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Abstract
Purpose: To evaluate conventional brachytherapy (BT) plans using dose-volume parameters and high resolution 

(3 Tesla) MRI datasets, and to quantify dosimetric benefits and limitations when MRI-guided, conformal BT (MRIG-CBT)
plans are generated. 

Material and methods: Fifty-five clinical high-dose-rate BT plans from 14 cervical cancer patients were retrospec-
tively studied. All conventional plans were created using MRI with titanium tandem-and-ovoid applicator (T&O) for
delivery. For each conventional plan, a MRIG-CBT plan was retrospectively generated using hybrid inverse optimiza-
tion. Three categories of high risk (HR)-CTV were considered based on volume: non-bulky (< 20 cc), low-bulky (> 20 cc
and < 40 cc) and bulky (≥ 40 cc). Dose-volume metrics of D90 of HR-CTV and D2cc and D0.1cc of rectum, bladder, and
sigmoid colon were analyzed. 

Results: Tumor coverage (HR-CTV D90) of the conventional plans was considerably affected by the HR-CTV size.
Sixteen percent of the plans covered HR-CTV D90 with the prescription dose within 5%. At least one OAR had D2cc val-
ues over the GEC-ESTRO recommended limits in 52.7% of the conventional plans. MRIG-CBT plans showed improved
target coverage for HR-CTV D90 of 98 and 97% of the prescribed dose for non-bulky and low-bulky tumors, respectively.
No MRIG-CBT plans surpassed the D2cc limits of any OAR. Only small improvements (D90 of 80%) were found for large
targets (> 40 cc) when using T&O applicator approach. 

Conclusions:MRIG-CBT plans displayed considerable improvement for tumor coverage and OAR sparing over con-
ventional treatment. When the HR-CTV volume exceeded 40 cc, its improvements were diminished when using a con-
ventional intracavitary applicator.
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Purpose
Brachytherapy (BT) has played a central role in radiation

therapy for cervical cancer since 1903. The standard of care
for cervical cancer is a combination of external beam radia-
tion therapy (EBRT) with concomitant cisplatinum-based
chemotherapy and BT. The standard BT treatment technique
has been unchanged for decades: 2D orthogonal radiographs
are used to specify a dose to a fixed reference point, point A,
relative to the intracavitary applicator. The patient anato-
my and tumor location, not radiographically visible, are un-
used in the treatment planning process [1,2]. Recent ad-
vances in treatment planning based on 3D imaging enables
the delineation of the target volumes and critical structures
allowing volume-based inverse planning [3]. As magnetic-
resonance imaging (MRI) provides superior soft tissue 
differentiation relative to computed tomography (CT) [4],

MRI-based treatment planning prior to each BT fraction is
preferred. The patient’s clinical target volume (CTV) and
organs at risk (OARs) can be clearly identified and contoured
on MRI datasets [4], allowing radiation delivery to macro-
scopic tumor volumes, and adaptive planning to account
for tumor regression.

The American Brachytherapy Society (ABS) task group
for cervical cancer [2] has adopted the Groupe Européen de
Curiethérapie-European Society for Therapeutic Radiolo-
gy and Oncology (GEC-ESTRO) recommendations for 3-D
imaging based BT planning [5]. The planning method takes
the pear-shaped isodose lines of conventional treatment and
adjusts dwell times to optimize the minimum dose received
by 90%, D90, of the High Risk (HR)-CTV, while restricting
the minimum dose to the hottest 2 cc of each OAR, D2cc. Sev-
eral studies [6-9] have investigated correlations between
dose-volume-histogram (DVH) parameters from these op-
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timized treatments and conventional point doses from con-
ventional planning. For example point A and International
Commission on Radiation Units and measurements (ICRU)
report #38-defined rectum and bladder points [1] using
pulsed-dose-rate (PDR) and high-dose-rate (HDR) BT.
The goal is to understand the correlation between ICRU 
report #38-defined points & point A and DVH metrics 
[6-9]. One center, performing MRI-guided, conformal BT
(MRIG-CBT) [10] reports that the mean HR-CTV volume 
for patients with local recurrence was significantly larger
(50 ± 24 cc) than for patients without local recurrence 
(34 ± 23 cc, p < 0.05). Only D90 and D100 of the HR-CTV had
a statistically significant effect on local tumor control, while
the doses to intermediate-risk CTV and gross target volume
did not [10]. This result implies that more analysis is need-
ed into the dosimetric benefits and limitations of MRIG-CBT
plans for different HR-CTV sizes. Previous studies con-
sidering HR-CTV size have only classified large and small
volumes, and employed lower resolution MRI (< 2 Tesla)
[8,9]. There is a need for improved contouring precision 
[4], accomplished with a high-resolution (3 Tesla) MRI [11].
Even though high-resolution (3 Tesla) MRI is being increas -

