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Abstract: Simulated data were used to investigate the relationships between image 

properties and change detection accuracy in a systematic manner. The image properties 

examined were class separability, radiometric normalization and image spectral  

band-to-band correlation. The change detection methods evaluated were post-classification 

comparison, direct classification of multidate imagery, image differencing, principal 

component analysis, and change vector analysis. The simulated data experiments showed 

that the relative accuracy of the change detection methods varied with changes in image 

properties, thus confirming the hypothesis that caution should be used in generalizing from 

studies that use only a single image pair. In most cases, direct classification and  

post-classification comparison were the least sensitive to changes in the image properties 

of class separability, radiometric normalization error and band correlation. Furthermore, 

these methods generally produced the highest accuracy, or were amongst those with a high 

accuracy. PCA accuracy was highly variable; the use of four principal components 

consistently resulted in substantial decreased classification accuracy relative to using six 

components, or classification using the original six bands. The accuracy of image 

differencing also varied greatly in the experiments. Of the three methods that require 

radiometric normalization, image differencing was the method most affected by 

radiometric error, relative to change vector and classification methods, for classes that 

have moderate and low separability. For classes that are highly separable, image 

differencing was relatively unaffected by radiometric normalization error. CVA was found 

to be the most accurate method for classes with low separability and all but the largest 

radiometric errors. CVA accuracy tended to be the least affected by changes in the degree 
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of band correlation in situations where the class means were moderately dispersed, or 

clustered near the diagonal. For all change detection methods, the classification accuracy 

increased as simulated band correlation increased, and direct classification methods 

consistently had the highest accuracy, while PCA generally had the lowest accuracy. 

Keywords: change detection; post-classification comparison; change classification; image 

differencing; principal component analysis; change vector analysis; simulated data 

 

1. Introduction 

The monitoring and evaluation of environmental change is one of the major applications of remote 

sensing. As a consequence, a large and growing literature has focused specifically on change detection 

methods [1], resulting in a proliferation of proposed approaches. Despite this focus on change 

detection analysis, a consensus regarding the relative benefit of even the main change detection 

methods has not emerged. Partly, this is because many of the studies that have compared change 

detection methods have reached different conclusions. It is notable that most change detection 

comparison studies are focused on case studies of a single region.  

It is our hypothesis that, because the different change detection methods involve different image 

processing methods, differences in the images used in the case studies may at least in part explain the 

apparently contradictory results regarding the relative merits of the different methods [2]. In this paper 

we therefore seek to evaluate whether image properties affect the relative change detection 

classification accuracy for five commonly used change detection methods. Our approach is based on 

simulated data, rather than real data, because with simulated data we can completely control image 

properties, and also evaluate accuracy with absolute reliability. We are therefore able to test the 

different methods with great consistency over a wide range of image properties. 

The three image properties investigated in this paper are radiometric normalization, spectral 

separability of the classes of interest, and correlation between the spectral bands. The importance of 

radiometric normalization for accurate change detection has been discussed extensively in previous 

studies [3-5]. Radiometric normalization is required because there may be (a) differences between the 

images due to changes in illumination due to variation in sun-earth distance, solar azimuth or zenith 

angle, (b) changing atmospheric conditions causing differing scattering and absorption, and (c)  

sensor differences. 

In comparison, there has been little discussion on the influence on change detection due to the 

multispectral separability of the spectral classes and the relative correlation of the individual image 

bands. Nevertheless, to the extent that change detection is conceptualized as a classification problem, 

image spectral properties should be of great importance.  

Other image properties, particularly the combination of image spatial heterogeneity and spatial 

misregistration, also play an important role in determining change detection classification  

accuracy [6-10], and likely affect the relative accuracy of different change detection methods [11]. 

However, for this study we focus exclusively on spectral properties. 
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This article is structured in seven major sections. Following this introduction, a brief overview of 

five common change detection methods is presented in the second section, followed by a discussion of 

prior studies on the relative accuracies of the different change detection methods. In the fourth section, 

the experimental methods are described, focusing particularly on the construction and testing of the 

simulated data. In the fifth section the results are presented. This is followed be a discussion in Section 

6, and general conclusions are drawn in Section 7. 

2. Overview of Change Detection Methods 

The five methods discussed here represent on aggregate some of the most commonly used and 

straight-forward change detection methods. Each method is described individually below, and in the 

following section we present a discussion of the relative accuracies of the methods as suggested by 

previous studies. 

2.1. Post-Classification Comparison 

Post-classification comparison is conceptually one of the most simple change detection methods. 

The method involves an initial, independent classification of each image, followed by a thematic 

overlay of the classifications. The method results in a complete “from-to” change matrix of the 

transitions between each class on the two dates. One issue with this method, less frequently 

commented on, is the importance of producing consistent classifications for each of the independent 

classifications. Specifically, the error in post-classification change detection is greatest when the errors 

in each classification are uncorrelated with each other, and lowest when the errors are strongly 

correlated between the two dates [12]. One possible method for increasing the likelihood of producing 

the most similar classification is to normalize the two images radiometrically, and then using the same 

training data for both classifications. A disadvantage with this approach is that it may introduce an 

additional source of error in the radiometric normalization step. 

