Fath et al., 2010; 

Maganaris, 2004; McCullough et al., 2011; Rugg et al., 1990) and knee (Arnold et al., 2000; 

William L Buford & Andersen, 2006; W.L. Buford et al., 1997; Delp et al., 1994; Hawkins, 1992; 

Herzog, 1992; Spoor & van Leeuwen, 1992; Thelen et al., 2005; Visser et al., 1990; Wretenberg 

et al., 1996). First, we selected datasets that shared common profile characteristics, emphasizing 

the shape of the profile rather than magnitude (Step 1). Of the manually selected datasets, the 

datasets from the same source were averaged first. These datasets were averaged using spline 

interpolation and extrapolation for the source’s entire DOF range, resampled at 5 times the 

original sampling rate. If these datasets did not contain the same number or location of data 

points, a linear interpolation was first applied for those subsets (resampled to the average number 

of data points) and then fitted with splines (Step 2). The resulting profiles (one for each source) 

were then fitted with linear extrapolation for the entire muscle-DOF range (Step 3). Linear 

extrapolation was used in this step to help prevent diverging points at the end ROM. The 

computed average for each source was combined to generate the final muscle-DOF relationship. 

The result was a complete muscle-DOF relationship description derived from multiple sources. 

All the interpolation and extrapolations were computed with MATLAB’s interp1 function. A full 

step-by-step example for the achilles is shown in Figure 2.5. 
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Figure 2.5 Schematic for combining muscle-DOF relationships for the achilles. A. The workflow used to combine 
multiple moment arm relationships for the achilles plantarflexion-dorsiflexion DOF. B. The extracted relationships from 
multiple sources. C. The computed standardized profile (in gray) superimposed on the extracted relationships. 

Achilles 

We selected to use all the collected achilles datasets for ankle plantarflexion (Fath et al., 2010; 

Maganaris, 2004; McCullough et al., 2011; Rugg et al., 1990) except McCullough et al. (Figure 

2.5A and Figure 2.5B). This dataset was excluded because the turning points at greater 

plantarflexion (~15 deg) and neutral (0 deg) positions would greatly affect the computed profile 

when extrapolating to the full ROM in Step 3. At first glance, datasets id=166 and id=266 could 

be neglected; however, these outlier data are a result of different measurement techniques (COR 

and tendon excursion) and experimental conditions (maximum voluntary contractions) within each 

respective study. We kept these profiles in computing our standardized profile because the other 

data within each study pulls the outlying data closer to reasonable differences in Step 2 
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(Processing step). These data, particularly Fath et al. (Fath et al., 2010) seen in blue, were 

extrapolated (dashed lines) for the entire ROM before averaging to produce our standardized 

profile (Step 3). The final computed muscle-DOF relationship for the achilles in ankle 

plantarflexion is shown superimposed on all the datasets in Figure 2.5C. The standardized profile 

was a linearly increasing dorsiflexion moment arm that closely resembled the selected datasets. 

Here, we demonstrated the ability to create a comprehensive muscle-DOF relationship for the 

achilles from multiple datasets. 

Muscles at the Knee 

In addition to the achilles, we also demonstrated the ability to generate standardized muscle-DOF 

relationships for several muscles at the knee shown in Figure 2.6. The semitendinosus 

relationship was created from the data corresponding to dataset ids 19, 20, 24, 28, 52, 298, and 

303 (Figure 2.6A). The omitted datasets were not selected because they did not follow the 

tendency of increasing moment arm with knee flexion before decreasing with larger degrees of 

knee flexion at the extreme ROM. The computed muscle-DOF relationship for semitendinosus 

represented this characteristic well (shown in gray). One of the other major hamstring muscles, 

semimembranosus, was also analyzed and showed considerably more variability than its 

superficial counterpart (Figure 2.6B); however, most of the data generally agreed in shape but 

differed in magnitude, which can be visually separated into two main groups shown by the blue/red 

lines and the green/magenta lines. These datasets were computed to produce an average profile 

with less amplitude than semitendinosus and separated the two distinct dataset groups. Sartorius 

was derived from all Buford datasets (William L Buford & Andersen, 2006; W.L. Buford et al., 

1997) shown in Figure 2.6C. One notable feature of the resultant muscle-DOF relationship is the 

flattened tail towards the neutral position (i.e., 0 degrees flexion). This unintended feature was 

produced as a result of extrapolating the slight increase in flexion moment arm seen in dataset 

id=63. The rectus femoris was profile was constructed from all datasets except id=179 (shown in 

green) in Figure 2.6D. The single omitted dataset was due to the large differences in magnitude. 
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The final profile (shown in gray) still reaches peak extension at the same location but contains a 

subtle difference in the slight deviation away from flexion towards the extreme ROM. Similar to 

sartorius near neutral, this also results from extrapolating the turning points at the edges of 

measured data.  

 

Figure 2.6. Computed standardized profiles for muscles at the knee for extension and flexion. A. 
Semimembranosus knee flexion moment arms. B. Semitendinosus knee flexion moment arms. C. Sartorius knee 
flexion moment arms. D. Rectus femoris extension moment arms. 

2.5 Discussion 

In this study, we presented an overview of a new approach for collecting and analyzing muscle 

moment arms to develop comprehensive muscle-DOF relationships for generic musculoskeletal 

models. Additionally, we developed a computational workflow and software to accompany this 

new approach. These developments were a composition of software tools that can easily digitize 
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posture-dependent moment arm relationships, uniquely label and identify individual datasets, and 

create a relational database for comparison and analysis of these data. We demonstrate the use 

of this approach to create comprehensive moment arm profiles on a subset of muscles around 

the human knee and ankle. We believe our systematic workflow improves the identification and 

correction of errors in high-dimensional muscle moment arm profiles and will advance moment 

arm evaluation for validating musculoskeletal models.  

This process is a needed improvement to the laborious task of collecting datasets of 

morphological measurements distributed across sources. The development and availability of 

musculoskeletal (e.g., OpenSim, SIMM, AnyBody) (Damsgaard et al., 2006; Scott L. Delp et al., 

2007; Seth et al., 2018) and mechanical simulation applications (e.g., MuJoCo) (Todorov et al., 

2012) provide further tools for improving the quality of biomechanical models. Our previous effort 

to create a similar dataset for the upper limb model took several years to complete by multiple 

researchers (Boots et al., 2020). By comparison, the proposed tools offer an orderly review and 

data management framework with improved analysis and troubleshooting that is intended for 

researchers with minimal programming skills. The implementation of these tools within cross-

platform MATLAB application was motivated by the popular use of this tool within the scientific 

community and industry. 

The motivation for creating a custom software pipeline for the problem of moment arm validation 

was a culmination of needs. First, there is an extensive list of digitization tools for extracting 

scanned image data (jiro, 2020; Rohatgi, 2019), as well as an abundance of open-source software 

for relational databasing; however, these are often separate entities and may require further 

development to interact with the various software to be streamlined and user-friendly. The process 

of collecting and analyzing human anatomical datasets would greatly benefit from integrated 

packages that take inputs (presumably raw data files) and process it to readily usable formats for 
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analysis. Other computational biomechanics and neuroscience tools have been developed for 

these reasons (Mantoan et al., 2015), yet there is not such an available tool for moment arms.  

Our solution was implemented in MATLAB, a popular computing software commonly used in 

research and industry. This platform was selected because of its ease-of-use, standardized 

documentation, and popularity among computational and simulation fields (Dixon et al., 2017). 