ingly used in diagnosis, its use in MRI-guided BT has only
recently been introduced in the literature [12-15].

In this study, we retrospectively evaluated conventional
plans using GEC-ESTRO recommended [5,16]. DVH para -
meters, and quantified the dosimetric benefits of MRIG-CBT,
both in general and with respect to three different HR-CTV
sizes.

Material and methods
Patients and EBRT treatments

We retrospectively studied 55 plans from 14 patients with
biopsy-proven cervical cancer, with approval from the in-
stitutional review board. The malignancies were rated FIGO
(International Federation of Gynecology and Obstetrics)
stage Ib1 to IV and were treated in 2009 or 2010. The treat-
ments employed EBRT with concomitant chemotherapy 
(for all but one patient in which chemotherapy was contra -
indicated), followed by 3-5 fractions of BT with 5.5-8 Gy frac-
tion size. The institutional protocol specifies eight weeks
from the beginning of EBRT to the end of BT; though this
time was extended in five cases due to clinical complications.
Other pertinent characteristics of the patients, tumors, and
treatments are summarized in Table 1. EBRT treatment plans
used either a 3-D conformal technique or intensity-modu-
lated radiotherapy (IMRT) generated using the Pinnacle3®
treatment planning system (version 7.0, Philips Medical 
Systems Inc., Madison, WI, USA). The prescription dose of
EBRT was 45 Gy in 25 fractions, and, when necessary, a 5.4
to 10 Gy boost in 3 to 5 fractions to the involved paraortic
or parametrial regions.

HDR treatments

All 55 plans were treated using a conventional Point Aplan-
ning technique. Intracavitary HDR started after 3-4 weeks
of EBRT, using the 192Ir radioisotope (VariSource iX®, Vari-
anMedical Systems Inc., Palo Alto, CA, USA). Patients were
prescribed a total dose of 33-36 Gy10 in 5-7 fractions, where
Gy10 is the equivalent dose in 2 Gy fractions of EBRT (EQD2)
using an α/β of 10 Gy. For each fraction, clinical examination
was performed under general anesthesia, and a Fletcher-
Suit-Declos® T&O applicator (Varian Medical Systems Inc.)
was inserted under ultrasound guidance. A titanium ap-
plicator was chosen for advantages previously described in
the literature [12,17]. Orthogonal digital radiographs were
acquired before and after 3.0 Tesla MRI scan to identify ap-
plicator displacements during patient transport to the MR
scanner (MAGNETOM TrioTM, Siemens Medical System Inc.,
Erlangen, Germany). All conventional plans were clinical-
ly generated on MRI not on radiographs, using a previously
reported scan protocol [12]. T2- and T1-weighted MR images
were used for contouring and source-pathway reconstruc -
tion, respectively.

Conventional and MRIG-CBT HDR treatment 
planning

Conventional point A based planning followed the insti -
tute’s clinical protocol developed according to ABS guide-
lines [2] (Fig. 1). The point Awas defined by drawing a line

PPaattiieenntt  cchhaarraacctteerriissttiiccss NN %%

Patients 14

FIGO stage

IB-IIB 8 57

III-IV 6 43

Histopathology

Squamous cell carcinoma 11 79

Adenocarcinoma 2 14

Other 1 7

Lymph node involvement 4 29

3 BT fractions (5.3-7.5 Gy) 5 36

4 BT fractions (5.0-6.0 Gy) 2 14

5 BT fractions (5.5-6.0 Gy) 7 50

MMeeddiiaann RRaannggee

Patient age 58 33-79

EBRT dose (Gy) 50 45-62

BT dose (Gy) 26 16-30

PPllaann  cchhaarraacctteerriissttiiccss NN MMeeddiiaann RRaannggee

BT (plans)

