
Faculty & Staff Scholarship

2014

FLOC-SPANNER: An ?(1) O (1) Time, Locally Self-Stabilizing FLOC-SPANNER: An ?(1) O (1) Time, Locally Self-Stabilizing

Algorithm for Geometric Spanner Construction in a Wireless Algorithm for Geometric Spanner Construction in a Wireless

Sensor Network Sensor Network

G Ranganath
West Virginia University

V Kulathumani
West Virginia University

Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications

Digital Commons Citation Digital Commons Citation
Ranganath, G and Kulathumani, V, "FLOC-SPANNER: An ?(1) O (1) Time, Locally Self-Stabilizing Algorithm
for Geometric Spanner Construction in a Wireless Sensor Network" (2014). Faculty & Staff Scholarship.
2591.
https://researchrepository.wvu.edu/faculty_publications/2591

This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted
for inclusion in Faculty & Staff Scholarship by an authorized administrator of The Research Repository @ WVU. For
more information, please contact ian.harmon@mail.wvu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/328081269?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/faculty_publications
https://researchrepository.wvu.edu/faculty_publications?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/faculty_publications/2591?utm_source=researchrepository.wvu.edu%2Ffaculty_publications%2F2591&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ian.harmon@mail.wvu.edu

Research Article
FLOC-SPANNER: An 𝑂(1) Time, Locally
Self-Stabilizing Algorithm for Geometric Spanner
Construction in a Wireless Sensor Network

G. Ranganath and V. Kulathumani

Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506-6109, USA

Correspondence should be addressed to V. Kulathumani; vinod.kulathumani@mail.wvu.edu

Received 26 June 2013; Accepted 25 November 2013; Published 18 February 2014

Academic Editor: Prabir Barooah

Copyright © 2014 G. Ranganath and V. Kulathumani. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We present a distributed algorithm for creation of geometric spanners in a wireless sensor network. Given any connected network,
we show that the algorithm terminates in𝑂(1) time, irrespective of network size. Our algorithm uses an underlying clustering algo-
rithm as a foundation for creating spanners and only relies on the periodic heartbeat messages associated with cluster maintenance
for the creation of the spanners.The algorithm is also shown to stabilize locally in the presence of node additions and deletions.The
performance of our algorithm is verified using large scale simulations. The average path length ratio for routing along the spanner
for large networks is shown to be less than 2.

1. Introduction

From a communications perspective, a wireless sensor actu-
ator network can be modeled as a graph 𝐺 = (𝑉, 𝐸), where 𝑉
represents the set of nodes and 𝐸 represents the set of edges.
Let𝐺 be a connected graph and, given any pair of nodes 𝑢 and
V, let 𝛾

𝐺
(𝑢, V) denote the length of the shortest path between

𝑢 and V in graph 𝐺 in terms of the number of links traversed.
Let 𝐺 ⊆ 𝐺 be a connected subgraph of 𝐺. 𝐺 is a geometric
spanner of 𝐺 if there exists constant 𝑞 ≥ 1 such that for all
pairs of vertices 𝑢, V ∈ 𝑉, 𝛾

𝐺
(𝑢, V) ≤ 𝑞 ⋅ 𝛾

𝐺
(𝑢, V). The constant

𝑞 is referred to as the path stretch factor for routing along the
spanner. Geometric spanners are a popular form of topology
control in wireless networks because they yield an efficient,
reduced interference subgraph for both unicast and broadcast
routing.

In this paper, we present FLOC-SPANNER, a distributed,
locally self-stabilizing algorithm for creation of geometric
spanners. Our algorithm is built on top of FLOC [1], a locally,
self-stabilizing algorithm for creation of solid-disk clusters
in wireless sensor networks. In summary, FLOC partitions
a wireless network into clusters such that all nodes within a
certain radius around each clusterhead, necessarily, belong
to that cluster. This ensures that neighboring clusterheads

are separated by a certain distance and also allows roughly
uniform distribution of clusters and cluster-sizes across the
network. While maintaining this solid-disk property, FLOC
also ensures that node additions and deletions do not result
in a global reformation of clusters by allowing a dilation
factor 𝑚 of at least 2 in the size of each cluster. Thus, while
all nodes within a unit distance of a clusterhead belong to
that cluster, nodes up to a distance of 𝑚 hops can belong to
that cluster. This property ensures that node additions and
deletions can be handled locally without global restructuring.
In this paper, we have considered 𝑚 = 2. Thus, the solid-
disk property ensures that all nodes within one hop of the
clusterhead belong to that cluster andnodes up to 2hops away
can belong to the cluster.

While FLOC creates clusters in the network, there are
no structures established for connecting these clusters and
enabling communication between clusters. As a result, the
clusters by themselves do not form a connected subgraph.
Establishing a sparse but sufficient set of connections between
the clusters and thus realizing a spanner graph is not trivial.
This is because there are potentially a large number of can-
didate pairs between neighboring clusters that can form con-
necting links between neighboring clusters and the challenge
is to avoid redundant connectionswhile still ensuring that the

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2014, Article ID 923751, 14 pages
http://dx.doi.org/10.1155/2014/923751

http://dx.doi.org/10.1155/2014/923751
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2014%2F923751&domain=pdf&date_stamp=2014-02-18

2 International Journal of Distributed Sensor Networks

Figure 1: Illustration of a spanner graph created on a 10-by-10 Grid
with FLOC-SPANNER. The bold edges represent the intercluster
connections while the lighter edges represent the links from clus-
terhead to cluster members.

graph remains connected. The algorithm FLOC-SPANNER
presented in this paper addresses this challenge and creates
a geometric spanner by establishing sparse, yet sufficient
connections between clusters created by FLOC. Figure 1
illustrates a spanner graph created using our algorithm on a
10 by 10 grid.

The key characteristics of our proposed algorithm are
summarized below.

(i) During creation of connections between clusters, we
maintain the property that if two nodes 𝑎 and 𝑏 are
used to connect clusters 𝑐

𝑎
and 𝑐

𝑏
, then no other

connections exist between these clusters within i-
band range of 𝑎 and 𝑏. This property ensures that
the connectors are sparse and the total number of
edges in the resulting spanner is𝑂(𝑁), where𝑁 is the
number of vertices as opposed to 𝑂(𝑁𝑑), where 𝑑 is
the average degree of nodes in the network.

(ii) We piggyback entirely on the periodic and low fre-
quencymaintenancemessages of the underlying clus-
tering algorithm to establish as well as maintain the
spanner structure. As a result no further messaging
overhead is needed for FLOC-SPANNER.

(iii) Note that FLOC creates clusters in𝑂(1) time and once
any cluster is formed FLOC-SPANNER ensures that
the cluster is connected to all neighboring clusters
within 𝑂(1) time (irrespective of the network size).

(iv) Unlike several other algorithms for spanner creation,
FLOC-SPANNER does not require location informa-
tion for its operation. This makes deployment easier.

(v) The upper bound on the path stretch factor in the
resulting spanner is shown to be𝑂(5/2+4/𝑑), where𝑑
is the length of the shortest path on the complete net-
work graph.The upper bound thus converges to 2.5 as
distance between nodes increases. Furthermore, the
average path stretch factor is observed to be less than
2 on networks of 400 to 2000 nodes.

(vi) Utilization of FLOC for clustering also ensures that
impact of link changes (additions or removals) is
contained within a bounded distance from the source
of the event.

(vii) The resulting spanner structure can be used for broad-
casting system-wide state information in a one-to-
all as well as all-to-all mode. Furthermore the upper
bound on the path stretch factor ensures that, even
in a broadcast mode, information can be transferred
in time proportional to the shortest path between
two nodes. This property of distance-sensitivity is sig-
nificant for many querying, tracking, and control
applications of wireless sensor actuator networks [2–
4].

We analyze the performance of FLOC-SPANNER using
large scale simulations in JProwler, a discrete event simulator
for wireless sensor networks. Specifically, we measure the
path stretch factor, number of spanner edges, and the time for
spanner creation under different network sizes ranging from
400 nodes to 2000 nodes with different network densities.
Our measurements show that the number of spanner edges
grows linearly with the network size while the number of
connector edges per cluster, path stretch factor, and the time
to completion remain constant, independent of the network
size. The average path stretch factor is observed to be <2.