2.2. Direct Classification 

Direct classification is similar to post-classification comparison, except that a single classification is 

undertaken, instead of two independent classifications [13,14]. The images from the two dates are first 

combined in a single composite layer-stack, and the composite data set classified to produce the final 

change map in a single step. The challenge with this method is that the number of potential change 

transitions is the square of the number of classes present for one particular date. Therefore, for 

supervised classification, the analyst needs to find training pixels to represent a potentially large 

number of change classes. Unsupervised classification also holds challenges for this method, because 

some of the change transitions may be too rare to generate distinctive spectral clusters. As with 

conventional post-classification comparison using separate training data for each date, no radiometric 

normalization is required. 
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2.3. Principal Component Analysis 

Principal component analysis (PCA) is a commonly used data transformation method that has broad 

application in data compression and data exploration. PCA comprises a linear transformation of an n-

band image to produce n new, uncorrelated principal component (PC) bands. The n PCs are ranked 

according to the proportion of the variance in the original image explained by each band. PCs with the 

highest rank, explaining the largest proportion of the original variance, are generally assumed to carry 

the most information. PC bands that have a low rank tend to concentrate noise in the data, especially 

noise uncorrelated between bands. In a change analysis, where PCA is applied to a single layer-stack 

combining the multispectral images of the two dates, it is assumed that the highest order band or bands 

will likely represent information that is unchanged between the two dates [15]. Change should be 

concentrated in the subsequent PCs, with noise dominating the lowest order PCs. This relatively 

simplistic interpretation should be used with caution because PCA is a scene-specific transformation. 

The representation of change in the various PCs will change with the proportion of pixels in an image 

undergoing change, and the spectral variability in each of the individual images. Thus, interpreting a 

PCA change analysis image can be a challenge. Nevertheless, PCA can be very effective, especially 

for visualization of the inherent spectral information, including change information in high-dimension 

data and data from multiple sensors [16].  

2.4. Image Differencing 

The subtraction of one image band of one date from the same image band of another date is known 

as image differencing [13]. In the differenced image, spectral changes are highlighted as relatively 

high positive or negative values. Unchanged pixels are associated with values close to zero, and 

therefore image differencing does not allow the differentiation of the classes that are unchanged 

between the two dates. Image differencing can be carried on a single band or multiple bands. It is a 

relatively simple approach, and therefore is commonly used. However, image differencing does 

require radiometric normalization.  

2.5. Change Vector Analysis 

Change vector analysis (CVA) separates spectral change into two components: (a) the overall 

magnitude of the change, and (b) the direction of change [17-19]. The magnitude of change is 

determined by constructing a vector in the multispectral feature space. The one end of the vector is 

specified by the multispectral digital numbers (DNs) for the first date, and the other end by the DN 

values for the same pixel on the second date. The magnitude of change is a scalar variable representing 

the length of the vector, and is assumed to be related to the degree of physical change on the ground. 

Thus CVA analysis can be useful for evaluating continuous change, such as a reduction in biomass, or 

an increase in soil moisture. For an image with two spectral features or bands, the direction of change 

is an angle between 0° and 360°, with different types of change tending to be associated with 

characteristic directions. CVA was originally conceived of as a method for analyzing two spectral 

dimensions [17], and was later extended to an unlimited number of dimensions [13,20,21]. 
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3. Relative Accuracy of the Change Detection Methods 

3.1. Empirical Studies 

The notable feature of the empirical studies is the wide range of overall findings. A number of studies 

have found image differencing to be the method with the highest overall accuracy [22-26]. However, 

other studies start have found post-classification to be the most accurate change method [27], and some 

go as far as to assume it can be used as a standard for evaluating the results of other change  

methods [28]. Yet other studies have found direct classification and post-classification [23,29] to have 

the lowest accuracy. PCA has been found to have the highest accuracy [16,29,30], or close to the 

highest [24], but also has been observed to have the lowest accuracy of the methods evaluated [25].  

Even the general conclusions that have been drawn appear contradictory. For example, some 

studies conclude that simple techniques, such as image differencing, tend to perform better than 

complex methods, such as principal component analysis and CVA [23,25]. However, others find CVA 

to be the most accurate technique [31]. 

3.2. Theoretical Studies 

Of particular interest for this study are theoretical analyses that have evaluated the relative accuracy 

of different change detection approaches based on understanding of how the various methods.  

Castelli et al. [32] modeled the probability distributions associated with change and no change classes, 

and then evaluated the Baysian decision rules for post-classification and image differencing. Modeled 

error for image differencing was found to be much larger than for post-classification, suggesting the 

latter is inherently more accurate. Liu et al. [33] examined a number of approaches, including image 

differencing and PCA, from a theoretical perspective. By plotting the theoretical distributions of 

classes in bi-temporal feature space, and modeling the error propagation of each method, they 

conclude that PCA was one of the better methods studied, and that it should out-perform  

image differencing.  

4. Methods 

4.1. Scene Model and the Simulated Data Construction 

The simulated change images were constructed from a scene model consisting of three classes 

against a background class, resulting in a total of four classes. The first image was constructed directly 

from the scene model, and the second image, representing a later time period, was constructed by 

moving the boundaries of the classes in the scene model to represent the landscape change. Figure 1 is 

an overall schematic of the use of the simulated data in this study, illustrated using just one class in 

addition to the background.  

The construction of the simulated data is shown schematically in Figure 2. In the scene model, each 

class was assigned a distinctive spectral reflectance value, Rxc, where x is the spectral band and c is the 

class. Rxc is a real number between 0 and 1. T is the image texture that is present in all bands and 

represents variation in image brightness due to albedo differences and varying surface orientation with 

respect to the illumination. U is the simulated noise and uncorrelated class variability. T and U were 
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generated as random images that have a Gaussian radiometric distribution, with a zero-mean and unit-

standard deviation. T and U were radiometrically scaled by t and u, respectively. An illumination 

component, L, is represented by a constant for the entire scene and all bands, and was chosen to scale 

the data to an 8-bit range. Thus the simulated spectral image Aix for time period i and spectral band x, 

is calculated: 

Figure 1. Schematic illustration of simulated data for a two class situation. (a) The original 

data consists of multiband data sets. (b) When the images are combined, a multitemporal 

change image is produced. 