Total fractions 58

Usable fractions† 55

HR-CTV size (cc) 32 8-145

Non-bulky (cc) 15 15 8.3-20.0

Low-bulky (cc) 19 27 8.3-39.0

Bulky (cc) 21 74 8.3-145

TTaabbllee  11..  Patient and plan characteristics

FIGO – International Federation of Gynecology and Obstetrics, BT – brachytherapy,

EBRT – external beam radiotherapy 
†For 3 fractions the MRI scanner was unavailable, and patients were imaged by

CT instead. These fractions were excluded from the study
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through the center of each ovoid, the radius of the ovoid +
2 cm superiorly along the tandem from the intersection 
of this line, and 2 cm lateral from the center of the tandem.
Opti mization lines were generated 0.5 cm lateral from each
ovoid surface to specify vaginal doses, in addition to the li -
nes of 2 cm lateral from the center of the tandem to speci-
fy point A doses. Source pathway reconstruction [12,17] for
T&O was done on T1-weighted MRI (1 mm slice thickness)
by importing predetermined shapes from the applicator li-
brary (SolidApplicator, BrachyVisionTM, Varian Medical Sys-
tem Inc.). According to the GEC-ESTRO recommendations

[5,18], the HR-CTV, rectum, bladder and sigmoid colon were
retrospectively contoured on T2-weighted MRI of 3 mm slice
thickness.

The strategy for volume-optimization was based on a stu -
dy by Kim et al. [12] (Fig. 1) using an hybrid-inverse plan-
ning process. Hybrid-inverse planning represents a 3-D 
volume-optimization plan not solely generated by inverse
volume optimization, but generated in a hybrid manner 
using a con ventional point A plan and inverse volume-
optimization. The first step is the generation of a conven-
tional point A plan. A planner evaluates the DVH param-

Fig. 1. Isodose lines for conventional and MRIG-CBT planning of all three HR-CTV sizes: non-bulky (HR-CTV < 20 cc), low-
bulky (20 cc ≤ HR-CTV < 40 cc) and bulky (HR-CTV ≥ 40 cc)
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eters according to the total dose limit according to the 
GEC-ESTRO recommendations [19], the D2cc of an OAR are
≤ 75 Gy3 of EQD2 for the rectum and sigmoid colon, and
≤ 90 Gy3 of EQD2 for the bladder. The dose-volume con-
straints in inverse-volume optimization are set so that all
OARs receive equal or lower doses than their limit. After-
ward the optimization is iteratively altered with updated
dose-volume optimization constraints until three goals are
achieved. The three goals are: 1) OAR D2cc values below lim-
its of equation (1) (defined below), 2) HR-CTV D90 below
105% of the prescription dose, and 3) if HR-CTV D90 was
below the prescription dose, at least one OAR D2cc value
within 5% of its limit. The isodose lines for each slice on coro-
nal, sagittal, and axial plans were reviewed, and final dose
shaping using graphical optimization was performed if nec-
essary.

As a “worst-case scenario”, it was assumed that the HR-
CTV and all OARs received the EBRT prescription dose, and
that each OAR D2cc was in the same location for all BT treat-
ment fractions [20]. The OAR D2cc values from the EBRT
boosts were also accounted for and used to determine an
OAR limit for each BT fraction:

DDiiLLii ==  ((DDLL –– DDEEBBRRTT  –– DDbboooosstt))  –––––– ((11))DDEETT

where Li is the D2cc limit for BT fraction i,DL is the total dose
limit [19] to D2cc of an OAR, DEBRT – the total EBRT dose,
Dboost – the D2cc dose to the OAR from EBRT boost, Di is the
prescribed BT dose for fraction i, and DBT is the total pre-
scribed BT dose. All OAR quantities were converted to
EQD2 values using an α/β of 3 Gy [18].

