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Abstract: A consistent entropy estimator for hyperspherical data is proposed based on

the k-nearest neighbor (knn) approach. The asymptotic unbiasedness and consistency of

the estimator are proved. Moreover, cross entropy and Kullback-Leibler (KL) divergence

estimators are also discussed. Simulation studies are conducted to assess the performance

of the estimators for models including uniform and von Mises-Fisher distributions. The

proposed knn entropy estimator is compared with the moment based counterpart via

simulations. The results show that these two methods are comparable.

Keywords: hyperspherical distribution; directional data; differential entropy; cross entropy;

Kullback-Leibler divergence; k-nearest neighbor

1. Introduction

The Shannon (or differential) entropy of a continuously distributed random variable (r.v.) X with

probability density function (pdf ) f is widely used in probability theory and information theory as a

measure of uncertainty. It is defined as the negative mean of the logarithm of the density function, i.e.,

H(f) = −Ef [ln f(X)] (1)
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k-Nearest neighbor (knn) density estimators were proposed by Mack and Rosenblatt [1]. Penrose and

Yukich [2] studied the laws of large numbers for k-nearest neighbor distances. The nearest neighbor

entropy estimators when X ∈ R
p were studied by Kozachenko and Leonenko [3]. Singh et al. [4]

and Leonenko et al. [5] extended these estimators using k-nearest neighbors. Mnatsakanov et al.
[6] studied knn entropy estimators for variable rather than fixed k. Eggermontet et al. [7] studied

the kernel entropy estimator for univariate smooth distributions. Li et al. [8] studied parametric and

nonparametric entropy estimators for univariate multimodal circular distributions. Neeraj et al. [9]

studied knn estimators of circular distributions for the data from the Cartesian product, that is, [0, 2π)p.

Recently, Mnatsakanov et al. [10] proposed an entropy estimator for hyperspherical data based on the

moment-recovery (MR) approach (see also Section 4.3).

In this paper, we propose k-nearest neighbor entropy, cross-entropy and KL-divergence estimators

for hyperspherical random vectors defined on a unit p-hypersphere S
p−1 centered at the origin in

p-dimensional Euclidean space. Formally,

S
p−1 = {x ∈ R

p : ‖x‖ = 1} (2)

The surface area Sp of the hypersphere is well known: Sp =
2πp/2

Γ( p
2
)

, where Γ is the gamma function. For

a part of the hypersphere, the area of a cap with solid angle φ relative to its pole is given by Li [11]

(cf. Gray [12]):

S(φ) = 1
2
Sp

[
1− sgn(cosφ)Icos2 φ

(
1
2
, p−1

2

)]
(3)

where sgn is the sign function, and Ix(α, β) is the regularized incomplete beta function.

For a random vector from the unit circle S
1, the von Mises distribution vM(μ, κ) is the most widely

used model:

fvM(x;μ, κ) =
1

2πI0(κ)
eκμ

Tx

where T is the transpose operator, ||μ|| = 1 and κ ≥ 0 are the mean direction vector and concentration

parameters, and I0 is the zero-order modified Bessel function of the first kind. Note that the von Mises

distribution has a single mode. The multimodal extension to the von Mises distribution is the so-called

generalized von Mises model. Its properties are studied by Yfantis and Borgman [13] and Gatto and

Jammalamadaka [14].

The generalization of von Mises distribution onto S
p−1 is the von Mises-Fisher distribution (also

known as Langevin distribution) vMFp(μ, κ) with pdf,

fp(x;μ, κ) = cp(κ)e
κμTx (4)

where the normalization constant is

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)

and Iν(x) is the ν-order modified Bessel function of the first kind. See Mardia and Jupp [15] (p. 167)

for details.

