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Abstract

The splicing regulator Polypyrimidine Tract Binding Protein (PTBP1) has four RNA binding domains that each binds a short
pyrimidine element, allowing recognition of diverse pyrimidine-rich sequences. This variation makes it difficult to evaluate
PTBP1 binding to particular sites based on sequence alone and thus to identify target RNAs. Conversely, transcriptome-wide
binding assays such as CLIP identify many in vivo targets, but do not provide a quantitative assessment of binding and are
informative only for the cells where the analysis is performed. A general method of predicting PTBP1 binding and possible
targets in any cell type is needed. We developed computational models that predict the binding and splicing targets of
PTBP1. A Hidden Markov Model (HMM), trained on CLIP-seq data, was used to score probable PTBP1 binding sites. Scores
from this model are highly correlated (r= 20.9) with experimentally determined dissociation constants. Notably, we find
that the protein is not strictly pyrimidine specific, as interspersed Guanosine residues are well tolerated within PTBP1
binding sites. This model identifies many previously unrecognized PTBP1 binding sites, and can score PTBP1 binding across
the transcriptome in the absence of CLIP data. Using this model to examine the placement of PTBP1 binding sites in
controlling splicing, we trained a multinomial logistic model on sets of PTBP1 regulated and unregulated exons. Applying
this model to rank exons across the mouse transcriptome identifies known PTBP1 targets and many new exons that were
confirmed as PTBP1-repressed by RT-PCR and RNA-seq after PTBP1 depletion. We find that PTBP1 dependent exons are
diverse in structure and do not all fit previous descriptions of the placement of PTBP1 binding sites. Our study uncovers new
features of RNA recognition and splicing regulation by PTBP1. This approach can be applied to other multi-RRM domain
proteins to assess binding site degeneracy and multifactorial splicing regulation.
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Introduction

Alternative splicing of pre-mRNA commonly determines the

protein output of mammalian genes, with most genes generating

multiple mRNA and protein products [1]. A typical alternative

exon is affected by multiple pre-mRNA binding proteins that may

either enhance or repress splicing [2]. The expression and activity

of these splicing regulatory proteins can vary with development,

cell type, or cellular stimulus [3]. This complex combinatorial

regulation can be seen in the conserved sequences within and

surrounding alternative exons, which generally contain the

binding sites for many different regulators. These sequences make

up what is sometimes called the splicing code as they determine

where and when the exon is spliced into an mRNA [4,5,6,7]. Such

a code should allow the development of models that predict exon

regulation based solely on the RNA binding affinity of the many

regulatory proteins and their other interactions. However, this is

not currently feasible, in part due to our incomplete understanding

of RNA recognition by the splicing regulators and their

mechanisms of action.

Whole-transcriptome crosslinking methods for individual pro-

teins in vivo are allowing the identification of large numbers of

protein/RNA interaction sites [8,9,10,11]. These data can be

overlapped with functional data on splicing to identify possible

direct target exons for particular proteins [12,13,14,15]. However,

there are limitations in the interpretation of these data. Cross-

linking efficiency can vary between different proteins and between

individual binding sites, making it difficult to relate the crosslinking

signal to the actual binding affinity. These signals are also

dependent on the expression of the bound RNA, and since these

data are generated one tissue or cell type at a time it is not always

feasible to extend the results from one setting to a new cell type or

point in development. It would be extremely useful to be able to

scan for binding affinity across the complete transcriptome and to
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predict exon targets in tissues that have not yet been subjected to

experimental analysis.

Splicing regulatory proteins commonly contain multiple RRM or

other RNA binding domains, with each domain recognizing a short

element of a few nucleotides [2,16]. Subtle variation in the optimal

binding element of each domain and flexible peptide linkers

between them allow for significant degeneracy within high affinity

binding sites. Although the short sequence motifs that are common

to a set of binding sites are readily identified, these likely constitute

only a portion of a full high affinity site. To rank binding sites and

assess their finer structures, we need an approach to search for

clusters of these short motifs and to score for binding affinity.

The Polypyrimidine tract binding protein 1 (PTBP1) is a widely

studied splicing regulatory protein [17,18]. PTBP1 is known to

repress the splicing of a large number of exons by binding in their

adjacent introns or within the exons themselves. PTBP1 is down

regulated in differentiating neurons and muscle cells to allow

inclusion of PTBP1 repressed exons during development of these

tissues [19,20,21]. In neurons the loss of PTBP1 is accompanied by

the up-regulation of the homologous protein PTBP2 [17,20,22].

PTBP2 has similar binding properties to PTBP1 and represses

some of the same exons [23]. Other exons are more sensitive to

PTBP1 than PTBP2 and are induced to splice when PTBP2

replaces PTBP1 in early neurons [24].

PTBP1 contains four RRM domains that recognize short

pyrimidine elements [25]. Flexible linkers separate RRM domains

one and two, and domains two and three. RRM domains three

and four interact through a hydrophobic interface that position

their RNA binding surfaces on opposite faces of the two-domain

structure. This orientation requires that the RNA elements

interacting with the structure be separated by an RNA loop

[26]. The structure of each of the PTBP1 RRM domains has been

solved in complex with the hexanucleotide, CUCUCU [25].

These structures show each domain binding a nucleotide triplet

with some additional contacts, and making similar base specific

interactions with CU or UC dinucleotides. Other sequences can

likely make different base specific contacts, and the optimal

elements for each domain are not known. Moreover, the flexible

linkers separating some of the RRM domains and the requirement

for a gap between elements simultaneously bound to domains

three and four allow for substantial degeneracy in PTBP1 binding

sites. This degeneracy and the lack of understanding of the

sequence features that contribute to binding affinity have made it

difficult to identify PTBP1 binding sites based on sequence alone,

and to assess which sequences surrounding an exon might

contribute to PTBP1 regulation.

Experiments with model substrates indicate that a single high

affinity PTBP1 binding site placed upstream of an exon, or within

it, can repress splicing [27]. However, strong repression of an

efficiently spliced exon requires an additional binding site either

within the exon or downstream from an exon with an upstream

high affinity site [17,27,28]. PTBP1 is also known to enhance the

splicing of certain exons [13,19,20]. The properties of these exons

and how they differ from those that are repressed by PTBP1 are

unclear, with different studies coming to different conclusions

[13,19]. An analysis of CLIP data in HeLa cells found that PTBP1

sites near the adjacent constitutive exons could enhance the

inclusion of an alternative exon between them [13]. In contrast,

examination of exons whose splicing was reduced by double

knockdown of Ptbp1 and Ptbp2 found that they frequently had

binding sites immediately downstream [19], whereas splicing

repression often involved upstream binding sites: a pattern

observed for other splicing regulators. These results are not

mutually exclusive. It is possible that the two groups examined

different subsets of the many exons regulated by PTBP1, and that

the protein may show additional patterns of protein binding

adjacent to its target exons.

In this study we sought to understand the sequence features that

determine RNA binding by PTBP1 and to examine how they are

combined in exons that are targeted by the protein. We first

developed a statistical model of PTBP1 binding sites that identifies

new features of RNA recognition by the protein. This binding

model was then applied to the assessment of exon regulation by

PTBP1 across the transcriptome.

Results

G containing triplets contribute to PTBP1 binding
To examine the interactions of PTBP1 across many binding

sites, we used a set of PTBP1-bound sequences identified by

crosslinking immunoprecipitation (CLIP) [13]. PTBP1 has four

RRMs separated by linker peptides, with each RRM recognizing a

pyrimidine triplet. In previous studies we found that a minimal

high affinity binding site for the protein extended across 25 to 30

nucleotides, about the average size of the CLIP clusters (29 nt)

[27]. Given the triplet recognition and the need for spacers

between the direct RRM contacts, it is unlikely that every

nucleotide within a CLIP cluster makes a direct base-specific

contact with the protein or otherwise contributes to binding

affinity. This information about direct binding is hidden in the

examination of a CLIP tag, but should affect the triplet frequencies

within the entire set of tags. We designed a two-state Hidden

Markov Model (HMM) based on triplets to assess whether triplets

would segregate into two states and whether these two states

differed in their PTBP1 binding or non-binding potential. The

48,604 CLIP clusters from the human transcriptome were

extracted and used to train the HMM (Figure 1A) [29,30]. This

training defined two states showing distinctly different triplet

distributions (Figure 1B). Pleasingly, all of the pyrimidine triplets

segregated into State 1. We called this state the PTBP1 binding

state, as we confirm below. We found that 20 triplets have higher

Author Summary

A key step in the regulation of mammalian genes is the
splicing of the messenger RNA precursor to produce a
mature mRNA that can be translated into a particular
protein needed by the cell. Through the process of
alternative splicing, mRNAs encoding different proteins
can be derived from the same primary gene transcript. The
regulation of this process plays essential roles in the
development of differentiated tissues and is mediated by
special pre-mRNA binding proteins. To understand how
these proteins control gene expression, one must charac-
terize what they recognize in RNA and identify these
binding sites across the genome in order to predict their
targets. Models that allow this prediction are essential to
understanding developmental regulatory programs and
their perturbation by disease causing mutations. In this
study, we use statistical methods to build models of RNA
recognition by the important splicing regulator PTBP1 and
then apply these models to predict PTBP1 regulation of
new gene transcripts. We show that PTBP1 has different
specificity for RNA than was previously recognized and
that its target exons are more diverse than was known
before. There are many similar splicing regulators in
mammalian cells, and these analyses provide a general
framework for the computational analysis of their RNA
binding and target identification.

