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REVIEW ARTICLE

Metal nanomaterials: Immune effects and implications of physicochemical
properties on sensitization, elicitation, and exacerbation of allergic disease

Katherine A. Roacha,b, Aleksandr B. Stefaniakc and Jenny R. Robertsa

aAllergy and Clinical Immunology Branch (ACIB), National Institute of Occupational Safety and Health (NIOSH), Morgantown, WV, USA; bSchool
of Pharmacy, West Virginia University, Morgantown, WV, USA; cRespiratory Health Division (RHD), National Institute of Occupational Safety and
Health (NIOSH), Morgantown, WV, USA

ABSTRACT
The recent surge in incorporation of metallic and metal oxide nanomaterials into consumer products and
their corresponding use in occupational settings have raised concerns over the potential for metals to
induce size-specific adverse toxicological effects. Although nano-metals have been shown to induce
greater lung injury and inflammation than their larger metal counterparts, their size-related effects on the
immune system and allergic disease remain largely unknown. This knowledge gap is particularly concern-
ing since metals are historically recognized as common inducers of allergic contact dermatitis, occupa-
tional asthma, and allergic adjuvancy. The investigation into the potential for adverse immune effects
following exposure to metal nanomaterials is becoming an area of scientific interest since these character-
istically lightweight materials are easily aerosolized and inhaled, and their small size may allow for pene-
tration of the skin, which may promote unique size-specific immune effects with implications for allergic
disease. Additionally, alterations in physicochemical properties of metals in the nano-scale greatly influ-
ence their interactions with components of biological systems, potentially leading to implications for
inducing or exacerbating allergic disease. Although some research has been directed toward addressing
these concerns, many aspects of metal nanomaterial-induced immune effects remain unclear. Overall,
more scientific knowledge exists in regards to the potential for metal nanomaterials to exacerbate allergic
disease than to their potential to induce allergic disease. Furthermore, effects of metal nanomaterial
exposure on respiratory allergy have been more thoroughly-characterized than their potential influence
on dermal allergy. Current knowledge regarding metal nanomaterials and their potential to induce/
exacerbate dermal and respiratory allergy are summarized in this review. In addition, an examination of
several remaining knowledge gaps and considerations for future studies is provided.
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Introduction

Over the past several decades, an extensive amount of scientific
attention has been invested in the field of nanotechnology.
Significant advances have been made in understanding the
unique behaviors of matter with nano-scale dimensions. This
progress has facilitated the capacity for manipulation of material
properties to optimize their functional utility. Subsequently,
nanomaterials have proven useful in diverse applications ranging
from pharmaceutics and energetics to transportation and elec-
tronics. The exponential growth of the nanotechnology field has
left few sectors unaffected by its momentum, as the global nano-
technology market has been valued at over $20 billion US
(Nanomaterials Future Markets 2015). Although the resounding
impact of these technological advancements has generated com-
parisons to the impact of the industrial revolution, the expansion
of nanotechnology has also generated several notable concerns.
In addition to the environmental, legal, ethical, and regulatory
challenges imposed by the expanding presence of nanotechnol-
ogy, the potential risk for adverse health effects following expos-
ure to nanomaterials has also become a major concern.

As a result, a unique discipline of toxicology has emerged to
evaluate the potential health effects of nanomaterials.
Nanotoxicology studies have consistently demonstrated that the
unique properties of nanomaterials that render their industrial
functionality also implicate unique interactions with biological
systems. A general correlation between decreasing size and
increased toxic potential has been observed for many nanomate-
rials (Shang et al. 2014). However, additional physical and chem-
ical properties of nanomaterials have been implicated in their
biological activity. Nanomaterials exist in various morphologies
(Figure 1) with diverse surface textures, and can assume differing
degrees of agglomeration. These physical properties contribute to
variations in their chemical properties, which include surface
charge, dissolution kinetics, and surface reactivity (Oberd€orster
et al. 2005; Castranova 2011; Gatoo et al. 2014).

One of the greatest challenges presented to nano-toxicologists
arises from the discord between the rapid emergence of vast
quantities of new nanomaterials and the significant amount of
time and resources required to evaluate the safety of each mater-
ial individually. A novel risk assessment approach proposed to
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mitigate this issue involves delineation of relationships between
specific physicochemical properties and toxicological modes of
action (Kuempel et al. 2012; Braakhuis et al. 2016). Subsequently,
emerging materials can be categorized by this scheme, providing
preliminary safety information and prioritization of resources for
in vivo studies (Schulte et al. 2014). Significant advancements
have been made using this approach with respect to toxic effects
on the lungs, but the correlation of nanomaterial physicochemi-
cal properties with adverse effects on other systems, such as the
immune system, are less clear.

In addition to protecting the host from both endogenous
and exogenous threats, the immune system is a critical regula-
tor in hundreds of other disorders, as inflammation is a critical
component in the pathophysiology of nearly all chronic diseases
states (Pawelec et al. 2014). Accordingly, deviations in optimal
immune functioning can have resounding effects on host
health, whether polarized towards being either stimulatory or
suppressive in nature. One of the immunological disorders

presenting a significant and continually expanding global public
health burden is allergy. The term “allergic disease” refers to a
collective assortment of disorders involving diverse inciting
agents, underlying immunological mechanisms, and clinical
manifestations. However, all hypersensitivity disorders are char-
acterized by commonality in hyperactivation of adaptive
immune responses directed at otherwise innocuous exogenous
antigens (Pawankar 2014).

Rates of allergic disease have been on the rise for decades,
and the American Academy of Allergy, Asthma, and
Immunology reports that worldwide, sensitization rates to one or
more common allergens are approaching 40–50% in school-aged
children (AAAAI 2015). In the United States, allergic diseases
are the sixth leading cause of chronic illness with an annual cost
exceeding $18 billion US (Centers for Disease Control and
Prevention 2017). Although the development of allergy is
dependent on a multitude of genetic, behavioral, and environ-
mental factors, exposures to immunotoxic agents are a major

Figure 1. Different morphologies of nanomaterials are shown: (a) graphene sheets, (b) silver nanoparticles, (c) silver nanowires, (d) gold nanorods, (e) gold nanopar-
ticles, (f) nickel oxide nanoparticles, and (g) copper oxide nanoparticles.
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underlying contributor to allergic diseases (Boverhof et al. 2008).
Immunotoxic agents with the capacity to impact allergic disor-
ders generally exert one of two effects. First, the agent can act as
an allergen or sensitizer. Following exposure to these agents, the
resultant adaptive immune response is specific to the agent and
subsequent encounters trigger allergic reactions. Contrarily,
agents can augment immunological processes involved in allergic
disorders specific to differing agent. These agents are often
referred to as “adjuvants” or “immuno-modulators” and their
effects can range from increasing host susceptibility to sensitiza-
tion, decreasing the allergen dose required to induce sensitiza-
tion, decreasing the dose required to elicit allergic responses, or
exacerbating the severity of allergic responses (Zunft 1996).

As the nanotechnology market continues to expand and the
global prevalence of allergic disease continues to increase, the
knowledge gap regarding the immunotoxic potential of nanoma-
terials is becoming increasingly relevant. Specifically, the capacity
for nanomaterials to cause or exacerbate allergic disease remains
largely unknown, which is particularly concerning with respect
to a specific class of nanomaterials. Metal-based nanomaterials
(e.g. metallic, oxidic, alloy, and salt forms) are one of the classes
of nanomaterials being produced in the largest quantities.
Noteworthy metal nanomaterials, their applications, and corre-
sponding rates of production are shown in Table 1. These
emerging materials present a specific concern with respect to
allergy, as many of the metal-based nanomaterials being manu-
factured in large volumes are comprised of metals known to
cause allergic contact dermatitis (ACD), asthma, and allergy
adjuvancy (Warshaw et al. 2013; Schmidt and Goebeler 2015).

Metal nanomaterials are being increasingly incorporated into
nano-enabled products and consumer goods, increasing the
potential for exposures in the general public (Vance et al. 2015).
Although the unknown immune effects of many metal nanoma-
terials present a risk for consumers, workers involved in the
manufacture, handling, and transportation of metal nanomateri-
als present a population particularly susceptible to adverse aller-
gic effects. The National Science Foundation estimates that by
2020, at least 2 million workers in the United States alone will
be employed by nanotechnology-related fields (Roco 2011). New
nanomaterials are continually being developed, and workers are
often the first individuals in society to encounter emerging mate-
rials, and often in much greater quantities than consumers.
Moreover, occupational settings are known to contribute to the
development and progression of allergic diseases (Arruda et al.
2005). Of the 24 million Americans affected by allergic asthma,

10–25% of adult cases are related to workplace conditions
(Petsonk 2002). Skin allergies are even more common, affecting
an estimated 15–20% of the general population, wherein an esti-
mated 25–60% of ACD cases are related to occupational settings
(Diepgen and Coenraads 1999; Peiser et al. 2012).

Several specific concerns have emerged with respect to metal
nanomaterials and their potential effects on allergic disease. First,
the characteristic size profile of metal nanomaterials may confer
enhanced potential for skin penetration and more efficient
deposition in the lungs, circumventing one of the major barriers
associated with limiting adverse immune effects induced by
larger-sized metals. Secondly, the exposure threshold required for
dermal and respiratory sensitization by metal nanomaterials may
be lowered as a result of their unique chemistry. Lastly, the
induction of inflammation and tissue injury caused by many
metal nanomaterials may serve as an adjuvant, promoting the
development of allergic disease to environmental allergens or
exacerbating the severity of established allergic conditions. This
review aims to summarize current scientific knowledge regarding
these concepts. In addition to dermal and respiratory studies that
examine specific metal nanomaterial effects, studies designed to
delineate the role of physical and chemical properties in these
effects are emphasized. Finally, considerations and knowledge
gaps in the field are highlighted as potential directions for
future research.

Metals and allergic disease

Metals are a class of agents associated with expansively diverse
immune effects including irritancy, autoimmunity, sensitization,
and adjuvancy (Lawrence and McCabe 2002). The potential for
such diverse biological effects is reflective of the expansive poten-
tial speciation of metals, which can include elemental forms,
ions, salts, and organified compounds (Templeton 2015).
Moreover, as exemplified by the transition metal series, many
metals exist in and transition between different oxidation states
that have distinctive immunological activity (Artik et al. 1999;
Crichton 2017). The chemical behavior unique to these potential
states dictates the molecular and cellular interactions responsible
for metal immunogenicity. Since many of these properties are
known to be altered on the nano-scale, metal-induced immune
effects with relevance to allergy are detailed, with emphasis on
specific processes subject to impact by metal nanomaterial physi-
cochemical properties.

Table 1. Metal nanomaterial production rates and corresponding applications.

Nanomaterial Global production volume (tons) Applications

Silicon dioxide 185,000–1,400,000 Nanocomposite filler, cement additive, drug delivery, cosmetics
Titanium dioxide 60,000–150,000 Ceramics, sunscreens, construction, energy, cosmetics
Zinc oxide 32,000–36,000 Sunscreen, LED and LCD displays, antimicrobial, water filtration
Aluminum oxide 5000–10,100 Drilling equipment, energetic fuels, and additives, filtration
Cerium oxide 880–1400 Catalysts, slurry polishing, UV absorption, anti-corrosion additive
Copper oxide 290–570 Heat transfer, batteries, antimicrobials, sensors, semiconduction
Silver 135–420 Biomedicine, antimicrobial textiles, cosmetics, conductive inks
Antimony tin oxide 120–225 Electronics, composites, coatings, research
Zirconium oxide 80–300 Heat-resistant coatings, ceramics, catalysts, dental composites
Iron oxide 9–45 Ground and wastewater cleanup, color imaging, drug delivery
Nickel 5–20 Ceramic additive, catalyst, energy absorption, electronics
Cobalt oxide 5–10 Electronics, catalysts, drug delivery, solar energy absorption
Quantum dots 4.5–9 Photovoltaic devices, photodetecting devices, electronics
Manganese oxide 2–3.5 Bleaching agent, biomedical diagnostics, plastics additive
Gold 1–3 Data storage, gene therapy, biosensors, fuel cell additive
Palladium – Hydrogen sensor, antimicrobial activity, catalysts

Metal nanomaterials, various applications, and reported global production volume for 2014, reported in tons. Adapted from Metal and
Metal Oxide Nanomaterials Future Markets Report, Table 1 (Nanomaterials Future Markets 2015).
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Metals and dermal allergy

The most common metal-induced allergic disorder of the skin is
ACD, a T-cell-mediated delayed-type hypersensitivity response.
Dermal sensitization and the subsequent induction of ACD
requires several key molecular and cellular events (Figure 2),
which have been outlined in an adverse outcome pathway (AOP)
by the Organization for Economic Co-operation and
Development (OECD) (OECD 2014).

The preliminary requirement for skin sensitization is bioavail-
ability of the sensitizing agent. Since a primary function of the
skin is to serve as an effective barrier between the host and
environment, the sensitizing potential of many antigens is lim-
ited by their capacity to evade this barrier (Jaitley and Saraswathi
2012). Passage through the uppermost layers of the epidermis is
heavily dependent on antigen physical and chemical properties.
Likewise, most dermal sensitizers tend to be low molecular
weight (LMW, < 500 Daltons) chemicals with adequate lipophi-
licity (logP �2) (Chilcott and Price 2008; Karlberg et al. 2008).
Metals associated with skin sensitization present the greatest con-
cern when formulated as soluble salts that release ions capable of
penetrating the physical barrier presented by the epidermis (Di
Gioacchino et al. 2007; Kubo et al. 2013).

The next steps in the skin sensitization AOP involve the
molecular initiating event of skin sensitization-antigen formation.
The small size required for antigen passage through the stratum
corneum is not conducive with cellular recognition (Anderson
et al. 2011). As a result, most skin sensitizers are referred to as
haptens, which must acquire or possess inherent chemical
reactivity that facilitates binding to carrier molecules (B€udinger
et al. 2000; Chipinda et al. 2011). This process generates
adequate size for recognition by an antigen-presenting cell
(APC). The APC most frequently implicated in dermal sensitiza-
tion is the resident dendritic cell (DC) of the epidermis, the
Langerhans cell (LC) (Thyssen and Menne 2010).

In addition to uptake of the hapten/carrier complex, activation
of LC requires an additional antigen-nonspecific signal indicative
of an elevated threat level. Many mediators capable of fulfilling
this signal are released by non-immune cells including keratino-
cytes in response to injury (Dearman and Kimber 2003). Presence
of both antigen-specific and nonspecific signals induce LC matur-
ation, upregulation of co-stimulatory molecules, antigen process-
ing, and migration to the lymph nodes (Ton�ci�c et al. 2011).

Once the LC reaches the lymph nodes, the processed hapten is
presented via major histocompatibility Class I (MHC I) molecules
to naïve CD8þ T-lymphocytes until recognition occurs by anti-
gen-specific T-cell receptor (TCR). Given adequate costimulatory
signals from the LC, T-lymphocytes undergo proliferation
producing a pool of clonal antigen-specific effector T-cells. The
T-cells enter the circulation, and following resolution of inflam-
mation, a subset of these effector cells will survive and become
memory T-cells, completing the process of sensitization.