2. Model

2.1. Network Model. We consider a wireless ad hoc network
in which nodes lie on an undirected graph topology. Nodes
are assumed to be identical in their processing, data trans-
mission, and reception capacity. We assume a dual-band
model for the radio range; that is, the nodes are considered
to be in either inner-band or outer-band region. A node
can communicate reliably with nodes that are in the inner-
band range and unreliably with nodes that are in outer-band
range. A similar model is assumed in [1]. This is a reasonable
assumption to make considering that wireless radios have
been shown to exhibit a dual-band characteristic in which
received signal strengths are significantly high and isotropic
within an inner band and exhibit high variance (due to time-
varying interference and multipath effects) in an outer band
[5]. Unit distance is defined as the i-band range of each node.
Nodes can locally determine whether a neighbor is within
the i-band by using received signal strength, time of flight, or
ultrasound based techniques. The network graph consisting
of only i-band links is assumed to be connected. Each node
has access to local timers that are used for the tasks such as
sending of heartbeats periodically and for timing out when
waiting on a condition. The network is not required to be
synchronized in time.

2.2. Execution Semantics. Nodes have unique ids. We use 𝑖,
𝑗, and 𝑘 to denote the nodes and 𝑗 ⋅ V𝑎𝑟 to denote a program
variable residing at 𝑗. We denote a message broadcast by 𝑗 as
𝑚𝑠𝑔
𝑗
. A program consists of a set of variables and actions at

each node. Each action has the form

⟨guard⟩ → ⟨assignment statement⟩ . (1)

International Journal of Distributed Sensor Networks 3

A guard is a Boolean expression over variables. An
assignment statement updates one or more variables. A state
is defined by a value for every variable in the program, chosen
from the predefined domain of that variable. An actionwhose
guard is true at some state is said to be enabled at that state
and is executed.

2.3. Clustering. Each node runs an underlying clustering
algorithm FLOC. By doing so, within𝑂(1) time (independent
of the network size), each node 𝑗 becomes a clusterhead
or joins an existing cluster. The resulting clusters satisfy a
solid-disk clustering property in which all nodes within unit
distance of a clusterhead are required to be part of the same
cluster and nodes up to a distance 2 may be within the same
cluster.The actions in FLOC that result in these properties are
briefly reviewed in Section 2.6.

2.4. Problem Statement. Before stating the objective, we first
note the following definition for neighboring clusters.

Definition 1 (neighboring clusters). Two clusters𝑋 and 𝑌 are
neighboring if there exist nodes 𝑖 and 𝑗 within i-band of each
other such that 𝑖 ∈ 𝑋 ∧ 𝑗 ∈ 𝑌.

The objective in this paper is to utilize the underlying
clustering and create a spanner in the network which ensures
the following properties:

(i) all neighboring clusters are connected and thus the
graph is connected;

(ii) if two nodes 𝑖 and 𝑗 connect clusters 𝐶1 and 𝐶2, then
it is required that 𝑖 and 𝑗 are within i-band of each
other;

(iii) if two nodes 𝑖 and 𝑗 connect clusters 𝐶1 and 𝐶2, then
there are no other connections between clusters 𝐶1
and 𝐶2 using nodes that lie within the i-band of 𝑖 or
𝑗.

These properties ensure that the network graph is con-
nected using reliable links while also ensuring that unneces-
sary connections between neighboring clusters are avoided.
We show in our analysis that this results in retaining only
𝑂(𝑁) edges in the spanner while also ensuring a bounded
path length ratio over the complete graph.

2.5. Fault Model. Nodes may fail, stop, and crash and new
nodes may join the network. The states of a node may be
arbitrarily corrupted. In addition, messages may be lost.
These faults can occur in any finite number, at any time, and
in any order. A program is self-stabilizing if and only if, after
faults stop occurring, the program eventually recovers to a
state fromwhere its specification is satisfied. A self-stabilizing
program is fault-local self-stabilizing if the time and number
of messages required for stabilization are bounded by func-
tions of perturbation size rather than network size [1]. The
perturbation size for a given state is the minimum number of
nodes whose state must change to achieve a consistent state
of the network.

2.6. FLOC Review and Addition of Spanner State. FLOC
(fault-local clustering) [1] partitions a multihop wireless
network into nonoverlapping and approximately equal-sized
clusters such that all nodes within a certain radius around
each clusterhead, necessarily, belong to that cluster. While
maintaining this solid-disk property, FLOC also ensures
that node additions and deletions do not result in a global
reformation of clusters by allowing a dilation factor 𝑚 of at
least 2 in the size of each cluster. The basic FLOC actions
are briefly reviewed here for completion. Each node can be
in one of the following 5 states: idle, candidate, clusterhead,
i-band, or o-band.

Action 1.When the node has been idle for some random time,
it changes its state to candidate (i.e., becomes a potential
candidate for becoming the clusterhead) and broadcasts a
candidacy message.

Action 2. If the candidacy message is received by a node in
the i-band region of the sender and the receiver is already an
i-band member of some existing cluster, the receiver sends a
conflict message.

Action 3. If the candidate node receives the conflict message
for its candidacy request, it becomes an o-band member of
the cluster of the node which sent the message.

Action 4.When the candidate node does not receive a conflict
message within a certain predefined time the node becomes
a clusterhead and announces the same.

Action 5. Any node in the idle state that receives a clusterhead
message becomes an i-band or o-band member of the cluster
based ondetermination of i-band/o-band status of the sender.

Action 6. A node in o-band region of some cluster receives
leader message and determines that it is in i-band range of
the node which sent the message and joins that cluster as i-
band member.

FLOC thus exploits the atomic broadcast property of
wireless networks to enable unique election of clusterheads.
By atomically informing the neighbors of its intention to
become a clusterhead through a broadcast message, a node
is able to lock itself into the position of a clusterhead unless it
is notified of conflicts explicitly. It has been shown in [1] that
these actions result in creation of solid-disk clusters within
𝑂(1) time. Furthermore, with addition of periodic heartbeat
messages, the program is also shown to locally self-stabilize
from topology changes and message losses.

The original actions of FLOC only focused on forming
cluster membership; in this paper we are also interested in
realizing a connected subgraph which is a spanner for the
graph. Hence, after becoming a cluster member we add a
variable 𝑗 ⋅ 𝑐𝑝 at each node that consists of the node leading
towards the clusterhead from itself (the cluster-parent for node
𝑗). If 𝑗 is a direct neighbor of its clusterhead 𝑗 ⋅ 𝐻, then
𝑗 ⋅ 𝑐𝑝 = 𝑗 ⋅ 𝐻. If 𝑗 is connected to 𝑗 ⋅ 𝐻 through a node 𝑘
that is an i-band neighbor of 𝑗 ⋅ 𝐻 and 𝑗, then 𝑗 ⋅ 𝑐𝑝 = 𝑘. For
a clusterhead 𝑗 ⋅ 𝑐𝑝 =⊥.

4 International Journal of Distributed Sensor Networks

3. FLOC-SPANNER Protocol

In this section we describe the FLOC-SPANNER protocol
and analyze its correctness. The actions are described for a
given node 𝑗. The actions of this protocol at any node 𝑗 are
enabled as soon as the node becomes either an i-band or
o-band member of some cluster using the FLOC protocol.
Clusterhead nodes do not execute the actions of this protocol.
Thus, a common precondition for all the guards in this pro-
gram is that the node is either an i-band or o-band member.
Note that all messages that are required for FLOC-SPANNER
are piggybacked on periodic heartbeat messages sent out
by every node to maintain cluster status. Thus there is no
additional messaging overhead incurred.

3.1. Variables. Each node 𝑗maintains the following variables.

(i) 𝑗 ⋅ 𝐻: it is the cluster id for node 𝑗 which is equal to
the id of its clusterhead.

(ii) 𝑗⋅𝛾: it specifies the current state of the node in spanner
connection establishment.There are 4 possible states.

(a) Monitor: in this state, the node is not competing
to establish a connection with any other node.

(b) Conncand: in this state, the node is ready to
compete for connection establishment and is
waiting for the next heartbeat message to send
the request.

(c) Initiator: this is the verification state for a node
that has sent a request for connection establish-
ment and is waiting to learn about conflicts, that
is, other existing connectors that are within its i-
band range.