Although it is a tremendous tool, current solutions for a tightly integrated framework for digitization 

and data management does not exist. Although this point may be arguable since there are 

available tools for a relational database (Database Explorer, datastore) and installable 

digitalization toolboxes (jiro, 2020), these are not easily applicable or suitable for the discussed 

problem. For example, the database tools require several packages and working knowledge of a 

standard querying language (SQL), which is not easily accessible for scripting. Default classes 

struct and table are reminiscent of metatables and provide tabular structured data organized by 

field or variables names but do not have built-in querying. Furthermore, neither of these classes 

are extensible (cannot add new functionality) and force users to comply with their class limitations. 

With that, we developed custom MATLAB classes like struct and table to create our metatable 

and database tools that can be extended and have explicit querying capabilities. Regarding image 

digitalization software, GRABIT is a solution on the MathWorks File Exchange but is not regularly 

updated. This led us to select a more regulated and popular software WebPlotDigitizer (Rohatgi, 

2019) for our development. Since the software is often used for online extracting and processing, 

most of the tools used for visualization and analysis are non-MATLAB based (e.g., JavaScript). 

Here, we created our custom packages to meet this need. 

Despite the benefits of using the demonstrated approach to collect, create, and visualize muscle 

moment arms using the developed tools, there exist several limitations. This includes the high 

coupling (i.e., dependency) between the designed MATLAB classes. Although this allows 

increased coherency between tools, it significantly decreases standalone capabilities and can 
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lead to large sets of dependent libraries. In this context, this makes it more difficult to 

independently use specific database tools without the others. Another consideration is the user’s 

scripting or “programming” experience – at the time of development, there was not an emphasis 

on constructing graphical user-interfaces to interact with these tools. Furthermore, the current 

implementation hides most class data and properties from the command window, perhaps making 

it more difficult for inexperienced users to navigate to find properties like other MATLAB class 

types (e.g., figure and axes). The developed metatable and database classes are particularly 

limiting factors for large datasets since the default datatypes and algorithms were not designed 

for performance but rather clarity and usability. 

Future work would aim to address these specific concerns, especially towards user-interface and 

feature development. Some additional features would include dedicated analysis toolboxes, 

which could include moment arm validation frameworks (Boots et al., 2020), curve-fitting tools for 

multi-dimensional fitting (Sartori et al., 2012; Sobinov et al., 2019) and optimizers for muscle 

attachment sites and path adjustments (Carbone et al., 2012; Pellikaan et al., 2014). Likewise, 

expanding visualization tools would help demonstrate the high-dimensional postural 

dependencies of muscle geometry (e.g., muscle length and moment arm) and would allow 

researchers and modelers alike to better account for unobserved relationships. Moreover, 

developing more independent yet cohesive tools would enable users to utilize specific tools for 

their projects or workflows. For example, this could entail using the developed WebPlotDigitizer 

tool, metatable, and database tools for other applications. 

2.6 Conclusion 

We developed an approach and accompanying software to create a comprehensive collection of 

available published moment arms for musculoskeletal model development and validation. The 

described workflow highlights a standardized pipeline for the digitization and storage of muscle-

DOF relationships of the human lower-limb. The corresponding software enables users to easily 
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and quickly create a moment arm relational database from extracted datasets with automated 

tools. This framework addresses several of the common development and time restrictions when 

developing these models, like selecting appropriate muscle-DOF relationships and creating a 

standardized format for comparing and storing musculoskeletal datasets. Consequently, our 

workflow would reduce the time and effort required by developers and promote more time to 

analyze and simulate various conditions and components of movement. Also, this software has 

reduced the number of necessary tools for similar efforts and has been implemented in the user-

friendly programming software MATLAB. We hope that future studies can utilize these tools to 

promote the growth and expansion of musculoskeletal model simulations towards related clinical 

and research endeavors, and lastly, further improve computational tools and standards for these 

applications. 
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Chapter 3 Validating a Lower-Limb Musculoskeletal Model 

3.1 Abstract 

Musculoskeletal models are quickly becoming an invaluable development for simulating human 

locomotion and pathological conditions. However, the accuracy and viability of these models are 

highly dependent on the accuracy of the data used to define model behavior. These underlying 

data are often acquired from experimental measurements describing relationships dependent on 

the limb and muscle state and their subsequent behaviors within physiological ranges of motion 

(ROM). Yet, the required measurements of muscle moment arms are incredibly sparse and 

disparate, which is partially rooted in the complexity and individual differences of the human 

anatomy. The difficulty of validating these models increases with the complexity of morphology 

and requires substantial attention. Here, we utilized a novel validation pipeline to test the quality 

of existing musculoskeletal models. The most comprehensive model contained 13 degrees of 

freedom (DOFs) and 40 musculotendon actuators. The muscle paths (i.e., attachment sites or 

wrapping surfaces) describing the posture-dependent relationships (i.e., muscle-DOF 

relationships) were simulated and compared to created profiles. We show that recent 

musculoskeletal models developed in OpenSim accurately capture generic moment arm 

relationships for a subset of the hip, knee, and ankle muscle-DOFs. We also identified several 

structural and functional errors in muscle path geometry and moment arm profiles, particularly for 

muscles with long tendons (e.g., calf muscles) at the knee and ankle joints. The reduction of these 

errors identified in this study can be used to vastly improve the accuracy of lower limb 

musculoskeletal models. 

3.2 Introduction 

Our ability to move and interact with the surrounding environment enables us to perform various 

tasks with low cognitive load. This is achieved through the complex interactions of our nervous 
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and musculoskeletal systems, which coordinate a sequence of intricate actions to generate the 

necessary muscle-driven torques to move. For fine movements (e.g., independent finger 

movements to pick up an object) the required control grows exponentially with complexity due to 

high-dimensional space and relationships. This problem is described as the curse of 

dimensionality. The ability to model and simulate these relationships remains a challenge, 

whether decoding motor intent from muscle activity (via electromyography) (Boots et al., 2020), 

muscle activation to muscle dynamics (Millard et al., 2013; Thelen, 2003; F.E. Zajac, 1989), or 

describing musculoskeletal architecture and function (Boots et al., 2020; Sobinov et al., 2019). 

Moreover, attempts to achieve accurate and robust simulations of human neuromusculoskeletal 

dynamics poses a difficult challenge. 

The effort to create muscle-driven musculoskeletal models that emulate the same level of 

accuracy and redundancy of our human physiology has spanned decades of research. Recent 

developments in musculoskeletal modeling have expanded our understanding of locomotion 

through dozens of non-invasive analyses and simulations of gait (E. M. Arnold et al., 2010; 

Rajagopal et al., 2016), balance (Chvatal & Ting, 2013), and muscle coordination (A. S. Arnold et 

al., 2007; Steele et al., 2017; Felix E. Zajac, 1993) through the development and distribution of 

standardized simulation tools (Damsgaard et al., 2006; Scott L. Delp et al., 2007; Seth et al., 

2018). However, the rate of acceptance and usage of these models has surpassed the rate of 

developed validation standards. While other disciplines have well-established protocols for 

developing and verifying model viability, there is no common or universal procedure for 

musculoskeletal models (Hicks et al., 2015). Moreover, one key contributing factor leading stems 

from the underlying morphological assumptions and data used to develop these models. These 

experimental datasets containing the structural and functional relationships necessary to fully-

describe musculoskeletal dynamics are incredibly limited in consistency and quantity, imposing a 

significant role in the availability and selection of experimental datasets. Thus, rigorous validation 
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of internal parameters and posture-dependent relationships are crucial to producing accurate and 

robust simulations. 

