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Oxy-coal combustion is one of the more promising technologies currently under development for addressing the issues associated
with greenhouse gas emissions from coal-fired power plants. Oxy-coal combustion involves combusting the coal fuel in mixtures
of pure oxygen and recycled flue gas (RFG) consisting of mainly carbon dioxide (CO

2
). As a consequence, many researchers and

power plant designers have turned to CFD simulations for the study and design of new oxy-coal combustion power plants, as
well as refitting existing air-coal combustion facilities to oxy-coal combustion operations. While CFD is a powerful tool that can
provide a vast amount of information, the simulations themselves can be quite expensive in terms of computational resources and
time investment. As a remedy, a reduced order model (ROM) for oxy-coal combustion has been developed to supplement the CFD
simulations. With this model, it is possible to quickly estimate the average outlet temperature of combustion flue gases given a
known set of mass flow rates of fuel and oxidant entering the power plant boiler as well as determine the required reactor inlet mass
flow rates for a desired outlet temperature. Several cases have been examined with this model. The results compare quite favorably
to full CFD simulation results.

1. Introduction

The anthropogenic emission of greenhouse gases (GHG)
from the combustion of fossil fuels for the generation of
electrical power has been considered as one of the driving
factors for global climate change [1]. In order to meet future
targets for the reduction of GHG emissions, a number of
developing technologies for carbon capture and storage are
currently under development; including pre- and postcom-
bustion capture and oxy-fuel combustion [2].

Oxy-fuel combustion utilizes a combination of pure
oxygen and recycled flue gas (RFG) as an oxidant for the
combustion of the fuel source, producing a gas that consists
mostly of CO

2
and water vapor [2]. The high concentrations

of CO
2
in the flue gas enable easier andmore economical CO

2

separation and compression and have been shown to reduce
gaseous emissions ofNO

𝑥
and SO

𝑥
frompulverized coal (PC)

power plants [3]. Because of the higher specific heat of CO
2

as opposed to nitrogen in conventional air-fired combustion,
oxy-coal combustion has been found to lead to significant

changes in flame temperatures, chemical species concentra-
tions, and radiation heat transfer within the combustor [3].

As a consequence of this, many researchers have turned
to CFD modeling of oxy-combustion as a design tool for
the design of new power plants and retrofitting of existing
facilities utilizing oxy-coal combustion [3–7]. These simula-
tion tools are capable of providing detailed information about
the flow field, turbulent mixing, temperature, and species
concentration profiles within a reactor. However, these sim-
ulations depend upon a number of model parameters and
assumptions. More importantly, each of these simulations
requires a considerable amount of time investment and
computational costs [7]. If the purpose of the simulations
is to obtain a set of operating conditions such as fuel and
oxidant flow rates that will lead to reactor temperatures
within a certain narrowly defined range, then a large number
of simulations may be required, multiplying the costs by a
significant margin.

In an effort to reduce the time and effort that must be
spent to determine acceptable reactor operating conditions,
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a simplified reduced ordermodel (ROM)has been developed.
The ROM utilizes a combination of a commercially available
coal devolatilization model based upon lattice percolation
theory, a chemical equilibrium code developed by NASA,
and an iterative energy balance calculation spreadsheet using
Microsoft Excel. Each of these elements will be described
in greater detail in the following sections, as well as a com-
parison between the ROM predictions and CFD simulations
using the Ansys-Fluent software package.