Prediction of PTBP1 Binding and Splicing Targets
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probabilities to be seen in the PTBP1 binding state. All triplets

containing only pyrimidines were included in this 20-triplet set

(Figure 1B), with the top-scoring triplet UCU showing the

alternating C and U nucleotides seen in many characterized

PTBP1 binding sites.

Interestingly, multiple triplets containing G residues are also

preferred in State1 (Figure 1B). These triplets often contain U

residues as the other nucleotides. Some of these triplets, such as

UGU, have output (emission) probabilities in State 1 that are

similar to pyrimidine triplets, presumably also making them

predictive of PTBP1 binding. In contrast, triplets containing A

residues, even if the other two nucleotides are pyrimidines, were all

preferred by the non-PTBP1 binding State 2. These results

indicate that PTBP1 is not strictly pyrimidine specific. At least one

of its RRM domains can presumably make specific contacts with

G residues. On the other hand, all A containing triplets have

modest positive emission probabilities for state 2 and are likely to

be either neutral or to inhibit PTBP1 binding.

We next tested the HMM scoring, which strongly weights the

triplets from state 1 over state 2, for prediction of PTBP1 binding.

We performed cross validation experiments on the Hela CLIP

dataset. A background dataset was generated using ten randomly

picked sequences from each gene identified as containing a CLIP

cluster. Applying the model to this data set gave us a distribution of

scores that was compared to scores generated by subsets of the

CLIP clusters removed from the training set prior to training. As

shown in Figure S1, sequences from subsets of the CLIP clusters

scored significantly higher than background.

Figure 1. PTBP1 binding model. A. Scheme of the PTBP1 binding model. The two-state HMM model was trained on PTBP1 bound RNA sequences
(48,604 clusters) from published PTBP1-CLIP experiments. Triplets from these CLIP clusters were predictive of two states, with all of the pyrimidine
triplets preferred by State 1. The diagram presents the structure of the PTBP1 HMM (Hidden Markov Model) and its trained transition probabilities. B.
The probabilities that triplets are seen states 1 or 2 (emission probabilities) are plotted in black and gray bars, respectively. Asterisks indicate G
containing pyrimidine triplets.
doi:10.1371/journal.pcbi.1003442.g001

Prediction of PTBP1 Binding and Splicing Targets
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We also tested our model on an independent iCLIP dataset

from human embryonic stem cells (ESC) (Figure S2). Unlike

standard CLIP, iCLIP tags define the probable crosslink site as

being the 59 terminus of the tag. We used a Viterbi algorithm to

predict the most probable state path predicted by the PTBP1

HMM model for each iCLIP tag. Defining triplets from the State1

(PTBP1 binding) and triplets from State 2 (nonbinding), we found

that the frequency of predicted binding triplets is highly enriched

in the iCLIP cluster regions and peaks precisely at the crosslink

site. This indicates that State 1 probability is highly associated with

PTBP1 crosslinking in vivo.

To more quantitatively assess the relationship between the

HMM score and RNA binding, we applied the trained model to a

set of 100,000 random 69 nucleotide sequences. This length allows

for one hexanucleotide binding site for each of the four RRMs

with 15 nucleotide gaps, the minimum gap required for

simultaneous binding by RRMs 3 and 4 [25,26]. The scores are

calculated as a log-odds ratio of the probabilities of the sequence

having been generated by the HMM over a background model

that assigns equal probability to all triplets. The random sequences

generated a distribution of scores that was used to normalize the

binding scores, with the average score for random sequence set to

zero, and the z-score defined as the deviation from the average as

shown in Figure S3A [29]. Thus a sequence with a z-score of 2.74

is 2.74 standard deviations from the average (empirical

p-value = 0.005), and is predicted to be a significantly stronger

binder than the average sequence (500 of the 100,000 random

sequences have scores equal or greater than this sequence). A

negative z-score is predicted to bind less well than the average

sequence. We isolated thirteen sequences from the mouse

transcriptome that exhibited a range of scores from 22.62 to +
4.40 (Figure 2A). These were transcribed in vitro and subjected to

electrophoretic mobility shift assay to measure binding to

recombinant PTBP1 (Figure 2B; Figure S3B). Sequences yielding

negative scores all failed to bind PTBP1 within the protein

concentration range tested, with the exception of probe 4, which

bound weakly, below the level that would allow measurement of

an affinity constant. Positive scoring sequences all yielded PTBP1

bound complexes that were assayable by gel shift to derive

apparent binding affinities. The apparent Kds of these RNAs

showed a very strong negative correlation with their binding score

from the model (Pearson correlation coefficient = 2 0.9), where a

higher score predicts a lower Kd and hence a higher affinity

(Figure 2A). Thus, the scoring system performed very well in

predicting PTBP1 binding affinity.

Two sequences (probes 9 and 11) showed variable binding that

shifted their Kd ’s slightly off the fitted curve relating z-score to Kd.

These may have secondary structures that reduce binding affinity

thus increase their apparent Kd. To look at this, we examined the

predicted structure of each probe using the RNA fold program

[31]. Probes 9 and 11 did not show an overall free energy of

folding substantially lower than other RNAs. However, it is

difficult to rule out that they contain a local structure that

sequesters some key feature for PTBP1 recognition.

In addition to the background model using uniform triplet

frequencies, we also tested control sequence sets using different

nucleotide frequencies (Figure S4). Control sets that maintain the

mono or dinucleotide frequencies of the PTBP1 CLIP tags while

shuffling the triplet frequencies did not perform well. This is not

surprising because these sequences are highly skewed in nucleotide

content and the shuffling does not change the triplet frequencies

dramatically. We also tested a background model based on

random sequences selected from genes containing PTBP1 CLIP

clusters (ten sequences from each gene). Like the random dataset,

this background model generated scores that predicted affinity

reasonably well. However, it did generate negative scores for a

couple of probes that are shown to bind (data not shown). Thus,

the uniform model gave the most accurate scoring of the

background models we tested.

The data demonstrate that HMM scoring based on triplet

frequencies can accurately predict the observed binding affinities

across a wide range of Kd values (from ,250 nM to 1 nM). Probe

6 yields a z-score of 0.82 and binds with a Kd of 257 nM, whereas

probe 10 scores 2.74 in the model and binds with a Kd of 73 nM

(Figure 2B). These sequences include G containing triplets that

contribute to the binding scores. This method allows any sequence

to now be quantitatively assessed for possible PTBP1 binding,

which was not previously possible by simply looking for clusters of

a limited number of motifs. This HMM based approach should be

applicable to the prediction of binding sites and affinity for other

multi-domain RNA binding proteins.

