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Abstract

Impact of Particle Injection on Gaseous Flow at an Elevated Pressure: A Numerical Study 
Ansan Pokharel  

Modeling of a turbulent two-phase gaseous-solid flow still faces challenges. The present study is 

devoted to two-phase flow in an annular pipe (hollow cylinder) operating at an elevated pressure 

of 15 bar and moderate Reynolds numbers of circa 6 x 103. The influence of the various factors – 

such as the particle loading, the interaction between the phases, and turbulent dispersion – on the 

flow dynamics is systematically studied by means of the computational simulation employing the 

ANSYS FLUENT commercial package. To be specific, particle loading with a volumetric fraction 

of 1.2 % is defined as high particle loading, while the flow with a volumetric fraction of 0.13 % is 

referred to as low particle loading. In particular, seven various cases for a gas-solid phase flow are 

investigated:  

1) Pure gas flow;

2) Low particle loading two-phase flow with one-way coupling and with turbulence dispersion;

3) Low particle loading two-phase flow with two-way coupling but without turbulence

dispersion;

4) Low particle loading two-phase flow with two-way coupling and with turbulence dispersion;

5) High particle loading two-phase flow with one-way coupling and with turbulence dispersion;

6) High particle loading two-phase flow with two-way coupling but without turbulence

dispersion;

7) High particle loading two-phase flow with two-way coupling and with turbulence dispersion.

The boundary layer was found to be growing without fluctuations of the turbulent kinetic energy 

(TKE) for Cases 1, 2, and 5 above. For Case 4, the TKE fluctuations have been identified though 

appeared not as substantial as in Cases 6 and 7. The author attributes such a difference in the 

fluctuations to the particle loading. In addition, the onset and development of the flow instability 

have been observed at a random axial distance in Cases 4, 6, and 7. Such instability is presumably 

attributed to the two-way coupling with turbulence dispersion in a flow. It is concluded that the 

particle loading, one-way, or two-way coupling between the phases, and the turbulence dispersion 

models significantly influence the flow dynamics. The present computational results inspire to 

perform experimental verification and validation of the simulations, so the simulation results can 

subsequently be used for the design analysis. 
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1 Introduction 

1.1 Types of Flows 

A multiphase flow can be defined as a fluid flow consisting of more than one phase while a fluid 

flow with just two distinct components or phases is categorized as two-phase flows. Multiphase, 

especially, two-phase flows are ubiquitous in the real-world and engineering applications, such as 

in coal combustion, transportation of oil and gas through a pipe, sewage pipeline, nuclear reactor, 

pneumatic conveying, and many more. Medical and biological flow processes, critically important 

blood flow, are also among the examples of multiphase flows. Natural disasters such as avalanches, 

floods, and landslide are also considered as multiphase flows [1]. The multiphase flows are divided 

into two distinguishing categories: (I) Dispersed multiphase flow, where the primary (main) phase 

transports or carries secondary phase, e.g. coal particles carried by air in a burner and (II) the 

separated multiphase flow that consists of two separate phases unmixed during the flow but being 

in contact at the shear layer [2-3]. 

Two-phase flows are classified into three distinct groups: I) Gas-solid flows, where the solid phase 

is carried by the gas phase, e.g. suspension of the solid particle in the air; II) Gas-liquid flows, 

which are formed by the combination of the liquid phase and gas phase, which consist of either 

the same or different volume fraction of phases, e.g. spraying of fuel in engine cylinder along with 

air; and III) Liquid-solid flows, which are formed by the dispersion of the solid particles in a liquid, 

e.g. flow in sewage pipe [4]. 

Multiphase flows occur from a nuclear reactor to a sewage pipe flow. Despite being commonplace, 

a multiphase flow also has a lot of challenges. Hence, the comprehensive fundamental studies of 

the multiphase flow processes are utterly important, which can eventually help to enhance the 

effectiveness of the process and the overall design of better systems.  

1.2 Combustion 

Combustion is defined as an exothermal process, where heat, light, and burnt matter are generated 

in a chemical reaction between an oxidizer and a fuel. Combustion is categorized as premixed and 
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non-premixed (diffusion) [5]. A combustion process, where the mixing of the fuel and oxidizer 

happens before ignition is regarded as premixed combustion. The common example of premixed 

combustion is that in spark-ignition engines. Non-premixed or diffusion combustion is defined as 

a combustion process where the oxidizer and fuel are separated before ignition. A burning candle 

is a good example of non-premixed combustion. Further, premixed combustion is categorized into 

the deflagration and detonation regimes. Deflagration, also known as a flame, occurs due to 

thermal conduction and it spreads at a subsonic speed. In contrast, a combustion front that travels 

at supersonic speed, because of shock waves is known as a detonation.   

Coal, natural gas, petroleum, etc. are the major fossil fuels that are used in transportation, heating, 

and industrial combustion for energy production. In addition to heat, carbon dioxide (CO2) is the 

primary outcome of combustion. Numerous studies have pointed out CO2 to be the major culprit 

contribution to global warming [6]. Coal-based power plants are one of the leading sources for 

CO2 emission. In 2018, 85% of the world energy demand was supplied from the fossil fuels, of 

which 27% was generated from coal [7]. In the same year, the consumption of coal has increased 

by 1.4% and its production has grown by 162 Mt (mega tonnes) of oil equivalent. One tonne of oil 

equivalent is the energy released during the burning of one tonne of crude oil. The growth rate of 

carbon emission was found to be 2%; which was the highest in seven years [8]. The presence of 

copious resources and ease in the extraction process has made coal one of the cheapest fossil fuel 

and its consumption is likely to be increasing until the foreseeable future. Hence, to generate clean 

energy from coal combustion with the least carbon emission, the design of an efficient coal 

combustor is required. Staged Pressurized Oxy-Coal Combustion (SPOC) is one such technology.  

1.2.1 Carbon Capture and Staged Pressurized Oxy-fuel Combustion 

CO2 is one of the primary products generated during combustion of a fossil fuel, and it is almost 

inevitable to generate the heat without any CO2 formation. Consequently, carbon capturing is one 

of the state-of-the-art technologies developed to mitigate the problem of carbon emissions. The 

separation of CO2 from other elements/components in a mixture is considered as carbon capturing 

[9]. Usually, air – consisting of 21% of oxygen (O2) and 78% of nitrogen (N2) – is used as an 
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oxidizer during combustion. In addition to heat and CO2, a significant fraction of N2 is generated 

during air-fuel combustion. Carbon capturing from such a mixture first requires CO2 separation 

from the product which is energy-consuming.  

Oxy-fuel combustion is burning of fuel with almost pure oxygen. Oxygen supersedes air in this 

process since it significantly decreases the amount of N2 in the products [10]. In air-fuel 

combustion, N2 acts as an inert gas and absorbs some portion of heat generated during combustion. 

However, the absence of N2 in the oxy-fuel process increases the adiabatic flame temperature. To 

mitigate this demand, CO2 is recycled back and injected into the combustor to control/regulate the 

desired flame temperature. A flue gas produced in this process contains a high CO2 concentration.  

 

Figure 1.1: Schematic diagram of an oxy-fuel combustion process [9]. 

Although a high concentration of CO2 is generated during oxy-fuel combustion, the generated CO2 

is eventually required to be pressurized either for sequestration or enhanced oil recovery (EOR). 