Since von Mises-Fisher distributions are members of the exponential family, by differentiating the

cumulant generating function, one can obtain the mean and variance of μTX:

Ef [μ
TX] = Ap(κ)
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and

Vf [μ
TX] = A′

p(κ)

where Ap(κ) = Ip/2(κ)/Ip/2−1(κ), and A′
p(κ) =

d
dκ
Ap(κ) = 1−Ap(κ)

2−(p−1)/κAp(κ). See Watamori

[16] for details. Thus the entropy of fp is:

H(fp) = −Ef [ln fp(X)] = − ln cp(κ)− κEf [μ
TX] = − ln cp(κ)− κAp(κ) (5)

and

Vf [ln fp(X)] = κ2Vf [μ
TX] = κ2A′

p(κ) (6)

Spherical distributions have been used to model the orientation distribution functions (ODF) in

HARDI (High Angular Resolution Diffusion Imaging). Knutsson [17] proposed a mapping from (p = 3)

orientation to a continuous and distance preserving vector space (p = 5). Rieger and Vilet [18]

generalized the orientation in any p-dimensional spaces. McGraw et al. [19] used vMF3 mixture to

model the 3-D ODF and Bhalerao and Westin [20] applied vMF5 mixture to 5-D ODF in the mapped

space. Entropy of the ODF is proposed as a measure of anisotropy (Özarslan et al. [21], Leow et al. [22]).

McGraw et al. [19] used Rényi entropy for the vMF3 mixture since it has a closed form. Leow et al. [22]

proposed an exponential isotropy measure based on the Shannon entropy. In addition, KL-divergence

can be used to measure the closeness of two ODF’s. A nonparametric entropy estimator based on knn

approach for hyperspherical data provides an easy way to compute the entropy related quantities.

In Section 2, we will propose the knn based entropy estimator for hyperspherical data. The

unbiasedness and consistency are proved in this section. In Section 3, the knn estimator is extended

to estimate cross entropy and KL-divergence. In Section 4, we present simulation studies using uniform

hyperspherical distributions and aforementioned vMF probability models. In addition, the knn entropy

estimator is compared with the MR approach proposed in Mnatsakanov et al. [10]. We conclude this

study in Section 5.

2. Construction of knn Entropy Estimators

Let X ∈ S
p−1 be a random vector having pdf f and X1,X2, . . . ,Xn be a set of i.i.d. random

vectors drawn from f . To measure the nearness of two vectors x and y, we define a distance measure

as the angle between them: φ = arccos(xTy) and denote the distance between X i and its k-th nearest

neighbor in the set of n random vectors by φi := φn,k,i.

With the distance measure defined above and without loss of generality, the naı̈ve k-nearest neighbor

density estimate at X i is thus,

fn(X i) =
k/n

S(φi)
(7)

where S(φi) is the cap area as expressed by (3).

Let Ln,i be the natural logarithm of the density estimate at X i,

Ln,i = ln fn(X i) = ln
k/n

S(φi)
(8)
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and thus we construct a similar k-nearest neighbor entropy estimator (cf. Singh et al. [4]):

Hn(f) = − 1

n

n∑
i=1

[Ln,i − ln k + ψ(k)] =
1

n

n∑
i=1

ln[nS(φi)]− ψ(k) (9)

where ψ(k) = Γ′(k)
Γ(k)

is the digamma function.

In the sequel, we shall prove the asymptotic unbiasedness and consistency of Hn(f).

2.1. Unbiasedness of Hn

To prove the asymptotic unbiasedness, we first introduce the following lemma:

Lemma 2.1. For a fixed integer k < n, the asymptotic conditional mean of Ln,i given X i = x, is

E[ lim
n→∞

Ln,i|X i = x] = ln f(x) + ln k − ψ(k) (10)

Proof. ∀	 ∈ R, consider the conditional probability

P{Ln,i < 	|X i = x} = P{fn(X i) < e�|X i = x}
= P{S(φi) >

k

n
e−�} (11)

Equation (11) implies that there are at most k samples falling within the cap Ci centered at X i = x

with area Sci =
k
n
e−�.