 
Figure 2. Schematic outline of the process of construction of a two-class, two-band 

simulated data set.  

 



Remote Sens. 2010, 2                            

 

 

1514

 Aix = Rxc * L + T * t + Uix * u  (1) 

In developing the simulations, arbitrary values were chosen for the scaling parameters in order to 

ensure that a wide range of image properties were generated in the resulting image data set.  

In the following subsections, the generation of data for the three classes of experiments is described 

in more detail.  

4.1.1. Spectral Separability 

For the first experiment, the analysis of the effect of spectral separability, four spectral bands were 

simulated for each time period (Figure 3). Four spectral bands allowed the generation of a more 

complex relationship between separability and the image bands than could be generated with just two 

bands, the number used in the subsequent experiments on radiometric normalization and  

band correlation. 

Each of the four simulated cover classes was assigned a distinctive absorption feature in one of the 

four bands. The spectral separability between classes was varied by changing the spectral properties of 

noise (Figure 2) through the t and u parameters (Equation 1).  

Average divergence and Jeffries Matusita (JM) distance summary class separability statistics were 

calculated for the simulated classes (Table 1). Divergence and JM distance both take into account the 

distance between class means and the difference between the covariance matrices of the classes [34]. 

However, divergence has no upper limit, whereas the JM distance is scaled between 0 and 20.5 (1.414), 

with a value of 20.5 indicating perfect separability. The JM distance is a particularly useful separability 

metric because it can be used to calculate the upper and lower bounds on the probability of 

classification error [34].  

Table 1. Parameters used to construct simulated data and associated average class 

separability for change classes. See Equation (1) for definitions of t and u.  

t u Divergence JM Distance 
0.8 0.3 451 1.414 
1 0.5 968 1.414 
3 1 301 1.414 
5 2 79 1.414 
7 3 36 1.406 
1 4 20 1.356 
6 5 13 1.264 
8 6 9 1.159 
15 7 7 1.057 
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Figure 3. Overview of the construction of simulated data for a range of class separability 

through adjustments in band variability (noise). (a) Low noise. (b) High noise.  

 
4.1.2. Radiometric Normalization 

The radiometric normalization experiment was carried out using two bands of simulated data that 

discriminated the four cover types. Because of the increased number of cover types, a slightly 

modified spatial arrangement of the classes for the second date (Figure 4) was used in order to produce 

a change product in which all 16 change transitions were represented in a simple geometric 

arrangement. The effect of radiometric normalization error was simulated by adding a constant to each 

band of one of the image dates in each change image pair. The radiometric error value was varied from 

0 to 10 DN, in 7 different simulations (Table 2). Because the importance of accurate radiometric 

normalization was hypothesized to be a function of the spectral separability of the classes, this 

experiment was replicated at three levels of class separability, varying from high (divergence = 250, 

JM distance = 1.386) to low (divergence = 16, JM distance = 1.113) separability (Table 3). Each pair 

of simulated images was classified using class signatures developed for the simulated data with no 

radiometric offset.  

The two change detection techniques that require radiometric normalization, image differencing and 

change vector analysis, as well as post-classification using a single set of training data, were used for 

this experiment. The remaining two methods, PCA and direct classification, do not generally require 

radiometric normalization, and therefore were not used for this experiment.  



Remote Sens. 2010, 2                            

 

 

1516

4.1.3. Band Correlation 

Three tests were performed to examine the effect of band correlation on the accuracy of change 

detection techniques. Each test consisted of six simulations, with different levels of non-correlated 

noise (Table 4, Figure 5). The simulated reflectance values of the scene classes were modified between 

each test, to provide further differentiation in band correlation. The correlation between bands ranged 

from low, with class means widely dispersed within the feature space (i.e., the potential multivariate 

range of DNs), to high, with means clustered near the feature space diagonal. The t parameter, which 

controls the correlated variability between bands, was kept constant during these experiments.  

Table 2. Offsets used in constructing the simulated data for the radiometric normalization 

experiment. 

Offset value 
0 
2 
3 
5 
7 
10 

Table 3. Parameters used to create the three groups of varying class separability for the 

radiometric normalization experiment. 

t u Class separability Divergence JM Distance 
7 3 High 250 1.386 
10 7 Moderate 47 1.324 
20 12 Low 16 1.113 

Figure 4. Overview of the construction of the simulated data with radiometric error 

(offset) between dates. In this example, the DN values for date 2 are offset by a specified 

amount, n.  
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Table 4. Parameters used to construct simulated data for the band correlation experiment.  

Location of 
class means 

T U Divergence JM Distance r 

Clustered near 
diagonal 

20 12 22 0.827 0.893 
20 6 82 0.976 0.952 
20 3 234 1.210 0.969 
20 1 2,690 1.392 0.973 

      
Moderately 
dispersed 

20 12 25 1.197 0.818 
20 10 36 1.257 0.840 
20 7 72 1.345 0.867 
20 4 216 1.391 0.885 

 20 2 846 1.392 0.892 
      

Widely 
dispersed 

20 18 15 1.177 0.631 
20 11 39 1.331 0.709 
20 3 184 1.391 0.752 
20 1 1,151 1.392 0.762 

Figure 5. Overview of the construction of the simulated data with varying degrees of 

correlation between bands. (a) Construction of an image with high correlation between 

bands (b) Construction of an image with low band-correlation.  

 
As with the radiometric offset experiment, only two bands were used for each date, for the purpose 

of simplicity. All five change detection techniques were applied to the data.  
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4.2. Change Detection Analysis and Classification  

The outcome of post-classification comparison and direct classification is a classified image; the 

product of the other change methods is an image. In order to facilitate quantifiable comparisons of the 

change analysis methods, the spectral change images were also classified. Maximum likelihood [34,35] 

was used for the classifications, with the exception of the CVA classification, for which a modified 

approach was employed, as will be explained below. Maximum likelihood was chosen because it is a 

powerful classifier for parametric data of the type generated in the simulated experiments.  