Upon future exposures to the allergen, memory and effector
T-cells are recruited to the site of exposure where CD8þ T-cells
exhibit immediate cytotoxic effector functions. CD4þ T-helper
(TH) of the TH1 phenotype have regulatory roles in ACD and
produce high levels of the cytokines interleukin (IL)-2 and inter-
feron (IFN)-c, contributing to inflammatory cell recruitment
(Sasseville 2008; Ton�ci�c et al. 2011). Within 48 h, the inflamma-
tory process originally orchestrated to destroy the antigen results
in the clinical manifestations of ACD, including localized skin
redness, swelling, and itching at the site of allergen contact.

Metals are among the most common inducers of ACD in the
general population. Patch test studies have generated data from
thousands of subjects and reveal that the most common inducers
of metal ACD are nickel, gold, cobalt, and chromium (Belloni
Fortina et al. 2015). Interestingly, studies using subjects exclusive
various geographical locations have demonstrated that these four
metals are consistently problematic with respect to ACD world-
wide (Kanerva et al. 2000; Mattila et al. 2001; Goon and Goh
2005; Cheng et al. 2008; Davis et al. 2011; Nonaka et al. 2011;
Khatami et al. 2013; Mahler et al. 2014; Kim et al. 2015;
Malinauskiene et al. 2015; Linauskiene et al. 2017). Though less
frequently associated with ACD, copper, aluminum, and plat-
inum group metals are also known to cause skin allergy in some
individuals (Hostynek et al. 1993; Bergfors et al. 2005; Faurschou
et al. 2011; Fage et al. 2014).

Metals and respiratory allergy

Metals are also associated with respiratory allergy and IgE-
mediated asthma. An AOP specific to the events of respiratory
sensitization has not been adopted by the OECD, but many of
the same steps of the dermal sensitization AOP are involved in
the development of asthma. Accordingly, bioavailability of the

Figure 2. Steps of the Adverse Outcome Pathway (AOP) for dermal sensitization adapted from the Organization for Economic Cooperation and Development (OECD).
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sensitizing agent is also a preliminary limiting factor in respira-
tory sensitization potential. Since the primary function of the
respiratory tract is to facilitate gas exchange between the host
and environment, it is particularly vulnerable to adverse effects
from a diverse assortment of agents in the inhalable (< 20lm)
and respirable size range (< 10 mm) (Elder and Oberd€orster
2006). Likewise, bioavailable metals capable of sensitizing the
respiratory tract are not limited to ions, like in the skin (Linde
et al. 2017). Respirable metals may be encountered as particulate
matter, vapors, or fumes and can be constituents of compounds
including oxides, sulfides, and salts, or as complexes with ammo-
nia, carbon monoxide, and organic nitrogen (Malo et al. 2013).

Since both low and high molecular weight (HMW) agents are
capable of inducing asthma, the molecular initiating events of
respiratory sensitization may differ accordingly. Similar to the
skin, pulmonary immune responses following inhalation of met-
als can be nonspecific and self-limiting, or can result in the
recruitment of the adaptive immune system. Lung-resident DC
take up antigen, and given adequate second signals, the antigen
is processed and DC migrate to the lung-draining lymph nodes.
Here, the peptide is presented to naïve CD4þ T-lymphocytes
along with costimulatory molecules, resulting in the preferential
expansion of the TH-2 phenotype lymphocytes. These cells pro-
duce high levels of IL-4, IL-5, and IL-13, and stimulate isotype
switching and allergen-specific IgE-production by B-cells. The Fc
portion of secreted IgE is bound to FceRI receptors present on
tissue-resident mast cell surfaces and circulating basophils,
exposing the antigen-recognizing motif, completing the sensitiza-
tion process (Verstraelen et al. 2008).

Upon subsequent encounters, the allergen is bound by aller-
gen-specific IgE on the surface of mast cells and basophils.
Binding induces crosslinking of receptors and the subsequent
release of preformed mediators such as histamine, beginning the
anaphylactic cascade responsible for the early asthmatic reaction
experienced minutes after antigen encounter. Acute clinical man-
ifestations of allergic asthma range from rhinitis and broncho-
constriction to anaphylactic shock. The late phase asthmatic
response occurs 4–6 h later as a result of mast cell mediators and
recruitment of inflammatory cells (Possa et al. 2013). Clinical
presentations of the late phase asthmatic response tend to be
more severe than early phase responses, and include excessive
mucus production, increased vascular permeability, and airway
constriction. Chronic cycles of allergic inflammation and subse-
quent repair are associated with structural alterations in the

airways that can have physiological implications, such as a
decline in lung function (Erle and Sheppard 2014).

Compared to metal-induced ACD, metal-induced asthma
occurs far less frequently. Cases tend to be isolated to individuals
working in occupations involving metalwork where metal fumes,
dust, or vapors are generated and inhaled (Wyman and Hines
2018). Nickel, chromium, cobalt, vanadium, zinc, platinum and
aluminum have all been associated with cases of occupational
asthma (Musk and Tees 1982; Hong et al. 1986; Malo et al.
2013). However, metal-specific IgE has only been implicated in
cases caused by nickel, platinum, chromium, and cobalt (Malo
et al. 1982; Murdoch et al. 1986; Shirakawa et al. 1988, 1990,
1992; Kusaka et al. 1996). Metal-specific IgG molecules have also
been implicated in cases of cobalt and platinum-induced asthma
(Pepys et al. 1979; Cirla 1994). The presence of metal-specific
IgE has also been confirmed in the absence of asthmatic symp-
toms, emphasizing the potential for numerous immunological
mechanisms in metal-specific asthma (El-Zein et al. 2005; Tur�ci�c
et al. 2013).

Metals and allergy adjuvancy

In addition to their potential to induce sensitization, metals are
also associated with the capacity to modulate allergic responses
to nonmetal allergens. Contrasted with the consistent, sequential
series of cellular processes involved in allergic sensitization and
elicitation, adjuvant effects can emerge as a result of various
mechanisms in various phases of allergic disorders (Figure 3).

An example of metal adjuvant effects on the development of
adaptive immune responses is best demonstrated by aluminum
hydroxide, which is one of the most frequently used vaccine
adjuvants. When administered with poorly-immunogenic anti-
gens, aluminum hydroxide induces adequate stimulation of the
innate immune system to generate antigen-specific immuno-
logical memory. Mechanisms of immunopotentiation associated
with aluminum hydroxide include triggering release of alarmins,
activation of inflammasomes (intracellular multi-protein com-
plexes involved in innate immune responses), and DC activation;
however, numerous other mechanisms including immune cell
recruitment and activation, modulated cytokine production, and
altered antigen delivery kinetics, can also enhance sensitization
(Naim et al. 1997; Aimanianda et al. 2009).

Similarly, metals are also associated with adjuvant effects on
established allergic conditions, as demonstrated by metal-rich

Figure 3. Potential adverse outcomes with respect to the sensitization and elicitation phases of allergy following exposure to immunotoxic agents. Adjuvant effects
resulting from exposure prior to allergen sensitization can manifest as increased susceptibility to sensitization. Exposure concurrent to sensitization may lower the
threshold of allergen exposure required to induce sensitization. Following sensitization to allergen, exposure to an immunotoxic agent either in the absence or pres-
ence of allergen may result in a lower threshold of exposure required to induce elicitation reactions or increased severity of elicitation symptoms. These effects may
further increase susceptibility to elicitation reactions as result of physiological alterations such as compromised skin barrier integrity. Furthermore, isolated exposure to
immunotoxic agents or concurrent to allergens in established allergic disease conditions may also contribute to the progression of chronic effects, such as airway
remodeling, which can also further contribute to elicitation reactions.
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ambient air pollution, which is known to exacerbate the severity
of asthmatic responses to environmental allergens (Gavett et al.
2003; Schaumann et al. 2004). Adjuvant effects on allergic elicit-
ation can involve mechanisms including induction of pulmonary
oxidative stress, enhanced degranulation of mast cells, and
recruitment of inflammatory cells (Walczak-Drzewiecka et al.
2003; Ghio 2008).

Unique properties associated with metal immune effects

Metals are known to induce many unique immune effects impli-
cated in allergic disease. With respect to sensitization, the modu-
lation of innate immune reactivity by some metals has been
associated with their immuno-genicity. For example, some metal
ions are known to produce functional mimicry of pathogen-asso-
ciated molecular patterns (PAMP) (Schmidt and Goebeler 2015).
Gold ions have the capacity to bind and activate Toll-like recep-
tor (TLR)-3, while nickel, cobalt, and palladium ions have the
capacity to bind and activate human TLR-4 (Schmidt et al. 2010;
Rachmawati et al. 2013, 2015). The subsequent induction of pro-
inflammatory signaling generates the antigen nonspecific signals
required for DC activation, promoting sensitization.

Metals are also known to modulate mechanisms of communi-
cation between innate and adaptive immune cells. Accordingly,
antigen presentation is another step in allergic sensitization that
is subject to interference by metals. Beryllium and noble metals
have been shown to induce structural alterations in MHC mole-
cules, impacting subsequent interactions with TCR (de Wall
et al. 2006; Falta et al. 2013). Similarly, peptide-independent link-
ing of MHC and TCR by nickel has been demonstrated
(Gamerdinger et al. 2003; Thierse et al. 2005). Adaptive immune
responses can also be affected by metals, as demonstrated by
CD4þ nickel-specific T-cell clones, which were shown to cross-
react when presented with other transition metals including cop-
per and palladium (Moulon et al. 1995; Pistoor et al. 1995).

Many of the unique immune effects associated with metals
emerge as a result of their capacity to alter molecular and cellu-
lar interactions on a biochemical level. Accordingly, their modu-
lation of processes involved in allergic disease is critically
dependent on physicochemical properties including special
geometry, oxidation state, and solubility (Schuhmann et al. 1990;
Kinbara et al. 2011). Many of these properties are altered in
nanoparticulate form, suggesting that metal nanomaterials may
exhibit novel mechanisms of immune interaction with implica-
tions for allergic disease.

Metal nanomaterials and dermal hypersensitivity

The potential for adverse immune effects following dermal
exposure to metal nano-materials is a growing concern due to
their increasingly frequent incorporation into consumer goods
intended to have prolonged contact with the skin (Yang and
Westerhoff 2014). The unique optical properties of titanium
dioxide nanoparticles (TiO2 NP) and zinc oxide nanoparticles
(ZnO NP) have led to their incorporation in sunscreens and cos-
metics for their protective effects against ultraviolet radiation
(UVR) (Smijs and Pavel 2011; Yoshioka et al. 2017). Silver nano-
particles (AgNP) are being incorporated into clothes, medical
textiles, toys, and cleaning products due to their antimicrobial
properties, and silica-based nanoparticles (SiNP) have been fre-
quently used in cosmetics and as a coating material to alter the
properties of other materials (Contado 2015; Tulve et al. 2015).
Likewise, the dermal effects of TiO2 NP, ZnO NP, AgNP, and

SiNP are a particular concern with respect to the general public
(Weir et al. 2012). These nanomaterials are also a concern for
workers, but other metal nanomaterials with high rates of pro-
duction (listed in Table 1) are also associated with dermal expo-
sures in the workplace.

The potential for metal nanomaterials to penetrate the skin,
induce dermal sensitization, and modulate skin allergy develop-
ment/responses are the three main areas discussed in this section
with respect to size and other physicochemical properties. In cor-
respondence with the review of the literature, Table 2 summa-
rizes studies characterizing effects of individual metal
nanomaterials on skin allergy. Table 3 summarizes studies
designed to examine effects of physicochemical properties of
metal nanomaterials on dermal allergy. Table 4 highlights key
events involved in dermal sensitization and elicitation that have
been shown to be subject to modulation by metal nanomaterials
and their corresponding physicochemical properties.

Skin penetration and translocation studies

Adverse immune effects following dermal exposure to an agent
are heavily dependent on the degree to which the skin protects
from its entry into the body. Likewise, one mechanism by which
dermal exposure to metal nanomaterials may lead to increased
potential for adverse immune effects compared to larger-sized
metals is by size-mediated evasion of skin barrier function.
Although it seems logical that the small size of nanomaterials
would inherently provide increased opportunity for absorption
via the skin, there is currently no general consensus on the skin-
penetrating capabilities of nanomaterials as a collective class of
agents (Vogt et al. 2006; Baroli 2010; Try et al. 2016).

Numerous studies have demonstrated that metal nanomateri-
als (< 100 nm) can penetrate skin in various in vivo and in vitro
models. Iron-based nanoparticles (FeNP), gold nanoparticles
(AuNP), palladium nanoparticles (PdNP), nickel nanoparticles
(NiNP), AgNP, SiNP, and metal-based quantum dots (QD) have
all been associated with penetration of the skin (Baroli et al.
2007; Chu et al. 2007; Filon et al. 2011, 2016; Labouta et al.
2011; Hirai et al. 2012a; Rancan et al. 2012; George et al. 2014;
Crosera et al. 2016; Kraeling et al. 2018). Moreover, many of
these studies have established a relationship between decreased
particle size and increased potential for skin permeation
(Ryman-Rasmussen et al. 2006; Sonavane et al. 2008; Matsuo
et al. 2016; Raju et al. 2018). Hydrophobicity, surface charge, and
morphology are additional properties that have been shown to
be influential in the capacity for these nanomaterials to pass
through the stratum corneum (Rancan et al. 2012; Lee et al.
2013; Iannuccelli et al. 2014; Fernandes et al. 2015; Tak et al.
2015; Mahmoud et al. 2018).

By comparison, the majority of studies investigating the skin-
penetrating potential of metal nanomaterials have been con-
ducted with ZnO NP and TiO2 NP and have not generated
equally consistent findings. Numerous studies have demonstrated
that the stratum corneum effectively restricts passage of TiO2

NP, irrespective of size shown to facilitate penetration of the
skin by other metal nanomaterials. Repeated application of dif-
ferent forms of TiO2 NP did not lead to skin penetration in hair-
less rats, elevated levels of titanium in lymph nodes of minipigs,
or penetration of human skin transplanted onto immunodefi-
cient mice (Kiss et al. 2008; Sadrieh et al. 2010; Adachi et al.
2013). Although TiO2 NP were shown to accumulate in and
around furrows of the skin, microscopic analysis was used to
confirm that 20–100 nm TiO2 NP remained restricted to the
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uppermost 3–5 layers of corneocytes of the stratum corneum
(Lademann et al. 1999; Pfl€ucker et al. 1999; Gontier et al. 2008;
Senzui et al. 2010). Contrarily, a few studies using TiO2 NP-con-
taining sunscreens have reported penetration of particles into the
viable epidermis of human skin (Tan et al. 1996; Coelho et al.
2016; Naess et al. 2016).