Analysis

Each plan was analyzed by recording the D90 and D100
of the HR-CTV, the D2cc and D0.1cc of each OAR, and the
doses to point A and the ICRU bladder and rectum points
in contrast to those with MRIG-CBT. It has been reported
that DVH measurements in MRIG-CBT are highly-depen-
dent on a number of variables, including applicator recon -
struction, MRI artifacts, and contouring variation [17]. As both
conventional and MRIG-CBT cases employ the same ap-
plicator location and contours, the comparison of the two
methods was unaffected by these variables. All plans were
divided into three volume categories: non-bulky (HR-CTV
< 20 cc), low-bulky (20 cc ≤HR-CTV < 40 cc) and bulky (HR-
CTV ≥ 40 cc). The p values were calculated using a two-tailed
t-test assuming homoscedasticity.

Results
Conventional, point A based plans

All 55 conventional plans delivered the prescribed dose
to point A with little variation (Table 2). The average dos-
es to right and left point Awere 100 ± 1% (mean ± standard
deviation) of the respective prescription doses for non-bulky
and low-bulky tumors. The plans for bulky tumors showed
increased variation in point A dose, at 100 ± 2% of the re-
spective prescription doses. The D90 of the HR-CTV for con-
ventional plans was considerably affected by the HR-CTV
volume. On average, D90 for the HR-CTV for the low-bulky
tumors was favorable, at 104 ± 17% (Table 2). However, 
we found the HR-CTV D90 for 47% of the low-bulky tumor
plans corresponded to more than 5% overdose, while 42%
of the plans received more than 5% under-dose (Table 3). For

AA::  CCoonnvveennttiioonnaall  ppllaann  rreessuullttss,,  ttaarrggeett  ccoovveerraaggee

TTaarrggeett  ((%%  RRxx)) PPtt..  AA  ddoossee HHRR--CCTTVV  DD9900 DDiiffff..

All plans 100 ± 1 93 ± 24 –7.1%

Non-bulky 100 ± 1 111 ± 16 10.6%

Low-bulky 100 ± 1 103 ± 16 3.0%

Bulky 100 ± 2 72 ± 17 –28.8%

BB::  CCoonnvveennttiioonnaall  ppllaann  rreessuullttss,,  OOAARR  ssppaarrrriinngg

IICCRRUU  ((GGyy))  PPtt..  DD00..11cccc ((GGyy)) DD00..11  cccc//DDIICCRRUU DD22cccc ((GGyy))  DD22cccc//DDIICCRRUU

RReeccttuumm

All plans 3.9 ± 1.5 5.0 ± 1.7 1.3 ± 0.4 3.7 ± 1.1 1.0 ± 0.3

Non-bulky 4.2 ± 1.8 5.1 ± 1.7 1.4 ± 0.5 3.8 ± 1.3 1.0 ± 0.4

Low-bulky 3.9 ± 1.6 5.0 ± 2.0 1.3 ± 0.3 3.7 ± 1.3 1.0 ± 0.3

Bulky 3.8 ± 1.1 4.9 ± 1.5 1.3 ± 0.5 3.7 ± 0.9 1.0 ± 0.3

BBllaaddddeerr  ((%%  LLiimm))

All plans 4.5 ± 1.8 6.7 ± 2.2 1.7 ± 0.8 5.1 ± 1.4 1.3 ± 0.6

Non-bulky 3.8 ± 1.7 5.9 ± 1.7 1.7 ± 0.4 4.6 ± 1.5 1.3 ± 0.3

Low-bulky 4.6 ± 1.9 7.0 ± 1.8 1.8 ± 0.9 5.3 ± 0.9 1.4 ± 0.7

Bulky 4.7 ± 1.7 7.1 ± 2.8 1.7 ± 0.9 5.4 ± 1.6 1.3 ± 0.7

TTaabbllee  22..  Conventional plan results

Rx – prescribed dose, Pt – point, HR-CTV – high-risk clinical target volume, D90 – minimum dose to the hottest 90% of the target volume, OAR – organ-at-risk, 

ICRU Pt – point recommended by ICRU report #38 [1], D0.1cc/D2cc – minimum dose to the hottest 0.1 cc or 2 cc of the OAR volume, DICRU – dose to an ICRU Point. 