Placement of PTBP1 binding sites adjacent to target
exons

With our new method of defining PTBP1 binding sites, we next

examined PTBP1 target exons for the location of predicted PTBP1

binding. In part, we wanted to reassess two previous studies that

came to differing conclusions regarding the placement of PTBP1

sites adjacent to its target exons. One group mapped PTBP1 CLIP

clusters adjacent to a limited number of PTBP1 repressed and

enhanced exons [13]. This study described PTBP1 repressed

exons as enriched for binding sites both upstream and down-

stream, as has been seen in studies of individual exons. They did

not observe PTBP1 CLIP clusters within repressed exons, even

though such exons have been described [17,32,33]. The PTBP1

enhanced exons they examined showed a trend in PTBP1 binding

near the flanking constitutive exons. A second study examined

exons showing altered splicing on splicing-sensitive microarrays

after Ptbp1/Ptbp2 double knockdown [19]. CLIP clusters derived

from the first study were mapped to these exons. The authors

found CLIP cluster enrichment upstream and within PTBP1/

PTBP2 repressed exons. In contrast to the previous study, they

found that PTBP1/PTBP2 enhanced exons showed enrichment

for CLIP tags in the downstream region. This pattern of binding

site placement relative to repressed and enhanced exons has been

observed for several other splicing regulatory proteins [14,34].

In our study, we defined four groups of exons from a set of

exons previously assessed for splicing after Ptbp1 knockdown

[20,35]. These included 68 PTBP1-repressed exons whose splicing

increases after Ptbp1 knockdown, 37 PTBP1-enhanced exons

whose splicing decreases after knockdown, 69 control exons that

are not affected by Ptbp1 depletion but are known to be

alternatively spliced (PTBP1-non regulated), and 1,000 constitu-

tive exons. We determined the density of predicted PTBP1

binding states within a 24-nucleotide window sliding along the

exon region. We also examined the sequence encompassing the

adjacent constitutive exons (Figure 3A). As expected, the non-

regulated control and constitutive exon sets did not exhibit high

probabilities of PTBP1 binding except in the polypyrimidine tract

of the 39 splice site. On the other hand, the introns upstream of

PTBP1 repressed exons show enrichment of potential PTBP1

binding sites starting from 250 nucleotides upstream of the exon.

Relative to the control exons, exons repressed by PTBP1 also

exhibited substantial enrichment of PTBP1 binding sites within the

exon itself and within the first 100 nucleotides of the downstream

intron. The repressed exons thus exhibit binding site placement

that combines the findings of the two previous studies [13,19]. The

PTBP1-enhanced exon set also shows enrichment of PTBP1

Prediction of PTBP1 Binding and Splicing Targets
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binding sites within the downstream intron relative to control

exons, although the distribution of binding sites across this region

was different between the repressed and enhanced exon sets

(Figure 3A). Similar to what was seen in the previous study by

Llorian, we found little enrichment of PTBP1 sites within

enhanced exons [19]. There is a limited enrichment adjacent to

Figure 2. Validation of the PTBP1 binding model. A. To validate binding scores, thirteen RNAs with various PTBP1 binding scores were transcribed
in vitro and subjected to binding assay. Apparent Kd’s (dissociation constant) were highly negatively correlated with PTBP1 binding scores (Pearson
correlation = 20.9). B. Four RNA sequences with predicted PTBP1 binding scores (Full data binding data in Figure S3). Potential PTBP1 binding sites are
underlined and in bold. Experimental binding affinities were assessed by electrophoretic mobility shift of RNA by PTBP1 and compared with prediction
scores. Apparent dissociation constants (Kd) were defined as the concentration at which half the protein was bound to RNA.
doi:10.1371/journal.pcbi.1003442.g002

Prediction of PTBP1 Binding and Splicing Targets
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Figure 3. Sequence characteristics of PTBP1-dependent alternatively spliced exons. A. An RNA map shows enrichment of predicted
PTBP1 binding sites near PTBP1-dependent exons. The Y-axis plots average density of predicted PTBP1 binding states within a 24 nt window; the
length of overlap between two adjacent windows was 8 nt. B. To assess PTBP1 binding signatures of individual exons, known PTBP1 regulated exons
were clustered by their PTBP1 binding score profiles and visualized as heat maps. These heat maps indicate wide variation in the positions of PTBP1
binding sites between individual exons. C. Four sequence features including the PTBP1 binding scores and 39 splice site strength show statistically
significant differences between regulated and control exon groups (one-tailed Student’s t-tests).
doi:10.1371/journal.pcbi.1003442.g003

Prediction of PTBP1 Binding and Splicing Targets
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the exons flanking enhanced exons. Interestingly however, we find

some PTBP1 enhanced exons that have PTBP1 binding sites

upstream of the exon. These were not seen in either previous

study. Our results are generally consistent with the known

placement of PTBP1 binding sites in PTBP1 target exons and

imply that rules correlating the position of PTBP1 binding to its

effect on a target exon are not as strict as seen for some other

splicing regulators. The mechanisms proposed from previous maps

of PTBP1 binding do not appear to be generalizable to all PTBP1

targets [13,19,27].

Binding maps for PTBP1 and other splicing regulators show the

averages of multiple exons. Since the data indicated a high level of

variability in binding site placement between individual exons, we

wanted to visualize target exons relative to each other. To display

binding signals for individual exons we created heat maps of the

binding scores upstream, within, and downstream of each exon in

the PTBP1 target set (Figure 3B). This display makes clear that the

location of PTBP1 binding sites within its known target exons is

variable. We found that 60% of PTBP1 repressed exons are

predicted to have strong binding sites within the upstream intron.

Most of these exons also have strong binding sites within either the

exon or the downstream intron, patterns that were observed

previously [13,19,27]. However, other patterns of binding site

placement are also seen, suggesting PTBP1 dependent exons are

following multiple rules. Some repressed exons score highly for

PTBP1 binding only within the exon or in both the exon and the

downstream intron. About half of PTBP1 enhanced exons have

strong PTBP1 binding sites downstream (Figure 3B). These can

co-occur with upstream intron-binding sites, but rarely with exon

binding sites. Interestingly, there are exons enhanced by PTBP1

with strong upstream binding in the absence of other sites. These

data demonstrate the heterogeneity in the position of PTBP1

binding sites for its target exons. This heterogeneity needs to be

considered for predicting PTBP1 dependent regulation.

PTBP1 repressed exons exhibited significantly higher average

binding scores in both the upstream intron and in the exon itself,

than either the control group of alternative exons or the PTBP1

enhanced exons (Figure 3C). The average binding scores in the

downstream introns were higher for both the PTBP1-repressed

and PTBP1-enhanced exons than the control group (Figure 3C),

although not at the same statistical significance. The variability of

binding site placement within the smaller group of PTBP1-

enhanced exons presumably contributes to the weaker statistical

correlation of binding scores with positive regulation.

We also compared the three exon sets for other features that

might contribute to their ability to be regulated by PTBP1,

including exon length, flanking intron length, and 59 and 39 splice

site strength. Most of these features were not statistically different

among the three-exon groups. However, both PTBP1 enhanced

and PTBP1 repressed exons were found to carry significantly

weaker 39 splice sites than the control exon set, as measured by the

Analyzer Splice Tool (Figure 3C) [36,37].

These results indicate that PTBP1-repressed exons, and perhaps

PTBP1-enhanced exons, exhibit an ensemble of sequence features

that define them as PTBP1 regulated and that should allow their

identification by sequence alone.

Prediction of PTBP1 repressed exons
Alternative exons are generally regulated by multiple factors

that act both positively and negatively on their ability to be spliced.

Thus, an exon controlled by a regulator in one context might not

be affected by it under other conditions where counteracting

factors are present, or required cofactors are absent. This means

that the most accurate predictions of splicing regulation will need

to consider many different factors. Nevertheless, models based on

single factors will be useful for understanding the relative

contributions of individual proteins to patterns of splicing

regulation. Such models will be easier to interpret regarding the

contributions of individual factors to individual exons than more

complex models. Moreover in the longer term, models developed

for different individual factors can be combined to make more

accurate predictions. To assess how well one might model splicing

regulation by a single factor, we examined whether the strength

and placement of predicted PTBP1 binding sites could be used to

predict new PTBP1 dependent exons. We plotted the scores for a

variety of sequence features against the percent of exons exhibiting

that score that also exhibit PTBP1 dependent exon repression

(Figure S5). These plots produced distinct sigmoidal curves where

most exons regulated by PTBP1 were found above or below a

particular score. This strongly suggests that a logistic regression

model incorporating each of these scores will be predictive of

PTBP1 repression.

We developed a multinomial logistic regression model and

trained it on three classes of regulated exons (Figure 4A) [38]. The

training set included PTBP1 repressed exons, PTBP1 enhanced

exons, and non-regulated exons. Each exon in each class was

scored for the four features found to correlate with PTBP1

regulation (x1 through x4), including the 39 splice site strength, and

the PTBP1 binding scores for each of three regions: the 250

nucleotides upstream of the exon, the exon itself, and the 100

nucleotides downstream of the exon. These intron lengths

encompass the regions of binding site enrichment for PTBP1

dependent exons (Figure 3).