(d) Receptor: this is the verification state of a node
which has received a request for connection
establishment and is waiting to learn about con-
flicts, that is, other existing connectors that are
within its i-band range.

(iii) 𝑗 ⋅ 𝜙
𝑥
: it is a Boolean variable which is set to be true if

the node has a connection to the cluster 𝑥.

(iv) 𝑗 ⋅]
𝑥
: it specifies the id of the node belonging to the

cluster 𝑥 to which connection has been established.

(v) 𝑗 ⋅ 𝑍: it is a set of clusters for which node 𝑗 is a con-
nector, that is, the set of clusters 𝑥 for which 𝑗 ⋅ 𝜙

𝑥
is

true.
(vi) 𝑗 ⋅ 𝜅

𝐶: it is the id of the cluster with which a potential
connection is being initiated.

(vii) 𝑗 ⋅ 𝜅
𝑛
: it is the id of the node with which a potential

connection is being initiated.

(viii) 𝑗 ⋅ 𝐿: it is a list of clusters that node 𝑗 is aware of
and which are connected to 𝑗’s cluster through a node
within i-band range of 𝑗⋅𝑗⋅𝐿

𝑛
(𝐶) is used to denote the

connector for cluster𝐶 in this list and 𝑗⋅𝐿
𝜏
(𝐶) denotes

the time of last heard heartbeat from 𝑗 ⋅ 𝐿
𝑛
(𝐶).

1 2

34

a

b

c
d

ef

g
h

(a)

1

2

3

4

Monitor

Conncand

Initiator

Receptor

(b)

A

B
C

D

E

F

G

H

Detect new neighboring cluster
Learn about existing connection

or connection request
Timeout in connection candidacy state

Learn about conflict and cancel
connection

Timeout in initiator state:
establish connection

Learn about conflict and cancelconnection
Receive connection initiation request

Timeout in receptor state:
establish connection

(c)

Figure 2: (a) State transition diagram, (b) list of states, and (c) list
of transition events: note that events 𝑒 and 𝑓 are expected to happen
concurrently at nodes in the initiator and receptor states corre-
sponding to a connection.

3.2. Program. We describe the algorithm by grouping
together the guard-action pairs in each of the 4 states. The
algorithm is also formally stated in the form of guard-
action pairs in each state. Each node maintains a periodic
heartbeat timer to send out a heartbeat message and all
information is piggybacked into these heartbeat messages.
Heartbeat messages are classified into the following types:
T REGULAR, andT INITIATE, T CONFLICT.Themessage
type is included as one of the fields in the heartbeat message.
There is no extra overhead for the protocol to both create and
maintain the spanner. Note that the message reception event
in the following discussion is assumed to be enabled only
when the sending node is within i-band range of the receiving
node. The state transition diagram for the program is shown
in Figure 2.

3.2.1. Monitor State. The actions executed in the monitor
state are shown in Algorithm 1 using guard-action pairs. A

International Journal of Distributed Sensor Networks 5

Node 𝑗 in MONITOR State
Action M1: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟) →

𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔
𝑗
(𝑗, 𝑗 ⋅ 𝐻,𝑗 ⋅ 𝑍, 𝑇 𝑅𝐸𝐺𝑈𝐿𝐴𝑅)

Action M2: 𝑟𝑐V(𝐻𝐵 𝑚𝑠𝑔
𝑘
()) →

if 𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 then
for all 𝑥 in 𝑘 ⋅ 𝑍 do

if 𝑥 ∈ 𝑗 ⋅ 𝐿 then
update 𝑗 ⋅ 𝐿

𝜏
(𝑥) to current time

else
Add 𝑥 to 𝑗 ⋅ 𝐿

end if
end for

end if

if (𝑡𝑦𝑝𝑒! = 𝑇 𝐼𝑁𝐼𝑇𝐼𝐴𝑇𝑂𝑅) ∧ (𝑗 ⋅ 𝐻! = 𝑘 ⋅ 𝐻) ∧ (𝑘 ⋅ 𝐻 ∉ 𝑗 ⋅ 𝐿) then
𝜅
𝑐
= 𝑘 ⋅ 𝐻; 𝜅

𝑛
= 𝑘; 𝛾 := 𝑐𝑜𝑛𝑛𝑐𝑎𝑛𝑑;

end if

if (𝑡𝑦𝑝𝑒 == 𝑇 𝐼𝑁𝐼𝑇𝐼𝐴𝑇𝑂𝑅) ∧ (𝑗 ⋅ 𝐻! = 𝑘 ⋅ 𝐻) ∧ (𝑘 ⋅ 𝐻 ∉ 𝑗 ⋅ 𝐿) ∧ (𝑘 ⋅ 𝜅
𝑛
== 𝑗) then

𝜅
𝑐
= 𝑘 ⋅ 𝐻; 𝜅

𝑛
= 𝑘; 𝛾 := 𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟;

𝑟𝑒𝑠𝑒𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟);
end if

Algorithm 1: FLOC-SPANNER actions at node j inmonitor state.

node is in the monitor state whenever it is not competing to
form a connection with a neighboring cluster. In themonitor
state, a node periodically beacons its heartbeat message
announcing its current state. The transition of a node to
other states is guided based on themessages that are received.
These transitions are summarized below.

(1) Heartbeat Timer Timeout. In the monitor state, when the
heartbeat timer expires it sends a heartbeat message which
contains its cluster id (𝑗 ⋅𝐻) and a set of all clusters for which
it is the connector (i.e., 𝑗 ⋅ 𝑍).

(2) Receive Heartbeat Message. The actions taken by the node
when it receives a heartbeat message depend on the state of
the node from which it is received. The actions are grouped
as follows.

(i) Receive heartbeat from node 𝑘 which belongs to the
same cluster as 𝑗 (i.e., 𝑗 ⋅ 𝐻 = 𝑘 ⋅ 𝐻): if node 𝑘 is
connector to the same cluster𝑋, node 𝑗 checks its list
𝑗 ⋅ 𝐿 to see if𝑋 belongs to 𝑗 ⋅ 𝐿. If so, the last heartbeat
time for 𝑋, that is, 𝑗 ⋅ 𝐿

𝜏
(𝑋), is updated. Otherwise,

cluster𝑋 is added to 𝑗⋅𝐿 alongwith information about
the connecting node 𝑘 and the last heartbeat time.

(ii) Receive heartbeat from node 𝑘 belonging to different
cluster and the message is of type T REGULAR: node
𝑗 checks if there is already another connector to 𝑘’s
cluster within 𝑗’s i-band range; that is, it checks if 𝑘⋅𝐻
belongs to 𝑗 ⋅ 𝐿. If this condition is not satisfied node
𝑗 does the following.

(a) It becomes a candidate to establish connection
with 𝑘’s cluster via 𝑘 and changes its state to
conncand.

(b) The node id 𝑘 and its cluster 𝑘 ⋅ 𝐻 are recorded
into 𝜅𝑛 and 𝜅𝑐, respectively.

(iii) Receive heartbeat from node k belonging to different
cluster and the message is of type T INITIATE: when
the node 𝑗 receives the connection initiation message
it does the following provided that there is no other
connector to 𝑘’s cluster within 𝑗’s i-band range; that
is, 𝑘 ⋅ 𝐻 does not belong to 𝑗 ⋅ 𝐿.

(a) The node changes its state to receptor.
(b) The node id 𝑘 and its cluster 𝑘 ⋅ 𝐻 are recorded

into 𝜅
𝑛
and 𝜅
𝑐
, respectively.

(c) The node resets its heartbeat timer so that it gets
one full heartbeat interval to learn if there are
other confirmed connections within its i-band
range.

3.2.2. Conncand State. The actions executed in the conncand
state are shown in Algorithm 2 using guard-action pairs. A
node moves to the conncand state when it learns about a new
neighboring cluster and is not aware of existing connections
to that cluster. In the conncand state, it waits until the next
heartbeat timeout to initiate a connection with the neigh-
boring cluster. Until that time it listens to heartbeat messages
from neighbors to learn about already existing connections
and connection requests from other nodes in its cluster.
These actions are summarized below.