All values are mean ± one standard deviation 
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non-bulky or bulky tumors, the average HR-CTV D90 val-
ues were either considerable overdoses (+10.5%) or under-
doses (–28.2%), respectively. Regardless of their tumor size,
only 16% of conventional plans had HR-CTV D90 values with-
in 5% of the prescription dose (Table 3). Of the convention-
al plans, 52.7%, had at least one OAR with aD2cc value above
the GEC-ESTRO limit. The D2cc limits for the rectum, blad-
der, and sigmoid colon were exceeded in 20%, 29%, and 18%
of the conventional plans, respectively (Table 3). The blad-
der was the most frequently overdosed OAR (29% of plans,
Table 3), despite having a higher recommended dose limit
than the rectum or sigmoid colon. The mean doses of each
OAR across all plans remained below limits for all HR-CTV
sizes. When normalized to the fraction D2cc limits of equa-
tion 1, mean OAR D2cc ranged from 66 ± 21% for the sigmoid
colon in non-bulky geometries to a high of 94 ± 34% for blad-
der near low-bulky HR-CTVs (Table 4). When the dose dis-
tributions for all HDR and EBRT fractions were considered
cumulatively, four of the twelve patients for which all HDR
fractions were available showed at least one OAR D2cc val-
ue over the limit for the entire treatment: one patient had D2cc
values over the limit for both rectum and bladder, one pa-
tient exceeded only the rectum limit, one only the bladder
limit, and one only the limit of the sigmoid colon. 

Statistically significant correlation was found between
the rectum ICRU point and its D2ccmeasurements (r2= 0.5449,
p < 0.001) (Table 2). The mean ratio of D2cc to DICRU for the
rectum was 1.0 ± 0.3. However, no significant correlation
was seen between the bladder ICRU point and D2cc (r2= 0.210,

p= 0.125). The bladder ICRU point underestimated maximal
dose (D2cc), i.e. the mean ratio of D2cc to DICRUwas 1.3 ± 0.6.

MRIG-CBT plans

MRIG-CBT plans exhibited significantly higher HR-CTV
D90 values for non-bulky (p = 0.002) and bulky tumors 
(p = 0.028) (Table 4). No MRIG-CBT plans had a D90 greater
than 5% above the prescription dose. No MRIG-CBT plans
exhibited D2cc of any OARs over their GEC-ESTRO limit
(Table 3). Thus, no patients showed overall D2cc values over
the limits throughout their full HDR treatments. The effect
of this restriction was seen in the HR-CTV coverage result:
for all plans where HR-CTV D90 was less than the prescrip -
tion dose, at one or more OAR D2cc was within 5% of its lim-
it: this OAR was the bladder in 96% of these plans, the rec-
tum in 20%, and the sigmoid colon in 20%. The average D2cc
values of MRIG-CBT plans ranged from 41 ± 16% of the frac-
tion limit for rectum of non-bulky cases and 87 ± 16% for
bladder in bulky plans (Table 4). The bladder was the only
structure limiting dose in non-bulky and low-bulky plans.
For the 16 bulky plans with HR-CTV D90 less than the pre-
scribed dose, the bladder D2cc was within 5% of its limit in
81% of the plans, and the rectum and sigmoid D2cc were each
dose-restricting in 31% of such cases. 

To visually compare volumetric measurements (Fig. 2),
the mean success of each plan attribute was plotted on a se -
parate axis; HR-CTV D90 is plotted on the vertical axis rel-
ative to the prescription dose (Rx). Therefore, the 100% val-

PPllaann  cchhaarraacctteerriissttiiccss AAllll  ssiizzeess  ((%%)) NNoonn--bbuullkkyy  ((%%)) LLooww--bbuullkkyy  ((%%)) BBuullkkyy  ((%%))

CCoonnvv..  MMRRIIGG.. CCoonnvv.. MMRRIIGG.. CCoonnvv..  MMRRIIGG.. CCoonnvv..  MMRRIIGG..