Staged pressurized oxy-fuel combustion, hence referred to as SPOC, is a process occurring at 

elevated pressures, where the injection of fuel is staged to control the high flame temperature. Oxy-

fuel combustion at an elevated pressure excludes the necessity to pressurize the CO2 generated as 

a product of the combustion process and increases the dew point of the flue gas. The latent heat of 

flue gas moisture generated at the elevated pressure can be used back in the operation cycle, which 
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eventually increases the overall efficiency of the operating system [12]. Besides, the operation of 

the SPOC system at high pressure decreases the volume of the gas which eventually decreases the 

size of the equipment used in the system and hence the total cost associated with the system. Also, 

there is no formation of nitrogen oxides (NOx), which decreases the cost of separation and 

purification of CO2 from NOx. This makes the SPOC process one of the most promising carbon-

capturing technology. 
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2 Motivation and Objectives 

2.1 Motivation 

An increase in coal production and consumption, which is not likely to decrease in the forthcoming 

future, has necessitated the need of an effective coal combustor that can generate clean energy via 

burning of coal. The SPOC and flameless combustion technology (ISOTHERM) are two major 

oxy-fuel combustion technologies operating at elevated pressures. The requirement of recycling a 

lesser volume of flue gas in the SPOC as compared to the ISOTHERM decreases its energy penalty 

[13]; consequently, the SPOC is expected to run with higher efficiency.  

Arguably, two-phase flows are commonplace in real-world applications and have a wide scope. 

The SPOC primarily employs coal particles as the fuel, which makes the injection process inside 

the SPOC a two-phase (gas-solid flow) system. The SPOC, which is at the first stage of the study, 

is one of the cutting-edge technologies and has shown promising results; however, the fundamental 

understanding of flow inside SPOC is still required. The present thesis is primarily focused on the 

fundamental study of the gas-solid (coal particle) behavior inside a pressurized system in a vertical 

annular tube. Specifically, a thorough research is conducted to understand the flow dynamics at 

the inlet section of the SPOC geometry. However, this research should not be limited to the SPOC 

and can further be used to understand the fluid-particle dynamics in general.  

2.2  Objectives 

The dynamics of gas-particle (air-coal particles) flow in the inlet section of the SPOC burner has 

being investigated. The main objectives of this study were: 

1. To design and develop the geometry and mesh for the inlet section of the SPOC burner using 

the ICEM (commercial software primarily used for mesh generation). 

2. To develop an accurate gas-solid turbulence model using the Ansys FLUENT package. 

3. To investigate the role of particle loading in the flow field. 

4. To study the role of turbulence dispersion in the flow field. 

5. To study the difference between one-way and two-way coupling. 

The details of the turbulence dispersion and phase coupling are provided in the following section. 
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3 Literature Review 

Giacinto et. al. [14] conducted an investigation concluding that particle loading (particle volume 

fraction) is one of the primary parameters determining the choice between one-way and two-way 

coupling for a computational simulation of a two-phase flow. In the parametric study of a gas-

particle flow in a vertical duct conducted by Liu et al. [15], it was found that the segregation of 

the particle transited towards the wall from the center, with the increase in the solid phase loading, 

considering the particles to be elastic. In contrast, considered as inelastic, the particles were found 

to be segregated towards the center of the channel. Sinclair et al. [16] investigated a gas-particle 

flow in a vertical pipe considering particle-particle interaction. Segregation of both the phases was 

found in the radial direction. Likewise, a similar numerical study was conducted by Kartushinsky 

et al. [17], for a 3D gas-solid flow but in a horizontal pipe. An asymmetric flow field was observed, 

with the gravity being attributed to be the cause of such a flow phenomenon. In the semi-empirical 

model for an upward vertical two-phase flow system, developed by Rhodes et al. [18], it was 

implied that the radial solids concentration profile in flow regime is governed by the cross-section 

area of a pipe. Ding et al. [19] observed the laminar-to-turbulent transition at the Reynolds number 

of 𝑅𝑒 = 620, which is substantially less than the conventional values for such a transition.   

3.1 Research in Oxy-Fuel Combustion 

Despite being at the primary stage of development, a significant research has been conducted on 

the oxy-fuel combustion technologies, including the SPOC, which has led to the efficient operation 

of power plants with the various capacity. For the past decade, the majority of the research efforts 

on oxy-fuel technologies is being focused on the development of the combustor/boiler [10]. 

Using Aspen Plus, Gopan et al. [12] studied the effect of operating pressure and fuel moisture on 

net plant efficiency and attributed the SPOC process to increase the net plant efficiency by 6% as 

compared to the first-generation, oxy-combustion process. No significant rise in a plant efficiency 

was observed for the operating condition beyond 16 bar. Xia et al. [20] ran a computational fluid 

dynamic (CFD) simulation at an elevated pressure of 16 bar with low flue gas recycle for a 1540 
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MW SPOC system. For efficient combustion, conical geometry of the combustor was implemented 

that generated a relatively longer and thinner flame with uniform distribution of wall heat flux as 

compared to conventional design. With an increase in the operating pressure of the combustor, the 

energy requirement for the air separating unit (ASU) and compression unit (CPU) increases. Hong 

et al. [21] conducted a holistic pressure-sensitive analysis to calculate the optimal pressure 

required to run an efficient oxy-fuel combustion power cycle. It was found that, with an increase 

in the operating pressure, the ASU compression consumed more energy, while the CPU required 

less energy. Hence, the maximum efficiency was found to be gained at around 10 bar of operating 

pressure. Lasek et al. [22] studied, experimentally, the emissions of NOx, N2O, and other elements 

in an oxy-fuel combustor at elevated pressures. The emissions of SO2, NO, and N2O have been 

found to be significantly curtailed with an increase in the operating pressure.  

3.2 Previous Studies and Research Gap  

Udochukwu [23] performed a numerical investigation on the first stage combustor (out of four) for 

the SPOC system being developed at the Washington University in St. Louis, MO (WUSTL). A 

schematic of the overall SPOC process is depicted in Fig. 3.1, while Fig. 3.2 delineates geometry 

of the combustor and the inlet section of the SPOC. To maintain the adiabatic flame temperature, 

which is the nominal temperature generated during the combustion with no energy loss [24], the 

combustion process is divided into four stages [25].  
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Figure 3.1: Schematic diagram of the SPOC system [23]. 

 

Figure 3.2: Geometry of the reactor and inlet section of SPOC [21]. 

The geometry in Fig. 3.2. consists of three (primarily, secondary, and tertiary) inlet sections. The 

injection of a small fraction of recycled CO2 along with excessive O2 prevented the generation of 

excessive undesired flame temperature. Pressurized (15 bar) CO2 and O2 at various mole fractions 
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are injected together from the primary inlet and tertiary inlet however, pulverized coal particles 

along with recirculated CO2 and methane (CH4) are injected through the secondary inlet. A small 

amount of CH4 is injected to assist the flame ignition and sustain the combustion.  

During this investigation, Udochukwu [23] ran steady and unsteady Reynolds-averaged Navier-

Stokes (RANS) simulation, described in the later sections. Despite the use of perfectly symmetric 

geometry, the non-symmetric and oscillating flame inside the combustor was observed. Injection 

of the coal particles (solid) in the gas was found to be one of the causes of this problem. An increase 

in the volumetric flow rate of coal carrier (i.e. CO2) was found to mitigate this problem, to some 

extent. While this research has unveiled some magnificent results, it lacked the explanation of how 

particle disturbs the gas flow field. In particular, it has not been vividly explained if the inception 

of the oscillations happens prior to flame ignition or after it. An increase in the volumetric flow 

rate was attributed to the decreasing oscillations, but it has not been clarified why/how an increase 

in the volumetric flow rate attenuates the problem of the flame oscillations. This required a separate 

thorough investigation of the particle-gas interaction at the secondary inlet, which constitutes the 

content of the present work. Specifically, this thesis is primarily focused on understanding the 

particle-gas interaction in the second inlet and unveiling the influence of the volume fraction of 

the particle (or mass flow rate) in the flow field.  