2. Description of the Reduced Order Model
For a given coal feedstock, the ultimate and proximate
analysis data and higher heating value are used to calcu-
late the required flow rates of fuel (coal) and oxidant (as
a mixture of O

2
and CO

2
) for a desired level of input

energy, expressed in kW, and equivalence ratio, where the
equivalence ratio is expressed as the ratio of available oxygen
to that required for stoichiometric combustion. In order to
account for the devolatilization of the coal as it is heated,
ultimate and proximate analysis data for the selected coal
feedstock, as well as a heating rate, is provided as inputs
to the Chemical Percolation Devolatilization (CPD) model
software developed at Brigham Young University [8–10]. The
CPD software enables prediction of the mass fractions of the
coal tar and volatile gasses that are released when the coal
is heated. The model also predicts the mass fraction of the
remaining solid material, which is assumed for the purposes
of the ROM to consist of pure carbon (graphite). These
mass fractions are then converted into flow rates (moles/s)
and, along with the molar flow rates of fuel and oxidant,
are provided as inputs for the NASA Chemical Equilibrium
Applications (CEA) software. The CEA software is then used
to determine the adiabatic flame temperature, total enthalpy,
and equilibrium concentrations of the combustion products.
This information is then used to calculate an energy balance
which accounts for the energy contained within the outlet
gas and the energy transferred to the ash materials, as well
as an assumed amount of heat lost to the surroundings.
The mass and energy balance equations lead to an iterative
process in which the CEA software is run repeatedly at
different specified temperatures until the energy and mass
conservations are satisfied, resulting in an average outlet
temperature andmass fractions of prescribed species. In what
follows, each of the steps discussed above are described in
greater detail.

2.1. Fuel/Oxidant Stoichiometry Calculations. Thefirst step in
determining the required stoichiometric amounts of oxidant
required for complete combustion is to calculate the mass
flow rate of fuel (or coal) that is needed to produce the desired
amount of power output during the combustion process.This
is done by solving (1), where 𝑚̇

𝑓
is the mass flow rate of fuel

in kg/s, 𝐻HV is the higher heating value of the feedstock in
kJ/kg, and PO is the power output in kW:

𝑚̇

𝑓
=

PO
𝐻HV
. (1)

Once themass flow rate of the fuel is known, it is necessary to
calculate the required mass flow rate of oxidant for complete

combustion. This is done by solving for the stoichiometric
coefficients of the coal combustion reaction shown in (2) for
a single kg of coal:

C
𝑎
H
𝑏
O
𝑐
N
𝑑
S
𝑒
+ 𝑓 (O

2
+ 𝑘CO

2
)

󳨀→ 𝑔CO
2
+ ℎH
2
O + 𝑖SO

2
+ 𝑗N
2

(2)

where 𝑓, 𝑔, ℎ, 𝐼, and 𝑗 are stoichiometric coefficients, and the
subscripts 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 are the number of moles of carbon,
hydrogen, oxygen, nitrogen, and sulfur present in the coal
(as found by dividing the dry ash-free percent mass of each
element, determined via ultimate analysis, by the molecular
weight of each element). The number of moles of oxygen per
mole of fuel required to complete combustion is equal to the
value of𝑓. Finally, 𝑘 is the number ofmoles of carbon dioxide
required to obtain a desired percentage of oxygen in the total
oxidant and is calculated from

𝑘 =

100 −%O
2

%O
2

. (3)

In order to determine the required mass flow rate of the
oxidant, the number of moles of oxidant per kilogram of dry,
ash-free (daf) fuel must then be multiplied by the molecular
weight of the oxidant and the total mass flow rate of the fuel:

𝑚̇ox = 𝑓𝑀ox𝑚̇𝑓 (1 −%moisture −%ash) , (4)

where the expression in parentheses accounts for the differ-
ence between the “as-received” and “daf” coal. It should be
noted here that the mass flow rate of oxidant obtained via (4)
is that required by stoichiometry for complete combustion. If
instead a fuel-lean (or fuel-rich) mixture is desired, then the
right-hand side of (4) can be multiplied by the equivalence
ratio, 𝜆, to obtain the desired conditions, where

𝜆 =

actual moles of oxygen
stoichiometric moles of oxygen

. (5)

An equivalence ratio less than one signifies that the com-
bustion will occur in a fuel-rich environment and greater
than one will be fuel-lean, and a ratio of one signifies
stoichiometric combustion.