For the post-classification comparison, training data were collected using the entire scene model as 

a template. Each image was classified separately and then overlaid.  

The direct classification was undertaken by first combining the two dates into a single multi-date 

file, which was then input into the maximum likelihood classification. The training data for the direct 

classification was generated from an overlay of the scene models for the two dates that showed all 

possible change transitions. 

Imaging differencing was carried out subtracting each band of the first date from the corresponding 

band of the image from the second date. The output image was written to a signed 16 bit file, and  

then classified. 

For the PCA analysis, the multi-date image developed as an input for direct classification was used 

for calculating the PCs. The number of components to be calculated was set to the total number of 

bands in the multi-date file, 8. For the classification of the PCA change data, a subset of the PCA 

bands was used, since the purpose of PCA is normally to select a subset of variables to represent the 

information in the original multiband data set. Unfortunately, there is no standard specific choice of 

PCA bands, or even number of bands, suggested in the literature. Therefore, the classification was run 

twice, using the best four and six PCs, respectively, from the original 8 bands. The best PCs were 

defined as the PCs that appeared to display the most distinctive change patterns, and the choice was 

made based on a visual interpretation of the images. Because of the way the simulated data were 

constructed, the best four and six components were usually PCs 2 through 5 and 2 through 7, 

respectively. However, in some very noisy images, PC 8 was chosen over PC 7 because it had more 

spatial coherence.  

For the CVA analysis, traditional two-band CVA classification was used. For the separability 

experiments, the four bands of data were projected to two dimensions using a modified PCA approach 

called multivariate spatial correlation (MSC) [36,37]. MSC is similar to PCA, except the eigenvectors 

are calculated from a matrix of multivariate spatial correlation values, instead of covariance  

values [36]. The MSC transformation is particularly effective for discriminating spatial patterns in the 

presence of uncorrelated noise [37].  

The threshold discriminating change from no-change in the CVA magnitude data was selected 

directly from the training data using the probability density functions of the change and no-change 

classes [21]. The boundary between the two classes was then calculated as the angle where the two 

probabilities are equal:  

 changeno

changenochange

changenochange
changechangenochange, σ

σσ

XX
XB −

−

−
−















+
−

+=  (2)  



Remote Sens. 2010, 2                            

 

 

1519

 changenochange,B −  = Boundary between change and no-change classes 

 change-noX  = mean of no-change class 

 changeX  = mean of change class 

 changenoσ −   = standard deviation of no-change class 

 changeσ  = standard deviation of change class 

The same approach employing probability density functions [21] was used for identifying the 

boundaries between the various change classes. Special care has to be taken in classifying classes with 

spectral angles near the discontinuity between 0° and 360°. This problem was addressed by rescaling 

the angles for classes on either side of the discontinuity to a continuous scale, using negative values or 

values greater than 360°, as needed. 

4.3. Accuracy Evaluation 

The classified change images were compared to the entire reference change image, generated from 

the original scene models, in order to evaluate the accuracy of each change detection method. By using 

the entire reference images for both training and accuracy assessment, questions of the sample size or 

representativeness of the training and accuracy data were avoided. This approach will likely result in 

optimistic accuracies compared to a typical real-world scenario where different testing and training 

data are normally used. However, since the focus of this study was relative accuracy, and not absolute 

accuracy, this was not regarded as a problem.  

The accuracy of the change detection methods were analyzed in two groups. The first group 

comprises the techniques that differentiate the unchanged class into each of the cover types analyzed, 

which we refer to as comprehensive change analysis. Thus, for the simulated experiment with four 

cover types, twelve change classes and four unchanged classes are mapped, producing a sixteen-class 

comprehensive change analysis. Change detection methods that generate comprehensive change 

analysis include post-classification comparison, direct-classification and PCA. The second type of 

change analysis, partial change analysis, does not differentiate between unchanged cover classes. 

Thus for the four class simulated data, partial change analysis produces twelve change classes and one 

unchanged class, a total of thirteen classes. Change detection methods that produce only partial change 

analysis includes image differencing and CVA. To facilitate comparison between the methods 

associated with comprehensive and partial change analysis, the results of the comprehensive change 

analysis group were also collapsed to the smaller number of change classes associated with the partial 

change analysis. Because partial change analysis involves fewer classes, and is therefore a simpler 

classification problem, the overall accuracy may be higher than complete change analysis. 

The results of the accuracy analysis were summarized by an overall accuracy percentage, and a kappa 

statistic. The kappa statistic provides a measure of the accuracy adjusted for chance agreement [38]. 
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5. Results 

5.1. Spectral Separability 

The first experiment was an analysis of the effect of spectral separability on change detection 

analysis accuracy, using images with four bands and four classes. The results are graphed in Figure 6, 

with the three comprehensive change approaches depicted separately (Figure 6(a)) from the five partial 

change methods (Figure 6(b)). As would be expected, the overall accuracy of change detection 

analysis is shown to be dependent on the spectral separability of the classes. Post-classification 

comparison, direct classification and PCA using the best six bands produced almost identical change 

detection accuracy. These three methods were consistently the most accurate, and showed a linear 

increase in accuracy with increasing class separability as measured by JM distance. The similarity in 

results was consistent for both comprehensive (Figure 6(a)) and partial change (Figure 6(b)) 

approaches. It is not surprising that direct classification produced accuracies similar to that of  

post-classification comparison, because these two methods are conceptually very similar, if perfect 

training data is available. The reason that the results of the six-band PCA change analysis was so 

similar to direct classification and post-classification comparison is that the PCA analysis effectively 

segregated the entire class information in the data in the first six principal components, and 

consequently the subsequent classification of the six-band PCA data was equivalent to classification 

using all eight original bands.  