If we let

pn,i =

∫
Ci

f(y) dy

and Yn,i be the number of samples falling onto the cap Ci, then Yn,i ∼ BIN(n, pn,i), is a binomial

random variable. Therefore,

P{Ln,i < 	|X i = x} = P{Yn,i < k}

If we let k
n
→ 0 as n → ∞, then pn,i → 0 as n → ∞. It is reasonable to consider the Poisson

approximation of Yn,i with mean λn,i = npn,i = ke−�

Sci
pn,i. Thus, the limiting distribution of Yn,i is a

Poisson distribution with mean:

λi = lim
n→∞

λn,i = ke−� lim
n→∞

pn,i
Sci

= ke−�f(x) (12)

Define a random variable Li having the conditional cumulative density function,

FLi,x(	) = lim
n→∞

P{Ln,i < 	|X i = x}

then

FLi,x(	) =
k−1∑
j=0

[kf(x)e−�]j

j!
e−kf(x)e−�

By taking derivative w.r.t. 	, we obtain the conditional pdf of Li:

fLi,x(	) =
[kf(x)e−�]k

(k − 1)!
e−kf(x)e−�

(13)



Entropy 2011, 13 654

The conditional mean of Li is

E[Li|X i = x] =

∫ ∞

−∞
	 · [kf(x)e

−�]k

(k − 1)!
e−kf(x)e−�

d	

By change of variable, z = kf(x)e−�,

E[Li|X i = x] =

∫ ∞

0

[ln f(x) + ln k − ln z]
zk−1

(k − 1)!
e−z dz

= ln f(x) + ln k −
∫ ∞

0

ln z
zk−1

(k − 1)!
e−z dz

= ln f(x) + ln k − ψ(k) (14)

Corollary 2.2. Given X i = x, let ηn,k,x := nS(φi) = ke−Ln,i , then ln ηn,k,x = ln k − Ln,i converges in
distribution to ln ηk,x = ln k − Li, and

E[ln ηk,x] = − ln f(x) + ψ(k)

Moreover, ηk,x is a gamma r.v. with the shape parameter k and the rate parameter f(x).

Theorem 2.3. If a pdf f satisfies the following conditions: for some ε > 0,
(A1) :

∫
Sp−1 |ln f(x)|1+εf(x) dx < ∞,

(A2) :
∫
Sp−1

∫
Sp−1

∣∣ln[1− I(xTy)2(
1
2
, p−1

2
)]
∣∣1+ε

f(x)f(y) dxdy < ∞,
then the estimator proposed in (9) is asymptotically unbiased.

Proof. According to Corollary 2.2 and condition (A2), we can show (see (16)–(22)) that for almost all

values of x ∈ S
p−1, there exists a positive constant C such that

(i) E[| ln ηn,k,x|1+ε] < C for all sufficiently large n.

Hence, applying the moment convergence theorem [23] (p. 186), it follows that

lim
n→∞

E[ln ηn,k,x] = E[ln ηk,x] = − ln f(x) + ψ(k)

for almost all values of x ∈ S
p−1. In addition, using Fatou’s lemma and condition (A1), we have that

lim sup
n→∞

∫
Sp−1

|E[
ln ηn,k,x

]|1+εf(x) dx

≤
∫
Sp−1

lim sup
n→∞

|E[
ln ηn,k,x

]|1+εf(x) dx

=

∫
Sp−1

|− ln f(x) + ψ(k)|1+εf(x) dx

≤ Cε

(∫
Sp−1

|− ln f(x)|1+εf(x) dx+ |ψ(k)|1+ε

)
< ∞
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where Cε is a constant. Therefore,

lim
n→∞

E[Hn(f)] = lim
n→∞

Ef [ln(nS(φi))]− ψ(k)

= lim
n→∞

∫
Sp−1

E
[
ln ηn,k,x

]
f(x) dx− ψ(k)

=

∫
Sp−1

lim
n→∞

E
[
ln ηn,k,x

]
f(x) dx− ψ(k)

=

∫
Sp−1

E
[
ln ηk,x

]
f(x) dx− ψ(k)

=

∫
Sp−1

[− ln f(x) + ψ(k)]f(x) dx− ψ(k)

= H(f)

To show (i), one can follow the arguments similar to those used in the proof of Theorem 1 in [24].