(1) Receive Heartbeat Messages. During the conncand state,
node 𝑗 checks all incoming heartbeat messages if there are
existing connections with 𝜅

𝑐
through a connector within

i-band range of 𝑗. Even if a piggybacked connection request

6 International Journal of Distributed Sensor Networks

Node 𝑗 in CONNCAND State
Action C1: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟) →

𝛾 := 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟;
𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔

𝑗
(𝑗, 𝑗 ⋅ 𝐻, 𝑗 ⋅ 𝑍, 𝑇 𝐼𝑁𝐼𝑇𝐼𝐴𝑇𝑂𝑅, 𝑗 ⋅ 𝜅

𝑛
, 𝑗 ⋅ 𝜅
𝑐
));

Action C2: 𝑟𝑐V(𝐻𝐵 𝑚𝑠𝑔
𝑘
) →

if (𝑗 ⋅ 𝜅
𝑐
== 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝐻 ∈ 𝑘 ⋅ 𝑍) ∨ (𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝜅

𝑐
∈ 𝑘 ⋅ 𝑍) then

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

end if

if 𝑡𝑦𝑝𝑒 == 𝑇 𝐼𝑁𝐼𝑇𝐼𝐴𝑇𝑂𝑅 ∧ 𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝜅
𝑐
== 𝑘 ⋅ 𝜅

𝑐
then

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

end if

Algorithm 2: FLOC-SPANNER actions at node 𝑗 in conncand state.

Node j in INITIATOR State
Action I1: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟) →

𝜙
𝜅𝑐
:= 𝑡𝑟𝑢𝑒;

]
𝜅𝑐
= 𝜅
𝑛
;

Add 𝜅
𝑐
to 𝑗 ⋅ 𝐿 and 𝑗 ⋅ 𝑍;

𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔
𝑗
(𝑗, 𝑗 ⋅ 𝐻, 𝑗 ⋅ 𝑍, 𝑇 𝑅𝐸𝐺𝑈𝐿𝐴𝑅));

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

Action I2: 𝑟𝑐V(𝐻𝐵 𝑚𝑠𝑔
𝑘
) →

if (𝑗 ⋅ 𝜅
𝑐
== 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝐻 ∈ 𝑘 ⋅ 𝑍) ∨ (𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝜅

𝑐
∈ 𝑘 ⋅ 𝑍) then

𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔
𝑗
(𝑗, 𝑗 ⋅ 𝐻, 𝑗 ⋅ 𝑍, 𝑇 𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇, 𝑗 ⋅ 𝜅

𝑛
));

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

𝑟𝑒𝑠𝑒𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟);
end if

If 𝑘 == 𝑗 ⋅ 𝜅
𝑛
then

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

end if

Algorithm 3: FLOC-SPANNER actions at node 𝑗 in initiator state.

is heard by 𝑗, node 𝑗 cancels its candidacy and moves back to
monitor state. This action ensures that only one node within
an i-band range can compete in the connection establishment
at one time to the same cluster.

(2) Heartbeat Timer Timeout. When the node heartbeat timer
times out and it is in conncand state the node 𝑗 does the
following.

(a) It sends heartbeat message and piggybacks a connec-
tion request to the node𝜅𝑛 for establishing connection
with 𝜅𝑐.

(b) It changes its state to initiator.

3.2.3. Initiator State. The actions executed in the initiator
state are shown in Algorithm 3 using guard-action pairs. The
initiator state represents the state where a node has initiated
a connection request with a node in its neighboring cluster. It
waits for an entire heartbeat interval to learn about conflicting
connections between the same pair of clusters by listening
to heartbeat messages. Only if no conflicts are detected, the
node will confirm the connection and move to the monitor

state. Otherwise, the connection request will be canceled.
The actions of a node in in the initiator state are summarized
below.

(1) Receive Heartbeat Messages. During the initiator state,
node 𝑗 checks all incoming heartbeat messages if there are
existing connections with 𝜅

𝑐
through a connector within i-

band range of 𝑗. The actions of the node 𝑗 depend upon
the state of the node from which the heartbeat message is
received. Accordingly, the actions are grouped as follows.

(i) Receive heartbeat from node 𝑘 which belongs to the
same cluster as 𝑗 (i.e., 𝑗 ⋅𝐻 = 𝑘 ⋅𝐻): if 𝑗 ⋅ 𝜅𝑐 belongs to
𝑘 ⋅ 𝑍, that is, if node 𝑘 has a connector to the cluster
with which node 𝑗 is waiting to establish connection,
then node 𝑗 does the following.

(a) It sends heartbeat message indicating con-
flict to the receptor node stored in the 𝜅𝑛.
(b) It resets its heartbeat timer.
(c) It changes its state tomonitor.

International Journal of Distributed Sensor Networks 7

Node 𝑗 in RECEPTOR State
Action R1: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟) →

𝜙
𝜅𝑐
:= 𝑡𝑟𝑢𝑒;

]
𝜅𝑐
= 𝜅
𝑛
;

Add 𝜅
𝑐
to 𝑗 ⋅ 𝐿 and 𝑗 ⋅ 𝑍;

𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔
𝑗
(𝑗, 𝑗 ⋅ 𝐻, 𝑗 ⋅ 𝑍, 𝑇 𝑅𝐸𝐺𝑈𝐿𝐴𝑅));

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

Action R2: 𝑟𝑐V(𝐻𝐵 𝑚𝑠𝑔
𝑘
) →

if (𝑗 ⋅ 𝜅
𝑐
== 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝐻 ∈ 𝑘 ⋅ 𝑍) ∨ (𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 ∧ 𝑗 ⋅ 𝜅

𝑐
∈ 𝑘 ⋅ 𝑍) then

𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔
𝑗
(𝑗, 𝑗 ⋅ 𝐻, 𝑗 ⋅ 𝑍, 𝑇 𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇, 𝑗 ⋅ 𝜅

𝑛
));

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

𝑟𝑒𝑠𝑒𝑡(𝐻𝐵 𝑡𝑖𝑚𝑒𝑟);
end if

if 𝑘 == 𝑗 ⋅ 𝜅
𝑛
∧ 𝑡𝑦𝑝𝑒 == 𝑇 𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇 then

𝛾 := 𝑚𝑜𝑛𝑖𝑡𝑜𝑟; 𝜅
𝑐
=⊥; 𝜅

𝑛
=⊥;

end if

Algorithm 4: FLOC-SPANNER actions at node 𝑗 in receptor state.

(ii) Receive heartbeat from node 𝑘 belonging to 𝜅𝑐: if
𝑗 ⋅ 𝐻 belongs to 𝑘 ⋅ 𝑍, that is, if node 𝑘 belonging to
the cluster with which node 𝑗 is waiting to establish
connection already has a connector to 𝑗’s cluster, then
node 𝑗 does the following.

(a) It sends heartbeat message indicating con-
flict to the receptor node stored in the 𝜅𝑛.
(b) It resets its heartbeat timer.
(c) It changes its state tomonitor.

(iii) Receive heartbeat from node 𝜅
𝑛
: this implies that the

node with which the connection is being established
has sent a premature heartbeat (without waiting for
one heartbeat interval). This, in turn, implies the
existence of a conflict for one of the following reasons
and hence node 𝑗 returns to the monitor state.

(a) Node 𝜅
𝑛
has detected a conflicting connec-

tion within its i-band range between the same
pair of clusters.
(b) Node 𝜅𝑛 has not accepted the connection
request and hence not moved into receptor state
(potentially because the initiator message was
lost).
(c) Node 𝜅𝑛 has joined some other clusters
because of reclustering by FLOC protocol.

The variables 𝜅
𝑛
and 𝜅

𝑐
are reset. The subsequent

heartbeat message from 𝑗 will thus not indicate
connection with 𝜅𝑛.

(2) Heartbeat Timer Timeout. When the heartbeat timer of a
node which is in initiator state times out while node 𝑗 is still
in the initiator state, it means that the node 𝑗 has not learned
about any other connectors to 𝜅

𝑐
within this interval and the

node 𝜅
𝑛
also has not sent any conflicting connections within

its i-band range. So, the node 𝑗 confirms the connection to 𝜅
𝑛

in a heartbeat message and marks the boolean variable 𝜙𝑥 to
true, where 𝑥 = 𝜅𝑐. The variables 𝜅𝑛 and 𝜅𝑐 are reset.