Similar observations have been reported for ZnO NP. Despite
associations with hair follicles, ZnO NP were not capable of pen-
etrating the stratum corneum in multiple models, irrespective of
alterations in size, morphology, and surface characteristics
(Schulz et al. 2002; Zvyagin et al. 2008; Leite-Silva et al. 2013).
However, ion release from ZnO NP and ZnO NP-containing
sunscreens has been observed, highlighting a potential risk asso-
ciated with soluble metal nanomaterials (Holmes et al. 2016).

Adverse effects following dermal exposure to nanomaterials
may result from penetration of the particulate material or ions
released from the parent material. Likewise, physicochemical
properties of interest may be differentially implicated in effects
associated with soluble and insoluble metal nanomaterials. With
respect to soluble materials, properties associated with acceler-
ated ion release may indicate increased potential for skin pene-
tration (Lansdown 1995; Hostynek 2003; Thyssen and Menne
2010). The rate of ion release is proportional to specific surface
area (SSA; surface area per mass unit), which is exponentially
increased on the nano-scale (Lauda�nska et al. 2002; Zhang et al.
2011; Larese Filon et al. 2015). This concept explains the obser-
vation that application of sunscreens containing ZnO NP caused
greater increases in blood, urine, and organ Zn ion levels than
sunscreens containing larger-sized ZnO particles (Gulson et al.
2010, 2012; Osmond-McLeod et al. 2014). Moreover, the manip-
ula-tion of properties with implications for dissolution potential,
such as particle coating, vehicle, and suspension pH have been
shown to promote Zn ion release from ZnO NP following der-
mal exposure (Leite-Silva et al. 2013; Holmes et al. 2016).

Although penetration through corneocytes of the stratum cor-
neum is the primary pathway associated with skin penetration by
materials, appendages including hair follicles, sebaceous glands,
sweat glands, and skin folds can mediate an additional mechan-
ism of skin penetration. This pathway has notable relevance to
nanomaterials, as evidenced by the utility of the trans-follicular
delivery route for nano-scale pharmaceutics and vaccines (Mahe
et al. 2009). Compared to the thickness of the stratum corneum,
which measures 10–20 mm, hair follicles can reach a tissue depth
of 2000mm (Toll et al. 2004). Since the base of hair follicles
extends into the dermis and receives generous lymph and blood
supply, they may promote access into the circulation (Elder et al.
2009). Moreover, hair follicles can serve as a potential reservoir,
promoting accumulation of nanomaterials. Retention in hair fol-
licles can extend the duration of exposure 10-fold, raising spe-
cific concerns for continual ion release (Lademann et al. 2006,
2009, 2015; Patzelt et al. 2011; Mahmoud et al. 2017). This path-
way of skin penetration may also favor immune responses since
hair follicles are surrounded by dense networks of LC and speci-
alized keratinocyte subpopulations known to have critical roles
in the early events of sensitization (Toews et al. 1980; Vogt et al.
2006; Nagao et al. 2012).

The diameter of hair follicles can vary greatly in response to
anatomical location, but the smallest follicles tend to be located
on the forehead and forearm and measure between 66 and
78 mm (Otberg et al. 2004). Interestingly, the optimal size for
penetration of hair follicles is significantly larger than the
< 100 nm size range associated with increased skin penetration
of several metal nanomaterials. Particles with 600–700 nmTa
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diameter have been shown to deposit in the deepest depths of
hair follicles, suggesting that agglomerates of nanomaterials in
this size range are potentially more hazardous than primary par-
ticles (Patzelt et al. 2011; Lademann et al. 2015). Furthermore,
preferential accumulation in follicles has been observed in hydro-
phobic and neutrally-charged nanomaterials (Mahmoud
et al. 2017).

Although physicochemical properties of metal nanomaterials
have been shown in some instances to impact skin penetration,
an assortment of host factors can also impact this process.
Variations in epidermal thickness, integrity, degree of hydration,
and skin pH, all of which may further differ between gender, can
greatly influence skin permeability (Sandby-Moller et al. 2003;
Senzui et al. 2010; de Matteis et al. 2016). However, the role of
disrupted skin barrier integrity is one of the most commonly-
examined host factors with applicability to allergic disease since
skin permeability can be increased 4–100 times in individuals
with skin allergy (Larese Filon et al. 2016).

Scratching to alleviate itching associated with allergic skin
lesions leads to mechanical damage to the upper layers of skin.
Similar degrees of damage have been shown to increase in vivo
penetration of some metal nanomaterials in humans and rodents
(Zhang and Monteiro-Riviere 2008; Gopee et al. 2009;
Ravichandran et al. 2011; Prow et al. 2012). In vitro simulations
using a human skin model called the Franz Method have dem-
onstrated increased capacity for passage through damaged skin
by 25 nm AgNP, 6 nm PtNP, 5 nm rhodium nanoparticles
(RhNP), 10 nm PdNP, 78 nm NiNP, and 80 nm CoNP (Larese
et al. 2009; Larese Filon et al. 2013; Mauro et al. 2015; Crosera
et al. 2016; Filon et al. 2016). Contrarily, studies have shown that
penetration of various sizes of TiO2 NP and ZnO NP are not
increased in skin damaged by chemical irritants, tape-strip-ping,
hair removal, or mechanical force (Senzui et al. 2010; Lin et al.
2011; Miquel-Jeanjean et al. 2012; Crosera et al. 2015; Xie et al.
2015; Leite-Silva et al. 2016).

A few in vivo studies have also investigated effects of skin
barrier dysfunction resulting from existing skin allergy on the
penetration of metal nanomaterials (Larese Filon et al. 2016). In
a mouse model of skin allergy, ZnO NP skin penetration of aller-
gic skin was size-dependently increased, as 240 nm ZnO particles
did not penetrate the skin to a similar degree as 20 nm ZnO NP
(Ilves et al. 2014). Studies using nonmetal nanomaterials have
also demonstrated that penetration of nanomaterials in allergic
skin is size-dependent (Try et al. 2016). ZnO NP were also
shown to penetrate allergic skin ex vivo using human skin sam-
ples (Szikszai et al. 2011). Contrarily, application of 35 nm ZnO
NP to skin of living human subjects with atopic dermatitis did
not lead to penetration into viable skin (Lin et al. 2011).
Discrepancies between these studies may be reflective of varying
exposure durations, as the study reporting penetration involved
continuous exposure of up to 2 weeks, compared to the 4-hr
exposure wherein no penetration was observed.

Comparatively, equally prolonged exposure to AgNP-contain-
ing textiles did not lead to increased skin penetration in individ-
uals suffering from atopic dermatitis compared to control
subjects. Sleeves containing silver particles (30–500 nm) were
worn by human subjects for 8 h a day for 5 consecutive days, fol-
lowing which levels of AgNP and aggregates in the skin were
quantified. Compromised skin barrier was not associated with
increases in AgNP skin accumulation; moreover, no differences
in urine Ag levels were observed, indicating that atopic derma-
titis did not impact the absorption of ions released from the tex-
tiles either (Pluut et al. 2015; Bianco et al. 2016).Ta
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Discrepancies in findings regarding the importance of skin
barrier integrity on metal nanomaterial skin penetration may be
explained by several observations. The diverse degrees of epider-
mal barrier function disruption between studies represent a
potential source of variation. Complete ablation of epidermal
function is only observed in response to severe burns and lacera-
tions; likewise, the diverse mechanisms of experimentally-
induced disruptions of the stratum corneum should be compared
cautiously. In addition, the pathogenesis of atopic dermatitis
between experimentally-induced animal models and humans
may explain some discordant findings. The severity of lesions
between subjects of human studies is also subject to extreme
variation, as well. Since chronic skin inflammation can result in
epidermal thickening, enhanced barrier function is not uncom-
mon in many skin disorders (Nohynek et al. 2007). Lastly, differ-
ences in exposure conditions and duration, test material
formulation, and method of penetration assessment can also
serve as a source of variation in conclusions between studies. A
notable distinction should be made between test materials, since
some studies used pristine metal nanomaterials, and others used

commercially-available TiO2 NP/ZnO NP-containing sunscreens.
As noted by Gulson et al. (2012), their observations regarding
ZnO NP skin penetration may have been subject to modulation
by excipients of the commercial sunscreens used in their study.
The sunscreen contained isopropyl myristate, a chemical known
to enhance the permeability of the skin, as well as EDTA, a che-
lating agent which may have influenced the release of ions
from ZnONP.

In addition to nanomaterial properties and host factors
known to influence the capacity for metal nanomaterials to pene-
trate the skin, environmental factors may also impact this pro-
cess. One environmental factor with particular relevance to metal
nanomaterials and their use in sunscreens is UVR. Although
high levels of UV exposure and subsequent sunburn can signifi-
cantly disrupt epidermal barrier function, low doses of UV
exposure are also known to compromise the integrity of the epi-
dermis (Wolf et al. 1993; Holleran et al. 1997; Biniek et al.
2012). Accordingly, several studies have shown that UV exposure
prior to topical application of nanomaterials results in
greater depth of penetration by ZnO NP, TiO2 NP, and QD

Table 4. Metal nanomaterials and corresponding physicochemical properties shown to influence immunological processes involved in the development and aug-
mentation of ACD.

AOP Step Metal nanomaterial effect Metal
Properties
implicated Source

Sensitization
Bioavailability Increased potential for nanomaterial penetration of

intact skin
Au size, crg Labouta et al. 2011

Increased potential for nanomaterial penetration of
damaged skin

Ti size, cry Monteiro-Riviere et al. 2011

Increased release of ions from parent nanomaterials Pd size Filon et al. 2016
Accumulation of nanomaterial in follicles and

skin folds
Zn mod Leite-Silva et al. 2013

Molecular initating event Increased potential for metal antigen formation Ti size Vamanu et al. 2008
Adsorbed protein conformational changes Au size Bastus et al. 2009

Cellular response Selective uptake by LC Si size Nabeshi et al. 2010
Direct activation of DC Ti size, cry, mor Schanen et al. 2009
Release of DAMPs from skin epithelial

cells> activation of DC
Fe size Murray et al. 2013

Release of DAMPs from dermal immune
cells> activation of DC

Si size, SA Lee et al. 2011

Altered immunogenicity from adsorption of LPS
to surface

Au size, mod, hyd Li et al. 2017

Organ response Depot formation> altered delivery kinetics Si agg Hirai et al. 2015
Nanomaterial antigen vehicle> altered deliv-

ery kinetics
Ti – Smulders et al. 2015

Accumulation in DC endocytic compartments>
interference with antigen processing

Si mod, crg Shahbazi et al. 2014

Enhanced capacity for cross-presentation to CD8þ
T-cells

Fe crg Mou et al. 2017

Increased TH1 signaling Co – Cho et al. 2012
Elicitation
Organism response Increased permeability of endothelial cells Al – Oesterling et al. 2008

Increased effector T-cell recruitment many – Lozano-Fernandez et al. 2014
Increased number of DC for T-cell activation Si mod Li et al. 2016
Increased number of skin macrophages Fe – Yun et al. 2015
Increased neutrophil influx to the skin Ti – Goncalves, 2011
Increased number of skin mast cells Ag size Kang H et al. 2017
Altered T-cell response to mitogens/allergens Pd size, sol Reale et al. 2011
Increased IgE-independent mast cell degranulation many size, SA, crg Johnson et al. 2017

Chronic effects Compromised skin repair mechanisms Ag – Vieira et al. 2017
Aggravation of allergic lesion severity Si size Hirai et al. 2012b
Compromised barrier integrity> increased penetration

of allergens
Ag size, sol Koohi et al. 2011

Adverse Outcome Pathway (AOP) steps in the sensitization and elicitation phases of allergic contact dermatitis, metal nanomaterials shown to impact individual steps
and cells involved, and physicochemical properties associated with effects are shown. Physicochemical properties of interest include size, agglomeration (agg), surface
modification (mod), surface area (SA), solubility (sol), surface charge (crg), morphology (mor), crystallinity (cry), hydrophobicity (hyd), surface chemistry (SC). ND (not
determined) notation in metal column indicates a study demonstrating a critical role for a specific nanomaterial physicochemical property on the cellular event, but was
demonstrated using nonmetal nanomaterials. Findings may be applicable to metals, but have not been demonstrated with individual metal nanomaterials.
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(Mortensen et al. 2008; Monteiro-Riviere et al. 2011; Mortensen
et al. 2013). Moreover, UVR can induce alterations in physico-
chemical properties of metal nanomaterials that may facilitate
their passage through the stratum corneum, such as agglomerate
disaggregation and ion release (Martorano et al. 2010; Bennett
et al. 2012; Zhou et al. 2012; Ma et al. 2014).

Simultaneously, UVR-induced photoactivation of some metal
nanomaterials can facilitate their penetration of the skin. In vitro,
UVR-induced ROS production by TiO2 NP, QD, and ZnO NP
has been associated with DNA damage, lipid peroxidation, and
mitochondrial permeability in skin cells (Tiano et al. 2010; Wang
et al. 2013; Petersen et al. 2014; Mortensen et al. 2015; Xue et al.
2015, 2016). Subsequent cytotoxicity to dermal fibroblasts, kerati-
nocytes, and melanocytes is another mechanism by which skin
barrier integrity can become compromised as a result of UVR.
In vivo, UVR-induced photoactivation of TiO2 NP has been
associated with increased adherence to the skin, structural
rearrangement of the lipid bilayer, and facilitation of large mol-
ecule transdermal penetration (Bennett et al. 2012; Turci et al.
2013; Peira et al. 2014; Pal, Alam, Chauhan, et al. 2016; Pal,
Alam, Mittal, et al. 2016). Since the degree of ROS produced in
response to UVR has been associated with nanoparticle surface
area and reactivity, other related properties such as size, degree
of agglom-eration, and surface modification may also contribute
to skin penetration following UVR exposure (Shen B et al. 2006;
Jassby et al. 2012; Yin et al. 2012; Xiong et al. 2013).

Although UVR may contribute to adverse effects following
dermal exposure to metal nanomaterials by facilitating skin pene-
tration, it may also present a unique concern with respect to
allergy. Many signaling pathways and pro-inflammatory media-
tors involved in sensitization have been associated with UVR-
dependent photoactivation of metal nanomaterials (Murray et al.
2013; Rancan et al. 2014). Moreover, UVR is known to modulate
the immune status of the skin by a number of mechanisms. For
example, UVA and UVB are known to augment costimulatory
molecule expression, compromise antigen presentation, and
induce apoptosis of LC (Rattis et al. 1998; Seite et al. 2003;
Schwarz 2005). Subsequent effects on the immunological fate of
metal nanomaterials on the skin have been demonstrated. In a
mouse model, significant depletion of LC (�80%) following
UVR exposure increased skin penetration of QD, but resulted in
lower levels of metal ion constituents in the lymph nodes
(Mortensen et al. 2013).