Indeed, we can first establish

(ii) E[| ln η2,1,x|1+ε] < C.

Namely, we justify that (i) is valid when n = 2 and k = 1. But the inequality (ii) follows immediately

from the condition (A2) and

E
[∣∣ln η2,1,x∣∣1+ε

]
= E

[∣∣ln[2S(φ1,2)]
∣∣1+ε|X1 = x

]
= E

[∣∣ln(Sp

[
1− sgn(xTX2)I(xTX2)2(

1
2
, p−1

2
)
])∣∣1+ε

]
≤ Cε|lnSp|1+ε + Cε| ln 2|1+ε + CεEf

[∣∣ln[1− I(xTX2)2(
1
2
, p−1

2
)
]∣∣1+ε

1(xTX2 > 0)
]

= Cε

(|lnSp|1+ε + | ln 2|1+ε
)
+

1

2
CεEf

[∣∣ln[1− I(xTX2)2(
1
2
, p−1

2
)
]∣∣1+ε

]
(15)

Here φ1,2 = arccos(XT
1X2) and 1(·) is the indicator function.

Now let us denote the distribution function of ηn,k,x by

Gn,k,x(u) = P (ηn,k,x ≤ u) = P (nS(φn,k,1) ≤ u|X1 = x)

= 1−
k−1∑
j=0

(
n− 1

j

)(∫
Cx(φn(u))

f(y) dy

)j (
1−

∫
Cx(φn(u))

f(y) dy

)n−1−j

where φn(u) = S−1(u
n
) and Cx(φ) is a cap {y ∈ S

p−1 : yTx ≥ cosφ} with the pole x and base radius

sinφ. Note also that the functions S(φ) (see (3)) and φn(u) = S−1(u
n
) are both increasing functions.

Now, one can see (cf. (66) in [24]):

E[| ln ηn,k,x|1+ε] ≤ I1 + I2 + I3 (16)

where

I1 = (1 + ε)

∫ 1

0

(
ln

1

u

)ε
u−1Gn,k,x(u) du

I2 = (1 + ε)

∫ √
n

1

(ln u)εu−1(1−Gn,k,x(u)) du

I3 = (1 + ε)

∫ nSp

√
n

(ln u)εu−1(1−Gn,k,x(u)) du
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It is easy to see that for sufficiently large n and almost all x ∈ S
p−1:

I1 < (1 + ε)f(x)Γ(1 + ε) < ∞ (17)

and

I2 ≤ (1 + ε)
k−1∑
j=0

[ sup
y∈Sp−1

f(y)]jf(x)−j−εΓ(j + ε) < ∞ (18)

(cf. (89) and (85) in [24], respectively).

Finally, let us show that I3 → 0 as n → ∞. For each x with f(x) > 0, if we choose a δ ∈ (0, f(x)),

then for all sufficiently large n,
√
n
∫
Cx(φn(

√
n))

f(y) dy > f(x) − δ, since the area of Cx(φn(
√
n)) is

equal to 1√
n

. Using arguments similar to those used in (69)–(72) from [24], we have

I3 ≤(1 + ε)nk−1ke
−(n−k−1)(f(x)−δ) 1√

n

×
∫ nSp

√
n

(ln u)εu−1

(
1−

∫
Cx(φn(u))

f(y) dy

)
du (19)

The integral in (19) after changing the variable, t = 2u
n

, takes the form∫ 2Sp

2√
n

(
ln

nt

2

)ε

t−1(1−G2,1,x(t)) dt

=

(∫ 1

2√
n

+

∫ 2Sp

1

)(
ln

nt

2

)ε

t−1(1−G2,1,x(t)) dt (20)

since φn(
nt
2
) = S−1( t

2
) = φ2(t) and 1−∫

Cx(φ2(t))
f(y) dy = 1−G2,1,x(t)). The first integral in the right

side of (20) is bounded as follows:∫ 1

2√
n

(
ln

nt

2

)ε

t−1(1−G2,1,x(t)) dt ≤
√
n

2

(
ln

n

2

)ε

(21)

while for the second one, we have∫ 2Sp

1

(
ln

nt

2

)ε

t−1(1−G2,1,x(t)) dt ≤ Cε

(
ln

n

2

)ε

E[η2,1,x] + Cε

(
ln

n

2

)ε

B (22)

where

B =

∫ 2Sp

1

(ln t)εt−1(1−G2,1,x(t)) dt =
1

1 + ε
E| ln η2,1,x|1+ε

Combination of (15)–(22) and (ii) yields (i).