3.2.4. Receptor State. The actions executed in the receptor
state are shown in Algorithm 4 using guard-action pairs. A
nodemoves to the receptor state when it receives a connection
initiation from a node in the neighboring cluster. It waits
for an entire heartbeat interval to learn about conflicting
connections between the same pair of clusters by listening
to heartbeat messages. Only if no conflicts are detected, the
node will confirm the connection and move to the monitor
state. Otherwise, it will send a heartbeat message indicating
conflict and reset its heartbeat interval.

(1) Receive Heartbeat Messages. During the receptor state,
node 𝑗 checks all incoming heartbeat messages if there are
existing connections with 𝜅

𝑐
through a connector within i-

band range of 𝑗. The actions of the node 𝑗 depend upon
the state of the node from which the heartbeat message is
received. Accordingly, the actions are grouped as follows.

(i) Receive heartbeat from node 𝑘 which belongs to the
same cluster as 𝑗 (i.e., 𝑗 ⋅𝐻 = 𝑘 ⋅𝐻): if 𝑗 ⋅ 𝜅

𝑐
belongs to

𝑘⋅𝑍, that is, node 𝑘has a connector to the the cluster to
which node 𝑗 is waiting to establish connection, then
node 𝑗 does the following.
(a) It sends heartbeat message indicating conflict to

the initiator node stored in the 𝜅
𝑛
.

(b) It resets its heartbeat timer.
(c) It changes its state tomonitor.

(ii) Receive heartbeat from node 𝑘 belonging to 𝜅𝑐: if
𝑗 ⋅ 𝐻 belongs to 𝑘 ⋅ 𝑍, that is, if node 𝑘 belonging to
the cluster with which node 𝑗 is waiting to establish
connection already has a connector to 𝑗’s cluster, then
node 𝑗 does the following.
(a) It sends heartbeat message indicating conflict to

the initiator node stored in the 𝜅
𝑛
.

8 International Journal of Distributed Sensor Networks

(b) It resets its heartbeat timer.
(c) It changes its state tomonitor.

(iii) Receive heartbeat from node 𝜅
𝑛
: this implies that the

node which initiated the connection has sent a pre-
mature heartbeat (without waiting for one heartbeat
interval). This, in turn, implies the existence of a
conflict for one of the following reasons and hence
node 𝑗 returns to the monitor state.

(a) Node 𝜅
𝑛
has detected a conflicting connection

within its i-band range between the same pair
of clusters.

(b) Node 𝜅
𝑛
has joined some other clusters because

of reclustering by FLOC protocol. The variables
𝜅
𝑛
and 𝜅

𝑐
are reset. The subsequent heartbeat

message from 𝑗 will thus not indicate connec-
tion with 𝜅

𝑛
.

(2) Heartbeat Timer Timeout. When the heartbeat timer of a
node which is in receptor state times out while node 𝑗 is still
in the receptor state, it means that the node 𝑗 has not learned
about any other connectors to 𝜅𝑐 within this interval and the
node 𝜅𝑛 also has not sent any conflicting connections within
its i-band range. So, the node 𝑗 confirms the connection to
𝜅𝑛 in a heartbeat message and marks the boolean variable 𝜙𝑥
to 𝑡𝑟𝑢𝑒, where 𝑥 = 𝜅𝑐. The variables 𝜅𝑛 and 𝜅𝑐 are reset. Note
that, at the same time, the node 𝜅𝑛 would also mark node 𝑗
as a connector to cluster 𝑗 ⋅ 𝐻, because otherwise a heartbeat
message indicating a conflict would have been received.

3.3. Analysis. The FLOC-SPANNER protocol creates a geo-
metric spanner by connecting all pairs of neighboring clusters
created by FLOC. In this section, we analyze the correctness
of the FLOC-SPANNER protocol and provide bounds on
completion time and the path stretch factor. We first state the
invariants for the program.

Lemma 2. The following invariant holds for FLOC-SPAN-
NER.

(I1) For any two nodes 𝑖 and 𝑗 belonging to the neighboring
clusters 𝑥 and 𝑦(𝑖 ⋅ 𝜙

𝑦
= 𝑡𝑟𝑢𝑒 ∧ 𝑖 ⋅]

𝑦
= 𝑗) ≡ (𝑗 ⋅ 𝜙

𝑥
=

𝑡𝑟𝑢𝑒 ∧ 𝑗 ⋅]𝑥 = 𝑖).
(I2) Given nodes 𝑖, 𝑗, and 𝑘 such that 𝑖 and 𝑗 lie within i-

band of each other and belong to the same cluster x, and
node 𝑘 belongs to a neighboring cluster y (𝑖 ⋅ 𝜙𝑦 =

𝑡𝑟𝑢𝑒) ≡ (𝑗 ⋅ 𝜙𝑦 = 𝑓𝑎𝑙𝑠𝑒).

Proof. (I1) states that for a connection to be successful both
the nodes involved in the connection should connect to each
other; that is, if node 𝑖 of one cluster, connects to the node
𝑗 of neighboring cluster, then node 𝑗 should also connect
to the node 𝑖. This ensures that one-sided connections will
be avoided. In the FLOC-SPANNER protocol, as soon as
a node discovers a neighboring cluster that is not in its
list 𝑗 ⋅ 𝐿, it becomes a candidate for forming a connection.
Multiple nodes may become a candidate upon learning about
a new cluster through a heartbeat from a common node.

The node, whose heartbeat timer first expires, wins the
candidacy and moves to the initiator state. Upon becoming
an initiator, the node notifies the intended connecting node
which becomes a receptor almost atomically (only separated
by a message transmission time). After this, both initiator
and the corresponding receptor nodes wait for one heartbeat
interval to check for conflicting connections between the
same pair of clusters within their respective i-band region.
If no conflicting messages are heard, both the nodes simul-
taneously set their states to indicate connection after one
heartbeat interval. This ensures that (I1) is held.

(I2) states that if there is a connection between two
clusters, then there exists no other connection between the
same clusters within the inner-band range of the nodes that
are involved in the connection.This property ensures that the
number of pairwise connections used to establish the spanner
graph is minimized. In the FLOC-SPANNER protocol, all
nodes that learn about a new cluster through a heartbeat
messagemove to the conncand state. However, However, only
the node whose heartbeat timer first expires (say node 𝑖),
initiates this connection. Other candidate nodes that hear
a connection initiation or learn about an already existing
connection between the clusters cancel their intention to
form a connection. Furthermore, once an intention to form
a connection has been announced, both the initiator and the
corresponding receptor node (say node 𝑗) wait concurrently
for one heartbeat interval to learn about connections within
their respective i-band region. If such a conflicting connec-
tion exists, the nodes cancel their upcoming connection by
sending a conflict message. Likewise, if any other node had
initiated a connection between the same pair of clusters after
the node 𝑖 initiated the connection, the subsequent heartbeats
sent out by 𝑖 and 𝑗 after confirmation of the connection
will prevent the new initiation from succeeding. Thus, if a
connection is established through a pair of nodes, then there
exist no other connections between the same clusters through
nodes within i-band region of either of these nodes.

Note that the above invariants assume that all mes-
sages are successfully received. In the presence of message
losses, the invariants may be violated. For example, when
the heartbeat message with an initiation request is lost, a
partial connection may be established. When a heartbeat
message with a conflict notification is lost, there could be
duplicate connections within i-band region of each other.
Handling of these invariant violations and self-stabilization
to the invariant states are incorporated throughmonitoring of
invariant states and recovery by means of the fault-tolerance
actions that are described in Section 3.4.

Theorem 3. Irrespective of network size, the FLOC-SPANNER
protocol establishes connections between all pairs of neighbor-
ing clusters in 𝑂(1) time.

Proof. First, consider a given pair of neighboring clusters 𝑥
and 𝑦, that is, clusters which have at least one pair of nodes
𝑖 and 𝑗, where 𝑖 ∈ 𝑥 ∧ 𝑗 ∈ 𝑦 such that 𝑖 and 𝑗 are within i-
band of each other. Once the clusters have been formed and
memberships for 𝑖 and 𝑗 have been established, the nodes

International Journal of Distributed Sensor Networks 9

in either clusters will discover each other within 1 heartbeat
interval andmove to conncand state for forming connections.
The node in either of these clusters whose heartbeat timer
first expires after moving to conncand state will initiate
the connection request by moving to the initiator state and
sending a heartbeat message. Within 1 heartbeat interval of
this stage, a connection will be established between the two
clusters.