Skin sensitization studies

The skin sensitizing potential of metal nanomaterials has been
investigated in a few studies using traditional in vivo approaches.
SiO2 NP, ZnO NP, and TiO2 NP have all been incorporated into
the Local Lymph Node Assay (LLNA) (Mandervelt et al. 1997;
Basketter et al. 1999). Accordingly, it was demonstrated that top-
ical exposure to 100 nm mesoporous and colloidal SiO2 NP,
7 nm SiO2 NP, and ZnO NP were not capable of inducing the 3-
fold increase in lymphocyte proliferation associated with classifi-
cation as a dermal sensitizer (Choi et al. 2011; Lee et al. 2011;
Kim et al. 2016). Similarly, topical exposure to 25 nm TiO2 NP
did not induce dermal sensitization in multiple studies; however,
subcutaneous injection of equal doses resulted in significant
increases in lymphocyte proliferation, suggesting that the inabil-
ity for TiO2 NP to penetrate the skin might be a limiting factor
in the potential to induce dermal sensitization (Park et al. 2011;
Auttachoat et al. 2014).

The guinea pig maximization test (GPMT) is another in vivo
technique used to evaluate dermal sensitization potential that has
been employed in the investigation of several metal-based nano-
materials. In one study, five UV-absorbing materials containing
SiO2 NP, ZnO NP, and TiO2 NP were assessed. One out of 10
animals exhibited slight erythema following topical exposure to
the ZnO NP and TiO2 NP-containing agents, leading to their
classifications as mild skin sensitizers (Piasecka-Zelga et al.
2015). In another study, 1 of 20 animals exhibited discrete
patchy erythema following intradermal injection with 10 nm
AgNP, leading to its classification as a weak skin sensitizer (Kim
et al. 2013). Similarly, AgNP were classified as a Grade II (mild
sensitizer) after 2 of 10 guinea pigs exhibited lesions 48 h after
application of AgNP-containing sterile gauze (Zelga et al. 2016).
However, similar AgNP-containing dressings were actually
shown to improve the healing of burn wounds in rats over an
18-d period as compared to rats with dressings lacking AgNP,
but the study only examined the localized effects (Pannerselvam
et al. 2017). The GPMT has also been used to demonstrate that
surface-modified FeNP and hydroxyapatite nanoparticles did not
induce skin sensitization (Geetha et al. 2013; Mohanan
et al. 2014).

The sensitization potential of 5 and 10 nm AgNP was investi-
gated by Hirai et al. (2016) in a mouse model. Mice were
injected with AgNP or Ag ions and lipopolysaccharide (LPS)
once a week for 4 weeks, and then intradermally challenged.
Interestingly, mice administered Ag ions in the sensitization
phase did not develop ear swelling following challenge with any
form of Ag. Contrarily, AgNP exposure induced sensitization,
wherein the smaller AgNP appeared to have stronger sensitizing
potential, which was dependent on CD4þ T-cells and IL-17a, but
not IFNc. Moreover, ear swelling was observed in response to
additional sizes of AgNP (50 and 100 nm) and Ag ions, suggest-
ing that the immune response is not nanoparticle-specific.
Further examination revealed that 3 nm NiNP was also capable
of inducing sensitization in the model, whereas minimally-ioniz-
able 10 nm AuNP and 10 nm SiNP were not (Hirai et al. 2016).

In addition to in vivo approaches to assess skin sensitization,
three non-animal alterative assessment methods based on differ-
ent steps of the skin sensitization AOP are currently validated by
the OECD. While metal nanomaterials have not been incorpo-
rated into any of the assays, studies with similar cell lines and
endpoints have indicated that many metal nano-materials can
induce effects similar to those of other skin sensitizers.

The Direct Peptide Reactivity Assay (DRPA) is an in chemico
assay based on the requirement for haptens to bind skin proteins
to acquire immunogenicity. Accordingly, the molecular imitating
event of dermal sensitization is evaluated by quantification of
reactivity of an agent towards synthetic lysine and cysteine resi-
dues (Gerberick et al. 2004). While some studies have investi-
gated metal nanomaterials and their interactions with proteins
and specific amino acids, implications for their capacity to form
hapten/carrier complexes are still unclear. However, cysteine has
been associated with decreased stability, increased dissolution,
and accelerated ion release from metal alloy nanoparticles and
AgNP (Hahn et al. 2012; Ravindran et al. 2013; Siriwardana
et al. 2015). Moreover, various amino acids have been associated
with preferential binding affinities with respect to AuNP size and
TiO2 NP surface charge, supporting a role for multiple physico-
chemical properties in the molecular initiating event of skin sen-
sitization (Liu et al. 2016; Shao and Hall 2016).

The second validated in vitro assay for determination of skin
sensitizing potential involves evaluation of the keratinocyte
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response to test agents, since they are a source of numerous
mediators that facilitate LC migration, antigen presentation, and
T-cell activation during sensitization (Kimber and Cumberbatch
1992). Since many of these mediators are released in response to
sensitizer-induced activation of the antioxidant/electrophile sens-
ing pathway Keap1/Nrf2/ARE, its activation is suggestive of
potential for the test agent to contribute to the cellular response
of the sensitization AOP (Natsch and Emter 2008; 2016; Ramirez
et al. 2014). The human keratinocyte cell line associated with
this assay, HaCaT, has been frequently used to investigate poten-
tial metal nanomaterial effects on the skin in vitro.
Correspondingly, PdNP, AuNP, and PtNP have all been shown
to activate the Nrf2 pathway in keratinocytes in vitro (Goldstein
et al. 2016; Tsuji et al. 2017). Similarly, zinc-containing QD,
ZnO NP, and CuO NP have all been shown to alter expression
of several specific genes associated with the Nrf2 pathway,
including HMOX1 (Rice et al. 2009; Romoser et al. 2011; Lee
et al. 2012).

Prior to the establishment of Nrf2 pathway involvement in
keratinocyte responses to skin sensitizers, cytokine release by
keratinocytes in vitro was evaluated as an indicator of sensitizing
potential (Jung et al. 2016; Koppes et al. 2017). Tumor necrosis
factor (TNF)-a is a keratinocyte-derived cytokine involved in
sensitization and is critically involved in skin sensitization by
chromium and nickel (Lisby et al. 1995; Wang et al. 2007).
Dose-dependent TNFa release has been noted following kera-
tinocyte exposure to AgNP, QD, and ZnO NP, indicating high
doses may promote LC maturation and dermal sensitization
(Samberg et al. 2010; Romoser et al. 2011; Jeong et al. 2013). IL-
18 and IL-1b (cytokines critical for LC activity) have also been
shown to be increased by QD, SiO2 NP, TiO2 NP, and AgNP
(Ryman-Rasmussen et al. 2007; Samberg et al. 2010; Yazdi et al.
2010; Romoser et al. 2011; Hiroike et al. 2013; Zhang and
Monteiro-Riviere 2019).

Another mediator involved in skin sensitization that is differ-
entially-released by keratino-cytes in response to irritants and
sensitizers is IL-1a (Coquette et al. 2003; Koppes et al. 2017).
Though it can also be actively secreted after inflammasome acti-
vation, IL-1a is an intracellular molecule that functions as an
alarmin (Ansel et al. 1988). During programed cell-death, IL-1a
remains associated with chromatin and its sequestration prevents
effector functions. Contrarily, under necrotic conditions, it is
passively released and bioactive. Accordingly, the mechanism of
metal nanomaterial-induced keratinocyte cytotoxicity may sig-
nificantly impact the development of ACD as a result of differen-
tial IL-1a release. Although mechanisms associated the
preferential induction of necrosis or apoptosis by nanomaterials
have yet to be established, some properties have been correlated
to these effects (de Stefano et al. 2012; Mohammadinejad et al.
2019). For example, surface charge of 1.5 nm AuNP was demon-
strated to be responsible for the mechanism of cell death in
HaCaT cells in vitro. Charged AuNP led to disruptions in mito-
chondrial membrane potential and intracellular calcium levels
causing apoptosis, whereas neutral AuNP were associated with
necrotic cell death (Schaeublin et al. 2011). Preferential HaCaT
apoptosis or necrosis has also been associated with AgNP surface
coating and TiO2 NP crystal phase (Braydich-Stolle et al. 2009;
Bastos et al. 2016). Collectively, these findings assert that surface
chemistry/reactivity of metal nanomaterials may be a critical
property in determining whether dermal exposure results in irri-
tation responses or sensitization.

The last validated alternative approach to evaluate skin sensi-
tizing potential involves assessment of the potential for an agent

to induce upregulation of activation markers (CD 86 and CD 54)
on human APC. However, since the recommended cell lines for
these assays (THP-1 and U937) are representative of general DC
and not skin-specific DC, these studies will be discussed in the
in vitro section of this review, as they may also apply to respira-
tory sensitization and augmentation of allergy.

Very few studies have been conducted to investigate metal
nanomaterial effects specific to LC. However, topical exposure to
< 100 nm AgNP in guinea pigs was shown to increase the num-
ber of LC at the site of exposure in a dose- and time-dependent
manner (Korani et al. 2011). This observation is relevant to skin
sensitization since the concentration of LC present in the skin
has been correlated with increased susceptibility to ACD devel-
opment. Other in vivo studies confirmed metal nanomaterials
including QD are taken up by LC and subsequently transported
to lymph nodes (Jatana et al. 2017b). In vitro, associations with
LC have been shown to be influ-enced by SiNP size and surface
functionalization (Vogt et al. 2006; Rancan et al. 2012). Smaller
SiNP size has also been correlated to increased uptake, ROS pro-
duction, and cytotoxicity to LC in vitro (Nabeshi et al. 2010;
Yoshida et al. 2014).

A specific observation regarding DC that has implications for
ACD and dermal sensitization is that some metal nanomaterials
can promote DC cross-presentation. Cross-presentation describes
uptake of exogenous antigens and their subsequent processing by
pathways normally associated with endogenous antigens. As a
result, the exogenous antigen is presented by MHC I molecules
to CD8þ T-cells, generating the cytotoxic effector cells character-
istic of ACD.

Aluminum nanoparticles (AlNP), AuNP, FeNP, and SiNP
have all been shown to modify DC antigen cross-presentation
capacity (Blank et al. 2011; Li et al. 2011; Hirai et al. 2012;
Jim�enez-Peri�a~nez et al. 2013; Kang S et al. 2017; Mou et al. 2017;
Dong et al. 2018). The mecha-nism of antigen uptake by DC is
known to influence the preferential association of antigens with
MHC I or II molecules. Small lipophilic haptens associated with
skin sensitization often enter APC via passive diffusion and bind
cytoplasmic proteins, favoring their processing by endogenous
pathways and presentation by MHC I molecules (Rustemeyer
et al. 2006). Accordingly, passive diffusion through cell mem-
branes similar to that demonstrated by charged 15 nm AuNP
may result in promotion of cross-presentation (Arvizo et al.
2010; Lin et al. 2010; Taylor et al. 2010). Contrarily, receptor-
mediated endocytosis of larger antigens has been associated with
cross-presentation when uptake occurs by Fc and mannose
receptors (Blum et al. 2013). In this regard, the adsorption of
macromolecules, including immunoglobulins, to the surface of
nanomaterials and physicochemical properties associated with
the adsorption of proteins may be critically influential in deter-
mining the route of antigen processing.

Another major determinant of antigen association with MHC
I or II is persistence inside DC. Antigens resistant to degradation
in endosomes are more likely to be processed by MHC I path-
ways (Lin et al. 2008; Humeniuk et al. 2017). Likewise, metal
nanomaterials with physicochemical properties capable of com-
promising lysosomal acidification (dissolution rate, surface
reactivity) may promote cross-presentation (Accapezzato et al.
2005; Savina et al. 2006). Similarly, endosomal escape following
uptake by DC can result in binding to cytosolic proteins and
subsequent perception as an endogenous antigen (Lin et al.
2008). One major mechanism of endosomal antigen release lead-
ing to cross-presentation is oxidative stress and lipid peroxida-
tion, causing antigen leakage from compromised endosome
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membranes (Shen H et al. 2006; Shahbazi et al. 2014; Dingjan
et al. 2016). Oxidative stress induced by CuNP, FeNP, and TiO2

NP have been shown to cause lipid peroxidation, and these metal
nanomaterials have also been associated with enhancing DC
cross-presentation (Shukla et al. 2011; Napierska et al. 2012;
Manke et al. 2013). Metal nanomaterials have also been associ-
ated with the induction of autophagy and production of exo-
somes by DC, both of which have also been associated with
antigen cross-presentation (Moron et al. 2004; Chaput et al.
2006; Crotzer and Blum 2009; Li et al. 2011; Shen T et al. 2018).

Augmentation of existing or developing skin allergy

Since dermal exposure to metal nanomaterials nearly always
occurs simultaneously to other exposures, their potential to aug-
ment skin allergy has been investigated using various allergy
models. Metal nanomaterial effects on skin allergy have been
studied with respect to both T-cell-mediated ACD and IgE-medi-
ated atopic dermatitis. The effects of metal nanomaterials in
ACD models have demonstrated findings suggestive of potential
effects during both allergic sensitization and elicitation. In one
study, subcutaneous exposure to TiO2NP 1 hr prior to skin sensi-
tization with dinitrochlorobenzene (DNCB) increased susceptibil-
ity of mice to sensitization, as evidenced by a lower
concentration of DNCB required to induce sensitization
(Hussain et al. 2012; Smulders et al. 2015). The authors noted
that although DNCB is known to induce a TH1-dominant
response characteristic of ACD, exposure to TiO2NP resulted in
a TH2-dominant response in the regional lymph nodes. In a
similar study, TiO2NP were applied topically 1 day prior to sensi-
tization with DNCB, and the same effect on sensitization as
observed (Smulders et al. 2015). A diminished TH1 response was
observed and TiO2NP were detectable in the lymph nodes.
Contrarily, SiO2NP and AgNP did not induce alterations to
DNCB sensitizer potency in the same model.

In another study by (Jatana 2017a), a panel of metal nanoma-
terials with various physicochemical properties was analyzed for
effects on chemical-induced ACD both during sensitization and
challenge. When mice were sensitized to dinitrofluorobenzene
(DNFB), co-administration of QD did not impact the severity of
the challenge response to DNFB, irrespective of particle charge.
However, QD administration simultaneous to DNFB challenge
did impact the allergic response. Moreover, the effect was
dependent on the charge of the materials. The negatively-charged
particles suppressed inflammation, whereas the positively-
charged materials enhanced ear swelling. The authors confirmed
that sensitization to QD did not occur and suggested that varia-
tions in skin penetrating capacity of the differently-charged
materials was responsible for the observed effects. The conclu-
sions regarding a critical role for nanomaterial size and charge
on modulation of ACD elicitation responses is supported by
other findings, as well. Suppressive effects on allergic elicitation
have also been demonstrated following applica-tion of 20 nm
SiNP and <50 nm AgNP-containing cream on ACD reactions to
DNFB and 2-deoxyurushiol (Jatana 2017a). Contrarily, exposure
to positively-charged functionalized 56 nm SiNP did not augment
the severity of oxazolone-induced elicitation responses when top-
ically applied for five consecutive days (Ostrowski et al. 2014).