3.3 Computational Fluid Dynamics and Turbulence Modeling 

3.3.1 Computational Fluid Dynamics (CFD) 

The CFD is a numerical approach used for solving the three-dimensional (sometimes lower) and 

transient partial differential equations (PDEs) [26]. Along with the combination of mass and heat 

transfer, the CFD allows a comprehensive analysis of the flow field with the assistance of powerful 

computers [27]. The Navier-Stokes (N-S) equations, which are derived to mathematically delineate 

various flows including turbulent flows, are three-dimensional (3D), transient (time-dependent) 

and non-linear PDEs. The presence of non-linearity in the equation creates the closure problem 

and foils the generation of the exact solution. Nevertheless, various computational tools have been 
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devised that predict the turbulent phenomena based on the continuity, momentum, and energy 

equations. Initial and boundary conditions along with various physical properties as well as proper 

spatial discretization and time formulation must be supplied to make an accurate CFD prediction. 

Even though computational facilities has largely increased in past decades, the results generated 

from the CFD tools are never exact which can be accredited to various sources of errors [28]. 

However, CFD tools should not be understood otherwise as it has lots of advantages. To mention 

a few: 

I. CFD simulations generate results with lesser cost as compared to the experiments. 

Interpretation of the results might require some time and human power with the working 

experience of CFD tools [28]. 

II. The study of turbulence requires a frequent change in parameters (e.g. pressure, temperature, 

velocity). Often, the dimensions of geometry are changed and hence the experimental process 

must be reinitialized to generate the results. Therefore, such repetitive change of dimension 

and parameters are daunting and expensive. The CFD appears very useful in such situations 

and helps in design optimization. 

III. The study of the flow field in detail may not be possible in an experimental setup, in particular, 

data at some point in a domain cannot be extracted because of extreme flow conditions. Then 

the CFD simulations can easily predict and extract data that otherwise could not have been 

possible to generate from the experiment [29]. 

IV. The CFD can help to predict the mishap or explosion (that can occur during the experiment) 

and save life and property. 

3.3.2 Turbulence Modeling 

Turbulence is one of the most mysterious and complicated phenomena existing in the nature and 

industrial flows. One of the basic traits of turbulence flow is the presence of random and chaotic 

fluctuations, with a wide spectrum of length and time scales involved in the problem. Generating 

the analytical solution that can fully explain such a random behavior has always been an elusive 



11 

 

 

 

quest. The statistical approach is, however, found to produce a solution that helps to understand 

certain turbulence properties. Motion or a movement of molecules in a turbulent flow field is in 

the irregular chaotic path which makes a turbulent flow different from a laminar one. Also, 

enhanced diffusion that prompts mass, momentum, and energy transfer makes turbulence a useful 

phenomenon in engineering applications [30]. Mathieu et al. [31] have described turbulence to 

have various physical properties including small scale random vorticity. Random mixing – due to 

eddies of various sizes and scale – of oxidizer and fuel is the cornerstone for efficient turbulent 

combustion, which makes it essential to consider turbulence in the combustion process. In the case 

of gas-solid combustion, it is also necessary to understand the influence of the particles on the gas 

and vice versa. The role of particle turbulence dispersion in the gaseous flow field should also be 

thoroughly understood.  

A proper grid resolution, numerical algorithm, and turbulence modeling are three factors involved 

in the CFD simulations. A correct choice of a suitable, problem-oriented turbulence model is very 

important for capturing the essence of the turbulent flow. Various computational methods are 

developed and available to solve the turbulent flow problems. These methods are classified into 

three categories and use different approaches to solve the set of PDEs for a turbulent flow. As 

detailed below, these three tools are: 

I. Direct Numerical Simulations (DNS). 

II. Reynolds Averaged Navier-Stokes (RANS) Simulations 

III. Large Eddy Simulations (LES). 

3.3.2.1 Direct Numerical Simulations (DNS) 

Turbulence flow consists of a wide spectrum (in terms of size and frequency) of eddies. Among 

them, the smallest possible eddies are referred to as the Kolmogorov scale, while the largest eddies 

determine the integral turbulent length scale. The DNS is a numerical approach to solve the set of 

PDEs governing a flow without introducing any model. The DNS resolves eddies of all length 

scales, thereby requiring the mesh of size smaller than the smallest eddies [32]. Since the DNS 

requires a proper numerical scheme to minimize the dispersion and dissipation errors along with 
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fine mesh resolution and smaller time step, the only error produced in this method is from the 

residual approximation contained in the numerical scheme [33]. The computational cost of the 

DNS method is estimated to be ∝ Re9/4; that is why the applications of the DNS method are 

restricted to flows with a lower Reynolds number [34]. Nevertheless, the advent of high-

performance supercomputers is likely to change the scenario.  

3.3.2.2 Large Eddy Simulation (LES) 

Unlike the DNS, where eddies of all scales are resolved, the LES filters out the small eddies and 

resolves the larger ones. The space filtering techniques are applied to separate the larger eddies 

from the smaller ones. However, the effect of the unresolved smaller eddies on the flow field is 

incorporated by the means of the so-called sub-grid scale (SGS) models [35]. The larger eddies 

are anisotropic; they interact with the mean flow and extract energy from it. Also, while the larger 

eddies depend on the domain geometry and boundary conditions, the smaller eddies tend to be 

isotropic, universal, and independent of geometry, which justifies their filtration from the larger 

eddies. Because the smaller eddies are modeled, the LES allows the usage of a coarser mesh as 

compared to the DNS [36]. Hence, the LES computational costs and time are significantly lowered. 

A suitable filtering function and a cutoff width to separate and resolve large scale eddies are 

required. All eddies smaller than a cutoff width are modeled. The PDEs governing the flow are 

then operated with this filtering function, which excludes the information of smaller eddies. 

Nevertheless, the interaction effect between the resolved and unresolved eddies is captured using 

the SGS model [35]. A variable obtained after the filtration of 𝜙(𝑥′) is defined as: 

 𝜙̅(𝑥) = ∫ 𝜙(𝑥′)𝐺(𝑥, 𝑥′) 𝑑𝑥′
𝐷

 , (3.1) 

Where, 𝐷 is the computational domain and 𝐺(𝑥, 𝑥′) is the filtering function. The Ansys FLUENT 

implicitly generates the filtering function for a finite volume as: 

 

𝐺(𝑥, 𝑥′) =  {

1

𝑉
, 𝑥′ ∈ 𝑣

0, 𝑥′ ∉ 𝑣
 (3.2) 

Where, 𝑉 is the volume cell and 𝑣  is the computational cell. Hence 
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𝜙̅(𝑥) =

1

𝑉
∫𝜙(𝑥′) 𝑑𝑥′.       𝑥′ ∈ 𝑣

𝑣

 (3.3) 

Filtering the continuity and N-S equation transforms them into 

 𝜕𝜌

𝜕𝑡
+

𝜕𝜌𝑢̅𝑖

𝜕𝑥𝑖
= 0, (3.4) 

 

 𝜕(𝜌𝑢̅𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢̅𝑖𝑢𝑗̅)

𝜕𝑥𝑗
=

𝜕(𝜎𝑖𝑗)

𝜕𝑥𝑗
−

𝜕(𝑝̅)

𝜕𝑥i̅
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
, (3.5) 

respectively. Here, 𝜎𝑖𝑗 is the stress tensor and 𝜏𝑖𝑗 is the SGS stress, which represents the influence 

of the unresolved eddies in the flow field and it is defined as: 

 𝜏𝑖𝑗 = 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝜌𝑢̅𝑖𝑢𝑗̅. (3.6) 

The fluctuating terms in the SGS stress are unknown. The most challenging aspect of the LES is 

an accurate modeling of the SGS stress. The Ansys FLUENT employs the Boussinesq hypothesis 

to relate the SGS stress with the artificial viscosity termed as SGS the turbulent viscosity (𝜇𝑡) and 

the strain rate (𝑆𝑖̅𝑗). Mathematically, it is formulated as: 

 
𝜏𝑖𝑗 −

1

3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜇𝑡𝑆𝑖̅𝑗, (3.7) 