The PTBP1-enhanced exons are fewer in number and show

more limited enrichment of PTBP1 binding sites than PTBP1-

repressed exons making the prediction for these exons less accurate.

We first tested models that considered just PTBP1-repressed exons

relative to control groups. However, we found that including the

enhanced exons as a separate training group improved the

prediction of repressed exons, even though enhanced exons

themselves are not as easily identified (data not shown).

The trained model yielded values for the b coefficients that

weight the different features contributing to the regulation. As

expected the upstream binding score was weighted most heavily in

predicting PTBP1 repression (Table S1), although binding scores in

all three regions contributed to the score for PTBP1 repression. In

contrast, we found that only the downstream binding score was

significantly associated with PTBP1 enhancement. The upstream

score generated a b coefficient close to zero making it essentially

neutral in the prediction of enhanced exons. The exon binding score

was subject to a negative b coefficient, indicating that exon binding

reduces the probability of PTBP1 enhancement. Using these b
coefficients, the trained models for repression or enhancement each

yield a value of the g-function (logit) for an exon (x) given by the log

of the ratio of the probability of repression or enhancement over the

probability that the exon is not regulated. From this, the probability

that an exon is repressed by PTBP1 can be determined from the two

g-values as shown in Figure 4A.

We assessed the multinomial logistic regression model by

recursively retraining on exon sets with one exon left out and

then scoring the missing exon. This leave-one-out cross validation

enabled assessment of the overall performance of the model [38]

(Figure S6). The PTBP1 dependent exon repression logit showed

good prediction, with an area under the curve (AUC) value of

0.72, substantially greater than random guessing (AUC = 0.5). As

expected, the enhanced exon logit was not as accurate as the

repression logit (AUC = 0.57), although it was better than random

(Figure S6A). Using these data, we assessed the sensitivity and
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specificity across the range of scores to define a decision threshold

for exon repression scores (Figure S6B). Increasing the threshold

increases the specificity by eliminating many false positives, but

decreases the sensitivity of the model in identifying maximum

numbers of repressed exons. We sought to choose a threshold that

gave a low false positive rate over one that yielded more regulated

exons. We found that above a threshold score of 0.65 the false

positive rate was 10% or lower (Figure S6B).

Figure 4. Scheme of the PTBP1 splicing regulation model and its application to an exon in Ptbp3. A. The PTBP1 splicing regulation model
was trained on known PTBP1-regulated and non-regulated exons and used to predict new PTBP1-dependent exons. Prediction results were
compared to changes in exon inclusion (PSI) measured by RT-PCR and RNA-seq. An exon from Ptbp3 is presented as a prediction example. From
intron and exon sequences, PTBP1 binding scores and 39 splice site strength were calculated and fed into the regulation model. B. The model
predicts exon 2 of Ptbp3 as repressed by PTBP1 with high probability (0.89). Ptbp1 knockdown in mouse neuroblastoma cells (N2A) confirmed
de-repression of the exon (from PSI = 45 to PSI = 70).
doi:10.1371/journal.pcbi.1003442.g004
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Applying the model to 4494 alternative cassette exons from

UCSC genome browser database, we found 243 exons (5.4%) that

yielded a PTBP1 repression probability score greater than 0.65 and

which were not in the training set. The 50 top-scoring cassette exons

are listed in Table 1. These included two exons that were reported

previously to be PTBP1 targets. An exon of Gabrg2 yields a

probability score of 0.92. Although we could not confirm its

repression in N2A cells because of low expression of the transcript,

the orthologous exon in rat is a well-characterized PTBP1

repression target [39]. Exon 2 of Ptbp3 (Rod1), another known

PTBP1 target [40], yielded a repression probability score of 0.89

and was confirmed by RT/PCR to show increased inclusion after

Ptbp1 knockdown (Figure 4B). We performed additional RT-PCR

validation in triplicate on a series of high and low scoring exons from

transcripts expressed in N2A cells (Figure 5 & Figures S7, S8 and

S9). Seven of ten exons scoring above 0.65 were de-repressed after

Ptbp1 knockdown in N2A cells, yielding a validation rate of 70%.

The actual false positive rate is difficult to estimate because exons

with high repression scores that are not affected by Ptbp1 depletion

in N2A cells might be regulated by PTBP1 in other cells. An

indication that this might be occurring is that the average inclusion

level (or percent spliced in value, PSI) of the putative false positives is

significantly higher than the confirmed true positives in N2A cells,

indicating that they will be less prone to change upon Ptbp1

depletion and be more difficult to validate (Figure S8B). Thus, the

true positive rate may be greater than 70%. Importantly, the high

validation rate for exons scoring above 0.65 indicates that the

binding model and the regulation model based upon it can identify

many new PTBP1 targets that were not previously known (Table1).

High scoring exons might also fail to be validated because of

regulation by other proteins. Knockdown of Ptbp1 induces

expression of its close homolog Ptbp2, which targets some of the

same exons [20] (Figure S7). To test whether PTBP2 was also

targeting the predicted PTBP1 repressed exons, we knocked down

Ptbp2 or both Ptbp1 and Ptbp2 expression in N2A cells and re-

assayed the exons in triplicate (Figures S10, S11 & S8A). Although

some exons showed greater inclusion in the double knockdown

compared to depletion of Ptbp1 alone, this did not validate any

additional predicted PTBP1 repressed exons. We did identify some

high and low scoring exons showing more complex regulation by

the two PTB proteins (Figure S10 & S11).

We also examined a set of low scoring exons (probability score#

0.2) by RT-PCR after Ptbp1 and/or Ptbp2 depletion (Figure 5B

and Figure S11). All of these exons (8 of 8) failed to respond to the

loss of PTBP1 and are likely true negatives. Thus, PTBP1

repression scores above 0.65 and below 0.2 were highly predictive

for regulation and its absence, respectively. As expected, interme-

diate scores were less consistent in their predictive value (Figure

S9). Some exons in the intermediate scoring group were affected

by PTB proteins and will be interesting to assess further.

The prediction of PTBP1-repressed exons was improved by

treating PTBP1-enhanced exons as a separate class, but the

probability scores for PTBP1 enhancement did not consistently

identify new PTBP1 target exons (data not shown). This is likely in

part due to the smaller number of exons in the training set and

their heterogeneity, with some possibly being indirect targets.

These predictions will likely improve with training on larger

numbers of PTBP1 enhanced exons as they are identified.

However, it is possible that simply the presence of the PTBP1

binding site is not sufficient for predicting PTBP1 enhancement

and that binding sites for other factors will need to be considered.

We next tested the model on a genomewide scale, by applying it

to a set of 168,111 mouse internal exons and ranking them by their

probability of PTBP1 repression. This analysis yielded 3824 exons

(2.3%) with probability scores above 0.65 for being repressed by

PTBP1. Among other activities, these exons were enriched in

genes that function in calcium ion transport, cytoskeletal

organization, intracellular transport, and synaptic transmission,

all functions affected by previously known PTB targets (Table S2).

To assess splicing of this large set of predicted PTB targets, we

used RNA-seq to generate a large dataset of exons that change after

Ptbp1 knockdown. RNA from control and PTBP1-depleted N2A

cells was subjected to high density short read sequencing on the

Illumina HiSeq platform using a strand specific, paired end protocol

[41]. Exons whose inclusion changed between the two samples were

identified by alignment to an exon database and quantification of

exon inclusion using the SpliceTrap program [42]. After filtering for

read coverage and removing the training set, we identified 573

alternative exons whose splicing was assayable in N2A cells. These

exons exhibit changes in percent exon inclusion (delta PSI) ranging

from 229% to 62% upon PTBP1 depletion. The exons were

binned by their PTBP1 repression probability scores and plotted for

their change in PSI (Figure 6). The average changes in splicing were

significantly correlated with the repression probability. Exons

scoring below 0.5 distributed around zero change in PSI, but above

this score the average exon inclusion is altered by PTBP1 depletion.

Most notably, exons with a repression probability score above 0.65

exhibited significantly larger changes in splicing than exons with

lower scores. Exons with intermediate scores and hence weaker

binding sites show smaller changes in splicing than high scoring

exons. Setting a threshold of a 5% change in PSI as validation, 22 of

33 exons (67%) that scored above 0.65 for PTBP1 regulation were

confirmed as PTBP1 repression targets in N2A cells. At least some

of the other 11 exons are presumably PTBP1 targets in other cells.