2.2. Coal Devolatilization Model. The devolatilization char-
acteristics of the coal are modeled using the Chemical Perco-
lation Devolatilization (CPD) model developed by Fletcher
et al. [8–11]. Utilizing the ultimate and proximate analysis
data of a given type of coal and a specified heating rate,
the CPD model is able to predict the evolution of volatile
gases, tars, and residual solids during coal pyrolysis (which is
considered to be one of the early stages of coal combustion).
TheCPDmodel outputs themass fractions of CO, CO

2
, CH
4
,

water vapor, (unspecified) tars, solids (i.e., carbon and ash
generating materials), and other (unspecified) volatile gases
as a function of time and temperature.

For the purposes of the ROM, it is then assumed, for
brevity, that the tar consists mainly of phenol (C

6
H
5
OH) and

that the balance of the released gasses not in the form of
CO, CO

2
, CH
4
, or water vapor (i.e., the unspecified gases

referred to above) will consist of the following gas species:
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Table 1: Coal properties (Decker Coal).

Proximate analysis (wt% as received) VM (% daf) Ultimate analysis (wt% daf) HHV
Moisture Ash Combustibles C H N S O 𝐻

𝑖
(MJ/kg)

10.2 5.0 84.8 59.4 69.9 5.4 0.6 1.0 23.1 20.9

C
2
H
6
(ethane), H

2
S, SO

2
, O
2
, N
2
, and H

2
. The amounts of

these individual gas species are then estimated by calculating
an elemental mass balance based upon the mass fractions of
carbon, hydrogen, nitrogen, sulfur, and oxygen provided by
the ultimate analysis of the coal.The selection of the assumed
gas and tar species listed above is primarily driven by the
available selection of fuel and oxidant compounds within the
NASA CEA software, as described below.

2.3. Chemical Equilibrium Calculations. The ROM utilizes
the NASA Chemical Equilibrium with Applications (CEA)
computer code [12] for the calculation of combustion-
related parameters, such as adiabatic flame temperature,
total enthalpy, and equilibrium gas compositions. The CEA
code was developed by the NASA Glenn Research Center
and contains modules for constant-pressure or constant-
volume combustion, rocket performance based on finite- or
infinite-chamber-area models, shock wave calculations, and
Chapman-Jouguet detonations. In addition, the code con-
tains databases of thermodynamic and transport properties
for more than 2000 chemical species. The CEA code is avail-
able both as a web-based application and as downloadable
source code written in the Fortran programming language.
The CEA code is first used to determine the adiabatic flame
temperature, as well as the total enthalpy and chemical
composition of the reactor flue gases. This is done using
the “combustion” module, in which the reactor pressure and
molar flow rates and inlet temperatures of the previously
determined fuel and oxidant species are specified as inputs.
Unless otherwise specified, the temperature of the calculated
oxidant is assumed to be at standard conditions, while the
temperature of the devolatilization products is specified at
the final temperature specified during devolatilization of the
coal via the CPD model. The resulting flame temperature,
enthalpy, and gas composition are then recorded and used as
the inlet conditions for the energy balance calculations that
will be discussed in the next section.

Additionally, during the iterative steps of the energy
balance calculations, theCEA code is run againwith the spec-
ified flow rates, but at specified temperatures and pressures.
This step is completed in an iterative manner (with changing
temperature) until the energy balance calculations, described
below, are satisfied.

2.4. Energy Balance Calculations. For the energy balance
calculations component of the ROM, the oxy-combustion
reactor is treated as a control volume over which a steady-
state energy balance is performed. In this treatment, the
specified inlet conditions used with the NASA CEA code
provides the total enthalpy (energy) entering the control
volume. It is assumed that there is no change in energy within
the control volume so that the energy leaving the control

volumemust equal that which is entering the control volume.
The total energy leaving the control volume is a combination
of the temperature-dependent enthalpy contained within
the flue gas, conduction heat transfer losses through the
walls of the theoretical reactor, and the energy required to
raise the temperature of the remaining solids (ash) to the
outlet temperature.The first iteration uses the adiabatic flame
temperature data, and subsequent iterations gradually reduce
temperatures until the difference between the inlet and outlet
energy values is negligibly small, thus satisfying the principle
of conservation of energy.