Figure 6. Effect of class spectral separability, measured by average divergence, on 

accuracy of comprehensive and partial change analysis methods, for the simulated data.  

 
The four-band PCA change analysis produced a substantially lower accuracy, as much as 8–15%, 

over a wide range JM distances, compared to the equivalent six-band PCA change analysis, direct 

classification and post-classification comparison. In addition, four-band PCA required a divergence 

greater than 300, compared to a value greater than 50 for the six-band PCA, before 100% accuracy 
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was reached (data not shown). The difference in accuracy between the four- and six-band PCA results 

suggests that potential accuracy of a PCA change analysis will be dependent on the number of 

principal components selected by the user, or more correctly, on the proportion of the information 

content of the multitemporal composite that is captured by the principal components used. Although 

the eigenvalues are usually assumed to be a good measure of the information content of the various 

bands, that assumption is not necessarily valid. For example, in the six-band PCA study, the accuracy 

obtained was similar to that obtained using all the data, despite the exclusion of the first PC, which by 

definition has the greatest eigenvalue of the principal components. In this case, however, the first PC 

isolated simulated illumination, which was not useful for discriminating the different change classes. 

An added complexity is that, for the very noisy data (low separability), the last principal component 

sometimes had less class differentiation information than the second last principal component.  

The relationship between spectral separability and accuracy is complex for the four-band PCA, 

image differencing and CVA partial change analysis methods (Figure 6(b)). At low separabilities (JM 

1.057 to 1.320, divergence up to 20), the relative rank of these three methods (in order of decreasing 

accuracy) is: four-band PCA, CVA and image differencing. For separabilities that are close to, or just 

reaching, complete separability (JM 1.320 to just less than 1.414, divergence 20 to 150), the relative 

rank is four-band PCA, image differencing and CVA. It is notable that CVA accuracy increased only 

slightly (by 0.12) as class separability increased over the range JM = 1.057 to 1.355, whereas  

four-band PCA improved by 0.26 and image differencing by 0.38. At high separabilities (JM =1.414, 

divergence 150–450), the relatively rank is image differencing, CVA, four-band PCA-4. Image 

differencing reaches 99% accuracy first, at a divergence of approximately 80, then CVA at a 

divergence of approximately 301, and only at a divergence value of 451 does the four-band PCA 

achieve a completely accurate classification.  

In summary, in the class separability experiments, post-classification comparison, direct 

classification and six-band PCA gave the highest accuracy at all class separations, and for these 

methods, class separability as measured by the JM distance was almost linearly related to change 

detection accuracy. CVA, four-band PC and image differencing produced lower accuracies than  

post-classification comparison, direct classification and six-band PCA. For moderate to low class 

separabilities, CVA was relatively insensitive to class separability. The accuracy of image differencing 

relative to CVA and four-band PCA changed from lowest to highest, as separability increased.  

5.2. Radiometric Normalization 

The simulated data for the radiometric normalization error experiments were developed with two 

bands of data, and, as with the class separability experiments, four classes for each simulated date. 

Three sets of sub-experiments were run, using images with high, moderate, and low class separability 

(Figure 7). Radiometric normalization is only necessary for the three change detection methods of 

image differencing, post-classification using a single set of training data, and CVA. For completeness 

sake, both partial and complete post-classification comparison were included, and thus Figure 7 

includes a total of four methods on each graph.  
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Figure 7. Effect of radiometric normalization error on accuracy of change analysis 

methods, for simulated classes with high, moderate and low separability.  

 
Post-classification comparison, for both comprehensive and partial change analysis, showed the 

least change in accuracy as the radiometric error increased. For post-classification comparison, the 

comparatively large radiometric error of 10 DN reduced the accuracy by only 0.03–0.06. For relatively 

low class separabilities (Figure 7(c)), partial change post-classification comparison was notably more 

accurate than comprehensive change analysis. In other words, differentiating the various unchanged 

classes added notably to the overall error, unlike the moderate and high separability simulations 

(Figures 7(a,b)).  

For classes with high separability, image differencing had the highest classification accuracy of the 

methods tested for radiometric errors less than 7 DN. This result was the opposite of the moderate and 

low separability simulated data set experiments, where image differencing was found to have the 

lowest accuracy for all levels of radiometric error tested. The comparatively high accuracy of image 

differencing for high-separability classes is supported by the separability experiments. A second 

notable feature of image differencing for high separability classes is that although accuracy for this 

method was the least affected by radiometric errors of 4 DN or less, at radiometric errors greater than 8 

DN, accuracy was the most affected, dropping rapidly, to 0.8 at 10 DN. For the moderate separability 

simulated data set, the accuracy of image differencing was also found to decrease rapidly for 

radiometric errors of greater than 4 DN. For the low separability data, image differencing resulted in 

low accuracy, irrespective of the degree of radiometric error. 

CVA behaves in very complex way throughout the three experiments. At high class separability, 

CVA produced the lowest accuracy for small radiometric errors. For moderate class separabilities, 

CVA accuracy tends to parallel the post-classification comparison accuracy results, but at a lower 

accuracy. Where class separability is very low, CVA was found to have the highest accuracy of any 

method. This result is also surprising, because post-classification comparison is often assumed to be 

the most accurate method [23]. 
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In summary, the second set of normalization experiments showed the relative accuracy of the 

different methods is highly dependent on the interaction of radiometric normalization error and class 

separability. With high class separability, and low radiometric error, image differencing was found to 

be the most powerful method. Image differencing however, showed the most rapid decrease in 

accuracy, as radiometric error increased and was the least accurate for all other situations. With high 

class separability and large radiometric error, or moderate class separability irrespective of radiometric 

error, post-classification comparison gave the highest accuracy. With low class separability and low to 

moderate radiometric error, CVA was the most accurate method. 