Remark. Note that

1− It2(
1
2
, p−1

2
) ≈ 1

B( 1
2
, p−1

2
)
(t2)−

1
2 (1− t2)

p−1
2

≈ 2
p−1
2

B(1
2
, p−1

2
)
(1− t)

p−1
2 as t ↑ 1

where B(·, ·) is the beta function. Hence, in the conditions (Aj), j = 2, 4, 6 and 8, the difference

1− I(xTy)2(
1
2
, p−1

2
) can be replaced by 1− xTy.
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2.2. Consistency of Hn

Lemma 2.4. Under the following conditions: for some ε > 0,
(A3) :

∫
Sp−1 |ln f(x)|2+εf(x) dx < ∞,

(A4) :
∫
Sp−1

∫
Sp−1

∣∣ln[1− I(xTy)2(
1
2
, p−1

2
)]
∣∣2+ε

f(x)f(y) dxdy < ∞,
the asymptotic variance of Ln,i is finite and equals Vf [ln f(X)] + ψ1(k), where ψ1(k) is the
trigamma function.

Proof. The conditions (A3) and (A4), and the argument similar to the one used in the proof of

Theorem 2.3, yields

lim
n→∞

E[L2
n,i|X i = x] = E[L2

i |X i = x]

Therefore, it is sufficient to prove that Vf [Li] = Vf (ln f(X)) + ψ1(k). Similarly to (14), we have

E[L2
i |X i = x] =

∫ ∞

0

[ln f(x) + ln k − ln z]2
zk−1

(k − 1)!
e−z dz

= [ln f(x) + ln k]2 − 2[ln f(x) + ln k]ψ(k) + Γ′′(k)/Γ(k)

(23)

Since Γ′′(k)/Γ(k) = ψ2(k) + ψ1(k),

E[L2
i |X i = x] = [ln f(x) + ln k − ψ(k)]2 + ψ1(k) (24)

After some algebra, it can be shown that

Vf [Li] = Ef [(ln f(X))2]− (Ef [ln f(X)])2 + ψ1(k)

= Vf [ln f(X)] + ψ1(k) (25)

Lemma 2.5. For a fixed integer k < n, Ln,i are asymptotically pairwise independent.

Proof. For a pair of random variables Ln,i and Ln,j with i = j and X i = Xj , following the similar

argument for Lemma 2.1, Ci and Cj shrink as n increases. Thus, it is safe to assume that Ci and Cj are

disjoint for large n, and Ln,i and Ln,j are independent. Hence Lemma 2.5 follows.

Theorem 2.6. Under the conditions (A1) through (A4), the variance of Hn(f) decreases with sample
size n, that is

lim
n→∞

Vf [Hn(f)] = 0 (26)

and Hn(f) is a consistent estimator of H(f).

Theorem 2.6 can be established by using Theorem 2.3 and Lemmas 2.4 and 2.5, and

lim
n→∞

Vf [Hn(f)] = lim
n→∞

1

n
{Vf [ln f(X)] + ψ1(k)} = 0
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For a finite sample, the variance of Hn(f) can be approximated by 1
n
{Vf [ln f(x)] + ψ1(k)}. For

instance, for the uniform distribution, Vf [ln f(x)] = 0 and V [Hn(f)] ≈ ψ1(k)/n and for a vMFp(μ, κ),

V [Hn(f)] ≈ 1
n
[κ2A′

p(κ)+ψ1(k)]. See the illustration in Figure 1. The simulation was done with sample

size n = 1000 and the number of simulations was N = 10, 000. Since ψ1(k) is a decreasing function,

the variance of Hn(f) decreases when k increases.