Point A

Over Rx +5% 2 35 0 13 0 37 5 48

Within Rx ±5% 98 16 100 13 100 11 95 24

Under Rx –5% 0 49 0 73 0 53 0 29

ICRU point over 80% Rx

Rectum ICRU 22 22 33 13 16 21 19 29

Bladder ICRU 42 47 27 13 58 47 38 71

HR-CTV D90

Over Rx +5% 33 0 53 0 47 0 5 0

Within Rx ±5% 16 56 33 87 11 68 10 24

Under Rx –5% 51 44 13 13 42 32 86 76

D2cc over OAR limit

Rectum D2cc 20 0 13 0 26 0 19 0

Bladder D2cc 29 0 13 0 37 0 33 0

Sigmoid D2cc 18 0 7 0 5 0 38 0

D2cc within ±5% of OAR limit

Rectum D2cc 7 9 7 0 0 0 14 24

Bladder D2cc 13 44 20 13 5 47 14 62

Sigmoid D2cc 11 9 13 0 11 0 10 24

TTaabbllee  33.. Conventional and MRIG-CBT plans. Analysis with respect to tumor coverage and organs-at-risk sparing

OAR – organ-at-risk, D2cc, D0.1cc – minimum dose to the hottest 0.1 cc or 2 cc of the OAR volume, Rx – prescribed dose, HR-CTV – high-risk clinical target volume, 

D90 – minimum dose to the hottest 90% of the volume
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ue of HR-CTV D90/prescription dose (HR-CTV D90/Rx) on
the vertical axis is ideal. For instance, in B panel, conven-
tional plans have 111% Rx at HR-CTV D90, while MRIG-CBT
plans deliver 99% Rx. The D2cc of each OAR relative to the
OAR limit (D2cc/Lim) is plotted on the other three axes, thus
smaller % values represent better OAR sparing; these axes
were inverted such that OAR sparing increased as the val-
ues of sigmoid, bladder, rectum move away from the ori-
gin. Thus a larger area of the plotted “diamonds” indicates
improved plan characteristics. Large improvements were
seen for both low- and non-bulky cases, while mean treat-
ment results of bulky HR-CTV plans remained compara-
ble (Table 3). 

Discussion 

The dosimetric improvements of MRIG-CBT plans have,
when compared to conventional plans, been published for
HDR [19], and PDR [6-9] BT when using tandem-and-ring
applicator (T&R) [7,9], T&R plus needles [7,9], T&O [6], or
tandem only [8]. However, previous studies analyzed the
benefits of MRIG-CBT without tumor size classification or
with only two tumor size classifications, large and small vol-
umes. In this study, the dosimetric benefits of MRIG-CBT
were analyzed for three different HR-CTV groups when us-
ing conventional T&O applicators without the use of sup-
plementary needles. For bulky tumors, however, neither

Fig. 2.Average plan attributes for each HR-CTV size. HR-CTV D90 is plotted on the vertical axis relative to the prescription dose.
Therefore, the 100% of HR-CTV D90/prescription dose (Rx) represents HR-CTV D90 receives Rx. The D2cc of each OAR relative
to the OAR limit (D2cc/Lim) is plotted on the other three axes, thus smaller % values represent better OAR sparing; these axes
are inverted such that OAR sparing increased as the values of sigmoid, bladder, rectum move away from the origin
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planning method was able to increase HR-CTV D90 to the
prescribed dose when the T&O was used. MRIG-CBT re-
sulted in only small improvements for bulky tumors. There-
fore, the only use of conformal volume optimization and
MRI guidance are limited to appropriately cover bulky tu-
mors when a conventional intracavitary applicator is used.
MRIG-CBT applicators for bulky tumors have been devel-
oped: T&R plus needles (Vienna applicator) [7,9] and T&O
plus needles (Utrecht applicator) [21] and their use is rec-
ommended for bulky tumors. Transperineal interstitial im-
plants for MRIG-CBT can be an alternative technique for
bulky tumors. As a less invasive approach for bulky tumors,
intensity-modulated brachytherapy using intracavitary ap-
plicators with electronic brachytherapy source has been un-
der development [22,23].