 

 
𝑆𝑖̅𝑗 ≡

1

2
(

𝜕𝑢̅𝑖

𝜕𝑥𝑗
+

𝜕𝑢̅𝑗

𝜕𝑥𝑖
). (3.8) 

Four different options  –  the Smagorinsky-Lilly model, the dynamic Smagorinsky-Lilly model, 

the WALE model, and the dynamic kinetic energy SGS model – are available in the ANSYS 

FLUENT to model the SGS viscosity [36]. Among all other options, the Smagorinsky-Lilly model 

[37] is mostly used. This is a simple model, which relates the mixing length 𝐿𝑠 with the eddy 

viscosity for sub-grid-scale as [37] 

 𝜇𝑡 = 𝜌𝐿𝑠
2|𝑆̅|, (3.9) 

 

 
|𝑆̅| ≡ √22𝑖𝑗𝑆𝑖̅𝑗. (3.10) 
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In the Ansys FLUENT, the mixing length 𝐿𝑠 is computed through the von Karman constant k, 𝑑 

the distance to the closest wall, the Smagorinsky constant 𝐶𝑠, and the local sub-grid-scale 𝛥 as 

 𝐿𝑠 = min(𝑘𝑑, 𝐶𝑠 𝛥), (3.11) 
 

 𝛥 = 𝑉1/3. (3.12) 

3.3.2.3 Reynolds-Averaged Navier-Stokes (RANS) Simulation 

In this method, numerical study of a flow is done by performing the time averaging (Reynolds 

averaging) on the PDEs, continuity, and N-S equation that governs the fluid flow. Reynolds 

averaging is a mathematical procedure of decomposing the solution variables into the mean and 

the fluctuating components. The extra term, also called the Reynolds stress term, which depicts 

the interaction of various turbulent fluctuation is generated as a result of such a decomposition. 

Proper modeling of the Reynolds stress to tackle the issue of the closure problem is the cornerstone 

behind the RANS simulation. Therefore, in the RANS simulation, in lieu of resolving the entire 

scale of eddies or filtering out some of them, all turbulence scales are modeled. Doing so largely 

saves the computational time and cost [38]: this is the main advantage of the RANS simulation as 

compared to the DNS and LES. Time-dependent RANS simulations are usually referred to as 

unsteady RANS (URANS), while the RANS based on the decomposition of various parameters 

with density weighted time average is defined as Favre-averaged RANS (FANS). The detail 

mathematical equations are below. The Reynolds decomposition is defined as: 

 𝜌 = 𝜌̅ + 𝜌′, (3.13) 
 

 𝑢𝑖 = 𝑢̅𝑖 + 𝑢𝑖
′, (3.14) 

 

 𝑝 = 𝑝̅ + 𝑝′. (3.15) 

Applying the Reynolds decomposition to the continuity and momentum equations followed by the 

ensemble averaging yields:  

 𝜕𝜌̅

𝜕𝑡
+

𝜕(𝜌̅𝑢𝑖)

𝜕𝑥𝑖
= 0, (3.16) 
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 𝜕

𝜕𝑡
(𝜌̅𝑢̃𝑖) +

𝜕

𝜕𝑥𝑗
(𝜌̅𝑢̃𝑖𝑢̃𝑗)

= −
𝜕𝑝̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
[𝜇 (

𝜕𝑢̃𝑖 +

𝜕𝑥𝐽

𝜕𝑢𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢̃𝑘

𝜕𝑥𝑘
)] +

𝜕

𝜕𝑥𝑗
(−𝜌𝑢𝑖

′𝑢𝑗
′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 

(3.17) 

 

 
𝛿𝑖𝑗 = {

1          i = 𝑗
0            i ≠ 𝑗

. (3.18) 

Here  𝑢̃𝑖 , 𝑢̃𝑗  𝑎𝑛𝑑 𝑢̃𝑘 are three  Favre-averaged velocities, 𝑢𝑖
′ 𝑎𝑛𝑑 𝑢𝑗

′ are the fluctuating velocities, 

𝜇 is the molecular viscosity of the fluid, and 𝜌̅ 𝑎𝑛𝑑 𝑝̅ are time averaged density and pressure 

respectively [39]. Pressure and velocity in the above equations are coupled by the ideal gas law 

 𝑝 = 𝜌𝑅𝑇, (3.19) 

where R and T are the specific gas constant and temperature. The term (−𝜌𝑢𝑖
′𝑢𝑗

′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in Eq. (3.17) is 

the definition of the Reynolds stress. It describes the interaction between the turbulent fluctuations 

in various directions. The value of the Reynolds stress cannot be derived analytically, hence, it 

becomes impossible to generate the analytical solution for the N-S equations. This closure problem 

now can numerically be solved by using the Boussinesq hypothesis. Similar to a laminar flow, the 

dependence of turbulence shear stress and mean rate of the strain are assumed to be linear. This 

approximation is based on the observation that the mixing caused by large and energetic turbulence 

eddies dominates the momentum transfer in turbulence flow [40]. Analytically, it is formulated as: 

 
𝜏𝑖𝑗 =  (−𝜌𝑢𝑖

′𝑢𝑗
′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝜇𝑡 (

𝜕𝑢̃𝑖

𝜕𝑥𝑗
+

𝜕𝑢̃𝑗

𝜕𝑥𝑖
−

2

3
𝛿𝑖𝑗

𝜕𝑢̃𝑘

𝜕𝑥𝑘
) −

2

3
𝜌̅𝑘𝛿𝑖𝑗. (3.20) 

The proportionality factor 𝜇𝑡 here is the eddy viscosity. It is not a physical property of a flow, such 

as molecular viscosity, but just a mathematical function of a flow condition and is highly affected 

by the flow history. The quantity k in Eq. (3.23) is the specific turbulent kinetic energy defines as 

 𝑘 =
1

2
(𝑢′2̅̅ ̅̅ + 𝑣′2 ̅̅ ̅̅ ̅ + 𝑤′2̅̅ ̅̅ ̅). (3.21) 

Based on additional transport equations, there exist several RANS models. Here, I employed the 

k-𝜔 model. The shear stress transport (SST) k-𝜔 model predicts the flow dynamic much better, both 

in the free stream and near the wall. For the k-𝜔 model, the eddy viscosity is defined by: 
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𝜇𝑡 =

𝜌𝑘

𝜔

1

𝑚𝑎𝑥 [
1

𝛼∗ ,
𝑠𝐹2

𝛼1𝜔] 
, 

(3.22) 

with  

  𝜔 = 𝜖/𝑘. (3.23) 

Various constants such as S, F2 and 𝛼∗ are strain rate magnitude, blending function, and turbulent 

viscosity damping coefficient. The quantity 𝜔 represents the specific dissipation rate which is the 

ratio of the rate of dissipation of turbulent kinetic energy (𝜖) and the specific turbulence kinetic 

energy (k). Now, the specific turbulence kinetic energy (TKE) and specific dissipation rate are 

obtained by solving the following equations 

 𝜕(𝜌𝑘)

𝜕𝑡
+

𝜕(𝜌𝑘𝑢𝑖)

𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑗
(𝛤𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺̃𝑘 − 𝑌𝑘, (3.24) 

 

 𝜕(𝜌𝜔)

𝜕𝑡
+

𝜕(𝜌𝜔𝑢𝑖)

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝛤𝜔

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺̃𝜔 − 𝑌𝜔 + 𝐷𝜔 , (3.25) 

 

 𝛤𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
, (3.26) 

 

 𝛤𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔
. (3.27) 

In the above equations, 𝐺̃𝑘 and 𝐺̃𝜔 represents the generation of the specific TKE and the specific 

dissipation respectively. Likewise, 𝛤𝑘 and 𝛤𝜔 represents the effective diffusivity while 𝑌𝑘 and 𝑌𝜔 

denotes the dissipation of the TKE and specific dissipation. The value 𝐷𝜔 represents the cross 

diffusion while 𝜎𝑘 and 𝜎𝜔 designate the Prandtl number (Pr) for k and 𝜔, respectively [39].  