As highlighted by (Jatana 2017a), ACD responses may be sub-
ject to modulation as a result of chemical modifications induced
by interactions with metal nanomaterials. In their study, the top-
ical application of nanomaterials was subject to removal prior to
application of DNFB. As a result, the particle-specific modulation

of allergic skin inflammation was not reflective of blocked adduct
formation. Although metal nanomaterials exhibit characteristic-
ally increased surface reactivity and catalytic potential, their cap-
acity to impact the chemical properties of skin sensitizing
chemicals has not been extensively studied. However, a few stud-
ies have demonstrated the potential for such effects to impact
both ACD sensitization and elicitation. AlNP and AuNP have
been shown to act as non-protein carriers of haptens capable of
facilitating the generation of hapten-specific adaptive immune
responses in vivo (Ishii et al. 2008; Maquieira et al. 2012).
Similarly, topical application of ointment containing calcium-
based nanoparticles has been shown to capture nickel ions by
cation exchange, compromising bioavailability and subsequently
preventing the elicitation of nickel-specific ACD (Vemula
et al. 2011).

In addition to ACD, metal nanomaterial effects on IgE-medi-
ated atopic dermatitis have also been examined. Atopic derma-
titis is generally associated with protein allergens, which under
normal circumstances are not capable of penetrating the skin
(Smith Pease et al. 2002). However, 100 nm ZnO NP and 5 nm
AuNP have been shown to enhance skin penetration by albumin
and protein drugs (Huang et al. 2010; Shokri and Javar 2015).
Likewise, increased permeability of the skin associated with some
metal nanomaterials may represent a mechanism by which
exposure may increase susceptibility to atopic dermatitis onset.

Simultaneous exposure to TiO2 NP, AgNP, and SiO2 NP dur-
ing sensitization to house dust mite (HDM) in atopic dermatitis
models has been associated with an amplification of TH2
responses. This effect was shown to be more pronounced with
decreasing size with respect to AgNP and SiO2 NP, but not for
TiO2 NP (Yanagisawa et al. 2009; Hirai et al. 2012b; Hirai et al.
2015). Exposure to 5 nm AgNP during sensitization was associ-
ated with an augmentation of mast cell activity that resulted in
more severe skin lesions that appeared earlier than those induced
by 100 nm AgNP (Kang H et al. 2017). Decreases in SiO2NP size
were also associated with enhanced TH2 responses, as evidenced
by increased thymic stromal lymphopoeitin (TSLP) and IL-18
production (Hirai et al. 2012b). Decreased particle size has been
associated with increased aggravation of atopic dermatitis skin
inflammation by nonmetal nanoparticles, as well (Yanagisawa
et al. 2010).

Metal nanomaterial-induced modulation of allergic inflamma-
tion in the challenge phase of atopic dermatitis has also been
demonstrated. Topical application of both 240 and 20 nm ZnO
NP resulted in diminished localized inflammation. However, the
smaller particle was associated with more pronounced suppres-
sion of local inflammation, but simultaneous increases in sys-
temic production of IgE (Ilves et al. 2014).

An interesting observation by Hirai et al. (2015) highlights a
potentially critical variation between studies that may explain
discordant immune effects induced by similar nanomaterials. dis-
tinction between allergy model studies that may contribute to
discordant findings. The authors demonstrated that, in their
study, exacerbation of allergic sensitization was dependent on
co-administration of HDM antigen and SiO2 NP. When SiO2 NP
agglomerates were administered at a site distal to that of the
allergen, the modulation of antibody production was no longer
observed. The dependence of physical associations between
nanomaterial and antigen on the subsequent adaptive immune
response has been similarly demonstrated by FeNP. In multiple
studies, intravenous administration of 58 nm FeNP 1 h prior to
subcutaneous ovalbumin (OVA) sensitization resulted in
decreased levels of IgG1 and IgG2 and suppression of TH1 and
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TH17 responses in mice (Shen et al. 2011, 2012; Hsiao et al.
2018). Contrarily, when FeNP and OVA were co-administered
intravenously or subcutaneously, enhanced antibody responses
were seen in mice (Powles et al. 2017; Shen I et al. 2018).
Similar immune-stimulating effects of FeNP have been demon-
strated when used as an adjuvant by various exposure routes
during immunization to various other antigens in the context of
vaccine studies (Pusic et al. 2013; Hoang et al. 2015; Sungsuwan
et al. 2015; Neto et al. 2018; Zhao et al. 2018).

The capacity for the same metal nanomaterial to induce
divergent immune effects depending on its physical association
with antigen likely reflect the different mechanisms of immune
modulation associated with prototypical vaccine adjuvants. Some
adjuvants exert effects based on “immune modulating” mecha-
nisms. These adjuvants often bear structural resemblance to
PAMP, which emphasizes their similar mechanisms of innate
immune activation that promote antigen-specific adaptive
responses. Since these adjuvants alter the systemic immune
environment, their effects are not dependent on physical associ-
ation with the antigen (Singh and O’Hagan 2003). Contrarily,
physical association with antigen is required for adjuvants whose
efficacy reflects their capacity to modulate antigen delivery to the
immune system. The strength and nature of the adaptive
immune response are heavily dependent on the dose and dur-
ation of antigen exposure to lymphocytes, so many adjuvants
enhance adaptive immune responses by augmenting this process
(Johansen et al. 2008).

In accordance with these two divergent mechanisms of sensi-
tization adjuvancy, different physicochemical properties of metal
nanomaterials may be implicated in immune effects resulting
from each mode of action. For example, simultaneous adminis-
tration of adjuvant and antigen is often implemented with the
intent of depot formation, which increases local antigen retention
(Glenny et al. 1931; Demento et al. 2012). Accordingly, metal
nanomaterial adjuvant effects dependent on this mechanism are
subject to influence by properties involved in antigen trapping,
such as size, degree of agglomeration, surface area, and surface
charge (Henriksen-Lacey et al. 2010a; Henriksen-Lacey et al.
2010b; Kaur et al. 2012a, 2012b).

Knowledge gaps in metal nanomaterial effects on
skin allergy

Knowledge regarding metal nanomaterial effects on skin sensi-
tization is largely limited to TiO2 NP, SiO2 NP, and ZnO NP.
Though the selective investigation of these metals is likely reflect-
ive of their significance to consumer skin exposures, titanium,
silver, and zinc are not historically associated with clinically-sig-
nificant rates of ACD in the general population. Accordingly, the
observation that some of these metals may have increased poten-
tial to induce skin sensitization in nanoparticulate form raises
additional concerns over the lack of investigations into nanoma-
terials comprised of metals commonly associated with ACD
(nickel, gold, cobalt).

Metal-based nanomaterials and asthma

Respiratory exposure to nanomaterials from naturally-occurring
and anthropogenic sources has been taking place for centuries;
however, the emergence of engineered nanomaterials and their
widespread incorporation into consumer goods pose a risk for
inhalation exposures to higher doses of materials with diverse
chemical compositions and unique properties (Buzea et al. 2007).

In this regard, metal nanomaterials of concern for consumers
include many of the materials mentioned above, such as ZnO NP,
AgNP, TiO2 NP, and SiO2 NP, as a result of their incorporation
into construction materials, sunscreen sprays, disinfectants, and
cosmetic powders, which upon use can lead to their inhalation.
Workers are at risk for inhalation exposure to these and
other highly-produced metal-based nanomaterials (Table 1)
(Nanomaterials Future Markets 2015). Effects of metal nanomate-
rials on pulmonary immunity and asthmatic conditions have
been extensively studied and summarized in this section. In add-
ition to studies reporting adverse immune effects in workers sub-
ject to metal nanomaterial inhalation, animal studies that have
generated evidence of potential for respiratory sensitization and
augmentation of asthmatic conditions are discussed. Likewise,
Table 5 summarizes studies characterizing individual metal nano-
material effects on pulmonary immunity. Table 6 summarizes
studies to examine the effects of metal nanomaterial physico-
chemical properties on asthma. Table 7 highlights some processes
involved in respiratory sensitization and elicitation demonstrated
to be subject to modulation by metal nanomaterials.

Human studies demonstrating pulmonary immune effects of
metal nanomaterials

A 2014 case study best illustrates the concerns associated with
the unknown allergic effects of metal nanomaterials. In the
report, a chemist who accidentally inhaled NiNP in the work-
place subsequently developed clinical symptoms indicative of
IgE-mediated respiratory allergy including throat irritation, nasal
congestion, facial flushing, and respiratory distress upon future
encounters with NiNP. The chemist also developed previously-
nonexistent symptoms indicative of T-cell-mediated ACD in
response to non-nanoparticulate forms of nickel in her earrings
and belt buckles (Journeay and Goldman 2014). In addition to
reinforcing existing concerns over increased potential for allergic
sensitization as a result of decreased size, the case also empha-
sized additional concerns reflective of the unique mechanisms of
metal allergy. The case showed that sensitization via one expos-
ure route may not limit future elicitation reactions to the same
tissue; moreover, sensitization by metal ions, irrespective of ori-
ginal parent material size, may result in elicitation reactions fol-
lowing exposure to both nano- and bulk-sized metal materials.

Adverse immune effects with implications for allergy have
been investigated in human subjects with risk of inhalation
exposure to metal nanomaterials in their workplaces. In one
study, it was shown that workers of nanomaterial-handling facili-
ties in Taiwan exhibited increased prevalence of sneezing, dry
cough, and productive cough compared to workers with no
nanomaterial exposures (Liao et al. 2014). Although the workers
were employed by facilities handling SiO2 NP, Fe2O3 NP, AuNP,
AgNP, and TiO2NP, it is unclear whether the observed respira-
tory effects were mediated by adaptive immune responses spe-
cific to the metals, or nonspecific irritant mechanisms.
Interestingly, increased rates of ACD were also observed in the
workers of the nanomaterial-handling facilities, but the inciting
agents were not determined. As such, it is unknown if exposure
to the nanomaterials induced sensitization or caused increased
susceptibility to ACD development in workers.

Similar studies have also demonstrated that exposure to nano-
materials in the workplace can cause elevations in various
immune-related biomarkers indicative of potential effects on
allergy (Andujar et al. 2014; Glass et al. 2017; Kurjane et al.
2017) For example, elevations in breath condensate leukotriene
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(LT) levels were observed in subjects exposed to TiO2 NP aerosol
(< 100 nm) in their workplaces (Daniela et al. 2016). The
exposed workers had elevated levels of LTB4, a lipid mediator
associated with the recruitment, activation, and prolongation of
survival of leukocytes in the lung, as well as multiple cysteinyl
leukotrienes (i.e. LTC4, LTE4, LTD4), that are potent mediators
of bronchoconstriction (Luster and Tager 2004; Zakharov et al.
2016). Although no alterations in lung function were observed in
the exposed workers, elevations in levels of lipid mediators
involved in the pathogenesis of asthma suggest the potential for
exposure to TiO2NP in the workplace to influence the severity of
asthmatic conditions.

Collectively, these reports emphasize the potential occupa-
tional hazards associated with metal nanomaterials. Although
numerous immune markers have been shown to be modulated
in workers following inhalation exposure to metal nanomaterials,
specific implications for asthma remain unclear. Limitations of
human studies arise from inconsistencies between exposure con-
ditions, subject histories, and the requirement for noninvasive,
measurable endpoints. Accordingly, the effects of metal nanoma-
terials on pulmonary immunity and underlying mechanisms
have been assessed in animal models wherein controlled dosing,
consistent environments, and additional endpoints have helped
identify some of the potential underlying mechanisms of metal
nanomaterial-induced pulmonary immune effects.

Evidence for increased potential for respiratory sensitization
from animal studies

Assessment of respiratory sensitization presents numerous chal-
lenges underscored by the absence of validated in vivo, in vitro,
or in silico approaches for identification of potential sensitizers.
However, biomarkers with proposed utility for in vivo identifica-
tion of potential respiratory sensitizers following pulmonary
exposure include IgE and TH2 cytokines (de Jong et al. 2009;
Chary et al. 2018). These markers have not been employed for
direct evaluation of respiratory sensitization potential by metal
nanomaterials; however, numerous studies have reported
increased IgE levels following in vivo pulmonary exposure to
TiO2 NP, PtNP, FeNP, AgNP, and ZnO NP (Park et al. 2009;
Park et al. 2010; Cho et al. 2011; Huang et al. 2015; Seiffert et al.
2015). Many of the same nanomaterials have also been associated
with increased TH2 cytokine levels (i.e. IL-4, IL-5, IL-13) follow-
ing pulmonary exposure (Pettibone et al. 2008; Park 2010;
Marzaioli et al. 2014). Although these findings are suggestive of
the potential for metal nanomaterials to induce asthma, since the
specificity of IgE molecules was not determined in any studies,
the capacity for respiratory sensitization remains speculative.

Assessment of respiratory sensitization potential is further
complicated by the absence of an AOP specific to the events
associated with asthma development. Moreover, discrepancies in
some key events involved in asthma inception by LMW and
HMW agents indicate the potential requirement for multiple
respiratory sensitization AOP. However, many steps are known
to be conserved with respect to sensitization of the skin and
lungs; knowledge of metal nanomaterial effects on these proc-
esses can provide potential insight regarding their potential to
cause asthma.

The induction of respiratory sensitization is ultimately
dependent on antigen bioavailability. Although it remains
unclear whether nano-scale dimensions of metals increase the
likelihood for absorption following dermal exposures, the
respiratory tract presents a portal of entry known to beTa
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increasingly susceptible to smaller materials (Mercer et al. 2018).
Nano-materials exhibit a characteristically increased level of
“dustiness,” a property which describes the propensity for a
material to become airborne following disruption (Evans et al.
2013). Accordingly, the potential for aerosolization and inhal-
ation of metal nanoparticles increases with decreasing size,
thereby overcoming one of the limiting steps of respiratory sensi-
tization associated with larger-sized metal particles.

Sensitization of the lungs also requires interactions between
the sensitizing agent and APC. The respiratory tract is equipped
with an expansive repertoire of defense mechanisms that prevent
such interactions, but metal nanomaterials have been shown to
have increased capacity to circumvent many of these mecha-
nisms, increasing their potential for uptake by DC. In the upper
airways, a layer of mucus lining the lumen functions to trap
inhaled antigens and facilitate their translocation out of the tra-
chea by the mucociliary escalator (Moldoveanu et al. 2009).
Evasion of the �5mm thick mucus layer has been associated
with nanomaterial physicochemical properties including size, sur-
face modification, and surface charge (Samet and Cheng 1994;
Yang et al. 2008; Liu et al. 2015; Murgia et al. 2016). Generally,
hydrophilic, neutrally-charged nanomaterials with smaller diame-
ters have been shown to penetrate mucus to a greater degree
than counterparts with opposing properties (Schuster
et al. 2013).