The MRIG-CBT treatment planning approach showed
good HR-CTV D90 in all cases where it was not restricted
by OAR dose limits. Most of the optimization results were
highly dependent on the OAR D2cc limits set by equation
(1). In cases where the HR-CTV D90 did not reach the pre-
scription dose, one of the three OARs restricted the HR-CTV
D90, and increasing the limit or allowing a slight overdose
could have a large effect on HR-CTV D90. This may be pos-

sible by shifting more of the allotted OAR dose to earlier
HDR fractions and relying on tumor regression to enable
sparing in the corresponding OAR in later treatment frac-
tions. Such a shift in OAR limits would also affect the rel-
ative results of the two planning methods. In the present
study, the optimization was able to reduce systematic over-
doses to the HR-CTV in non-bulky plans, and reduce the
D90 variance seen in the conventional coverage of low-bulky
tumors. Especially, for non-bulky tumors, MRIG-CBT can
result in the dose reduction on side wall and nodes. Future
studies on nodal doses of MRIG-CBT need to be performed.
The studies on how to deliver appropriate radiation dose
to nodes through EBRT also are expected to be followed.
For instance, a simultaneous boosting to pelvic lymph nodes
can be an option using image guided IMRT technique.

As emphasized by Trnková et al. [3], large-scale modi-
fications to conventional distributions and/or solely inverse
planning should be avoided until an understanding of the
relationship between DVH-values and treatment efficacy
is established. Thus, hybrid inverse optimization [24] was
utilized in this study. What constitutes a “large-scale” mod-
i fication and how to find improved inverse planning ob-
jectives are still open questions. 

AA::  CCoonnvveennttiioonnaall  ppllaann  rreessuullttss,,  ttaarrggeett  ccoovveerraaggee

HHRR--CCTTVV  DD9900 CCoonnvveennttiioonnaall  MMRRIIGG--CCBBTT  DDiiffff..  ((%%)) pp--vvaalluuee
((%%  RRxx)) ((%%  RRxx))

All plans 93 ± 24 91 ± 15 –7.6 0.421

Non-bulky 111 ± 16 98 ± 9 –9.2 0.002

Low-bulky 103 ± 16 97 ± 9 –6.2 0.101

Bulky 72 ± 17 80 ± 16 –7.7 0.028

BB::  PPllaannnniinngg  ccoommppaarriissoonn,,  OOAARR  ssppaarrrriinngg

CCoonnvveennttiioonnaall  MMRRIIGG--CCBBTT DDiiffff..  ooff  %%  pp--vvaalluuee

DD00..11cccc  ((GGyy)) DD22cccc  ((GGyy)) %%  OOAARR  lliimmiitt DD00..11cccc  ((GGyy)) DD22cccc  ((GGyy)) %%  OOAARR  lliimmiitt OOAARR  lliimmiittss