Secondly, if all pairs of neighboring clusters were con-
nected by a different pair of connector nodes, then all
the connection establishment can take place concurrently,
thus terminating the process in 𝑂(1) time. Even if a given
node was involved in connections with multiple neighboring
clusters, we note that there can only be a bounded number
of clusters whose members are within i-band range of the
node. This property follows from the solid-disk property of
the underlying clustering which guarantees that each cluster
is at least of a unit radius around the clusterhead. Thus
the connection establishment process will terminate in 𝑂(1)
time.

Theorem4. Let 𝑆 = (𝑉, 𝐸) denote a subgraph of the network in
which𝑉 is the set of all nodes in the network and 𝐸 = 𝐸1∪𝐸2,
where 𝐸1 is the set of links between 𝑗 and 𝑗 ⋅ 𝑐𝑝 for all nodes
𝑗 in the network and 𝐸2 is the set of connector edges created
by FLOC-SPANNER. Then 𝑆 yields a spanner for the network
graph; that is, all nodes are connected through edges in 𝑆.

Proof. Recall from the description of FLOC in Section 2.6
that, for each node that is a member of a cluster, 𝑗 ⋅ 𝑐𝑝
denotes the cluster-parent, that is, the id of the node that
leads 𝑗 towards the clusterhead. If 𝑗 is a direct neighbor of
its clusterhead 𝑗 ⋅ 𝐻, then 𝑗 ⋅ 𝑐𝑝 = 𝑗 ⋅ 𝐻. If 𝑗 is connected to
𝑗 ⋅ 𝐻 through a node 𝑘 that is an i-band neighbor of 𝑗 ⋅ 𝐻
and 𝑗, then 𝑗 ⋅ 𝑐𝑝 = 𝑘. For a clusterhead 𝑗 ⋅ 𝑐𝑝 =⊥. Since all
nodes belong to the same cluster, the set 𝐸1 which comprises
the links between 𝑗 and 𝑗 ⋅ 𝑐𝑝 provides a connection between
every node and its respective clusterhead. Now the FLOC-
SPANNER protocol ensures that all neighboring clusters are
connected through the edges in the set𝐸2.Thus the subgraph
𝑆 = (𝑉, 𝐸) where 𝐸 = 𝐸1∪𝐸2 yields a spanner in which there
exists a path between every pair of nodes in the network.

Theorem 5. The spanner graph 𝑆 = (𝑉, 𝐸) created by the
FLOC-SPANNER protocol is a geometric spanner with path
stretch factor bounded by 5/2 + 4/𝑑.

Proof. Let 𝑑
𝑖𝑗
denote the hop distance between any two nodes

𝑖 and 𝑗 in the original network graph. Let 𝑑
𝑖𝑗

> 1; that
is, 𝑖 and 𝑗 are not direct neighbors (in which case they can
directly exchange messages and communicate irrespective of
the spanner graph). Let 𝑖

𝑐
and 𝑗
𝑐
denote the clusters of nodes

𝑖 and 𝑗, respectively. Note that by the sold-disk property of
the underlying clustering, the minimum diameter of each
cluster is 2 units and the maximum diameter is 2𝑚 units
(where 𝑚 ≥ 2 in order to ensure local self-stabilization of
cluster formation). In this paper, we have considered 𝑚 =

2, yielding a maximum diameter of 4 units. Given that the
minimum diameter for each cluster is 2 units, the maximum

number of cluster pairs that need to be traversed between 𝑖
and 𝑗 is bounded by 𝑑/2. The distance between neighboring
clusterheads through edges in 𝑆 is bounded by 5 (if each
cluster is of diameter 4 units). The maximum distance from
each node to its clusterhead is 2 units. Thus the total distance
between 𝑖 and 𝑗 using only edges in 𝑆 is bounded by 5𝑑/2+ 4.
The path stretch factor is thus bounded by 5/2 + 4/𝑑. Thus,
we observe that the path stretch factor has maximum of 4.5
for 𝑑 = 2 and improves for nodes that are at a greater
separation.

3.4. Fault-Tolerance Actions. Topology changes and message
losses can cause the protocol’s invariants to be violated. For
example, (i) when nodes are removed, existing connections
between neighboring clusters may be broken; (ii) when a
heartbeat message with a connection initiation request is
lost, a partial (one-sided) connectionmay be established; (iii)
when a conflict message is lost, multiple connections may be
established within the same pair of clusters that are within
i-band of each other. To handle these invariant violations
and to guarantee self-stabilization to the invariant states,
we introduce the following actions which involve monitor-
ing of the system state to detect invariant violation. These
fault-tolerance actions are shown inAlgorithm5using guard-
action pairs.

(1) A connection liveness timer is used tomonitor the live-
ness of existing connections to neighboring clusters.
The interval 𝐶𝑇 of this timer is set to a value 𝑝 times
the heartbeat interval where 𝑝 ≥ 2. Note that, in the
FLOC-SPANNER protocol actions, whenever a node
hears a heartbeat message from a connector node
within its cluster (by checking against 𝑗 ⋅𝐿), it updates
the timestamp for the last heartbeat. Whenever the
connection liveness timer expires in any state, a
node checks the last heartbeat time for all active
connections in 𝑗 ⋅ 𝐿. If they are greater than 𝐶𝑇, then
the particular connection is removed from the list.

(2) Violation of invariants due to message losses can be
detected by checking for inconsistencies in the con-
nection information. Specifically, whenever a node
that is a connector to a cluster 𝑋 receives a heartbeat
message from a node 𝑘 that belongs to the same
cluster as 𝑗 (i.e., 𝑗 ⋅ 𝐻 = 𝑘 ⋅ 𝐻) and is a connector to
the same cluster𝑋, a violation is detected. A heartbeat
message with a type T VIOLATION is sent out by 𝑗
causing all nodes within i-band range to reset their
state with respect to cluster𝑋, including node 𝑘. This
causes a new election of connectors to take place
through the regular actions for FLOC-SPANNER.
The heartbeat timer is reset at node 𝑗.

4. Performance Evaluation

We evaluate the performance of FLOC-SPANNER using
JProwler, a Java based discrete event simulator for wireless
sensor networks. We implement the underlying clustering
protocol FLOC as well as the actions for the FLOC-SPANNER
protocol as discussed in this paper. We use a static grid

10 International Journal of Distributed Sensor Networks

Action S1: 𝑡𝑖𝑚𝑒𝑜𝑢𝑡(𝐶𝑇 𝑡𝑖𝑚𝑒𝑟) →

for all 𝑥 in 𝑗 ⋅ 𝐿 do
if 𝑛𝑜𝑤 − 𝑗 ⋅ 𝐿

𝜏
(𝑥) > 𝑝 then

remove 𝑥 from 𝑗 ⋅ 𝐿 and 𝑗 ⋅ 𝑍
𝜙
𝑥
:= 𝑓𝑎𝑙𝑠𝑒

end if
end for

Action S2: 𝑟𝑐V(𝐻𝐵 𝑚𝑠𝑔
𝑘
) →

if 𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 then
for all 𝑥 s.t (𝑗 ⋅ 𝜙

𝑥
== 𝑡𝑟𝑢𝑒 ∧ 𝑘 ⋅ 𝜙

𝑥
== 𝑡𝑟𝑢𝑒) do

remove 𝑥 from 𝑗 ⋅ 𝐿 and 𝑗 ⋅ 𝑍
𝜙
𝑥
:= 𝑓𝑎𝑙𝑠𝑒

𝑏𝑐𝑎𝑠𝑡(𝐻𝐵 𝑚𝑠𝑔
𝑗
(𝑗, 𝑗 ⋅ 𝐻, 𝑗 ⋅ 𝑍, 𝑇 𝑉𝐼𝑂𝐿𝐴𝑇𝐼𝑂𝑁, 𝑥));

𝑟𝑒𝑠𝑒𝑡 (𝐻𝐵
𝑡𝑖𝑚𝑒𝑟

);
end for

end if

Action S3: 𝑟𝑐V(𝐻𝐵 𝑚𝑠𝑔
𝑘
) →

if 𝑗 ⋅ 𝐻 == 𝑘 ⋅ 𝐻 ∧ 𝑡𝑦𝑝𝑒 == 𝑇 𝑉𝐼𝑂𝐿𝐴𝑇𝐼𝑂𝑁 then
remove 𝑥 from 𝑗 ⋅ 𝐿 and 𝑗 ⋅ 𝑍
𝜙
𝑥
:= 𝑓𝑎𝑙𝑠𝑒

end if

Algorithm 5: Fault-tolerance actions for FLOC-SPANNER.

topology and consider networks of different densities and
different sizes. Specifically, we have simulated networks of
sizes 400, 900, 1600, and 2025. For each network size, we
have considered deployment densities with 5, 7, and 9 nodes
per unit communication area. We denote these densities
as 𝐷1, 𝐷2, and 𝐷3, respectively. Our goal is to evaluate
the convergence characteristics of FLOC-SPANNER and to
measure the number of spanner edges and path stretch factor
as a function of network size and density. We have used a
heartbeat interval of 5 seconds and a connection liveness
interval of 15 seconds. We describe our observations in the
following subsections.