In the lower airways, a similar mechanism of antigen neutral-
ization is facilitated by pulmonary surfactant (Chroneos et al.
2010). In addition to optimizing the mechanics of respiration,
surfactant contains proteins capable of binding aeroallergens,
accelerating their clearance, and preventing their uptake by APC,
thereby inhibiting antigen-specific responses (Malhotra et al.
1993; Wang et al. 1996; Hohlfeld 2002; Ruge et al. 2011). Two of
these proteins, surfactant protein (SP)-A and SP-D, have been
shown to bind to various metal nanomaterials leading to acceler-
ated clearance by phagocytic mechanisms (Ruge et al. 2011).
Accordingly, nanomaterials with properties that deter binding to
surfactant proteins, such as surface charge, may exhibit increased
potential for evasion of clearance by this mechanism, increasing
potential for interaction with lung DC (Schulze et al. 2011).

Increased potential for antigen/nanomaterial interaction with
DC can also result from evasion of pulmonary macrophage-
mediated clearance. Uptake and sequestration of antigen by
pulmonary macrophages results in intracellular chemical degrad-
ation or physical translocation out of the lungs, preventing
their interception by DC (Elder and Oberd€orster 2006).
Nano-materials can evade clearance by this mechanism by
numerous effects. First, since macrophages have been shown to
selectively phagocytose nanomaterials according to size, charge,
and surface modification, physicochemical properties may con-
tribute to their persistence in the respiratory tract. Their

Table 7. Metal nanomaterials and corresponding physicochemical properties shown to influence immunological processes involved in the development and aug-
mentation of asthma.

AOP step Metal nanomaterial effect Metal
Properties
implicated Source

Sensitization
Bioavailability Increased potential for inhalation many dustiness Evans et al. 2003

Evasion of uptake by pulmonary macrophages Si size, crg, mod Oh et al. 2010
Evasion of entrapment by pulmonary mucus ND size, crg Murgia et al. 2016
Prolonged retention in airways Al spec, mor Park et al. 2017
Direct translocation across lung epithelial tissue to lymphatics Au size, crg Kreyling et al. 2014

Molecular initating event Increased potential for metal antigen formation Ti size Vamanu et al. 2008
Increased protease activity of protein allergens Au – Radauer-Preiml et al. 2016

Cellular response Adsorption of LPS to nanomaterial surface Au size, hyd, mod Li et al. 2017
Increased recruitment of DC to lung Al mod Li et al. 2010
Direct activation of DC Ti size, cry Winter et al. 2011
Release of DAMPs from immune cells> activation of DC Zn size, mor, SA Hsaio et al. 2011
Release of DAMPs from epithelial cells> activation of DC Ag size, mod, SA, sol Hamilton et al. 2014

Organ response Increased CD4þ T-cell presentation efficiency Ti size, mor, cry Schanen et al. 2009
Increased polarization of CD4þ T-cells to TH2 phenotype Si size, mod, SA Vallhov et al. 2012
Increased number of B-cells Ti – Park et al. 2009
Alteration in B-cell expansion/maturation Au size Lee et al. 2014
Increased production of total IgE Pt – Park et al. 2010b
Increased production of allergen-specific IgE Zn size, sol, cry Horie et al. 2015

Elicitation
Organism response-early phase reaction Increased IgE-dependent mast cell degranulation Au size, mod Huang et al. 2009

Increased IgE-independent mast cell degranulation many size, SA, crg Johnson et al. 2017
Increased number of lung mast cells Ce – Meldrum et al. 2018
Altered mast cell exocytic function and granule release Si SA Maurer-Jones et al. 2010
Altered expression of Fc receptors on immune cells Ti size Liu et al. 2010

Organism response- late phase reaction Increased endothelial adhesion molecule expression Al – Oesterling et al. 2008
Increased neutrophil recruitment Ag size, sol Arai et al. 2015
Increased eosinophil recruitment Co sol Jeong et al. 2015
Increased lymphocyte recruitment Zr mod Vennemann et al. 2017
Increased AHR Ag size, mod Seiffert et al. 2015
Increased airway smooth muscle contractility Co/Fe – Kapilevich et al. 2012
Mucus cell metaplasia/muus hyeprsecretion Ti – Chen et al. 2011

Chronic effects Epithelial cell proliferation Zn sol Cho et al. 2011
Increased fibroblast MMP activity extracellular matrix remodeling Ti size, cry, mor Armand et al. 2012
Myofibroblast accumulation Cu – Lai et al. 2018

Adverse Outcome Pathway (AOP) steps involved in the sensitization and elicitation phases of asthma, metal nanomaterials shown to impact individual steps, and
physicochemical properties associated with effects are shown. Physicochemical properties of interest include size, metal speciation (spec), agglomeration (agg), sur-
face modification (mod), surface area (SA), solubility (sol), surface charge (crg), morphology (mor), crystallinity (cry), and hydrophobicity (hyd). ND (not determined)
notation in metal column indicates a study demonstrating a critical role for a specific nanomaterial physicochemical property on the cellular event, but was demon-
strated using nonmetal nanomaterials. Findings may be applicable to metals, but have not been demonstrated with individual metal nanomaterials.
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clearance may also be compromised as a result of selective cyto-
toxic effects on pulmonary macrophages and subsequently fewer
viable macrophages capable of neutralizing the nanoparticles.
Pulmonary macrophage cytotoxicity has been associated with
physicochemical properties including morphology, surface
charge, and rate of dissolution (Oh et al. 2010; Hamilton et al.
2014; Shim et al. 2017). Metal nanomaterial-induced alterations
in phagocytic activity of pulmonary macrophages, as demon-
strated by TiO2 NP, ZnO NP, and AlNP, may also contribute to
evasion of clearance (Wagner et al. 2007; Liu et al. 2010; Liu H
et al. 2013). In addition to compromising the clearance capacity
of the phagocytic system on a cellular level, nanomaterials are
also associated with maximizing the clearance capacity of the col-
lective phagocytic system. Volumetric loading of alveolar macro-
phages following inhalation of nanomaterials decreases the
efficiency of clearance, extending biopersistence, and increasing
the potential for interception by DC (Oberdorster et al. 1992;
Blank et al. 2017).

Metal nanomaterial cytotoxic effects on pulmonary macro-
phages may also promote sensitization by additional mecha-
nisms. Since alveolar macrophages are known to antagonize TH2
responses in the lung and downregulate APC functions, cytotoxic
effects may disrupt the maintenance of an immunological toler-
ant state (Tang et al. 2001). Moreover, their depletion leads to
significantly increased recruitment of DC and DC precursors to
the lungs (Holt et al. 1993; Jakubzick et al. 2006). Numerous
metal nanomaterials are also known to trigger the release of alar-
mins including IL-1b and -1a by alveolar macrophages; in turn,
these can activate DC and facilitate sensitization (Braydich-Stolle
et al. 2010; Scherbart et al. 2011; Sandberg et al. 2012; Hamilton
et al. 2014; Rabolli et al. 2014; Arai et al. 2015).

Similar to their roles in the development of skin allergy, epi-
thelial cells of the respiratory tract are integral in the develop-
ment of asthma, and their disruption by inhaled materials can
have profound influence on the early events of sensitization
(Bergamaschi et al. 2006). A major function of airway epithelial
cells is to serve as a physical barrier between inhaled agents that
deposit in the airway lumen and DC in the epithelium
(Hammad and Lambrecht 2015). The importance of barrier
integrity in preventing the development of asthma is illustrated
by the barrier-disrupting proteolytic activity shared by many
aeroallergens with high rates of sensitivity in the population
(Kauffman et al. 2006; Lambrecht and Hammad 2012). The fre-
quent observation that metal nanomaterials are capable of induc-
ing cytotoxicity to pulmonary epithelial cells suggests their
potential to increase permeability and passage of antigens from
the airway lumen to compartments associated with DC.

Airway epithelial cell cytotoxicity has also been associated
with the release of alarmins that have potential to promote DC
activation and sensitization. Similar to keratinocytes in the skin,
the mechanism of cell death can critically influence the nature of
the resultant immune response. For example, the necrotic cell
death following pulmonary exposure to beryllium results in the
release of mediators including cellular DNA, which is recognized
as a DAMP by TLR-9, and promotes the unique TH1-mediated
effects associated with chronic beryllium disease (McKee et al.
2015). NiNP, AgNP, and CoNP have been shown to induce simi-
lar necrotic cell death of bronchial and alveolar epithelial cells
(Holt et al. 1993; von Garnier et al. 2005; de Haar et al. 2008;
Capasso et al. 2014; Ortega et al. 2014). Contrarily, ZnO NP,
CuO NP, TiO2 NP, and CrNP have all been associated with
induction of apoptotic cell death in pulmonary epithelial cells
(Park et al. 2007, 2008; Ahamed et al. 2011; Sun et al. 2012;

Senapati et al. 2015). This effect may further influence the devel-
opment of respiratory allergy since uptake of these cells is a
property exclusive to CD103þ DC, a subset of DC associated
with cross-presentation and the subsequent induction of CD8þ

effector responses (Desch et al. 2011).

Incorporation of metal nanomaterials into asthma models

The impact of metal nano-material exposure prior to sensitiza-
tion has only been addressed by a few studies using asthma
models. Aspiration exposure to ZnO NP, TiO2 NP, NiO NP,
CuO NP, or SiO2 NP 1 d before inhalation sensitization to OVA
was followed by inhalation challenge and subsequent assessment
of asthmatic severity. Soluble metal nanomaterials (NiO NP,
ZnO NP, and CuO NP) were associated with elevations in OVA-
specific IgE, whereas insoluble SiO2 NP and TiO2 NP were not.
Subsequent investigations confirmed the importance of metal ion
release in the adjuvant effects on sensitization. The increase in
OVA-specific IgE production associated with soluble NiO NP
was not conserved in response to insoluble NiO microparticles
in the same model (Horie et al. 2015). However, ZnCl2 also did
not exert the same increase in OVA-specific IgE caused by ZnO
NP. As a result, it was concluded that continuous ion release
from nanoparticles was required for the induction of the
observed effects (Horie et al. 2016). Exposure to residual oil fly
ash particles prior to allergen sensitization has also been associ-
ated with adjuvant effects attributable to soluble metal constitu-
ents (Lambert et al. 2000).

Concurrent exposure to metal nanomaterials during allergen
sensitization has been explored extensively in order to evaluate
the potential adjuvant effects of metal nanomaterials on asthma
development. This concept has been explored with respect to
both systemic and respiratory sensitization routes, as well as
independent and dependent of allergen challenge. In the absence
of allergen challenge, evaluation of sensitization achieved by
intraperitoneal injection is limited to assessment by systemic
markers, such as antigen-specific IgE and cytokine levels.
Accordingly, co-administration of AgNP and ZnO NP with anti-
gen has been associated with elevated levels of allergen-specific
IgE, as well as increased levels of TH2 cytokines (Matsumura
et al. 2010; Xu et al. 2013). As demonstrated with SiO2 NP,
enhanced antibody production has been associated with both
increasing dose and decreasing particle size (Toda and
Yoshino 2016).

Though few studies have correlated metal nanomaterial prop-
erties to adjuvant effects on intraperitoneal sensitization inde-
pendent of allergen challenge, existing findings are conducive
with studies using larger metal particles and nonmetal nanopar-
ticles (Naim et al. 1997; Granum 2001b). The impact of the most
extensive number of physicochemical properties with respect to
adjuvant effects on OVA sensitization use polystyrene nanopar-
ticles (PSP). Nygaard et al. (2004) used PSP ranging from 58 nm
to 11.4 mm to evaluate the influence of particle size, mass, surface
area, and particle number. Similarly, Granum et al. (2000) used
six sizes of spherical PSP to administer doses with constant mass
(12.25mg), size (0.1 mm), particle number (8 x 1010), or surface
area (1300 cm2). Both studies showed that serum OVA-specific
IgE levels best correlated with particle number and surface area
(Granum et al. 2001a; Nygaard et al. 2004).

Similar adjuvant effects have been observed following respira-
tory sensitization and co-exposure to TiO2 NP, SiO2 NP, and
ZnO NP (de Haar et al. 2006; Huang et al. 2015). Increases in
OVA-specific IgE and TH2 cytokine levels were similarly
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associated with decreasing size of SiO2 NP (Yoshida et al. 2011).
Moreover, SiO2NP surface properties were shown to impact sen-
sitization independent of allergen challenge. Intranasal exposure
to three variations of SiO2 NP (spherical, mesoporous, and
PEGylated) simultaneous to OVA sensitization exacerbated
pathological changes, inflammatory cell influx, and TH2 cytokine
responses. These effects were specific to the unique surface
chemistry of each type of SiO2 NP, but the most severe
responses were associated with the nanoparticle with the highest
surface area (Han et al. 2016).

The absence of allergen challenge in these studies helps eluci-
date the direct effects of metal nanomaterials on sensitization
processes. However, another approach to evaluate the same effect
involves evaluation of allergic parameters collected in response
to allergen challenge. Studies utilizing this approach have simi-
larly demonstrated enhanced asthmatic responses in OVA-chal-
lenged mice when intraperitoneal sensitization occurred
simultaneous to TiO2 NP and ZnO NP (Larsen et al. 2010; Roy
et al. 2014a; Roy et al. 2014b; Mishra et al. 2016).

Although the observed effects may reflect residual impacts of
metal nanomaterial respiratory exposure during sensitization,
similar adjuvant effects on elicitation responses have been
observed following respiratory sensitization and simultaneous
metal nanomaterial exposure. Simultaneous administration of
SiO2NP, CeO2NP, QD, and TiO2NP with allergen during sensiti-
zation led to enhanced asthmatic response severity, as measured
by antigen-specific antibody levels, inflammatory cell influx, and
TH2 cytokine levels after challenge (Brandenberger et al. 2013;
Meldrum et al. 2018; Vandebriel et al. 2018; Scoville et al. 2019).
Studies using similar sensitization procedures and endpoints
have also implicated TiO2 NP crystal structure in adjuvant effects
on sensitization (de Haar et al. 2006; Vandebriel et al. 2018).

Metal nanomaterial exposure has also been incorporated into
the challenge phase of asthma to evaluate potential modulation
of asthmatic responses in established asthmatic conditions.
Although some metals, including CuO NP, have been exclusively
shown to induce significant aggravating effects on elicitation
responses, others, including AuNP, appear to exert protective
effects on asthmatic responses (Barreto et al. 2015; Park et al.
2016; Omlor et al. 2017). Contrarily, other metal nanomaterials,
including TiO2 NP, have been associated with divergent effects
on allergen challenge that appear increasingly susceptible to vari-
ation during this phase of asthma. Effects have been reported to
be differentially induced according to dose, duration of exposure,
and endpoints of assessment (Rossi et al. 2010; Hussain et al.
2011; Jonasson et al. 2013; Kim et al. 2017).