3. Results and Discussion

A number of simulations were carried out using the ROM
and the results of these simulations were then compared to
previously validated CFD simulations for similar combustion
conditions. In these simulations, coal and various mixtures
of O
2
and CO

2
are fed into a 100 kW downfired oxy-coal

reactor (currently being designed by the authors), assuming
an overall heat loss of 25 kW, and the predicted outlet
temperatures provided by the ROM and CFD simulations
are compared. In total, three different operating conditions
are considered; these conditions correspond to the oxidant
consisting of 25%, 50%, and 75% O

2
, with the remaining

balance consisting of CO
2
. The coal properties for each case

are shown in Table 1.

3.1. CFD Simulations. As previously stated, the reactor used
for the comparison of the CFD simulations and the ROM
predictions is currently being developed by the authors.
This Very High Temperature Entrained Reactor (VHTER)
is a vertical downfired design with a combustion chamber
that is 150mm in diameter and 2m in length. The burner
is composed of two concentric ports. The first port is for
injection of pulverized coal using a small portion of the
oxidant gas as carrier. The remaining balance of oxidant is
injected through a second port, which is swirled with a fin
angle of 45∘. In addition, a pair of tangential injection ports
can be used for injection of chemical reagents for desired
chemical processes within the reactor. Schematics of this
reactor are shown in Figure 1.

For each of the simulations used in this comparison, an
assumedpower input of 100 kW, corresponding to amass flow
rate of 4.78𝑒 − 03 kg/s of pulverized coal, is used. In addition,
three different O

2
/CO
2
mixtures, with O

2
concentrations of

25, 50, and 75%, were considered. These cases are named
OF25, OF50, and OF75, respectively. The heat losses through
the wall were assumed to be 25% of the power input, or
25 kW. The mass flow rates of oxidant were calculated using
an equivalence ratio of 0.85 and are shown in Table 2. The
coal and oxidant are assumed to enter the reactor at standard
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Figure 1: CFD computational domain for the VHTER reactor design.

Table 2: CFD simulation flow rates (kg/s).

CASE O
2

CO
2

Coal
OF25 8.70𝑒 − 03 3.59𝑒 − 02 4.54𝑒 − 03

OF50 8.70𝑒 − 03 1.20𝑒 − 02 4.54𝑒 − 03

OF75 8.70𝑒 − 03 3.99𝑒 − 03 4.54𝑒 − 03

conditions. Finally, the tangential injection ports were not
used in these simulations.

3.1.1. Solution Method (CFD). The simulations were per-
formed using the ANSYS-Fluent software package. The SIM-
PLE scheme [13] was used for pressure-velocity coupling
in conjunction with the PRESTO scheme [14] for pressure
coupling as it is recommended for swirling flows [15]. Tur-
bulent flow, transport of species, and radiative heat transfer
equations were solved using the first order UPWIND scheme
[13].The governing equations for turbulent flow, combustion,
heat, andmass transfer for the continuous and discrete phases
are solved using the finite volume method in structured grid
systems. Both 2D and 3D axisymmetric domains were used;
however, only the results for the 2D axisymmetric domain are
presented here.

The combustion process is modeled using the Eulerian-
Lagrangian approach for the continuous and discrete phases,
respectively. The flow dynamics of the continuous media
is determined by solving the Navier-Stokes equations by
using the Reynolds Average approach (RANS).The Reynolds
stresses are modeled by utilizing the standard 𝑘-𝜀 model
of Launder and Spalding [16]. The modeling of turbulence
close to the wall region is performed by using standard wall

functions for near-wall treatment fromLaunder and Spalding
[17].