Musculoskeletal models are validated with direct and indirect methodologies (Henninger et al., 

2010; Hicks et al., 2015; Lund et al., 2012). Direct validation involves the direct comparison of 

experimental and simulated morphological values (e.g., moment arms (A. S. Arnold et al., 2000; 

S.L. Delp et al., 1990)). Alternatively, indirect validation often entails comparing more external or 

non-invasive measured and simulated quantities like muscle activity or joint torques (Boots et al., 

2020; Hamner et al., 2010; Rajagopal et al., 2016). However, this type of validation can be more 

susceptible to computational errors. For example, using inverse kinematics to solve joint torques 

to compute the muscle activations that produced the observed movement is heavily reliant on the 

optimization algorithms used to handle muscle and joint redundancy (Bernstein, 1967; 

Crowninshield, 1981; Erdemir et al., 2007; McKay & Ting, 2012). On the other hand, direct 

comparisons are challenging due to the availability and sparseness of morphological datasets. 

Furthermore, it is difficult to account for methodological and individual differences across data 

sources and can lead to inherited physiological inaccuracies (Goislard De Monsabert et al., 2018). 

Although direct validation is the preferred method since experimentally measured relationships 

are used to describe and compute the simulated outputs in indirect comparisons, indirect 

validation remains a necessary step to examine the overall behavior and function of the model. 

This normally includes scaling model outputs (e.g., joint moments) with a scalar (Scovil & Ronsky, 

2006) or modifying muscle parameters (e.g., moment arms, maximum isometric force) to match 

measurements (Nussbaum et al., 1995). 

In this study, we aimed to overcome some of these musculoskeletal modeling limitations by 

developing a comprehensive dataset of posture-dependent moment arm relationships and used 

them to structurally and functionally validate a lower-limb musculoskeletal model. The primary 

goal was to capture the accuracy and variability of published moment arm datasets to represent 
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a generic individual and use these formed relationships to validate a musculoskeletal model using 

the process described by Boots et al. (Boots et al., 2020).  

3.3 Methods 

Overview 

In this study, we collected available published moment arm datasets from the scientific literature 

to create a high-quality comprehensive dataset used to validate a human lower-limb 

musculoskeletal model. The created validation dataset is used to validate a lower-limb model 

using the steps outlined by Boots et al. (Boots et al., 2020): 1) structural validation of moment 

arms for observed postures, 2) structural validation of moments for unobserved postures, and 3) 

functional validation.  

Model 

We elected to use a lower limb model developed by Lai et al. (Lai et al., 2017) in OpenSim (Scott 

L. Delp et al., 2007; Seth et al., 2018) as our baseline for validating a generic lower-limb 

musculoskeletal model. This model was selected because it extends the Rajagopal et al. model 

(Rajagopal et al., 2016) and is publicly available on OpenSim’s website. The Rajagopal et al. 

model is one, if not the first, OpenSim musculoskeletal model to utilize recent morphological 

datasets containing comprehensive muscle architecture and muscle volumes of young, healthy 

individuals not present in previous models (E. M. Arnold et al., 2010; Carbone et al., 2015; S.L. 

Delp et al., 1990; Hamner et al., 2010; Horsman, Klein et al., 2007). Moreover, their model 

emphasized computational speed in muscle-driven simulations, which was achieved by replacing 

ellipsoidal wrapping surfaces with cylindrical wrappers (Rajagopal et al., 2016). Lai et al. then 

expanded the ROM of the model to include high hip and knee flexion-extension angles to simulate 

extreme postural movements such as bicycle pedaling. Additionally, the new model adjusted 

problematic muscle paths and parameters to reduce excessive passive forces and torques.  
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The lower limb model validated in this study included some initial modifications to the Lai et al. 

model (Lai et al., 2017). First, since the goal of the study was to structurally and functionally 

validate moment arm relationships of the lower limb, we reduced the original model to only include 

the pelvis and the right lower limb. The resulting model contained 13 DOFs actuated by 40 

massless Hill-type musculotendon units representing 31 muscles of the lower limb. Each 

musculotendon is modeled as a Hill-type actuator with properties described by (Millard et al., 

2013; F.E. Zajac, 1989). Specific details of the normalized muscle force-length, force-velocity and 

tendon tension-length curves, anatomical datasets, and altered model parameters can be found 

in the original studies (Lai et al., 2017; Rajagopal et al., 2016). By default, the 

metatarsophalangeal joints were locked – these were unlocked to check for muscle path 

discontinuities throughout the ROM and qualitatively assess moment arm profiles since we did 

not identify datasets for these specific muscle-DOFs. Lastly, muscle and DOF (i.e., coordinate 

names) names were adjusted to be self-consistent within the model. This enabled us to utilize 

standardized naming conventions to compare muscle-DOF relationships across previously 

published OpenSim models (see Simulated Datasets). Muscle compartments were identified 

using numeric values (e.g., gmax1 corresponds to gluteus maximus’ anterior compartment) and 

DOFs were renamed to use the following convention: 1) joint name, 2) positive DOF direction, 

and 3) limb side, all separated with underscores (e.g., hip_inrot_r corresponds with right hip 

adduction).  

Moment Arm Datasets 

Overview 

The moment arm dataset used to validate our model was created from a collection of previously 

published and simulated data. We identified 39 available publications containing lower limb 

moment arm values and digitized them before importing them into a database. These values 

describe the posture-dependent muscle length and moment arm relationships (deemed muscle-

DOF relationships) for commonly observed postures in the lower limb; however, these data are 
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sparse and do not contain information about unobserved postures. Furthermore, experimentally 

measured moment arms suffer from inherent variability due to methodological and inter-subject 

differences. To represent a generic population, we utilized both measured and simulated data to 

create a validation dataset aimed to capture the accuracy and variability observed across 

literature and individuals while maintaining a high-quality comprehensive dataset containing the 

muscle-DOF relationships necessary to fully-describe the human lower limb. 

Experimental Datasets 

The published moment arm data were collected, digitized, and compared to simulated moment 

arm values (see Simulated Models). We identified 39 published moment arm sources from our 

literature search that were concatenated to compose our experimental moment arm dataset 

(shown in Table 3.1). An initial selection procedure was implemented in an attempt to reduce the 

potential discrepancies and nonlinearities associated with combining multiple observations 

(Goislard De Monsabert et al., 2018) that are often attributed to methodological and inter-subject 

differences. The initial criteria eliminated literature sources whose muscle-DOF relationships were 

not measured as a function of the DOF angle (i.e., posture), reported less than 3 data points, or 

did not record values through most of the muscle’s ROM. Other encountered reasons for omitting 

a specific source were poor dataset quality (i.e., pixelated figures or indistinguishable profiles) or 

questionable experimental methodology/setup. A special case was the Maganaris et al. sources, 

in which 4 of the 6 identified source data could be obtained in one of the other 2 sources (C. N. 

Maganaris, 2001; Constantinos N. Maganaris, 2004). Of the identified sources listed in Table 3.1, 

our initial selection criteria eliminated 7 sources, resulting in 32 sources’ muscle-DOF 

relationships being digitized and stored in a database.  

Table 3.1. Collected published moment arm dataset meta information. 