To test the model in another cell type, we examined exons

reported to change after Ptbp1 knockdown in mouse C2C12

myoblasts, as measured on splicing sensitive microarrays [43]. Very

similar to what was observed in N2A cells, we found that exons with

high repression probabilities showed significant de-repression upon

the Ptbp1 knockdown compared to exons with low repression

probabilities (Figure S12). Of 29 exons assayed on the arrays with a

repression probability above 0.65, 19 exons were confirmed as

PTBP1 repressed on the array (q-value,0.05), yielding a validation

rate of 66%. Thus the model performed very similarly in C2C12

and N2A cells. Among the 11 high scoring exons identified as

unchanged after PTBP1 knockdown in N2A cells only 3 were

assayed on the array and expressed in C2C12 cells. These again

showed high inclusion in C2C12 prior to knockdown and so were

difficult to assay for derepression. Thus, it is difficult to use the

C2C12 data to draw conclusions about the false positive rate.

The logistical model gives us a new tool for studying the

regulation of alternative splicing. Using it, we can now scan genomic

sequence to score exons for PTBP1 regulation. Applying the model

genomewide, the PTBP1 repression probability scores were

integrated into the UCSC genome browser. These data, displayed

with the RNAseq data from N2A cells are available at our website

(http://www.mimg.ucla.edu/faculty/black/ptbatweb/). A novel

PTBP1 repressed exon in the Kcnq2 gene is shown in Figure 6B.

The logistic model thus allows the assessment of any exon across the

transcriptome for likely PTBP1 regulation.

Discussion

New features of PTBP1 binding sites
We have developed two computational models, one that allows

accurate prediction of PTBP1 binding sites and another that

predicts likelihood of PTBP1 repression of exons across the

transcriptome. These models uncovered several new features of
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Table 1. PTBP1 repressed exons identified by the splicing model.

Gene Name Gene Description mm9 coordinates PTB Binding Scores 39 p(Repressed)

Upstream Downstream Splice site

Intron
(250 nt) Exon

Intron
(100 nt) Strength

Pax6 paired box gene 6 chr2:105523985–105524115(+) 8.35 21.49 20.80 0.27 0.99

Mbd5 methyl-CpG binding
domain protein 5

chr2:49134101–49135303(+) 6.46 20.93 2.27 20.32 0.98

Arhgap24 Rho GTPase activating
protein 24

chr5:102981145–102981338(+) 6.47 0.10 20.05 0.46 0.97

Tle1 transducin-like enhancer
of split 1

chr4:71819247–71819451(2) 4.71 0.05 21.26 22.56 0.94

Acsl6 acyl-CoA synthetase
long-chain family

chr11:54150438–54150515(+) 4.16 1.40 20.03 20.82 0.94

Ryr1 ryanodine receptor 1,
skeletal muscle

chr7:29829938–29829955(2) 4.78 20.08 20.88 21.71 0.94

Ankhd1 ankyrin repeat and KH
domain containing 1

chr18:36784163–36784921(+) 4.37 0.03 1.44 20.64 0.93

Slc39a14 solute carrier family 39
(zinc transporter)

chr14:70713408–70713577(2) 3.51 1.16 21.27 23.20 0.92

Gabrg2 gamma-aminobutyric
acid (GABA) A receptor

chr11:41727472–41727495(2) 1.95 2.77 0.56 23.79 0.92

Itga7 integrin alpha 7 chr10:128378878–128378997(+) 4.14 0.29 1.13 20.25 0.92

Iqsec2 IQ motif and Sec7
domain 2

chrX:148615540–148615635(+) 4.88 0.68 20.13 0.71 0.91

Smarca2 SWI/SNF related,
matrix associated,
actin dependent regulator
of chromatin

chr19:26825612–26825646(+) 3.94 20.09 1.23 20.86 0.91

Zfand3 zinc finger, AN1-type
domain 3

chr17:30197755–30197795(+) 4.17 2.34 0.90 1.80 0.91

Agap2 ArfGAP with GTPase
domain, ankyrin repeat
and PH domain 2

chr10:126527198–126527257(+) 3.57 0.06 20.53 23.08 0.90

Ttn Titin chr2:76723554–76723832(2) 2.93 1.06 1.19 21.83 0.90

Ptbp3 ROD1 regulator
of differentiation
1 (S. pombe)

chr4:59559021–59559054(2) 3.80 0.57 1.66 0.73 0.89

Mapk8 mitogen-activated
protein kinase 8

chr14:34203859–34203930(2) 2.35 1.17 1.01 23.48 0.89

Snap91 synaptosomal-associated
protein 91

chr9:86693373–86693534(2) 2.60 1.89 20.35 22.17 0.88

Fmnl1 formin-like 1 chr11:103059449–103059547(+) 3.93 20.60 21.36 22.70 0.88

Phldb1 pleckstrin homology-like
domain, family B

chr9:44509029–44509169(2) 3.20 0.57 1.05 20.66 0.87

2310035C23Rik RIKEN cDNA 2310035C23
gene

chr1:107637012–107637094(+) 2.03 1.76 0.85 22.46 0.87

Arnt aryl hydrocarbon receptor
nuclear translocator

chr3:95270715–95270759(+) 3.48 20.36 2.53 0.09 0.87

Smyd2 SET and MYND domain
containing 2

chr1:191723697–191723807(2) 3.33 0.33 20.28 21.64 0.86

Ap2a1 adaptor protein complex
AP-2, alpha 1 subunit

chr7:52158832–52158897(2) 3.35 20.12 20.89 22.69 0.86

Klra killer cell lectin-like
receptor, subfamily A

chr6:130329011–130329100(2) 2.82 3.18 0.62 0.77 0.86

Spag9 sperm associated
antigen 9

chr11: 93942054–93942068(+) 0.99 3.01 1.62 23.03 0.86

Col4a3bp collagen, type IV,
alpha 3 binding protein

chr13:97386949–97387026(+) 2.81 1.23 0.74 20.93 0.86

Garnl3 GTPase activating
RANGAP domain-like 3

chr2:32941395–32941464(2) 4.15 0.38 0.36 0.94 0.86
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RNA recognition by PTBP1 and the properties of its target exons.

The PTBP1 binding model was based on triplets following the

structures of the PTBP1 RRM domains, whose sequence specific

contacts are each primarily to three nucleotides. We find that the

set of triplets that increase the probability of binding includes the

expected pyrimidine motifs, particularly those with alternating

cytosines and uridines. However, many triplets with guanosine

residues also increase binding probability. In contrast, adenosine

residues have a negative effect on binding. Thus, RNA recognition

by PTBP1 is not solely dependent on pyrimidine nucleotides. The

recognition of G residues by PTB was unexpected, although some

previously characterized PTB binding sites did contain G residues

[13,44]. With this model, we can now predict PTBP1 binding

affinity to any site in the transcriptome.

The base-specific contacts that PTBP1 makes with Guanosine

are not yet clear. Recent studies of RNA recognition by SRSF2

(SC35) protein have shown that the element GGAG can be

recognized by the same RRM as CCAG by flipping the initial two

G nucleotides to the syn conformation [45]. It will be very

interesting to investigate whether a similar anti to syn switch

occurs in RNA bound by PTBP1, when C residues are replaced

with G.

Previous characterizations of PTBP1 binding sites have focused

on finding enriched short motifs within populations of bound

RNAs or regulated exon sequences [13,44,46,47,48]. These

methods generally identify elements whose short length will allow

interaction with only one RRM domain. Searching for new

binding sites comprised of clusters of these short elements can

Table 1. Cont.