Figure 1. Variances of Hn(f) by simulation and approximation.
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3. Estimation of Cross Entropy and KL-divergence

3.1. Estimation of Cross Entropy

The definition of cross entropy between continuous pdf ’s f and g is,

H(f, g) = −
∫

f(x) ln g(x) dx (27)

Given a random sample of size n from f , {X1,X2, . . . ,Xn}, and a random sample of size m from

g, {Y 1,Y 2, . . . ,Y m}, on a hypersphere, denote the knn density estimator of g by gm. Similarly to (7),

gm(X i) =
k/m

S(ϕi)
(28)

where ϕi is the distance from X i to its k-th nearest neighbor in {Y 1,Y 2, . . . ,Y m}. Analogously to the

entropy estimator (9), the cross entropy can be estimated by:

Hn,m(f, g) =
1

n

n∑
i=1

lnS(ϕi) + lnm− ψ(k) (29)

Under the conditions (A1)–(A4), for a fixed integer k < min(n,m), one can show that Hn,m(f, g)

is asymptotically unbiased. Moreover, by similar reasoning applied for Hn(f), one can show that

Hn,m(f, g) is also consistent and V [Hn,m(f, g)] ≈ 1
n
{Vf [ln g(x)] + ψ1(k)}. For example, when both
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f and g are vMF with the same mean direction and different concentration parameters, κ1 and κ2,

respectively, the approximate variance will be 1
n
[κ2

2A
′
p(κ1) + ψ1(k)]. Figure 2 shows the approximated

and simulated variance of the knn estimators for cross entropy are close to each other and both decrease

with k. The simulation is done with sample size n = m = 1000 and the number of simulations was

N = 10, 000.

Figure 2. Variances of Hn,m by simulation and approximation.
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3.2. Estimation of KL-Divergence

KL-divergence is also known as relative entropy. It is used to measure the similarity of two

distributions. Wang et al. [24] studied the knn estimator of KL-divergence for distributions defined

on R
p. Here we propose the knn estimator of KL-divergence of continuous distribution f from g defined

on a hypersphere. The KL-divergence is defined as:

KL(f‖g) = Ef [ln f(X)/g(X)] =

∫
f(x) ln

f(x)

g(x)
dx (30)

Equation (30) can also be expressed as KL(f‖g) = H(f, g) − H(f). Then the knn estimator of

KL-divergence is constructed as Hn,m(f, g)−Hn(f), i.e.,

KLn,m(f‖g) = 1

n

n∑
i=1

ln
fn(X i)

gm(X i)
=

1

n

n∑
i=1

ln
S(ϕi)

S(φi)
+ ln

m

n
(31)

where gm(X i) is defined as in (28). Besides, for finite samples, the variance of the estimator, V [KLn,m],

is approximately 1
n
{Vf [ln f(X)] + Vf [ln g(X)] − 2Covf [ln f(X), ln g(X)] + 2ψ1(k)}. When f and g

are vMF as mentioned above, with concentration parameter κ1 and κ2, respectively, we have:

Vf [ln f(X)] = κ2
1A

′
p(κ1)

Vf [ln g(X)] = κ2
2A

′
p(κ1)
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and

Covf [ln f(X), ln g(X)] = κ1κ2A
′
p(κ1)

So the approximate variance is 1
n
[(κ1 − κ2)

2A′
p(κ1) + 2ψ1(k)]. Figure 3 shows the approximated and

simulated variance of the knn estimators for KL-divergence. The approximation for von Mises-Fisher

distribution is not as good as the one for uniform distributions. This could be due to the modality of

von Mises-Fisher distributions or the finitude of sample sizes. The larger the sample size, the closer the

approximation is to the true value.

Figure 3. Variances of KLn,m by simulation and approximation.
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In summary, we have

Corollary 3.1. (1) Under conditions (A1), (A2) and for some ε > 0,
(A5) :

∫
Sp−1 |ln g(x)|1+εf(x) dx < ∞,

(A6) :
∫
Sp−1

∫
Sp−1

∣∣ln[1− I(xTy)2(
1
2
, p−1

2
)]
∣∣1+ε

f(x)g(y) dxdy < ∞,
for a fixed integer k < min(n,m), the knn estimator of KL-divergence given in (31) is
asymptotically unbiased.