Source Method Measured In # Subjects Subject Age 

(A. S. Arnold et al., 2000) TE cadaver 3 
 

(A. S. Arnold & Delp, 2001) TE cadaver 3 
 



41 
 

(Blemker & Delp, 2005) TE MRI 1 (1F) 27 

(W.L. Buford et al., 1997) TE cadaver 15 (14M, 1F) 54.8 (8.2), 69 (0) 

(William L Buford et al., 2001) TE cadaver 17 (15M, 2F) 55.3 (7.7), 69 (0) 

(William L Buford & 
Andersen, 2006) 

TE cadaver 1 (1M) 28 

(Scott L. Delp et al., 1994) TE cadaver 2 (1M, 1F) 82, 90 

(Scott L Delp et al., 1999) TE cadaver 4 
 

(Dostal et al., 1986) COR cadaver 1 (1M) 
 

(Draganich et al., 1987) direct load cadaver 6 
 

(Eng et al., 2015) TE cadaver 3 (2M, 1F) 78 (6) 

(Fath et al., 2010) COR and TE MRI 9 (7M, 2F) 31 (5) 

(Grood et al., 1984) direct load cadaver 5 (3M, 2F) 56.7 (10.8) 

(Hawkins, 1992) COR model 1 
 

(Walter Herzog, 1992) COR cadaver 5 (2M, 3F) 79.2 (78-82) 

(Ito et al., 2000) TE ultrasound 7 (7M) 27 (2) 

(Klein et al., 1996) TE cadaver 10 over 60 

(Leardini & O’Connor, 2002) COR model  
 

(Lee & Piazza, 2008) TE ultrasound 10 (5M, 5F) 21-32 

(Lengsfeld et al., 1997)* direct load cadaver 2  

(Constantinos N. Maganaris 
et al., 1998)* 

COR MRI 6 (6M) 28 (4) 

(Constantinos N Maganaris 
et al., 1999)* 

COR MRI 6 (6M) 28 (4) 

(Constantinos N. Maganaris 
et al., 2000)* 

TE MRI 6 (6M) 28 (4) 

(Constantinos N Maganaris, 
2000)* 

TE MRI 6 (6M) 28 (4) 

(C. N. Maganaris, 2001) COR MRI 6 (6M) 24-32 

(Constantinos N. Maganaris, 
2004) 

COR and TE MRI 6 (6M) 28 (4) 

(McCullough et al., 2011) TE cadaver 5 (5M) 82 (69-92) 

(Nemeth & Ohlsen, 1985) COR CT scans 20 (10M, 10F) 78 (1), 82 (4) 

(Nemeth & Ohlsen, 1989) COR CT scans 20 (10M, 10F) 70 (3), 63 (7) 

(Piazza et al., 2001) TE cadaver 7 (2M, 5F) 41-89 

(Rugg et al., 1990) COR MRI 10 (10M) 30.2 (5.9) 

(Scheys et al., 2011)* 
 

model 1 (1M) 25 

(Spoor et al., 1990)* TE cadaver 2 (2M) 82 (0) 

(Spoor & van Leeuwen, 1992) COR cadaver 1 (1F) 89 

(Thelen et al., 2005) 
 

model 14 16-31 



42 
 

(Vaarbakken et al., 2015) TE cadaver 3 (2M, 1F) 69 (68-70), 59 

(Visser et al., 1990) TE cadaver 6 (2M, 3F) 
 

(Wretenberg et al., 1996) COR MRI 17 (10M, 7F) 29 (5), 25 (5) 

(Yamaguchi & Zajac, 1989) direct load model 1 
 

* Source were not digitized during the initial selection criteria. () indicates the standard deviation or range. 
M indicates a male subject, F indicates a female subject, COR indicates the center of rotation method, 
TE indicates the tendon excursion method, and MRI indicates magnetic resonance imaging. Empty 
entries indicate unavailable or undetermined information. 

 

Validation Dataset 

The published moment arm data stored in the database were used to create moment arm 

relationships as the gold standard for validating a generic lower limb musculoskeletal model. 

Standardized naming of muscles and DOFs were required to make intra- and inter-source 

comparisons before selecting appropriate datasets for each muscle-DOF represented in the 

described model (see Model). For our digitized data, this mostly consisted of converting larger 

muscles’ data to corresponding compartments (Scott L Delp et al., 1999; Dostal et al., 1986; 

Nemeth & Ohlsen, 1985, 1989) or renaming muscles, e.g., ISO to ILIACUS in (Blemker & Delp, 

2005).  

There were several assumptions when selecting and/or creating the moment arm relationships. 

One modification was to include the moment arm values for all QUADS datasets (Draganich et 

al., 1987; Grood et al., 1984; Visser et al., 1990; Yamaguchi & Zajac, 1989) when averaging 

individual quadriceps muscles (e.g., rectus femoris and vastus muscles). Since all the quadriceps 

possess nearly identical relationships during knee flexion-extension, we believe it was reasonable 

to lump these unidentified datasets with each of the quad muscles. Likewise, ankle flexion-

extension muscle-DOF relationships typically do not explicitly measure the calf muscles (e.g., 

gastrocnemius and soleus). However, these powerful extensors attach to the long, elastic achilles 

tendon, which is well documented. We used moment arm values from achilles datasets to quantify 

calf plantarflexion (i.e., extension) moment arms. Source data that did not specify a specific 
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muscle head or compartment that could not be identified were omitted (e.g., BIFLONG datasets 

(which generally agreed with the collected biceps femoris short and long head datasets)). This 

was particularly an issue for the gluteus muscles due to the size and compartmentalization of 

these muscles. Additionally, moment arms that were measured in terms of a secondary DOF 

(e.g., hip flexion moment arm as a function of hip rotation angle) were not used. This was due to 

inadequate visualization and handling of these postures (see Validation). The remaining 

relationships were then combined to compare against simulated moment arm profiles.  

Simulated Datasets 

All the muscle length and moment arm relationships were acquired through the OpenSim model 

with a 9-point uniform grid for the full physiological ROM of each muscle-DOF. These data were 

used to create “auto-generated” polynomial approximations (Sobinov et al., 2019) of the high-

dimensional, posture-dependent muscle length and moment arm relationships. The produced 

approximations generated 9d postures per muscle, where d is the number of DOFs the muscle 

spans. For the human lower limb, the average muscle spans 2 DOFs, creating 9d(2d+1) muscle 

values (e.g., d*9d moment arm values and 9d muscle lengths for d*9d postures) or 405 values 

describing the average muscle (d=2). Even for the average muscle spanning 2 DOFs, these 

measurements are extremely limited since most moment arm values are reported as a function 

of one DOF, not multiple. For lower limb datasets, the most commonly manipulated DOFs are in 

the sagittal plane, often corresponding to flexion-extension. Although this is the primary plane of 

motion for lower limb locomotion, modeling muscles at the hip that span 3 DOF on average and 

some select muscles which span 4 DOFs (e.g., tensor fascia latae) become exponentially worse 

to describe (5,103 and 59,049 measurements, respectively). 

Simulated Models 

In addition to collecting published moment arm values, we also gathered previously developed 

OpenSim models for additional comparison. These models are all available for download on 

OpenSim’s website. These models were used to qualitatively compare muscle-DOF relationships 
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that initially failed during moment arm validation (see Validation) and allowed us to determine 

whether they failed due to the reliability or quality of validation data or if the modeled relationship 

was incorrect. The simulated moment arms in these comparisons were computed using 

OpenSim’s API. The model files and associated metadata were converted in metatables and 

stored in a separate database from moment arm datasets. 