Gene Name Gene Description mm9 coordinates PTB Binding Scores 39 p(Repressed)

Upstream Downstream Splice site

Intron
(250 nt) Exon

Intron
(100 nt) Strength

Dennd1a DENN/MADD domain
containing 1A

chr2:37982049–37982168(2) 3.37 0.80 1.35 0.59 0.86

Ms4a7 membrane-spanning
4-domains, subfamily A

chr19:11400297–11400353(2) 2.79 2.35 0.37 20.05 0.86

BC030307 cDNA sequence BC030307 chr10:86169981–86170089(+) 2.75 20.16 1.95 22.40 0.85

Phactr1 phosphatase and actin
regulator 1

chr13:43154940–43155146(+) 2.73 1.25 0.50 20.97 0.85

R3hdm2 R3H domain containing 2 chr10:126902187–126902240(+) 1.66 1.98 1.96 21.57 0.84

Cdc14b CDC14 cell division
cycle 14B

chr13:64306579–64306725(2) 1.42 2.75 2.44 20.58 0.84

Ubqln1 ubiquilin 1 chr13:58282183–58282266(2) 2.88 0.98 20.06 21.17 0.84

Ttn Titin chr2:76739898–76740179(2) 2.63 20.07 1.49 22.38 0.84

Stx3 syntaxin 3 chr19:11857290–11857400(2) 3.00 21.12 2.26 23.62 0.84

Slc8a3 solute (sodium/calcium)
carrier family 8

chr12: 82310340–82310458(2) 1.84 1.25 1.76 22.25 0.84

Zfp62 zinc finger protein 62 chr11:49028057–49028156(+) 3.27 1.98 20.51 0.19 0.83

Dlg1 discs, large homolog 1
(Drosophila)

chr16:31771843–31771941(+) 1.53 1.98 1.87 21.65 0.83

Nrxn2 neurexin II chr19:6463824–6463847(+) 3.35 21.37 1.33 22.26 0.83

Klra7 killer cell lectin-like
receptor, subfamily A

chr6:130179953–130180042(2) 2.68 2.11 20.39 20.63 0.83

Picalm phosphatidylinositol
binding clathrin assembly

chr7:97330729–97330878(+) 1.15 2.15 2.30 22.37 0.83

Acad8 acyl-Coenzyme A
dehydrogenase family

chr9:26798168–26798277(2) 2.61 0.88 20.31 21.86 0.83

Epn1 epsin 1 chr7:5033620–5033723(+) 3.92 0.65 0.07 1.06 0.82

Grip1 glutamate receptor
interacting protein 1

chr10:119422530–119422685(+) 2.66 20.74 2.61 23.13 0.82

Csmd3 CUB and Sushi multiple
domains 3

chr15:47587514–47587627(2) 2.42 2.16 0.20 20.45 0.82

Lrrfip1 leucine rich repeat (in FLII)
interacting protein 1

chr1:92990137–92990214(+) 2.02 0.40 3.44 22.21 0.82

Srsf11 serine/arginine-rich
splicing factor 11

chr3:157703405–157703586(+) 1.09 2.05 20.56 24.75 0.82

Tmem209 transmembrane
protein 209

chr6:30441087–30441184(2) 3.82 0.16 0.10 0.64 0.82

The 50 highest scoring exons predicted to be repressed by PTBP1 based on sequence alone.
doi:10.1371/journal.pcbi.1003442.t001
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identify higher affinity sites but does not consider all elements or

rank them. Crosslinking-immunoprecipitation experiments allow

large numbers of binding regions to be identified. However, not all

the sequence within a CLIP tag will be contacting the protein and

it is difficult to relate CLIP signals to binding affinity. The HMM

allowed the individual assessment of different short elements

within the CLIP clusters, showing that they segregated into two

states. The ranking of the triplets for their contributions to one of

these states yielded a model where complex clusters of short

elements could be assessed for binding and yielded accurate

predictions of binding affinity. Many RNA binding proteins are

similar to PTBP1 in having multiple domains that may each make

different base specific contacts with RNA. The widespread

generation of CLIP-seq datasets will allow the modeling of RNA

recognition by almost any protein based on a large number of

known binding sites.

Using the same modeling approach, we also developed a

binding model for PTBP2 (neuronal PTB) using a published

PTBP2 CLIP dataset [49]. PTBP2 is about 70% identical to

PTBP1 in sequence, and has only two amino acid changes among

the residues making direct contact with RNA [17]. We found that

the binding models for two PTB proteins were also nearly identical

indicating that the two proteins are likely to differ more in their

protein/protein interactions than in their RNA binding sites (Data

not shown).

Defining PTBP1 target exons
Several PTBP1 target exons have been analyzed in detail

[17,50]. These exons vary in the placement and action of their

PTBP1 binding sites. It is common for PTBP1-repressed exons to

have a binding site upstream, often encompassing the branch

point of the 39 splice site [39]. Exons can also be repressed by

PTBP1 binding within the exon [19,32,33]. Other exons contain

downstream binding sites that are needed in conjunction with an

upstream site to achieve splicing repression [51,52,53]. Although

acting as a repressor for most of its targets, PTBP1 also activates

the splicing of a group of exons. There have been divergent reports

about placement of PTBP1 binding sites needed to mediate

PTBP1 enhancement of splicing. The PTBP1 binding model

allowed us to examine PTBP1 binding site placement across a

large set of known PTBP1 target exons. Nearly all exons had

predicted high affinity PTBP1 binding sites nearby. We found that

more than half of PTBP1 repressed exons have high affinity

binding sites upstream, and a fraction of PTBP1 enhanced exons

have high affinity sites downstream. These exons fit with recent

results on several other splicing regulators where the placement of

the binding site determines the direction of the regulatory effect

[12,14,34]. However, for PTBP1 these rules are not so clear. Some

PTBP1 repressed exons have their strongest predicted binding site

downstream or within the exon. These results indicate that there

are fundamental differences between the mechanisms of PTBP1

mediated splicing regulation, and those governing regulation by

certain other splicing factors.

To quantify the predictive value of the PTBP1 binding scores

for PTBP1 repression, we built a logistic model for PTBP1

regulation. For exons repressed by PTBP1, binding scores for the

upstream, downstream and exon sequences all contribute to the

probability of repression. Exons enhanced by PTBP1 were too few

to achieve accurate predictions from the model. However, treating

these as a separate exon class improves the prediction of PTBP1

repression. We find that for probability scores above 0.65 the

model is strongly predictive of PTBP1 repression. Applying this

criterion across the transcriptome, we identified hundreds of new

PTBP1 target exons.

Alternative exons are generally regulated by multiple proteins

acting in combination, and a particular exon will often be subject

to both positive and negative regulation by antagonistic factors.

For a model based on one factor, these other proteins will

confound predictions. Exons with high PTBP1 binding scores may

be counteracted by antagonistic factors in some cell types.

Alternatively, synergistic factors may allow an exon with a

relatively weak binding site to still recruit PTBP1. Thus, a model

based on one factor will be limited in its predictive power. In this

study, our intent was to measure the effect of PTBP1 binding alone

before considering the contributions of other factors. The logistic

modeling allowed the contributions of different binding site

placements to PTBP1 regulation to be measured.

Several studies have used Bayesian models to dissect the

regulatory properties of exons [7,54]. These models can generate

accurate predictions by incorporating a wide variety of sequence,

expression and conservation data. However, because so many

disparate variables are incorporated, it can be difficult to draw

mechanistic conclusions from these models regarding any one

protein. For example, the presence of high pyrimidine density

upstream from the branch point can be predictive of exons

showing neuronal specific inclusion [7,55]. This is presumably in

part due to many neuronal exons being regulated by PTBP1 and

PTBP2. However, a subset of these exons may be regulated by

other factors with pyrimidine rich binding sites. In the long term, it

will be most accurate to develop predictive binding models for

each protein, similar to the PTBP1 model here, and then to

incorporate each of these binding models into a larger network

model. Such an approach will allow the analysis of the many

overlapping regulatory programs controlled by RNA binding

proteins.

Materials and Methods

Hidden Markov Model for PTBP1 binding affinity
prediction

A Hidden Markov Model (HMM) was designed and trained by

an expectation–maximization (EM) method (Baum-Welch algo-

rithm) using published PTBP1 CLIP data [13,29,30]. In total,

48,604 PTBP1-CLIP cluster sequences were used to train model

parameters. During the training step, multiple initial values were

tested to avoid a local maximum problem. Trained parameters

included emission probabilities for nucleotide triplets, initial

probabilities and transition probabilities between states [29,30].