(2) Under condition (A3), (A4) and for some ε > 0,
(A7) :

∫
Sp−1 |ln g(x)|2+εf(x) dx < ∞,

(A8) :
∫
Sp−1

∫
Sp−1

∣∣ln[1− I(xTy)2(
1
2
, p−1

2
)]
∣∣2+ε

f(x)g(y) dxdy < ∞,
for a fixed integer k < min(n,m), the knn estimator of KL-divergence given in (31) is
asymptotically consistent.

To prove the last two corollaries, one can follow the similar steps proposed in Wang et al. [24].

4. Simulation Study

To demonstrate the proposed knn entropy estimators and assess their performance for finite samples,

we conducted simulations for the uniform distribution and von Mises-Fisher distributions with the
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p-coordinate unit vector, ep, as the common mean direction for p = 3 and 10. For each distribution,

we drew samples of size n = 100, 500 and 1000. All simulations were repeated N = 10, 000 times.

Bias, standard deviation (SD) and root mean squared error (RMSE) were calculated.

4.1. Bias and Standard Deviation

Figures 4–9 show simulated bias and standard deviation of the proposed entropy, cross-entropy and

KL-divergence estimators along different k. The pattern for the standard deviation is clear. It decreases

sharply then slowly as k increases. This is consistent with the variance approximations described in

Sections 2 and 3. The pattern for bias is diverse. For uniform distributions, the bias term is very small.

When the underlying distribution has a mode, for example, vMF models used in the current simulations,

the relation between bias and k becomes complex and the bias term can be larger for larger k values.

Figure 4. |Bias| (dashed line) and standard deviation (solid line) of entropy estimate Hn for

uniform distributions.
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Figure 5. |Bias| (dashed line) and standard deviation (solid line) of entropy estimate Hn for

vMFp(ep, 1) distributions.
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Figure 6. |Bias| (dashed line) and standard deviation (solid line) of cross entropy estimate

Hn,m for uniform distributions.
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Figure 7. |Bias| (dashed line) and standard deviation (solid line) of cross entropy estimate

Hn,m for f = vMFp(ep, 1) and g = uniform distributions.
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Figure 8. |Bias| (dashed line) and standard deviation (solid line) of KL-divergence estimate

KLn,m for uniform distributions.
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Figure 9. |Bias| (dashed line) and standard deviation (solid line) of KL-divergence estimate

KLn,m for f = vMFp(ep, 1) and g = uniform distributions.
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4.2. Convergence

To validate the consistency, we conducted simulations of different sample size n from 10 to 100,000

for the distribution models used above. Figures 10 and 11 shows the estimates and theoretical values of

entropy, cross-entropy and KL-divergence for different sample sizes with k = 1 and k = �lnn+ 0.5� =
2–12, respectively. The proposed estimators converge to the corresponding theoretical values quickly.

Thus the consistency of these estimators are verified. The choice of k is an open problem for knn based

estimation approaches. These figures show that using lager k, e.g., the logarithm of n, for lager n, is

giving a slightly better preference.

Figure 10. Convergence of estimates with sample size n using the first nearest neighbor. For

vMFp, κ = 1.
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Figure 11. Convergence of estimates with sample size n using k = �lnn + 0.5� nearest

neighbors. For vMFp, κ = 1.