Validation 

Overview 

We implemented a validation process to address the structural and functional errors and 

limitations commonly seen in musculoskeletal modeling: simulated muscle path errors in 

experimentally 1) observed postures and 2) unobserved postures. To overcome these issues, we 

evaluated our model with a validation framework that verifies accurate representations of 

musculoskeletal dynamics by identifying the importance of muscle architecture and subsequent 

moment arm relationships (Boots et al., 2020). Here, the following sections will summarize their 

validation procedure. 

Step 1: Validation of experimentally observed postures 

The anatomical integrity of each musculotendon’s geometry was evaluated by comparing the 

validation dataset’s muscle-DOF relationships to model simulations (see Simulated Datasets). 

The quality of the simulated relationships was qualitatively and quantitatively assessed for profile 

errors and to estimate ‘good enough’ approximations. The quantitative metrics used to determine 

‘good enough’ quality were either 1) the root mean square error (RMSE) < 1 mm and the Pearson 

correlation coefficient (R) > 0.7; or 2) RMSE normalized to the range of validation moment arm 

values per DOF < 0.4 and R > 0.7. These values were chosen as the “operational definition of 

acceptable quality” and were based on previous models and real-time decoding performance 

(Boots et al., 2020). The qualitative metric categorically grouped muscle-DOF relationships into 

dynamic and static profile errors (see Results). 
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Step 2: Validation of experimentally unobserved postures 

Due to the posture-dependencies caused by muscle length and consequent geometry changes 

and the sparsity of moment arm data for physiological postures, validation can be a daunting and 

exhaustive task. Moreover, the examination of approximated high-dimensional relationships is 

limited and cannot guarantee valid behavior. To address the accuracy of structural and functional 

behavior for unobserved postures, additional tools were needed. One of these developed tools 

evaluated postures to find occurrences where the moment arm value crosses zero, indicating a 

change in muscle function (i.e. flexion to extension). All “zero-crossing” instances were examined 

to assess if the change in muscle function was physiologically valid. The other tool analyzed 

postural extrema, where typical structural errors due to poor wrapping geometry or zero-crossings 

occur.  

3.4 Results 

In this study, we developed generic muscle-DOF relationships by combining multiple datasets to 

evaluate a recently published OpenSim musculoskeletal model (Lai et al., 2017) of the lower limb 

using the validation process outlined in (Boots et al., 2020). Here, we utilized both qualitative and 

quantitative metrics to evaluate moment arms profiles. These were used to assess the model for 

structural errors in muscle path geometry (e.g., muscle moves through the bone) and functional 

errors where moment arm sign flips (i.e., zero-crossing) for both observed and unobserved 

postures. 

The model contained 63 zero-crossing locations shown in Figure 3.1. The most occurred at the 

hip (55) and the least at the knee (2). Of those at the hip, 19 occurred in hip flexion, 15 in hip 

adduction, and 21 in hip rotation. Most of the crossing locations at the hip were in the adductor 

and gluteus muscles, some of which are expected since they are reflected in their published 

experimental datasets. Only the rectus femoris and tensor fascia latae muscles experienced 

crossing events at the knee. For the ankle, the peroneus and tibialis muscles were responsible 
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for all zero-crossings, all except one occurring in the first half of the muscles’ ROM. The 

distribution of zero-crossing locations showed a relatively neutral preference in the ROM. 

 

Figure 3.1. Histogram of moment arm zero-crossing locations as a function of ROM.  All muscles with moment 
arm zero-crossings are shown for each muscle-DOF they occur in. Each color corresponds to a DOF (see legend) in 
the model. 

The qualitative comparison of measured and simulated muscle-DOF relationships and their 

categorical values are shown in Figure 3.2. The 40 muscle paths representing the 33 muscles of 

the lower limb across 7 DOFs were assessed. Each muscle spanned 2-3 DOFs on average with 

the vastus muscles spanning 1 DOF and tensor fascia latae spanning 4 DOFs. Of the 96 muscle-

DOF relationships described, 42 were omitted due to insufficient or partial moment arm 

measurements (blue) (see Figure 3.2A). The categories ranged from ‘good’ (green) to ‘bad’ (red) 

shown in Figure 3.2B. The ‘good’ category indicated that the moment arm profile for the specified 

muscle-DOF met the evaluation criteria (see Validation). The worst category (shown in red) was 

given to moment arm profiles with an unvalidated zero-crossing location. The other categories 

(yellow, orange, and pink) indicate specific errors corresponding to scaling, dynamic, and overall 

profile errors. These represent magnitude (yellow), minor (orange), or significant (pink) profile 

disagreements between the measured and simulated profiles.  
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The original model did not include any ‘bad’ category errors. The best muscles were 

semimembranosus and semitendinosus with all ‘good’ categories and the worst was peroneus 

longus with all pink categories. The average normalized RMS and R values for all profiles were 

(0.65 ± 1.0 SD) and (0.62 ± 0.60 SD). For muscle-DOFs in the ‘good’ category, these values were 

(0.17 ± 0.12 SD) and (0.951 ± 0.06 SD), respectively. Each category was also assigned a score 

scaled from 0 to 4, with 0 corresponding to the ‘bad’ category and 4 corresponding with the ‘good’ 

category. The model scored 167 out of a possible 216 (assumes all 54 checked muscle-DOFs 

are scored with 4), an overall validation score of 77.3%. The best DOF was hip rotation with 93.2% 

and the worst was ankle inversion with 56.3%, followed closely by ankle flexion (56.8%).  
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Figure 3.2. Categorical comparison of moment arm profiles for all muscles and DOFs. A. The original model (Lai 
et al., 2017)  evaluated for profiles errors. The muscles are labeled vertically and the DOFs are labeled horizontally. 
The categorical values are shown for each modeled muscle-DOF relationship. B. Examples of the categories used to 
assess moment arm profile errors. 

The created muscle-DOF relationships from published experimental datasets were compared to 

polynomial approximated and OpenSim simulated profiles (see Validation). Some of the most 

commonly analyzed agonist-antagonist (e.g., flexor-extensor) muscles at the knee and ankle 

DOFs are compared in Figure 3.3. These included the rectus femoris and semimembranosus for 

knee flexion, soleus and tibialis anterior for ankle flexion, and peroneus brevis and tibialis 

posterior for ankle inversion. The created moment arm profiles (thick black line) shown in Figure 
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3.3A agree well with the measured datasets – the only exceptions are the peroneus brevis and 

tibialis posterior lines shown in red, which strongly disagree with the created profiles. Similarly, 

the simulated profile (red) in Figure 3.3B for peroneus brevis reflects the disagreement in the two 

measured moment datasets (Klein et al., 1996; McCullough et al., 2011) and is evaluated 

accordingly (‘pink’ category) despite the corresponding moment arm profiles in published 

OpenSim models (see Figure 3.3C) agreeing with the simulated profile. The rectus femoris, 

soleus, and tibialis posterior muscles also show the general trend of measured moment arm 

profiles slightly disagreeing with simulated profiles; however, these muscle-DOFs still fall within 

the green, yellow, and orange categories. Overall, the presented OpenSim moment arm profiles 

in Figure 3.3C agree amongst each other but with some containing a noticeable difference in 

scaling. These could be generally categorized into two groups: one group consisting of the Arnold, 

Lai, and Rajagopal models and the second group consisting of the Gait2392, Hamner, and 

Shelburne models. One common feature across all simulated profiles was their more pronounced 

parabolic shape compared to measured datasets. This was less evident in the rectus femoris, 

which all OpenSim models included at least one cusp at extreme positions in knee flexion (around 

0 and 100 degrees).  
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Figure 3.3. Comparison of measured and simulated moment arms for knee and ankle muscles. A. All available 
measured moment arm data and created moment arm profile from combining data. B. Comparison of created and 
simulated moment arms in the validation process. C. Simulated moment arm profiles for multiple OpenSim models. 