Combustion and species transport for the gas phase
is modeled using the well-known time averaged energy
equation and species transport equations.

The energy equation is formulated in terms of the specific
energy accounting for conduction, convection, and viscous
dissipations with effective thermal and diffusive properties
modified by turbulent effects. The effect of combustion, radi-
ation heat transfer, and additional sources are also included.
The Radiative Transfer Equation (RTE) is solved by using
the Discrete Ordinates (OD) Radiation Model (Siegel et al.
[18]), which can account for the effect of radiation exchange
between the gas and particle phases as well as for scattering.
For turbulent-chemistry interaction the turbulent-chemistry
model of Hjertaer andMagnussen [19] is assumed, that is, the
Eddy-dissipation model.

Coal devolatilization is modeled using the single kinetic
rate devolatilization model of Badzioch and Hawksley [20],
where the volatiles are defined by a two-step reaction mech-
anism where the species “volatiles” is a generic hydrocarbon
obtained from the proximate and ultimate analysis of coal.
Finally, the oxidation of char is modeled by utilizing the
kinetics/diffusion-limited surface reaction model of Baum
and Street [21] and Field [22]. The models utilized in these
simulations were tested for oxy-coal combustion in the
exploratory study performed by the coauthors [23].

The boundary conditions for the primary and secondary
ports were set as inlet flow conditions. For the secondary
port, a swirling flow component was given in order to model
the 45∘ fins swirler. The walls were modeled assuming a
constant heat transfer rate and a constant emissivity of 0.5.
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Table 3: Outlet gas composition (mole fraction).

Case Volatiles O
2

CO
2

H
2
O CO SO

2
N
2

OF25 4.29𝑒 − 06 3.59𝑒 − 02 8.58𝑒 − 01 1.04𝑒 − 01 2.80𝑒 − 05 3.98𝑒 − 04 1.17𝑒 − 03

OF50 2.51𝑒 − 04 6.63𝑒 − 02 7.38𝑒 − 01 1.92𝑒 − 01 5.95𝑒 − 04 7.28𝑒 − 04 2.09𝑒 − 03

OF75 6.93𝑒 − 04 1.05𝑒 − 01 6.30𝑒 − 01 2.60𝑒 − 01 1.09𝑒 − 03 1.00𝑒 − 03 2.21𝑒 − 03

Table 4: Reduced order model (ROM) case study NASA CEA inputs.

Species Feed rate (mole/s)
25% O

2
50% O

2
75% O

2

Fuel

Carbon (graphite) 0.1681717 0.1681717 0.1681717
CH
4

0.0110667 0.0110667 0.0110667
C
6
H
5
OH (phenol) 0.0037952 0.0037952 0.0037952
C
2
H
6

0.003525 0.003525 0.003525
H
2

0.0 0.0 0.0
H
2
S 0.0 0.0 0.0

N
2

0.0014144 0.0014144 0.0014144
SO
2

0.0004807 0.0004807 0.0004807

Oxidant

O
2

0.2724017 0.2724017 0.2724017
CO
2

0.817942 0.2732708 0.0918949
CO 0.003273 0.003273 0.003273
H
2
O 0.0824674 0.0824674 0.0824674
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Figure 2: Predicted temperature contours for OF50 case.

The outlet condition is set as pressure outlet with standard
pressure and back flow temperature close to the average outlet
temperature.

3.1.2. Simulation Results. Results for combustion of coal indi-
cate that a complete coal devolatilization and char burnout
percentages close to 99% are attained in all cases. Results
for a typical temperature contour are shown in Figure 2. The
predicted outlet gas composition in mole fractions is shown
in Table 3. The predicted outlet temperatures from the CFD
simulations are given in Table 5.