3.3.3 Numerical Modelling of a Gas-Solid Flow 

The Ansys FLUENT offers various options for the gas-solid particle modeling which are based on 

the two principles: (I) the Eulerian-Eulerian (EE) and (II) Eulerian-Lagrangian (EL) approaches.  

3.3.3.1 Eulerian-Eulerian approach 

The Eulerian-Eulerian (EE), also known as the two-fluid, model treats both the phases as a fully 

inter-penetrating continuum medium. Different sets of the conservation equations are employed to 
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describe the two phases (both fluid), with the interaction terms representing the coupling between 

the phases [41]. The volumetric fractions defined as the space occupied by each phase are used for 

representing the individual phases. The volumetric fraction of the particles plays a pivotal role in 

the modeling of particle-laden flow [42]. The volume of phase q is calculated as 

 
𝑉𝑞 = ∫ 𝛼𝑞 ⅆ𝑉

𝑉

, (3.28) 

where 𝛼𝑞 is a volumetric fraction of each phase and it sums up to 1 for all the phases. The effective 

density of phase q, having a density 𝜌𝑞, is represented by: 

 𝜌̂𝑞 = 𝛼𝑞𝜌𝑞 . (3.29) 

The continuity equation is used for calculating the volume fraction of phase q with velocity 𝑣⃗𝑞,  

 𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞) + 𝛻 ⋅ (𝛼𝑞𝜌𝑞𝑣⃗𝑞) = 0. (3.30) 

Likewise, the momentum equation for phase q reads 

 𝜕

𝜕𝑡
(𝛼𝑞𝜌𝑞𝑣⃗𝑞) + 𝛻 ⋅ (𝛼𝑞𝜌𝑞𝑣⃗𝑞𝑣⃗𝑞) = −𝛼𝑞∇p + ∇ ⋅ τ𝑞̅̅ + 𝛼𝑞𝜌𝑞 𝑔⃗⃗⃗ + ∑(𝑅⃗⃗⃗𝑝𝑞)

𝑛

𝑝=1

+ 𝐹⃗⃗⃗, (3.31) 

where τ𝑞̅̅ ̅̅̅̅, 𝑔⃗ and 𝐹⃗  stand for the stress-strain tensor, acceleration due to gravity, and various forces 

acting in a flow, respectively, while 𝑅⃗⃗𝑝𝑞 describes the interaction between the phases.  

3.3.3.2 Eulerian-Lagrangian Approach 

The Eulerian-Lagrangian (EL) approach considers the fluid/gas phase as a continuum medium, 

while the particles are tracked using the Lagrangian approach by considering it as a discrete phase. 

Unlike the EE mode, this approach provides more latitude in the flow analysis, with a wide 

variation range in particle velocity, size, type, shape [43].  

The momentum equation governing the gas phase is identical as the Eulerian-Eulerian equation 

except the volume fraction equates to one and the interaction between the phases is not included. 

It can be mathematically written as: 
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 𝜕

𝜕𝑡
(𝜌𝑣⃗) + 𝛻 ⋅ (𝜌𝑣⃗𝑣⃗) = −∇𝑝 + ∇ ⋅ 𝜏̅̅ + 𝜌𝑔⃗ + 𝐹⃗, (3.32) 

Where, 𝐹⃗ is an external force emerged due to an interaction with the discrete phase. Likewise, the 

momentum equation for the particles is based on the Newton 2nd law of motion as shown below: 

 
𝜌𝑝

ⅆ𝑢𝑃⃗⃗ ⃗⃗⃗

ⅆ𝑡
= 𝐹𝑑

⃗⃗⃗⃗⃗ + 𝐹𝑏
⃗⃗⃗⃗⃗ + 𝐹⃗𝑉𝑀 + 𝐹⃗𝑓𝑝 + 𝐹⃗𝑃𝑃, (3.33) 

where 𝐹𝑑
⃗⃗⃗⃗⃗, 𝐹𝑏

⃗⃗⃗⃗⃗, 𝐹⃗𝑉𝑀 , 𝐹⃗𝑓𝑝, anⅆ 𝐹⃗𝑃𝑃 stand for the drag force, buoyancy force, virtual mass force, fluid-

particle interaction, and particle-particle interaction. The simulations for this study are performed 

by means of the Ansys FLUENT using the discrete phase model (DPM). For a gas-particle flow 

with the volumetric particle fraction less than 10%, the DPM provides a good prediction of the 

flow field. For such a low volumetric fraction, the effect of particle pressure and viscous stresses 

due to particle are not considered [44]. Hence, the dominating in the Lagrangian frame is the drag 

force given by: 

 𝐹𝑑
⃗⃗⃗⃗⃗ = 𝐹𝐷(𝑢⃗⃗𝑔 − 𝑢𝑃⃗⃗ ⃗⃗⃗), (3.34) 

where 𝑢⃗⃗𝑔 anⅆ 𝑢𝑃⃗⃗ ⃗⃗⃗ stand for the gas and particle velocity with 𝐹𝐷 being equivalent to: 

 
𝐹𝐷 =

18𝜇𝐶𝐷Re

24𝑑𝑝
2

. (3.35) 

The relative Reynolds number, Re in the above equation is defined as: 

 
Re =

𝜌 ⅆ𝑃|𝑢𝑔⃗⃗⃗⃗⃗ − 𝑢𝑝⃗⃗ ⃗⃗⃗|

𝜇
. (3.36) 

Also, the drag coefficient is given by 

 
𝐶𝐷 =

24

Re
(1 + 𝑏1Re𝑏2) +

𝑏3Re

𝑏4 + Re
, (3.37) 

where 

 𝑏1 = exp(2.3288 − 64581 ∅ + 2 ⋅ 4486∅2), (3.38) 
 

 𝑏2 = 0.0964 + 0.5565∅, (3.39) 
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 𝑏3 = exp(4.905 − 13.8944∅ + 18.4222∅2 − 10.2599∅3), (3.40) 
 

 𝑏4 = exp(1.4681 + 12.2584∅ − 20.7322∅2 + 15.8855∅3). (3.41) 

Here ∅ is the shape factor and is defined as 

 ∅ =
𝑠

𝑆
 , (3.42) 

where S is the actual surface area of the particle while s is the surface area of the sphere having the 

same volume as the particle.  

3.4 Coupling Between Phases 

In a gas-solid flow, drag and turbulence of the gas phase always influence the solid or particle 

phase. However, a higher particle loading counter influences the carrier fluid phase. The DPM 

method available in the Ansys FLUENT provides the option to model the gas-solid flow for both 

scenarios. The DPM method has both the one-way coupling and two-way coupling options [44].  

If a gas phase influences solid phase without any counter influence of solid phase on gas phase, 

then such interaction between the phases is defined as the one-way coupling while the presence of 

mutual influence of phases on each other is regarded as the two-way coupling. The coupling of the 

phases can occur through the mass, momentum, and energy transfer [45]. In the DPM method, the 

mass, momentum and energy (gained or lost by the particles) are calculated by means of computing 

the trajectory of the particles. The change of these quantities is incorporated into the continuous 

phase calculations, which appears as an interacting source term while two-way coupling is choose. 

Also in the case of two-way coupling, the effect of particle-phase trajectories is considered, which 

is accomplished by solving the equilibrium equations for the gaseous and the particle phase until 

the solution in both phases stops changing [46]. 

3.5 Turbulence Dispersion 

The dispersion of the particles due to the mean and turbulent components of the fluid phase is 

known as turbulence dispersion [47]. The Ansys FLUENT offers two option for predicting the 

turbulence dispersion in a gas-solid flow, namely: 
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1) The particle cloud model; 

2) The Stochastic model/Random walk model. 