51 
 

The muscle paths were also examined for structural errors for a range of postures. Here, we 

moved each joint through the entire ROM in different postures to check for incorrect muscle 

geometry that causes the muscle to go through bone or jump around/through wrapping surfaces. 

We identified several of these occurrences in the model and show a subset of these in Figure 3.4. 

These locations mainly occur in potentially unphysiological or postures outside of gait (e.g., 

internally rotated hip in hyperflexion); however, notable errors in single-plane movements for the 

gluteus medius and minimus, sartoris, quadriceps, and several muscles at the ankle (e.g., 

peroneus and extensor digitorum/hallucis muscles) were identified and are shown below. For the 

gluteus muscles, the muscles paths move through the ilium and pelvic bones of the pelvis in hip 

flexion-extension and abduction-adduction movements (Figure 3.4A). The rectus femoris and 

sartorius muscle move through the head/neck of the femur during high hip extension (Figure 3.4B) 

and all the quadriceps move through the distal portion of the femur (Figure 3.4C) in knee flexion. 

Some of the problematic muscles at the foot (Figure 3.4D) are defined moving through bone in 

the neutral position (i.e., 0 deg). These are further exaggerated during ankle flexion-extension 

and eversion-inversion movements. 
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Figure 3.4. Identified muscle path error examples at each joint. The problematic muscle paths are highlighted in 
red and surrounding muscle paths are opaque. A. The gluteus medius and minimus muscle compartments at 80 
degrees hip flexion going through the pelvis. B. The rectus femoris and sartorius muscles at 30 degrees hip extension 
at the femur. C. The quadriceps (rectus femoris, vastus intermedius, vastus lateralis, and vastus medius) for high knee 
flexion (90 degrees shown). D. Peroneus (2 left-most) and extensor digitorium/hallicus (2 right-most) muscles in the 
neutral position at the ankle joint. 

3.5 Discussion 

We evaluated a published lower-limb musculoskeletal model developed in OpenSim using a 

structural validation process that checks for muscle path and moment arm errors. In this process, 

we first analyzed moment arm profiles by comparing the created muscle-DOF relationships from 

measured datasets to simulated moment arms (see Datasets). The qualitative profile values 

shown in Figure 3.2 demonstrate that the model compares well in the hip flexion, hip rotation, and 

knee flexion DOFs. These muscle-DOFs relationships score highly due to a large number of high-

quality and consistent moment arm measurements from published sources. Likewise, previous 

OpenSim models have emphasized these specific relationships to simulate gait, running, and 



53 
 

pedaling movements (Hamner et al., 2010; Lai et al., 2017; Rajagopal et al., 2016). This was also 

reflected in the similarity of simulated profiles compared to measurements shown in Figure 3.3. 

Moreover, this is partially attributed to more recent models qualitatively comparing these 

simulated profiles to select measured datasets (A. S. Arnold et al., 2000; E. M. Arnold et al., 2010; 

Lai et al., 2017; Rajagopal et al., 2016). However, the ankle flexion-extension DOF was the worst 

in our analysis.  

The strongest extensors (gastrocnemius and soleus muscles) and flexors of the ankle (tibialis 

anterior) were generally in agreement with moment arm measurements and previous models (see 

Figure 3.3). These muscle-DOFs also included several high-quality datasets. The ankle extensors 

underestimated simulated moment arms. These errors can be attributed to selecting achilles 

measurements, a long tendon connecting the calves to the heel bone, to describe the calf 

muscles’ moment arm relationships. This would possibly suggest that ankle joint torques would 

be underestimated but these torques are often grossly overestimated due to the passive 

component of the muscle force-length relationship that accounts for the tendon (Millard et al., 

2013; F.E. Zajac, 1989). Modifications to parameters to counteract these errors often involve 

increasing tendon slack length and decreasing optimal fiber length (Lai et al., 2017), effectively 

resulting in a shorter muscle that operates more on the ascending (increasing) portion of the force-

length curve where the passive component is less significant. This is commonly observed in 

distally located muscles because they rely on longer, elastic tendons to translate muscle length 

changes due to contractions to actuate the joint (Yamaguchi, 2001). Furthermore, 

inclusion/exclusion of an additional elastic element modeling tendon in the internal muscle model 

would also drastically alter these dynamics based on its stiffness (i.e., rigid tendon assumption). 

The extent of these changes may not be fully realized without the comparisons conducted in this 

study. Without acknowledging the muscle geometry component of torque production, these 

parameters cannot be appropriately scaled to reduce observed errors. 
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Other muscle-DOF relationships at the ankle for the peroneus, extensor digitorium/hallicus, and 

flexor digitorium/hallicus muscles were deemed unsatisfactory in the validation process. Initially, 

these comparisons were significantly inaccurate (see peroneus brevis in Figure 3.3). Yet, all the 

simulated relationships from previously published models relatively agree with those simulated 

during validation. This raised several questions about the actual quality of these failed 

relationships. Upon inspection, it was evident that the simulated profiles received poor evaluations 

due to inconsistencies in measured datasets. It was also apparent these muscle-DOFs also 

contained fewer total datasets for selection. This example presents an interesting scenario in 

model validation where the modeler, or domain expert, must decide which relationships are 

appropriate for the developed model. In this context, we would assume confidence in muscle-

DOF relationships with largely consistent measurements, and that muscles with similar function 

would share common characteristics (Boots et al., 2020; Lieber, 2000; Sobinov, 2019). This could 

result in selecting the simulated relationships to be the ground truth despite having measurements 

like those shown for muscles in ankle eversion-inversion (Figure 3.3). The profiles for the tibialis 

posterior also pose a similar question in data viability and confidence for individual datasets, 

where measured datasets whose overall characteristics and corresponding simulated data 

evaluate as ‘good’ but demonstrate different profiles. There were some instances where multiple 

and consistent datasets were used to validate a simulated moment arm profile but resultant in 

large disagreements; however, a single or minority of other measurements for the muscle-DOF 

would strongly agree with the simulated profile. This could indicate 1) the models may better 

reflect subject-specific moment arm characteristics corresponding to minority datasets or 2) the 

majority of measurements are inaccurate. The later might be a result of source variability. These 

observations highlight the importance of qualitatively and quantitatively evaluating simulated 

relationships against previously published experimental measurements and model simulations 

(Henninger et al., 2010; Hicks et al., 2015; Lund et al., 2012).   
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The muscle paths for all musculotendons were functionally validated by checking for moment arm 

zero-crossing locations in all possible postures for each DOF’s full ROM (see Figure 3.1). The hip 

muscles were especially susceptible to zero-crossings, particularly for the adductor and gluteus 

muscles. Since the gluteus muscles were not analyzed in this study, we were not able to 

determine if the identified locations were physiologically valid, which would be indicated in 

measured moment arm profiles. Likewise, the hip adduction determinations were also not 

feasible; still, we expected a higher number of zero-crossings at the hip joint than at other joints 

because select muscle-DOFs around the hip change function in certain postures, and are in 

general, more complex. This is due to simpler muscles spanning the knee and ankle only 

actuating 1 to 2 DOFs on average as opposed to 3 to 4 DOFs at the hip. There also exist more 

possible postural combinations due to larger ROM and more DOFs. Both facts are eluded by the 

number of required samples necessary to describe these relationships. The number of crossing 

locations can also provide valuable insight into which muscles or DOFs are more susceptible to 

structural errors in muscle path geometry for these reasons. 