5.3. Band Correlation 

The last set of simulated data experiment examined how the accuracy of change detection methods 

was affected by the correlation between image bands. As with the radiometric normalization 

experiments, two bands of data were created for each simulated image in the multitemporal pair. The 

experiment was repeated with means widely dispersed in the feature space, moderately dispersed, and 

clustered along the diagonal, respectively. As with the class separability experiments, all five partial 

and three comprehensive change methods were used. 

The band correlation experiments showed a general pattern of correlation and accuracy being 

positively associated within each individual experiment (Figure 8). However, for the data set with 

class means widely dispersed in the feature space, high accuracies were achieved with relatively low 

correlation between bands. Thus the experiments highlight that the correlation between bands is a 

result of two different characteristics of the data. The addition of noise to data set reduces class 

separability as well as the correlation between bands. Thus the pattern within each graph in Figure 8 

can be understood as being driven by varying levels of noise. On the other hand, the wide distribution 

of the class means in the feature space away from the diagonal of the feature space reduces the 

correlation between the bands but also increases class separability. Thus, the differences between the 

three graphs are a result of class separability and its influence on class separability.  

Direct classification, including both comprehensive change analysis and partial change analysis, 

generally produced the highest accuracy in the three experiments, especially for the data with the 

lowest correlation values within each experiment. For these experiments, post-classification 

comparison appeared to be slightly less accurate, producing results that mirrored the direct 

classification results, except at a lower accuracy. The accuracies obtained from the PCA 

comprehensive change analysis are notably different from those produced by the PCA partial change 

analysis. PCA comprehensive change analysis consistently had the lowest accuracy for all correlation 

values. On the other hand, the PCA partial change analysis showed a large improvement in accuracy 

with increasing correlation, especially for widely dispersed class means, where the method was similar 

to, or better than, the best methods. In fact, at the highest degrees of correlation, PCA partial change 

analysis was found to be better than post-classification comparison. 



Remote Sens. 2010, 2                            

 

 

1524

Figure 8. Effect of between band correlation on accuracy of change analysis methods, for 

simulated data with means widely dispersed in the spectral data space, means moderately 

dispersed, and means clustered near the diagonal.  

 

Image differencing also resulted in low accuracy rates for low correlation data, though not as low as 

PCA comprehensive change analysis. However, like PCA partial change analysis, image differencing 

produced one of the highest accuracies at high correlation values. Image differencing appears to be the 

most sensitive technique to the degree of correlation between bands, producing the greatest change in 

accuracy as correlation changes. In contrast, CVA is the least affected by change in the degree of 

correlation, especially when class means are clustered along the diagonal. Figure 8(c), for example, 

shows almost no change in accuracy for CVA over a wide range of correlation values. When the 

means of the classes were moderately and widely dispersed, and the degree of correlation was very 

high, CVA produced a higher accuracy than partial change post-classification comparison. 

In summary, for the correlation experiments, direct classification tended to be the most accurate 

method, and PCA comprehensive change the least. CVA, especially when the means of the classes are 

clustered near the diagonal, showed the least change with degree of correlation. PCA, along with 

image differencing, showed the greatest sensitivity to band correlation. Although PCA for 

comprehensive change analysis was generally poor, PCA for partial change analysis with class means 

widely and moderately distributed, and relatively high degrees of correlation, was found to be one of 

the most accurate methods. 

6. Discussion 

The primary aim of this research was to investigate, using simulated data, the hypothesis that image 

properties have an influence on change detection accuracy. The results of these experiments suggest 

very strongly that this hypothesis is indeed correct. This conclusion provides an explanation for the 
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apparent contradiction of the relative ranking of different change detection methods in previous 

studies, in that those studies have for the most part used just a single image data set. Our research 

findings imply that generalization from a single data should be carried out with caution, and preferably 

only to images with similar image properties. Therefore, it would be useful if in future change 

detection studies the authors provide as much detail as possible about the spectral properties of the 

images used.  

The application of these results to real images is not a direct focus of this research. Nevertheless, it 

is useful to consider whether the image properties used in this study are commonly found in real data. 

The class separability experiments compared classes that ranged from a JM distance separability of 

1.414 to 1.057. Thus, the experiments included class seperabilities that ranged from perfectly 

separable, to moderately or even poorly separated. This is a relatively conservative range of values 

compared to values reported in the literature. For example, in a study examining the spectral 

separability of burned and unburned areas in Landsat ETM+ data, J-M distances varied between less 

than 0.4 and 1.414 [39]. An investigation of the ability to discriminate an invasive shrub in Landsat 

ETM+ bands and related spectral transformations such as image ratios catalogued JM values that 

ranged from 0.715 to 1.230 [40]. Similarly, a study of spatial and spectral features useful in 

discriminating urban vegetation classes found mean JM values that varied from 0.592 to 1.113 [41].  

Evaluating the realism of the radiometric offset and band correlation experiments is less 

straightforward. The offsets varied from 0 to 10, which at face value would appear to be a much larger 

range than would likely be found with reasonably well-calibrated data. Nevertheless, it is important to 

consider that the simulated data were designed to have a large dynamic range, exploiting the full 256 

gray levels of 8-bit data. Thus the offset range modeled is not as extreme as it might appear.  

Providing guidance to practitioners regarding the optimal methods to use for different images is 

beyond the scope of this work, and will be the subject of future research. However, some general 

inferences can be drawn from these results. Firstly, as might be expected, if classes are highly 

separable, the choice of change detection method can safely be based on criteria other than the 

relatively accuracy of the different methods, since all methods are likely to do well. Likewise, for 

highly separable classes, error in the radiometric normalization produces relatively little added error to 

the change detection. 