4.1. Convergence Time. To compute the convergence time for
the protocol, wemeasure the number of connected paths that
exist in the network at intervals of 1 second. Given that the
network is connected, the total number of paths in the system
is 𝑁 ∗ (𝑁 − 1). We define the convergence ratio at any time
as the ratio of the number of paths that exist in the system
between all pairs of nodes, to the total number of possible
paths (i.e.,𝑁∗(𝑁−1)). When all the clusters are created and
connections have been established between the clusters using
the FLOC-SPANNER protocol, we expect the number of valid
paths in the network to be𝑁 ∗ (𝑁 − 1) and the convergence
ratio to be 1.0. Once the convergence ratio reaches 1.0, we
expect the number of paths to slightly fluctuate in that range
because of transient message losses. In Figure 3(a), we show
the convergence ratio attained in the network as a function
of simulation time, for different network sizes. As seen in this
figure, the convergence ratio first reaches 1.0 at approximately
the same time irrespective of network size and this number
is about 2 to 3 times the heartbeat interval from the time
that the system is initialized. Note that clustering itself is
expected to take between 0 and 5 seconds and the expected

time for connections to be established is bounded by 2 times
the heartbeat interval.

Figure 3(a) is shown for the density model 𝐷1 (i.e., 5
nodes per unit communication area). Similar convergence
graphs are obtained under all three density models. The time
at which the convergence ratio first reaches 1.0 is taken as the
convergence time for the protocol. In Figure 3(b), we show the
convergence time as a function of network size, at different
network densities. We observe that the convergence time for
the protocol stays steady, irrespective of network size and
density highlighting the scalability of our protocol.

4.2. Path Stretch Factor. To compute the path stretch factor,
we compute the length of the shortest path using Dijkstra’s
algorithm on the original network graph and then on the
spanner graph resulting from our protocol. The ratio of
these lengths is taken as the path stretch factor. The ratio is
computed only for paths that exist on the spanner graph. In
Figure 4(a), we observe the variation in path stretch factor
over time for the density model 𝐷1 (i.e., 5 nodes per unit
communication area), under different network sizes. Between
0 and about 5 seconds after initialization, clusters are still
being formed in the underlying network and formation of
cluster connections has not started. Hence the path stretch
factor is zero. After this time, the number of pairwise node
paths in the system begins to increase and the path stretch
factor rises. When the total number of paths in the system
reaches 100% (i.e., around 12–14 seconds from Figure 3(a)),
we observe that the path stretch factor is around 2 to 3.3. In
this phase, all the paths have been created for the first time
but these paths have not really stabilized. We observe that
around the 20-second mark, the path stretch factor stabilizes
to values in the range of 1.4 to 1.8 and then stays in that
range. We then repeat the computation of path stretch factor

International Journal of Distributed Sensor Networks 11

C
on

ve
rg

en
ce

 ra
tio

Network size

Time (s)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0 5 10 15 20 25 30 35 40

400

625

900

1225

1600

2025

(a)

Node density
D1

D2

D3

C
on

ve
rg

en
ce

 ti
m

e (
s)

Network size

16

14

12

10

8

6

4

2

0

400 625 900 1225 1600 2025

(b)

Figure 3: (a) Convergence ratio as a function of time for different network sizes. (b) Average convergence time as a function of network size
for different network densities.

Pa
th

 st
re

tc
h

fa
ct

or

Network size
400

625

900

1225

1600

2025

0 20 40 60 80

Time (s)

3.5

3.3

3.0

2.8

2.5

2.3

2.0

1.8

1.5

1.3

1.0

0.8

0.5

0.3

0.0

(a)

Av
er

ag
e p

at
h

str
et

ch
 fa

ct
or

Network size

1.65

1.60

1.55

1.50

1.45

1.40

1.35

1.30

400 625 900 1225 1600 2025

(b)

Figure 4: (a) Path stretch factor as a function of time for different network sizes. (b) Path stretch factor as a function of network size, averaged
over different densities.

at all three density models. In Figure 4(b), we plot the path
stretch factor for network of different sizes, where the values
for the path stretch factor at a given size are averaged over the
different density models. From Figure 4(b), we observe that
larger networks experience slightly lower average path stretch
factors, validating the scalability of our approach.

4.3. Spanner Edges. In Figure 5(a), we show the total number
of spanner edges in the system as a function of simulation

time for the density model𝐷1. The number of spanner edges
steadily rises as clusters and cluster connections are formed
and remain steady after convergence. We repeat this com-
putation for different network densities. In Figure 5(b), we
show the number of spanner edges as a function of network
size at different densities. First, we observe that the number
of spanner edges grows only as 𝑂(𝑁), as opposed to 𝑂(𝑁 ∗

𝑑) in the original graph, where 𝑑 is the degree of each
node. Next, we observe that the number of spanner edges

12 International Journal of Distributed Sensor Networks

Network size
400

625

900

1225

1600

2025

Time (s)

To
ta

l e
dg

es

3000

2500

2000

1500

1000

500

0

0 20 40 60 80 100 120

3500

(a)

Node density
D1

D2

D3

Network size
400 625 900 1225 1600 2025

Av
er

ag
e t

ot
al

 ed
ge

s

3000

2500

2000

1500

1000

500

0

(b)

Figure 5: (a) Number of spanner edges as a function of time for different network sizes. (b) Number of spanner edges as a function of network
size for different network densities.

remains steady irrespective of network density. Thus the
density does not adversely affect the creation of cluster
connections, thereby validating that the FLOC-SPANNER
protocol remains scalable irrespective of network density.

5. Related Work

Designing algorithms for creation of spanners is a well-
researched topic and some detailed surveys can be found in
[6–8]. A brief summary is presented below.

From the perspective of wireless ad hoc networks, it
is important to realize spanner structures in a distributed
and local manner. In that context, relative neighborhood
graphs [9] and Gabriel graphs [10] are examples of proximity
graphs that can be realized in a distributed manner. However,
both of these do not yield geometric spanners (constant
bound on path stretch factor). Yao graphs [11] are an elegant
generalization of proximity graphs that can be constructed
locally and yield geometric spanners. The idea in Yao graphs
is for each node to partition the space around it into sectors of
angle 𝜋/3 and retain the edge to the closest node in each sec-
tor, thus allowing local selection. Refrences [12–14] propose
modifications to the Yao graph that result in bounding the
maximum degree. Reference [15] proposes an extension to
Yao graphs that results in minimizing the transmission range
at each node. However, in wireless networks, Yao graphs and
their variations may not result in reduction in the number
of edges as each node independently chooses a certain set of
neighbors (the number of edges in the spanner may still be of
the order𝑂(𝑁𝑑), where 𝑑 is the average degree of each node).

Delaunay triangulation of a network graph, a set of edges
such that for each edge there is a circle containing the edge

end points but not containing any other points, also yields a
geometric spanner. However, a Delaunay triangulation graph
could potentially require inclusion of edges that are longer
than the transmission range (not feasible in a wireless sensor
network). Hence restricted Delaunay graphs (RDGs) and
variations of RDG (such as localizedDelaunay triangles) have
been used in the context of wireless networks for localized
spanner creation. RDGs utilize only local communication
links and result in geometric spanners. By utilizing RDGs,
techniques in [16–18] produce spanner that contain only
𝑂(𝑁) edges. However, all of these techniques utilize location
information for creation of spanners. In this paper, we do
not assume localization for creation of spanners, making the
system easy to deploy and our algorithm terminates in 𝑂(1)
time. However, we do note that several of these approaches
also focus on ensuring planarity of the spanner graphs, which
is not a goal in our paper.