The trained model was used to score RNA sequences. The raw

PTBP1 binding score is defined as a log-odds ratio that compares

the score of a sequence from the HMM over the score from a

background model. Since CLIP experiments do not have an

inherent corresponding negative dataset, we generated computa-

tional negative datasets and tested different background models

(Figure S4). We found that a background model that values all

triplets equally yielded the most accurate binding scores [29]. Raw

Figure 5. Validation of novel PTBP1-repressed exons by RT-PCR. A. Candidate PTBP1-repressed exons with probability greater than 0.65
were validated by RT-PCR following Ptbp1 knockdown. Data shown are averages 6 standard error of PSI (Percent of Spliced In) from biological
triplicates. Statistical analysis was performed using paired one-tailed Student’s t-test (p-values,0.01**, ,0.05*). B. Exons with low PTBP1 repression
probabilities (#0.2) were also validated by RT-PCR following Ptbp1 knockdown in biological triplicates.
doi:10.1371/journal.pcbi.1003442.g005
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Figure 6. Large-scale validation of novel PTBP1-repressed exons by RNA-seq. A. Validation of the PTBP1 splicing model using RNA-seq.
After Ptbp1 knockdown, we performed RNA-seq experiments and estimated changes in PSI (Percent of Spliced In) for 573 cassette exons. The graph
shows average delta PSI values for exons, grouped by their probabilities to be repressed by PTBP1. The number of exons in the corresponding
probability bin is given by n. P-values were calculated from one-tailed Student’s t-test. B. A genome browser screenshot of a novel PTBP1-regulated
exon: exon 2 of the Kcnq2 gene. For whole internal mouse exons, we created custom genome browser tracks to visualize the PTBP1 splicing model
and mapped RNA seq reads.
doi:10.1371/journal.pcbi.1003442.g006
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scores were further normalized and converted to z-scores. For the

69 mer RNA sequences used in binding assays, scores were

normalized by 100,000 random sequences with same length

(Figure S3). This yielded very accurate predictions of binding

affinity (Figure 2).

When considering binding scores in genomic sequence, exons

and upstream or downstream intron regions have different base

compositions and will yield different average binding scores. Thus,

to score binding sites adjacent to possible regulated exons, it is

more informative to score sites relative to equivalent sequence

regions. From the annotated mouse genome, we retrieved 168,111

internal exons and their flanking introns as separate sequence sets

using a python library, Pygr. We scored log odds of these sequences

with the trained model. Since the lengths and base compositions of

intronic and exonic sequences are different, and binding scores

automatically increase with length (Figure S13) [29], we grouped

sequences by their location and sequences in each group were

sorted according to length into bins of 1000 sequences each. The

average score and standard deviation were determined for each

bin. These values were used to transform the raw scores into

z-scores for each upstream intron, downstream intron, and exon

sequence. We localized the PTBP1 binding sites along each RNA

sequence using the Viterbi algorithm [29,30].

Validation of PTBP1 binding model scores by binding
assay

To test predicted PTBP1 binding scores, we selected thirteen

mouse exon/intron RNA sequences (69 nucleotides) exhibiting a

range scores. In the selection, other sequence features such as

secondary structure were not considered. Target RNAs were

transcribed in vitro from dsDNA using T7 RNA polymerase and

subjected to an electrophoretic mobility shift assay (EMSA).

During the transcription, radioactive a-32P UTP was incorporat-

ed into RNA to visualize the probes. The RNA probes were then

denatured for 2 min at 85uC and cooled down on ice immediately

to reduce secondary structure formation. Binding assays were

carried out as previously described with some modifications [27].

Specifically, each gel mobility shift reaction (10 mL) contained the

indicated amounts of recombinant human PTBP1 in 6 mL DG

buffer (20 mM Hepes-KOH ph 7.9, 20% glycerol, 80 mM

potassium glutamate, 0.2 mM EDTA, 0.2 mM PMSF), 1 mL

22 mM MgCl2, 1 mL 0.5 mg/ml tRNA, 0.5 mL RNase inhibitor

(20 unit, RNaseOut from invitrogen), 0.5 mL DEPC treated H2O,

and 1 mL 100 nM RNA probe. At first, all reaction components

excluding RNase inhibitor, tRNA, and RNA probes were mixed

and incubated for 8 min at 30uC. Then RNase inhibitor and

tRNA were added and mixed. RNA probe was then added and

the reaction was incubated for an additional 15 min. The

reactions were put on ice for 5 min and mixed with 1.2 mL

glycerol loading dye (30% glycerol). They were separated on 8%

native polyacrylamide gels with 25 mM Tris-Gly running buffer in

a cold room. Gels were dried and exposed to a phosphor screen.

Then images were scanned using Typhoon 9410 and quantified

using ImageQuant TL program (GE Lifesciences). The apparent

Kd values were estimated by fitting the data to non-linear curves

using Prism software.

Logistic regression model for PTBP1 dependent exon
prediction

An exon training set was compiled from previous microarray

and RT-PCR experiments [20,35]. The training set was composed

with 68 PTBP1 repressed, 37 PTBP1 enhanced, and 69 non-

PTBP1 regulated simple cassette exons. We only considered exons

with canonical splice sites (GU-AG). An exon was classified as

PTBP1 repressed or enhanced when 1) the inclusion level (PSI) of

its minor isoform was greater than 5% in both the control and

knock-down samples and 2) the inclusion level of its minor isoform

was changed by 30% or more in the Ptbp1 knock down condition

compared to the control sample. Next, we collected sequence

features for each exon and its flanking exons. The features

included PTBP1 binding scores, 59 and 39 splice site strengths,

exon/intron lengths, and word frequencies. The PTBP1 binding

scores were calculated from the PTBP1 binding model described

above. The strength of splice sites was calculated by the splice-site

analyzer tool [37]. Using a mouse whole internal exon set, we

normalized features and fed them into the model. The PTBP1

splicing model is based on a multinomial logistic regression

framework using the following steps: 1) selection of initial variables

with a moderate level of association (p-value from t-test,0.25), 2)

removal of outlier exons, 3) stepwise variable selection [38]. We

scored mouse internal exons with the trained PTBP1 splicing

model and validated candidate exons with RT-PCR and RNA-seq

experiments. Exons from the training set were excluded from the

validation.

Validation of exon candidates by RT-PCR and RNA-seq
To test alternative splicing events for candidate exons, we

assayed exon inclusion levels in cells following Ptbp1, Ptbp2, and

double Ptbp1 & Ptbp2 knock down. The knockdown experiment

was performed as described previously with minor modification

[20]. Mouse neuroblastoma (N2A) cells were cultured in DMEM

with 10% FBS and 2 mM L-glutamine. At 70 to 80% confluency,

cells were trypsinized and suspended in the growth medium.

DNA–Lipofectamine 2k (Invitrogen) complexes were prepared

and mixed with cells in a tube according to manufacturer’s

instructions. Tubes were incubated for 5 h with mixing every half

hour. Then cells were centrifuged and cultured in plates for 3 d.

Proteins and RNA was extracted from collected cells. Protein

samples were subjected to fluorescence immunoblotting to

monitor knockdown efficiency of Ptbp1 and Ptbp2. Total RNA

was collected using Trizol (Invitrogen) according to the manufac-

turer’s instructions. The RNA was further treated with DNase I to

avoid DNA contamination. For RT-PCR (Reverse Transcription-

PCR) assays, the RNA was reverse transcribed to cDNA with

random hexamers using SuperScript enzyme (Invitrogen) follow-

ing the manufacturer’s instructions. PCR reactions were per-

formed to assay alternative splicing of particular target exons.

First, forward and reverse PCR primers were designed for the

flanking exons using PRIMER3 program [56]. To label PCR

products, a 59 fluorescent-labeled universal primer (59-FAM-

CGTCGCCGTCCAGCTCGACCAG-39) was added to the PCR

reaction and a universal priming site was introduced to the 59 end

of the forward primer (59-CGTCGCCGTCCAGCTCGACCAG-

Forward Primer-39). Each PCR reaction (15 mL) was carried out

with 1.5 picomole of the forward primer and 6.75 picomole of the

reverse and universal primers [57]. PCR amplification proceeded

with an initial denaturation at 94uC for 4 m followed by 24 cycles

of 94uC for 30 s, at a melting temperature of the reverse primer for

45 s, and 72uC for 45 s, with a final extension step at 72uC for

10 m. The samples were mixed with 26 formamide buffer

(Formamide with 1 mM EDTA pH 8.0) and denatured at 95uC
for 5 min. Then samples were chilled on ice and run on 8%

denaturing polyacrylamide gels. Gels were directly scanned by

Typhoon and quantified by ImageQuant program.