The particle cloud tracking model utilizes the statistical method for calculating the turbulence 

dispersion of particles. The Gaussian probability density function (PDF) is used for representing 

the concentration of particles, whose variance is based on the degree of particle dispersion. The 

particle dispersion is caused by the turbulent fluctuations of the gas. The ensemble-averaged of the 

equation of particle motion yields the mean trajectory. 

In the stochastic methods, the instantaneous equation for particle motion is solved. Instantaneous 

turbulent velocity is assumed to affect the particle trajectory [48]. Usually, when the turbulence 

dispersion is not included, Eq. (3.36) is solved using just mean velocity component 𝑢̅. However, 

for the prediction of particle dispersion, the fluctuating component, 𝑢′, is also added, and hence, 

the equation for the motion of the particles is solved using the instantaneous velocity 

 𝑢 = 𝑢̅ + 𝑢′. (3.43) 

In the discrete random walk model (DRW)/eddy lifetime mode, the fluctuating velocity is assumed 

to be a discrete function of time. The particles are assumed to be interacting with the eddies, which 

are characterized by a Gaussian-distributed velocity fluctuation and a time scale. The random 

fluctuating velocity is formulated as: 

 
𝑢′ = 𝜁√𝑢′2̅̅ ̅̅ , (3.44) 

where 𝜁 is the normally distributed random number. For a particular turbulence model, the 

turbulent kinetic energy is calculated, and hence the root mean square (rms) velocity √𝑢′2̅̅ ̅̅  reads: 

 

√𝑢′2̅̅ ̅̅ = √
2𝑘

3
. (3.45) 
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4 Methodology 

Detailed numerical study of the gas-solid phases flow in an annular geometry with uniform cross-

section is presented in this thesis. The primary aim of this research is to get a vivid understanding 

of the gas-particle flow field inside the secondary inlet section of the SPOC geometry, which is 

believed to have a significant role in defining the flame structure inside the combustor. The CFD 

simulations are performed using Ansys FLUENT.  

4.1 Geometry and Domain Discretization 

This study is focused on the secondary inlet of the SPOC geometry. Some changes have however 

been made. Specifically, a hollow cylinder with an annular structure and uniform cross-section is 

used for this study, while the secondary inlet of the SPOC had the converging cross-section. 

Convergence in geometry is likely to accelerate the flow hence, uniform cross-section structure is 

used here to eliminate the influence of convergence in the flow field. The study is solely focused 

on the fundamental behavior of fluid-particle flow in the annular cylinder at an elevated pressure.  

The Ansys FLUENT employs the control-volume technique for solving the governing equations, 

namely, that of continuity, momentum, and energy for the fluid flow. A computational grid is first 

generated to divide the domain into a number of the discrete control volumes. To construct an 

algebraic equation for the discrete, variables such as the velocities and pressure, the integration of 

the governing equations is performed on the individual control volumes. Finally, the set of 

discretized equations and the solution of the resulting equations are linearized to obtain the updated 

values of the dependent variables. An efficient and reliable meshing software, ICEM, was used for 

designing geometry and generating the mesh.  

Figures 4.1 and 4.2 show the wireframe and solid structure of the geometry, which possesses the 

inlet section, the outer wall, the inner wall, and the outlet section – depicted in Fig. 4.1 by blue, 

green, red, and yellow regions, respectively. Further, Figs. 4.3 and 4.4 delineate geometry without 

the outer wall, while Fig. 4.5 shows only the inlet section. The total length of the domain is 0.2 m, 
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with the inner and outer radii of 4.7 and 14.2 mm, respectively. The mesh contains 62,720 nodes 

with 336 mass inlet flow face. The details of various geometry dimensions are shown in Table 1. 

Table 1: Domain extents for the geometry used in the simulation. 

Domain Extents (m) 

Xmin -0.2032 Xmax 0 

Ymin -0.0142 Ymax 0.0142 

Zmin -0.0142 Zmax 0.0142 

 

 

Figure 4.1: A wireframe structure of the configuration used. 
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Figure 4.2: The solid structure of the configuration used. 

 

Figure 4.3: The section of the geometry with inlet, outlet, and inner wall. 
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Figure 4.4: The solid structure of the geometry with inlet, outlet, and inner wall. 

 

  

Figure 4.5: The Wireframe and solid structure of inlet surface (particles injection surface). 
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4.2 Numerical Method and Boundary Conditions 

Transient RANS simulations were performed for a pure gas flow as well as for a gas-solid phase 

flow. The k-𝜔 SST model was particularly selected to capture the flow at the vicinity and away 

from the wall, i.e. at the free stream. The injection of particle was done based on flow through time 

(FFT) which is the time required by the fluid to cross the domain. The simulation was first 

performed to generate the steady transient solution which was followed by the injection of the 

particles at 5FFT. A gas-solid, two-phase flow process is modeled using the EL approach. The 

fluid/gas phase was modeled using the Eulerian approach while the Lagrangian method was 

employed for modeling solid/particles. The coupling between the phases was done through the 

source term in the governing equation. Particularly the DPM was selected for this purpose. Both 

one-way and two-way couplings were studied. The unsteady particle tracking was done while a 

stream or the parcels of particles was injected at the fluid flow time steps of 10-3 s. Originally, for 

the SPOC process, the particles obeying the Rossin-Rammler (RR) size distribution were injected. 

However, to exclude the problem of the flow stability, which was presumably to instigate due to 

non-uniform size distribution, the particles with a fixed size of 65 microns were injected from the 

inlet surface. For a given mass flow rate of the particle, the RR diameter distribution divides the 

particles into several discrete intervals. However, a uniform diameter distribution injects the 

particle with a size of single diameter. The analysis was performed with and without consideration 

of the effect of turbulence dispersion of the particles. This effect has been accounted by means of 

the discrete random walk model. Two categories of the particle flow rates were used. Specifically, 

the mass flow rate of particles, identical to that in the SPOC process, was defined as high particle 

loading. In addition, to study the influence of the particle loading, the mass flow rate was decreased 

by an order of magnitude and was referred to as low particle loading.   

Spatial discretization for the scaler parameters was performed using both the 2nd-order upwind and 

the 3rd-order monotone upstream-centered schemes for conservation laws (MUSCL). However, no 

difference was observed. The transient formulation was done using a bounded 2nd-order implicit 

method. The vector parameters such as momentum were spatially discretized using a 2nd-order 

upwind method. For the pressure-velocity coupling, the semi-implicit method for pressure-linked 
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equation (SIMLE) method was used. The operating pressure of the system was identical to that of 

the SPOC, being as elevated as 15 bar. Various boundary conditions are listed in Table 2. 

Table 2: Boundary conditions used in the simulation. 

Parameters Values 

Inlet mass flow rate of air 2.45 g/s  

Inlet mass flow rate of particles 3.98 g/s and 0.39 g/s 

Size of injected particles 65 µm 

Wall boundary condition No-slip 
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5 Result and Discussion 

In this section, the results obtained from the numerical investigation of the impact of particle 

injection on the gaseous flow at elevated pressure are presented. The effects of various parameters, 

the coupling between phases, particle loading, and turbulence dispersion of particles, are shown in 

detail. Based on the volumetric fraction of the particles in the flow, the particle loading has been 

categorized as (i) high particle loading [that with the particle mass flow rate of 3.98 g/s and the 

volumetric fraction of 1.2 %] and (ii) low particle loading [that with the particle mass flow rate of 

0.39 g/s and the volumetric fraction of just 0.13 %]. Further, the simulations have been performed 

with both one- and two-way coupling/interaction between the phases. Also, an investigation has 

been carried out for understanding the role of turbulence dispersion of the particle in the gas phase.  