The idea of first creating clusters and then connecting
them to create geometric spanners has been exploited in [19].
Without the requirement of planarity, such an approach does
not require localization and the idea in FLOC-SPANNER
is along the same lines. However, the key difference arises
from the process of creating the intercluster connections in
a self-stabilizing manner with very little message overhead.
The technique in [19] relies on first building the two-hop
neighborhood of each node using synchronous rounds of
communication, after which the intercluster connection is
atomically established using some criteria such as nodes with
minimumnode id ormaximumbattery levels. Reestablishing
and maintaining this structure in the presence of node
additions/deletions and clustering changes are not trivial in
this model and have not been discussed. In contrast, our

International Journal of Distributed Sensor Networks 13

solution is asynchronous and each node nominates itself
as a candidate upon learning about any new cluster in its
neighborhood. Yet, we ensure that there are no duplicate
connections within the communication range of connector
nodes by overhearing heartbeat messages and signaling a
conflict before confirmation of connection. The proposed
algorithm is thus able to dynamically react to topology
changes, has lower memory requirement, converges in 𝑂(1)
time (including cluster formation), and is shown to self-
stabilize from arbitrary faulty states. Furthermore, by closely
integrating the algorithm with the underlying clustering
protocol FLOC, we are also able to achieve locality in self-
stabilization; that is, any topology change results in repairs
only within a radius of 2 units around that change. A regular
unit-disk clustering technique will not achieve this property;
instead the allowed dilation factor (𝑚 = 2) in the size of each
cluster enables this property [1].

The idea of exploiting the atomic broadcast characteristic
of wireless networks to ensure that connections between
clusters are separated by aminimum distance is similar to the
idea used in FLOC to guarantee minimum cluster separation.
However, it is to be noted that, in the process of clusterhead
election, the conflict detection can be resolved entirely locally
(i.e., within one hop of a candidate clusterhead). On the
other hand, in the formation of cluster connectors, two nodes
have to mutually agree that no conflicts exist within their
respective locality and concurrently agree on the formation
of the cluster connector.This imposes an additional challenge
which is addressed in the FLOC-SPANNER protocol.

6. Conclusions

We presented FLOC-SPANNER, a distributed algorithm for
creation of geometric spanners in a wireless sensor network.
Our algorithm uses an underlying clustering algorithm as
a foundation for creating spanners and only relies on the
periodic heartbeat messages associated with cluster main-
tenance for the creation of the spanners. There is no extra
overhead for spanner creation.Given any connected network,
we showed analytically that the algorithm terminates in𝑂(1)
time. We also showed that the path stretch factor is bounded
by 𝑂(5/2 + 4/𝑑). Furthermore, FLOC-SPANNER also self-
stabilizes in the presence of topology changes and message
losses.

We verified the performance of our algorithm using large
scale simulations in JProwler, a java based discrete event
simulator. Our simulations show that the average path stretch
factor for routing along the spanner for large networks is less
than 2. During creation of connections between clusters, we
maintain the property that if two nodes 𝑎 and 𝑏 are used to
connect clusters 𝑐𝑎 and 𝑐

𝑏
, then no other connections exist

between these clusters within the i-band range of 𝑎 and 𝑏.
This property ensures that the connectors are sparse and the
total number of edges in the resulting spanner is observed
to be 𝑂(𝑁), where 𝑁 is the number of vertices, as opposed
to 𝑂(𝑁𝑑) on the original graph, where 𝑑 is the average
node degree. Our simulations also verified the fact that the
path stretch factor and convergence time remain constant
irrespective of the network size.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani, “A fault-
local self-stabilizing clustering service for wireless ad hoc net-
works,” IEEE Transactions on Parallel and Distributed Systems,
vol. 17, no. 9, pp. 912–922, 2006.

[2] H. Cao, E. Ertin, V. Kulathumani, M. Sridharan, and A. Arora,
“Differential games in large-scale sensor-actuator networks,” in
Proceedings of the 5th International Conference on Information
Processing in Sensor Networks (IPSN ’06), pp. 77–84, April 2006.

[3] V. Kulathumani, A. Arora, and S. Ramagiri, “Pursuit control
over wireless sensor networks using distance sensitivity prop-
erties,” IEEE Transactions on Automatic Control, vol. 56, no. 10,
pp. 2473–2478, 2011.

[4] V. Kulathumani and A. Arora, “Distance sensitive snapshots in
wireless sensor networks,” in Principles of Distributed Systems
(OPODIS), vol. 4878, pp. 143–158, 2007.

[5] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic, “Impact
of radio irregularity on wireless sensor networks,” Proceedings
of the 2nd International Conference on Mobile Systems, Applica-
tions and Services (MobiSys ’04), pp. 125–138, 2004.

[6] G. Narasimhan and M. Smid, Geometric Spanner Networks,
Cambridge University Press, New York, NY, USA, 2007.

[7] R. Rajaraman, “Topology control and routing in ad hoc net-
works: a survey,” ACM SIGACT News, vol. 33, no. 2, pp. 60–73,
2002.

[8] M. Smid, “Closest-point problems in computational geometry,”
in Handbook on Computational Geometry, J. Sack, Ed., 1997.

[9] G. T. Toussaint, “The relative neighbourhood graph of a finite
planar set,” Pattern Recognition, vol. 12, no. 4, pp. 261–268, 1980.

[10] P. Bose, L. Devroye, W. S. Evans, and D. G. Kirkpatrick, “On
the spanning ratio of gabriel graphs and beta-skeletons,” in
Proceedings of the 5th Latin American Symposium onTheoretical
Informatics (LATIN ’02), pp. 479–493, 2002.

[11] A. C. Yao, “On constructing minimum spanning trees in k-
dimensional spaces and related problems,” SIAM Journal on
Computing, vol. 11, no. 4, pp. 261–268, 1982.

[12] M. Damian, “A simple yao-yao-based spanner of bounded
degree,” Computing Research Repository, http://arxiv.org/abs/
0802.4325.

[13] X.-Y. Li, G. Calinescu, and P.-J. Wan, “Distributed construction
of a planar spanner and routing for ad hoc wireless networks,”
in Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ’02), pp.
1268–1277, June 2002.

[14] R. Wattenhofer, L. Li, P. Bahl, and Y.-M. Wang, “Distributed
topology control for power efficient operation inmultihopwire-
less ad hoc networks,” in Proceedings of the 20th Annual Joint
Conference of the IEEEComputer andCommunications Societies,
pp. 1388–1397, Anchorage, Alaska, USA, April 2001.

[15] L. Li, J. Y. Halpern, P. Bahl, Y.-M.Wang, and R.Wattenhofer, “A
cone-based distributed topology-control algorithm for wireless
multi-hop networks,” IEEE/ACM Transactions on Networking,
vol. 13, no. 1, pp. 147–159, 2005.

[16] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geo-
metric spanner for routing in mobile networks,” in Proceedings

http://arxiv.org/abs/0802.4325
http://arxiv.org/abs/0802.4325

14 International Journal of Distributed Sensor Networks

of the 2nd ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc ’01), pp. 45–55, October
2001.

[17] M. Damian and S. V. Pemmaraju, “Localized spanners for Ad
Hoc wireless wetworks,” Ad Hoc & Sensor Wireless Networks,
vol. 9, no. 3-4, pp. 305–328, 2010.

[18] Y. U. Wang and X.-Y. Li, “Localized construction of bounded
degree and planar spanner for wireless ad hoc networks,”Mobile
Networks and Applications, vol. 11, no. 2, pp. 161–175, 2006.

[19] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder, “Geo-
metric spanners for wireless ad hoc networks,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 14, no. 4, pp. 408–
421, 2003.

	FLOC-SPANNER: An 𝑂(1) O (1) Time, Locally Self-Stabilizing Algorithm for Geometric Spanner Construction in a Wireless Sensor Network
	Digital Commons Citation

	FLOC-SPANNER: An O(1) Time, Locally Self-Stabilizing Algorithm for Geometric Spanner Construction in a Wireless Sensor Network