3.2. ROM Predictions. The three simulation cases described
in the previous section were also considered with the
reduced ordermodel (ROM) approach. Following the process
described previously, the products of coal devolatilization
and the corresponding required amount of oxidant were
broken down into molar flow rates for each of the various
individual chemical compounds and used as input for the
NASA CEA code. The resulting values for each of the three

Table 5: Comparison of CFD and ROM results for average outlet
temperature.

Case Outlet temp K
(CFD)

Outlet temp K
(ROM) Difference % error

OF25 1459 1412 47 3.22
OF50 2140 2074 66 3.08
OF75 2497 2410 87 3.48

simulation cases are provided in Table 4. As can be seen in
the table, all of the values are constant across each case except
for the molar flow rate of CO

2
, which is used as a diluent

for regulation of reactor temperature. For these ROM cases,
the oxidant is assumed to be entering the reactor at room
temperature, while the products of the coal devolatilization
are considered to be entering at a temperature of 2000K.
The predicted outlet temperatures are given in Table 5. As
expected, as the concentration of oxygen in the oxidant gas
stream increases the average outlet temperature decreases due
to the reduced amount of diluent CO

2
.

The resulting outlet gas composition for each of the three
cases, calculated through Gibb’s free energy minimization
by the NASA CEA code, is shown in Table 6. Once again,
as expected, the mole fraction of CO

2
in the product gas

decreases with increasing oxygen percentage within the
initial oxidant gas injected into the reactor. These results will
be discussed in greater detail in the following section.

3.3. Comparison to CFD Simulations. The temperatures
obtained from the ROMwere compared to the average outlet
temperatures obtained from CFD simulations. The resulting
comparisons are shown in Table 5. As can be seen from
Table 5, the CFD and reduced order model ROM exhibit
close agreement with respect to the estimated outlet gas
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Table 6: ROM-predicted outlet gas composition (mole fractions).

Gas species OF25 OF50 OF75
CO 0.00001 0.00679 0.04083
CO
2

0.85825 0.73049 0.58303
H 0.0 0.00005 0.00090
HO
2

0.0 0.0 0.00001
H
2

0.0 0.00036 0.00293
H
2
O 0.10550 0.19008 0.24832

NO 0.00001 0.00026 0.00077
N
2

0.00117 0.00202 0.00252
O 0.0 0.00029 0.00289
OH 0.00003 0.00336 0.01566
O
2

0.03463 0.06556 0.10116
SO 0.0 0.0 0.00001
SO
2

0.00040 0.00073 0.00097
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CFD results
ROM results

0.0001

0.001
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Figure 3: Elemental Balance for OF25.

temperature. For each of the cases presented, the percent
error between the ROM and CFD results falls within the
range of 3.0 and 3.5 percent.

A comparison of the outlet gas composition predicted
by the ROM (Table 6) and the Fluent CFD simulations
(Table 3) shows fairly close agreement with respect to some
of the chemical species of interest, while showing significant
difference in others. For example, the resultingmole fractions
of CO

2
, H
2
O, N
2
, and O

2
for both models show good agree-

ment, whereas the ROM predicts CO concentrations that are
approximately an order of magnitude larger than that seen in
the CFD results. The authors attribute this, at least in part, to
the fact that the NASA chemical equilibrium code considers
a far larger set of chemical species than what is considered
in the Fluent CFD simulations. For instance, the NASA code
also includes H, HO

2
, NO, O, OH, and SO in its determina-

tion of chemical equilibrium, whereas Fluent lumps all of the
“extraneous” chemical species into a single generic volatile
compound of the form C

1.17
H
2.90

O
0.75

N
0.0635

S
0.0107

.
Because of this difference between the two, it is important

to check to make sure that the results from both simulations
incorporate a similar amount of each element present (i.e., C,
H, O, N, and S) in a single mole of exhaust gas. The results
of this analysis are shown in Figures 3–5, and it can be seen
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ROM results
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Figure 4: Elemental Balance for OF50.
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Figure 5: Elemental Balance for OF75.
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Figure 6: Effect of O
2
percentage in oxidant mixture on outlet gas

composition (CFD simulations).

from these figures that there is good agreement between the
two methods.