Similarly, after OVA sensitization via intraperitoneal injection,
AgNP exposure during allergen challenge has been reported to
induce various aggravating and attenuating effects on allergic
inflammation. Inhalation exposure to 6 nm AgNP was shown in
multiple studies to suppress inflammatory cell influx, airway
hyper-reactivity (AHR), mucus hypersecretion, and other meas-
ures of asthmatic responses (Park, Kim, Jang, et al. 2010; Jang
et al. 2012). Contrarily, in another study with very similar expos-
ure conditions, 33 nm AgNP caused increased airway response,
inflammatory cell influx, and OVA-IgE levels over control ani-
mals (Chuang et al. 2013; Su et al. 2013). The discrepancies
between these studies may be attributable to AgNP size differ-
ence, as well as potential variations in particle coating, both of
which have been associated with differ-ential effects on asthmatic
responses (Alessandrini et al. 2017). Additionally, the first two
studies used the TH1-dominant C57BL/6 mouse strain, whereas
the second used a TH2-biased BALB/c strain (Jones et al. 2013).

Strain-specific immune responses following respiratory exposure
to metal nanomaterials during allergen challenge have been dem-
onstrated in other studies, as well (Gustafsson et al. 2014).

Studies using SiNP and ZrO NP with variations in surface
properties demonstrate that when administered during allergen
challenge, surface properties of nanomaterials can differen-tially
aggravate allergic inflammation (Marzaioli et al. 2014; Park,
Sohn, et al. 2015; Vennemann et al. 2017). It has been suggested
that particles with higher oxidant potential amplify asthmatic
inflammation to a greater degree, which would implicate physi-
cochemical properties such as surface modification in these
effects (Li et al. 2009).

Potential mechanisms of asthma augmentation by metal
nanomaterials

Although asthma models have characterized the potential effects
of metal nanomaterial exposure on asthmatic processes, many of
the underlying mechanisms of these observed effects remain
unclear. However, findings from other studies suggest several
mechanisms may be associated with the observed effects of metal
nanomaterials on the augmentation of asthma.

Respiratory exposure to metal nanomaterials may increase
susceptibility to sensitization by aeroallergens by similar mecha-
nisms previously proposed to contribute to their respiratory sen-
sitization potential. Release of alarmins by airway epithelial cells
and resident immune cells, disruption of the TH1/TH2 balance in
the lung, and amplification of oxidative stress by metal nanoma-
terials may also generate adjuvant effects on sensitization.
Similarly, FeNP, TiO2 NP, and SiNP have all been shown induce
the release of TH2 cytokines including IL-33, TSLP, GM-CSF,
and IL-25 by airway epithelial cells, which are known to promote
DC maturation (Hussain et al. 2009; Val et al. 2009; Mano et al.
2013; Park, Sohn, et al. 2015).

Evidence also suggests metal nanomaterial exposure can
modulate inflammatory pheno-types of existing asthmatic condi-
tions. Two major heterogeneous asthma phenotypes differ based
on the presence of neutrophil (TH1/TH17)- or eosinophil (TH2)-
dominated inflammation (Fahy 2009; Yu and Chen 2018).
Particulate and soluble metals are known to differentially impact
the nature of existing allergic airway inflammation by skewing
this balance (Schneider et al. 2012). Dissolution kinetics also
appear influential in this regard, as CoNP, NiNP, ZnO NP, and
CuO NP and their corresponding ions have been shown to dif-
ferentially recruit eosinophils and neutrophils to the lungs of rats
after exposure (Cho et al. 2011; Jeong et al. 2015).

Modulation of elicitation response severity by metal nanoma-
terials may emerge as a result of modulation of mast cell activity.
As a major effector cell in IgE-mediated allergic responses, mast
cells have been shown to be potential targets of metal nanomate-
rial-induced adverse effects in vitro (Feltis et al. 2015; Johnson
et al. 2017; Alsaleh and Brown 2018). AgNP, CuO NP, SiO2 NP,
and TiO2 NP have all been shown to induce IgE-independent
mast cell degranulation depending on physicochemical properties
including size, surface area, charge, shape, and the presence of
adsorbed surface proteins (Marquis et al. 2011; Aldossari et al.
2015; Alsaleh et al. 2016; Johnson et al. 2017). Modulation of
IgE-dependent mast cell degranulation has also been demon-
strated by some of the same nanomaterials. TiO2 NP, AuNP,
CeO2 NP, ZnO NP, and FeNP have been shown to modulate
interactions between allergen and surface-bound IgE molecules,
interfering with dimerization and subsequent degranulation
(Huang et al. 2009; Ortega et al. 2015). Similarly, mast cell
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uptake of metal nanomaterials has been associated with modula-
tion of intracellular calcium signaling involved in mast cell
degranulation (Amin 2012; Chen et al. 2012). Accordingly, dif-
ferential ion release by bulk ZnO particles, ZnO NP, and soluble
ZnSO4 has been correlated with the propensity for OVA-sensi-
tized rat mast cells to degranulate when co-exposed with OVA
(Yamaki and Yoshino 2009; Feltis et al. 2015).

Furthermore, TiO2 NP and AuNP have been shown to alter
the exocytic kinetics of granule secretion by mast cells (Marquis
et al. 2009). The qualitative and quantitative profile of granule
contents has also been shown to be subject to modulation by
some metal nanomaterials. The number of molecules per granule
has been shown to be impacted by SiO2 NP as a function of por-
osity and surface area (Maurer-Jones et al. 2010). Variations in
vesicle mediator content has been shown to be augmented by
AuNP (Marquis et al. 2009). Since the contents of mast cell
granules contribute to vascular permeability and inflammatory
cell recruitment, these alterations can greatly impact the severity
of allergic elicitation (Dudeck et al. 2011; Weber et al. 2015).

Aggravation of existing asthmatic conditions may also involve
non-immunological mechanisms, such as metal nanomaterial-
induced alterations to normal physiological processes. For
example, increased mucus production by epithelial cells is a hall-
mark symptom of the early and late phase asthmatic response
(Erle and Sheppard 2014). The observation that TiO2NP and
CuONP both increased mucin secretion in human epithelial cells
suggests potential to exacerbate asthmatic conditions by contri-
buting to obstruction of airways (Chen et al. 2011; Park et al.
2016). Similarly, TiO2 NP, AuNP, and AgNP have been shown
interfere with optimal pulmonary surfactant functioning, which
can cause AHR and increased resistance to airflow (Hohlfeld
et al. 1999; Hohlfeld 2002; Bakshi et al. 2008; Schleh et al. 2009;
Zhang et al. 2018). AHR may also be modulated by metal nano-
materials as a result of alteration of airway smooth muscle
(ASM) contractility. ZnO NP, CuO NP, and TiO2 NP have all
been shown to alter human ASM mechanical function in vitro
(Berntsen et al. 2010). Similarly, CoFe2O4 NP were shown to
potentiate both histaminergic and cholinergic ASM contractility
in vivo, which has the capacity to exacerbate symptoms of
asthma associated with bronchoconstriction (Kapilevich
et al. 2012).

Metal nanomaterial exposure may also exacerbate established
asthmatic conditions by accelerating the progression of patho-
logical alterations associated with chronic asthmatic conditions.
The repetitive induction and resolution of inflammation induced
by asthmatic elicitation leads to anatomical alterations referred
to as airway remodeling (Fehrenbach et al. 2017). Histological
indicators of these alterations have been reported to be exacer-
bated by various metal nanomaterials including SiNP (Han et al.
2011). Similarly, cellular indicators of accelerated airway remod-
eling have been implicated in response to many metal nanomate-
rials. For example, fibroblast accumulation and increased
extracellular matrix deposition is a common contributor to air-
way remodeling and has been observed in response to NiNP,
SiO2 NP, and CeO2 NP exposure (Warner and Knight 2008; Han
et al. 2011; Ma et al. 2012; Armand et al. 2013; Glista-Baker
et al. 2014).

Knowledge gaps in metal nanomaterial effects on asthma

Despite the known capacity for many metals to induce IgE-medi-
ated asthma following inhalation, the potential for metal nano-
materials to induce sensitization of the respiratory tract remains

completely unknown. Several other interesting aspects of pul-
monary immunity have not been widely addressed with respect
to metal nanomaterials, and may have relevance to current
observations regarding their effects on asthma. The microbiome
is known to significantly impact numerous aspects of allergic dis-
orders, and while some metal nanomaterials associated with anti-
microbial activity have been shown to alter the pulmonary
microbiome, the implications for asthma remain unknown
(Alessandrini et al. 2017; Poh et al. 2018). Similarly, the effects
of metal nanomaterials on innate lymphoid cells also remain
largely unstudied, but should not continue to be neglected, given
the importance of this cell type in allergic disorders. Finally, the
capacity for metal nanomaterials to disrupt or prevent the devel-
opment of immunological tolerance has not been explored, and
may be influential in both phases of asthmatic conditions.

Effects of metal nanomaterials on immune cells and
allergic processes in vitro

In vivo studies have demonstrated the capacity for metal nano-
materials to augment numerous immunological processes that
result in functional implications for allergic disease. However, in
vitro investigations have helped elucidate some of the underlying
mechanisms responsible for in vivo observations. In this section,
major findings regarding the role of metal nanomaterial physico-
chemical properties on molecular and cellular processes with
implications for both ACD and asthma are summarized.

Effects on antigen immunogenicity

Many physicochemical properties associated with the molecular
and cellular processes that confer antigen immunogenicity are
subject to alteration following interactions with constituents of
their environment. In this regard, the immunogenicity of metal
nanomaterials may be significantly altered as a result of biocor-
ona formation. Following entry into biological media, macromo-
lecules present in the media interact with and adsorb to the
surface of nanomaterials within minutes, forming a layer that
defines the bio-identity of the nanomaterial (Corbo et al. 2016).
The qualitative profile of adsorbed constituents and quantitative
strength of association have been shown to be influenced by
nanomaterial properties including size, charge, morphology, sur-
face modification, and hydrophilicity, among other properties
(Lundqvist et al. 2008; Dobrovolskaia et al. 2014).

Independent of adsorbed constituents’ identities, macromol-
ecule associations with metal nanomaterial surfaces may induce
alterations in physicochemical properties associated with their
bioactivity (Dobrovolskai et al. 2009b; Yin et al. 2015). For
example, protein adsorption to 25 nm FeNP was associated with
a 5-fold increase in hydrodynamic size, which can impact a
number of biological effects, such as propensity for cellular
uptake (Calatayud et al. 2014). Similarly, adsorption of proteins
can mask reactive surfaces of metal nanomaterials, attenuating
ROS generation, and subsequently inhibiting a major biochem-
ical mechanism involved in the release of alarmins (Ilinskaya
and Dobrovolskaia 2016).

Contrarily, surface adsorption of macromolecules may alter
the biological activity of metal nanomaterials in a manner that is
dependent on the adsorbed constituent profile. Endo-genous pro-
teins, including immunoglobulins, cytokines, and complement
proteins are all constituents of the serum and lung lining fluid
known to bind metal nanomaterial surfaces (Neagu et al. 2017).
The binding of complement protein C3b and IgG to
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nanomaterial surfaces has been shown to confer recognition by
complement and Fc receptors, accelerating clearance by phago-
cytes, and limiting the potential of the nanomaterial to induce
other immune effects (Beduneau et al. 2009; Moghimi et al.
2012; Frohlich 2015). Adsorption of exogenous agents can also
lead to alterations in nanomaterial immunogenicity. One of the
most notable examples is endotoxin (LPS), a frequent microbial
contaminant of nanomaterial surfaces that is capable of activat-
ing innate immune cells, and inducing pro-inflammatory signal-
ing via the TLR-4 pathway. Adsorption of LPS to nanomaterial
surfaces has been shown to enhance inflammatory responses to
many metal nanomaterials by lung epithelial cells, and various
immune cells (Shi et al. 2010; Liu et al. 2012; Bianchi et al. 2017;
Li et al. 2017; Ko et al. 2018). The chemical structure of LPS
favors its adsorption to hydrophobic, positively-charged metal
nanomaterial surfaces, indicating a role for physicochemical
properties such as surface modification in the propensity for
associations with immunogenic exogenous molecules such as
LPS (Gorbet and Sefton 2005; Li et al. 2017).

Although biocorona formation can augment the immuno-
logical fate of a nanomaterial, the interactions may also facilitate
alterations in immunogenicity of the adsorbed constituents.
Deng et al. (2010) showed that functionalized AuNP were cap-
able of binding fibrinogen independent of nanoparticle size, but
certain sizes of AuNP induced conformational changes in the
protein. Subsequent alterations in protein structure conferred its
recognition by the Mac-1 receptor, subsequently activating NF-
jB signaling in innate immune cells. Similarly, Bastus et al.
(2009) demonstrated that while macrophages did not recognize
AuNP or two biomedically-relevant peptides individually, their
conjugation facilitated recognition by TLR-4 and the subsequent
induction of pro-inflammatory cytokine production. Since these
signaling pathways play critical roles in many of the adjuvant
effects mentioned in previous sections, interactions between
metal nanomaterials and host proteins can generate novel sour-
ces of immunogenicity that may promote allergic processes.

The generation of metal antigens in vitro has been shown to
be impacted by the unique physicochemical properties of metal
nanomaterials. The size-specific increase in surface energy of
TiO2 NP was shown to promote associations between the metal
and human serum albumin, resulting in increased bioavailability
(Vamanu et al. 2008). This altered propensity for inter-actions
with host proteins contributed to the observation that titanium
antigens generated from ionic and nanoparticulate forms of TiO2

induced differential proliferation of CD4þ and CD8þ T-lympho-
cytes in vitro (Hol et al. 2018).

Effects on processes involved in sensitization

As the primary APC involved in allergic sensitization, the cap-
acity for metal nanomaterials to modulate DC activity represents
a prominent mechanism by which allergic sensitization can be
impacted (Jia et al. 2018). Since many sensitizing agents are
known to induce both antigen-specific and nonspecific signals to
DC following exposure, DC activation is a step of the dermal
sensitization AOP used for in vitro identification of potential
sensitizers. Accordingly, the h-CLAT method has been validated
for use by the OECD to determine the skin sensitizing potential
of agents. In this assay, undiffer-entiated THP-1 human mono-
cytic leukemia cells are exposed to an agent for 24 h and their
activation status is subsequently assessed by quantification of
CD86 and CD54 activation marker expression (Ashikaga et al.
2002, 2006; Nukada et al. 2012).

The h-CLAT assay has not been employed to evaluate the
sensitizing potential of any metal nanomaterials; however, several
studies have investigated metal nanomaterial effects on undiffer-
entiated THP-1 cells following a 24-h exposure, and reported
activation marker expression. Accordingly, up-regulation of
CD86 expression was observed following exposure to surface-
modified FeNP, SiO2 NP, and mixed-metal alloy nanoparticles
(Liu, Y et al. 2013). de Marzi et al. (2017) exposed THP-1 cells
to a wide range of SiO2 particle sizes (10–1430 nm); while all
particles promoted activation marker expression, the 240 nm
SiO2 particles induced the greatest degree of CD80 expression.
Similar findings were reported by an investigation that assessed
the potential for metal debris released from orthopedic implants
to trigger immune activation. Both �2 mm cobalt-chromium-
molybdenum alloy particles and soluble metal ions induced ele-
vations in THP-1 co-stimulatory molecule expression, suggesting
that a wide range of metal particle sizes have the capacity to
induce immune effects involved in allergic sensitization (Caicedo
et al. 2010; de Marzi et al. 2017). Contrarily, no elevations in
THP-1 expression of CD86 or CD54 were observed in response
to 100 nm AgNP exposure (Galbiati et al. 2018).