5.1 Verification of Mass Conservation 

After the particles were injected into the gas flow, the DPM concentration contours were inspected. 

For both converging and uniform cross-section geometries, concentration gradient was observed: 

see the blue and green zones in Figs. 5.1 and 5.2. Therefore, an investigation to validate the 

conservation of a particle number was performed. The entire flow domain was treated as a control 

volume, where the particles entered from the inlet surface and exited from the outlet one. Since 

the mass flow rate of the particles was known, the mass of the particle and, hence, the number of 

particles entering and exiting from the control volume was calculated as 

 𝑀̇ = 𝑀/𝛥𝑡, (5.1) 
 

 𝑀 = 𝑁𝑝 × ∀ × 𝜌𝑝, (5.2) 

 

 
𝑁𝑝 =

𝑀

∀ × 𝜌𝑝
. (5.3) 

Here, 𝑀̇ is a mass flow rate of the particles, 𝑀 is a mass of the total number of particles entering 

the control volume at each injection time step, and 𝑁𝑝 is the number of particles enters through the 

inlet during each injection. Each particle has a volume ∀ and density 𝜌𝑝. The mass flow rate of the 

particles versus time steps at the inlet and outlet section is shown in Fig. 5.3 and 5.4 respectively. 
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The difference between the number of particles entering and exiting the domain is shown in Fig. 

5.5. 

 

Figure 5.1: A contour of the DPM concentration in the SPOC process [23]. 

 

 

Figure 5.2: A contour of the DPM concentration. 
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Figure 5.3: The particle mass flow rate at the inlet versus time.  

 

Figure 5.4: The particle mass flow rate versus time at the outlet.  
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Figure 5.5: Difference in particle number entering and exiting from the control volume versus time. 

Figures 5.3 and 5.4 depict the particles mass flow rate at the inlet and outlet of the control volume 

at various time steps. Uniform injection of the mass flow rate is seen at the inlet. However, the 

mass flow rate at the outlet is erratic and non-uniform. Specifically, the mass flow rate at the outlet 

exceeds that at the inlet at some random time, while it is smaller at other times. Likewise, the 

difference in the particle number at the inlet and the outlet sections, shown in Fig.5.5, is sometimes 

positive while sometimes it is negative. However, their mean value is zero. Therefore, it was found 

that, despite the uniform injection of the particle at the inlet, the particles coming out of the domain 

are non-uniform. Also, the number of particles is conserved, which justifies the clustering of the 

particles inside the control volume. 

5.2 One-way and Two-way Coupling with and without Turbulence Dispersion 

Seven different cases with various combinations between the phase-coupling and turbulence 

dispersion have been developed and studied as summarized in Table 3. The volume fraction of the 

particles in the flow has been calculated analytically to validate the computational result obtained 
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Table 3: Seven different cases developed to study phase coupling, turbulence dispersion, and particle loading. 

Cases Phases Particle loading Coupling Turbulence dispersion 

1 Pure gas phase No particle No coupling off 

2 Two-phase Low One way on 

3 Two-phase Low Two way off 

4 Two-phase Low Two – way on 

5 Two-phase High One way on 

6 Two-phase High Two – way off 

7 Two-phase High Two – way on 
 

The volumetric fraction 𝑉𝐹 of the particles is defined as the ratio between the total volume of the 

particles and the volume of the domain. Since in the present study, the volume of the domain is 

the summation of the volume of total particles and the volume of gas 𝑉𝑔, the volume fraction reads 

 
𝑉𝐹 =

𝑉𝑃

(𝑉𝑃 + 𝑉𝑔)
. (5.4) 

From the mass flow rate and the cross-section area of the inlet, the volume of the gas was calculated 

to be 1.14×10-4 m3. Likewise, the volume occupied by the particles for high particle loading was 

1.48×10-6 m3, which corresponds to the volumetric fraction of the particles of 1.2%: the same as 

that obtained from the FLUENT. For the low particle loading case, the volume fraction was 0.13%.  

5.2.1 Case 1: Pure Gas Flow 

First, the simulation was initiated with a pure gas (air) flow into the system. Hence, this was purely 

single-phase problem. The axial velocity at the four different locations were plotted, namely: the 

inlet, x = -0.1 m, x = -0.05 m, and the outlet. The locations for x = -0.1 m and x = -0.05 m are 

shown by the two vertical black lines in Fig. 5.6.  

 
Figure 5.6: Axial velocity contour for a pure gas flow. The vertical black line shows the monitoring position. 
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The graphs of the axial velocity versus the radial distance, Fig. 5.7, drawn at various axial locations 

show the developed flow field. However, no sign of turbulence is seen. The axial velocity of the 

gas phase is found to be growing as the velocity at the inlet is about 0.25 m/s while it is 0.3 m/s at 

the outlet.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Axial velocity of the gas versus radial distance at various axial locations. 
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Moreover, a horizontal line lying inside the boundary layer and in the vicinity of the wall was 

created. The specific turbulent kinetic energy (denoted as TKE in graphs) and the axial velocity 

along the horizontal line were monitored to see the flow field fluctuations. The plots for the TKE 

and the axial velocity along the horizontal line are shown in Figs. 5.8 and 5.9.  

No fluctuations in the velocity and TKE profile is seen. Initially, the gas phase is injected with the 

desired velocity due to which the TKE is growing nevertheless, after a certain distance its value is 

falling and reach saturation. Hence, it was found that the instability in the flow field wasn’t inherent 

in the gas phase but appears as a result of the particle injection.  

 

 

Figure 5.8: Axial velocity along with the boundary layer for a pure gas-phase flow 
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Figure 5.9: The TKE along with the boundary layer for a pure gas-phase flow. 

5.2.2 Influence of Gravity in a Flow 
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Figs. 5.10 and 5.11. It can be seen that the change in the gas velocity is not large. However, there 

is a significant change in the particle’s velocity. Gravity acting along the axial (x-) direction was 

suspected to be the cause for such a velocity lag between the phases. To validate this hypothesis, 

a simulation was performed without gravity and the results obtained are shown in Figs. 5.12 and 

5.13. Observing the graphs at inlet (Figs. 5.10 and 5.12) and outlet (Figs. 5.11 and 5.13), gravity 
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Figure 5.10: The axial velocity of the gas and the particles at the inlet in the presence of gravity. 

 

Figure 5.11: The axial velocity of the gas and particles at the outlet in the presence of gravity. 
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Figure 5.12: The axial velocity of the gas and particles at the inlet in the absence of gravity. 

 

Figure 5.13: The axial velocity of the gas and particles at the outlet in the absence of gravity. 
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5.2.3 Low and High Particle Loading  

The three cases, namely, Cases 2, 3, and 4 of Table 3, were simulated. Case 2 had low particle 

loading with the inclusion of turbulence dispersion but had no coupling between the phase while 

Case 3 had low particle loading and two-way coupling, but the effect of turbulence dispersion of 

particle was neglected. Further, Case 4 combined the low particle loading with two-way coupling 

and turbulence dispersion. Similarly, these cases were repeated with high particle loading and are 

referred to as Cases 5, 6, and 7, respectively. The results obtained from each case are shown below. 

5.2.3.1 Case 2: Low particle loading with turbulence dispersion and one-way coupling 

Monitoring the axial velocities at the various axial location did not show any turbulence in the 

flow. In addition, the TKE plotted along the boundary layer did not show any fluctuations. The 

flow did not differ from a pure gas-phase flow. For a low volumetric fraction of injected particles, 

we did not observe any sign of clustering or instability in the flow field. 

 

Figure 5.14: The TKE along the boundary layer for Case 2. 
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Figure 5.15: Axial velocity of the gas versus radial distance at various axial locations. 
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showed no distortion in the flow field, the results from this case did not deviate from the previous 

case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Axial velocity of the gas versus radial distance at various axial locations. 
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a result of turbulence dispersion and high particle loading. To validate this hypothesis more cases 

were simulated. 