H
n

2.5

3.0

3.5

●

●

● ● ●

uniform

●

● ● ● ●

vMF

H
nm

2.2

2.4

2.6

2.8

3.0

3.2

●

● ● ● ●

uniform−uniform

●

●
● ● ●

vMF−uniform

n

K
L n

m

−0.4

−0.2

0.0

0.2

●

● ● ● ●

uniform−uniform
●

●
●

● ●

vMF−uniform

● p=3 p=10 theoretical

10 102 103 104 105 10 102 103 104 105

4.3. Comparison with the Moment-Recovered Construction

Another entropy estimator for hyperspherical data was developed recently by Mnatsakanov et al. [10]

using MR approach. We call this estimator the MR entropy estimator and denote it by H
(MR)
n (f):

H(MR)
n (f) = − 1

n

n∑
i=1

lnPn,t(X i) + lnS(arccos t) (32)

where Pn,t(X i) is the estimated probability of the cap {y ∈ S
p−1 : yTX i ≥ t} defined by the revolution

axis X i and t is the distance from the cap base to the origin and acts as a tuning parameter. Namely, (see

Mnatsakanov et al. [10]),

Pn,t(X i) =
1

n− 1

n∑
j=1,j �=i

n∑
k=�nt	+1

(
n

k

)
(XT

j X i)
k(1−XT

j X i)
n−k (33)

Via simulation study, the empirical comparison between Hn(f) and H
(MR)
n (f) was done for the

uniform and vMF distributions. The results are presented in Table 1. The values of k and t listed in

the table are the optimal ones in the sense of minimizing RMSE. Z-tests and F-tests (at α = 0.05)

were performed to compare the bias, standard deviation (variance) and RMSE (MSE) between the

knn estimators and corresponding MR estimators. In general, for uniform distributions, there are no

significant difference for biases. Among other comparisons, the differences are significant. Specifically,

knn achieves slightly smaller bias and RMSE values than those of the MR method. The standard
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deviations of knn method are also smaller for the uniform distribution but larger for vMF distributions

than those based on MR approach.

Table 1. Comparison of knn and moment methods by simulations for spherical distributions.

Method knn MR

p n k bias SD RMSE t bias SD RMSE

Uniform:

3 100 99 0.00500 0.00147 0.00521 0.01 0.00523 0.01188 0.01298

3 500 499 0.00100 0.00013 0.00101 0.01 0.00107 0.00233 0.00257

3 1000 999 0.00050 0.00005 0.00050 0.01 0.00051 0.00120 0.00130

10 100 99 0.00503 0.00130 0.00520 0.01 0.00528 0.01331 0.01432

10 500 499 0.00100 0.00011 0.00101 0.01 0.00102 0.00264 0.00283

10 1000 999 0.00050 0.00004 0.00050 0.01 0.00052 0.00130 0.00140

vMFp(ep, 1):

3 100 71 0.01697 0.05142 0.05415 0.30 0.02929 0.04702 0.05540

3 500 337 0.00310 0.02336 0.02356 0.66 0.00969 0.02318 0.02512

3 1000 670 0.00145 0.01662 0.01668 0.74 0.00620 0.01658 0.01770

10 100 46 0.02395 0.02567 0.03511 0.12 0.02895 0.02363 0.03737

10 500 76 0.00702 0.01361 0.01531 0.40 0.01407 0.01247 0.01881

10 1000 90 0.00366 0.01026 0.01089 0.47 0.01115 0.00907 0.01437

5. Discussion and Conclusions

In this paper, the knn based estimators for entropy, cross-entropy and Kullback-Leibler divergence are

proposed for distributions on hyperspheres. Asymptotic properties such as unbiasedness and consistency

are proved and validated by simulation studies using uniform and von Mises-Fisher distribution models.

The variances of these estimators decrease with k. For uniform distributions, variance is dominant and

bias is negligible. When the underlying distributions are modal, the bias can be large if k is large. In

general, we conclude that the behavior of knn and MR entropy estimators have similar performance in

terms of root mean square error.
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21. Özarslan, E.; Vemuri, B.C.; Mareci, T.H. Generalized scalar measures for diffusion MRI using

trace, variance, and entropy. Magn. Reson. Med. Sci. 2005, 53, 866–876.

22. Leow, A.; Zhu, S.; McMahon, K.; de Zubicaray, G.; Wright, M.; Thompson, P. A study of

information gain in high angular resolution diffusion imaging (HARDI). In Proceedings of 2008

MICCAI Workshop on Computational Diffusion MRI, New York, NY, USA, 10 September 2008.
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