Though CD86 and CD54 are the validated biomarkers indica-
tive of sensitizing potential in the THP-1 line, limited reports
have evaluated these specific markers following metal nano-
material exposure. However, other markers indicative of DC acti-
vation, such as MHC II, CD11b, CD14, CCR2, and CCR5 have
been reported to be up-regulated in response to exposures to
ZnO NP and FeNP (Prach et al. 2013; Matuszak et al. 2015).
Similarly, modulation in expression of 60 genes – several of
which were correlated to monocyte differentiation and matur-
ation – were observed in response to PtNP exposure (Gatto
et al. 2018).

The THP-1 cell line has also been used to identify potential
skin sensitizers in vitro based on a unifying property of rapid
ROS production following exposure to skin sensitizing chemicals
(Miyazawa and Takashima 2012). A similar response has been
demonstrated in the cell line following exposure to < 100 nm sil-
ver-copper alloy nanoparticles, AgNP, CoO NP, PdNP, and
NiNP (Monprasit et al. 2018). The degree of ROS production by
THP-1 cells has been correlated to properties including particle
size and corona presence, as well as exposure dose and duration
(Foldbjerg et al. 2009; Casals et al. 2011; Neubauer et al. 2015).
Subsequent activation of the p38 MAPK signaling pathway, alter-
ations in expression of HMOX1 and other oxidative stress genes
have also been used as in vitro biomarkers suggestive of sensitiz-
ing potential. Numerous metal nanomaterials have been associ-
ated with these effects on THP-1 cells, which suggests their
potential to activate DC and promote sensitization (Mohamed
et al. 2011; Khatri et al. 2013; McConnachie et al. 2013;
Boonrungsiman et al. 2017).

The potential for metal nanomaterials to induce DC activa-
tion has been more extensively examined using primary DC than
the cell lines used in the validated assays (Kang and Lim 2012).
Although the expression of activation markers in murine bone
marrow-derived DC (BMDC) or human monocyte-derived DC
(MDDC) has not been validated by OECD for use in determin-
ing sensitization potential in vitro, several studies have reported
their capacity to accurately predict sensitizers (Tuschl et al. 2000;
Pepin et al. 2007). Accordingly, TiO2 NP, ZnO NP, and SiO2 NP
have been associated with increased expression of CD80 and
CD86 by murine BMDC with respect to size, surface chemistry,
and crystallinity (Palom€aki et al. 2010; Heng et al. 2011; Winter
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et al. 2011; Zhu et al. 2014; Winkler et al. 2017; Vandebriel
et al. 2018).

Nanomaterial-induced modulated DC activity can also influ-
ence sensitization indepen-dent of their capacity to induce
phenotypical maturation. For example, uptake of AuNP and
AgNP resulted in an enhanced capacity for DC maturation in
response to other immune stimuli (Orlowski et al. 2018). This
finding suggests uptake of antigens normally incapable of activat-
ing DC may trigger their maturation in the presence of nanoma-
terials. In addition, accumulation of metal nanomaterials has
been proposed to interfere with antigen processing and presenta-
tion by DC (Thiele et al. 2003; Humeniuk et al. 2017).

Polarization of DC and the subsequent preferential generation
of TH1/TH2 effector T-cells is another step in the development
of allergy that has been shown to be susceptible to modulation
by nanomaterials. Dermal and respiratory sensitizers are associ-
ated with divergent oxidative stress responses that induce select-
ive alterations in three major signaling pathways responsible for
DC polarization (Mizuashi et al. 2005; Antonios et al. 2009).
Polarization of DC towards TH1-promoting activity has been
associated with the propensity for skin sensitizers to react with
cytoplasmic glutathione following which, rapid depletion leads to
ROS accumulation. The rapid induction of oxidative stress
induced by contact sensitizers is responsible for the selective acti-
vation of the p38 MAPK and JNK signaling pathways within
minutes of encounter (Nakahara et al. 2006). Contrarily, polar-
ization of DC towards TH2-dominant responses has been associ-
ated with delayed induction of oxidative stress resulting from the
preferential association of respiratory sensitizers with intracellu-
lar amine groups (Ferreira et al. 2018). Subsequently, selective
activation of the NF-jB and ERK pathways occurs.

Knowledge of these pathways and their differential activation
explain the observation that metal nanomaterials with opposing
catalytic properties induce different polarization profiles in DC
in vitro. The oxidant capacity of TiO2 NP resulted in potenti-
ation of DC maturation leading to a TH1-biased responses,
whereas treatment with the anti-oxidant surface activity of CeO2

NP resulted in secretion of anti-inflammatory IL-10 and a TH2-
dominant T-cell profile (Schanen et al. 2013). FeNP, AuNP, and
GdNP have also been associated with modulation of DC polar-
ization in vitro with respect to size and surface chemistry (Yang
et al. 2010; Vallhov et al. 2012; Tomi�c et al. 2014; Hoang
et al. 2015).

Effects on processes involved in elicitation of allergy

Metal nanomaterials have been shown to have potential to influ-
ence elicitation reactions specific to both metals and environ-
mental proteins in vitro. With respect to metal allergy, PBMC
isolated from women with established allergic sensitivity to palla-
dium were challenged with either 5–10 nm PdNP or palladium
salts in vitro (Reale et al. 2011). Variations in TNFa and IL-10
release were noted between exposures, indicating a potential role
for metal solubility on metal-specific allergy elicitation. With
respect to environmental allergens, basophils isolated from
patients with established sensitivity to common environmental
allergens including birch pollen, timothy grass pollen, and house
dust mite were exposed to AuNP-conjugated with corresponding
allergenic proteins. Stable coronas were formed by all three aller-
gens, but binding of allergen to AuNPs caused enhanced activa-
tion of basophils in response to house dust mite challenge, as
well as birch pollen in some individuals (Radauer-Preiml
et al. 2016).

Although lymphocyte cytotoxicity is an immunotoxic effect
most often associated with immunosuppression, as major effector
cells of both IgE and T-cell-mediated allergic responses, this
effect has potential to impact allergic disorders, as well.
Accordingly, many metal nano-materials have been shown to be
cytotoxic and genotoxic to human and murine lymphocytes in
vitro. Interestingly, T- and B-lymphocytes have been shown to
be more resistant to adverse effects of ZnO NP compared to
other immune cell types (Hanley et al. 2009). Although ion
release from ZnO NP and PdNP was correlated to cytotoxicity
and alteration in gene expression, DNA damage induced by
CoNP was shown to be more severe than that induced by Co
ions (Jiang et al. 2012; Tuomela et al. 2013; Petrarca et al. 2014;
Simon-Vazquez et al. 2016). Susceptibility to cytotoxicity was
shown to be reflective of cell cycle status, explaining the finding
that memory T-cells were more sensitive to metal nanomaterial
effects compared to naïve T-cells (Hanley et al. 2009; Shahbazi
et al. 2013).

Modulation of T-lymphocyte activity by metal nanomaterials
also has the potential to significantly influence allergic processes.
PdNP, AuNP, CoNP, and GdNP have all been shown to induce
differential TH1/TH2-biased cytokine production by lymphocytes
in vitro dependent on size, solubility, and hydrophobicity
(Petrarca et al. 2006; Liu et al. 2009; Boscolo et al. 2010; Moyano
et al. 2012). FeNP suppressed the activity of Kv1.3 channels,
which suggests a potential mechanism of lymphocyte cell signal-
ing modulation (Yan et al. 2015). Additionally, delays in prolifer-
ation, altered mitogen responses, and morphological changes
have also been observed by lymphocytes following exposure to
various metal nanomaterials (Shin et al. 2007; Beer et al. 2008;
Liptrott et al. 2014; Devanabanda et al. 2016).

Knowledge regarding effects of metal nanomaterials specific-
ally on B-cells in vitro is limited to AuNP, which have been
shown to be size-dependently taken up by B-cells, causing altera-
tions in NF-jB and blimp1/pax5 signaling pathways, and altered
secretion of immune-globulins in a size-dependent manner via
(Sharma et al. 2013; Lee et al. 2014). The potential for metal
nanomaterials to directly alter B-cell processes, such as antigen-
specific interactions with T-cells, isotype switching, and affinity
maturation, events critical to their effector functions in IgE-
mediated allergic disorder such as asthma, remains largely
unstudied (Luo et al. 2015).

Knowledge gaps in metal nanomaterial effects on immune
cells and processes in vitro

Formation of the nanomaterial biocorona has been almost exclu-
sively investigated with respect to the adsorption of proteins.
However, nanomaterials are also subject to interactions with
other macromolecules present in biological fluids, such as nucleic
acids and lipids. Adsorption of these molecules may have notable
impacts on the immune effects of nanomaterials since different
nucleic acids are alarmins recognized by PRR and lipid media-
tors play critical roles in many aspects of allergic disorders
(Schauberger et al. 2016; Muller et al. 2018). Accordingly, more
research should be directed towards investigating the biological
implications of surface-adsorbed macromolecules other than pro-
teins. Similarly, it has been suggested that metal nanomaterials
may act as soluble or particulate antigens, but the dynamics of
metal antigen generation remains largely unstudied with respect
to nanoparticles.
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Important considerations for future metal-based
nanomaterial allergy studies

The potential for metal-based nanomaterials to induce immune
effects with implications for allergic disease following exposure
by routes other than dermal contact or inhalation is a significant
knowledge gap. Nanomaterials are being increasingly incorpo-
rated into foods, beverages, supplements, and packaging, render-
ing ingestion exposures an increasing concern (Chaudhry et al.
2008). Ingestion of metal nanomaterials has been associated with
altered B-cell distribution, increased levels of IgE and IgG, and
splenic toxicity, but the implications of these effects on allergy
are unknown (Park et al. 2010a; Kim et al. 2014; Sheng et al.
2014). Similar immune effects have been observed following sys-
temic administration of various metal nanomaterials. Although
most current uses for metal nanomaterials are not likely to result
in systemic exposures, some nanomaterials with expanding bio-
medical applications present a concern. The significance of this
knowledge gap is demonstrated by the numerous adverse effects
in patients administered Feraheme (ferumoxytol), an intraven-
ously-administered iron replacement product containing
17–31 nm colloidal Fe3O4NP (Lu et al. 2010). In the 5 years fol-
lowing approval for use by the Food and Drug Administration
(FDA) in 2009, 79 anaphylactic reactions were reported, of which
19 were fatal.

As more studies are conducted to advance our understanding
of the effects of metal nanomaterials on allergic disease, it should
be recognized that accurate assessment is dependent on the
evaluation of sample contamination with endotoxin
(Dobrovolskaia et al. 2009a). As a result of production and han-
dling in non-sterile conditions, engineered nanomaterials are
often carriers of impurities including LPS, a potent immuno-
adjuvant (Smulders et al. 2012). Accordingly, the presence of
endotoxin on surfaces of metal nanomaterials could generate a
subsidiary but sufficient amount of immunostimulation required
to induce allergic sensitization to the metal itself, or to other
allergens. Consequently, exposure to immunologically inert metal
nanomaterials contaminated with LPS may lead to misidentifica-
tion of such agents as sensitizers or adjuvants. Many of the stud-
ies published prior to this development do not report the
presence or absence of endotoxin in samples, and results should
be interpreted with caution.

Another consideration for future studies is that the successful
correlation of metal nanomaterial physicochemical properties
with mechanisms of toxicity is limited by the accurate assessment
and reporting of test material characterization. Although thor-
ough material character-ization has become recognized as an
indispensable step in nanotoxicity studies, discrepancies in prop-
erty terminology, evaluation methods, property reporting, and
the biological relevance of measured properties complicate com-
parisons between studies. A notable example of inconsistent
property terminology is the tendency for non-discriminate
reporting of aggregates and agglomerates of primary particles.
The irreversible bonds of aggregates and reversible bonds of
agglomerates can impact the effective dose surface area, degree
of primary particle dissociation, and other properties that dictate
in vivo biological effects (Keene and Tyner 2011; Gualtieri et al.
2012; Sharma et al. 2014). Another property subject to inconsist-
ent reporting is nanomaterial surface area. Differences in the
material state and method of assessment can generate results
representative of different parameters, including volume-specific,
geometric, or specific surface area SSA (van Doren et al. 2011;
Wohlleben et al. 2017). Although these metrics are often simi-
larly reported by studies, they have been correlated to notable

variations in toxic potential (Sager et al. 2016). The use of mul-
tiple assessment methods and disclosure of potential sources of
measurement variation between studies will help accurately com-
pare the impact of properties on toxic potential in future studies.

Accurate evaluation of nanomaterial physicochemical proper-
ties and their correlation to toxic effects has become increasingly
relevant as emerging nanomaterials challenge the efficacy of trad-
itional occupational exposure limits (OEL). The majority of
respiratory occupational exposure limits do not discriminate for
material size, so as new metal-based nanomaterials emerge, they
are subject to the same mass-derived values enforced for other
materials of the same elemental composition. This issue is prov-
ing problematic as nanotoxicity studies continue to demonstrate
that mass may not be the best dose metric for prediction of pul-
monary toxicity (Schmid and Stoeger 2016). Moreover, as dem-
onstrated by the studies summarized here, metal nanomaterial
properties other than mass have been correlated to immune
effects following respiratory exposure. Accordingly, size nonspe-
cific OELs may be ineffective in protecting workers from both
nanomaterial-induced pulmonary effects, as well as subsequent
immune effects (Schulte et al. 2010). This concern has become
increasingly recognized, as NIOSH has recommended size-spe-
cific exposure limits for TiO2. Despite the recommended time-
weighted average exposure limits of 2.4mg/m3 for fine TiO2 and
0.3mg/m3 for ultrafine and nanoscale TiO2, the agency respon-
sible for regulating compliance with its own established limits
(i.e. OSHA) has not yet adopted size-specific OEL values for
TiO2 (NIOSH 2011).

Conclusions

Although there is a growing amount of toxicological data dem-
onstrating the vast potential for adverse immune effects follow-
ing exposure to metal nanomaterials, advancements in
understanding their interactions with biological systems have
allowed for their unique characteristics to be harnessed for bene-
ficial applications, as well. Numerous studies have demonstrated
the potential utility of metal nanomaterials for novel vaccine
adjuvants, drug delivery vehicles, diagnostic approaches, and
immunotherapies. However, to optimize the use of metal-based
nanomaterials for these and other advantageous purposes, a
more complete understanding of their systemic immune effects,
mechanisms of immunomodulation, and capacity to induce aller-
gic sensitization is needed.
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