RReeccttuumm

All plans 5.0 ± 1.7 3.7 ± 1.1 75 ± 34 4.2 ± 1.4 3.1 ± 1.0 56 ± 25 –19.0% < 0.001

Non-bulky 5.1 ± 1.7 3.8 ± 1.3 80 ± 43 3.6 ± 1.2 2.5 ± 0.7 41 ± 16 –38.7% < 0.001

Low-bulky 5.0 ± 2.0 3.7 ± 1.3 74 ± 32 3.9 ± 1.3 2.9 ± 0.8 50 ± 19 –24.1% < 0.001

Bulky 4.9 ± 1.5 3.7 ± 0.9 72 ± 29 4.9 ± 1.4 3.7 ± 1.0 72 ± 26 –0.1% 0.893

BBllaaddddeerr

All plans 6.7 ± 2.2 5.1 ± 1.4 86 ± 36 6.3 ± 1.7 4.7 ± 1.3 75 ± 25 –11.4% 0.006

Non-bulky 5.9 ± 1.7 4.6 ± 1.5 78 ± 40 4.9 ± 1.6 3.6 ± 1.2 53 ± 28 –25.4% < 0.001

Low-bulky 7.0 ± 1.8 5.3 ± 0.9 94 ± 34 6.5 ± 1.3 4.8 ± 0.9 78 ± 21 –15.2% 0.009

Bulky 7.1 ± 2.8 5.4 ± 1.6 85 ± 34 7.1 ± 1.6 5.5 ± 1.0 87 ± 16 2% 0.502

SSiiggmmooiidd

All plans 5.1 ± 2.2 3.6 ± 1.1 73 ± 31 4.3 ± 1.9 3.0 ± 0.9 54 ± 23 –18.4% < 0.001

Non-bulky 4.8 ± 1.4 3.5 ± 1.0 66 ± 21 4.0 ± 1.6 2.7 ± 0.9 44 ± 14 –22.0% < 0.001

Low-bulky 4.7 ± 1.4 3.5 ± 1.1 72 ± 30 3.9 ± 1.3 2.9 ± 0.8 52 ± 21 –19.4% < 0.001

Bulky 5.6 ± 3.1 3.8 ± 1.3 78 ± 38 4.9 ± 2.4 3.4 ± 1.0 64 ± 28 –14.8% 0.006

TTaabbllee  44.. MRIG-CBT plan results

OAR – organ-at-risk, D2cc, D0.1cc – minimum dose to the hottest 0.1 cc or 2 cc of the OAR volume, Rx – prescribed dose, HR-CTV – high-risk clinical target volume, 

D90 – minimum dose to the hottest 90% of the volume
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A low-magnetic-field MR system of 1.5 or 2.0 Tesla has
been used for MR-guided BT. However, the signal-to-noise
ratio (SNR) of a 1.5 Tesla MR is suboptimal, particularly its
ability to accurately delineate the uterine cervix and the
macroscopic tumor regions [14,24]. In addition, increased
intra-scan motion artifacts exist when using 1.5 Tesla MR
due to the extended acquisition time when compared to 
a 3 Tesla MR (see Fig. 3 in reference [11]). The high resolution
(3 Tesla) MR system used in this study has approximately
double the SNR of a 1.5 Tesla system, resulting in an im-
age with a higher contrast in the uterine cervix and vagi-
na [11] and a substantially faster image acquisition speed
[12,25]. However, caution must be exercised when metal
based applicators are used in 3 Tesla MRI-guided BT
scans. In this study, a titanium T&O applicator was used
with a 3 Tesla MRI. Before any clinical use of 3 Tesla MRI-
guided BT, the safety concerns, especially radiofrequency
[RF] heat- had been verified first [26]. Once assured of the
safety of the process, the artifacts and distortions of the ti-
tanium applicator were quantified [12], since the artifact to
noise ratio also increases in 3 Tesla MR systems. 

Although it has been suggested to replace the BT com-
ponent of cervical cancer treatment with stereotactic body
RT, the unique advantages of BT should not be overlooked.
BT offers a significantly higher biologically-effective dose
due to the short distance between radiation sources and tar-
get volumes, and the sharp fall-off in radiation dose in space
allows for higher dose to non-bulky and low-bulky tumor
volumes while still retaining adequate sparing of nearby
healthy tissues. 

Conclusions
HR-CTV D90 was considerably affected by tumor size.

Only 16% of conventional plans had HR-CTV D90 values
within 5% of the prescription dose. Mean D2cc values of rec-
tum, bladder, and sigmoid colon were found to be below 
the GEC-ESTRO recommended limits for the conventional
plans. However, in 52.7% of conventional plans at least 
one of the OARs had a D2cc value over its limit. When all
HDR fractions were considered cumulatively, 17% of patients
had overall rectum and bladder D2cc values over their lim-
its, while 8% of patients exceeded the limit for sigmoid colon.
The MRIG-CBT treatment planning technique was found to
improve treatment plans relative to those of the conventional
approach with HR-CTV less that 40 cc, bringing the D90 dose
closer to the prescription value while avoiding overdose to
the D2cc of each OAR. Using conventional intracavitary ap-
plicators, only small improvements were seen when MRIG-
CBT was used for bulky targets (> 40 cc).
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