In comparison, for moderately and poorly separated classes, the change detection method is 

important, and image differencing in particular should be avoided. Generally, post-classification 

comparison is a robust method, but our work also suggests that CVA can be an effective tool in such 

circumstances. For moderately-well separated classes, obtaining the highest possible accuracy for 

radiometric is crucial.  

The band correlation experiments are more difficult to generalize from, primarily because a low 

degree of inter-band correlation can indicate a low separability between classes due to uncorrelated 

noise, or due to classes that are spectrally very different. Thus, correlation cannot simply be related to 

class separabilty.  
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7. Conclusions 

The results from the three experiments using simulated data showed that no single change detection 

method consistently produced the highest accuracy as image spectral properties varied. Thus these 

experiments appear to confirm the hypothesis that previous change detection analysis comparisons do 

not help elucidate the general strength of each method, unless the spectral properties of the images 

used can be placed in a larger context.  

Although the results are complex, some general patterns emerge. In most cases, direct classification 

and post-classification comparison were the least sensitive to changes in the image properties of class 

separability, radiometric normalization error and band correlation. Furthermore, these methods 

generally produced the highest accuracy, or were amongst those with a high accuracy.  

PCA change analysis produced very different results in different circumstances, as might be 

expected for a method that is inherently scene-specific. In particular, the number of components used 

is very important, as is the choice between partial and comprehensive change analysis. The use of four 

principal components consistently resulted in substantial decreased classification accuracy relative to 

using six components, or classification using the original six bands.  

The accuracy of image differencing also varied greatly in the experiments. For example, in order to 

achieve high levels of accuracy with image differencing, low errors in radiometric normalization and 

high class separabilities are required. Of the three methods that require radiometric normalization, 

image differencing was the method most affected by radiometric error, relative to change vector and 

classification methods, for classes that have moderate and low separability. For classes that are highly 

separable, image differencing was relatively unaffected by radiometric normalization error. 

CVA accuracies also varied greatly, although this method tended to be the least affected by changes 

in the degree of band correlation in situations where the class means were moderately dispersed, or 

clustered near the diagonal. CVA was also found to be the most accurate method for classes with low 

separability and all but the largest radiometric errors. 

For all change detection methods, the classification accuracy increased as simulated band 

correlation increased, and direct classification methods consistently had the highest accuracy, while 

PCA generally had the lowest accuracy. 

References  

1. Warner, T.A.; Almutairi, A.; Lee, J.Y. Remote sensing and land cover change. In SAGE 

Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; SAGE: London, 

UK, 2009; Chapter 33, pp. 459-472.  

2. Almutairi, A. An Investigation of the Role of Image Properties in Influencing the Accuracy of 

Remote Sensing Change Detection Analysis. Ph.D. Dissertation, West Virginia University, 

Morgantown, WV, USA, 2004. Available online: https://etd.wvu.edu/etd/ 

controller.jsp?moduleName=documentdata&jsp%5FetdId=3596 ( accessed on 7 March 2010). 

3. Teillet, P.M.; Staenz, K.; Williams, D.J. Effects of spectral, spatial and radiometric characteristics 

on remote sensing vegetation indices of forested regions. Remote Sens. Environ. 1997, 61,  

139-149. 



Remote Sens. 2010, 2                            

 

 

1527

4. Song, C.; Woodcock, C.E.; Seto, K.C.; Pax Lenney, M.; Macomber, S.A Classification and 

change detection using Landsat TM data: When and how to correct atmospheric effects? Remote 

Sens. Environ. 2001, 75, 230-244. 

5. Galford, G.L.; Mustard, J. F.; Melillo, J.; Gendrin, A.; Cerri, C.C.; Cerri, C.E.P. Wavelet analysis 

of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. 

Remote Sens. Environ. 2008, 112, 576-587. 

6. Townshend, J.R.G.; Justice, C.O.; Gurney, C.; McManus, J. The impact of misregistration on 

change detection. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1054-1060. 

7. Dai, X.; Khorram, S. The effects of image misregistration on the accuracy of remotely sensed 

change detection. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1566-1577. 

8. Stow, D.A. Reducing the effects of misregistration on pixel-level change detection. Int. J. Remote 

Sens. 1999, 20, 2477-2483. 

9. Bruzzone, L.; Cossu, R. An adaptive approach to reducing registration noise effects in 

unsupervised change detection. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2455-2465. 

10. Brown, K.M.; Foody, G.M.; Atkinson, P.M. Modelling geometric and misregistration error in 

airborne sensor data to enhance change detection. Int. J. Remote Sens. 2007, 28, 2857-2879. 

11. Sundaresan, A.; Varshney, P.K.; Arora, M.K. Robustness of change detection algorithms in the 

presence of registration errors. Photogramm. Eng. Remote Sensing 2007, 73, 375-383. 

12. van Oort, P.A.J. Interpreting the change detection error matrix. Remote Sens. Environ. 2007, 108, 

1-8.  

13. Cohen, W.B.; Fiorella, M. Comparison of methods for detecting conifer forest change with 

Thematic Mapper imagery. In Remote Sensing Change Detection: Environmental Monitoring 

Methods and Applications; Lunetta, R.S., Elvidge, C.D., Eds.; Ann Arbor Press: Chelsea, MI, 

USA, 1998; Chapter 6, pp. 89-102.  

14. Lunetta, R.S. Applications, project formulation, and analytical approach. In Remote Sensing 

Change Detection: Environmental Monitoring Methods and Applications; Lunetta, R.S., Elvidge, 

C.D., Eds.; Ann Arbor Press: Chelsea, MI, USA, 1998; Chapter 1, pp. 1-19.  