We evaluated the model’s muscle paths for the entire ROM for structural inaccuracies (e.g., 

muscle through bone and/or point “jumps” from poor wrapping surfaces). Here, we discovered 

similar results to those in the zero-crossing analysis with the hip and ankle being the worst DOFs 

for these types of errors. Although most were in non-physiological postures, several postures 

were identified in ROMs that are used to simulate various tasks, especially those with high flexion-

extension movements (see Figure 3.4). These could partially explain some of the determined 

zero-crossing locations or unsmooth/discontinuous portions observed in simulated moment arm 

profiles (e.g., rectus femoris in Figure 3.3). For the quadriceps, we believe the disagreement in 

measured and simulated profiles is due to the differences in moment arm measurement 

techniques (direct load and TE), with direct load datasets exhibiting the substantial changes in 

moment arm around peak extension. However, a common simplification of the knee mechanism 
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is to extend the quads to represent the patellar tendon (similar to the calf muscles modeled 

lumped with the achilles) and several patellar tendon moment arm datasets (W.L. Buford et al., 

1997; W Herzog & Read, 1993) also exhibit this feature in high knee flexion and increased 

extension moment arm. For the ankle, problematic muscle paths seem to stem from the initial 

definition of path geometry which can be seen traveling through bone in the neutral position. We 

suspect that modifications to these paths in the neutral posture would fix most occurrences in the 

ankle and with additional wrapping surfaces to prevent other locations in the ROM (e.g., the 

peroneus muscles passing through the lateral malleolus of the fibula). 

There are several limitations in this study, most relating to the measured moment arm datasets 

used to create and compare muscle-DOF relationships during the validation process. Specifically, 

the availability and sparseness of moment arm data severely hinder the ability to fully-describe 

the necessary muscle-DOF relationships for musculoskeletal simulations. Of those available 

measured datasets, there are still large inherent variations from inter-subject differences 

compounded on differences in measurement (e.g., cadaver, TE) and reporting methods (e.g., 

figures or tables). To create generic musculoskeletal models, individual anatomical variability 

must be appropriately expressed by combining all available data; however, these inconsistencies 

in published source data make it extremely difficult to 1) safely merge needed datasets and 2) 

capture all the posture-dependent relationships for observed and unobserved postures. Another 

limitation was the inability to properly evaluate all modeled muscle-DOFs. This is an extension of 

the primary limitation described above. However, of the models analyzed, the current model would 

be our recommendation for a baseline model based on the observations made in this study.  

Furthermore, the comparison of simulated moment arm profiles approximated with ‘good enough’ 

polynomials and those computed in OpenSim are not identical and occasionally generate minor 

differences in moment arm profile characteristics. Despite these limitations, we successfully 
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gathered a collection of published moment arm datasets to highlight common structural and 

functional errors in a previous human lower-limb musculoskeletal model.  

3.6 Conclusion 

In this study, we assembled a moment arm database populated with available experimentally 

measured datasets to create ‘generic’ muscle-DOF relationships for the human lower limb. These 

developed relationships were used in a validation process to evaluate a current musculoskeletal 

model for structural and functional errors in muscle path geometry and moment arm profiles. Our 

results suggest that current musculoskeletal models can reliably be validated for a subset of 

muscle-DOF relationships spanning the hip, knee, and ankle joints with the moment arm datasets 

used in this study. Select DOFs are shown to meet our validation standards, indicating that this 

model, or similar ones, can produce accurate muscle torques based on the validated relationships 

in these DOFs. We also highlight problematic muscles and DOFs to address moment arm 

datasets that are needed to accurately model the lower limb and to guide future work in lower 

limb musculoskeletal development. Overall, we believe improvements in these areas will help 

improve the physiological accuracy and robustness of lower-limb musculoskeletal models.  
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Chapter 4 Discussion and Future Work 

This thesis discusses current applications and challenges in developing and validating 

musculoskeletal models. The background that is necessary to understand the fundamentals of 

musculoskeletal modeling are presented through topics relating to muscle physiology, internal 

models (e.g., Hill-type muscle models), muscle architecture, and validation standards within 

computational biomechanics and motor control fields, as well as the experimental data that 

accompany these concepts and models. Specifically, my research focused on developing 

standardized software and workflows for acquiring and managing musculoskeletal datasets (e.g., 

moment arms) to generate datasets that can be used to validate musculoskeletal models. In 

chapter 2, I outline the developed computational workflow and software tools used to extract 

moment arm datasets from published literature into a custom relational database to generate 

‘generic’ moment arm profiles for developing and validating lower limb models. In chapter 3, I use 

the created moment arm relationships to evaluate a published musculoskeletal model for muscle 

path and moment arm errors with a recently developed validation framework. 

4.1 Moment Arm Datasets 

In chapter 2, we developed a new approach for collecting and managing muscle moment arm 

datasets for musculoskeletal modeling. The collected datasets were used to generate a 

comprehensive validation dataset used for creating musculoskeletal models. We also developed 

corresponding software and workflows that automated most of the data acquisition and database 

creation steps in this process. Similar efforts to create a complete dataset of all the relationships 

to model and validate the human lower arm and hand took several years for multiple researchers 

to create (Boots et al., 2020). The presented approach provides a linear and systematic step-by-

step process for digitizing and storing all the necessary data (see Figure 2.1). This drastically 

improved current processes for collecting the hundreds of needed datasets to fully describe 
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musculoskeletal relationships which heavily rely on tedious manual interventions like creating 

excel spreadsheets. Previous open-source tools are capable of extracting and digitizing image-

stored datasets (jiro, 2020; Rohatgi, 2019) and managing relational databases; however, these 

are often independent tools with little coherence between them. They also often require more 

technical or programming skills (e.g., SQL) to properly navigate and produce desired outputs 

(e.g., data tables, database queries). Our solution was developed as an all-inclusive software 

toolbox in MATLAB (a popular computational software for engineers and researchers) that would 

easily allow users to retrieve datasets stored in literature figures and tables and quickly generate 

organized tables or databases (see Figure 2.3). Furthermore, we include additional tools that 

improve analysis and troubleshooting of these datasets which are focused and/or intended for 

individuals with no to little programming experience (see Figure 2.4). The accumulated datasets 

could then be used to conduct a variety of meta and numerical analysis, e.g., averaging datasets. 

There are several limitations to the presented approach. The first is locating and acquiring the 

published literature containing the necessary moment arm relationships for lower limb muscles. 