RNA-seq libraries were constructed following standard proto-

cols (Illumina TruSeq RNA Sample Prep Kit). To make strand-

specific libraries, we added two extra steps to the protocol [41].
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After first strand cDNA synthesis, remaining dNTPs were

removed by a size selection on beads (AMPure XP). Second-

strand cDNA was synthesized with a dNTP mix containing dUTP

instead of dTTP. The reaction contained samples eluted in 50 ml

resuspension buffer, 2 ml 56FS buffer, 1 ml 50 mM MgCl2, 1 ml

100 mM DTT, 2 ml 10 mM dUTP nucleotides mix, 15 ml Second

Strand Buffer (Invitrogen), 0.5 ml E.coli DNA Ligase (10 U/

ml;NEB), 0.5 ml RNase H (2 U/ml;Invitrogen), 2 ml DNA E.coli

Polymerase I (10 U/ml;NEB). The reaction was incubated for 2 h

at 16uC. After sequencing adaptors were ligated, 1 ml USER

(Uracil-Specific Excision Reagent enzyme; NEB) was added to

reactions to degrade the second strand cDNA. The samples were

incubated for 15 min at 37uC and the reaction were inactivated at

94uC for 5 min. The samples were put in ice and then subjected to

PCR amplification. Average size of inserts was about 225 bp and

the libraries were subjected to 100 bp paired-end sequencing

(Illumina HiSeq2000 platform). Using SpliceTrap [42], 60–65%

of reads were mapped to exon duos or trios. In total, 180M

(179,511,116) and 145M (145,334,711) paired end reads were

used to infer exon inclusion ratios in the control and Ptbp1

knockdown conditions, respectively. The data have been deposited

in NCBI’s Gene Expression Omnibus [58] and are accessible

through GEO Series accession number GSE45119.

Supporting Information

Figure S1 Five-fold cross-validation of the PTBP1
binding model using Hela CLIP clusters. To test the two

state model of binding and non-binding triplets, we divided the

CLIP-data to the five subsets. In each plot, four sub sets were used

in training the model and one subset was subjected to scoring. We

then compared scores from the CLIP-subset sequences to random

sequences picked from same genic regions that contained the

CLIP clusters. As shown, sequences from CLIP-subset generated

significantly higher scores than random. The results indicate that

the triplets identified by the HMM as predictive of state 1 are

predictive of PTBP1 CLIP sites and thus of protein binding.

(TIF)

Figure S2 The density of PTBP1 binding triplets
predicted by the HMM peaks at the aligned crosslink
sites from Human ESC iCLIP clusters.

(TIF)

Figure S3 PTBP1 binding model scores and validation.
A. Summary statistics and the distribution of raw and normalized

PTBP1 binding scores for 100,000 random sequences. B.

Electrophoretic mobility shift assay of RNAs with various PTBP1

binding scores. RNAs were transcribed in vitro, incubated with

increasing concentrations of purified PTBP1 (0 to 200 nM), and

the bound and unbound RNA separated on native gels. Arrows

indicate RNA-protein complexes. The fraction of PTBP1-bound

RNA is plotted below for each RNA.

(TIF)

Figure S4 Evaluation of different background models
for scoring PTBP1 binding. Four background models were

evaluated. The uniform distribution model assumes equal

frequencies of triplets. The PTBP1 target gene set model used

random sequences from genes containing PTBP1 CLIP clusters.

The two shuffled models used shuffled CLIP cluster sequences

maintaining mono or di nucleotide ratios. We calculated PTBP1

binding scores based on each background model and compared

the scores to the measured dissociation constants. Based on the

rank correlation, the uniform distribution model worked best. The

PTBP1 target gene set model showed comparable performance. It

slightly improves the linear fit (20.91 vs. 20.95) for some strong

binders. However, it wrongly predicted some binders as non-

binders, which reduced the rank correlation (20.95 to 20.90).

The two shuffled models did not perform well.

(TIF)

Figure S5 Correlations of particular sequence features
with PTBP1 repression. For PTBP1-repressed and PTBP1

non-regulated exons, we calculated scores for sequence features

and determined the fraction of PTBP1-repressed exons in each

score bin. Shown are the graphs for the 39 splice site score, and the

PTBP1 binding scores in the upstream intron, the exon, and the

downstream intron plotted against the percent of exons within the

score bin that are PTBP1-repressed.

(TIF)

Figure S6 Performance of PTBP1-dependent splicing
models. A. Receiver Operating Characteristic Curves in a leave-

one-out cross validation for each logit: exon repression (left) and

exon enhancement (right). B. Sensitivity and specificity plotted

across the whole threshold range. Sensitivity is defined as the

percent of true repressed exons that are correctly predicted as

repressed at the corresponding threshold. Specificity is defined as

the percent of actual non-repressed exons that are correctly

predicted as non-repressed at the corresponding threshold.

(TIF)

Figure S7 ShRNA mediated depletion of PTBP1 and
PTBP2. Duplicate immunoblots after shRNA knockdown of

PTBP1, PTBP2 or both proteins. Note that depletion of PTBP1

induces expression of PTBP2 as observed previously. Numbers

above each lane indicate the fluorescence intensity for PTBP1 or

PTBP2 relative to the control lane.

(TIF)

Figure S8 Characteristics of false positive exons. A.

Exon inclusion was measured for three false positives exons after

Ptbp1 knockdown (left), or Ptbp2 knockdown, and Ptbp1 & Ptbp2

double knockdown (right). P-values were calculated from biolog-

ical triplicates using paired one-tailed t-tests. B. False positive

exons exhibit higher PSI values prior to PTBP1 depletion. Box

plot of exon inclusion for twenty-nine false positive exons showing

little change in splicing by RNA-seq after PTBP1 depletion (delta

PSI,5%) that score with high probability to be repressed (.0.55).

Exon inclusion levels prior to PTBP1 depletion are compared to

thirty-six true positive exons.

(TIF)

Figure S9 Two exons with intermediate scores for
PTBP1 repression show complex responses to PTBP1
and PTBP2 depletion. Exon inclusion was measured after

Ptbp1 depletion (left), or after Ptbp2 and Ptbp1/Ptbp2 double

depletion (right). P-values were calculated from biological

triplicates using paired one-tailed t-tests.

(TIF)

Figure S10 PTBP2 dependence of predicted PTBP1
target exons. RT-PCR of high probability PTBP1 exon targets

following Ptbp2 knockdown or Ptbp2/Ptbp1 double knockdown.

Relative band intensities of the gels in triplicate on the right are

plotted on the left to show the average delta PSI 6 SE (Percent

Spliced In). P-values were calculated from paired one-tailed t-tests

with PSI values in control samples.

(TIF)

Figure S11 PTBP2 dependence of predicted non-PTBP1
target exons. RT-PCR of exon with low probabilities for PTBP1
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repression (#0.2). Ptbp2 knockdown and Ptbp1/Ptbp2 double knock

down with data analysis as in Figure S10.

(TIF)

Figure S12 Boxplot of PSI (Percent of Spliced In) values
estimated from splicing sensitive microarray data for
exons expressed in mouse C2C12 myoblasts. Exons with

higher (.0.65) and lower (,0.2) repression probabilities are

compared. Exons used in the original training set were excluded

from the plot. The number of exons in the corresponding

probability bin is given by n. The p-value was calculated from a

one-tailed Student’s t-test.

(TIF)

Figure S13 Distribution of PTBP1 binding scores of
exons and introns before and after normalization.
168,111 exons and their flanking introns from the set of annotated

mouse internal exons were subjected to scoring and normalization.

Raw PTBP1 Binding scores are affected by sequence length and

base composition. To account differences in these features

between introns and exons in normalized scores, we grouped the

exons and their upstream and downstream introns separately. The

sequences in each group were sorted according to length into bins

of 1,000 sequences each. The average scores and standard

deviations were determined for each bin. These values were used

to transform the raw scores into z-scores for each sequence per

bin.

(TIF)

Table S1 Trained PTBP1 splicing regulation model. The

table presents a summary of the multinomial logistic regression

model for PTBP1 splicing regulation, including estimated

coefficients and their statistics.

(TIF)

Table S2 Enriched gene ontology categories for novel
PTBP1-repressed exons. The table lists ontology entries

enriched in genes with predicted PTBP1-repressed exons (prob-

ability score of exon repression .0.65). Whole mouse internal

exons were used as the control set, and p-value cut off was 0.05.

Gene ontology analysis was performed using the GOTM web

server.

(TIF)
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