15. Richards, J.A. Thematic mapping from multitemporal image data using the principal components 

transformation. Remote Sens. Environ. 1984, 16, 35-46. 

16. Deng, J.S.; Wang, K.; Deng, Y.H.; Qi, G.J. PCA-based land-use change detection and analysis 

using multitemporal and multisensory satellite data. Int. J. Remote Sens. 2008, 29, 4823-4838. 

17. Malila, W. Change vector analysis: an approach for detecting forest changes with Landsat. In 

Proceedings of the 6th Annual Symposium on Machine Processing of Remotely Sensed Data, 

West Lafayette, IN, USA, 3–6 June 1980; Purdue University Press: West Lafayette, IN, USA;  

pp. 326-335.  

18. Brovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based on 

change vector analysis in the polar domain. IEEE Trans. Geosci. Remote Sens. 2007, 45, 218-236.  

19. Kontoes, C.C. Operational land cover change detection using change vector analysis. Int. J. 

Remote Sens. 2008, 29, 4757-4779. 

20. Chen, J.; Gong, P.; He, C.; Pu, R.; Shi, P. Land-use/land-cover change detection using improved 

change-vector analysis. Photogramm. Eng. Remote Sensing 2003, 69, 369-379.  



Remote Sens. 2010, 2                            

 

 

1528

21. Warner, T.A. Hyperspherical direction cosine change vector analysis. Int. J. Remote Sens. 2005, 

26, 1201-1215.  

22. Jensen, J.; Toll, D. Detecting residential land-use development at the urban fringe. Photogramm. 

Eng. Remote Sensing 1982, 48, 629-643. 

23. Singh, A. Digital change detection techniques using remotely sensed data. Int. J. Remote Sens. 

1989, 10, 989-1003. 

24. Muchoney, D.M.; Haack, B. Change detection for monitoring forest defoliation. Photogramm. 

Eng. Remote Sensing 1994, 60, 1243 1251.  

25. Macleod, R.; Congalton, R. A quantitative comparison of change detection algorithms for 

monitoring eelgrass from remotely sensed data. Photogramm. Eng. Remote Sensing 1998, 64, 

207-216. 

26. Sohl, T.L. Change analysis in the United Arab Emirates: An investigation of techniques. 

Photogramm. Eng. Remote Sensing 1999, 65, 475-484. 

27. Mas, J.F. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. 

Remote Sens. 1999, 20, 139-152. 

28. Weismiller, R.A.; Kristof, S.J.; Scholz, D.K.; Anuta, P.E.; Momin, S.A. Change detection in 

coastal zone environments. Photogramm. Eng. Remote Sensing 1977, 43, 1533-1539. 

29. Li, X.; Yeh, A. Principal component analysis of stacked multi-temporal images for the monitoring 

of rapid urban expansion in the Pearl River Delta. Int. J. Remote Sens. 1998, 19, 1501-1518. 

30. Fung, T.; LeDrew, E. The determination of optimal threshold levels for change detection using 

various accuracy indices. Photogramm. Eng. Remote Sensing 1988, 54, 1449-1454. 

31. Dhakal, A.S.; Amada, T.; Aniya, M.; Sharma, R.R. Detection of areas associated with flood and 

erosion caused by a heavy rainfall using multitemporal Landsat TM data. Photogramm. Eng. 

Remote Sensing 2002, 68, 233-239. 

32. Castelli, V.; Elvidge, C.D.; Li, C-S.; Turek, J.J. Classification-based change detection: Theory 

and applications to the NALC data set. In Remote Sensing Change Detection: Environmental 

Monitoring Methods and Applications; Lunetta, R.S., Elvidge, C.D., Eds.; Ann Arbor Press: 

Chelsea, MI, USA, 1998; Chapter 4, pp. 53-73. 

33. Liu, Y.; Nishiyama, S.; Yano, T. Analysis of four change detection algorithms in bi-temporal 

space with a case study. Int. J. Remote Sens. 2004, 25, 2121-2139. 

34. Swain, P.H.; Davis, S.M. Remote Sensing: The Quantitative Approach; McGraw Hill: New York, 

NY, USA, 1978. 

35. Richards, J.; Jia, X. Remote Sensing Digital Image Analysis; Springer Verlag: Berlin, Germany, 

1999. 

36. Warner, T.A. Analysis of spatial patterns in remotely sensed data using multivariate spatial 

correlation. Geocarto Int. 1999, 14, 59-65. 

37. Wartenberg, D. Multivariate spatial correlation: a method for exploratory geographical analysis. 

Geogr. Anal. 1985, 17, 263-283. 

38. Jensen, J.R. Digital Image Processing, 3rd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 

2005. 



Remote Sens. 2010, 2                            

 

 

1529

39. Sá, A.C.L.; Pereira, J.M.C.; Gardner, R.H. Analysis of the relationship between spatial pattern 

and spectral detectability of areas burned in southern Africa using satellite data. Int. J. Remote 

Sens. 2007, 28, 3583-3601. 

40. Resasco, J.; Hale, A.N.; Henry, M.C.; Gorchov, D.L. Detecting an invasive shrub in a deciduous 

forest understory using late-fall Landsat sensor imagery. Int. J. Remote Sens. 2007, 28,  

3739-3745. 

41. Zhang, X.; Feng, X.; Jiang, H. Obect-oriented method for urban vegetation mapping using 

IKONOS imagery. Int. J. Remote Sens. 2010, 31, 177-196. 

© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


	Change Detection Accuracy and Image Properties: A Study Using Simulated Data
	Digital Commons Citation

	Change Detection Accuracy and Image Properties: A Study Using Simulated Data