Available datasets are often very disparate and sparse, which can introduce nonlinearities and 

physiological inaccuracies when combining datasets (Goislard De Monsabert et al., 2018) that 

include differences in individuals and methodologies. These were generally handled by including 

labels and meta information to extracted datasets during digitization and then intra- and inter-

source averaging with linear and spline extrapolations. However, extreme care is required to 

implement consistent naming across datasets and literature, which could ultimately result in 

inappropriate combinations or analysis of these datasets. Similarly, more sophisticated selection 

or combination procedures for the data could be used to improve the current implementation (e.g., 

unsmooth transitions between profile features) shown in Figure 2.5. Moreover, the developed 

software (although intuitive) lacks graphical user-interfaces for more convenient point-and-click 

types of commands. The primary focus was on providing a framework and scripting tools that 
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could be expanded on in the future. Likewise, some of the developed MATLAB classes (e.g., 

metatable and database) were not initially built or designed for computational and size efficiency, 

which could result in unexpected or undesirable consequences for larger datasets (e.g., genome 

sequencing or machine learning). 

4.2 Musculoskeletal Models 

In chapter 3, we evaluated a previously published lower limb musculoskeletal model created in 

OpenSim (Scott L. Delp et al., 2007; Lai et al., 2017; Seth et al., 2018). The model was checked 

for common musculoskeletal structural and functional errors in muscle path geometry and 

subsequent moment arm relationships based on the work described in (Boots et al., 2020). We 

used the created relationships in chapter 2 as our gold standard for comparing measured and 

simulated moment arm profiles, a common and often preferred validation approach (Henninger 

et al., 2010; Hicks et al., 2015; Lund et al., 2012). Figure 3.2 shows the qualitative scores and 

profile errors for these comparisons, which easily highlighted good and bad muscle-DOF 

relationships. For those muscle-DOFs evaluated as ‘good’, these relationships generally 

contained more measurements and consistent profiles compared to those with worse evaluations. 

The ankle muscle-DOFs, except for the calf and tibialis anterior muscles, were particularly poor, 

with both flexion-extension and eversion-inversion DOFs containing 1-2  inconsistent measured 

datasets on average. Yet, examining these bad profiles and comparing them to previous lower 

limb models (see Figure 3.3) demonstrated the need for both qualitative and quantitative metrics 

for direct and indirect comparisons (Hicks et al., 2015) by posing several scenarios that call into 

question the accuracy and validity of both the measured and simulated data. Similarly, it also 

helped identify specific scaling and discontinuity errors observed in muscles at the knee 

(quadriceps) and ankle (calf muscles) that may be due to common modeling assumptions (e.g., 

patellar and achilles tendons). Due to the limited and sparse measurements used to validate 

simulated moment arms, additional checks for muscle path geometry or moment arms errors in 
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unobserved postures were necessary to locate instances of muscle traveling through bone (see 

Figure 3.4) or changes in muscle function (i.e., moment arm zero-crossing) shown in Figure 3.1. 

These observations only reinforce the need for validation tools and standards described in (Boots 

et al., 2020), and moreover, highlight the data and steps required to advance musculoskeletal 

models. 

The measured datasets needed to fully-describe musculoskeletal dynamics remains the largest 

challenge for these models. Without adequate measurements to validate accurate physiological 

relationships, there can be some doubts about whether to trust all conclusions based on model 

predictions. In the context of moment arms, muscle-DOFs that include reasonable measured 

moment arm data (with or without merging datasets), can lead to false conclusions about errors 

in torque production. Associated errors might prompt modification to musculotendon force-

generation properties to compensate for these errors when small adjustments in the muscle path 

geometry (and resulting moment arm) could correct them. In other words, without properly 

identifying or considering all the factors affecting the desired output(s), alterations to other 

parameters may be unknowingly moved into unphysiological values due to misclassifying or 

addressing the true underlying error(s). That said, the limitation of small disparate subsets of 

measured data reiterates the need for expanding limited and unstandardized musculoskeletal 

validation procedures and tools.  

4.3 Future Work 

Future development for the work discussed in this thesis would include improving the developed 

software tools for moment arm digitization and storage and implementing appropriate changes to 

the identified errors in the evaluated musculoskeletal model.  

The classes used to extract all the WebPlotDigitizer (Rohatgi, 2019) datasets containing the 

published moment arm data could be less coupled (i.e., dependent) on one another while 

maintaining cohesiveness. This would allow users to utilize individual classes and features 
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independently within or outside the presented workflow. Furthermore, improvements to the 

computational speed and size requirements of the base classes would greatly reduce the amount 

of RAM need to manipulate and access larger datasets. Specifically, this would provide more 

flexibility in how physical data is stored locally or remotely and decrease hardware performance 

requirements needed to use the software (i.e., could be used on a personal laptop). The 

development of user-interfaces would drastically improve the end-user experience, allowing them 

to visually interact with different objects and datasets within a table or database. This would 

particularly benefit less experienced users. This would also enhance productivity by decreasing 

the number of interactions needed to perform a specific task and more visuals to better 

troubleshoot errors. Another major improvement would be developing additional features – this 

would aim to expand the toolbox capabilities by including additional packages or extensions 

similar to other musculoskeletal software packages (Damsgaard et al., 2006; Scott L. Delp et al., 

2007; Pizzolato et al., 2015; Seth et al., 2018; Valente et al., 2017). In regards to the content of 

this thesis, additional tools could include moment arm validation frameworks (Boots et al., 2020), 

curve-fitting for high-dimensional data (Sartori et al., 2012; Sobinov et al., 2019), and optimizers 

for muscle-path adjustments (Carbone et al., 2012; Pellikaan et al., 2014). With these discussed 

improvements, the potential for more high-quality musculoskeletal data can be stored and created 

for model validation. 

Future work with the created muscle-DOF relationships from measured datasets would be used 

to fully validate the evaluated model in this study. By initially evaluating the (Lai et al., 2017) 

model, we would implement the necessary changes to problematic muscle path geometry and 

correct poor moment arm profiles. This would address the first 2 steps described in (Boots et al., 

2020). The third step would require obtaining maximum isometric torque measurements for the 

hip, knee, and ankle joints so that we could properly scale the maximum force-generation capacity 

of the model to physiologically valid torque values. Because the torque scaling step uses scalar 
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values, future works would need to determine the most appropriate posture and torque value used 

to scale between the measured and simulated torques. This would prove to be a crucial step due 

to the postural dependence of moment arms and subsequent muscle torques (Gonzalez et al., 

1997). Correspondingly, the resulting model would need to undergo several indirect validation 

comparisons to ensure that the model’s overall function is valid and whether it represents a 

generic individual. The additional tools proposed for future work in the moment arm toolbox above 

would greatly improve the validation process by further automating tedious and time-consuming 

components of the musculoskeletal development process. 

Chapter 5 Conclusion 

In my thesis, I developed a computational workflow for digitizing posture-dependent moment arm 

datasets. I also detail the methods and tools used for creating and managing a custom relational 

database for the digitized datasets to create moment arm profiles that captured the accuracy and 

viability of multiple datasets to validate a human lower limb musculoskeletal model. I obtained a 

previously published human lower limb musculoskeletal model to evaluate its muscle-DOF 

relationships using a validation framework for musculoskeletal models. I used the described 

validation process for a generic lower limb musculoskeletal model and used the created moment 

arm profiles as the gold standard for comparison to assess structural and functional errors in 

muscle path geometry and moment arm relationships within the model. Here, I identify errors in 

developing and validating these models and demonstrate a new approach for creating more 

reliable and generic musculoskeletal models. Overall, my work addresses and solves the need 

for standardized tools for managing morphological datasets for comparison and analysis, which 

can be used to improve development and validation efforts in musculoskeletal modeling.  
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