 

Figure 5.17: The TKE profile along with the boundary layer for Case 3. 

 

Figure 5.18: The axial gas velocity along with the boundary layer for Case 3. 
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5.2.3.3 Case 4: Low particle loading with turbulence dispersion and two-way coupling 

This case was modeled using two-way coupling with the incorporation of turbulence dispersion of 

the particles. Similar to the previous cases, the graphs for the axial velocity and the TKE have been 

plotted. The results differed from those obtained in the earlier cases. Specifically, the through 

observation of the DPM-contour in Fig. 5.19 showed the clustering of the particles in a different 

location near the wall.  

 
Figure 5.19: The DPM concentration contour for Case 4. 

The axial velocity profiles of gas phase at various locations demonstrate the distortion (instability) 

in the flow field (Fig. 5.20). Also, the TKE and the axial velocity plots (Figs. 5.21 and 5.22) along 

the boundary layer show the flow field fluctuations. 

Consequently, the results obtained from all three cases of low particle loading showed that the 

turbulence dispersion of the particles, along with the two-way coupling model, triggers the 

distortion of the flow field. The turbulence dispersion of the solid particles can impact the gas 

phase when two-phase interaction is turned on. 
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Figure 5.20: Axial velocity of the gas versus radial distance at various axial locations. 
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Figure 5.21: The TKE profile at the boundary layer for Case 4. 

 

 

Figure 5.22: The axial velocity of the gas at the boundary layer for Case 4. 
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5.2.3.4 Case 5: High particle loading with turbulence dispersion and one-way coupling 

This case presents the results obtained for the high particle loading with the effect of turbulence 

dispersion of the particle but had no interaction between the phases. Because of no interaction 

between the phases, the effect of turbulence dispersion of particles was not found in the gas phase 

although the DRW model was turned on. The axial velocity profile, Fig. 5.24, and the TKE profile, 

Fig. 5.23, for this case resembled Case 2.  

 

Figure 5.23: The TKE profile along with the boundary layer for Case 5 
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Figure 5.24: Axial velocity of the gas versus radial distance at various axial locations. 
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5.2.3.5 Case 6: High particle loading with no turbulence dispersion and two-way coupling 

Unlike Case 5, though Case 6 underlines the interaction between the phases, turbulence dispersion 

of the particle was not considered. All the parameters for this case are identical to Case 3 except 

for the particle mass flow rate. A distortion in the flow field was not expected since the turbulence 

dispersion was turned off. However, the random appearance and disappearance of the fluctuation 

in the flow field can be seen in the DPM concentration contour, Fig. 5.25. Also, the graphs in Fig. 

5.26 – 5.28 delineate the nature of the fluctuations. Such a unique observation is attributed to the 

particle volume fraction. Indeed, the mass flow rate for high particle loading is about ten times 

larger than that for the low particle loading. Hence, the clustering of the particle occurs, eventually 

causing the fluctuations/instability of the flow: the effect of particle clustering is transferred to the 

gas phase via the two-phase coupling.  

 

Figure 5.25: The DPM concentration contour for Case 6. 
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Figure 5.26: The TKE profile along with the boundary layer for Case 6. 

 

 

Figure 5.27: The axial velocity of gas along with the boundary layer for Case 6. 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

T
K

E
 (

m
2
/s

2
)

Axial distance (m)

tke_146s

t=148s

t=153s

t=154.3s

t=156s

t=157

t=162s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0

A
x
ia

l 
v

el
o

ci
ty

 (
m

/s
)

Axial distance (m)

t=146s

t=148s

t=161s



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: Axial velocity of the gas versus radial distance at various axial locations. 
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5.2.3.6 Case 7: High particle loading with turbulence dispersion and two-way coupling 

Finally, the turbulence dispersion of the particles is considered. The DPM concentration contour 

plot, Fig. 5.29, showed the gather/clustering of the particle at the various location near the wall. 

Also, the TKE and the axial velocity plot, Figs. 5.30 and 5.31, respectively, exhibited huge 

fluctuations along the boundary layer. Likewise, the velocity profile delineated in Fig. 5.32 shows 

the distortion of the flow field. The fluctuations of the velocity were not randomly repetitive, as in 

case 6, but were sustained. Hence, activating turbulence dispersion of the particles enhanced and 

sustained the flow field distortion phenomenon.  

 

Figure 5.29: DPM concentration contour for Case 7. 
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Figure 5.30: The TKE profile along the boundary line for Case 7. 

 

 

Figure 5.31: Velocity profile of the gas phase along the boundary line for Case 7 
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Figure 5.32: Axial velocity of the gas versus radial distance at various axial locations. 
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6 Conclusion 

With an objective to understand the fundamental physics governing the gas-solid phase flow inside 

the uniform cross-section vertical annular pipe, seven different cases of gas-solid flow were 

developed. The role of phase coupling, particle loading, and turbulence dispersion was studied, 

along with the effect of gravity on the particle velocity. To match the SPOC experimental condition 

the operating pressure of the system of 15 bar was used.  

Gravity was found to be causing the velocity lag between the phases. Despite having a moderate 

Reynolds number, the gas phase itself did not show any turbulence in the flow. For the cases with 

high (5) and low (2) particle loading, one-way coupling, and turbulence dispersion the presence of 

particles on the flow field did not show any influence on the gas-phase. It was therefore theorized 

that one-way coupling between the phases does not account for any effects caused by the solid 

phase on the gas flow field despite having different particle loading.  

In addition, in the flow with two-way interaction but no turbulence dispersion, different results 

have been discovered. Specifically, for the low particle loading, Case 3, the flow field seemed to 

have no turbulence, while Case 6 with high particle loading showed random repetition in flow field 

fluctuation/distortion. High particle loading was found to cause the particle clustering in the lateral 

case and was attribute to the difference. 

Finally, for a two-way coupling with turbulence dispersion, Cases 4 and 7, sustained fluctuations 

of the flow were observed for both cases. Hence, it is concluded that the phase-coupling, turbulence 

dispersion, and particle loading provides a significant role in changing the flow. The fluctuations 

of the flow field are caused by high particle loading, which is further enhanced by the presence of 

the particle turbulence dispersion.  
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7 Recommendation  

Based on the numerical simulation this thesis presents the effect of particle loading, turbulence 

dispersion of the particle, and phase coupling on the flow field of gas-phase. Results obtained are 

unique and provides the fundamental explanation for the many questions which were left 

unanswered before: regarding two-phase gas-solid flow. However, there are still some questions 

that seek an answer. First, this is a numerical study hence, to increase the validity of the research 

experiments can be conducted and results thus generated should be compared to those obtained 

from this study.   

Also, the simulations are conducted by injecting the particles with a uniform size distribution of 

65µm. The influence of various sizes on the flow filed is not studied. Therefore, further study can 

be conducted by using a particle size greater and smaller than 65 µm.  

Besides, this study is based on a fixed Reynold’s number. The operating pressure is 15 bar. This 

study can be continued to understand the influence of pressure and hence Reynolds's number on 

the flow.  

Lastly, this thesis presents the cases with a different mass flow rate of the particle. For a low 

particle loading, the volume fraction of the particle is 0.13% while for high particle loading it is 

1.2%.  Based on the study by Elghobashi [42] it is recommended to use two-way coupling for a 

flow with the particle volume fraction of about 0.1%. However, for a higher volume fraction four-

way coupling is suggested to use. Although the effect of one-way and two-way interaction is 

considered in this research, particle-particle interaction is neglected. Since the clustering of the 

particle was observed, studies based on particle-particle interaction can be conducted. Besides, 

even for the low particle loading case, the distortion in the flow field is still observed while using 

the two-way coupling and turbulence dispersion. One can dig even more to understand this flow 

phenomenon.  
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