Finally, Figure 6 depicts the behavior of the composition
of the predicted exhaust gas composition as a function of
the percentage of oxygen in the oxidant mixture for the CFD
cases. For the simulations discussed in this work, the flow rate
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Figure 7: CFD model flowchart.

of oxygen was held constant, and the oxygen percentage was
obtained by varying the amount of carbon dioxide added to
the oxidant. Therefore, increasing percentages of oxygen in
Figure 6 are the result of reducing the amount of carbon diox-
ide. As a consequence, Figure 6 shows a decrease in oxygen
and carbon with increasing O

2
percentage, as expected. By

comparison, there are slight increases in hydrogen, nitrogen,
and sulfur with increasing O

2
percentage. This is also to be

expected, due to the fact that higher O
2
percentages mean

that there is less oxidant overall to act as a diluent. While not
provided here, similar trends can be seen if one looks at the
outlet gas composition of the ROM cases as well.

4. Conclusions

A reduced order model (ROM) for oxy-coal combustion has
been presented.This model, which utilizes the Chemical Per-
colationDevolatilization (CPD)model developed by Fletcher
et al. and the freely-available NASA Chemical Equilibrium
with Applications (NASA CEA) code can be quickly used
to help identify the outlet gas temperature and chemical
composition for an oxy-coal combustion reactor without
the requirement of exhaustive CFD simulations. The main
advantage of this model is that it provides reactor designers
and operators with the ability to quickly obtain preliminary
estimates of the required flow rates of fuel and oxidant for
a desired operating condition, or a quick estimate of the
outlet gas temperature and composition for a given set of
initial flow rates. The fact that it can do so without the need
for time-intensive CFD simulations can lead to reductions

in computational cost and time requirements. However, it
should be noted that CFD simulations will still be required
for prediction of gas composition and temperature variations
within the reactor vessel itself.

Appendix

In response to reviewer comments, a brief discussion on
CFD and ROM model complexities is included. Figure 7
shows the components integral to theCFD simulations.These
simulations consist of gas and solid phase models, as well
as a radiative heat transfer model. The flowchart in Figure 7
lists all of the submodels that make up each of the primary
models, as well as the interactions between them.Themodels
presented in this study were carried out utilizing the NIFTY
computer cluster at West Virginia University, which consists
of 96GBRAM, 2TB Network Storage 6 Dual Quad-Core
Xeon 2.66GHz Processor Nodes, each node containing a
total of 8 processors. A single simulation case running on
a single one of these nodes took approximately 10 hours of
computational time to complete. In comparison, the reduced
ordermodel (ROM) presented in this work can be carried out
on a single personal computer, in this case a Dell Inspiron
Laptop with an Intel i5 2.5 gHz processor with 8GBRAM, in
approximately 30minutes. In addition, if the flow rates of fuel
(i.e., coal) are held constant, and only the flow rates of the
oxygen/carbon dioxide oxidant mixture are varied, different
cases can be computed in approximately 10–15 minutes.
In either case, this represents significant resources savings
over full-blown CFD simulations. A flowchart depicting the
complexity of the ROM procedure is shown in Figure 8.
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Proximate and
ultimate analysis data

Temperature profile for 
coal heating

Stoichiometry 
calculations
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(chemical equilibrium 

calculations)

Energy balance 
calculations

Molar flow rates of

Coal devolatilization

Outlet temp

solids, tar, H2O,CO,CO2,
CH4 , and “other” gaseous products
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carbon (graphite), tar, O2, CO2, H2O,CO,
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,
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(see Fletcher et al. [8–11])

Figure 8: Reduced order model (ROM) computational flowchart.
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